## Trade, Exchange, and, Sociopolitical Development in Iron Age

(500 BC – AD 500) Mainland Southeast Asia:

### An Examination of Stone and Glass Beads from Cambodia and Thailand

by

## Alison Kyra Carter

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

(Anthropology)

at the

## **UNIVERSITY OF WISCONSIN-MADISON**

2013

Date of the final oral examination: 11/30/12

This dissertation is approved by the following members of the Final Oral Exam Committee:
Jonathan Mark Kenoyer, Professor, Anthropology
Sissel Schroeder, Professor, Anthropology
Sarah Clayton, Assistant Professor, Anthropology
Nam Kim, Assistant Professor, Anthropology
Anna Gade, Associate Professor, Languages and Cultures of Asia
Miriam Stark, Professor, Anthropology, University of Hawai'i-Mānoa

© Copyright by Alison Kyra Carter 2013 All Rights Reserved Trade, Exchange, and Sociopolitical Development in Iron Age (500 BC – AD 500)

Mainland Southeast Asia: An Examination of Stone and Glass Beads from Cambodia and

Thailand.

By Alison Kyra Carter

### **Abstract**

This dissertation is an examination of trade and socio-political development in Iron Age (500 BC –AD 500) mainland Southeast Asia through the analysis and comparison of stone and glass beads from sites in Cambodia and Thailand. The primary research objective is to identify trade and interaction networks in mainland Southeast Asia during the Iron Age and understand how these trade networks were associated with emerging socio-political complexity in the Mekong Delta during this period. This topic was addressed through morphological, contextual, and compositional analysis of agate/carnelian, garnet, and glass beads. Using these objects I identified distinct patterns in the distribution of stone and glass beads on two different scales: within individual sites in Cambodia and Thailand and over time and across the region of mainland Southeast Asia. I then linked these bead distribution patterns to changing patterns of socio-political and economic organization in the Mekong Delta.

The results of this research indicate that the types of agate/carnelian and glass beads and the mechanics of trade and exchange changed over time. During the early Iron Age in the late centuries BC "Period 1 Type" agate and carnelian beads and potash glass beads appear to have been exchanged through a pre-existing coastal exchange networks between specific settlements. However, some communities, specifically people living at Angkor Borei and sites in the Mekong

Delta do not appear to have been participating in this network. Instead, the analysis of glass and stone bead data reveal that the Mekong Delta and other communities were not entering into long-distance bead exchange networks until the early centuries AD, as trade with South Asia was intensifying. New types of beads, including "Period 2 Type" agate and carnelian beads and high-alumina soda glass beads eventually came to be traded in these networks. I argue that the distribution patterns of these new stone and glass bead types can be seen as proxies for expanding socio-political and economic influence between elites in the Mekong Delta and communities further inland.

## **Table of Contents**

| Abstract                                                      | i     |
|---------------------------------------------------------------|-------|
| Table of Contents                                             | iii   |
| List of Figures                                               | ix    |
| Figures in Appendices                                         | xiv   |
| List of Tables                                                | xvi   |
| Tables in Appendices                                          | xviii |
| Dedications                                                   | xix   |
| Acknowledgements                                              | XX    |
| Chapter 1: Introduction and Research Questions                |       |
| Definitions and theoretical orientation                       |       |
| Mainland Southeast Asia                                       | 4     |
| South Asia                                                    | 4     |
| Prestige goods                                                | 6     |
| Trade and Exchange                                            | 8     |
| Sites and Communities                                         | 9     |
| Complexity and Trade                                          | 10    |
| Angkor Borei, the Mekong Delta, and "Funan"                   | 15    |
| Cambodian perspectives                                        |       |
| Research questions addressed in this dissertation             | 25    |
| Chapter 2: Archaeological Background of Southeast Asia        | 31    |
| Geography and ecology of mainland Southeast Asia              |       |
| Cambodia                                                      |       |
| Thailand                                                      |       |
| Natural resources important for trade                         |       |
| Chronological Frameworks                                      |       |
| Hunter-Gatherers                                              |       |
| Neolithic period and introduction of rice agriculture         | 43    |
| The Bronze Age                                                | 44    |
| The Iron Age                                                  | 46    |
| Cultural Traditions Framework                                 | 47    |
| The Iron Age Cultures of Mainland Southeast Asia              | 50    |
| The Dongson Culture                                           | 50    |
| The Sa Huynh Culture                                          | 53    |
| The Memotian Culture                                          |       |
| The Moated sites of Northeast Thailand and northwest Cambodia | 55    |
| The Chao Phraya River Valley/Central Thailand                 |       |
| The Mekong Delta/Oc Eo/Funan Culture                          |       |
| Peninsular Thai-Malay Sites                                   |       |
| Other cultures in Myanmar and Laos                            |       |
| The archaeological sites considered in this study             | 61    |

|                                                                                     | iv     |
|-------------------------------------------------------------------------------------|--------|
| Angkor Borei, Cambodia                                                              | 66     |
| Phnom Borei, Cambodia                                                               |        |
| Prohear, Cambodia                                                                   | 67     |
| Bit Meas, Cambodia                                                                  |        |
| Village 10.8, Cambodia                                                              |        |
| Krek 52/62, Cambodia                                                                |        |
| Prei Khmeng, Cambodia                                                               |        |
| Phum Snay, Cambodia                                                                 |        |
| Noen U-Loke, Thailand                                                               |        |
| Ban Non Wat, Thailand                                                               |        |
| Promtin Tai, Thailand                                                               |        |
| Khao Sam Kaeo, Thailand                                                             |        |
| Conclusion                                                                          |        |
| Conclusion                                                                          |        |
| Chapter 3: The Emergence of Complexity in Southeast Asia and the Role of Tra        | de and |
| Exchange                                                                            | 80     |
| Exchange in Southeast Asia prior to the Iron Age                                    | 81     |
| Prestige good trade in Southeast Asia in the late Bronze and early Iron Age periods | 85     |
| Nephrite ear ornaments                                                              |        |
| Changing phases of trade with South Asia during the Iron Age                        | 89     |
| Socio-political development and exchange in the Iron Age                            |        |
| The historical perspective: Indianization.                                          |        |
| The archaeological perspective                                                      |        |
| Emergence of complexity and states in coastal areas                                 |        |
| Alternative models for the emergence of complexity in mainland Southeast Asia       |        |
| Emergent complexity in Northeast Thailand                                           |        |
| The Dongson culture                                                                 |        |
| Trading with Southeast Asia: The view from India                                    | 106    |
| The role of beads in early trade                                                    | 110    |
| Conclusion                                                                          | 115    |
| Chapter 4: Research Methodology                                                     | 110    |
|                                                                                     |        |
| Recording glass and stone beads                                                     |        |
| Identifying stone bead types                                                        |        |
| Bead ShapeRaw material and stone color                                              | 121    |
| Type of drill                                                                       |        |
| Overall quality and complexity of agate and carnelian beads                         |        |
| Measurements                                                                        |        |
| Methods of recording glass beads                                                    |        |
| Bead Shape                                                                          |        |
| Glass Color and opacity                                                             |        |
| Manufacturing method                                                                |        |
| Angle bead was cut from the tube and the roundness factor                           |        |
| Compositional Analysis                                                              |        |
| Assigning stone beads to regional geological source areas                           |        |
| Determining the heterogeneity of the elements with in a sample                      |        |
| Differentiating between the geologic sources                                        |        |
| Assigning stone bead artifacts to a geologic source                                 |        |
| Determining glass types                                                             | 138    |
| Determining the drilling methods of garnet beads                                    | 139    |
|                                                                                     |        |

| Conclusion                                                                                          | 142      |
|-----------------------------------------------------------------------------------------------------|----------|
| Chapter 5: Agate and Carnelian Beads- Contextual and Morphological Analysis                         | 144      |
| Agate and Carnelian: Definitions                                                                    | 145      |
| Agate and Carnelian Bead Production                                                                 | 146      |
| Agate and Carnelian Beads in Southeast Asia                                                         |          |
| Previous research on agate and carnelian beads in Southeast Asia                                    |          |
| Determining the value of agate and carnelian beads                                                  |          |
| Local production of agate and carnelian beads in Southeast Asia                                     |          |
| Kuala Selinsing, Malaysia                                                                           |          |
| Oc Eo, Vietnam                                                                                      |          |
| Khlong Thom/Khuan Lukpad, Thailand                                                                  | 159      |
| Giong Ca Vo, Vietnam                                                                                | 160      |
| Khao Sam Kaeo, Thailand                                                                             | 160      |
| Buni Region, Java                                                                                   | 161      |
| Myanmar                                                                                             | 161      |
| Other sites with unfinished beads or raw materials                                                  | 162      |
| Agate and Carnelian Beads: Results from Contextual and Morphological Analyses                       | 163      |
| Context and Chronology for the Agate and Carnelian Beads                                            | 164      |
| Angkor Borei                                                                                        | 166      |
| Phnom Borei                                                                                         | 168      |
| Prohear                                                                                             | 170      |
| Village 10.8                                                                                        | 172      |
| Phum Snay                                                                                           |          |
| Promtin Tai                                                                                         |          |
| Ban Non Wat                                                                                         |          |
| Conclusions regarding the distribution of agate/carnelian beads in burials                          |          |
| Sites with beads from non-burial contexts                                                           |          |
| The distribution of bead shapes and types                                                           | 186      |
| Notable bead shapes                                                                                 | 186      |
| The distribution of agate and carnelian beads.                                                      |          |
| Comparing morphological characteristics                                                             | 202      |
| Simple vs. Complex bead shapes                                                                      |          |
| Overall bead quality                                                                                |          |
| Bead perforation size                                                                               |          |
| Interpretation from metric and morphological analyses                                               |          |
| Conclusion: Implications for agate and carnelian bead trade networks                                |          |
| Based on morphological analysis, is there a pattern in the type of beads being traded over t space? |          |
| Does evidence from trade patterns suggest that sites in the Mekong Delta were influencing           | trade of |
| these objects?                                                                                      | 218      |
| Chapter 6: Agate and Carnelian Beads- Geochemical Analysis                                          | 220      |
| Previous compositional studies of agate and carnelian                                               | 222      |
| Agate and Carnelian Geologic Sources                                                                |          |
| South and Central Asian agate and carnelian sources                                                 |          |
| Khandek                                                                                             |          |
| Mardak Bet                                                                                          |          |
| Ratanpur                                                                                            |          |
| Mahurjhari                                                                                          |          |
| Paithan                                                                                             | 230      |
| Undhari                                                                                             | 231      |

| Shahr-i-Sokhta                                                                               |     |
|----------------------------------------------------------------------------------------------|-----|
| · · · · · · · · · · · · · · · · · · ·                                                        | 233 |
|                                                                                              |     |
| Ban Khao Mogul, Lopburi Province, Thailand                                                   |     |
| Kon Tom and Gia Lai, Vietnam                                                                 | 235 |
| Dong Nai, Vietnam                                                                            | 237 |
| Pacitan, East Java, Indonesia                                                                | 238 |
| Agate and Carnelian Artifacts analyzed                                                       | 239 |
| LA-ICP-MS analysis of the geologic sources                                                   | 239 |
| Heat-treatment of agate and carnelian                                                        |     |
| Assigning agate and carnelian artifacts to geologic sources                                  |     |
| Agate and carnelian beads assigned to the Deccan Trap sources                                |     |
| Agate and carnelian beads assigned to Southeast Asian geologic sources                       |     |
| Summary of conclusions from the agate and carnelian bead composition data                    |     |
| Other potential sources for raw materials and finished beads                                 |     |
| Conclusion                                                                                   |     |
| Were different stone sources used to produce Period 1 and Period 2 Type beads?               |     |
| Is there evidence that certain bead types were being made from specific geologic sources?    |     |
| Is there geochemical evidence for the use of agate and carnelian from Southeast Asian source |     |
|                                                                                              |     |
| local bead production?                                                                       | 269 |
| Chapter 7: The Glass Beads                                                                   | 272 |
| What is glass?                                                                               |     |
| Indo-Pacific beads                                                                           |     |
| Glass bead research in Southeast Asia                                                        |     |
|                                                                                              |     |
| Glass bead production in Southeast Asia                                                      |     |
| Khlong Thom/Khuan Lukpad, Thailand                                                           |     |
| Khao Sam Kaeo, Thailand                                                                      |     |
| Ban Don Ta Phet, Thailand                                                                    |     |
| Giong Ca Vo, Vietnam                                                                         |     |
| Oc Eo, Vietnam                                                                               |     |
| Ban Chiang Culture                                                                           |     |
|                                                                                              |     |
| The organization of glass production in Southeast Asia                                       |     |
| Common glass types found in Southeast Asia                                                   |     |
| Potash Glass                                                                                 |     |
| High alumina Soda Glass                                                                      |     |
| Mineral soda glass with variable amounts of alumina and lime (m-Na-Ca-Al)                    |     |
| Mixed Alkali Glass                                                                           |     |
| Arika GlassLead Glass                                                                        |     |
| Lead Glass  Changing glass types over time                                                   |     |
|                                                                                              |     |
| Glass beads in Cambodia and Thailand                                                         |     |
| Glass beads in context                                                                       |     |
| Angkor Borei                                                                                 |     |
| Phnom Borei                                                                                  |     |
| Prohear and Bit Meas                                                                         |     |
| Village 10.8                                                                                 |     |
| Phum Snay                                                                                    |     |
| Prei Khmeng                                                                                  |     |
| Promtin Tai, Thailand                                                                        |     |
| Ban Non Wat and Noen U-Loke                                                                  |     |
| Glass beads in context: A summary                                                            | 323 |

|                                                                                                                            | V     |
|----------------------------------------------------------------------------------------------------------------------------|-------|
| Compositional analysis of glass beads from Cambodia and Thailand                                                           |       |
| Results from LA-ICP-MS analysis of glass artifacts                                                                         |       |
| Angkor Borei                                                                                                               |       |
| Phnom Borei                                                                                                                |       |
| Village 10.8                                                                                                               |       |
| Prohear                                                                                                                    |       |
| Bit Meas                                                                                                                   |       |
| Phum Snay                                                                                                                  |       |
| Prei Khmeng                                                                                                                |       |
| Promtin Tai                                                                                                                |       |
| Ban Non Wat                                                                                                                |       |
| Noen U-Loke                                                                                                                |       |
| Ban Non Wat and Noen U-Loke: Change over time                                                                              |       |
| Conclusion: The distribution of glass types within Cambodia and Thailand                                                   |       |
| How does the distribution of glass beads and artifacts change over time and space?                                         |       |
| Potash glass as the earliest glass type in Southeast Asia                                                                  |       |
| Potash glass and coastal exchange networks                                                                                 |       |
| Potash glass and high alumina glass: Evidence for shifting trade networks?                                                 |       |
| The distribution of less common glass types                                                                                |       |
| The importance of regional exchange networks                                                                               |       |
| Does evidence from glass bead trade patterns suggest increased participation in trade by elites sites in the Mekong Delta? |       |
|                                                                                                                            |       |
| Chapter 8: The Garnet Beads                                                                                                |       |
| Garnet: Definitions                                                                                                        |       |
| Garnet Beads in Southeast Asia                                                                                             |       |
| Garnet beads from Cambodia                                                                                                 |       |
| Garnet beads from southeast Cambodia                                                                                       | 36    |
| Garnet beads from Village 10.8                                                                                             | 37    |
| Garnet beads from Prohear and Bit Meas                                                                                     | 37    |
| Garnet beads from Angkor Borei                                                                                             | 37    |
| Examining the bead perforations                                                                                            |       |
| Garnet bead perforations from Angkor Borei                                                                                 |       |
| Garnet bead perforations from sites in southeast Cambodia                                                                  |       |
| LA-ICP-MS Analysis of garnet beads                                                                                         |       |
| Previous compositional studies of garnet artifacts                                                                         |       |
| Garnet Geologic Sources                                                                                                    |       |
|                                                                                                                            |       |
| Analysis and results: Distinguishing between the geologic sources                                                          |       |
| Assigning garnet artifacts to geologic sources                                                                             |       |
| Other potential sources                                                                                                    |       |
| Conclusion                                                                                                                 |       |
| What are the morphological and manufacturing differences between the Angkor Borei garnets                                  | and   |
| garnet beads from Village 10.8, Prohear, and Bit Meas?                                                                     | 39    |
| Are there geochemical differences between beads from Angkor Borei and beads from Prohear                                   | , Bit |
| Meas, and Village 10.8, and is there geochemical evidence for production of garnet beads using                             | ıg    |
| Southeast Asian stone sources?                                                                                             | 39    |
| What can these beads tell us about trade and exchange networks during this period?                                         |       |
|                                                                                                                            |       |
| Chapter 9: Discussion and Conclusion  Bead trade and exchange patterns over time and space                                 |       |
| Connections to early coastal exchange networks                                                                             |       |
|                                                                                                                            |       |

|                                                                                                                                      | viii          |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Regional exchange: Southeast Cambodia                                                                                                |               |
| Regional exchange: Northeast Thailand                                                                                                |               |
| The importance of regional exchange networks during the early Iron Age                                                               |               |
| Promtin Tai: Participation in multiple exchange networks?                                                                            |               |
| Changing patterns of socio-political organization in the Mekong Delta                                                                |               |
| The Mekong Delta and Prohear                                                                                                         |               |
| The local production of beads                                                                                                        |               |
| Who was involved in the trade of stone and glass beads?                                                                              |               |
| Conclusion                                                                                                                           | 428           |
| References                                                                                                                           | 434           |
| Appendix 5.1: Agate and Carnelian beads in this study                                                                                | 476           |
| Appendix 6.1: The agate and carnelian artifacts analyzed using                                                                       | 523           |
| LA-ICP-MS                                                                                                                            | 523           |
| Appendix 6.2: LA-ICP-MS data for agate and carnelian geologic samples                                                                | and artifacts |
| 527                                                                                                                                  |               |
| Appendix 6.3: Standardized Canonical Discriminant Function Coefficients in Chapter 6 generated using Canonical Discriminant Analysis | -             |
| Appendix 6.4: Determining elements to use in data analysis                                                                           | 582           |
| Appendix 6.5: Distinguishing between Agate and Carnelian Geologic Source                                                             | es 585        |
| Appendix 7.1: Glass bead data recorded as a part of this study                                                                       | 593           |
| Appendix 7.1a: Glass Beads from Angkor Borei                                                                                         | 595           |
| Appendix 7.1b: Glass beads from Phnom Borei                                                                                          |               |
| Appendix 7.1c: Glass Beads from Prei Khmeng                                                                                          |               |
| Appendix 7.1d: Glass beads from Prohear and Bit Meas                                                                                 |               |
| Appendix 7.1e: Glass beads from Phum Snay                                                                                            |               |
| Appendix 7.11. Glass beads from Village 10.8  Appendix 7.12: Glass Beads from Promtin Tai                                            |               |
| Appendix 7.1h: Glass beads from Noen U-Loke at the Phimai Museum                                                                     | 777           |
| Appendix 7.1i: Glass beads from Ban Non Wat                                                                                          |               |
| Appendix 7.1j: Glass beads from Ban Non Wat and Noen U-Loke analyzed using                                                           | LA-ICP-MS 806 |
| Appendix 7.2: LA-ICP-MS data for glass artifacts                                                                                     | 818           |
| Appendix 7.3: PCA scores for Figure 7.30                                                                                             | 07/           |
| Appendix 8.1: Garnet Zoning and Heterogenity                                                                                         | 8 / 4         |
| Appendix 8.2: Garnet beads recorded in this study                                                                                    |               |
| Tippenum oizi Guinet seuds recorded in time seudy                                                                                    | 875           |
| Appendix 8.3: LA-ICP-MS data for garnet geologic sources and artifacts                                                               | 875<br>878    |

# **List of Figures**

| Figure 1.1: Map listing countries in mainland Southeast Asia.                                | 5  |
|----------------------------------------------------------------------------------------------|----|
| Figure 1.2: Map listing countries in South Asia.                                             | 6  |
| Figure 1.3: A map of the supposed territory of Funan based on historical documents and the   |    |
| locations of Angkor Borei and Oc Eo. There is little archaeological evidence that Funan      |    |
| <u> </u>                                                                                     | 20 |
| Figure 1.4: Google earth image of Angkor Borei. The red line highlights the wall and moats   |    |
| around the city                                                                              | 21 |
| Figure 1.5: Map of canals around Angkor Borei in red. Adapted from Sanderson et al. 2007,    |    |
| Figure 1.                                                                                    | 22 |
| Figure 2.1: Map of Cambodia noting important physical features. Digital Elevation Model data | ì  |
| taken from ASTER GDEM [http://www.gdem.aster.ersdac.or.jp/index.jsp]. ASTER GDE              |    |
| is a product of METI and NASA. Map inset adapted from Wikipedia Commons                      |    |
| [https://en.wikipedia.org/wiki/File:Location Cambodia ASEAN.svg]                             | 34 |
| Figure 2.2:Map of Thailand noting important physical features. Map created using publically  |    |
| released GLOBE data [http://www.ngdc.noaa.gov/mgg/topo/globe.html]. Map inset taken          | 1  |
| from Wikipedia Commons                                                                       |    |
| [https://en.wikipedia.org/wiki/File:Thailand_%28orthographic_projection%29.svg]              | 36 |
| Figure 2.3: Map of Iron Age archaeological cultures and sites mentioned in this chapter      | 52 |
| Figure 2.4: Iron Age sites in Cambodia. Those included in this study are marked in red       | 63 |
| Figure 2.5: Sites in Thailand examined as a part of this study.                              | 64 |
| Figure 3.1:Map of sites discussed in this chapter                                            | 82 |
| Figure 3.2: Example of a T-section bangle excavated at Ban Non Wat in February 2007          | 84 |
| Figure 3.3: Example of lingling-o ear ornaments. Image courtesy of Andreas Reinecke          | 87 |
| Figure 3.4: Example of a bi-cephalous double animal headed ear ornament, scale in cm. Image  | ;  |
| on the left courtesy of Andreas Reinecke. Drawing on the right of a similar pendant from     |    |
| Hung and Bellwood 2010:234. Drawing by P. Madavi.                                            | 87 |
| Figure 4.1: Examples of black and white banded agate (left), carnelian (middle), and garnet  |    |
| (right) beads. Scale in cm. 1                                                                | 22 |
| Figure 4.2: Digital microscope image of a bag-polished bead (left) and a bead with grinding  |    |
| striae (right)                                                                               |    |
| Figure 4.3: Different drill types identified in the study.                                   | 24 |
| Figure 4.4:Major measurements taken on stone beads (left) and glass beads (right) 1          | 26 |
| Figure 4.5: From left to right- Example of an Indo-Pacific drawn bead with longitudinal      |    |
| striations from the drawing technique, a coiled bead, and a wrapped bead                     | 28 |
| Figure 4.6: Roundness factor for glass beads.                                                | 29 |
| Figure 4.7: A. Taking impressions of stone bead perforations using dental impression gun. B. |    |
| The beads with impression material while it is setting. C. The impressions after removal     |    |
| from the beads showing the different shapes of the interior perforations. D. The impression  | ns |
| mounted on a slide for SEM                                                                   | 41 |
| Figure 5.1 Agate and carnelian raw material acquisition and manufacturing stages. Image      |    |
| courtesy of J. Mark Kenoyer from Kenoyer, Vidale, and Bhan 1991: Figure 2 1                  |    |
| Figure 5.2: Map of Southeast Asian sites with evidence for bead production                   | 58 |

| Figure 5.3: Image of agate and carnelian fragments from the surface of Dong Marum, Thailand                                                           | l.  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Collected by the Thai-Italian Lopburi Regional Archaeological Project during the 1993                                                                 |     |
| survey in the Lopburi region. Photo courtesy of Fiorella Rispoli                                                                                      | 62  |
| Figure 5.4: Map of sites with agate and carnelian beads analyzed as part of this study                                                                | 66  |
| Figure 5.5: Angkor Borei contour map. Excavation units are listed as AB1-8. AB7 denotes the                                                           |     |
| Vat Komnou cemetery excavation. Constructed by John Shearer, Anne Dunlop and Jane Drummond; first published in Bishop et al. 2003                     | 67  |
| Figure 5.6: Angkor Borei and Phnom Borei as viewed from Google Earth                                                                                  |     |
| Figure 5.7: A group burials found at Phnom Borei. Photo by Phon Kaseka                                                                                |     |
| Figure 5.8: Heng Sophady restores a bronze Dongson drum from Burial 4 with the skull of an                                                            | U9  |
| older female still inside                                                                                                                             | 71  |
|                                                                                                                                                       | 71  |
|                                                                                                                                                       |     |
| Figure 5.10: Looted beads from Phum Snay currently stored at Wat Bo in Siem Reap, Cambod                                                              |     |
| Scale in cm. 1                                                                                                                                        | /4  |
| Figure 5.11: A short truncated bicone carnelian bead from Prei Khmeng on display at the                                                               | 0.4 |
| National Museum, Phnom Penh.                                                                                                                          |     |
| Figure 5.12: Front and back views of a carnelian nodule found at Prei Khmeng. Scale in cm. 1                                                          |     |
| Figure 5.13: Spherical carnelian bead from Krek 52/62. Scale in cm. 1                                                                                 |     |
| Figure 5.14: Map of Khao Sam Kaeo with general locations where beads were found. Adapted                                                              |     |
| from map provided by Bérénice Bellina.                                                                                                                |     |
| Figure 5.15: Finished and unfinished beads from Khao Sam Kaeo analyzed in the current study                                                           |     |
| Scale in cm                                                                                                                                           |     |
| Figure 5.16: List of bead shapes recorded in the current study (continued below)                                                                      |     |
| Figure 5.17: Examples of notched and unnotched pendants from Promtin Tai, Ban NonWat, and                                                             | 1   |
| Khao Sam Kaeo. Additional examples of pendants from Ban Non Wat can be seen in                                                                        |     |
| Higham et al. 2009:240. Scale in cm.                                                                                                                  |     |
| Figure 5.18: Example of a leech bead from Khao Sam Kaeo. Scale in cm                                                                                  |     |
| Figure 5.19: A long hexagonal barrel bead from Promtin Tai. Scale in cm                                                                               |     |
| Figure 5.20: Hexagonal flattened bicone beads from Khao Sam Kaeo, Prohear, and Promtin Ta                                                             |     |
|                                                                                                                                                       | 96  |
| Figure 5.21: Sites with hexagonal flattened bicone beads. Adapted from Theunissen 2003: 124.                                                          |     |
| 1                                                                                                                                                     |     |
| Figure 5.22: Hexagonal faceted bicone beads from Phum Snay. Scale in cm                                                                               |     |
| Figure 5.23: Examples of Bicone-Barrel beads from Village 10.8 Scale in cm                                                                            |     |
| Figure 5.24: The distribution of agate and carnelian beads by site. Sites in Cambodia are market by a [C] and sites in Thailand by a [T].             |     |
| Figure 5.25: A black and white banded agate bead from Village 10.8. Scale in cm                                                                       |     |
| Figure 5.26: Bead shapes typically found in Period 1 (more complex) and Period 2 (less complex) from Bellina 2003. Image courtesy of Bérénice Bellina |     |
| Figure 5.27: The quantity of different simple and complex bead shapes at each site. Sites in                                                          | 0.5 |
| Cambodia are marked by a [C] and sites in Thailand by a [T]                                                                                           | 06  |
| Figure 5.28: The total number of beads classified as either simple or complex by site. Sites in                                                       | 50  |
| Cambodia are marked by a [C] and sites in Thailand by a [T]                                                                                           | 07  |
| Figure 5.29: Quantity of high quality, low quality, and unfinished agate/carnelian beads by site                                                      |     |
|                                                                                                                                                       | .08 |

| Figure 5.30: Diamond mean comparison plot for perforation size. The horizontal dashed line refers to the overall mean for all of the sites. The line in the middle of the center of the diamond denotes the group mean, with the top and bottom reflecting the 95% confidence limits. The width of the diamonds corresponds to the sample size at each site |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 5.31: Based on results from the Scheffé test, this figure visualizes the similarity in bear perforation measurement by site.                                                                                                                                                                                                                         | ıd    |
| Figure 6.1: Map of Central and South Asian geologic sources and sites mentioned in the text. Figure 6.2: Map of the approximate location of the Deccan Traps. Adapted from Mahoney 19                                                                                                                                                                       | . 226 |
| Figure 6.3: Geologic agate samples from Khandek, Gujarat Province, India. Photo courtesy o Randall Law. Scale in cm.                                                                                                                                                                                                                                        |       |
| Figure 6.4: Geologic agate samples from Mardak Bet, Gujarat Province, India. Scale in cm                                                                                                                                                                                                                                                                    |       |
| Figure 6.5: Map of notable agate mine locations around the village of Ratanpur. Map provide by Randall Law.                                                                                                                                                                                                                                                 |       |
| Figure 6.6: Geologic agate samples from Ratanpur, Gujarat Province, India. Photo courtesy of                                                                                                                                                                                                                                                                |       |
| Randall Law. Scale in cm.                                                                                                                                                                                                                                                                                                                                   |       |
| Figure 6.7: Samples from Mahurjhari, Maharashtra Province, India. Scale in cm                                                                                                                                                                                                                                                                               |       |
| Figure 6.8: Left-Agate nodules in the Godavari River near Paithan, Maharashtra Province, In-Right-Detail of agate nodules at Paithan. Photos courtesy of Randall Law                                                                                                                                                                                        | dia.  |
| Figure 6.9: Left- Agate-filled agricultural fields at Undhari, Maharashtra province, India. Rig                                                                                                                                                                                                                                                             |       |
| A large agate nodule from Undhari. Photos courtesy of Randall Law.                                                                                                                                                                                                                                                                                          | _     |
| Figure 6.10: Archaeological agate samples from Shahr-i-Sokhta. Photo courtesy of Randall L                                                                                                                                                                                                                                                                  |       |
| Scale in cm.                                                                                                                                                                                                                                                                                                                                                |       |
| Figure 6.11: Agate an carnelian samples from Ban Khao Mogul, Lopburi Province, Thailand                                                                                                                                                                                                                                                                     |       |
|                                                                                                                                                                                                                                                                                                                                                             | . 234 |
| Scale in cm                                                                                                                                                                                                                                                                                                                                                 | 234   |
| current study                                                                                                                                                                                                                                                                                                                                               | 235   |
| Figure 6.13: Carnelian samples from Kon Tum province, Vietnam. Scale in cm.                                                                                                                                                                                                                                                                                 |       |
| Figure 6.14: Agate samples from Gia Lai province, Vietnam. Scale in cm.                                                                                                                                                                                                                                                                                     |       |
| Figure 6.15: Carnelian carved figures from Dong Nai province, Vietnam.                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                             |       |
| Figure 6.16:Back side of carnelian figures, showing their unworked "natural" appearance                                                                                                                                                                                                                                                                     |       |
| Figure 6.17: Carnelian samples from Pacitan, East Java, Indonesia. Scale in cm                                                                                                                                                                                                                                                                              | 239   |
| Figure 6.18: Heated and unheated geologic samples from the Ratanpur source. Only one of the samples in the "heated anea" group was analyzed using LA ICP MS.                                                                                                                                                                                                |       |
| samples in the "heated once" group was analyzed using LA-ICP-MS.                                                                                                                                                                                                                                                                                            |       |
| Figure 6.19: The Deccan Trap agate sources plotted by their first, second, and third discriming from Potentials. Three complete from Potentials (valley) triangles) were plotted as ungrouped as                                                                                                                                                            |       |
| functions. Three samples from Ratanpur (yellow triangles) were plotted as ungrouped of                                                                                                                                                                                                                                                                      | . 243 |
| Figure 6.20: Geologic sources and artifacts plotted by their first and second discriminant sco                                                                                                                                                                                                                                                              | res.  |
| Figure 6.21: Geologic sources and artifacts plotted by their first and second discriminant score                                                                                                                                                                                                                                                            | 244   |
|                                                                                                                                                                                                                                                                                                                                                             |       |
| All of the Deccan Trap sources have been combined into a single group. The Mahurjhan source was omitted for visual clarity.                                                                                                                                                                                                                                 |       |
| Figure 6.22: Southeast Asian geologic source and the 10 artifacts that were assigned to these                                                                                                                                                                                                                                                               | 243   |
| sources plotted by their first and second discriminant scores                                                                                                                                                                                                                                                                                               | 246   |
| SOURCES PROGRAM OF MINITERING MICH DANCING MIDALININGING DANLAND,                                                                                                                                                                                                                                                                                           |       |

| Figure 6.23: Deccan Traps sources and 69 agate and carnelian artifacts plotted by their first a second discriminant scores. AKC03035 is the only artifact assigned to the Mahurjhari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 247 |
| Figure 6.24: Spherical carnelian bead from Angkor Borei (AKC03035) assigned to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5.1 |
| Mahurjhari source. Scale in cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 251 |
| Figure 6.25: Deccan Traps sources and 69 archaeological artifacts plotted by their first and second discriminant scores from the third CDA. The labeled artifacts are those that plot away from the Deccan Trap sources group. The Mahyriberi source has been emitted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| away from the Deccan Trap sources group. The Mahurjhari source has been omitted for visual clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 252   |
| Figure 6.26: Geologic sources and artifacts from the fourth CDA plotted by their first, second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -     |
| and third discriminant function. Labeled artifacts are those that appear to plot away from in between the sources to which they were assigned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n or  |
| Figure 6.27: Geologic sources and artifacts from the fourth CDA plotted by their first, second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| and third discriminant scores. The two artifacts noted in the scatterplot are those that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pear  |
| to plot closely with the Ratanpur source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 236 |
| Figure 6.28: Artifacts consistently assigned to Southeast Asian sources plotted by their first,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 257 |
| second, and third discriminant scores.  Figure 6.29:AKC02061 a long carnelian barrel bead from Ban Non Wat that may derive from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| geologic source in Myanmar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Figure 6.30: AKC00344, a short bicone bead from Village 10.8 with low polish.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Figure 6.31: Agate beads assigned to the Kon Tum geologic source (top row) and Indonesian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| source (bottom row).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 7.1: Map of sites with glass artifacts analyzed as part of this study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Figure 7.2:Example of Indo-Pacific beads in a variety of colors and size from Angkor Borei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Figure 7.3:An Indo-Pacific bead shown at 65x magnification. Note the linear striations from the strict of the stri |       |
| glass drawing process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| Figure 7.4: Map of sites with evidence for glass production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 279 |
| Figure 7.5: The distribution of glass bead colors at Angkor Borei (n=1268). Quantities for co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lors  |
| with less than 20 beads are listed in parentheses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 298 |
| Figure 7.6: Distribution of glass bead colors at Phnom Borei (n=48).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 299 |
| Figure 7.7: Examples of ring/earring/bangle fragments from Prohear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 303 |
| Figure 7.8: Example of the dark blue glass beads common at Prohear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 303 |
| Figure 7.9: Distribution of glass colors at Prohear (n= 550). Quantities for colors with less that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 15 beads are listed in parentheses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 304 |
| Figure 7.10: Example of a glass ring from Village 10.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Figure 7.11: The distribution of glass bead colors at Village 10.8 (n=209).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Figure 7.12:Glass ring or earring fragments from Phum Snay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Figure 7.13: Example of orange opaque glass microbeads from Phum Snay Scale in mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 310 |
| Figure 7.14: Orange-red mixed glass bead from Phum Snay. Taken using a Dino-Lite digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| microscope at 50x magnification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Figure 7.15: Distribution of glass colors at Phum Snay (n=285).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Figure 7.16: Black glass short bicone bead with a red stripe from Prei Khmeng. The image of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| the right is a close-up of the red stripe at 60x magnification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Figure 7.17: Glass bead color distribution at Prei Khmeng (n=2056)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 313 |

| Figure 7.18: Glass bead color distribution at Promtin Tai (n=960). Glass colors with a small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| number of beads are listed in parenthesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 315   |
| Figure 7.19: Example of the two types of orange opaque wrapped glass beads found at Noer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n U-  |
| Loke and Ban Non Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 317   |
| Figure 7.20: The distribution of glass colors at Ban Non Wat and Noen U-Loke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 323   |
| Figure 7.21: Glass beads analyzed from Angkor Borei. AKC02585 not pictured as bead was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s too |
| fragmentary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 330   |
| Figure 7.22: From left to right: A yellow lead glass bead, several Arika red glass beads, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | blue  |
| m-Na-Ca-Al glass found at Prohear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 333   |
| Figure 7.23: Example of the v-Na-Ca glass from Phum Snay (left) and Prei Khmeng (right).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Figure 7.24: Examples of some of the unusual beads found at Promtin Tai.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 337   |
| Figure 7.25: Example of m-Na-Ca-Al beads (left) and potash glass beads (right) from Promi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tin   |
| Tai.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 338   |
| Figure 7.27: Examples of some of the more unusual glass beads and artifacts from Ban Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Photos of AKC02033 and AKC02044 taken by James Lankton.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Figure 7.28: Example of the m-Na-Ca-Al bead (circled) from Burial 266 at Ban Non Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 7.29: An estimate of the distribution of major glass types through time at Ban NonW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 'at.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 348   |
| Figure 7.30: A 3D PCA scatterplot of the compositions of opaque orange mixed alkali bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| from various sites in South and Southeast Asia Beads from sites in Thailand are blue, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | beads |
| from sites in India are green, and a bead from a site in Vietnam is orange. Data for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| scatterplot taken from Dussubieux 2001 and from unpublished data courtesy of Laure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50  |
| Dussubieux and Bernard Gratuze.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 352   |
| Figure 7.31: An estimate of the quantity of different glass types at Ban Non Wat and Noen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Loke through time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Figure 8.1: Photo of garnet beads from Go O Chua, courtesy of Andreas Reinecke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Figure 8.2: Map of sites discussed in this chapter. Sites in italic are those with artifacts analysis of sites discussed in this chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -     |
| in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Figure 8.3: Map of site in Cambodia with beads analyzed in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| Figure 8.4: The 18 beads from southeast Cambodia recorded in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Figure 8.5: Garnet beads from Angkor Borei.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Figure 8.6: Drawing showing the difference between the cylindrical Angkor Borei perforation of the best of the state of th |       |
| (left) and the bi-conical (middle) and irregular (right) perforations on garnet beads from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| southeast Cambodia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Figure 8.7: SEM images of bead perforations from Angkor Borei.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Figure 8.8: SEM images of perforations from AKC00333.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Figure 8.9: SEM images of perforations from AKC00334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 8.10: SEM SEM images of perforations from AKC00606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Figure 8.11: SEM images of perforations from AKC00336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Figure 8.12: SEM images of perforations from AKC00338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Figure 8.13: Garnet artifacts from Porunthal, India (left) and Phu Khao Thong, Thailand (rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _     |
| E' 014 C d A '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Figure 8.14: South Asian garnet sources and sites discussed in this chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Figure 8.15: Southeast Asian garnet sources and potential source areas discussed in this chap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 388   |

| Figure 8.16: Ternary diagram of sum-normalized Fe, Mn, and Mg noting three different groups of garnets: group 1 (almandine rich), group 2 (almandine-pyrope), and group 3 (Lam Dong |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| garnet)                                                                                                                                                                             |
| Figure 8.17: Principal component analysis of the Group 1 almandine garnets and artifacts from                                                                                       |
| Angkor Borei and Porunthal. The first component summarizes 59% of the variance and the                                                                                              |
| second component accounts for 32%                                                                                                                                                   |
|                                                                                                                                                                                     |
| from southeast Cambodia and Phu Khao Thong. The first component summarizes 44% of                                                                                                   |
| the variance and the second component accounts for 22%                                                                                                                              |
| Figure 8.19: Bivariate plot of Ca vs Ti (logged). The Southeast Cambodia garnets (circled) have a high concentration of Ti in comparison with the other sources and artifacts       |
| Figure 9.1: Map showing locations of sites with Phase 1 agate/carnelian beads and potash glass                                                                                      |
| based on previous studies by Bellina (2007) and Lankton and Dussubieux (2013). Note the                                                                                             |
| similarity in the distribution of these objects with the distribution of nephrite ear ornaments                                                                                     |
| in mainland Southeast Asia noted by the blue and yellow stars in Figure 9.2 (below) 403                                                                                             |
| Figure 9.2: Map of the distribution of Taiwan nephrite artifacts in Southeast Asia from Hung et                                                                                     |
| al. 2007 (Figure 3). The green shaded area represents the currently known distribution of                                                                                           |
| Taiwan nephrite artifacts. The Fengtian nephrite deposit is noted by the green triangle.                                                                                            |
| Yellow stars represent sites outside Taiwan with positively identified Fengtian nephrite                                                                                            |
| artifacts and blue stars represent sites with jade artifacts of possible Fengtian origin. Black                                                                                     |
| circles denote sites that have identified nephrite of non-Fengtian origin                                                                                                           |
| Figure 9.3: Map of sites in this study with potash glass beads and Phase 1 agate/carnelian beads.                                                                                   |
|                                                                                                                                                                                     |
| Figure 9.4: Sites in this study with high alumina soda glass beads and Phase 2 agate/carnelian beads                                                                                |
| Figure 9.5: Map showing location of Ba Phnom in relation to Angkor Borei, Prohear and Oc Eo.                                                                                        |
|                                                                                                                                                                                     |
| Figure 9.6: Greenstone beads with carnelian and glass beads from Promtin Tai                                                                                                        |
| Figures in Appendices                                                                                                                                                               |
| Figure 6.5.1: Bivariate scatterplot of Mg vs. Sn, showing the high levels of Sn in the Mahurjhari                                                                                   |
| samples. Values in both axes have been $\log_{10}$ transformed. 585                                                                                                                 |
| Figure 6.5.2:Bivariate scatterplot of Mg vs. Ni showing the high levels of both elements in the                                                                                     |
| Gia Lai samples. Values in both axes have been $\log_{10}$ transformed                                                                                                              |
| Figure 6.5.3:Bivariate scatterplot of B vs. U showing the high levels of both elements in the                                                                                       |
| Shahr-i-Sokhta samples. Values in both axes have been $\log_{10}$ transformed                                                                                                       |
| Figure 6.5.4: Bivariate scatterplot of B vs. Sb showing the high levels Sb and slightly lower                                                                                       |
| levels of B in the Ban Khao Mogul samples. Values in both axes have been $\log_{10}$                                                                                                |
| transformed. 587                                                                                                                                                                    |
| Figure 6.5.5: Geologic sources from South and Southeast Asia plotted by their first and second                                                                                      |
| discriminant functions                                                                                                                                                              |
| Figure 6.5.6: Results from a second CDA in which the Deccan Trap agate sources were treated                                                                                         |
| as a single source. Sources are plotted by their first and second discriminant functions 589                                                                                        |
| Figure 6.5.7: The Deccan Trap agate sources plotted by their first and second discriminant                                                                                          |
| functions                                                                                                                                                                           |

| Figure 7.1.1: Millimeter size chart used to record Indo-Pacific beads of different sizes. Taken  |     |
|--------------------------------------------------------------------------------------------------|-----|
| from http://ww.kmversteeg.com/edtec541/final/size.htm                                            | 94  |
| Figure 8.4.1: Principal component analysis of the Group 1 almandine garnets. The first           |     |
| component summarizes 59% of the variance and the second component accounts for 32%               |     |
| 8                                                                                                | 399 |
| Figure 8.4.2: A bivariate plot of Cu vs. Dy highlighting the high concentration of Dy in the Sri |     |
| Lanka Group 1 garnet group and the low concentration of Cu in the South India garnet             |     |
| group                                                                                            | 399 |
| Figure 8.4.3:Principal component analysis of the group 2 almandine-pyrope garnets. The first     |     |
| component summarizes 44% of the variance and the second component accounts for 22%               |     |
| 9                                                                                                | 02  |
| Figure 8.4.4:A 3D scatterplot showing the high levels of In, Ti, and Zn (all PPM) in the Lam     |     |
| Dong garnets as compared to the other garnet sources                                             | 03  |

## **List of Tables**

| Table 1.1: Some of the major developments in the Mekong Delta as identified through                                                                                                                                                                                                                                                                                         | 10                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| archaeological investigations. All dates are approximate                                                                                                                                                                                                                                                                                                                    |                       |
| Table 2.1: Chronological periods discussed in this dissertation.                                                                                                                                                                                                                                                                                                            |                       |
| Table 2.2: List of stone and glass beads recorded at each site. The bead collections at Ban Wat and Noen U-Loke were briefly examined but not recorded in as much detail as ot sites in this study. The glass bead numbers refer to those that were examined briefly, a agate/carnelian number refers only to those beads from Ban Non Wat that were analyzusing LA-ICP-MS. | her<br>and the<br>zed |
| Table 2.3: Number of stone and glass beads from each site that were analyzed using LA-IC                                                                                                                                                                                                                                                                                    | CP-MS                 |
|                                                                                                                                                                                                                                                                                                                                                                             | 62                    |
| Table 2.4: Summary of the sites in this study, their dates, locations, and culture groups to we they belong.                                                                                                                                                                                                                                                                | hich                  |
| Table 4.1: List of bead attributes recorded.                                                                                                                                                                                                                                                                                                                                | 121                   |
| Table 4.2: Glass bead attributes recorded.                                                                                                                                                                                                                                                                                                                                  |                       |
| Table 5.1: List of the quantity of agate and carnelian beads from each site discussed in this                                                                                                                                                                                                                                                                               | 3                     |
| chapter                                                                                                                                                                                                                                                                                                                                                                     |                       |
| Table 5.3: A list of burials with agate and carnelian beads from Village 10.8 and their associated in this study                                                                                                                                                                                                                                                            |                       |
| grave goods. Age and sex are unknown                                                                                                                                                                                                                                                                                                                                        | 173                   |
| Table 5.4: Burials with agate and carnelian beads from Promtin Tai                                                                                                                                                                                                                                                                                                          | 176                   |
| Table 5.5: Burials at Ban Non Wat with agate and carnelian beads                                                                                                                                                                                                                                                                                                            |                       |
| Table 5.6: The quantity and percentage of burials with agate and carnelian beads amongst t                                                                                                                                                                                                                                                                                  | he                    |
| sites studied.                                                                                                                                                                                                                                                                                                                                                              |                       |
| Table 5.7: Table of burials with large quantities of beads.                                                                                                                                                                                                                                                                                                                 | 181                   |
| Table 5.8: Table denoting the number of male and female burials with and without agate ar carnelian beads                                                                                                                                                                                                                                                                   |                       |
| Table 5.9: The most common bead shapes and the quantity recorded at each site as part of t                                                                                                                                                                                                                                                                                  | this                  |
| study.                                                                                                                                                                                                                                                                                                                                                                      |                       |
| Table 5.10: Less frequently encountered bead shapes and their quantities                                                                                                                                                                                                                                                                                                    | 192                   |
| Table 5.11: Bead shapes found exclusively at one site. Unless otherwise noted, only a single                                                                                                                                                                                                                                                                                |                       |
| version of each shape was recorded.                                                                                                                                                                                                                                                                                                                                         | 193                   |
| Table 5.12: Morphological differences between earlier and later period beads found in Sour                                                                                                                                                                                                                                                                                  | theast                |
| Asia. Adapted from Bellina 2007:32.                                                                                                                                                                                                                                                                                                                                         | 202                   |
| Table 5.13: The number of simple and complex bead shapes and number of beads classified                                                                                                                                                                                                                                                                                     | las                   |
| either simple or complex at each site.                                                                                                                                                                                                                                                                                                                                      |                       |
| Table 5.14: Mean and standard deviation of perforation hole sizes for all the agate and carn                                                                                                                                                                                                                                                                                | elian                 |
| beads at each site.                                                                                                                                                                                                                                                                                                                                                         |                       |
| Table 5.15: Results of ANOVA test showing significant difference between the mean performance.                                                                                                                                                                                                                                                                              |                       |
| Table 5.16: Results of Scheffé test.                                                                                                                                                                                                                                                                                                                                        |                       |
| Table 5.17: Period 1 and Period 2 beads as determined by morphological characteristics. Si                                                                                                                                                                                                                                                                                  |                       |
| italic are those that have been tentatively classified as belonging to either Period 1 or l                                                                                                                                                                                                                                                                                 | Period                |
| Table 6.1:Names and quantity of geologic source samples analyzed using LA-ICP-MS                                                                                                                                                                                                                                                                                            |                       |

| Table 6.2:First and second predicted group membership (PGM) for the heat-treated Ratanpur        |          |
|--------------------------------------------------------------------------------------------------|----------|
|                                                                                                  | 242      |
| Table 6.3: Table of first predicted group memberships (PGM) for the agate and carnelian          |          |
| artifacts. BKM= Ban Khao Mogul, DT=Deccan Traps, MB=Mardak Bet                                   | 248      |
| Table 6.4: List of first predicted group measurements for the 20 artifacts that grouped with the |          |
| Southeast Asian geologic sources. Artifacts in italics denote those that were consistently       |          |
| assigned to the same source during all four discriminant function analyses.                      |          |
| Table 6.5: Preliminary geologic source provenience assignment for the 79 agate and carnelian     |          |
| artifacts analyzed using LA-ICP-MS.                                                              |          |
| Table 6.6: The total number of beads assigned to Deccan Trap and non-Deccan Traps sources        |          |
|                                                                                                  | 268      |
| Table 6.7: The total number of beads assigned to Deccan Trap and non-Deccan Traps sources        | <b>;</b> |
|                                                                                                  | 268      |
| Table.7.1: Table of glass types identified by Dussubieux and discussed in this chapter. Lead     |          |
| glass is not listed in this table but has been found in Southeast Asia. Adapted from             |          |
| Dussubieux 2001 and Dussubieux and Gratuze 2003.                                                 | 286      |
| Table 7.2 Number of glass beads examined by site.                                                | 294      |
| Table 7.3: Burials with glass beads at Angkor Borei                                              | 297      |
| Table 7.4: Glass bead and burial data from Prohear.                                              | 302      |
| Table 7.5: Glass artifacts from burial or possible burial contexts from Village 10.8             | 305      |
| Table 7.6: Glass beads from burial contexts at Phum Snay. Beads from Burial 9 (2001) were r      | not      |
| included in the current study.                                                                   | 309      |
| Table 7.7: Glass beads from burial and possible burial contexts at Prei Khmeng. Burial data fr   | rom      |
| Baty 2003, Demeter 2004ab, and Pottier 2001.                                                     | 313      |
| Table 7.8: Glass beads from burial contexts at Promtin Tai.                                      | 316      |
| Table 7.9: Iron Age phases at Ban Non Wat and Noen U-Loke (from Higham et al. 2007;              |          |
| Higham et. al 2012; Higham 2011b)                                                                |          |
| Table 7.10: Glass beads from burial contexts at Ban Non Wat.                                     | 319      |
| Table 7.11: List of beads from Noen U-Loke that were analyzed using LA-ICP-MS                    |          |
| Table 7.12: The number of burials with glass artifacts by site.                                  |          |
| Table 7.13: Table noting burials at each site that contained a large quantity of glass beads     | 326      |
| Table 7.14: Quantity of glass beads from each site analyzed using LA-ICP-MS.                     | 327      |
| Table. 7.15: The distribution of different glass types at Angkor Borei. All of the yellow bead   |          |
| were placed in the other category is compositional analysis is needed to confirm if they         |          |
| belong to the lead glass or another category.                                                    |          |
| Table 7.16: The distribution of different glass types at Phnom Borei.                            |          |
| Table 7.17: The distribution of different glass types at Village 10.8.                           |          |
| Table 7.18: The distribution of glass types from Prohear                                         |          |
| Table 7.19: The distribution of glass types from Bit Meas                                        |          |
| Table 7.20: The distribution of glass types at Phum Snay                                         |          |
| Table 7.7.21: The distribution of glass types at Prei Khmeng.                                    |          |
| Table 7.22: The distribution of glass types at Promtin Tai.                                      |          |
| Table 7.23: The different glass types identified at Ban Non Wat                                  |          |
| Table 7.24: The different glass types identified at Noen U-Loke and their quantities.            | 351      |

| xviii                                                                                              |
|----------------------------------------------------------------------------------------------------|
| Table 7.25:Table of ring/earring/bangle artifacts made from Potash glass                           |
| Table 8.1: Chemical formulas for the different varieties of major garnet species (from Deer et al. |
| 1982: 468)                                                                                         |
| Table 8.2: Beads from Bit Meas, Prohear, and Village 10.8 examined as a part of this study 368     |
| Table 8.3: A list of burials with garnet beads from Village 10.8 and their associated grave goods. |
|                                                                                                    |
| Table 8.4: A list of garnet beads found at Angkor Borei                                            |
| Table 8.5: Beads from southeast Cambodia whose perforations were examined using SEM 376            |
| Table 8.6: Geologic sources analyzed in the current study                                          |
| Table 8.7: Garnet artifacts analyzed in this study and their sum-normalized major elements 392     |
| Table 9.1: Table noting burials with large numbers of stone and glass beads encountered in this    |
| study                                                                                              |
|                                                                                                    |
| <u>Tables in Appendices</u>                                                                        |
| Table 6.4.1: Number of geologic samples for which the RSD of each element was 0-10.99%, 11-        |
| 20.99%, 21-30.99%, 31-40.99%, 41-50.99%, and over 50%                                              |
| Table 6.4.2: A list of the less variable, variable, and most variable elements identified during   |
| LA-ICP-MS of agate and carnelian geologic samples. Based on the data in Table 6.4.1                |
| above                                                                                              |
| Table 6.5.1: Standardized canonical discriminant function coefficients generated using canonical   |
| discriminant analysis for Figure 6.5.5                                                             |
| Table 6.5.2: Standardized canonical discriminant function coefficients generated using canonical   |
| discriminant analysis for Figure 6.5.6                                                             |
| Table 6.5.3 Standardized canonical discriminant function coefficients generated using canonical    |
| discriminant analysis for Figure 6.5.7                                                             |
| Table 8.1.1: Thirteen elements with relative standard deviation (RSD) under ten percent in at      |
| least 75% of the geologic samples analyzed in this study. The column on the right lists the        |
| samples with RSD of 10% or higher                                                                  |
| Table 8.4.1: PCA scores for the almandine-rich sources and artifacts                               |
| Table 8.4.2: PCA scores for the almandine-pyrope garnet sources and artifacts                      |
| Table 8.4.3: PCA scores for the almandine-pyrope artifacts discussed in Chapter 8                  |

# **Dedications**

To my parents, Paul, and James.

### **Acknowledgements**

This dissertation could not have been undertaken without the help of numerous people. However, I must first begin with my advisor and mentor Dr. Jonathan Mark Kenoyer. Without his guidance and advice I would not be the scholar I am today and I know I will continue to learn from him throughout my career. I must also thank Dr. Miriam Stark, who kindly agreed to take me into the field after only exchanging a handful of emails. The opportunity to work with her on the Lower Mekong Archaeological Project in Cambodia set the course for my scholarly career and I have enjoyed the long discussions, advice, and inspiration our time in the field has provided. I must also thank her for providing access to the bead collection from Angkor Borei.

I am also grateful to the other members of my dissertation committee and their willingness to read my thesis. Dr. Sissel Schroeder has provided calm support at times when I've felt overwhelmed as well as careful and critical reading of everything I've written. This feedback has been so helpful to my growth as a scholar. Dr. Anna Gade introduced me to Southeast Asia when I was an undergraduate at Oberlin College. Her seminar on religion in Southeast Asia planted a seed and I am grateful that the fates have brought her to UW-Madison so she could help oversee the culmination of this work. I am also thankful for the recent addition of Drs. Nam Kim and Sarah Clayton and their enthusiasm and support of my research. Although not on my committee, I also wish to acknowledge Dr. James Burton for answering many questions on geochemical analysis of stone and statistical analyses. Discussions with him were always stimulating.

Thanks to my wonderful UW-Madison colleagues, past and present. Of special note is Dr. Randall Law, who was partly to blame for taking on geochemical analysis of agate and carnelian in this dissertation. He provided many of the agate and carnelian samples used in this dissertation

and fielded many questions from me about how to do this research. Dr. Brad Chase has provided much advice on completing the dissertation and kindly gave me his desk when I first started in the program. I also wish to thank my friends and fellow grad students, including Laura Brodie, Bernadette Cap, Krista Coulson, Christina Dykstra, Kurt Gron, Dr. Carolyn Freiwald, Kate Hiester, Brett Hoffman, Gwen Kelly, Marc Kissel, Katie Lindstrom, Tegan McGillivray, Dr. David Meiggs, Heather O'Connor, Susan Rottmann, Ken Seligson, Heather Walder, Abby Work, and others who have provided advice, friendship, and support. Katie Lindstrom also kindly picked up garnet samples for me while in Sri Lanka. I am so thankful that Gregg Jamison and I were in the same cohort. His quality of work and scholarship has provided a bar I always tried to reach and he has read more versions of this dissertation than any person really should. The Department of Anthropology staff also merits recognition for their support including Jill Capps, Lori Ushman, Clara Pfefferkorn, Jan Holmes, Kris Schultz, Tammy Garcia, Maggie Brandenburg, and Peg Erdman.

I will always be indebted to James Lankton for taking me under his wing. After meeting him at Ban Non Wat in 2007, he immediately introduced me to several colleagues and all but handed over several research projects in Cambodia that became important components of my dissertation. I am still grateful for his generosity, as I may not have had such success without his introductions. Since this fortuitous meeting he has continued to provide advice, assist with reports and publications, and encouraged me to pursue additional research.

Dr. Laure Dussubieux, manager of the Elemental Analysis Facility at the Field Museum, is among the colleagues Jim Lankton introduced me to and I am also grateful to have her has a colleague and mentor. Her encouragement allowed me to undertake LA-ICP-MS research of agate, carnelian, and garnet, which proved to be a major component of my dissertation research.

Her expertise on glass analysis has also been an important resource and I appreciate her willingness to provide advice and feedback on my own work. I also wish to thank Dr. Mark Golitko also at the EAF who assisted me while Dr. Dussubieux was away.

This work would not have been possible without the assistance of numerous colleagues in Cambodia and Thailand. Without their collaboration, I could not even have begun to undertake this research. Of note are, Pheng Sytha at the Royal University of Fine Arts (RUFA), Phnom Penh who gave me permission to examine their collections. His Excellencies Veng Sereyvuth and Him Chhem as well as Him Kimson in the Ministry of Culture and Fine Arts, Cambodia provided permission for me to bring beads back to the US for analysis. I would also like to thank the APSARA Authority for providing permission to examine and analyze beads from the École française d'Extrême-Orient (EFEO) collections. At RUFA, Mr. Tep Sokha provided advice and camaraderie while I recorded materials from Phum Snay. Mr. Phon Kaseka has been a good friend and colleague and provided access to his materials from Phnom Borei. Ms. Seng Sonetra, Mr. Vin Laychour and Heng Sophady, provided access to materials from the Memot Centre for Archaeology. Mr. Heng Sophady deserves special thanks for his support of my work, without his help I would not have been able to receive permission to export materials from Cambodia and I am grateful that advocated on my behalf. Dr. Christophe Pottier at the EFEO was kind enough to let me look at the bead collections from all of the EFEO projects and I also thank him for the opportunity to provide material for his museum exhibit on "Angkor's Ancestors." Dr. Andreas Reinecke also provided access to materials from his Prohear excavations and kindly took me to meet a Vietnamese colleague who gave me several samples of Vietnamese agate and carnelian. I was also pleased to have been given an opportunity to provide text for a museum exhibit on Prohear as well as to read and edit an early version of his publication on Prohear. Dr. Kyle

Latinis showed me the ropes in Cambodia and introduced me to several Cambodian colleagues. Dr. Dougald O'Reilly has also been an excellent source of information and support while in Cambodia and I am pleased to be able to continue to work with him on his Paddy to Pura project. I would also like to thank the many members of the Greater Angkor Project (GAP) whose company I have enjoyed while undertaking my own research in Cambodia including Drs. Mitch Hendrickson, Georgie Lloyd, Martin Polkinghorne, and Damian Evans who let me tag along on trips to Banteay Meanchey and Preah Vihear. Dr. Roland Fletcher has provided more recent opportunities to join this project, for which I am grateful.

In Thailand I must acknowledge the National Research Council of Thailand for granting permission for me to undertake research in Thailand as well as the Fine Arts Department for granting permission for me to export beads to the US. Dr. Thanik Lertcharnrit kindly provided access to his massive collection of beads from Promtin Tai and I've enjoyed our collaborations on this material. Dr. Amphan Kijngam assisted with permission to export materials from Ban Non Wat and Promtin Tai for analysis in the US. Dr. Bunchar Pongpanich and the Suthiratana foundation provided access to materials from Khao Sam Kaeo. Dr. Pongpanich was enthusiastic about discussing beads and allowed me to photograph a small portion of his extensive collection in Bangkok. Dr. Charles Higham was so kind to allow me to work on his (almost) final season at Ban Non Wat and re-analyze materials from Noen U-Loke. I am appreciative to him and Dr. Rachanie Thosarat for allowing me to look at the materials from Ban Non Wat. The staff at the Phimai National Museum allowed me to look at and record materials from Noen U-Loke in their collection. Dr. Fiorella Rispoli kindly provided information on possible agate and carnelian bead production at the site of Dong Marum, Thailand. Dr. Nigel Chang provided several opportunities to work at Ban Non Wat and assisted with visiting the agate source at Ban Khao Mogul. I met

several great colleagues while working at Ban Non Wat, many of whom have provided advice or support for my research in one way or another including: Hayden Cawte, Helen Cekalovic, Belinda Duke, Ally Halliwell, Allison Isepy, Sheryl McPherson, Carmen Sarjeant, Christina Sewall, Andrea Yankowski, and of course the villagers at Ban Non Wat.

Several other colleagues have provided inspiration for my work. I had pored over articles by Ian Glover, Bérénice Bellina-Pryce, and Robert Theunissen, many times before finally having a chance to meet all of them in person. I am grateful that they all have been kind enough to humor my questions and provide advice, and their work continues to inspire and challenge me. Dr. Bellina also kindly introduced me to Dr. Pongpanich and his collection of materials from southern Thailand. My colleagues Shawn Fehrenbach and Piphal Heng have provided hours of discussion on Iron Age and Early Historic Cambodia over beers or on motorcycles and I am thankful for their ideas and feedback on my own work.

Other colleagues and friends I must acknowledge include Alberto Perez-Pereiro, the best friend a girl could have in Phnom Penh, Sophavy Pho, my Khmer teacher who became a dear friend, and Lokkru Frank Smith my first Khmer teacher whose SEASSI projects gave me the confidence to give PowerPoint presentations in Khmer. Somongkol Teng, Sophat Soeung and Dr. Erik Davis have provided help and interesting discussions on Cambodian culture and history. Sergey Lapteff has kindly shared some of his insights on work on the Phum Snay bead collection and Karsten Brabander has shared some of his work on glass bead analysis in Vietnam as well. Song Sophy has provided helpful discussions on her work on Iron Age glass beads in Cambodia. Wes Clarke, Phoebe France, and Rachel Hoerman have all provided camaraderie and insightful discussions on Southeast Asian archaeology. Andy Roberts has been a dear friend and shared many insights on living in Cambodia, learning Khmer, and being a tough-as-nails field

researcher. I will always be thankful that I met Kathy Liu in the halls of Silpakorn University and appreciate both her friendship and insights into the skeletal collection at Promtin Tai. Prakirati "Biek" Satasut and his family kindly hosted me in Bangkok in July 2011. David Bernstein from IndoGemstone helped with agate from Indonesia and garnet from Vietnam. Joe Heintz provided assistance with the SEM at the BBPIC. I would also like to Juliana Johnson for her assistance in helping me record the Angkor Borei beads into a FileMaker database and hope this experience has inspired her to pursue archaeology further.

Several institutions and organizations have provided valuable funding support for all stages of this research project. The Oberlin Alumni Fund provided initial financial support for my first trip to Cambodia. The Center for Southeast Asian Studies at UW-Madison has provided support for both my first trip, two summers of FLAS language funding, and a semester of dissertation research and writing through their Center fellowship. I would like to especially acknowledge "Dr. Mike" Cullinane for his interest and support of Southeast Asian archaeology. Many agate/carnelian geologic samples were analyzed in the Elemental Analysis Facility at the Field Museum as part of their NSF grant (grant number 0818401). The UW-Madison chapter of the Graduate Women in Science and their Ruth Dickie Grants-in-Aid as well as the Geological Society of America has provided funding for analysis of materials in the United States. My fieldwork in Cambodia was supported by a Center for Khmer Studies Fellowship as well as a Fulbright-IIE fellowship. The US Embassy in Phnom Penh assisted with getting research permissions in Cambodia as well as providing a letter of support for the export of materials. The Bead Society of Greater Chicago (BSGC), the Bead Society of Los Angeles, the Portland Bead Society, and the Bead Study Trust have all provided funds and analysis for my dissertation. The late Scott Bartky of the BSGC deserves a special mention for his support of my work from the

earliest stages. Large portions of my dissertation analysis and writing could not have been undertaken without a dissertation fellowship from the Henry Luce Foundation and ACLS as part of their initiative to fund Individuals in East and Southeast Asian Archaeology and Early History. The opportunity to meet fellow scholars through their Early Career Seminar was stimulating.

Last, but not least, I must thank my family and friends for their support. My parents, Russ and Diane Carter, encouraged my interests in archaeology as a small child. Getting me books for my birthday, a job at a bead store (which became instrumental to my scholarly trajectory) and even arranging a meeting with an Egyptologist in high school. They never, ever discouraged me from what is really a ridiculous profession and have always been proud of even my smallest successes. Thank you so much Mom and Dad. I should also thank my extended family and friends who put up with missed holidays, weddings, birthdays, and mind-numbing conversations on my work. This especially includes my parents-in-law Elly and Mark Madavi, who have always been supportive and enthusiastic. Doris Weinbaum gave me my first real job at Bead in Hand in Oak Park, Illinois. It was here that my love of beads began. Ruth Aschaffenburg employed me at Bead Paradise in Oberlin, Ohio during college and passed along her love of ancient beads. I will never forget when I realized I could turn my love of beads into a career. Thank you Ruth and Doris for giving me that initial spark. And of course, I must thank my husband Paul, who has endured a stressed and distracted wife, extended periods apart due to fieldwork, correcting grammar on drafts of papers, and sat through numerous practice-runs of conference papers and never once complained or discouraged me. I would have given up graduate school after the first month without his support and this dissertation is as much a reflection of his hard work as it is mine.

If you would like to contact me about this dissertation please email: alisonkyra@gmail.com

| • •   |  |
|-------|--|
| XXV11 |  |

"A proper understanding of South-east Asian beads will certainly throw much light both on the chronology of many archaeological sites in the region and on the patterns of ancient trade. The quest for such understanding needs no justification."

-- Alastair Lamb, 1965a: 90

# **Chapter 1: Introduction and Research Questions**

This dissertation is an examination of trade and socio-political development in Iron Age (500 BC –AD 500) mainland Southeast Asia through morphological, contextual, and geochemical analyses and comparisons of stone and glass beads from sites in Cambodia and Thailand. The primary research objective is focused on identifying trade and interaction networks in mainland Southeast Asia during the Iron Age and understanding how these trade networks were associated with emerging socio-political complexity in the Mekong Delta during this period. Three specific questions are explored:

- Are there distinctive patterns in the distribution of agate/carnelian, garnet, and glass beads over 1) time and 2) across mainland Southeast Asia, specifically Cambodia and Thailand?
- 3) Can these patterns of distribution be linked to changing patterns of socio-political and economic organization in the Mekong Delta?

By exploring these three questions it has been possible to develop a better understanding of the role of trade during the Iron Age period, to define the regions of mainland Southeast Asia that were interacting with one another through the exchange of these ornaments, and better determine the role of the Mekong Delta in trade and interaction networks within the larger region of Southeast Asia. In this dissertation I argue that stone and glass bead data provide evidence for two distinct bead trade networks that varied somewhat over time and space. An earlier bead exchange network was established in coastal communities, but based on data presented in this dissertation I suggest that smaller regional exchange networks, especially in southeast Cambodia

and Northeast Thailand, were present. However, communities living at sites in the Mekong Delta were not participating in these early exchange networks. Instead, I argue that stone and glass bead data show an expansion of exchange networks during the early centuries AD, in which elites in the Mekong Delta appear to have been interacting more heavily with sites further inland. Also of note is the irregular distribution of beads within burial contexts, indicating that beads were not available to all members of a community and that some people had more access to beads than others.

The Iron Age period of mainland Southeast Asia was a time of a great social change that brought about the emergence of some of the first complex state-level societies in Southeast Asia. Interaction with South Asia and the introduction of new goods and ideas from this region is believed to have been a key factor in the emergence of sustained social and political hierarchy (e.g. Bronson 1977; Christie 1990, 1995; Coedès 1968; Glover 1989; Hall 1985; Higham 2002; Kulke 1990; Mabbett 1977ab, 1997; Wheatley 1979, 1982, 1983; Van Leur 1955, see Chapter 3 for more discussion). Several scholars have more specifically argued that the presence of new prestige objects, such as beads from South Asia, provided an opportunity for Southeast Asian elites to expand their power by controlling the trade and exchange of these goods (e.g. Bellina 2003; Bellina and Glover 2004; Bronson 1977; Christie 1995, 1996; Francis 1996). More recent studies have focused on identifying regional changes in the nature of trade with South Asia over time (Bellina 2003; Bellina and Glover 2004; Lankton and Dussubieux 2006, 2013), while compositional analysis of materials has helped to better define long-distance networks trade in insular and mainland Southeast Asia in the periods leading up to and during Iron Age (Hung et al. 2007; Dussubieux 2001). In addition, a regional study by Dr. Robert Theunissen (2003) based on sites in Northeast Thailand, proposed specific bead trade networks between that region and

elsewhere in Southeast Asia. These previous studies have resulted in models of trade and socioeconomic and political complexity that are partly supported by my new evidence, however these data also allow me to suggest new ways of explaining the regional patterns that will be discussed in more detail in subsequent chapters.

Unfortunately due to political conflicts and a lack of archaeological research from approximately the late 1960s-1990s, data from Cambodia have largely been omitted from these previous examinations of trade during the Iron Age period. This oversight is problematic since the Mekong Delta region of Cambodia and Vietnam is home to what some have argued may be the earliest or one of the earliest complex polities in mainland Southeast Asia (Hall 1982, 1985; Higham 2002; Stark 2004). Therefore, previous models regarding trade, exchange, and sociopolitical development have been unable to incorporate data from a region that was likely heavily involved in trade during the Iron Age period. My study has been able to correct this situation by incorporating data not just from the site of Angkor Borei, but also from other regions in Cambodia and Thailand. This has allowed me to undertake a more comprehensive examination of trade networks over time and space and to specifically address questions regarding the growth of the Mekong Delta as a center during the Iron Age and the involvement of elites in the trade of stone and glass beads.

This introduction chapter provides a background to my theoretical orientation and definitions of key terms used in this text. A brief overview of the major sites and regions, i.e., Angkor Borei, the Mekong Delta, and "Funan," is also presented to contextualize their importance during the Iron Age period. A detailed discussion of the theoretical framework, research questions, and the methods used to answer these questions is presented below, followed by an outline for the remaining chapters in this thesis.

#### **Definitions and theoretical orientation**

#### Mainland Southeast Asia

Southeast Asia is made up of countries on both the mainland and surrounding islands (see discussion in Chapter 2). This dissertation focuses primarily on mainland Southeast Asia, which is made up of the countries of Cambodia, Laos, Peninsular Malaysia, Myanmar (Burma), Thailand, and Vietnam (Figure 1.1).

#### South Asia

In this dissertation I rely on the United Nations classification scheme for South Asia (United Nations Statistics Division 2011), which includes Afghanistan, Bangladesh, Bhutan, India, Iran, Maldives, Nepal, Pakistan, and Sri Lanka (Figure 1.2). However, the areas that were primarily interacting with Southeast Asia during the Iron Age period were those countries with access to the Indian Ocean: India, Bangladesh, and Sri Lanka (Ray 2003). Similarities in material culture found at Southeast Asian sites and sites in Pakistan, such as Taxila, also suggest that this region was interacting with Southeast Asia either directly or indirectly (e.g. Glover 1989; Pryce et al. 2008).



Figure 1.1: Map listing countries in mainland Southeast Asia.




Figure 1.2: Map listing countries in South Asia.

### **Prestige goods**

In archaeological research there generally has been a dichotomy been utilitarian or subsistence objects and wealth or prestige objects (e.g. Brumfiel and Earle 1987; D'Altroy and Earle 1985). Utilitarian goods are those objects related to subsistence production or other practical household needs. Prestige goods, in contrast, are more strongly related to ideology. In this dissertation, I define prestige or wealth objects as artifacts or symbols of wealth or status "used in display, ritual, and exchange" (Brumfiel and Earle 1987: 4). These objects can be used to attract followers (Hayden 1998), whether they are displayed for the broader population or for a smaller group of elites (Kenoyer 2000). Prestige goods are generally made from raw materials that are rare or exotic and often employ specialized technological processes and skilled labor

(Kenoyer 2000). As important symbols of wealth and status, elites often control the distribution of the finished products, as well as access to the raw materials and labor used to create these products (Kenoyer 1989; Vidale and Miller 2000). Some scholars have noted that the definition between utilitarian goods and prestige objects can be fluid, depending on "culturally specific values," (Flad and Hruby 2007: 10). Certain types of artifacts can carry different meanings in different contexts. For example, glass beads may not be considered high-value or prestige objects at their place of manufacture, but by traveling a long-distance to they become exotic and increase in value and prestige (Helms 1993: 48). In this dissertation I argue that stone (agate, carnelian, and garnet) as well as glass beads were important prestige objects for Southeast Asian people in that they were made from exotic raw materials, were strung and worn for display, and were produced or modified utilizing complex technological skills. Additionally, my analysis of the data show that beads were not evenly distributed in burials within sites.

In many ancient societies, exotic prestige goods from distant locations are perceived to be valuable due to their association with far-off locales that are regarded as "places where ancestors or culture heroes may have originally come to earth" (Helms1993: 47). The scholar Mary Helms (1993:49) argues that finished and unfinished products from these geographically distant locations are associated with skilled crafters who are "the once and future ancestors themselves." As will be discussed later in this chapter, one origin myth popular in Cambodia and Vietnam described Cambodians as having been descended from a foreigner, perhaps a Brahman.

Inscriptions and texts from at least the 6<sup>th</sup> century AD describe this story, indicating that ancient people in parts of mainland Southeast Asia have long considered themselves to hold mythical and exotic ancestry. Not only did objects like stone and glass beads have value objects themselves, but also I believe they could have been considered important because of their

connections with a powerful and geographically distant civilization. Connection with this distant power allowed local elites to emphasize their authority and status within their own communities. Stone and glass beads, as objects made from new materials, complex technologies, and associated with significant geographically and culturally distinct communities were widely acknowledged as being important prestige goods in Southeast Asia (Bellina 2003; Francis 1996; Theunissen et al. 2000).

### Trade and Exchange

Trade and exchange have often been used to describe the same activity (e.g. Dillian and White 2010; Renfrew 1975). Renfrew (1969: 152) provides a broad definition of trade and exchange as "the reciprocal traffic, exchange, or movement of materials or goods through peaceful human agency." Renfrew (1975) has also identified and defined several different types of trade and their spatial distribution, ranging from reciprocity, to down-the-line exchange, to central place market exchange. Other scholars have emphasized the social aspects of trade, and "the relationships before, during, and after exchange," (Oka and Kusimba 2008: 340). However, some scholars have related trade and exchange more specifically with market trade, calling redistribution and reciprocity "forms of integration" (Polanyi 1957: 250).

In this dissertation, I follow Renfrew's definition and use trade and exchange broadly and interchangeably. I choose this broad definition because archaeological data in mainland Southeast Asia is still too thin to make more specific assessments about the types of trade and exchange happening during the Iron Age period. Scholars have argued that there was reciprocal or down-the-line exchange during the Neolithic (2500-1500/1000 BC) and Bronze Age (1500/1000- 500 BC) periods, with some kind of prestige goods network emerging during the last few centuries BC (e.g. Bellina and Glover 2004; Chang 2001; Higham 2002; Wheatley

1975). It is this emerging prestige goods network that I explore in more depth by tracking the distribution of stone and glass beads, and using them as symbols of socio-political and economic networks that connected elites in different communities to one another.

There are two different scales of exchange addressed in this dissertation. On one level I explored long-distance exchange of stone and glass beads between South Asia, primarily India and Sri Lanka, and people at sites in Cambodia and Thailand. However, I have also looked at smaller regional scales of exchange between sites in Cambodia and Thailand, and how people at these sites may have also been connected to other regional networks in mainland Southeast Asia. Lastly, I have examined the distribution of stone and glass beads within sites, in order to address questions regarding access to these objects within sites.

#### Sites and Communities

In this study I examined stone and glass beads from 12 archaeological sites in Cambodia and Thailand. Of these 12 sites, ten were cemetery sites and two were occupation sites. While I primarily call these sites or archaeological sites, I also refer to them as communities.

Archaeologists have often described archaeological sites or settlements as communities (for example see studies mentioned in Kolb and Snead 1997:612 or Parsons 1972: 137), however it is recognized that larger and more complex sites may actually have been made up of multiple distinct groups of people that could be described as discrete communities (Kolb and Snead 1997). Although a single settlement may have used more than one cemetery location (Chapman and Randsborg 1981: 15), these ten cemetery sites were repeatedly used by a group of people to bury their dead. For this reason, I feel that it is appropriate to refer to these cemetery sites as representative of communities. One of the two occupation sites, Krek 52/62, was a circular earthwork site believed to have been the location of a single settlement. As this site appears to

represent a single group of people that regularly interacted with one another, I also feel comfortable referring to this site as a community (Kolb and Snead 1997). The second occupation site, Khao Sam Kaeo, is larger (54 hectares) and appears to have been a cosmopolitan urban settlement with people from both South and Southeast Asia living at the site (Bellina and Silapanth 2008). Although this site was likely made up of multiple groups of people, the site was heavily looted and the beads analyzed were from looted contexts. Without more specific information on the contexts of these beads I refer to them as coming from this single settlement, which will be broadly referred to as a community. However, it is acknowledged that with further study the beads could be argued to have belonged to different communities within this settlement.

### Complexity and Trade

This dissertation is concerned with questions regarding emerging socio-political complexity in mainland Southeast Asia. In this context, I use the concept of emerging sociopolitical complexity specifically to refer to the appearance of ranked societies or societies with social inequality or hierarchy, such as chiefdoms or states, in mainland Southeast Asia. Unfortunately, due to limited archaeological research, Stark (2006:408) has noted that distinguishing between the chiefdoms, city-states, and kingdoms of the early first-millennium AD polities of Southeast Asia "remains unclear." Recent research in Northeast Thailand has highlighted the complex process of emerging social inequality, as there is evidence for a brief period of social stratification in burials during the Bronze Age before a second sustained emergence of social hierarchy during the Iron Age (Higham 2011a, 2011b). However, we do know that during the Iron Age and Early Historic periods (500 BC-AD 500) communities in Southeast Asia began to develop a centralized authority, some of which could control massive labor projects, the emergence of large settlements, and hierarchical social stratification as

evidenced in burials (Higham 2002: 224-227). Recent archaeological research at the site of Co Loa in Vietnam, combined with earlier archaeological and historical data, has caused some scholars to argue that there was "a local and indigenous state-like polity had emerged in the Bac Bo region during the Dongson period" (Kim et al. 2010:1025; Kim 2010). Kim argues that Co Loa was the center of an urbanized state from approximately 300-150 BC due to the presence of political centralization required to plan and organize large-scale monumental fortifications, a military force, high-population density, social inequality, the agricultural potential of the Red River Delta to support a large population, and "reciprocal complexity" caused by interaction with peer-polities in southern China, central Vietnam, and elsewhere in mainland Southeast Asia (Kim et al. 2010: 1025-6; Kim 2010: 306-7).

As Kim is focusing on a civilization roughly contemporary with the polities in the Mekong Delta being examined as part of this study, it is worth considering the criteria he uses for identifying the presence of a state-level society. Kim (2010:51-60) argues that a state-level society should have most of the following markers: a high population, agricultural intensification to support a large population, monumental architecture, the presence of a hierarchy or social ranking, the presence of an urban center, settlement size hierarchy at the regional scale, attached craft specialization, centralized control over important resources, and a monopoly on physical power.

These benchmarks are not so different from four pre-conditions for state-level society noted by Kenoyer (1998) in the Indus Valley. His first precondition is a diverse subsistence base to produce enough surplus to feed a large population in city or urban center as well as access to raw materials to construct settlements and make both utilitarian and prestige goods. Secondly, Kenoyer argues that the rise of states and urban centers require the establishment of trade and

communication networks that "link settlements to each other and their agricultural hinterlands" (1998:40). New specialized technologies are also needed to support a complex urban settlement as well as to produce goods to "differentiate the many different classes of people who live in cities" (Kenoyer 1998:41). Lastly, emerging states require status and power to control "access to essential resources, which include both food items and material goods that define status and power" (Kenoyer 1998: 43).

Based on archaeological and historic data from the first millennium AD, detailed later in this chapter, it appears that sites in the Mekong Delta were fulfilling many of these requirements. Monumental construction was taking place to build walls around the cities of Angkor Borei and Oc Eo and dig moats and canals. These canals may have been used as both transportation and communication networks, as well as for agriculture. The agricultural land around Angkor Borei could have supported up to 120,000 people (Fox and Ledgerwood 1999: 47). Site survey in the region around Angkor Borei has identified numerous mounds and site localities, indicating a populated landscape around Angkor Borei (Stark 2006a). Angkor Borei and Oc Eo are clearly the largest sites in their region, also indicating a regional settlement size hierarchy was in place. Chinese historical documents from the third century AD describe kings living in palaces and written texts (Coedès 1968). Excavations at Oc Eo in the 1940s point toward long-distance trade contacts and evidence for manufacture of jewelry and prestige goods (Malleret 1959-1962). However, we know that people were living in the Mekong Delta from at least the 4<sup>th</sup> or 5<sup>th</sup> century BC (Stark 2004) and by the mid-first millennium Khmer and Sanskrit inscriptions describe a process of local rulers increasingly adapting Indian titles (Vickery 1998). Based on these data and using Kim's criteria, I would argue that communities in the Mekong Delta were also state-level societies. However, what is not clear is exactly when all of these changes were

taking place i.e., at what point in their development were communities in the Mekong Delta becoming state-level societies. Additionally, although trade appears to have been an important part of the economic base of the Mekong Delta communities, the exact nature of this trade and how people at sites in the Mekong Delta were interacting with other sites in mainland Southeast Asia is not well understood. In this dissertation I will use stone and glass bead data to understand both when people at sites in the Mekong Delta began participating in long-distance trade with South Asia, as well as how emerging elites in the Mekong Delta were involved with trade networks within mainland Southeast Asia.

The role of trade and exchange, specifically of prestige goods, in the emergence of complex societies has been discussed extensively in the archaeological literature (e.g. Brumfiel and Earle 1987; Dillian and White 2010; Renfrew and Shennan 1982; Sabloff and Lamberg-Karlovsky 1975; Schortman and Urban 1992). The emergence of prestige goods and control over their manufacture and distribution is a key component of emerging complexity and maintenance of power in chiefdoms and states (Blanton et al. 1996; Brumfiel and Earle 1987; D'Altroy and Earle 1985; Helms 1992, 1993; Kipp and Schortman 1989). Elites could use prestige goods to create bonds or loyalties with members of the community and maximize their networks of alliances, allowing for expanding power and centralization of control (Blanton et al. 1996; Frankenstein and Rowlands 1978). Increasing control over trade can also lead to the development of increased coercive power (Kipp and Schortman 1989). The exchange of prestige goods played important socio-political roles in displaying status and creating and reinforcing hierarchical networks (Kenoyer 2000).

For this reason, I argue that examining the distribution of prestige goods like stone and glass beads can assist us in understanding emerging socio-political and economic power by elites

at communities in the Mekong Delta. As Angkor Borei and the Mekong Delta were growing in political and economic power, they were also likely increasing their control over the distribution of prestige good objects such as stone and glass beads. The presence of walls at both Oc Eo and Angkor Borei is one indicator of control over trade (e.g. Kenoyer 1998). I argue that by examining the distribution of stone and glass beads at sites in Cambodia and Thailand, I should be able to see evidence for increasing participation in trade by people at sites in the Mekong Delta and that this increased participation in the trade of stone and glass beads can be seen as a proxy for increasing socio-political and economic networks based in the Mekong Delta.

One additional measurement of increasing control over prestige goods is the shift from the trade of finished products, to the manufacture of prestige goods under elite control. The scholars Vidale and Miller (2000: 223) have argued that in chiefdom-level societies, elites will "employ status markers based on the procurement of rare, exotic, raw materials," but that in state-level societies and empires elites will "favor the use of status markers produces by more elaborate technologies... but exploiting local, cheap, base materials." This shift from importing exotic materials or finished products to producing prestige objects using local materials would be one way to determine if elites in the Mekong Delta had achieved a higher level of socio-political complexity. Both Bellina (2007) and Theunissen (2003; Theunissen et al. 2000) have argued that elites in Southeast Asia may have begun to make their own stone beads by copying the higher-quality Indian imports. If this shift was really taking place, it should be testable through compositional analysis of raw materials in order to determine if local stone sources were being used to produce beads. This analysis is discussed in Chapter 6, however I argue that it is not clear that local stone sources are being used, although additional analyses of Southeast Asian geologic sources for beads is needed.

Based on the stone and glass distribution patterns observed and discussed in this dissertation, I conclude during the last few centuries BC, stone and glass beads were entering into preexisting bead exchange networks and that people at sites in the Mekong Delta were not participating in these networks. However, during the first few centuries AD trade with South Asia begins to intensify and it appears that elites in the Mekong Delta were heavily participating in newly established and expand trade networks with inland communities. Stone and glass beads can be seen as symbols of these expanding socio-political and economic networks.

# Angkor Borei, the Mekong Delta, and "Funan"

In the third century AD, two Chinese emissaries from the Wu kingdom traveled to Southeast Asia to visit a kingdom they called Funan, located in the Mekong Delta region of Cambodia and Vietnam. They described a king named Fanzhan, who had sailing vessels that facilitated his control of a large region from the Thai-Malay peninsula, perhaps up to the coast of Burma (Figure 1.3). These documents also describe a kingdom involved in trade with India, going so far as to develop a relationship with the Murunda dynasty in India, and sending their own emissaries, including a group of musicians, to China (Coedès 1968; Ishizawa 1995). The Chinese emissaries provided the following description of life in Funan:

"There are walled villages, palaces, and dwellings. The men are all ugly and black, their hair frizzy; they go about naked and barefoot. Their nature is simple and they are not at all inclined toward thievery. They devote themselves to agriculture. They sow one year and harvest for three. More over, they like to engrave ornaments and to chisel. Many of their eating utensils are silver. Taxes are paid in gold, silver, pearls, and perfumes. There are books and depositories of archives and other things. Their characters for writing resemble those of the Hu [a people of Central Asia using a script of Indian origin]," (Coedès 1968: 42).

Excavations at the 450 hectare walled and moated site of Oc Eo by the French archaeologist Louis Malleret in the 1940s uncovered a wide range of artifacts including stone and glass beads,

silver and gold jewelry, intaglios, coins, and ceramics, largely from India, but also from Rome and the Sassanian empire (Malleret 1959-63). This varied collection of objects highlighted that the people of Oc Eo were involvement in international trade, and Malleret argued that it was the trading port for the Funan kingdom.

Angkor Borei in Cambodia, approximately 70 kilometers from Oc Eo, also was believed to have been an important center of Funan. As with Oc Eo, Angkor Borei was surrounded by a brick wall and double moats, enclosing an area of approximately 300 hectares (Figure 1.4). Numerous artifacts testify to this region's importance during the mid-first millennium AD. The oldest dated Khmer language inscription was found within Angkor Borei, dated to AD 611, and numerous other inscriptions have been found in the Mekong Delta region describing the activities of local rulers and elites (Jacob 1979; Vickery 1998). The French geographer Pierre Paris identified a series of canal networks linking Angkor Borei with other sites in the region, including Oc Eo (Paris 1931, 1941a, 1941b)(Figure 1.5). At the site of Phnom Da, a small hill located just a few kilometers south of Angkor Borei, are some of the earliest examples of Khmer sculpture (Dowling 1999; Jacques and Lafond 2007). Recent archaeological research at Angkor Borei has also identified numerous collapsed brick structures within the city walls as well a cemetery dating from 200 BC- AD 200 (Stark et al. 1999; Stark and Sovath 2001; Stark 2001, 2006. Excavations have also determined that people were living at Angkor Borei perhaps as early as the 5<sup>th</sup> or 4<sup>th</sup> century BC (Stark 2004).

Additional archaeological work in Vietnam since reunification has uncovered over 90 contemporary "Oc Eo Culture" sites, including burial, ritual, and residential sites (Vo Si Khai 2003). However, only two sites, Oc Eo and Go Thap, have been thoroughly excavated and thus far it appears that the Oc Eo culture sites, with the exception of Go Thap, post-date Angkor Borei

(Manguin 2009). In fact, scholars have noted that there is not yet archaeological evidence for a clear transition from the prehistoric period and that "the Oc Eo culture per se started developing in the lower reaches of the Mekong in a somewhat sudden manner, around the first century A.D." (Manguin 2009:108).

The landscape surrounding Angkor Borei also was filled with mounds and water control features as well as site clusters, some of which were connected to Angkor Borei through canal systems (Sanderson et al. 2007; Stark 2006a). Although these sites have not been excavated, similarities in surface ceramics suggest they were contemporary with Angkor Borei Luminescence dating of collapsed brick structures at some of these sites date to the 7<sup>th</sup>-10<sup>th</sup> centuries AD, and suggested continued occupation at Angkor Borei after the decline of Funan (Stark et al. 2006).

While Angkor Borei was connected to the coast via Oc Eo and the canal linking the two sites, its inland position and connection to inland sites also suggest the importance agriculture must have had on the emergence of this site as an important center (Fox and Ledgerwood 1999; Manguin 2009). During the rainy season, the Mekong Delta environment is wet, with much of the landscape covered in water. This has led some scholars to argue that the Mekong Delta is "an uncomfortable environment for human survival" (Fox and Ledgerwood 1999: 37). Nevertheless, this region is also favorable to dry-season flood-recession rice, a productive rice farming technique in which floodwaters were contained in bunded areas and then used to irrigate fields during the dry season. Dry-season flood-recession rice also requires the use of specialized agricultural technology to move water from the low-lying areas into the fields. Although there is not yet direct archaeological evidence for this kind of technology in use during the Angkor Borei period, Fox and Ledgerwood (1999: 48) have speculated that the development of this agricultural

Mekong basin, including Angkor." Using LANDSAT data, Fox and Ledgerwood (1999:47) have estimated that the agricultural land within a 10km radius of Angkor Borei could have provided enough food for up to 120,000 people, but would have needed the labor of approximately 80,000 people to work then land. This would have provided enough food for a fairly large non-farming population, perhaps made of full-time craft specialists, bureaucrats, or warriors, although more archaeological work is needed to determine the farming methods used and the extent of the agricultural land exploited around Angkor Borei. Conversely, Oc Eo's proximity to the coast and the richness and diversity of the goods found there emphasize its importance as a coastal trading center (Manguin 2004, 2009).

Table 1.1 presents a summary of some of the major developments in the Mekong Delta from the mid-first millennium BC to the mid-first millennium AD. Although we still know little about how these sites emerged, historical and archaeological data support the interpretation that by the early centuries AD this region was a powerful polity. As Manguin states (2009: 110), it was during this period that Funan "achieved a socio-economic maturity that allowed it to build, all over the lower Mekong Delta, a multiplicity of urbanized centers in varied environments, and to generate enough revenue through agricultural and trade economic surplus to be able to build this extensive canal system, with enough control of its population to require from it the construction of such an imposing public works assignment." This archaeological evidence supports the Chinese historical documents describing an important and powerful polity in the Mekong Delta region.

| Dates           | Development                                               |
|-----------------|-----------------------------------------------------------|
| 500 – 300 BC    | Evidence for habitation in the Mekong Delta at Angkor     |
|                 | Borei, Cambodia (Stark 2004) and Go Thap, Vietnam         |
|                 | (Manguin 2009).                                           |
| 200 BC – AD 200 | Vat Komnou cemetery in use at Angkor Borei (Stark 2001)   |
| 0 BC/AD         | Construction of some of the major canals around Angkor    |
|                 | Borei. A brick in the canal linking Angkor Borei with Oc  |
|                 | Eo was found to date from AD 160-200 (Stark et al. 2006:  |
|                 | 117).                                                     |
| 0 – 600 AD      | Construction of the brick wall around Angkor Borei (Stark |
|                 | 2006)                                                     |
| 200 – 300 AD    | Construction of moats around Oc Eo (Manguin 2009)         |
| 500 – 700 AD    | Funan begins to decline (Stark 2004)                      |

Table 1.1: Some of the major developments in the Mekong Delta as identified through archaeological investigations. All dates are approximate.

By the 6<sup>th</sup> or 7<sup>th</sup> century AD, Funan appears to have declined in power as trade networks shifted further south to insular Southeast Asia (Manguin 2004; Stark 2006c). However, Chinese historical texts indicate that Funan fell to the Chenla (sometimes spelled Zhenla) kingdom, believed to be located further inland. Stark has noted that this may not have been a disintegration of Funan, but "a geographic shift by Funan rulers to the north in response to declining trade returns" (2006c: 153). However, Khmer inscriptions also indicate some competition between rulers during this period (Stark 2006c, Vickery 1998). Regardless, it appears that people continued to live in this area well into the Angkorian period. Angkor Borei might have been continuously inhabited from the 5<sup>th</sup> century BC until present day (Stark 2004).



Figure 1.3: A map of the supposed territory of Funan based on historical documents and the locations of Angkor Borei and Oc Eo. There is little archaeological evidence that Funan controlled such a vast territory.



Figure 1.4: Google earth image of Angkor Borei. The red line highlights the wall and moats around the city.

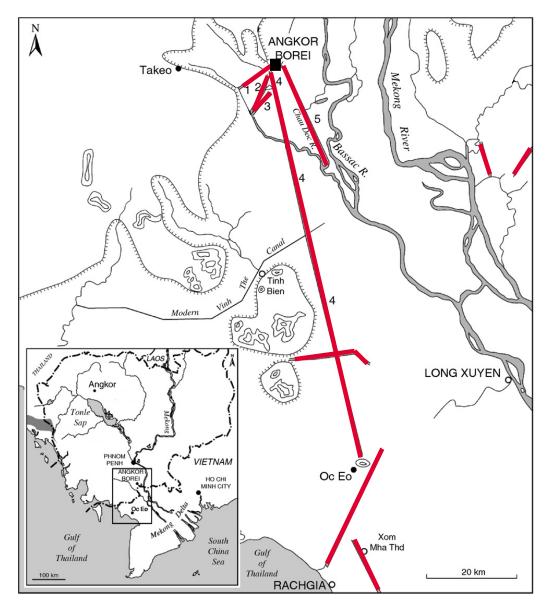



Figure 1.5: Map of canals around Angkor Borei in red. Adapted from Sanderson et al. 2007, Figure 1.

# Cambodian perspectives

In addition to archaeological data and historic texts, there is also a rich indigenous history about the Mekong Delta region (see Sovath 2003: 37-42 for a brief review). Sixth century Chinese historical texts recorded a legend regarding the foundation of the Funan kingdom by a prince named Kaundinya (in Chinese Hun-tian) and a princess Soma (Liu-ye). The story was

also referenced in a Cham inscription and Kaundinya and Soma are mentioned as founders of the first ruling dynasty in later pre-Angkorian and Angkorian inscriptions (Gaudes 1993). Scholars of the 19th and early 20th century recorded additional variations of this story and an agglomerated version was widely taught in Cambodian textbooks as a legend for the foundation of Cambodia (Gaudes 1993). The basic version of the legend involves a foreigner from a far-off land, sometimes described as a Brahman, who arrives in Cambodia by ship. He is met by the local princess, sometimes described as a *naga* or magical water serpent, and in some versions of the story he shoots an arrow into her boat, scaring her into submission. She is also sometimes described as being naked and Kaundinya offers her cloth to wear. They are married and as a wedding present the *naga* princess' father drinks up the water, offering the newly drained land to the newlywed couple on which to found their kingdom, called Kambuja (Gaudes 1993). The exact location to which the legend refers is not clear, however many consider it to be related to the kingdom of Funan (Gaudes 1993).

I discovered an additional folktale or origin story for what may be the Funan kingdom in a children's book telling the story of Phnom Borei and Phnom Da, two small hills located near Angkor Borei (Keo Rathana 2010). In this story, a princess is exiled from her kingdom for taking up with a handsome but dim-witted commoner. Together they travel on a raft downstream from her palace in Champasak, and eventually settled at Phnom Borei. One night, the princess has a dream in which a holy man appears to her and tells her she will live a happy and prosperous life. Shortly thereafter, her husband finds valuable materials including gold and wood while out in the forest. Although he does not recognize their value, his wife does and she asks him to continue collecting them. Once a stockpile had been accumulated, the princess raised a flag so that passing ships could see they were "open for business." Ships began arriving and bartering for

the goods, however before trading away her gold she asked for them to bring 100 goldsmiths and additional men and women to settle at Phnom Borei. Once the new laborers had arrived, they assisted with the mining and production of gold objects, and this in turn attracted more traders and more residents. Over time, the princess and her husband became king and queen and built a wall around their town. Following their great success, they constructed a small temple on the Phnom Da mountain in honor of the holy man who came to the princess in her dream. In the illustration, they appear to be referring to Ashram Maha Rosei, a small basalt temple on Phnom Da that dates to the 7<sup>th</sup> century AD (Jacques and Lafond 2007).

This story was initially published by in 1967 (Commission des Moeurs et Coutumes du Cambodge 1967); however there does not appear to have been any additional scholarly work investigating the tale. I believe that this folktale provides a fruitful comparison for the archaeological data, as well as another perspective on the establishment of a state-level society in the Mekong Delta. The story relates the growth of Angkor Borei to the formation of longdistance maritime trade networks. As discussed earlier, existing archaeological evidence suggest that Angkor Borei and especially Oc Eo were important trading centers. (However, it should be noted that Phnom Borei and Phnom Da are located too far inland to have been seen by passing ships). The ethnic identity of the foreign traders in the story is unclear, however it is notable that the city was settled by craftspeople brought to the site by these traders. This could be tested through isotopic analysis of skeletal remains found at burial sites in Angkor Borei and throughout the Mekong Delta. Furthermore, the story tells of increasing sociopolitical complexity as the princess and her husband transition from savvy business people to becoming the king and queen. This increased socio-political complexity is largely achieved over their control of raw materials (gold) and the production of prestige objects (gold ornaments). Malleret

(1959-1962) believed that jewelry production was taking place at Oc Eo, however further excavations are needed to find similar workshops at Angkor Borei. Lastly, the story notes that the construction of the massive wall around the city was commissioned by the king and queen, indicating their considerable power over the labor of large numbers of people.

The archaeological, historical, and mythological evidence all point toward communities in the Mekong Delta, and specifically at the site of Angkor Borei, as being part of a complex polity during the first millennium AD. Unfortunately, as discussed above, the earliest stages for the emergence of Funan are poorly understood. However, one would expect that if trade was an important factor in the emergence of the Mekong Delta/Funan as a complex polity, we would be able to see evidence for expanding socio-political and economic networks between sites in the Mekong Delta and sites further inland in the distribution of important prestige objects like stone and glass beads. By better understanding the trade and interaction networks at play during the Iron Age period, we can begin to better understand the emergence of Funan.

#### Research questions addressed in this dissertation

This research project was designed to better understand Iron Age trade and exchange networks in Southeast Asia through an examination of stone and glass beads. By identifying the different types of beads found at sites across Cambodia and Thailand and tracking their distribution I have been able to determine that there were two phases of trade, an earlier phase that focused on coastal exchange networks and a later phase, in which elites in the Mekong Delta appear to have been expanding their influence through the exchange of certain types of stone and glass beads to sites further inland. I have been able to come to this conclusion by developing specific research questions that were tested through systematic data collection and combined with scientific analysis.

As there had not yet been a comprehensive examination of Iron Age trade networks using data from multiple Cambodian archaeological sites, the first task involved addressing the question: are there distinct patterns in the distribution of agate/carnelian, garnet, and glass beads over time and across mainland Southeast Asia? These data were supplemented with stone and glass bead data from four sites in Thailand. Data from these sites allowed for a broader view of possible interaction networks between sites in Cambodia and sites in Northeast, central, and peninsular Thailand.

In order to address this question, agate/carnelian, glass, and garnet beads were recorded, with a focus on morphological characteristics, bead shape, and markings on the beads that were related to their production methods. This was supplemented with compositional analysis on a selection of the beads using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Compositional analysis was used on glass beads in order to determine what glass recipe was used produce the beads, as glass beads may look similar to one another but have been produced using different recipes from different workshops. These data were compared with known glass types in circulation during the Iron Age (Lankton and Dussubieux 2006) as a means of determining the quantity of different glass types at each site.

Agate, carnelian, and garnet beads also underwent geochemical analysis using (LA-ICP-MS) and were compared with geologic source samples from South and Southeast Asia in order to determine the geologic source used to produce these stone beads. One goal of this analysis was to determine if stone beads from specific stone sources could be traced over time and space, and in some cases was it possible to define some general source areas, although further studies are needed (see Chapters 5, 6, and 8). The various bead shapes and bead perforations were also

carefully noted in order to determine similarities and differences in stone bead types between sites.

Results from my examination of agate, carnelian, garnet, and glass beads have produced several surprising conclusions. My work confirms that there are differences in both the stone and glass beads found during the early Iron Age period and the later Iron Age period, a pattern that has been identified but not quantified by earlier scholars (Bellina 2003; Bellina and Glover 2004; Lankton and Dussubieux 2006, 2013). During the early Iron Age period, trade in stone and glass beads from external sources appears to have been focused along coastal exchange networks. People at coastal sites were exchanging potash glass beads and higher quality stone beads. Patterns in the spatial distribution of specific types of glass and stone beads highlight the importance of regional networks during the early Iron Age. While glass and stone beads may have originated outside of the localized exchange networks, they served to connect sites in these regions with one another. These patterns are especially clear at sites in southeast Cambodia and Northeast Thailand.

The burial contexts in which stone and glass beads were found also were carefully recorded in order to identify and determine if there were patterns of restricted distribution within each of the ten cemetery sites. Although beads may have been incorporated into burials in different ways in different communities, my research shows that not all members of a community had equal access to beads. Within a community there were several people who appear to have had larger numbers of beads than others in their community.

Recent hypotheses arguing that Southeast Asian craftsmen may have produced agate and carnelian beads themselves, perhaps using a local stone source, (Bellina 2003, 2007; Theunissen 2003; Theunissen et al. 2000) raise the issue of changing socio-political expansion. If agate and

carnelian beads were being made in Southeast Asia using Southeast Asian stone sources then, as discussed earlier, one could argue that Southeast Asian elites might have reached an even greater level of socio-political complexity than previously expected. LA-ICP-MS analysis of agate and carnelian beads was used to test the hypothesis regarding local Southeast Asian bead production and the and results indicate that the majority of the agate and carnelian beads found in Southeast Asia were produced using raw materials derived from the Deccan Traps geologic formation in western India. It is still possible that there was some local production, but clearly the raw material was being imported from elsewhere.

The patterns observed in the glass and stone beads were then used to address my second question: can these patterns of distribution be linked to changing patterns of socio-political and economic organization in the Mekong Delta? As noted above, results from the analysis of stone and glass beads show evidence for two distinct trade networks in which higher quality agate and carnelian beads and potash glass beads were traded in an earlier coastal exchange network. However, glass and stone bead data from Angkor Borei and previous studies from Oc Eo indicate that these sites were not active participants in the bead trade until the later Iron Age. During this later period, trade with South Asia appears to intensify, with greater numbers of goods being imported to Southeast Asia (Bellina and Glover 2004) including high-alumina soda glass beads and lower quality agate and carnelian beads. It is also in this period that we see increased numbers of stone and glass beads at inland sites. I argue that with these shifting trade networks and increased availability of stone and glass beads, elites would have been able to expand their power by trading these objects with inland communities that did not have access to beads through the earlier coastal exchange network. In this way, we can view beads as a symbol of the expanding power and influence of elites in the Mekong Delta. As objects that were meant

to be worn and displayed, beads can be seen as public exhibitions of this economic and sociopolitical power.

Archaeological evidence has shown that sites in the Mekong Delta, specifically Oc Eo, were important trading centers. Both Angkor Borei and Oc Eo were walled sites that could control the movement of goods into and out of these settlements. Furthermore, Angkor Borei's was located in an area with rich agricultural land that could support a growing population. This population growth is perhaps something that earlier coastal settlements could not have sustained. I argue that the Mekong Delta acted as a conduit for the trade of exotic objects, including stone and glass beads, to interior sites. The distribution of stone and glass beads can be seen as a representation of these expanding exchange and interaction networks.

#### **Conclusion and dissertation outline**

In this introductory chapter I have provided an introduction to my research questions, a discussion of my theoretical orientation and a definition of important terms, a background on the Funan and the Mekong Delta polities, and a review of my research questions and results. In Chapter 2, I introduce mainland Southeast Asia more broadly through a discussion of the geography, ecology, and natural resources in this region, focusing especially on Cambodia and Thailand. I follow this discussion with a background on the chronological framework used in Southeast Asia, as well as an introduction to the major archaeological cultures that have been identified in Southeast Asia. I conclude with a description and background on the Thai and Cambodian sites that will be the focus of this dissertation. In Chapter 3, I discuss the emergence of complexity in Southeast Asia and the role of trade and exchange in this process. Both historical and archaeological perspectives on the emergence of socio-political complexity are reviewed. In Chapter 4, I present the methods used to record and analyze stone and glass beads.

Chapters 5-8, focus on the results from the analyses of glass and stone beads. In Chapter 5 I discuss the results of both contextual and morphological analysis of agate and carnelian beads, with the results of the compositional analysis being discussed in Chapter 6. In Chapter 7, I discuss the distribution of glass beads and results of LA-ICP-MS analysis, identifying the different glass types in circulation in Cambodia and Thailand during the Iron Age. In Chapter 8, I discuss the results of morphological and compositional analysis of a small group of garnet beads. Lastly, in Chapter 9, I return to my primary research questions and evaluate them in light of the evidence discussed in earlier chapters. I have also included appendices that list the beads recorded in this study, the compositional and geochemical data, as well as additional details on the geologic sources and the statistical techniques and methods used to differentiate the geologic sources and artifacts.

# Chapter 2: Archaeological Background of Southeast Asia

This chapter serves as an introduction and background to Southeast Asia and the sites in this study in order to situate and contextualize the data presented in later chapters. I begin with a brief background on the geography of Southeast Asia, focusing on Cambodia and Thailand. I will then discuss the chronological framework used to describe the different periods in Southeast Asian history and prehistory. Following this, I will provide a brief overview of the major Iron Age cultures in Southeast Asia and the cultural milieu in which Iron Age sites in Cambodia and Thailand were operating. Finally, I conclude with a summary of the archaeological sites that are the focus of this study.

The sites in this study are located in Cambodia and Thailand in mainland Southeast Asia, but the boundaries and definition of mainland Southeast Asia (SEA) are not always clear. The current non-island members of ASEAN (Association of Southeast Asian Nations) include Cambodia, Laos, Peninsular Malaysia, Myanmar, Thailand, and Vietnam. However, others may consider parts of southern China, specifically Yunnan, Guanxi, and Guangdong provinces, to be a part of the cultural sphere of mainland Southeast Asia (Higham 2002). There also are strong cultural and genetic links tying communities in northeast India with Southeast Asia (Reddy et al. 2007). For the purposes of this dissertation, I follow the divisions set out by Bellwood and Glover (2004: 7) with mainland Southeast Asia being made up of the countries of Cambodia, Laos, peninsular Malaysia, Myanmar, Thailand and Vietnam, and insular Southeast Asia being made up of the countries of Taiwan, the Philippines, East Malaysia, Indonesia, and Brunei. However, it is recognized that the people in these locations interacted regularly with one another and with people areas of southern China, northeast India, and the Pacific Islands.

## Geography and ecology of mainland Southeast Asia

The current landmass of mainland Southeast Asia has seen significant changes in its coastline since the Pleistocene epoch. During the Ice Age period as sea levels fell, a massive swath of land, known as Sundaland, was exposed that connected mainland Southeast Asia to Sumatra, Java, Borneo, and Bali (Bellwood and Glover 2004). Even as recently as 10,000 BP sea levels were 40-60 meters lower than present, which exposed low-lying coastal areas that have since been inundated. The coastline did not begin to stabilize into its current form until approximately 4000 years ago. The current geography of Southeast Asia can be divided into two categories: first, the major river systems, their flood plains and river valleys and deltas, and second, the upland areas (Higham 2002). Overwhelmingly, the focus of this dissertation will be on Iron Age sites located in the river valleys, deltas, and flood plains of mainland Southeast Asia.

Life in Southeast Asia is heavily affected by the availability and management of water, be it from the seasonality of the river systems to the monsoonal weather patterns. Mainland Southeast Asia falls into a subtropical monsoon climate, although the climate and especially rainfall are locally variable (Higham 2002). During October through April a northeast wind dominates the landscape, bringing on the dry season. During May through October, the winds shift and move in from the southwest bringing a rainy season. However, there are several areas that fall into a rain shadow during this period such as the Chao Phraya and Tonle Sap plains and the Khorat Plateau. The results of these rain shadows affect the production of rice in these regions and farmers must rely on the flooding of rivers and silt deposits (Higham 2002).

#### Cambodia

Cambodia is primarily dominated by low, flat plains, although the western coastline is marked by the Damrei (Elephant) and Cardamom Mountains, and portions of the northeast and

southeast fall within the Annamite Chain (Figure 2.1). Perhaps the most important ecological zones within the country are the Tonle Sap Lake and the Mekong River and Mekong Delta regions. The Tonle Sap Lake in central Cambodia is one of the world's largest and most important inland fisheries. During the rainy season the Mekong River floods, brought on primarily by the spring snowmelt in the Himalayas. The flooding of the Mekong is so great that when the Mekong and Tonle Sap Rivers meet in Phnom Penh, the Tonle Sap River reverses direction and floods into the Tonle Sap Lake in central Cambodia. During this period the Tonle Sap Lake can increase its size to approximately 25,000 square kilometers (Nesbitt 1997). An assortment of rice farming techniques and varieties of rice are utilized in Cambodia. Deepwater rice can be grown in the regions adjacent to the rivers and Tonle Sap Lake, although this practice is declining (Nesbitt and Phaloeun 1997). Rain fed lowland rice is grown in every province of Cambodia today (Javier 1997). However, some scholars have suggested that dry-season flood recession rice was important for the growth of Angkor Borei and the Mekong Delta polities (Fox and Ledgerwood 1999).

#### **Thailand**

The geography and ecology of Thailand is quite diverse, but the sites discussed in this dissertation lie in three distinct regions: central Thailand, a region dominated by the Chao Phraya River and its tributaries, the Khorat Plateau in Northeast Thailand, and the Thai-Malay peninsula (Figure 2.2). The Chao Phraya River basin and the Central Plain of Thailand is approximately 500 km long running north-south through the center of Thailand. The Chao Phraya derives from four rivers, which drain from the mountainous region of northern Thailand. The Chao Phraya has a seasonal flow, with low levels during the dry season (April-May) and higher levels during the rainy season (May-September) (Gupta 2005b).

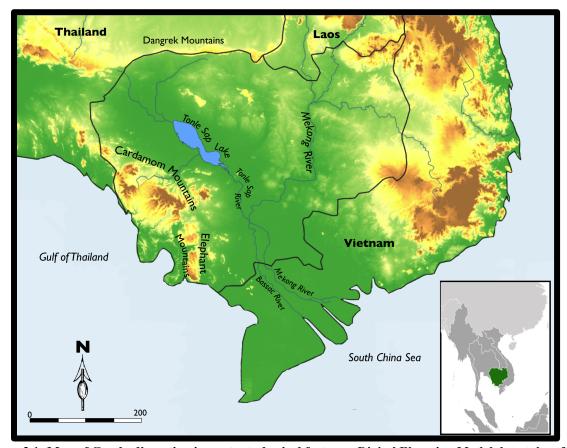



Figure 2.1: Map of Cambodia noting important physical features. Digital Elevation Model data taken from ASTER GDEM [http://www.gdem.aster.ersdac.or.jp/index.jsp]. ASTER GDEM is a product of METI and NASA. Map inset adapted from Wikipedia Commons [https://en.wikipedia.org/wiki/File:Location\_Cambodia\_ASEAN.svg]

Alluvial sediments are deposited in the lowland regions, and communities in this area currently practice rain-fed rice agriculture (Lertcharnrit 2010). However, recent research in the Khao Wong Prachan valley in central Thailand suggest that millet may have been an important crop and was grown prior to the emergence of rice agriculture in the first millennium BC (Weber et al. 2010).

The Chao Phraya Valley is also well known for it's ideal location in relation to trade networks. The western portion of this valley is linked to the Three Pagodas Pass (Figure 2.2), a fault in the Tenasserim Hills, which linked communities in Thailand to the area of modern-day Myanmar and India further west. Along the eastern portion of the Chao Phraya Valley are links

to northern Cambodia and the Tonle Sap region, while the Gulf of Siam connected this region to coastal communities in South and Southeast Asia (Higham 2002).

Northeast Thailand, regionally referred to as Isan, is a unique region, with strong influences from both Laos and Cambodia (see McCargo and Hongladarom 2004). As Northeast Thailand refers to a specific socio-cultural location, I follow other scholars in capitalizing Northeast. This territory is dominated by the landmass known as the Khorat plateau, an upland area approximately 150,000 square kilometers. Portions of the plateau reach 1000m in elevation, however most of the area is approximately 50-200m above sea level, with a downward slope towards the southeast. The Plateau is separated from the Chao Phraya valley by the Petchabun Mountains, and the Mekong River Valley in the south by the Dangrek (sometimes spelled Dong Rek or Dang Raek) Mountain range (Gupta 2005a). Two important rivers, the Mun and Chi, flow through the Khorat Plateau and numerous ancient settlements have been found along the flood plains of these rivers (Higham 2002). As with the Chao Phraya, these rivers have seasonal flows, with the Chi River dropping 10-12 below the flood plain during the dry season. As noted above, this region falls within a rain shadow and some of the soils have a high salinity. Saltproduction has been an important part of the economy in this region since prehistoric times (see Nitta 1991, 1997, 1999).

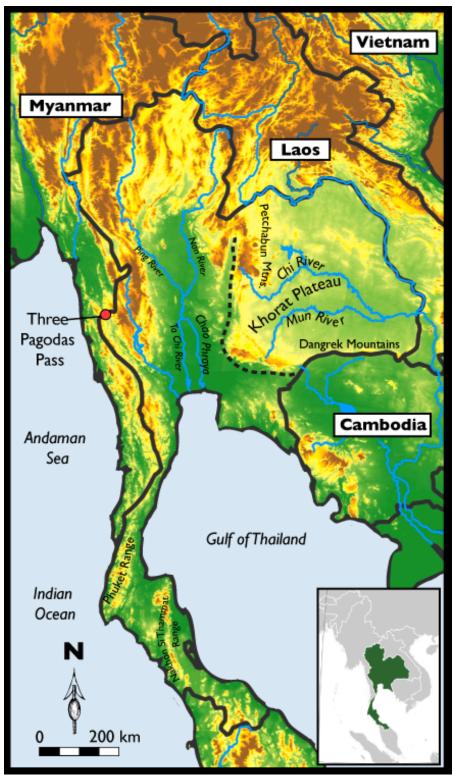



Figure 2.2:Map of Thailand noting important physical features. Map created using publically released GLOBE data [http://www.ngdc.noaa.gov/mgg/topo/globe.html]. Map inset taken from Wikipedia Commons [https://en.wikipedia.org/wiki/File:Thailand\_%28orthographic\_projection%29.svg]

The geography and climate of the Thai-Malay Peninsula is slightly different from the rest of mainland Southeast Asia. The peninsula is a long and narrow landmass, with the widest portion being not more than 300 kilometers across and the interior sections being not more than 150 kilometers from the sea. A series of nine mountain ranges stretch along the peninsula (Jacq-Hergoualc'h 2002), with coastal plains on the east and west sides of the peninsula. Although these areas are currently used for wet rice cultivation, research suggests that they did not exist until well into the historic period (14th century AD) and were brought on by erosion from the inland hills. This suggests that Iron Age communities in the Thai-Malay peninsula focused on inland, hill slopes and rain-fed agriculture, such as dryland rice or millet (Allen 1991). Several of the rivers on the peninsula flow from east to west and connect the coasts to one another. As with the rest of mainland Southeast Asia, the monsoon winds also heavily influence the climate and rainfall in the peninsula. Perhaps most importantly, is that the monsoon winds affected the process of commercial exchange in the peninsula and mainland Southeast Asia by extension. During the southwest Monsoon, maritime traders were able to use the favorable winds to easily cross from India to Southeast Asia across the Bay of Bengal, while in the other half of the year the southeast winds carry traders made travel from the east to the peninsula more favorable (Ray 2003; Tripati 2006).

These seasonal Monsoon winds likely affected trade across mainland Southeast Asia, as goods were potentially only available part of the year when traders were able to arrive in Southeast Asia with their cargo (Ray 2003: 20). Furthermore, monsoon winds and flooding would have made overland travel on road networks difficult during the rainy season, and rivers too dangerous to use due to swelling water levels (Hendrickson 2007). Trade was a seasonal

activity centered on the monsoon winds and affected by the rainy season impact on the environment.

### Natural resources important for trade

Southeast Asia is also a source for numerous natural resources that were exploited by Iron Age communities and were important commodities in long-distance trade. Foreign traders came to Southeast Asia to gather a variety of resources, including forest products, spices, and precious metals (Bronson 1992; Glover 1989; Glover and Bellina 2011; Fuller et al. 2011; see also Smith 1999). Gemstones also may have been important trade objects. A recent study indicates rubies from Burma were traded as far as Mesopotamia during the 2<sup>nd</sup> century BC- 2<sup>nd</sup> century AD (Calligaro 2005). However, gemstones were not mined in large quantities until more recently (e.g. Aranyakanon 1983; Van Long 2004). During the "Age of Commerce" in the 15<sup>th</sup>-17<sup>th</sup> centuries AD, Southeast Asia was known for cotton and cloth production as well as, spices, rice, metals, and ceramics (Reid 1988). Similar items may have been traded during earlier periods, however the organic objects are not well preserved in the archaeological record. For this reason, the metal trade is perhaps the best known and studied of the natural resources traded by early Southeast Asians.

Metals were an important resource exploited by Iron Age communities and were likely important resources traded with foreign traders. In the first century AD the Roman emperor Vespasian forbid the export of gold coins, leaving Indian merchants in search of another source of gold (Higham 2002). (Although it should be noted that gold continued to leave the Roman Empire due to the presence of Roman gold coins in India from later periods). Indian myths discussed the fabled land of gold, or *Suvarnabhumi*, which is believed to be located in modern-day Southeast Asia, perhaps Myanmar (Moore and Win 2007), but gold is sporadically

encountered in deposits across Southeast Asia and other regions may have been lumped under this general term. There are currently numerous gold mines at various locations in Cambodia, as well as gold deposits in Laos, central Vietnam, northwest Thailand, and in alluvial sediments in the Mekong Delta (Reinecke et al. 2009). There is also evidence for gold working at the site of Oc Eo and the nearby site of Go Thap in southern Vietnam (Figure 2.3, Sites 14 and 15)(Li Thi Lien 2005), but it is unlikely that the alluvial deposits in the Mekong Delta were able to produce enough gold to supply this region (Reinecke et al. 2009). Tin also appears to have been an important part of the earliest periods of exchange between South and Southeast Asia. The Thai-Malay peninsula contains nearly 95% of the world's tin reserves and has been described as "Southeast Asia's premier metal in terms of economic importance," (Bronson 1992: 83). Recent research from the peninsular site of Khao Sam Kaeo suggests that tin may have been exploited to produce high-tin bronze as early as the late first millennium BC (Glover and Bellina 2011; Murillo-Barroso et al. 2010; Pryce et al. 2008).

Other precious metals are present in Southeast Asia, although in smaller qualities. Large silver deposits have been found in Myanmar and were exploited during the historic period, although it is unclear if they were exploited earlier (Bronson 1992). There is extensive evidence for copper production and smelting in the Khao Wong Prachan Valley in central Thailand (Pigott et al. 1997; Pryce et al. 2011) and exploitation of the northeast Thai copper mine of Phu Lon (Figure 2.3, Site 7) as early as the mid 2<sup>nd</sup> millennium BC (Pigott and Weisgerber 1998). Copper is currently mined in large quantities in Laos and may have also been exploited in the past (Cawte 2009). There are also extensive iron deposits across Southeast Asia, although they are distributed unevenly. Areas of southern Vietnam have no iron deposits whereas the Thai-Malay peninsula, northern Thailand, Laos, and northern Vietnam all have plentiful iron ores (Bronson

1992). Iron smelting has been identified at Iron Age sites in Thailand such as Ban Dong Phlong in Northeast Thailand (Figure 2.3, Site 1)(Nitta 1997). During the Angkorian period a large iron production workshop was located at the site of Preah Khan of Kampong Svay in eastern Cambodia (Figure 2.3, Site 21)(Jacques and Lafond 2007).

While Southeast Asia was home to numerous natural resources, they were not evenly distributed across the landscape. In some regions, the patchy distribution of various resources encouraged intraregional exchange (e.g. Christie 1995; Welch 1989). These resources were appealing not only to foreign traders but to communities within Southeast Asia as well. Scholars have also argued that important centers emerged when they could facilitate the trade of long-distance goods arriving through maritime trade with important resources found further inland (e.g. Bronson 1977; Christie 1995, 1996). Beads may have been used by coastal communities in exchange for some of these items and traveled over the same networks discussed above. Historic documents from the mid-17<sup>th</sup> century describe upland minority communities exchanging forest products, gold, slaves, elephants and other objects with lowland communities for metal objects, Chinese ceramics and glass beads (Richter 2000: 116-117). We can assume that glass and stone beads were traded and used by Iron Age communities in a similar way as these other materials, since beads were part of the larger trade of this region.

### **Chronological Frameworks**

In this dissertation, I draw primarily on the chronological framework most recently described by Charles Higham (2002). This framework largely grew out of archaeological research in Thailand, but has been applied to Southeast Asia as a whole. However, a chronological framework used in South Asia (Kenoyer 2000) may eventually prove to be better fit in describing the cultural developments happening in Southeast Asia. The currently used

modified Three-Age system is broad and perhaps overly technologically focused. In this section I review the major chronological developments using Higham's framework and will use this framework in my dissertation to allow easy comparison with the current literature. However, I will also present the alternative chronological framework that may be beneficial to future studies. Following this discussion, I present a brief summary of the major Iron Age archaeological cultures that have been identified in mainland Southeast Asia and their relationship with sites in Cambodia and Thailand.

As recently as the 1980s and 1990s, Southeast Asia lacked a widely used cultural chronology or framework. During the 1980s several scholars proposed chronologies for Northeast Thailand (e.g. Bayard 1984, 1987; Higham 1986; Bayard 1987; Welch 1985). In one widely used framework, Southeast Asian history and prehistory were divided into a series of general periods, associated with the emergence of rice-farming, bronze, iron, and state-level societies (Bayard 1984; Higham 1989: xv-xvi). More recently, scholars producing major regional syntheses on the prehistory of Southeast Asia have relied on a modified version of the Three Age system (Bellwood and Glover 2004; Higham 1996, 2002; O'Reilly 2007). In this dissertation, I follow this framework (Table 2.1).

| Current Framework | Cultural Traditions      | Dates                           |
|-------------------|--------------------------|---------------------------------|
|                   | Framework                |                                 |
| Angkorian Empire  | Integration Era?         | Approx. 800-1400 AD             |
| Iron Age          |                          | 500 BC- AD 500                  |
| Bronze Age        | Regionalization Era      | 1500/1000 – 500 BC              |
|                   |                          |                                 |
| Neolithic         | Early Food Producing Era | 2500 – 1500/1000 BC             |
| Hunter-Gatherers  |                          | Approximately 40,000 BP to 2500 |
|                   |                          | BC                              |

Table 2.1: Chronological periods discussed in this dissertation.

#### **Hunter-Gatherers**

The first modern human occupants of Southeast Asia were hunter-gatherers, with some of the earliest sites dating to approximately 40,000 BP (Bellwood and Glover 2004; Higham 2002) or possibly 63,000 BP (Demeter et al. 2012). Hunter-gatherer sites have been broadly divided into two different classes: those located in the uplands, primarily in rock shelters, and sites located in coastal settlements. However, it is generally accepted that these archaeological sites represent just a portion of the diverse lifeways of prehistoric hunter-gatherer groups. Generally, upland sites have been better studied and preserved as coastal sites have largely been destroyed or are submerged due to changes in sea-level over time (Higham 2002; Higham et. al 2011). One of the best-known hunter-gatherer archaeological cultures is the Hoabinhian, whose earliest sites may date to 20,000 BP (Yi et. al 2008) and have been identified in rock shelters and caves in Vietnam, Cambodia, and Thailand. The French researcher Madeleine Colani was the first to identify and name the Hoabinhian culture and specifically the unifacially worked stone tools made from river cobbles known as sumatraliths (Matthews 1966). In the 1970s, research at the Hoabinhian site of Spirit Cave (Figure 2.3, Site 9) uncovered plant remains that were believed to be early domesticates (Solheim 1972). However, it is now realized that Hoabinhian huntergatherers had a broad-spectrum subsistence strategy, but were not involved in the local domestication of plants. Later Hoabinhian sites are believed to extend into the middle Holocene, a period Vietnamese archaeologists refer to as the Middle Neolithic, which is noted for the first appearance of pottery and the evidence for possible vegetable cultivation (Nguyen Khac Su 2004).

## Neolithic period and introduction of rice agriculture

By approximately 2500-2000 BC, Neolithic rice-farming communities and technology began to move into mainland Southeast Asia from China. Rice is believed to have been domesticated in the middle Yangzi River Valley, however the process and timing of this event is still under debate. For example, recent research has argued that rice was domesticated in a single process somewhere in Asia (Molina et. al 2011) while other scholars have argued that there is evidence for rice cultivation as early as 9000 BP (Liu et. al 2007). Nevertheless, it appears to have taken perhaps up to 7000 years for this technology to reach southern China and Southeast Asia (Bellwood 2005; Chi and Hung 2008; Higham 2004). These dates are similar across broad stretches of southern China and mainland Southeast Asia suggesting that there were "related expansionary movements southwards, following the courses of the major rivers," (Higham 2004: 51). Many of these early Neolithic communities shared pottery styles and mortuary rituals (Higham 2004; Rispoli 1997). However it is important to note, the shift to rice farming was not uniform across mainland Southeast Asia. Recent DNA evidence suggests that many huntergatherer groups persisted despite the influx of agriculturalists, although in isolated locations (Higham et. al 2011). The site of Khok Phanom Di (Figure 2.3, Site 5) in coastal central Thailand is one example of a community interacting with or transitioning to rice agriculturalists (Higham and Thosarat 1994). Early layers at the site suggest a dependence on fishing and wild resources. However upper layers contained human feces with the remains of domesticated rice, although the environment immediately surrounding Khok Phanom Di was not conducive to rice farming (Higham 2002). Strontium isotope data on skeletons at the inland site of Ban Chiang, Thailand (Figure 2.3, Site 8) show evidence for the appearance of non-local men during the late Neolithic-early Bronze Age period. It is believed that early agriculturalists practiced

matrilocality, which may be linked to the spread of agriculture in mainland Southeast Asia (Bentley et. al 2005). Continued genetic and isotopic research along with archaeological data should lead to a better appreciation of the complexity of the spread of agriculture in the future (Higham et. al 2011).

### The Bronze Age

Around 1500-1000 BC we see the first evidence for the appearance of bronze and bronze technology in mainland Southeast Asia, although the timing of this process has been the object of some debate. In the 1960s and 70s excavations at the sites of Ban Chiang of Non Nok Tha in Thailand (Figure 2.3, Sites 6 and 8) both produced very early dates for bronze (Gorman and Charoenwongsa 1976; Solheim 1968). However, these dates were found to be in error and the generally accepted dates for the beginning of the Bronze Age were shifted to 1500-1000 BC (Higham 2002). Recent research at the site of Ban Non Wat in Northeast Thailand (Figure 2.3) has pushed the Neolithic-Bronze Age transition in that region to 1000 BC (Higham and Higham 2009). Conversely, Joyce White, using recent rice chaff dates from pottery found at Ban Chiang notes that the appearance of bronze dates from 2100-1700 BC, the earliest evidence for bronze in Southeast Asia (White 2008; White and Hamilton 2009). Many scholars have argued that Southeast Asian bronze technology originated in China (for a review see White and Hamilton 2009). However, as White and Hamilton (2009: 375) note "proponents of Sinocentric models must either dispute or ignore evidence for early second millennium BC bronze in Southeast Asia." In this vein, Higham (Higham and Higham 2010; Higham et. al 2010) has recently questioned the accuracy of the rice chaff dates from Ban Chiang. Evaluating these arguments is beyond the scope of the current work. For this reason, I will maintain the predominant currently accepted view that the Bronze Age begins in Southeast Asia around 1500-1000 BC.

Once bronze technology entered mainland Southeast Asia, it was used to produce a variety of objects from personal ornaments to weapons. Copper resources were also exploited and copper was smelted and worked by indigenous craftspeople (Higham 2002: 117-8). However, unlike other parts of the ancient world the introduction and use of bronze technology did not result in the emergence of complex polities in Southeast Asia (Muhly 1988). Several scholars have argued that Bronze Age communities in Southeast Asia were arranged heterarchically, which prevented the emergence of hierarchically based chiefdoms or states (Eyre 2011; O'Reilly 2000, 2003; White 1995; White and Piggott 1996). However, research at Ban Non Wat has again complicated this view. Portions of the Bronze Age cemetery show evidence for "outstandingly wealthy men, women, infants and children," (Higham 2011a: 380). This appearance of wealth and social stratification was short-lived however, and after 150-200 years there was a decline in the mortuary wealth at the site. Higham argues that the wealthy burials reflect the appearance of aggrandizers, whose power eventually declined. He notes:

"Social organization from the eleventh to the fifth centuries BC in the upper Mun Valley was, it is held, transegalitarian. The eruption of social display and ostentation that took place with the initial Bronze Age reflects social inequalities that gave differential access to the ownership of resources and access to prestige goods. In the nature of transegalitarian societies, social success achieved by aggrandizers was impermanent, and there was no embedded political control from one centre over its contemporaries," (Higham 2011a: 388).

While these data are immediately applicable to the Mun River Valley region, Higham also argues that similar patterns may be found at other Bronze Age sites in Southeast Asia (2011a: 386). It should be noted that the majority of Bronze Age sites in Southeast Asia have been excavated in Thailand. There is limited information in English about Vietnamese Bronze Age sites and very incomplete research on Bronze Age sites in Cambodia, and Laos. As excavation

in these countries continues we will develop a more balanced and detailed understanding about the Southeast Asian Bronze Age.

# The Iron Age

The first appearance of iron in mainland Southeast Asia occurs approximately 300-500 BC (Higham 2002). In addition to the appearance of iron, the Iron Age is notable for the first evidence for contact with South Asia, and increasing socio-political complexity (Higham 2002). As with bronze, the origin of iron technology in Southeast Asia is still debated, as it could have been developed indigenously or introduced from China or India (Higham 2002: 169-70). At the site of Noen U-Loke in Northeast Thailand, the earliest iron artifacts are personal ornaments such as bangles and it is not until later phases that iron is used for utilitarian goods (Chang 2001; Connelly 2007).

The Iron Age was a period of great change spanning approximately 1000 years, however we do not yet have a clear understanding of the different phases within this period. In Cambodia, some scholars also refer to the late Iron Age as the "Early Historic period," as it is during this phase that Chinese historians began visiting and writing about polities in the Mekong Delta region (Stark 2004). In one Chinese document, they describe the presence of libraries and written documents at sites in the Mekong Delta around the 3<sup>rd</sup> century AD (Stark 1998). Excavations at specific sites have provided information on the transformations happening at the site or regional level (e.g. Higham and Higham 2009; Higham 2011b). The emergence of socio-political complexity and influence from South Asia did not happen uniformly across mainland Southeast Asia, therefore site or regional-level analyses may be the best way to understand these changes.

By the mid-first millennium AD several complex polities, often identified as states, emerged in parts of mainland Southeast Asia (Higham 2002). As discussed in Chapter 1, I and

other scholars have argued that polities in the Red Rive Delta in northern Vietnam and in the Mekong Delta of Cambodia and Vietnam may have been states. Sites in the Mekong Delta are notable for their use of writing, influence from India, especially in the practice of Hinduism and/or Buddhism, and the emergence of sculpture and brick and stone architecture. In Cambodia, the 6<sup>th</sup>-8<sup>th</sup> centuries are known as the Pre-Angkor period and historical documents describe the emergence of several competing kingdoms (Stark 2004). By the 7<sup>th</sup> century the Dvaravati kingdom developed in the Chao Phraya river valley (Indrawooth 2004). In coastal Vietnam around AD 600 there are a series of kingdoms known as Champa (Higham 2002; Southworth 2004). These states had their origin in the Iron Age communities found across Southeast Asia.

### **Cultural Traditions Framework**

As an alternative to the technology-based chronological framework currently used by scholars in Southeast Asia, a framework used by scholars of ancient South Asia (Kenoyer 1991; Shaffer 1992) would allow for a more detailed description of cultural developments in this region. Unfortunately, the limited archaeological evidence in Southeast Asia makes defining this framework complicated. For this reason, I rely on the current chronological framework in this dissertation. However, it is valuable to begin outlining this alternative framework in the hopes that it can be refined with additional research. I will also return to this alternative framework in the final chapter.

In this framework, a cultural *tradition* is identified, which is divided into four *eras*, and from this further sub-divided into *phases*. A tradition is defined as a "persistent configuration of technologies and cultural systems within a context of temporal and geographic continuity" (Shaffer 1992: 442). In the context of the current study, it may be difficult to define a single tradition, as multiple communities and culture groups interacted with one another with power

shifting between regions and cultural groups over time. With future studies, we may wish to identify an Angkorian Tradition, Champa Tradition, or Dvaravati Tradition and use the eras and phases below to outline the long cultural trajectory of these Traditions. However, for the moment I will refrain from assigning the eras and phases below to a specific cultural tradition.

In contrast to traditions, eras and phases are descriptive, "non-evolutionary and do not have set temporal or geographic boundaries," making them more applicable to the Southeast Asian archaeological record (Law 2008: 97). The first era is the Early Food Producing Era (EFPE). Following Kenoyer, this era is defined by a subsistence economy based on domestic plants and animals by semi-sedentary or sedentary communities. This era would correspond with the Neolithic period in the current chronological framework (Table 2.1).

Following the EFPE is the Regionalization Era, which has been described elsewhere as "a period of cultural development on a regional scale with the emergence of distinctive artifact styles, burial practices, and settlement organization," (Kenoyer 2000: 90). In Southeast Asia, I argue that the Regionalization Era applies to the Metal Age periods, combining both the Bronze and Iron Ages. Traditionally these two periods have been divided by both differing metal technologies, as well as evidence for contact with South Asia and increasing socio-political complexity during the Iron Age (Higham 2002). However, it is not unprecedented to consider these two periods together. For example, recent research at Ban Non Wat in Northeast Thailand has demonstrated the continuity between both periods and provided evidence for a brief period of social stratification during the Bronze Age (Higham 2011a, 2011b). Researchers in other parts of Southeast Asia have also identified continuities between Bronze and Iron Age communities (e.g. Gutman and Hudson 2004; Moore 2007; Nguyen et al. 2004; Reinecke 2009). By combining the Bronze and Iron Age periods together in a single Regionalization Era, we are able

to better appreciate the connections between these periods as well as acknowledge the different cultural trajectories present in mainland Southeast Asia during this time.

Within eras are phases, which "are defined on the basis of a set of distinctive material culture traits (frequently this is a diagnostic assemblage of ceramics) present in a specific place and time," (Law 2008: 97-8). Recent work by White and Eyre (2011) has identified 13 ceramic sub-regions in Thailand that could be classified as phases within this chronological framework. It is also acknowledged that chronologies within a site may overlap with phases, eras, and traditions. With further archaeological research and the identification of a variety of regional subcultures and phases, the Regionalization Era should become clearer.

Following the Regionalization Era is the Integration Era, a period defined by increased homogeneity in material culture, as well as economic, socio-political, and ideological integration of previously disparate regions (Kenoyer 1991, 2000). This is followed by the Localization Era, a period in which there is a "breakdown in integration and the reemergence of regional cultures that reflect localized trade networks and stylistic features of material culture," (Kenoyer 2000: 90). The transition from the Regionalization to Integration Era in mainland Southeast Asia is thus far difficult to determine. As noted in the introduction chapter, some scholars have suggested that the polity of Funan integrated a large region of southern Cambodia and Vietnam as well as possibly portions of the Thai-Malay peninsula. However, archaeological evidence has not yet borne out this hypothesis. On the other hand historical documents dating from the midfirst millennium AD discuss a series of increasingly powerful leaders vying for control of large territories (Stark 2006c). It may be possible that over the period of several centuries, portions of Cambodia may have been integrated for brief periods, followed by periods of localization. It is not until the 9th century AD that a large region of Cambodia, and later portions of Vietnam,

Thailand, and Laos were more clearly integrated under the Angkor Empire. Much archaeological work needs to be done in order to better understand the transition from the Regionalization to Integration Era in Southeast Asia.

While much work still needs to be done to flesh out this alternative chronology. I believe that it provides another framework for understanding cultural and chronological development in mainland Southeast Asia in more depth. With additional research it is expected that we may be able to build on and expand this framework to better incorporate and describe the cultural developments in mainland Southeast Asia. In the following section, I discuss some of the cultural groups present in Southeast Asia during the Iron Age, a period that with additional work might also be described as the Regionalization Era.

# The Iron Age Cultures of Mainland Southeast Asia

Numerous Iron Age archaeological cultures have been identified across mainland Southeast Asia (Figure 2.3). As this dissertation focuses on 12 sites from Cambodia and Thailand, an overview of the different cultures is important for both contextualizing the broader cultural groups in which these communities were found as well as identifying the different groups with whom these communities interacted. In this section I will provide a brief background of several different Iron Age cultures and discuss how they may have been interacting with sites discussed in this study, focusing on the glass and stone beads that may have been traded.

# The Dongson Culture

The Dongson culture was based in the Red River delta of northern Vietnam. This archaeological culture was first identified at the Dongson site (Figure 2.3, Site 24), excavated by Pajot and Janse in the 1950s, although the Dongson people are also mentioned in Chinese

historical documents, as they were contemporary with Chinese expansion into northern Vietnam (Higham 2002). The earliest Dongson sites date to approximately 600 BC, slightly earlier than Iron Age in other parts of mainland Southeast Asia.

The Dongson is perhaps most famous for its bronze work, especially the large Dongson drums that were widely traded across mainland and island Southeast Asia. Dongson people were also familiar with iron technology, although iron casting techniques may have been introduced to the region by the Chinese (Higham 2002: 169-70).

Since the excavation at the initial Dongson site, there have been at least 70 additional sites found including stone ornament workshop sites, a limited number of settlement sites such as Co Loa (Figure 2.3, Site 25) (Kim et al. 2010), and cemeteries, which are the most numerous (Pham Minh Huyen 2004). Most material culture, including personal ornaments, has come from burial contexts. Unlike some other Iron Age archaeological cultures in mainland Southeast Asia which eventually evolved into states, the Dongson culture is considered to have ended in AD 43, when northern Vietnam came under Han control (Pham Minh Huyen 2004).

Dongson bronze drums have been found at several of the sites in this study: Village 10.8 and Prohear in Cambodia (Figure 2.3, Site 17) and Khao Sam Kaeo in Peninsular Thailand. Although they may not have been directly trading with this region, it suggests that sites in Cambodia and peninsular Thailand were part of a broader Dongson drum interaction sphere (Nitta 2007). The Dongson region is also one of the areas where potash glass beads may have been produced, perhaps low CaO potash glass, although direct evidence is still lacking (Lankton and Dussubieux 2006, 2013). Little work has been done exploring the agate and carnelian beads at Dongson sites.

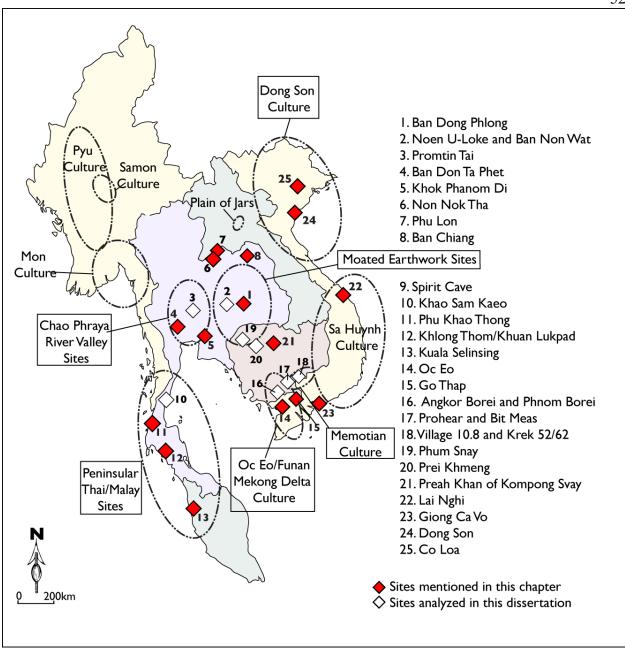



Figure 2.3: Map of Iron Age archaeological cultures and sites mentioned in this chapter.

# The Sa Huynh Culture

Sa Huynh culture sites have been found in central coastal Vietnam, dating from approximately 500 BC- AD 100 (Southworth 2004). The Sa Huynh culture is believed to be a precursor to the later Cham kingdoms, although direct links between these two cultures has not yet been identified (Reinecke 2010; Southworth 2004). This culture was first identified by their jar burials, a relatively unique practice in Southeast Asia (Higham 2002). Since the first excavations in the early 20<sup>th</sup> century, over 60 jar burial sites have been excavated in Vietnam. Among the objects found in these jar burials are distinctive personal ornaments made of glass and stone including a double-headed animal earring and an earring with three protrusions known as a ling ling-o (see Chapter 3). Although rare, these objects were traded across island and mainland Southeast Asia and seem to reflect the long-distance connections Sa Huynh people had with other Southeast Asian communities (Reinecke 2009). During the later phases of these sites, large numbers of glass and stone beads have been found with the burial goods, indicating contact with South Asia. At the site of Lai Nghi (Figure 2.3, Site 22) over 10,000 carnelian, agate, nephrite, and glass beads have been found as burial goods, including one burial with more than three thousand beads made of glass, agate, carnelian, and nephrite, as well as bronze and iron objects. There is also evidence for contact with Chinese communities; one late burial contained Han style bronzes (Reinecke 2009).

Evidence discussed later in this dissertation suggests that sites in Southeast Cambodia may have been interacting with Sa Huynh people in southern Vietnam. Similarities between garnet beads found at Village 10.8, Bit Meas, Prohear, and sites in southern Vietnam suggest a regional trade network in this area. As will be discussed in Chapter 7, there is evidence for possible primary glass production at the Sa Huynh site of Giong Ca Vo (Figure 2.3, Site 23) and

potash glass was widely traded at both Sa Huynh sites and sites in southeast Cambodia. There is also evidence for connections between the site of Khao Sam Kaeo (Figure 2.3, Site 10), an important craft production site in peninsular Thailand considered as part of this dissertation, and Sa Huynh culture sites. Glass ornaments that may have been produced at Khao Sam Kaeo have been identified at Giong Ca Vo (Lankton et al. 2008). Some of the agate and carnelian bead at Khao Sam Kaeo also share similarities with those found at Giong Ca Vo and other Sa Huynh sites (Bellina and Silapanth 2006). In all, the Sa Huynh culture was an important trading partner for several of the communities examined as part of this study.

#### The Memotian Culture

The Memot culture is the name given to the community that produced a series of circular earthwork sites in the Red Soil region of southern Cambodia and Vietnam. The earthworks were initially identified by the French scholars Louis Malleret (1959b) and B.P. Groliser (1966a, 1966b). Unlike the moated sites found in northeast Thailand (below), the moats and embankments around the Memot earthworks do not appear to be related to water management, although their function is not clear. However, the sites are believed to be settlement and habitation areas of an agricultural community (Dega 2002). Based on the limited material culture found at these sites, these early scholars believed the earthworks dated to the Neolithic period. However, during more recent excavations glass was found in the upper layers, suggesting these sites might extend into the Iron Age period (Haidle and Neumann 2004). Radiocarbon dates and ceramic seriation have produced a dates of occupation from 2300 BC to 300/200 BC. Although the earthworks fall within the Neolithic through Iron Age periods, they do not appear to have used any metals. Unfortunately, the acidic soil is not favorable to bone preservation and so burial data from these sites is lacking.

One carnelian bead from the Memotian culture site of Krek 52/62 (Figure 2.3), Site 18) was included in this study. However, previously studied glass artifacts from Krek suggest connections with sites in Vietnam (Haidle and Neumann 2004) and Khao Sam Kaeo, Thailand (Lankton et al. 2008). Although there is little comparative data with other circular earthwork sites in this region, this preliminary evidence does suggest that these sites were connected to broader regional trade networks.

# The Moated sites of Northeast Thailand and northwest Cambodia.

A series of sites enclosed by circular moats or earthworks have also been identified in parts of Northeast Thailand, especially around the Mun and Chi River Valleys, as well parts of northwest Cambodia. As noted above, these moated, circular earthwork sites are believed to be distinct from the Memotian circular earthworks in southern Cambodia. Two moated sites located in the Mun River Valley of Northeast Thailand were included in this study: Ban Non Wat and Noen U-Loke (Figure 2.3, Site 2). While some sites, such as Ban Non Wat, were occupied as early as the Neolithic period (Higham and Kijngam 2010), it appears that there was an expansion of new settlements in the Mun River valley and many sites were not occupied until the Bronze or Iron Ages (Higham 2002, 2004). However, excavations on the moats around several sites indicate they were not constructed until the late Iron Age, several hundred years after many of the sites were initially occupied (McGrath and Boyd 2001). The moats appear to have been constructed in reaction to environmental changes in the region, in order to provide access to a more reliable water supply (Boyd 2007:44). Some scholars have argued that the construction of moats and a demarcation of the landscape may have "affected how the inhabitants saw themselves and their relationships with both neighbouring communities and the wider landscape," (Boyd and Chang 2010: 291). The moats appear to reflect a shared response to environmental pressure by the communities in this region.

Previous research on sites in this region has emphasized similarities in their mortuary ritual and material culture, including ceramics and personal ornaments (Higham 2002, 2011b). Furthermore, Prestige goods, primarily found in burial contexts, also appear to tie elites in this region to one another as well as connecting them to broader trade networks. This has led some scholars to compare sites in these regions to the Hopewell Interaction Sphere in the United States (McNeill and Welch 1991; Welch 1989). Previous work on agate and carnelian beads from sites in this region has suggested that there may have been local production of these materials (see Chapter 5)(Theunissen et al. 2000; Theunissen 2003). As will be discussed in Chapter 7, there also appears to have been a unique mixed alkali wrapped glass that was exchanged amongst communities in this area.

### The Chao Phraya River Valley/Central Thailand

A large number of moated sites, over 65, have been identified in the Chao Phraya River valley region in Central Thailand, including one site examined in this study: Promtin Tai (Figure 2.3, Site 3). Many sites have both late prehistoric and historic period occupations dating to the Dvaravati kingdoms (mid-first millennium AD) and the Lopburi period (11<sup>th</sup> century AD) (Vallibhotama 1992; Indrawooth 2004). During the historic period, many of these sites appear to have been important urban centers, and archaeological evidence suggests that during the late first millennium BC there was emerging centralization (Higham 2002:223).

Grave goods found at these sites also highlight the long-distance connections between this region, South Asia and the Sa Huynh and Dongson communities in Vietnam (Glover 1989; Higham 2002). At Ban Don Ta Phet (Figure 2.3, Site 4), an "elite burial enclave" with an

increased number of grave goods including exotic objects from South Asia, points toward emerging socio-political stratification (Higham 2002: 218). This area not only had rich agricultural and mineral resources but also was ideally located at a central point on exchange routes connecting to India on the west, northern Cambodia on the east, and the Gulf of Siam (Higham 2002). Unfortunately, the relationship between long-distance exchange and increasing socio-political complexity, eventually leading to the Dvaravati kingdoms is still poorly understood (Higham 2002). However, recent research suggests that "proto-Dvaravati" sites in Central Thailand, which show signs of Indian influence, linked the Iron Age polities in this region with the later Dvaravati sites (Barram and Glover 2008; Glover 2011).

### The Mekong Delta/Oc Eo/Funan Culture

An introduction to Angkor Borei, Oc Eo, and Funan has already been presented in chapter 1 and so I will not repeat this discussion here. However, in this dissertation I include the bead collections from two sites in this region: Angkor Borei and Phnom Borei (Figure 2.3, Site 16). While extensive survey in the area around Angkor Borei has identified a large number of contemporary sites (Stark 2006a), only one other Cambodian Mekong Delta site contemporary with Angkor Borei has been excavated, Phnom Borei. The site of Phnom Borei is located just a few kilometers from Angkor Borei and contained a small number of burials with few grave goods, but similar to those found at Angkor Borei (Phon 2004).

The large amount of material culture uncovered at Oc Eo (Figure 2.3, Site 14), especially stone and glass beads, has provided important comparative material for not only Angkor Borei and the Mekong Delta but archaeologists working at other sites in Southeast Asia (Manguin 2004). Based on the similarities seen between artifacts archaeologists have identified connections between Oc Eo and the Mekong Delta and Khao Sam Kaeo and peninsular Thailand (Bellina and

Silapanth 2006; Lankton et al. 2008), Peninsular Malaysia (Manguin 2004), Northeast Thailand (Theunissen 2003), Central Thailand (Glover 2011), Pyu and Mon sites in Myanmar (Moore 2007), and a broader South China Sea exchange network (Dalsheimer and Manguin 1998; Stark 2006a).

### Peninsular Thai-Malay Sites

A series of important Iron Age sites have also been discovered on the Thai-Malay peninsula. Several of the most well known sites, including Khuan Lukpad (also called Khlong Thom) (Figure 2.3, Site 12) and Khao Sam Kaeo in Thailand (Figure 2.3, Site 10) and Kuala Selinsing, Malaysia (Figure 2.3, Site 13), have unfortunately suffered from serious looting, which limits our understanding of these communities. However, remaining evidence points towards the growing importance of trade with South Asia and emerging socio-political complexity related to this interaction. Many of sites were located on both sides of the peninsula in areas idea for accessing trade and exchange networks, as these communities became a meeting point between South Asia and sites farther east.

Several sites have evidence for long-distance contacts with both South and East Asia. Excavations at Khao Sam Kaeo suggest that South Asian craftsmen have been living at the site producing objects for Southeast Asian elites (Bellina 2001, 2007, Murillo-Barroso et. al 2010). At the nearby site of Phu Khao Thong (Figure 2.3, Site 11) unique glass vessels have been found that were also identified in Han tombs (Lankton et al. 2009). As noted earlier, sites in this region also appear to have been interacting with sites in the Mekong Delta, Sa Huynh sites in Vietnam, as well as sites in central Thailand (Bellina and Glover 2011). This region is believed to have been an important area for craft production of prestige objects. Some of the best evidence for this is found at the site of Khao Sam Kaeo (Bellina 2007, Lankton et. al 2008) but evidence for bead

production is also suspected at Khuan Lukpad (Bronson 1990; Veraprasert 1992), and Kuala Selinsing (Evans 1928, see Chapter 5). It is important to note that communities in the peninsular region were not just traders, consumers, and producers of goods, but also a source for important raw materials including forest products, gold, and tin (Murillo-Barroso et. al 2010; Noonsuk 2005).

### Other cultures in Myanmar and Laos

There are several additional cultures in Myanmar and Laos that should be discussed, however there is currently little direct evidence that they were interacting with sites examined as a part of this study. Nevertheless, it is expected that future research may find connections between communities in these areas and communities in Cambodia and Thailand.

In the Samon Valley, south of Mandalay, Myanmar, a series of burial and cemetery sites were identified in the 1980s. These sites are now known as belonging to the Samon culture, which has been dated from 700 BC- AD 400. Unfortunately, many sites have been looted in the search for semi-precious beads, and the relationship between habitation and cemetery sites for this region is not well known. A similarity in bronze artifacts links the Samon culture sites with Dian culture sites in Yunnan, however there are also many unique artifacts as well (Moore 2007: 105-110).

Samon culture sites are especially known for their semi-precious stone beads, and most likely produced large numbers of carnelian and green chalcedony beads (Moore 2007:114). Line-decorated beads known as pumtek are distinctive of the Samon culture, but many of these bead types are also shared with the Pyu culture. The Samon culture's relationship to the Pyu culture is still being debated, with some scholars arguing that it was the "homeland" for the later

Pyu (Hudson 2005) with others noting that sites appear to overlap and be contemporaneous (Moore 2007).

Pyu and Mon culture sites are generally identified as walled, urban sites located in Upper Myanmar (Pyu) and Lower Myanmar (Mon). However it is important to note that these names are not related to specific ethnic or cultural groups. Instead, the archaeologist Elizabeth Moore argues that differences between the two groups were more strongly influenced by the different environmental zones in each part of the country (2007). Both Pyu and Mon sites have been dated to the first Millennium AD (approximately 200-900 AD). Generally the Pyu sites of Upper Myanmar have been better studied, due to a lack of excavation and access to sites in Lower Myanmar. However, both sites in Upper and Lower Myanmar share a use of brick to construct walls, religious, and ritual architecture and Hindu-Buddhist influence.

There are also important distinctions between the two cultures. Burial urns, sometimes containing beads, have been found both inside and outside city walls and other structures at Pyu sites in Upper Myanmar (Moore 2007: 136-139). Mon sites were located in a laterite-rich environmental zone and often used laterite in their construction. Some scholars have argued that there is "little or no evidence of the Mon in Lower Burma much before the eleven century," (Gutman and Hudson 2004: 165). However, Moore argues that several earlier sites, contemporary with the Pyu, belong to the Mon culture and may have even been a part of the legendary *Suvarnabhumi* or "land of gold" described in Indian texts (Moore 2007; Moore and Win 2007).

The Plain of Jars is located in upload Laos and consists of over 40 of sites with large stone burial jars; with some sites having just a few and the largest up to 250 (Sayavongkhamdy and Bellwood 2000). The jars contained cremated remains along with grave goods, including

bronze jewelry, iron tools and weapons, carnelian and glass beads, and cowry shells. Excavations at a jar site, Phon Savan, have also turned up additional burials in the ground around the stone jars. The excavators currently hypothesize that these may be family members buried in secondary burials around their family member's stone burial jar (Sayavongkhamdy and Bellwood 2000). Little is known about the people who produced these burial urns, however material culture appears to link them with the Khorat Plateau and their mortuary patterns may be related to the Sa Huynh culture (Higham 2002: 183-4).

The 11 cultures and regions described in this section highlight the diversity of cultures present in mainland Southeast Asia during the Iron Age period. As the 12 sites that are part of this study are discussed in depth below and in later chapters, it is important to remember that they were a part of a broader cultural group that was interacting with communities both within and outside of their own cultural groups. I will return to discuss many of these cultural groups and regional areas in later chapters, and especially in the final chapter when I argue for the importance of regional exchange networks during the early Iron Age period.

### The archaeological sites considered in this study

Glass and stone bead collections from eight archaeological sites in Cambodia (Figure 2. 4) and four archaeological sites in Thailand (Figure 2.5) were examined as a part of this dissertation. Almost 10,000 glass and stone beads were examined (Table 2.2) of which 346 were analyzed using LA-ICP-MS (Table 2.3).

| Site Name    | Country  | Dates                                         | Glass | Agate/    | Garnet | Total |
|--------------|----------|-----------------------------------------------|-------|-----------|--------|-------|
|              |          |                                               |       | Carnelian |        |       |
| Angkor Borei | Cambodia | 200 BC – AD 200                               | 1368  | 12        | 5      | 1578  |
| Bit Meas     | Cambodia | Contemp. with Proher?                         | 6     | 2         | 5      | 13    |
| Krek 52/62   | Cambodia | Approx. 500 BC                                | 0     | 1         | 0      | 1     |
| Phnom Borei  | Cambodia | Approx. 200 BC – AD                           | 48    | 2         | 0      | 50    |
|              |          | 200                                           |       |           |        |       |
| Phum Snay    | Cambodia | 350 BC – AD 200                               | 285   | 50        | 0      | 335   |
| Prei Khmeng  | Cambodia | 1 <sup>st</sup> -6 <sup>th</sup> centuries AD | 2056  | 1         | 0      | 2057  |
| Prohear      | Cambodia | 200 BC – AD 100                               | 550   | 6         | 2      | 558   |
| Village 10.8 | Cambodia | 400 BC – AD 50                                | 209   | 53        | 11     | 273   |
| Ban NonWat   | Thailand | 400 BC – AD 500                               | 746   | 12        | 0      | 758   |
| Khao Sam     | Thailand | 4 <sup>th</sup> – 2 <sup>nd</sup> Century BC  | 0     | 18        | 0      | 18    |
| Kaeo         |          |                                               |       |           |        |       |
| Noen U-Loke  | Thailand | 400 BC – AD 500                               | 3531  | 0         | 0      | 3531  |
| Promtin Tai  | Thailand | 500 BC – AD 500                               | 960   | 43        | 0      | 1003  |
| Total        |          |                                               | 9759  | 200       | 23     | 9982  |

Table 2.2: List of stone and glass beads recorded at each site. The bead collections at Ban Non Wat and Noen U-Loke were briefly examined but not recorded in as much detail as other sites in this study. The glass bead numbers refer to those that were examined briefly, and the agate/carnelian number refers only to those beads from Ban Non Wat that were analyzed using LA-ICP-MS.

| Site Name     | Country  | Glass | Agate/Carnelian | Garnet | Total |
|---------------|----------|-------|-----------------|--------|-------|
| Angkor Borei  | Cambodia | 15    | 12              | 5      | 32    |
|               |          |       |                 |        |       |
| Bit Meas      | Cambodia | 5     | 2               | 2      | 9     |
| Krek 52/62    | Cambodia | 0     | 1               | 0      | 1     |
| Phnom Borei   | Cambodia | 6     | 2               | 0      | 8     |
| Phum Snay     | Cambodia | 30    | 9               | 0      | 39    |
| Prei Khmeng   | Cambodia | 42    | 1               | 0      | 43    |
| Prohear       | Cambodia | 59    | 3               | 2      | 64    |
| Village 10.8  | Cambodia | 14    | 7               | 4      | 25    |
| Ban NonWat    | Thailand | 29    | 12              | 0      | 41    |
| Khao Sam Kaeo | Thailand | 0     | 18              | 0      | 18    |
| Noen U-Loke   | Thailand | 29    | 0               | 0      | 29    |
| Promtin Tai   | Thailand | 24    | 13              | 0      | 37    |
| Total         |          | 253   | 80              | 13     | 346   |

Table 2.3: Number of stone and glass beads from each site that were analyzed using LA-ICP-MS.

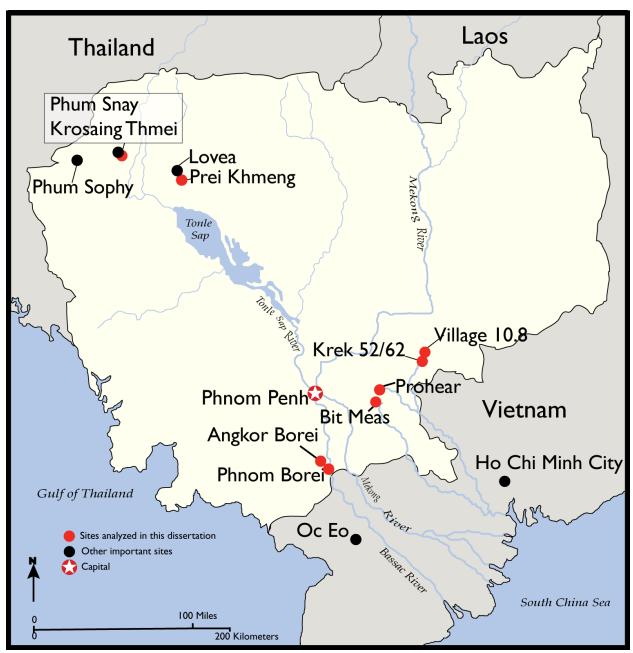



Figure 2.4: Iron Age sites in Cambodia. Those included in this study are marked in red.



Figure 2.5: Sites in Thailand examined as a part of this study.

The eight Cambodian sites in this study make up the most comprehensive examination of Cambodian Iron Age sites thus far undertaken; all eight sites were excavated in the last 20 years. While archaeological research began in Cambodia under French colonial rule during the period of the French Protectorate (1863-1953), only a handful of prehistoric sites were examined, as the

primary focus of research was on Angkorian period temples (Stark 2004: 91). While some Iron Age sites were noted in systematic surveys, the focus of archaeological excavation during this early period was primarily on Neolithic and Bronze Age sites. Archaeological research in Cambodia ceased during the Khmer Rouge period, with only three Cambodian archaeologists in Cambodia surviving the bloodshed (Griffin et al. 1999). The Iron Age sites examined in this dissertation were all excavated in the last twenty years as part of largely international collaborative projects (see Carter et al. 2013). To the best of my knowledge, only three Cambodian Iron Age sites were not included in this study. I was unable to contact the primary investigator of Krosaing Thmei (Figure 2.4), a small site just a few kilometers from the site of Phum Snay (discussed below). However, I was able to obtain an excavation report on the site, which included photographs of the artifacts including stone and glass beads for comparison (Sok Keo 2005). Recently two new projects at the site of Phum Sophy (Figure 2.4), also located near Phum Snay, and Lovea, Siem Reap province (Figure 2.4), have been undertaken. I have been able to examine the bead collections from these sites, however there was not enough time to include these data in my dissertation.

As with Cambodia and other regions of Southeast Asia, early archaeological research in Thailand was largely concerned with documenting architecture and recording art history. Early scholars were aware of prehistoric sites across Thailand; the moated sites of central and Northeast Thailand were first recognized in aerial photographs in the mid 20<sup>th</sup> century (Williams-Hunt 1950). However, it was not until the 1960s that foreign archaeologists, influenced by the "New Archaeology" movement, began systematically excavating prehistoric sites (Glover 1993; Higham 1989). As Ian Glover notes, "until about 1980 most sustained work in Thai prehistory was carried out by overseas researchers and was published in English, usually in international

journals or monographs published overseas," (1993: 47). Despite this, many Thai archaeologists were trained as a part of these projects and they continued to study and teach archaeology, primarily at Silpakorn University in Bangkok, lead their own excavations, and collaborate with Western researchers. Currently there are hundreds of known Iron Age sites in Thailand and dozens that have been excavated and studied (see Higham 2002; Higham and Thosarat 2012). Unlike Cambodia, archaeological research has been practiced in Thailand continuously and was not dramatically affected by the political conflicts in Southeast Asia during the 1960s and 1970s. The sites included in the current project were all excavated in the last fifteen years (Figure 2.5).

# Angkor Borei, Cambodia

Angkor Borei is a walled and moated site measuring over 300 hectares and believed to be the capital of an ancient civilization known to the Chinese as Funan (see discussion in Chapter 1) (Stark 1998). Located in the Mekong Delta, in the province of Takeo, Angkor Borei was well known to early French researchers, however serious archaeological research at Angkor Borei was not undertaken until 1995 by the Lower Mekong Archaeological Project (Griffin et. al 1996; Stark 1998, 2001, 2006a; 2006b; Stark et al. 1999; Stark et al. 2006). Over the course of multiple field seasons several features were excavated or cleared, a 16m trench was dug to examine a portion of the brick wall around the site, three 1x2m units were dug in order to better understand the stratigraphy and a large 2x3m unit was opened to examine a portion of a cemetery (Stark et al. 1999; Stark 2001). A coring program was also undertaken in order to better understand the construction and dating of the canals and paleoenvironment (Bishop et al. 2003, 2004; Sanderson et al. 2003, 2007).

The glass and stone beads from Angkor Borei came entirely from the cemetery excavations, called the Vat Komnou cemetery as they were excavated on the grounds of the local

Buddhist temple called Vat Komnou. Over 1500, beads were recovered primarily from the cemetery matrix with a small proportion of these beads found in burial contexts. Compositional analysis was previously performed on 97 glass beads as part of Laure Dussubieux's doctoral dissertation (Dussubieux 2001). Additionally, a small number of carnelian beads were studied by Robert Theunissen, but not published (Robert Theunissen, personal communication 2010). As part of this dissertation I performed compositional analysis on an additional 15 glass beads that appeared to be unusual or distinct from the types analyzed previously by Dussubieux. Additionally I analyzed the entire collection of stone beads from the site: five garnet beads and 12 agate and carnelian beads.

### Phnom Borei, Cambodia

Phnom Borei is a small site located about five kilometers south of Angkor Borei and may have been related to the larger Angkor Borei settlement (Miriam Stark, personal communication 2010). A Cambodian archaeologist, Kaseka Phon, led a survey and excavation of a small 2x4m trench plus a 140x120cm extension, which uncovered nine burials, numerous pottery fragments, iron slag, bronze fragments, animal bones and beads. Ceramics at the site are quite similar to those found at Angkor Borei and radiocarbon dates place Phnom Borei in the last few centuries BC (Phon 2004). A total of 48 glass beads and two stone beads were found during excavations and recorded as part of this study. Both stone beads and six glass beads that represented the range of glass beads found at the site were selected for analysis.

### Prohear, Cambodia

The site of Prohear is located in Prey Veng province in southeastern Cambodia. The site is approximately 85 km northeast from Angkor Borei, but still in the Mekong Delta flood plain. In early 2007 villagers found ancient artifacts and began looting the site. Several Cambodian

archaeologists discovered the looting and tried to stop it, but it was not until 2008 that salvage excavations could take place. A joint German-Cambodian team excavated 116.4 square meters in one of the few places that had not yet been destroyed by looting: the main road. From these small excavations 52 burials were uncovered, although only 32 contained human remains (Krais 2010). Additional excavations have increased the total number of burials to 76, however only materials from the initial 52 burials were considered from this site. Included in these burials was an impressive array of grave goods including pottery, approximately 2700 stone and glass beads, and gold, silver, bronze and iron artifacts (Reinecke et al 2009). The cemetery has been dated from 200 BC to AD 100 (Reinecke et al. 2009:100).

Glass beads were common artifacts; of the 52 burials at the site only six partially disturbed burials did not have glass beads (Reinecke et al 2009:118). As part of the current study 550 glass beads held at the Memot Centre for Archaeology were recorded, this represented only apportion of the total number of glass beads found. Of these, 59 glass beads and artifacts including rings, earrings, and bangle fragments were selected for further LA-ICP-MS analysis. There were smaller amounts of agate, carnelian, and garnet beads found at Prohear. Only six carnelian/agate beads and two garnet beads were recorded, although 200 additional garnet beads and many more agate/carnelian beads were reported from later excavations (Andreas Reinecke, personal communication, 2011) and numerous stone beads were found by looters prior to excavation (Reinecke et al. 2009). From this collection, three agate/carnelian beads and both garnet beads were brought to the US for analysis. Based on published descriptions of the additional materials found at the site, I believe the portion of the glass and stone bead collection I recorded and analyzed represented the broad range of beads found at Prohear.

### Bit Meas, Cambodia

Bit Meas is a cemetery site located in a small village located eight kilometers southwest of Prohear in the Mekong Delta flood plain. Unfortunately it was almost completely looted by villagers in 2006. The Royal University of Fine Arts undertook a small salvage excavation and recovered few artifacts, but no additional burials were found (Reinecke et al 2009:19-21). Cambodian archaeologists also collected several glass and stone beads from the site. Thirteen beads were recorded and five glass beads, two garnet beads, one agate bead, and one carnelian bead were brought to the United States for LA-ICP-MS analysis. Based on some of the reported finds, including Dongson drums and gold jewelry, as well as the artifact similarity with Prohear, archaeologists believe this site dates to the Iron Age (Reinecke et al. 2009).

# Village 10.8, Cambodia

Village 10.8 is a cemetery site located in the red soil region of Cambodia, Kampong Cham province. This is an upland region of Cambodia, approximately 100m above sea level. Village 10.8 is located in a valley in between two streams (Heng 2005). The site was first identified in 2000, and several excavation campaigns in 2001, 2002, and 2004-6 were undertaken by a joint German- Cambodian archaeological team, including the Memot Centre for Archaeology (Heng 2004, 2005). A total of 63 square meters in five locations have been excavated (Heng 2005). Decorations on a Dongson drum found at the site are similar to other designs from the 3rd-1st centuries BC and radiocarbon dates range from 400 BC to AD 50 (Heng 2005). More than 40 burials have been uncovered and 209 glass beads and 64 stone beads held in the collections at the Memot Centre for Archaeology in Phnom Penh were recorded for this study. Eleven of these beads were garnet, eight were agate, and 45 were carnelian. Fourteen glass beads, four garnet beads, and seven agate/carnelian artifacts were selected for compositional analysis.

The objects were selected for compositional analysis as they reflected the diversity of bead types found at the site.

### Krek 52/62, Cambodia

Krek is a circular earthwork site located in Kampong Cham province, belonging to the Memotian culture. The site was excavated in 1996 as part of a joint German-Cambodian archaeological project, which excavated over 57 square meters (Albrecht et al. 2001). However, it was within the 9 square meters of Unit II, which sectioned the inner wall and ditch of the earthwork, that a few glass beads and bangle fragments were identified as part of these excavations. Compositional analysis was performed on the glass artifacts by Miriam Haidle and Udo Neumann (2004; Haidle 2001). A garnet bead was also reportedly found at this site (Albrecht et. al 2001; Haidle 2001). While at the Memot Centre in 2008, a single carnelian bead from Krek 52/62 was also located amongst the collections from Village 10.8 and this is the only bead from this site included in the study, however published data on the other materials will be referenced. Dating of earthwork sites has been difficult due to the acidic nature of the soil and the poor preservation of organic remains that could be used in dating. The presence of glass in the upper layers indicates that this portion of the site dates from at least 500 BC.

### Prei Khmeng, Cambodia

The site of Prei Khmeng is located in the Angkor plain, just outside of the Tonle Sap Lake flood zone and near the Khmer capital from the 9th to 15th centuries AD. The site is home to a small pre-Angkorian brick tower and lintel, one of the oldest in the Angkor area. Three excavations by the MAFKATA mission (EFEO and Apsara Authority) led by Dr. Christophe Pottier uncovered several prehistoric burials and an occupation area that dates from the 1st-6th centuries AD (Christophe Pottier, personal communication, 2009; Zoppi et al. 2004). A total of

almost 115 square meters was excavated, however the beads came from Units 15/16 (a 5.8x1m trench with a 1.7x1m extension) and Unit 21 (3x3m). Interestingly, nearly all of the beads from this site are glass (n=2056) and it had the highest number of glass beads found at any site in the study, with one burial having over 1700 beads. Of the over 2000 beads recorded from burial contexts, 42 glass beads and artifacts from four different burials were analyzed using LA-ICP-MS in order to reflect the diversity of glass bead types found at this site. A single carnelian bead found in a burial was not examined as it was on display in a museum exhibit. However a small agate manuport was recorded and brought to the US for geochemical analysis.

### Phum Snay, Cambodia

Phum Snay is a cemetery site located in a village on the edge of a natural mound and near a small tributary to the Tonle Sap Lake in Banteay Meanchey province in northwest Cambodia. The site was discovered during road construction in 2000 and subsequently looted. Salvage excavations were undertaken in 2001 (5x5m unit) and 2003 (100 square meters excavated), which uncovered numerous burials and grave goods radiocarbon dated to 350 BC- AD 200 (Domett and O'Reilly 2009; O'Reilly and Pheng 2001; O'Reilly et al. 2004; O'Reilly 2004). Phum Snay is perhaps the best-studied Iron Age site in Cambodia and several scholars have examined beads from this site (Gratuze 2005; Lapeteff 2006, 2007, 2009; Sophy 2008; Vanna 2007). Recently, additional excavations have been undertaken by a joint Japanese-Khmer archaeological team (Yasuda et al 2008; Yasuda 2009). Only beads from the 2001 and 2003 excavation collections were analyzed as a part of this study. 285 glass beads, 16 agate, and 34 carnelian beads were recorded. A small number of glass beads from these excavations were not available for study as another researcher was examining them. From this group 30 glass artifacts

and nine agate/carnelian beads were selected for further analysis using LA- ICP-MS in order to reflect the different glass and stone beads types found at the site.

### Noen U-Loke, Thailand

Noen U-Loke is a circular moated earthwork site located in the Mun River Valley in the Khorat Plateasu, Nakhon Ratchasima province, Northeast Thailand. Circular, moated earthwork sites are well known in this region and Noen U-Loke is notable for it's multiple moats. The site was initially excavated by a Thai archaeologist who found numerous Iron Age burials with unique grave goods (Higham et al. 2007). Drs. Charles Higham and Rachanie Thosarat led a new excavation campaign over two field seasons (1996-1998), excavating an area of 220 square meters. They found a light Bronze Age deposit and thick Iron Age deposit with five mortuary phases. The numerous agate and carnelian beads from these mortuary contexts have already the focus of previous studies by Robert Theunissen (Theunissen et. al 2000; Theunissen 1997; 1998; 2003; 2007). In addition to the agate and carnelian beads, over 7000 glass beads and artifacts were uncovered from Noen U-Loke (Talbot 2007). Compositional analysis on approximately 50 glass beads and objects were undertaken by Saitowitz and Reid (2001). While their report was admirable, Saitowitz and Reid did not provide a context for the beads they analyzed. Furthermore, compositional analysis of glass artifacts has greatly improved since their initial report, therefore I analyzed an additional 29 glass beads from both burial and non-burial contexts using LA-ICP-MS. In 2010 I also recorded the entire available collection of glass beads and objects from the 1996-1998 excavations, which are now stored at the Phimai National Museum (n=3531). This allowed me to observe some of the glass artifacts that were not described in detail in the Noen U-Loke excavation volume. Although not all of the objects were available for study, this provided a more balanced view of the entire glass collection from Noen U-Loke and

allowed me to make broader hypotheses about the character of the entire glass bead collection from Noen U-Loke.

### Ban Non Wat, Thailand

Ban Non Wat is a circular moated earthwork site located just 2 kilometers northeast of Noen U-Loke. 878 square meters were excavated by the Origins of Angkor project directed by Drs. Charles Higham and Rachanie Thosarat from 2000-2008. Ban Non Wat contains both occupation and burial contexts dating from the Neolithic through late Iron Age/Early Historic periods. The extensive excavations have produced a large number of radiocarbon dates, making Ban Non Wat one of the best-dated sites in Southeast Asia (Higham and Higham 2009). Ban Non Wat is also notable for its large number of over 700 burials, which are the focus of several ongoing studies. In 2010 all available glass (n=746) and some of the stone beads from Ban Non Wat were briefly recorded in order to make comparisons within the collection. Twenty-nine glass beads and artifacts and 12 agate and carnelian beads were brought to the US to be analyzed as part of this study. The artifacts came from multiple burial and non-burial contexts from Iron Age layers across the site and were chosen as they characterized the diversity of different bead types found at the site.

### Promtin Tai, Thailand

Promtin Tai is an Iron Age- Early Historic period site located in the undulating terrain of Lopburi province, central Thailand (Lertcharnrit 2006). This region lies in the eastern Chao Phraya River Valley and close to the prehistoric copper mining sites of the Khao Wan Prachan Valley. This region contains a variety of environmental zones, from terraces to plains to swamps, and soil types, which has resulted in a diversity of land use practices and cultivation (Eyre 2011). Promtin Tai was initially excavated in 1991 by the Thai Fine Arts Department who focused on

the on a later Ayutthaya period structure (14<sup>th</sup>- 17<sup>th</sup> century AD) (Lertcharnrit 2006). However, Iron Age burials and artifacts were also found during this project and so additional excavations were planned by Silpakorn University, led by Dr. Thanik Lertcharnrit in 2004. Since 2004 there have been several field seasons at this site. As part of the current study, approximately 1000 glass and stone artifacts from burials uncovered in the 2007 field season were photographed and recorded. Although there are not yet radiocarbon dates for this site, the beads provided for study were from the lower layers of the site believed to belong to the Iron Age period (Thanik Lertcharnrit, personal communication 2008). Twenty-four glass artifacts and 13 agate and carnelian beads largely from burial contexts were analyzed using LA-ICP-MS. Beads were chosen to reflect the diverse stone and glass bead types found at Promtin Tai.

# Khao Sam Kaeo, Thailand

Khao Sam Kaeo is an Iron Age archaeological site located on the Kra Isthmus in the Thai-Malay peninsula. The Kra Isthmus is the narrowest point in the peninsula and was strategically located along an overland route between the Bay of Bengal and the Gulf of Siam (Bellina and Silapanth 2008). The site itself is on four hills along the banks of the Tha Thapao River. Khao Sam Kaeo has been heavily looted, however excavations totally 324 square meters by a Thai-French archaeological team from 2002-2005 have turned up evidence for metallurgy as well as waste material from the manufacture of both stone beads and glass objects (Bellina and Silapanth 2008). The presence of stone waste material and unfinished agate and carnelian beads has led researchers to hypothesize that there were South Asian craftsmen living and working at the site (Bellina 2007, 2001; Glover and Bellina 2011). Additionally, analysis of the glass artifacts from the site may indicate some connections with northern India, although this is still under debate (see Lankton et. al 2008). Unfortunately, artifacts from the recent excavations

have been acquisitioned by the local museum, making them unavailable for study. However, a Thai bead collector, Dr. Bunchar Pongpanich, obtained many beads and artifacts from the local villagers, which currently belong to the Suthiratana Foundation. Dr. Berenice Bellina brought several of these artifacts to the site of Khao Sam Kaeo and had villagers identify the locations from where the beads came, providing some context for a few of these materials. The locations largely appear to be occupation or manufacturing areas. Eighteen of these agate and carnelian beads, some of which were unfinished brought to the US for LA-ICP-MS analysis. These beads were selected by Bellina from the Suthiratana Foundation collection as they represented some of the different finished and unfinished types from the site, but were not among the more valuable objects in the collection.

#### Conclusion

In this chapter I have provided a background to the Southeast Asia, including the environmental zones and important natural resources used in trade. This was followed by a discussion of the chronological framework and an introduction to the different cultural groups present in Iron Age Southeast in which sites in this study were members or with whom they interacted. These data are summarized in Table 2.4. Several sites, such as the sites in southeast Cambodia, Phum Snay and Prei Khmeng have not yet been assigned to a specific regional culture group, however in the final chapter I discuss possible cultural groups they may belong to or were interacting with in more detail.

This study is the most comprehensive analysis of Iron Age sites in Cambodia thus far undertaken. In contrast, the four Thai sites were included opportunistically and while they are not a representative sample of all Thai Iron Age sites these four sites contained important stone and glass bead collections that allowed me to test the extent of the Mekong Delta's influence in the

long-distance trade of stone and glass beads as well as providing evidence for the influence of other stone and glass bead trade networks outside of the Mekong Delta. Khao Sam Kaeo in peninsular Thailand was already known for being an important trading center and bead production center. By examining the stone beads from this site, I am specifically testing questions regarding stone sources used in the local production of beads and how and where these finished products may have been traded. Promtin Tai, in central Thailand, was included as later mid-first millennium AD archaeological evidence suggests interaction between communities in this area and those in the Mekong Delta (Indrawooth 2004). An examination of glass and stone beads from Promtin Tai allows for a study of the time depth of these interaction networks and an examination of the role other overland trade networks from the west may have played at this site. In Northeast Thailand, Ban Non Wat and Noen U-Loke also have evidence for interaction with the Mekong Delta that I wanted to explore further. Additionally, these sites have undergone intensive and careful excavations with carefully seriated burials that span the entire Iron Age. This unique dataset provides for a more careful consideration of the changing trade networks over time. Combined with previously published data on other Thai Iron Age sites, these dataset provides a comprehensive analysis of Iron Age stone and glass bead trade networks

| Site Name    | Dates                                      | Location           | Cultural Group  | Notes           |
|--------------|--------------------------------------------|--------------------|-----------------|-----------------|
| Angkor       | 200 BC- AD 200                             | Mekong Delta       | Mekong          |                 |
| Borei,       | (Vat Komnou                                | Flood Plain        | Delta/Funan     |                 |
| Cambodia     | cemetery)                                  |                    |                 |                 |
| Phnom        | Approx.                                    | Mekong Delta       | Mekong          |                 |
| Borei,       | 200 BC – 0 AD                              | Flood Plain        | Delta/Funan     |                 |
| Cambodia     |                                            |                    |                 |                 |
| Prohear,     | 200 BC – AD 200                            | Mekong Delta       |                 | Southeast       |
| Cambodia     |                                            | Flood Plain        |                 | Cambodia        |
|              |                                            |                    |                 | group           |
| Bit Meas,    | Contemporary                               | Mekong Delta       |                 | Southeast       |
| Cambodia     | with Prohear?                              | Flood Plain        |                 | Cambodia        |
|              |                                            |                    |                 | group           |
| Village      | 400 BC – AD 50                             | Red soil region    |                 | Southeast       |
| 10.8,        |                                            | Upland region      |                 | Cambodia        |
| Cambodia     |                                            |                    |                 | group           |
| Krek 52/62   | Approx. 500 BC                             | Red soil region    |                 | Southeast       |
|              |                                            |                    |                 | Cambodia        |
|              |                                            |                    |                 | group           |
| Prei         | 1 <sup>st</sup> -6 <sup>th</sup> centuries | Angkor plain, just |                 | See Chapter 9   |
| Khmeng,      | AD                                         | outside of Tonle   |                 | for more on     |
| Cambodia     |                                            | Sap flood zone     |                 | cultural group  |
| Phum Snay,   | 350 BC – AD 200                            | Natural hill near  |                 | Possible        |
| Cambodia     |                                            | tributary to Tonle |                 | connection with |
|              |                                            | Sap Lake           |                 | Mun/Chi         |
|              |                                            | _                  |                 | moated sites    |
| Noen U-      | 400 BC – AD 500                            | Khorat             | Moated sites in |                 |
| Loke,        |                                            | Plateau/Mun River  | Mun/Chi River   |                 |
| Thailand     |                                            | Valley             | Valleys         |                 |
| Ban          | 400 BC – AD 500                            | Khorat             | Moated sites in |                 |
| NonWat,      |                                            | Plateau/Mun River  | Mun/Chi River   |                 |
| Thailand     |                                            | Valley             | Valleys         |                 |
| Promtin Tai, | 500 BC – 500 AD                            | Undulating terrain | Chao            |                 |
| Thailand     |                                            | of the east Chau   | Phraya/Central  |                 |
|              |                                            | Phraya River       | Thailand        |                 |
|              |                                            | Valley             |                 |                 |
| Khao Sam     | 4 <sup>th</sup> – 2 <sup>nd</sup> century  | Hills in inner     | Thai/Malay      |                 |
| Kaeo,        | BC                                         | portion of         | Peninsula       |                 |
| Thailand     |                                            | Thai/Malay         |                 |                 |
|              |                                            | peninsula          |                 |                 |
|              |                                            | (Kra Isthmus)      |                 |                 |

Table 2.4: Summary of the sites in this study, their dates, locations, and culture groups to which they belong.

At each site, I aimed to examine as many stone and glass beads as possible. At six of the 12 sites (Angkor Borei, Phnom Borei, Village 10.8, Prei Khmeng, Phum Snay, and Promtin Tai) I was able to record in detail the entire excavated collection of stone and glass beads. The entire collection of stone and glass beads from Prohear was not available for study, however I was able to examine a large number of materials from this site and have supplemented my analyses with published data and discussions with the excavators. I believe my conclusions about the stone and glass beads from Prohear do reflect the overall bead collection excavated from this site. Bit Meas was heavily looted and so the beads from this site are not believed to represent what might have been found had the site not been destroyed. Nevertheless, I believe the few beads analyzed give a preliminary understanding as to how the beads from Bit Meas fit into broader bead exchange patterns. Khao Sam Kaeo was also heavily looted and although I was able to see and photograph many beads from this site, the stone beads analyzed in this study likely only represent a small fraction of the bead types and diversity found at this site. Only one stone bead was analyzed from Krek 52/62 making it difficult to make conclusions about the stone beads at this site. However I also relied on published data on the glass artifacts in order to fit this site into broader patterns of stone and glass bead exchange. Stone and glass beads from Ban Non Wat were not recorded in as much depth as other sites in the study due to time limitations, however I was able to examine the entire collection from this site. Stone beads were not examined from Noen U-Loke as they had been previously studied by another researcher (Theunissen 2003) and Charles Higham initially chose the glass beads that underwent compositional analysis. However, I was able to examine most of the remaining glass bead collection held in the Phimai National Museum, and from that gained a better understanding of the overall glass bead collection at the site. At all sites, the stone and glass beads selected for LA-ICP-MS analyses were chosen to reflect the

diversity of bead types found at a particular site (discussed further in Chapters 6-8). As archaeologists were are always dealing with an incomplete record, nevertheless I made every effort to undertake as comprehensive analyses on the stone and glass bead collections as possible and I believe the conclusions drawn in this study are representative of these collections.

This study is not a complete examination of Iron Age trade networks and there are several gaps that still need to be filled. Myanmar was likely an important crossroads for stone and glass beads from India as well as a likely source of agate and carnelian beads. While there have been some preliminary studies on these material for Myanmar (e.g. Cambell Cole 2003; Moore and Tan 2008) it is not yet clear how widespread these artifacts were traded. Additionally, archaeological research on Iron Age sites in Laos is in its infancy and little is known about beads found at sites in this adjacent region. Lastly, while there has been extensive archaeological research on Iron Age sites in Vietnam, there have been few studies published in English and Vietnamese publications often lack adequate photographs of the stone and glass beads found at these sites. While some compositional research has been done on glass beads in Vietnam (Brabander 2008), additional research is needed on many of the important coastal trading and possible bead production sites. However, I believe that my current dissertation research provides a strong foundation for future studies that will eventually include these data from other regions. In the next chapter, I shift my focus to discussing trade, exchange, and interaction networks in Southeast Asia and how these changing networks may have facilitated the emergence of complexity and early states.

# Chapter 3: The Emergence of Complexity in Southeast Asia and the Role of Trade and Exchange

The role of trade has been central to theories regarding the emergence of socio-political complexity in Southeast Asia. This chapter provides a review of these theories, beginning with a discussion of the prestige goods exchange networks of the late Bronze and early Iron Age periods, dating to approximately 600 BC. During this period, objects such as nephrite ear ornaments were traded in a widespread network that appears to have connected elites across a broad area. These networks are important as they demonstrate emerging hierarchies and the presence of advanced craft production technology in certain regions of Southeast Asia. Evidence presented later in this dissertation demonstrates that during the early Iron Age glass and stone beads were entering into these preexisting exchange networks. This discussion is followed by a review of recent work by Bellina and Glover (2004) showing evidence for two phases of trade with South Asia during the Iron Age. Stone and glass bead data presented in later chapters provides additional evidence for these changing trade networks, and this process in turn has implications for the emergence of socio-political complexity in the Mekong Delta.

Following this review, I examine how previous scholars, both historical and archaeological, have described the processes of emerging complexity in Southeast Asia and the role that long-distance trade, specifically with South Asia, had in this process. Evidence for emerging complexity in regions of Southeast Asia that did not have direct contact with South Asia is also discussed. Lastly, I focus on the role that beads played within these interaction networks and how the current study builds and expands on earlier research.

# **Exchange in Southeast Asia prior to the Iron Age**

Southeast Asian people were participating in widespread exchange networks long before contact with South Asia. The presence of specific archaeological artifacts at sites across island and mainland Southeast Asia suggests widespread interaction between these regions for several thousand years. During the Upper Paleolithic period (30,000-20,000 BP) stone artifacts, classified as Hoabinhian type or Hoabinhian culture, were widespread across Southeast Asia until approximately 5000 BP. Hoabinhian artifacts have been found as far as Australia from approximately 15,000 BP (Bowdler 2006). While scholars acknowledge Hoabinhian artifacts were locally made, some scholars have suggested that the widespread distribution of Hoabinhian artifacts across Southeast Asia and Australia could be evidence for an early "chain of connection, through which ideas and ideologies circulated along with other, probably perishable, material goods," (Bowdler 2006: 357). By 1500-1000 BC Southeast Asian people were regularly traveling great distances across the open ocean and beginning to populate the remote Polynesian islands (Bellwood 2004).

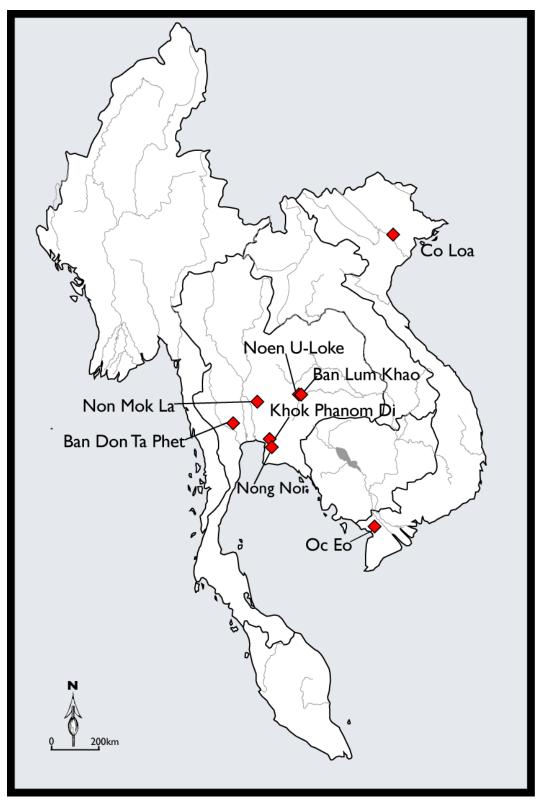



Figure 3.1:Map of sites discussed in this chapter

Regional interaction networks within mainland Southeast Asia continued during the Neolithic (2500-1500/1000 BC) and Bronze Age (1500/1000-500 BC) periods, especially in the trade and exchange of prestige goods and personal ornaments. Shell was an important early trade item. The site of Khok Phanom Di, Thailand, which dates to from 2000-1500 BC, marks the transition from hunter-gatherers to early Neolithic farming communities. Shell objects, especially beads, were found in large numbers in many burials, and one exceptional burial had over 120,000 shell disc beads interred with the dead (Higham and Thosarat 1994). However the Conus and Tridacna shell from which they were made most likely traded-in from the Thai peninsula (Chang 2001; Pilditch 1993). During the Bronze Age period, marine shell objects, especially bangles, were popular at inland sites in Northeast Thailand. Some items such as Trochus shell bangles may have been transported via down-the-line exchange from the Mekong Delta, up the Mekong River, and to Northeast Thailand via the Mun River (Chang 2001:121). However, not all sites had access to this trade network, as the coastal sites of Khok Phanom Di and the nearby coastal site of Nong Nor had no Trochus shell bangles. This difference may be evidence of "separate marine catchments being exploited by the Central and Northeast Thai communities," (Chang 2001: 86). This evidence suggests that distinct regional interaction networks were already in play by the Bronze Age period.



Figure 3.2: Example of a T-section bangle excavated at Ban Non Wat in February 2007.

The distribution of certain bangle styles also indicates the widespread knowledge and popularity of a type of personal ornament. Numerous T-section bangles, made from a variety of materials, including glass, stone, and bronze, have been found at Bronze Age sites across mainland Southeast Asia, and may have originated in China (Figure 3.2)(Chang 2001). T-section bangles made from clay have been found at Non Mak La and Ban Lum Khao, Thailand (Chang and Voelker 2003). At Nong Nor, stone T-section bangles were made from serpentine, marble, and talc (Chang 2001). The serpentine bangles may have been imported from northern Vietnam, as a nephrite bangle workshop has been discovered there (Chang 2001: 89; Nguyen 1996). These bangles indicate the broad connections and communication networks between regions across East and Southeast Asia. During the next phase, exchange patterns continued to connect broad regions of Southeast Asia, however the introduction of more elaborate prestige goods appears to connect *elites* in different communities to one another.

#### Prestige good trade in Southeast Asia in the late Bronze and early Iron Age periods

During the late Bronze and early Iron Age periods we see the emergence of several types of prestige good objects that connect communities and groups of elites across mainland and insular Southeast Asia. These trade networks roughly coincided with early, but not yet intensive, contact with South Asia and especially connected coastal sites bordering the South China Sea. Objects in these trade networks traveled over great distances, likely through a series of "interconnected local networks," as opposed to direct long-distance exchange between coastal polities (Manguin 2004: 283). I argue that during the early Iron Age, glass and stone beads entered into these same prestige goods exchange networks. In this section, I discuss one example of a type of prestige object traded during this period: nephrite ear ornaments. This discussion highlights the nature of early coastal exchange networks that connected coastal sites in mainland

and island Southeast Asia and provides a foundation for understanding the early exchange of stone and glass beads from South Asia.

#### Nephrite ear ornaments

As archaeological research in Southeast Asia expanded, scholars began to notice the widespread distribution of several types of nephrite ear ornaments: the lingling-o and the double-headed or bi-cephalous earring (Loofs-Wissowa 1982; Solheim 1984). While most lingling-o and bi-cephalous earrings were made from nephrite, there have also been examples found made from glass, carnelian, and clay (Loofs-Wissowa 1982; Reinecke 1996). The lingling-o earring is a round shape with three protrusions, two on the side and one on the bottom, and a slit on the top to place in the ear (Figure 3.3). The lingling-o in particular has been described as "the most widespread form of jade ornament in Southeast Asia," (Hung et al. 2007). The bi-cephalous earrings are H-shaped, with the animal heads on each end of the earring and a long stem in the center used to place in the ear (Figure 3.4). Scholars have noted that the despite being found across Southeast Asia, the earrings appear to be fairly standardized in their size, style, and manufacturing methods (Hung and Bellwood 2010).

Both ornament types have been found at sites across the South China Sea, especially in Vietnam and the Philippines. Some nephrite ornaments have been found as far inland as Samrong Sen, Cambodia (Loofs-Wissowa 1982). Scholars have suggested that these earrings were important prestige objects for Southeast Asian communities, especially due to their relative rarity (Bellina 2007). Reinecke notes that bi-cephalous ear ornaments have been found with rich burials at sites in Vietnam, indicating, "earrings were worn by men who held outstanding positions or performed special activities (1996: 8). The ear ornaments are most commonly found in jar burials in Sa Huynh cultural contexts (Reinecke 1996; Southworth 2004). As discussed in

the previous chapter, the Sa Huynh culture is primarily known from jar burial sites found on the coasts of central and southern Vietnam from approximately 500 BC- AD 100 (Southworth 2004). The similarities between the nephrite objects found in Vietnam and the Philippines reinforced connections first identified based on similar pottery assemblages that Solheim called the Sa-Huynh-Kalanay pottery tradition (1964). Similar pottery and nephrite ear ornaments have also been reported in Indonesia, and peninsular Thailand (Hung and Bellwood 2010). The Sa Huynh people appear to have been extremely active in maritime trade across the South China Sea network.



Figure 3.3: Example of lingling-o ear ornaments. Image courtesy of Andreas Reinecke.

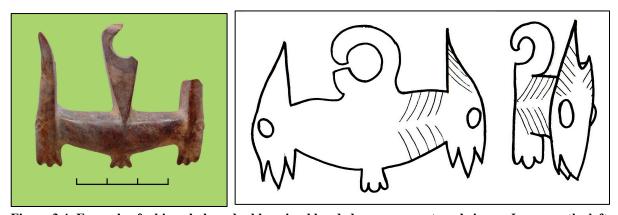



Figure 3.4: Example of a bi-cephalous double animal headed ear ornament, scale in cm. Image on the left courtesy of Andreas Reinecke. Drawing on the right of a similar pendant from Hung and Bellwood 2010:234.

Drawing by P. Madavi.

Recent compositional studies have indicated that most of the raw materials for these objects were coming from Taiwan, specifically from the Fengtian nephrite source (Hung et al. 2007). In fact, a recent study by Hsia-Chun Hung and others (2007) suggested that nephrite artifacts were traded between Taiwan and the Philippines as far back as the Neolithic period (approximately 3000 BC). It is interesting to note that there is no evidence for the manufacture of these items in Taiwan, leading the researchers to suggest raw material blanks were exported to regions "where artisans manufactured artifacts to local taste," (Hung et al. 2007: 19746). While other local nephrite sources in Vietnam and the Philippines may have been used to make similar objects, the overwhelming majority appears to derive from this Taiwanese source.

Craft production workshops for the nephrite ear ornaments have been found on islands off the coast of Taiwan, the Philippines, Vietnam, and possibly peninsular Thailand (Hung et al. 2007: 19749). It appears that blanks were being exported from the nephrite source in Taiwan to these manufacturing centers. Hung and others (2007: 19749) have proposed that these earrings were being produced by "itinerant jade craftsmen" who acquired jade from the source either directly or indirectly, and then "traveled to and/or resided along the shorelines of the South China Sea to produce extremely uniform jade ornaments to suit the demands of local elites." The predominant use of jade from a single source as well as the standardization of the products indicates a high-level of specialization, however it should be remembered that this is not necessarily reflective of the presence of a complex society (Kenoyer et al. 1991). The itinerant nature of the craftsmen also indicates that they were not attached to an elite patron who controlled the production of these objects. However, the rarity of these objects and their association with high-status individuals points toward some amount of control over their distribution. It appears that there were more formalized trade networks connecting the coastal

manufacturing centers with the raw material source, while the distribution of finished products, especially to sites further inland may have been through down-the-line exchange networks.

The Vietnamese scholar Lam Thi My Dzung (2011: 11) has argued that the exotic long-distance exchange goods from India (and China in the case of many Vietnamese sites) were incorporated into the "pre-existing infrastructure of Southeast Asian networks." Furthermore, that these networks were evidence for emerging social stratification and growth of trade networks prior to contact with South or East Asia (Dzung 2011). I agree with Dzung's statements and argue that evidence presented in this dissertation indicates that particular types of stone and glass beads were a part of these early Iron Age exchange networks. However, by the later Iron Age period both trade networks and the type of beads available appear to change. Additionally, sites that had not been previously a part of these early coastal exchange networks begin to participate in these newly expanded bead trade networks. It is during this period that interaction with South Asia also appears to intensify.

#### Changing phases of trade with South Asia during the Iron Age

Some of the most important recent archaeological research on the nature of trade between South and Southeast Asia has identified two distinct phases of contact (Bellina and Glover 2004). Based on the examination of imported artifacts from numerous Southeast Asian archaeological sites, Bellina and Glover (2004) noted that during the earlier phase, Phase 1 (fourth century BC to second century AD), exchange with South Asia was less intense, with diverse artifacts but in small quantities, including pottery, bronze containers, stone and glass beads, and coins and intaglios. These objects frequently are found in what have been called "non-Indianized" contexts, such as burials (Bellina and Glover 2004:73). During Phase 2 (second-fourth centuries AD), exchange between the two regions as well as within Southeast Asia increased dramatically.

During this period there was greater quantities of Indian objects found at sites in Southeast Asia, but less diversity in the types of objects, and in the case of stone beads, decreased quality (Bellina 2003). Stark has also proposed a third phase of interaction with South Asia after the fourth century AD, consisting of "intensified ideological contact," (2006: 411).

Bellina (2003,2007) specifically identified morphological and technological differences in the agate and carnelian beads between the two phases (discussed further in Chapter 5). Recent research on the chemical composition of glass artifact has also identified a shift in the type of glass beads being traded over time (Lankton and Dussubieux 2006, 2013)(discussed further in Chapter 7). The archaeological identification of these phases of interaction is significant as it highlights the evolving and changing nature of trade and interaction with South Asia over time. Stone and glass beads are especially important artifacts for identifying these changing trade networks. I argue that bead collections from Cambodia and Thailand examined as part of this study clearly demonstrate a sites participation in either Phase 1 or Phase 2 trade networks. Furthermore, I argue that it is the shift to Phase 2 trade that allows elites in the Mekong Delta to begin expanding their power. I will return to the discussion of these changing trade networks following a review of earlier theories regarding the emergence of socio-political development and exchange in the Iron Age and the impact and influence of South Asia on these processes.

#### Socio-political development and exchange in the Iron Age

Although recent research by Higham (2011) suggests that there was a brief florescence of social inequality during the Bronze Age period, there was no sustained socio-political hierarchy and the emergence of early states likely did not occur until the Iron Age period in the first millennium AD. For many years, these early polities were known only from Chinese historical documents and inscriptions found in both Sanskrit and local languages. For this reason, some of

the earliest hypotheses regarding the emergence of complex societies were proposed by historians and only later amended by archaeologists. The polity known as Funan was frequently discussed as a case study for the emergence of states, with some scholars arguing it was the first true state in Southeast Asia (Hall 1982, 1985). This was largely due to the availability of Chinese historical documents, inscriptions, and archaeological evidence from the site of Oc Eo. These excavations confirmed the presence of an important trading center in the Mekong Delta, which allowed historians to use written evidence to speculate on the appearance and organization of this early complex polity. In the section below, models proposed by historians for the emergence of socio-political complexity in early Southeast Asia are reviewed. It should be noted that most scholars have focused on the role of trade and long-distance contact in the emergence of socio-political complexity, especially in the Mekong Delta. However, it is acknowledged that other factors, such as peer-polity interaction or warfare, can also be considered causal factors in the emergence of complex societies. These alternative influences appear to have been at play in other regions of Southeast Asia and will be discussed later in this chapter.

#### The historical perspective: Indianization

Due to a relative lack of archaeological evidence from Iron Age and prehistoric sites and abundant literary evidence of states and empires that had been influenced by India, early scholars such as the French scholar George Coedès (1968) assumed that Southeast Asia had not reached socio-political complexity until coming into contact with South Asia. Many historians (Kulke 1990; Mabbett 1997; Van Leur 1955, Wheatley 1879, 1983) have generally tried to explain this process by arguing that the adaptation of Indian ideas of kingship and religion allowed for the expansion and consolidation of political power by elites in Southeast Asian communities. These states were described as having been "Indianized" (Coedès 1968). The so-called "Indianized"

states of Southeast Asia were first regionally synthesized and examined in 1944 by Coedès (1968), who hypothesized that the earliest visitors to Southeast Asia may have been merchants who came "without a preconceived plan" (Coedès 1968:23). These were soon followed by members of Indian society who had a greater knowledge and understanding of religion and Sanskrit. He argued (Coedès 1968:24) that the establishment of a kingdom or state happened in one of two ways. Either an Indian declared himself king and ruled over the native peoples, or an indigenous chief "adopted the civilization of the foreigners, strengthening his power by becoming Indianized." Coedès claimed that merchants, ritual specialists or Brahmans, and other travelers from India had a civilizing influence on the peoples of Southeast Asia and were responsible for the emergence of states and cities in this area. However, he acknowledges that the native peoples retained much of their own indigenous culture giving each "Indianized" state a "certain measure of originality," (Coedès 1968: 13, 35).

Scholars like J.C. Van Leur have rejected Coedès assertions that Southeast Asians had little agency and were merely vessels for Indian ideas about politics and culture.

Van Leur (1955: 99) observed that most early contact with Southeast Asia was from South Asian traders, who would not have been familiar with or qualified to transmit ritual and religious ideology or ritually legitimate early rulers. Only Brahmans would have been qualified to do this and Southeast Asian rulers specifically invited Brahmans "for the magical, sacral legitimation of dynastic interests and the domestication of subjects, and probably for the organization of the ruler's territory into a state," (Van Leur 1955:104). In Van Leur's model, Brahmanical Indian religion and conceptions of kingship were needed to transform a chiefdom into a state, but this process was entirely initiated and controlled by Southeast Asians who were active participants in the process.

The historian and geographer Paul Wheatley (1979,1982, 1983) argued for a similar process in his studies on the origins of urbanism in Southeast Asia. For Wheatley (1979, 1983), the process of urbanization began when local Southeast Asian village chiefs adopted Indian concepts of kingship in order to expand their political power. These concepts of kingship were almost always associated with the Hindu god Siva. As Wheatley (1979: 295) succinctly stated, the Indian conception of kingship would have been "a political device especially attractive to village chieftains in situations in which the egalitarian solidarity of tribal society was proving incapable of extending authority to validate the power required for the institutionalization of supra-village rule." The adoption of this new type of leadership would have instituted a suite of organizational changes, including the presence of craftsmen to make royal prestige goods, a military to guard the royal court, the building of defensive structures, and a farming class that provided a surplus to the royal court. These changes resulted in what Wheatley called a *nagara*, or ceremonial city, that was a focal point on a landscape (1979; 1983). Wheatley acknowledged that local chiefs could have begun a process of social differentiation through a control of involvement in trade or improvement of agricultural technology, but it was the Indian concept of kingship that had the biggest impact on sociopolitical development in Southeast Asia and the origins of urbanism. However, it should be noted that Wheatley (1983:11) was reluctant to call these early polities states and adopted Service's view that chiefdoms are differentiated from states by their "lack of a formal legal apparatus of forceful repression."

The historian O.W. Wolters (1999: 110) has also argued that indigenous peoples of Southeast Asia selectively adopted traits of Indian culture, a process he calls "self-Hinduization." Wolters argues that the *bhakti* movement in India made Hinduism especially appealing to Southeast Asian peoples, specifically with regard to the god Siva. Drawing on ethnographic data,

Wolters suggests that the bilateral kinship network of Southeast Asian peoples meant that they did not emphasize ancestry and lineage. Instead, achieved status was considered to be more important. "All people were believed to be endowed with an innate spiritual property but in greatly varying degrees, and personal achievement and leadership clearly signified a superior and potent spiritual influence," (Wolters1999: 112). These people have been termed "men of prowess" by Wolters. According to Wolters the *bhakti* movement with its emphasis on the spiritual power of Siva, made it easy for local leaders to come to be seen as powerful and Sivalike. Chiefs maintained power through alliances and coercive power, as well as communicating their status as a person of prowess via the written and spoken word (Wolters 1999:118).

Although Wolters does not specifically discuss how this process relates to the formation of the first cities, his model for the emergence of powerful local chiefs has been influential in discussions of state formation (Bayard 1992; Reynolds 1995). Wolters' model provides an alternative view for how indigenous Southeast Asians may have been incorporating aspects of Indian culture into their lives, and how this was changing preexisting social organization.

The scholar Ian Mabbett (1977a, 1877b) synthesized the available historical and archaeological data in a pair of essays on the "Indianization" of Southeast Asia. He made a salient point that all of the historical sources describe polities after they had been "Indianized," but do not describe the process of "Indianization" itself. For this reason, he argued, "the various theories that have been offered are speculation," (Mabbett 1977b: 155). Instead Mabbett believes that the actual process may have been a mix of all the proposed theories. He also reminded scholars that India was not a monolith and itself was undergoing a process of "Sanskritization," in which parts of southern India were being influenced by the Hindu and Buddhist ideologies of the North. It may be that the Indian people in Southeast Asia may have "consisted very largely

of the people from communities being Sanskritized rather than the agents of Sanskritization," (Mabbett 1977b: 161). Mabbett (1977a: 13) also argued that when these early trading center polities were flourishing, "the greater part of the population of the region continued its ways of life with little change." Interaction with South Asia was not uniform and the consequences of this contact were not uniform as well. This is an important point to remember as we review the archaeological evidence; so little archaeological work has been done in the region that research undertaken at only a handful of locations often becomes a proxy for what is happening across Mainland Southeast Asia.

More recently, Ian Mabbett has attempted to address why the adoption and adaptation of Indian culture would be so appealing to Southeast Asian people. Mabbett (1997: 350) notes, "a plausible speculation yet has to be advanced to describe the cultural mechanism that gave importance to Indian culture in Southeast Asian kingdoms." In order to answer this question, Mabbett proposed a loose hypothesis that contended that as rulers gained power and expanded their control over territories; the new communities needed a way to become a part of the larger community. These small communities needed to redefine their identities and Mabbett (1997: 351) argued, "Indian culture... furnished a rich storehouse of legend and cosmology permanently capable of supplying new variations upon existing traditions and could supply the vocabulary for the process of self-redefinition." This process had happened at multiple times and places across India, and then spread into Southeast Asia. In this way he proposed that the process of "Indianization" was responding to a need, not an imposition.

Mabbett's hypothesis drew from an earlier work by Hermann Kulke (1990), who argued for "cultural convergence" between South and Southeast Asia. Kulke reflects on earlier models by both archaeologists and historians, but highlights two early inscriptions to illustrate his point.

These inscriptions describe early Southeast Asian leaders whose family lineages had risen to power and who had begun to expand their territory over neighboring communities. Kulke (1990: 20) argued that emergence of these chiefdoms was not related to Indian influence, however he noted, "at a certain stage of this development Brahmins 'came hither' in order to legitimize the new status and wealth of these chiefs." Kulke argued that this same process was happening in eastern and southern India, as states from north India moved into these regions. However, it was not the north Indian polities who were moving in to Southeast Asia, but these emerging polities in eastern and southern India who were making the primary contact with their Southeast Asian neighbors. The Brahmins who came from these India communities were from "princely courts whose rulers were still facing quite similar problems of establishing their authority and 'domesticating' their people," (Kulke 1990:28). In this way, Southeast Asians adapted Indian concepts of kingship and religion easily. Not because their societies were so different, but because of a "social nearness" and similarity in social change with the South Asian communities with which they were interacting (Kulke 1990: 28).

The historian Kenneth Hall (1985) also discussed a similarity between the process of "Sanskritization" in southern India and the Indianization of Southeast Asia. However, Hall is also one of the few historians to look more closely at the economic aspects of the emergence of complex polities, and has drawn on archaeological evidence from excavations at Oc Eo, Vietnam to supplement his argument. In his model for the growth of Funan, Hall argued that it was the influence of traders who brought about the process of Indianization. Funan's leaders attracted traders to dock at their port by providing an agricultural base with which to feed traders and a safe port where they would not be threatened. Hall (1982: 88) argued that it was an ability to control both an agricultural base as well as a seaport that "allowed this ruler to use revenues

derived from these two income sources to establish supremacy over his fellow chiefs." These leaders had control over human resources that could construct hydraulic systems for greater irrigation and could be mobilized as an army. As part of having a successful port, leaders were able to collect profits both in the material goods being traded as well as being exposed to new ideas and "new perceptions of the world" (Hall 1982:86). These material goods could be used as status markers over other competing elites. However, as leaders attempted to expand their power they found that "society's norms restricted [their] ambition" leaving him to turn towards Indian models of kingship (Hall 1982:86).

These historical models draw heavily from Chinese historical documents, oral histories, and analogy with southern India. Many scholars have reviewed and critiqued these models recognizing they were incomplete, but without providing any new models of their own (e.g. Bayard 1992; Bentley 1986; Reynolds 1995; Winzeler 1976). Although some scholars took into account some of the limited archaeological evidence from the Iron Age period, historical hypotheses have focused largely on the intangible process of adopting Indian ideas about religion and kingship, which is not well represented in the archaeological record. As Stark has noted, it is important for archaeologists to consider these historical models, not in order to *prove* them, but as hypotheses to be tested using the archaeological record (1998). However, by the 1980s, the emerging archaeological evidence coming out of Southeast Asia could not be ignored (Bentley 1986). In the next section I discuss in more detail the archaeological perspectives on the emergence of complexity in Southeast Asia.

#### The archaeological perspective

Material evidence for contact between South and Southeast Asia has resulted in archaeological models that have focused on the role of trade and exchange in the emergence of

states. Several archaeologists have critiqued our ability to accurately understand what was happening in Southeast Asia based solely on archaeological evidence (Bayard 1992; Manguin 2000), however this has not prevented scholars from proposing models based on existing evidence. Nevertheless, archaeologists have generally been more cautious in describing the socio-political complexity of Iron Age communities they are studying, in contrast to historians who have discussed early polities such as Funan as a state (e.g. Hall 1982, 1985). Additionally based on research in Northeast Thailand, archaeologists have proposed that the process of emerging complexity was happening differently in the inland versus coastal areas.

Emergence of complexity and states in coastal areas

Bennet Bronson (1977:39) was amongst the first archaeologists to propose a model for state development, focusing on coastal Southeast Asia. At that time he considered his model to be "speculative" and noted that "hard data through which it can be tested do not yet exist." The model was based on the observation that regions in insular and peninsula Southeast Asia were different from the mainland in that there coastlines were not well populated and the inland areas were not ideal agricultural zones. The states that developed in these regions were economically dependent on trade, primarily through water networks. A center would develop at the mouth of a major river system as it drains into the sea. Goods from secondary centers and other more remote communities would move down the river system and out to an overseas center, the primary consumer of these products. The primary center at the mouth of the river basin would control the movement of overseas goods upstream to the secondary centers as well as the goods that moved downstream and out to the overseas consumers. As new archaeological data has come to light, Bronson's hypothesis has been expanded by several archaeologists working in peninsular and island Southeast Asia (see Christie 1990; Junker 1994; Manguin 2000).

Although Bronson's model was provisional, ongoing research during the 1980s were highlighting the early and consistent contact with South Asia, and these data needed to be taken into account. Ian Glover was one of the first archaeologists to synthesize a great deal of the archaeological evidence for contact with South Asia in Southeast Asia (1989; 1996). In his work he argued that the great quantity of materials from South Asia found at Southeast Asian sites indicated the presence of regular interaction and exchange during the late first millennium BC, centuries earlier than previous scholars had speculated (Glover 1989: 4). These long-distance trade networks connected Southeast Asia to Rome via India and in the other direction to China, which Glover (1989: 12) argued was the first World System. In this model the pre-existing, localized, down-the-line exchange networks in place in Southeast Asia since the late third millennium BC were replaced by new long-distance trade networks with India. Glover (1989: 3) describes these new networks as being "approximate to Renfrew's 'Middleman Trading', and 'Port of Trade' modes." Additionally, the identification of several artifacts specific to Indian Buddhism, including a carved carnelian lion bead and bronze knobbed ware bowls, pointed toward the presence of Buddhist missionaries in addition to traders (Glover 1989: 47). Unfortunately, Glover's model in this iteration was only loosely formulated. He did not provide a hypothesis on how Southeast Asians integrated this new system into their pre-existing localized exchange networks. Glover also did not discuss how participation in this network would have affected socio-political organization in Southeast Asia.

The archaeologist Jan Wisseman Christie (1990, 1995) has explored state formation in maritime Southeast Asia in more depth. Christie (1990: 42) argues that emerging complexity and processes leading to state formation in this region may have been beginning prior to Indianization. However, she also added that "long-distance sea trade itself played an key role in

stimulating political development which eventually led to the formation of states," (1995:244). As evidence for this, she points out that the Malacca Straits and the south Java Sea regions had the largest numbers of trade goods and trading activity in the maritime region during the late first millennium BC, and are also the location where the earliest maritime states emerged, although more recent work in the Mekong Delta suggests that state formation could have been happening contemporaneously in this region. In Christie's model these regions both began participating in external trade that brought in new and exotic luxury goods. The presence of these new good spurred a swift change in political organization. Elites in coastal areas could control the trade of these new luxury objects in exchange for products from inland regions. During the second stage of Christie's model (200 BC- AD 300), the maritime area's trading partners were undergoing their own changes as northern Vietnam was conquered by the Han Chinese and Indians began to trade more extensively with Rome. It was at this point that Southeast Asia became part of the expanding maritime trading system that reached from the Mediterranean to China. During the third stage, AD 300-600, several fully formed states had emerged in the maritime regions that were influenced by the spread of Hinduism and Buddhism. However differences between regions in the maritime area also began to emerge, as parts of Java and Bali began to diversify their economy through rice agriculture and the spice trade (Christie 1995: 278-9).

Despite the influence of exotic luxury goods and long-distance trade, Christie also emphasized the importance of peer-polity interaction within the maritime region. She argues that much of the early trade in the Bay of Bengal region may have been transported on Malay or Indonesian ships. She notes that the rapid transmission of new ideas and information across this region suggests, "the carriers of most of this trade were members of maritime Southeast Asian communities rather than outsiders," (Christie 1995:277). Christie (1995) argues that the early

centers of trade in the maritime region were likely the preexisting polities that were already controlling movement between the coasts and inland areas. However, data presented in this dissertation suggest that polities in the Mekong Delta were not part of these preexisting trading networks.

In a recent regional synthesis on the archaeology of mainland Southeast Asia, Charles Higham (1989, 2002) has proposed a model for the emergence of complexity in the Mekong Delta. Higham observes that around AD 1-400, trade relationships with long-distance trading partners began to emerge in the Mekong Delta (2002:292-4). New types of exotic goods were incorporated into a pre-existing system that emphasized the display of status through exotic objects, such as the nephrite ear ornaments discussed earlier. These new goods had effects on the development of cultural complexity in several ways. First, they were a limited resource and communities that were involved in trade of these commodities became more powerful, economically and socio-politically. Second, involvement in trade spurred the production of local products with which used to exchange for foreign goods, including those products that may have been available from farther inland. This new demand for goods from inland sites would have affected the developmental sequence as well. The agglomeration of craft specialists at specific sites would have had an impact on the intensification of agriculture and food production, leading to the construction of drainage canals. The construction of these canals may have also spurred a need for slave labor and allowed for water storage and irrigation, allowing for intensified production of rice (Higham 2002: 292-293).

Although the emergence of urbanism and statehood in the Mekong Delta was not due to a single variable, Higham argues that the introduction of exotic trade goods from India and China were important factors that induced changes in multiple areas of the local cultural system,

eventually leading to the emergence of states. Higham (2002: 294) emphasizes that the role of Indians during this early phase of emerging complexity was minimal; they were only in the region to supply exotic goods and practice trade. Therefore, the emergence of complexity took place within "a local cultural matrix."

The archaeological models discussed here have emphasized the control over trade as a key factor in the emergence of early states and complex polities in the coastal regions of Southeast Asia. Bronson's (1977) upstream-downstream model may best apply to the archaeological data presented in this dissertation, as I argue that elites in the Mekong Delta were expanding their socio-political and economic alliances with inland communities through the trade of stone and glass beads. There is not yet clear archaeological evidence for local production of crafts at sites in the Mekong Delta. However, archaeological evidence from looted contexts, as well as Chinese descriptions of craft production, and Cambodian folklore about the founding of Angkor Borei all point towards an agglomeration of craft specialists, as proposed by Higham (2002). I disagree with Christie's model (1990, 1995) that early states in Southeast Asia emerged from locations involved in pre-existing coastal exchange. Stone and glass bead data presented later in this dissertation do not suggest elites in the Mekong Delta were participating in these early networks. However, I do agree with her assessment that exotic objects from South Asia were likely first entering into these early trade networks (Christie 1995).

Alternative models for the emergence of complexity in mainland Southeast Asia

The focus of the discussion on socio-political development thus far has been on the importance of trade and long-distance contact with South Asia in the emergence of complexity in mainland Southeast Asia. However, there are multiple factors that may lead to the emergence of complex societies or states, including ecological models and warfare (Carneiro 1970), the actions

of aggrandizers (Clark and Blake 1994), and peer-polity interaction (Renfrew 1996) among others. There is archaeological evidence for emerging complexity and hierarchy happening in two regions of mainland Southeast Asia that were not directly involved in long-distance trade with South Asia. These include Northeast Thailand and the Dongson culture of northern Vietnam.

# Emergent complexity in Northeast Thailand

In the mid 1980s, Charles Higham and his colleague Amphan Kijngam (1984) proposed a preliminary model for the emergence of centralized chiefdoms based on research in the Chi River Valley in Northeast Thailand. The evidence for the existence of centralized chiefdoms was largely based on the presence of large moated sites, much larger than others in the region, which may have indicated a two-tier settlement hierarchy. Higham and Kijngam argued that these sites might have grown in power based on a variety of factors. Sites where major river systems entered the flood plains could have controlled exchange of exotic prestige goods coming in from the Chao Phraya Valley in central Thailand. These same trade routes may have also brought iron technology, which could facilitate the expansion of agriculture. Rising population could have also spurred warfare and competition between different settlements. At the time Higham and Kijngam proposed this model, little archaeological work had been done in this region and other scholars disagreed with their assessment that these sites represented chiefdoms (Bayard 1992). More recent research done in the Mun River Valley of Northeast Thailand has added additional data. Excavations at sites such as Ban NonWat and Noen U-Loke have uncovered burials related to the entire Iron Age period. Within these burials one can see evolving mortuary rituals that shifted from mortuary feasting to burials with increasing amounts of personal wealth in the form of beads, gold, silver, and bronze ornaments, and ceramics (Higham 2011b; Theunissen 2003). Higham notes that control over these new exotic prestige objects could have increased social

status within a community. However people could also earn wealth by producing and exchanging salt, pigs, ceramics and other goods. Increasing competition over goods and resource may have then lead to the emergence of leaders (Higham 2011b). This research done at the site level shows the impact that exotic prestige goods had within a group of small communities. However, these changes were happening across the Khorat plateau in Northeast Thailand and seemingly without any direct contact from South Asia. Although, these changes can be seen as the result of a "ripple effect" from changes happening at coastal sites (Higham 2002: 292).

#### The Dongson culture

The Dongson culture is located in the Red River Delta in northern Vietnam. It is notable for elaborate bronze casting technology, stratified high-status burials, and large settlements such as Co Loa, which highlight the socio-political complexity developed by this culture (Bellwood 2007; Kim 2010; Kim et al. 2010; Pham 2004). Some scholars (Bellwood 2007; Higham 2002) have argued that the Dongson were centralized chiefdoms and at least partly urbanized, while others have argued that Co Loa was a state-level society (Kim et al. 2010; Kim 2010). As discussed in Chapter 2, I follow Kim's assessment that Co Loa was a state.

In his recent study, Kim (2010) identifies several factors for the emergence of Co Loa as an important urban center of a state-level society including both peer-polity interaction and coercive interaction. The Dongson people were excellent craftsmen making large Dongson bronze drums, that were exchanged across mainland and island Southeast Asia (see Calo 2009). The exchange of these prestige objects appears to have been important for emerging social hierarchy, connecting elites in different communities to one another (e.g. Loofs-Wissowa 1983). In addition to these contacts, the Dongson people appear to have been closely interacting with

the Dian culture in Yunnan province. Francis Allard has suggested that interaction between these two cultures "may have benefitted the almost simultaneous emergence of Bronze Age complex societies in eastern Yunnan and northern Vietnam," (1999: 83). Cultural interaction between these two regions may have increased agricultural production, population growth, and the emergence of social inequality and socio-political complexity (Kim 2010: 180).

In addition to this more friendly interaction, the Dongson and Dian polities were also experiencing pressure and eventual colonization by the Han Chinese. Bronze technology was used to make metal weapons that are found frequently in burials and iconography on Dongson drums and other artifacts depicts battles scenes and warriors. Earthworks at Co Loa were also believed to have been used as fortifications (Kim 2010). As Kim (2010: 191) argued, "the evidence in the form of weapons, warrior burials, and iconography all point to the role of warrior prestige in bringing about changes in societies and social status for individuals."

After the colonization of northern Vietnam by the Han, archaeological and historic evidence suggests that influence of Chinese culture on the local population appears to have been inconsistent, with "mutual influence" between the Han Chinese rulers and local population (Kim 2010: 297). Although communities in the Mekong Delta and elsewhere in mainland Southeast Asia were not colonized by South Asian polities, we can see a similarity between northern Vietnam and the Mekong Delta, in that local traditions persisted even with the introduction of new socio-political, economic, and ideological systems.

The current study builds on these previous models with new data gathered from the examination of stone and glass beads. These data support the conclusion, previously argued by Christie and Dzung, that stone and glass beads were initially incorporated into pre-existing long-distance exchange networks. However, it is does not appear that these elites were using the

availability of these new materials to expand their pre-existing trade networks. It is not until the later Iron Age (Phase 2) that trade networks appear to shift and the Mekong Delta becomes involved in the trade of stone and glass beads. I argue, as others have suggested, that elites in the Mekong Delta controlled the trade of these objects and used the exchange of these objects to expand their power and connections with inland communities (Bronson 1977; Higham 2002). However, there is not yet enough data to identify the specific aspects of growth suggested for Funan by Higham.

Data from Northeast Thailand and northern Vietnam highlight the importance of provincial peer-polity interaction networks in the emergence of social stratification and the presence of regionally specific response to expanding trade networks. I argue that data in this dissertation also shows similar evidence for the importance of regional peer-polity interaction networks, especially during the early Iron Age. The uneven distribution of agate/carnelian and glass beads within sites also points towards the emergence of social stratification at inland sites. Incorporate this above?

# Trading with Southeast Asia: The view from India

Many scholars have noted that South Asia was not a monolith and that southern India was in a process of "Sanskritiziation," or influence from the Brahman, Hindu, and Buddhist polities in the north, at approximately the same time as Southeast Asia (Hall 1985; Kulke 1990; Mabbett 1997, 1977a, 1977b). In order to better understand how trade with South Asia was organized, several scholars have begun more closely examining questions regarding which regions and people were participating in trade with Southeast Asia, their motivations for participating in trade, and the directionality of interaction.

Recognizing that the emergence of states was not uniform across Southeast Asia, the Indian scholar H.P. Ray (1989: 42) has called for "the demarcation of micro-regions both within India and Southeast Asia where the earliest contacts developed." Ray notes that around the turn of the first millennium AD the east coast of India was becoming increasing linked together via trading networks. With the growth of Indo-Roman commerce, southern India was becoming increasingly focused on trade. Ray argues that Southeast Asia could have been an important source of mineral resources including tin, as well as aromatics, and wood. Preexisting trade networks linking peninsular Southeast Asia, which was high in tin, and mainland Southeast Asia could have been easily integrated into the long-distance trade networks from India (Ray 1989: 50). The identification of micro-regions of trade would allow archaeologist to better understand the nature of trade and how the two regions interacted more broadly. Although outside the scope of the current project, this could be achieved through continued compositional analysis of stone and glass beads in both South and Southeast Asia.

Ray has also proposed that the growth of Buddhism and its favorable views towards wealth accumulation and trade as an occupation may have had a major impact on the expansion of trade into Southeast Asia. South Asian artifacts with ties to Buddhism at sites in Southeast Asia were already well known (e.g., Glover 1989). However, Ray notes that the expansion of Buddhism into southern India and the subsequent restructuring of the economic base, which placed economic power in the hands of Buddhist monasteries, might have also been taking place in parts of Southeast Asia. However, Manguin suggests that in addition to Buddhism,

Vaisnavism also played an important role in the political, religious, and economic parts of life in Southeast Asia (2010). Unfortunately, it is not yet clear how Vaisnavite merchants in Southeast Asia may have influenced the organization of trade, although it is important to consider the

"consumption patterns of religious communities" when looking at the archaeological record of Southeast Asia (Manguin 2010: 177). However, it is not likely that these religious communities were having a major impact on the organization of trade during the period being discussed, as we do not see clear evidence for the practice of Hinduism and Buddhism until the mid-first millennium AD.

The scholar Sunil Gupta (2005) has suggested that the process of Indianization in Southeast Asia was the result of long-standing contact between eastern India and Southeast Asia in what he calls the Bay of Bengal Interaction Sphere (BBIS). Demand for spices such as cinnamon in Sri Lanka during the first millennium BC mark the earliest evidence for contact between these two regions, which continued to approximately 500 AD. Gupta argues that "Indianization" of Southeast Asia was not an event, but a cumulative process of reciprocal exchange between regions on either side of the Bay of Bengal; a process that may have even included Southeast Asian people traveling to India. It was this deep history of contact that allowed for quick appearance and spread of Hindu and Buddhist sculptures in Southeast Asia, as their adoption "implies prior knowledge of the symbolisms associated with their worship," (Gupta 2003: 395). Gupta relates his hypothesis to the popularity and spread of beads, which is discussed in more detail below.

The archaeologist Monica Smith (1999) as examined trade between South and Southeast Asia "from the Indian point of view," and is skeptical that Indians had the sea-faring vessels to initiate contact with Southeast Asia. She argues that Southeast Asians most likely initiated early trade and that Indians had little reason to actively trade with Southeast Asia as most goods were available on the sub-continent or via their preexisting trade routes with Africa, the Middle East, and the Mediterranean. For Smith, strong interaction between South and Southeast Asia did not

begin until the mid-first Millennium BC and coincides with the emergence of the Gupta dynasty. However, Smith also notes that China was also interacting with Southeast Asia during this period and wonders why they did not have more of a socio-political, economic, and religious influence. She concludes that the militaristic interactions between China and northern Vietnam were a warning to other communities in mainland Southeast Asia. "Presented with two models of state-operation, the Chinese and the "Indian," indigenous leaders in Southeast Asia chose to incorporate a model of bureaucratic organization that encompassed little threat of political intervention," (Smith 1999: 18). It was for this reason that Indian influence became so prevalent in Southeast Asia, but earlier interactions were initiated and directed by Southeast Asians.

Although Smith raises several important points regarding the agency of Southeast Asian elites in the process of Indianization, she overlooks much archaeological data indicating sporadic, though influential, contact between the two regions prior to the mid-first millennium AD. In the years since her article has been published this evidence has only increased, especially in Cambodia. Rispoli (2005) has argued that early Indian writings about Southeast Asia always discuss it as a place of opportunity and profit. While she agrees that interactions between the two regions were peaceful, her arguments counter Smith's by arguing that diplomatic trade was possible because of the great number trade goods Southeast Asia could supply to India (Rispoli 2005: 258). However, Rispoli's conclusion is in agreement with Smith, that Southeast Asians *chose* to interact with India.

Using compositional analysis of stone and glass beads I had hoped to be able to identify more specific trade networks between "micro-regions" of South Asia and Southeast Asia.

Unfortunately, the analysis of these materials was not fine-grained enough to develop this type of evidence. Nevertheless, recent work by other scholars has shown that exploring these questions

is fruitful and these studies have now led to the identification of long-standing relationships between specific areas of South and Southeast Asia (e.g., Manguin et al. 2011). I believe that future compositional research, especially on garnet beads, may provide more specific linkages between raw material resources areas in South Asia and the trade of finished products in Southeast Asia.

### The role of beads in early trade

Many early scholars have recognized the importance of beads in Southeast Asian archaeology, especially for their role in elucidating trade patterns and examining questions of socio-political development. The archaeologist Alaistar Lamb (1956b: 87) specifically observed "in the South-east Asian context, beads have potentially a most important archaeological role to play." In this section I review some of the most influential studies that have used beads to elucidate trade and socio-political development in Southeast Asia, concluding with a discussion on how the current study builds and expands on these previous works.

One of the first scholars to tie research on beads with socio-political developments in Southeast Asia is Peter Francis Jr. In the course of his wide ranging studies of many different types of beads, Francis proposed several hypotheses regarding the production, trade, and use of beads in Southeast Asia and their relationship to state development that are still influential today (Francis 1996, 2002). Drawing on archaeological evidence for the production of stone and glass beads at some sites in Southeast Asia, Francis argued that the spread of beads, specifically a type of monochromatic, drawn glass bead called Indo-Pacific glass beads and the technology used to produce them was "a perfect metaphor for the spread of Indian influence in the region at this time," (Francis 1996:141)(see Chapter 7 for an in-depth discussion of Indo-Pacific beads).

Francis noted that many of the locations believed to have been manufacturing centers were also

among of the earliest urban sites in their regions and together they might have formed a league, which he calls the Arikamedu League. Beads were important trade objects in Southeast Asia, and the presence of a manufacturing location may have been "markers (not makers) of emerging core areas or states," (Francis 1996: 149).

Francis pointed out that several sites in the Arikamedu League produced both stone and glass beads, however his focus was primarily on the production of Indo-Pacific glass beads in these locations. In his model, Indian beadmakers traveled, perhaps unwillingly, to Southeast Asia to produce glass beads. He argued that Indo-Pacific beadmaking was a complex skill, and suggested that the Indian beadmakers probably did not teach this intricate technique to local apprentices who would have taken away their livelihood. During later periods, Indian craftsmen were organized in guilds and Francis speculates that the Arikamedu League beadmakers may have also been united under some sort of guild system, which facilitated their interactions with local leadership (2002: 38-39). As in contemporary India, Francis argued that the beadmakers in Southeast Asia probably had little control over the trade of these objects (2002).

In reality, there has not yet been enough clear archaeological evidence for glass and stone bead production in Southeast Asia to assume that a high degree of craft organization was present. Evidence for stone and glass bead production at the Southeast Asian sites he mentions is problematic as much of the data he used to build his theories was from looted contexts. This makes it difficult to determine if bead manufacturing was even taking place at many of the locations Francis mentions and if so, it is nearly impossible to evaluate how workshops were organized. However, research at the site of Khao Sam Kaeo in peninsular Thailand does indicate that it was a stone and glass bead production center. Although the site was heavily looted, preliminary excavation data support at least partially Francis' hypotheses. Excavators believe

that Khao Sam Kaeo was inhabited by Indian craftsmen, due to the finely made beads found there produced using Indian techniques (Bellina 2003, 2007; Glover and Bellina 2011), although there is no evidence they were organized in guilds or that they traveled to the site unwillingly. Bellina and colleagues (Bellina and Silapanth 2008) have also argued that Khao Sam Kaeo was an early urban center due to the earthwork construction, water management features, as well as seemingly restricted craft production areas in the site. Additionally, the assumed presence of Indian craftsmen would mark Khao Sam Kaeo as being fairly cosmopolitan. However there is no clear evidence that control over bead production and distribution at Khao Sam Kaeo corresponds to emergence of a state-level society. With additional work at potential workshop sites it is hoped that we will be able to clarify the roles of the beadmakers and the extent of involvement by local elites in the process of the production and distribution of glass and stone beads.

Although not concerned with the production of beads, the scholar Sunil Gupta shared Francis' belief that beads were markers of Indianization in Southeast Asia. In his model, beads, especially stone beads, were objects of ritual importance and related to aniconic aspects of Hinduism and Buddhism that existed in Southeast Asia prior to the adoption of iconic sculptural traditions (2003). Gupta points towards beads such as the leaping lion found at Ban Don Ta Phet, Thailand, that are believed to be related to Buddhist practices, as well as the numerous written and iconographic examples of beads used in ritual in India. Gupta does not deny that beads may have had more than one function, such as status markers. However he does argue that they also might have had a ritual importance, which has been overlooked. While Gupta's hypothesis is provocative it is difficult to test archaeologically. Most beads in Southeast Asia are found in local forms of burial contexts and without any associated Indian derived ritual artifacts, and any ritual associations associated with them are intangible.

Furthermore, Gupta has argued that bead production in Southeast Asia may have begun as a result of the preexisting Bay of Bengal Interaction Sphere (2003, 2005). He suggests that long-standing interaction between the two regions may have resulted in shared bead-production technology and not the introduction of new technology from India. However, as will be argued in Chapters 5-8, an examination of attributes on the stone beads, such as shape and drilling technology, as well as chemical signatures and techniques from glass bead production points toward Indian bead production techniques that have no predecessors in Southeast Asia (Bellina 2003; Lankton et al. 2008). While there may have been long-standing contact between cultures in the Bay of Bengal, evidence from stone and glass beads does not support this hypothesis.

However, innovative research on stone beads has allowed for a deeper understanding of the role that Southeast Asian people had in the bead trade. Research by Bellina (2003, 2007) and Bellina and Glover (2003,2004) have identified several stone bead shapes, such as notched agate pendants, that have been found in Southeast Asia but *not* in India. Bellina (2003: 292) argues that these beads may have been commissioned by Southeast Asians and suggest that "a Southeast Asian elite wanted what the best Indian manufacturers could produce but in a style corresponding to their own cultural values." Southeast Asians were taking an active role in the trading process by requesting the production of specific bead types. As noted earlier, Bellina also claims that foreign craftsmen may have been living and working in Southeast Asia, perhaps under the patronage of an elite, an interpretation that has been further refined and supported by her research at Khao Sam Kaeo (Bellina 2003, 2007). Although evidence from Khao Sam Kaeo does not yet indicate elites were controlling the production of agate and carnelian beads, Bellina's research suggests that Southeast Asian's were more socio-politically complex than previously thought, with elites who directed and participated in a prestige goods exchange

network that linked them with both foreign cultures and other Southeast Asian elites. The system used by Indian craftsmen and Southeast Asian elites may not have been very different from that believed to have been used by itinerant nephrite craftsmen at sites in coastal Vietnam. In this dissertation I will use the distribution of glass and stone beads to explore identify these prestige goods exchange networks more specifically.

Robert Theunissen has also argued for a greater recognition of the role of elites in the production and trade of stone beads, based on his research on agate and carnelian beads in Northeast Thailand (2003, Theunissen et al. 2000). Using geochemical analysis of stone beads from Noen U-Loke, Theunissen has suggested that some stone beads may have been made in Southeast Asia, under the control of local elites, and using a local stone source in Lopburi province, Thailand. Theunissen's work has also shown that people at Noen U-Loke placed a high value on stone beads as prestige objects (Theunissen 1998, 2003). Theunissen's study was only preliminary, but has been influential in challenging assumptions about the diffusion of Indian stone beads throughout Southeast Asia (see Bellina 2003). Despite this, no stone bead production workshops have yet been identified in Northeast Thailand. Additional methodological and interpretive problems with Theunissen's geochemical analysis and his conclusions are discussed in more detail in Chapter 6.

Bellina and Theunissen's arguments that Southeast Asian people were active agents in the bead trade process are compelling. However, their contention that elites may have been producing or controlling the production of agate and carnelian beads, perhaps for trade with inland communities, has not been well tested. As discussed in Chapter 1, studies on craft production in the Indus Valley have shown that the increasing complexity of craft technology is correlated with increasing socio-political complexity in a community (Kenoyer 1992; Vidale and

Miller 2000). If Southeast Asian communities were producing stone beads using local raw material sources we would expect them to have a higher level of socio-political organization, as they would be controlling both the technology used to produce the artifacts as well as the raw material used to make them. In contrast to other communities that may have focused purely on the trade of finished objects, or who may have had South Asian craftsmen working in their communities using imported raw materials. Through geochemical analysis of agate and carnelian beads, I will specifically test this hypothesis (see Chapter 6). My results show that there is not yet clear evidence to support Theunissen's hypothesis that Southeast Asian raw material sources were being used to produce beads. Instead, there is strong evidence that a majority of beads in Southeast Asia were made using raw materials from western India, although some beads may have been produced in Southeast Asia using this imported raw material.

The examinations of beads discussed above were concerned primarily with the organization of production of stone and glass beads. However, I believe addressing the production of beads in Southeast Asia is difficult with the currently available archaeological dataset, which has often been disturbed and looted. Instead, my dissertation is focused on using glass and stone beads to explore the trade and exchange networks in Cambodia and Thailand and how these expanding networks were related to the emerging socio-political complexity of elites in the Mekong Delta. By examining beads the morphology, context, and composition of stone and glass beads I am able to identify patterns in the distribution related to changing trade networks and control over trade.

#### Conclusion

In this chapter I reviewed a number of theories regarding the emergence of complex polities and states in Southeast Asia. The earliest theories were written by historians who largely

focused on the adaptation of Indian conceptions of kingship and religion as a means for Southeast Asian elites to expand and consolidate their power. On the other hand, archaeological theories have drawn largely on material evidence and specifically objects believed to have been prestige goods. For this reason, archaeological theories largely focused on the control over these early prestige good networks as a means of increasing and expanding power and complexity in early polities. However, instead of addressing South Asia as a monolith, archaeologists have also begun to question the motivations for trade between South and Southeast Asia, as well as develop a better understanding about from who and where early trade contacts were coming.

Archaeological research has also shed light on the periods just preceding and coinciding with the earliest contact from South Asia as well as in regions that did not have direct contact with this area. These studies have shown that the process of emerging complexity in Southeast Asia was multifaceted and did not necessarily require a direct connection with South Asia, as some historical models have suggested. In some areas, such as in northern Vietnam, Southeast Asian communities may have reached chiefdom-levels of complexity prior to contact with South Asia. Other inland regions saw emerging complexity arising after the introduction of goods from South Asia, but seemingly without the additional ideological influence seen at coastal centers. Archaeologists and scholars have also studied stone and glass beads to better understand the early phases of trade and emerging complexity. These studies have underlined the role that Southeast Asian elites played in the early period of contact with South Asia, and the presence of unique bead types in Southeast Asia has suggested to scholars like Bellina (2003, 2007) that elites were requesting specific beads types and then controlling their distribution, and possibly production.

In this dissertation I use the patterns identified by the distribution of distinct types of archaeological stone and glass beads in order to test the prevailing archaeological and historic models regarding the importance of trade and expansion of power in the Mekong Delta. I argue that the stone and glass bead data presented in this dissertation suggests that during the early Iron Age, beads appear to have been entering into pre-existing coastal exchange networks that were already trading prestige objects like nephrite ear ornaments. However, not all communities appear to have been participating in these trade networks, including sites in the Mekong Delta. Instead, I argue that glass and stone bead evidence suggests that the sites in the Mekong Delta did not emerge as important centers until the first few centuries AD, as trade with South Asia was believed to have been intensifying. Based on the identification of specific bead types found at the Mekong Delta and sites further inland, I argue that elites in the Mekong Delta were expanding their exchange and interaction networks with communities further inland. In this model, beads can be seen as a proxy for expanding socio-political and economic networks based in the Mekong Delta. In the remaining chapters of this dissertation I discuss this evidence in more depth, beginning with the next chapter, which provides an exploration of the various methods used to examine stone and glass beads and test these research questions.

# **Chapter 4: Research Methodology**

As outlined in Chapter 1, this dissertation is concerned with using stone and glass bead data to address two research questions. First, are there patterns in the distribution of distinct types of stone and glass beads that can be identified over time and space? And second, are these patterns related to emerging socio-political complexity in the Mekong Delta? In order to address these questions, glass and stone beads from 12 sites in Cambodia and Thailand were carefully examined.

It was first necessary to define specific bead types to avoid overlap or misclassification that has resulted from earlier categories used in the literature and site reports. Bead attributes were recorded in the field in order to identify preliminary types and develop specific types that could be identified and related to chronological time periods. The contexts in which beads were found were noted in order to identify patterns of distribution. Many beads were from burial contexts, and so additional information was recorded including the sex, age, and additional grave goods found with the burial. This information was in order to determine if beads were common or rare and identify patterns in the distribution of beads that could be related to age or gender. Compositional analysis using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to analyze the geochemical composition of the stone beads and the glass recipes used to make the glass beads. Compositional analysis of beads from Southeast Asia has never been undertaken systematically in the past and my research has established a relatively comprehensive database for future comparative studies. Stone beads were assigned to geographical sources areas using a variety of statistical techniques. Scanning Electron Microscope (SEM) analysis of impressions of stone bead perforations allowed for a better

understanding of the manufacturing methods used to make these objects. Lastly, these data were compared among sites and similarities and differences among sites were identified. It is with these data that I am able to address the research questions discussed above.

This chapter discusses in detail the methods used to examine and analyze stone and glass beads. The chapter begins with a brief introduction on the equipment and database software used as well as the data recorded for all beads. This is followed by a more in depth discussion of the attributes recorded for stone beads and following this, attributes recorded for glass beads. I then move to a discussion of compositional analysis of the stone and glass beads and the various statistical techniques used to interpret these data. Lastly, methods used to examine the drilling technique used to produce garnet beads are explained. By using these various lines of data, I am able to address my research questions and identify patterns in the distribution of specific types of beads over time and space.

# Recording glass and stone beads

Prior to beginning fieldwork in Cambodia and Thailand in 2008 I created a database to facilitate the recording of glass and stone beads. I used the database software FileMaker Pro, beginning with FileMaker Pro 8 and later upgrading to FileMaker Pro 11. The database was modified multiple times over the course of the project to reflect improved and streamlined recording techniques. Each entry received a unique database ID to distinguish it from all of the other entries. Also recorded for each bead was data related to the context including the site name, catalogue number, material type (stone or glass), the condition of the bead (fresh, worn, slightly worn, heavily worn, chipped, or broken), and the bead shape. Photographs were also taken of every bead using a digital SLR and macro lens. Additionally, many beads were examined more

closely using a DinoLite AM313 digital microscope. Images from both the digital SLR and digital microscope were also included in the database for reference.

The context in which beads were found was also recorded, with special focus on those beads from burial contexts. This information was used to determine how beads were distributed within burials within a single community. Although the quantity of burials excavated differed between sites, patterns of uneven distribution were identified. Determining the relative wealth or status of the individuals with beads was not the primary focus of this dissertation. However, as beads are believed to have been exchanged between elites, one may assume that burials with large quantities of beads may have been important members of their community. Burials with agate and carnelian, glass, and garnet beads are discussed below within their individual chapters. The proportion of burials with these bead types out of the total number excavated were noted in order to identify generally how restricted the distribution of each artifact was within the community. It is recognized that the burials excavated may not be a representative sample of the whole site, but provide a preliminary understanding about the distribution of these artifacts based on the available evidence. In the final chapter, I address broader patterns regarding the distribution of beads in burials.

#### Identifying stone bead types

In order to identify patterns in the distribution of agate/carnelian and garnet beads, the different types of stone beads needed to be categorized. Previous work by Bellina (2001, 2003, 2007) identified a difference between earlier (Phase 1) Iron Age agate and carnelian beads and later (Phase 2) beads. These differences are visible in the bead shape and quality of production, raw material type and quality, the polishing technique used, and the perforation size.

Additionally, previous work by Theunissen (2003) has identified preliminary patterns in the

distribution of specific bead types across mainland Southeast Asia. In the current study, attributes from agate/carnelian and garnet beads were recorded in order to identify if they could be classified as either Phase 1 or Phase 2 beads. The bead shapes were also carefully recorded and compared with Theunissen's preliminary findings.

Attributes recorded for the stone beads are listed in (Table 4.1, see also Appendix 5.1). These attributes recorded are specifically related to the bead's appearance as well as noting scars or marks on the bead that would aid in determining what techniques may have been used to make the beads. Examining markings related to manufacture can aid in identifying where bead may have been produced, as certain techniques for bead production, such as drilling or polishing, can be temporally, regionally or culturally specific (e.g. Bellina 2003, 2007; Francis 2002; Kenoyer 1992a, 1992b). The attributes used in recording the stone beads is discussed below.

#### Variables recorded for stone beads

- -Raw material: agate, carnelian, garnet
- -Stone color
- -Drill hole type (drilled from one end, drilled from both ends etc)
- -Exterior surface: polish and wear
- -Number of facets
- -Measurements: Width, maximum length, minimum width, thickness, interior perforation

#### Table 4.1: List of bead attributes recorded.

## Bead Shape

The bead shape was the first step in the stone bead recording process. Pre-existing bead shape classification systems by Beck (1928) and J. Mark Kenoyer's Harappan bead code system were used to categorize beads from sites in Cambodia and Thailand. However, there were also additional bead shapes identified that did not fall into either of these classification systems. In these cases, I assigned a name to these bead shapes that would accurately describe the bead. If a bead was faceted, the number of facets was also recorded. Approximately 35 bead shapes were

identified (see Chapter 5 for further discussion). As discussed above, bead shapes were critical for identifying initial patterns in the distribution of beads across the landscape. Bead shapes were also used, with other attributes, to determine if beads belonged to the Phase 1 or Phase 2 groups.

#### Raw material and stone color

The raw material of each bead was recorded, distinguishing between carnelian, agate, and garnet beads (Figure 4.1). In addition to the raw material type, the stone color was recorded to reflect if the bead was made from a black and white banded agate, or a light yellow, orange or red carnelian, or a dark purple garnet. Beadmakers in South Asia often enhance the color of natural stones, deepening the reds and browns (Kenoyer 2003). Recording the color also allowed for noting any unique imperfections or other distinguishing marks on the bead.



Figure 4.1: Examples of black and white banded agate (left), carnelian (middle), and garnet (right) beads. Scale in cm.

#### Exterior surface

The exterior surface of the bead was noted to determine if there were any nicks, chips, or imperfections, as well as information on the type of polish on the bead. This analysis was facilitated by the use of a digital microscope to inspect and record surface features in more detail. Bellina (2003) has identified a difference in polishing techniques between the earlier high-quality beads found in Southeast Asia that were polished using a rotary grinding technique, and later period beads that were mass-polished in a drum. Kenoyer has also done experimental work on bag polishing of beads and provided several examples for comparison (J. Mark Kenoyer,

personal communication 2008). As part of Bellina's (2003) study, she took molds and produced high-quality resin replicas that she examined under a microscope. Using a digital microscope in the field provided a more expedient technique for examining the surface, however the low-powered microscope did not provide the fine-grained detail of Bellina's technique. Additionally, determining the polish can be difficult and some surface-wear on the bead may be related to use-wear and not necessarily due to polish (Kenoyer, personal communication, 2012). For this reason, recording of the exterior surface was limited to determining the degree of polish (low-luster, medium polish, or high polish), the presence of any grinding striae, and wear patterns that my be related to a bag polish technique (Figure 4.2). However, in practice these latter two attributes were difficult to determine and not discussed in depth. Future studies may wish to investigate this aspect of the agate and carnelian beads in more detail.

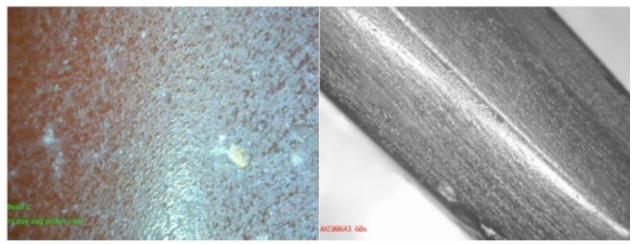



Figure 4.2: Digital microscope image of a bag-polished bead (left) and a bead with grinding striae (right).

## Type of drill

The shape of the drill perforation was also noted as a means of identifying the drill type. As with the bead shapes noted above, I referred to previous drill types noted by Beck (1928) and the Harappan Bead Code System to assist with my classifications. I recorded the shape of the

drill, and when possible how the bead was drilled. Determining the specific drill used to perforate the beads involved taking impressions of the drill hole and examining the impression with the SEM, or digital microscope (discussed below). Due to limited time and finances, SEM was not used extensively on the agate and carnelian beads. However, the garnet beads employed a diverse set of drilling techniques and SEM was used to examine these in more depth (see Chapter 8). The different drill types encountered are listed in Figure 4.3. With the exception of the Type 4 double conical drill, all the drill types involved straight cylindrical drills typical of the diamond-drilling technique.

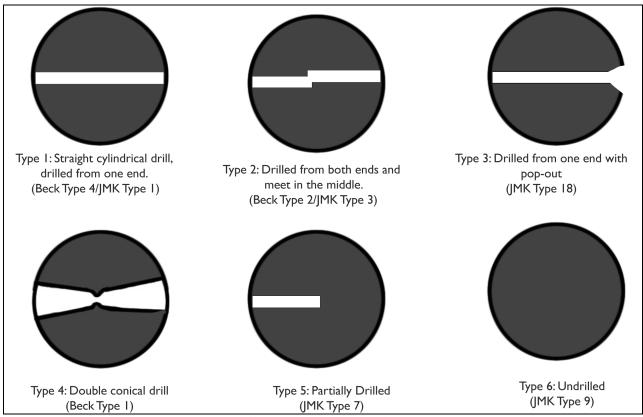



Figure 4.3: Different drill types identified in the study.

In Bellina's study of agate and carnelian beads from South and Southeast Asia, she used multiple lines of evidence to determine the overall quality and complexity of a bead including the raw material type, polishing method, and shape (2001, 2003, 2007). A modified version of this method was used in the current study. Bead shapes were classified as simple or complex based on Bellina's assessment that geometric and spherical shapes were more simple to produce, while other beads types like faceted beads were more technically difficult and therefore complex. In order to determine the overall quality of the beads, I took into account the bead shape, raw material. For example, a group of hexagonal faceted bicones from Phum Snay had uneven facets and some beads were made from a raw material with dark or light inclusions; these beads were rated as low quality. Comparatively, a group of faceted bicone beads from Village 10.8 were more finely made with even facets and a higher quality stone; these beads were classified as high quality. These classifications were not made in the field, but instead based on photographs and notes from the field. For this reason, the assessments of bead quality may be considered to be preliminary. Nevertheless, I believe these quality assessments are broadly comparable between sites and will be discussed in more depth in Chapter 5.

#### Measurements

Measurements were taken on all the stone beads and selections of the glass beads. All measurements were taken with digital calipers and were recorded in millimeters. Length refers to the measurement across a bead from one hole to the other, reflecting the orientation of the bead if it were strung. Width denotes the measurement of the bead at its widest part perpendicular to the bead hole. For tabular beads, a thickness measurement was taken to reflect this dimension. For beads with tapered ends, such as bicones, I also took minimum measurements on the area around

the perforations at the narrowest part of the bead as well as a maximum measurement along the middle. Lastly, measurements were taken of the bead perforations on each side of the beads. The length, width, and perforation size was also collected for most glass beads.

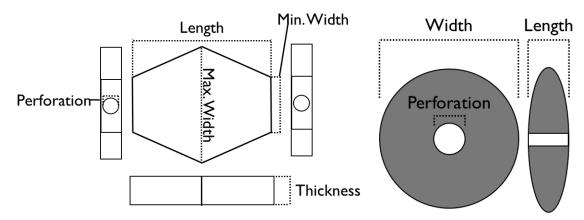



Figure 4.4:Major measurements taken on stone beads (left) and glass beads (right).

#### Methods of recording glass beads

Most glass beads in this study are of a type known as Indo-Pacific beads (see discussion in Chapter 7). Due to the overwhelming similarity of the beads encountered, patterns in the distribution of the glass beads were initially limited to bead color. It was not until compositional analysis was undertaken that clearer patterns in the glass types could be determined (discussed below). However, there were also additional attributes identified related to the manufacturing technique of the glass beads (Table 4.2, see also Appendix 7.1). Identifying patterns related to the manufacturing method did assist in the identification of a unique glass type found in Northeast Thailand that appears to have been wrapped (Chapter 7).

# Variables recorded for glass beads

- -Number of beads in entry (if recorded as a group).
- -Glass color
- -Opacity: opaque, translucent, transparent
- -Manufacturing method: drawn, wound/coiled/molded/other
- -Angle bead was cut from tube
- -Roundness factor

Table 4.2: Glass bead attributes recorded.

## Bead Shape

As with stone beads, the shape of the glass beads was also recorded. The majority of the glass beads recorded were Indo-Pacific beads. These beads are generally spherical or oblate shaped and their shape was usually recorded as "Indo-Pacific bead." However, some Indo-Pacific beads were tubular, or longer than they are wide. Still others were very small, less than 2mm and were identified as "Indo-Pacific Micro Beads." Shapes of other non-Indo-Pacific beads were also recorded, including segmented beads, and collared beads (see Chapter 7 for a more detailed discussion).

#### Glass Color and opacity

Glass colors were recorded for each glass bead. As determining color can be subjective, broad color categories were used including: red, orange, yellow, green, black, grey, brown, violet, white, cream, and clear. There were several shades of blue and distinguishing between them could be difficult. A decision was made to simply distinguish between light blue and dark blue, which was often a cobalt blue color. It was also noted if beads were opaque, when no light passed through the bead, transparent, when light passed easily through the bead, or translucent, when diffused light could pass through a bead. However, these opacity determinations were not discussed in depth in the current study.

A preliminary assessment regarding the manufacturing method of the glass beads was also recorded. As noted above, most beads were Indo-Pacific beads that were cut from long, drawn tubes. Theses types of beads have unique identifiable longitudinal striations as a result of the drawing technique (discussed in Chapter 7). A small number of beads were made using other techniques such as winding, coiling, or wrapping (Figure 4.5).

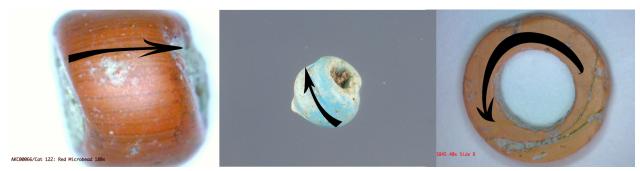



Figure 4.5: From left to right- Example of an Indo-Pacific drawn bead with longitudinal striations from the drawing technique, a coiled bead, and a wrapped bead.

Angle bead was cut from the tube and the roundness factor

In his work on Indo-Pacific beads, Francis has suggested recording two aspects of the beads in order to help assess their shape (2002: 25-26). The first is noting the angle the bead was cut from the tube, if it was cut with two straight parallel angles, if it was cut with two converging angles, or if it was cut with one angle. The roundness factor (Figure 4.6) is related to how long the cut beads were reheated. Francis notes "a low temperature and a short period of the fire will just barely round off its edges. On the other hand, a high temperature and/or a lengthy time over the fire will result in a small oblate," (2002:26). In recording beads, I found that most Indo-Pacific beads had a roundness factor of R2 or R3. However this method was helpful for identifying several beads that had an R1 roundness factor that was unique. These beads were later found to have a less common glass bead composition. When analyzing a group of similar

Indo-Pacific beads as a single entry, these attributes were not recorded as a large group of beads may have multiple different attributes.




Figure 4.6: Roundness factor for glass beads.

Reprinted with permission from *Asia's Maritime Bead Trade* by Peter Francis, Jr. Published by the University of Hawai'i Press, Honolulu.

The attributes discussed above for the glass, agate/carnelian and garnet beads were used to describe the beads examined as part of this study and begin to determine where and when identifying preliminary characteristics related to their manufacture. By looking at the distribution of these characteristics with within a site and between sites one is able to begin identifying patterns in the distributions of certain types of beads over time and space. However, many of these beads may look similar to one other but may have been made using very different stone geologic sources or glass recipes. Additionally, I wanted to determine if local stone sources were being used to produce beads, if the Period 1 and Period 2 type agate and carnelian beads were being produced from different geologic sources, or if different colors of glass beads were related to differences in their glass recipes. For this reason, compositional analysis is needed in order to come to a deeper understanding of the different types of beads in circulation.

## **Compositional Analysis**

Following analysis of the stone and glass beads in the field, a selection of the beads were for further compositional analysis. As discussed in Chapter 1, I selected glass and stone bead samples from most of the 12 sites in this study. Beads were selected to represent the range of bead diversity found at the site, but were not a statistically significant sample. Whenever possible, beads were selected from secure burial contexts, however some unique or unusual beads from non-burial contexts were also selected. Dr. Charles Higham selected glass beads from Noen U-Loke for LA-ICP-MS analysis as they represented samples that had already been exported from Thailand. Dr. Bérénice Bellina selected stone beads from Khao Sam Kaeo for LA-ICP-MS analysis as they represented beads for which she had relatively secure contextual data, but were not amongst the more unique and valuable beads in the collection of the Suthiratana Foundation.

The purpose of the compositional analysis was to determine which geologic sources were being used to produce the stone beads and which glass recipes were being used to produce the glass beads. With this additional information I would be better able to identify patterns in the distributions of specific bead types. Furthermore, identifying the presence of stone beads made using local Southeast Asian sources could indicate increasing control over the production of these materials by Southeast Asian elites. In order to identify the geologic sources used to produce the stone beads, numerous agate/carnelian and garnet geologic source samples from South and Southeast Asia were also analyzed.

LA-ICP-MS analysis was chosen as an ideal technique for analyzing archaeological artifacts as no sample preparation is required and it is virtually non destructive. A laser 50-100 microns in diameter is used on the materials, which produces a small pit barely visible to the naked eye. The analyses were performed at the Elemental Analysis Facility (EAF) at the Field

Museum in Chicago, Illinois, which is managed by Dr. Laure Dussubieux. The technique to analyze the glass and stone materials is roughly similar.

The equipment used includes a Varian (now Bruker) quadrupole ICP-MS connected to a New Wave UP213 laser unit. LA-ICP-MS is composed of three major components. The first is the laser sampling system. Samples were placed in a-chamber with continuous helium gas flowthrough and a laser beam focused on the sample. For glass beads and objects a laser 55 microns in diameter was used, while a laser 100 microns in diameter was used for garnet, agate, and carnelian samples. As the laser is ablating the sample, particles are transported via the helium gas to the second component, an argon plasma torch, which dissociates the particles into constituent ions. The final component is the quadrupole mass spectrometer. The quadrupole flight path through the spectrometer separates the ions by mass and charge before they are measured in the ion detector. Detection limits for most elements range from 10 parts per billion (ppb) to 1 part per million (ppm), with an accuracy of 5-10% depending on the elements and their concentrations. The ICP-MS was set to scan the mass range three times and average the resulting signal. This process was repeated three times, for a total of nine replicates. The nine replicates were then combined into a single average, and this process was repeated at different locations on the sample. For glass beads and objects this was repeated at four locations per sample, for garnet objects it was repeated at five locations per sample, and for agate and carnelian objects it was repeated at ten locations per sample. The locations for sampling were randomly selected from the portion of the sample that was clearly visible within the chamber. However, for samples that were visibly heterogeneous, such as banded agates, locations were selected to reflect the range of variation within the sample. The data from each of the four, five,

or ten point ablations were then averaged together to calculate elemental concentrations in each sample.

In order to obtain quantitative data, four glass standards with known compositions were also analyzed. National Institute of Standards and Technology Standard Reference Materials (NIST SRM) 610 and 612 are silica glasses made with sodium and calcium and doped with varying levels of trace elements, approximately 500 ppm for NIST SRM 610 and 50 ppm for NIST SRM 612. Corning glass standards B and D were also used for the analysis of major elements. Corning C, a lead glass, was used during analysis glass beads. During analysis, NIST SRM 610 and another glass standard were run every three to four samples in order to correct for possible instrumental drift. Silica (<sup>29</sup>Si) was used as an internal standard. As part of the calibration procedure, the Si concentration was measured for each analysis location along with all other elements. These were averaged to produce a value for the sample as a whole. The analytical protocol and calculation methods used were adapted from Gratuze (1999).

Following analysis, the concentration of elements in each sample were calculated using an excel program designed by Dr. Dussubieux with the aid of Dr. Bernard Gratuze (a detailed account of the calculations involved in this process are described in Gratuze 1999:873-874). For each sample the blank was subtracted and average values were calculated. The data was then normalized using the silica signal of the standards and corrections were made for isotopic abundance ratios and interferences.

#### Assigning stone beads to regional geological source areas

Following analysis of the stone artifacts and geologic sources samples, exploratory data analysis using principal components analysis (PCA) and bivariate plotting of elements was used to distinguish between the geologic sources and identify differences between them. Canonical

discriminant analysis (CDA) was used to assign artifacts to the geologic sources. However, prior to beginning statistical analysis, I used my own method, described below, to determine which elements were more homogeneously distributed within a sample and were therefore more ideally suited to statistical analysis. Following this, the geologic sources needed to be differentiated from one another. In order to distinguish between the sources and identify differences between them exploratory data analysis was performed using bivariate plotting of elements and principal components analysis (PCA).

Determining the heterogeneity of the elements with in a sample

As noted above, agate samples were ablated at ten points per sample while garnet beads were ablated at five points per sample. However, I discovered that many of the 55 elements were heterogeneously dispersed within the sample. This resulted in a high relative standard deviation (RSD) for the average of the ten ablations. Relative standard deviation is a measure of the precision within data analysis and is calculated by taking the standard deviation of a series of a series of values, in this case the measurements for a single element across a series of ten ablations, dividing this number by the average of the series of values and multiplying by 100.

Scholars have noted that heterogeneous objects may be difficult to characterize using LA-ICP-MS (e.g. Roll et al. 2005:60). Therefore, having a method in which to identify those elements that were more homogeneous within a sample would allow me to rely on these elements for my calculations. For this reason, I randomly selected four to five samples from each source, for a total of 62 samples, and looked more closely at the relative standard deviation produced during the ten point ablations. For each element I counted how many of the selected samples had an RSD between 0-10.99%, 11-20.99%, 21-30.99%, 31-40.99%, 41-50.99%, and over 50%. Elements were then assigned to either the less variable category (60% of samples

with an RSD under 30.5%), variable (Samples with RSD between 30.5% and 50.5%) or most variable (50% of samples with an RSD over 50.5%). Once the elements were classified in this manner, I began my statistical analyses. While I tried to rely on elements that were considered to be less variable, occasionally the use of variable or more variable elements was necessary in order to discriminate between specific sources.

Differentiating between the geologic sources

Three exploratory data methods were used to differentiate the geologic sources from one another. First, Bivariate plotting used the values from two elements to plot a simple X-Y scatterplot using Excel. This technique provided a quick visual method for identifying obvious differences between the geologic sources. This was followed by PCA in order to determine additional elements important for distinguishing between geologic sources. Lastly, **ternary diagrams** were used when evaluating the garnet compositional data. There are several species of garnet, which differ based on the major elements. These species have been sub-divided into two series in which there is fairly continuous variation (see Chapter 8). Using ternary diagrams to plot three major elements allows for a way to visualize the variation represented in the samples. This method is not used to assign the unknown artifacts to a source, but to recognize similarities and differences between the species of garnets represented.

Principal Components Analysis (PCA) was employed as an exploratory data technique on the agate, carnelian, and garnet geologic samples. For the current study, PCA was performed using the SPSS 20.0 statistical software program. The major element concentrations were converted from weight percent to parts per million, and all the data were logged (base 10). This method is ideal for examining the results of compositional analysis as it reduces a large number of correlated variables, such as the dozens of elements measured in LA-ICP-MS analysis, into a

smaller number of uncorrelated components. By reducing this large dataset into smaller components, it is easier to characterize the variation between the different geologic groups (VanPool and Leonard 2011). The first component produced accounts for the most variation within the entire dataset. The second component condenses the remaining variation in the dataset, and so on with successive components until all the variation has been accounted for. For the current study, I used the Aabel 3.0 software program to produce bivariate and trivariate scatter plots of the various components (e.g. component 1, component 2, and component 3) as a way to visualize the data. As there were often 8-10 components produced in this analysis, there were multiple scatterplots produced. In some plots, it was clear that specific geologic groups from a single source were clustering together and away from the other sources. I then consulted the factor loadings table produced by SPSS, which indicates the correlation between each variable (element) and the component. In this way I was able to narrow down the elements that were most significant and that would be used in the next phase of data analysis used to assign the artifacts to a geologic source.

Assigning stone bead artifacts to a geologic source

In the next stage of statistical analysis, the artifacts were assigned to a geologic source group using a statistical technique called **canonical discriminant analysis** (CDA). In previous geochemical compositional studies of stone artifacts, CDA was found to be the most effective method for differentiating geological sources and assigning provenience to artifacts (Law 2008; Law et al., in press). CDA begins by assuming that within a single dataset there are distinct groups, and that all possible groups are represented in these dataset (Baxter 1994: 185-6). CDA then produces discriminant functions, or linear combinations of variables that display and maximize the difference between the assigned groups. The number of discriminant functions

produced is always one less than the number of groups in the dataset. The results of CDA can then be visualized by plotting the first and second functions on a bivariate scatter plot, as these two functions are often the most useful for demonstrating the difference between groups (Baxter 1994:188). The individual members (cases) of a group are plotted by their discriminant score, "which are the values that result when discriminant functions (unstandardized canonical discriminant function coefficients) are applied to each case," (Law 2008:80). In order to more accurately measure the discrimination success between the groups, I also performed crossvalidation using the "leave-one-out" function in SPSS. In this method, each sample is left out of its assigned group and compared to the entire dataset as an ungrouped case. A cross-validation success percentage is produced, which is related to the number of cases that are correctly assigned to the group to which they belong. This method allows for a more accurate measurement of group separation (Baxter 1994; Kovarovic et al. 2011; Law 2008). When the first and second discriminant functions are plotted in a scatter plot, ideally one should have clusters of distinct, discrete groups that correspond to the known groups with no misclassifications or overlap.

The second aspect of CDA involves classifying a group of unknown samples (the stone artifacts) to the defined groups that they most closely resemble (geologic sources). As with the "leave-one-out" classification described above, these samples are treated as ungrouped cases. The mean of the defined groups' discriminant scores is called the group centroid. The discriminant score of the ungrouped cases is compared to the group centroids and their similarity or dissimilarity is determined, producing a Mahalanobis distance value. The Mahalanobis distance between each unknown case and each defined group is determined, and the ungrouped cases are assigned to the group with whom they have the smallest Mahalanobis distance value.

However, it is important to note that this group assignment does *not* mean that the cases conclusively belong to their assigned groups. CDA assumes that all possible groups are present and will always assign an ungrouped case to a group. In reality, the group assignments could change as additional geologic sources are added to the dataset. As the current study was only able to analyze a limited number of geologic sources, we should consider the group assignments to merely reflect predicted group membership. Additionally, unknown cases can easily be misclassified due to similarities between the different defined groups (geologic sources) or because the case itself is an outlier of a group. The CDA in SPSS produces two possible group assignments and the second group was considered on a case-by-case basis (Law 2008).

It is important to note that while I have tried to gather samples from as many geologic sources as possible, the present study includes only a small segment of all the possible sources that could have been used to produce agate, carnelian, and garnet beads during the Iron Age period. For this reason, the predicted group membership for the stone beads discussed in Chapters 5, 6 and 8 should be taken as provisional.

A Fisher's Exact test was used in Chapter 6 to determine if there was a difference in the agate and carnelian sources used to produce Period 1 beads versus Period 2 beads. A Fisher's Exact test is an ideal method to use with smaller sample sizes that have been classified with categorical data. A 2x2 contingency table was used to calculate a p-value (see VanPool and Leonard 2011: 250-2 for a more detailed discussion of the mathematics used to produce this value). A p-value greater than .05 means that we cannot reject the null hypothesis that two groups are equal.

Using compositional data gathered from geochemical analysis using LA-ICP-MS, I was able to determine the probably general geologic source area for the majority of the

agate/carnelian beads in this study. The geologic source area for a small portion of the agate/carnelian beads as well as the garnet beads is still unknown. These data, combined with the attributes discussed above, allows me to identify patterns in the distribution of specific types of beads across time and space. In this way I have been able to test if Phase 1 and Phase 2 beads were produced using the same raw material source, if there is evidence for the use of Southeast Asian raw material sources to produce beads, and if certain bead shapes were made from the same or different geological sources areas. The resulting patterns were then used to interpret the role of the Mekong Delta sites in the distribution of specific bead types.

## Determining glass types

Compositional analysis of glass beads was more straightforward than for the stone beads. There have been extensive compositional studies of the different types of glass in circulation in Southeast Asia during the Iron Age period (e.g., Dussubieux 2001; Dussubieux and Gratuze 2003; Lankton and Dussubieux 2006, 2013). A recent study by Lankton and Dussubieux (2006) has provided a detailed table of glass compositional groups and their reduced compositions that have been further refined in more recent publications (e.g. Dussubieux et al. 2010; Lankton and Dussubieux 2013; Lankton et al. 2008). LA-ICP-MS data from the glass artifacts in the current study were compared with these previously identified groups and then assigned to glass type based on the similarities in their compositions.

These glass types were made from three important components: silica, fluxing agents, and stabilizing agents. The primary component of glass is silica ( $SiO_2$ ), the source of which was generally sand or quartz pebbles (Henderson 2000). Because silica has a high melting point, fluxing agents were added in order to facilitate the melting process. The two principal fluxing agents were potassium oxide (potash,  $K_2O$ ) or sodium oxide (soda,  $Na_2O$ ). These fluxing agents

were often derived from plant sources, however soda from mineral deposits was also used (Henderson 2000). The last important component of glass was the stabilizer, which prevented the glass from dissolving in water; the most common stabilizers were lime (calcium oxide, CaO) and Alumina (aluminum oxide, Al<sub>2</sub>O<sub>3</sub>) (Turner 1956). Other elements found in glass include intentionally added opacifiers or coloring agents, such as antimony, tin, cobalt, copper, lead and iron, along with naturally occurring impurities. Glass recipes can vary depending on the different types and amounts of silica, fluxing agents, and stabilizers used.

Some glass recipes are also identified with a specific time period, region, or workshop. However, this is not always clear as recipes can be used in multiple locations and over hundreds of years. Furthermore, a single glass production workshop may use several different recipes to make glass beads (Lankton and Dussubieux 2006). Nevertheless, LA-ICP-MS allows for the identification of the different glass recipes used to produce the glass artifacts examined in this study. Generally the assignment of the glass artifacts to different glass types was clear-cut. However, I occasionally used bi-variate scatterplots or PCA to distinguish between different glass types whose compositions were not immediately clear.

Compositional analysis of glass beads was especially effective for identifying patterns in the distribution of different glass types that were not immediately obvious by looking at the bead attributes alone. The identification of specific glass bead types at sites also allows for their placement into broader glass bead exchange networks linking areas within mainland Southeast Asia and between South Asia and Southeast Asia.

#### **Determining the drilling methods of garnet beads**

In addition to recording bead attributes and examining bead compositions, I also examined the drilling methods used on the garnet beads by taking impressions of the bead

perforations and examining these under a scanning electron microscope (SEM). Previous studies have found that drilling methods are culturally specific (Kenoyer 1992a), therefore identifying the drilling method used to produce a bead may give one clues as to when and where a bead may have been produced. Impressions also allow for a clearer view of the bead perforation size and shape (Figure 4.7c), which is useful for understanding the type of drill used to make the bead.

While I had initially intended to use this methodology on both agate/carnelian and garnet beads, I narrowed the focus to garnet beads alone due to time and financial restrictions.

Furthermore, visual inspection and preliminary examination using a digital microscope of the bead perforation impressions from the agate and carnelian bead showed that nearly all appeared to have been drilled using a double-diamond drill (see discussion in Chapter 8). However, the bead perforations on the garnet beads were unique and warranted further inspection.

Impressions of the bead perforations or holes were taken in the field using silicone dental impression material following a method pioneered by Gorelick and Gwinnett (1978) and further revised by Kenoyer and Vidale (1992). The impression material is forced through the bead hole and allowed to set, when removed it producing a perfect cast of the interior of the bead hole (Figure 4.7a-c). Impressions were brought back to the United States and a selection was chosen for SEM analysis in the Biological & Biomaterials Preparation, Imaging, and Characterization Laboratory (BBPIC) at the University of Wisconsin-Madison. The impressions were first mounted on a metal slide and glued in place using colloidal silver and left to dry over night (Figure 4.7d). Once at the BBPIC, the samples were placed in a SeeVac Auto conductavac IV sputter coater, and evenly coated with 10-20 nanometers of a 60/40 gold/palladium alloy. Without this metal coating, the electrons in the SEM could damage the sample and cause imaging problems.

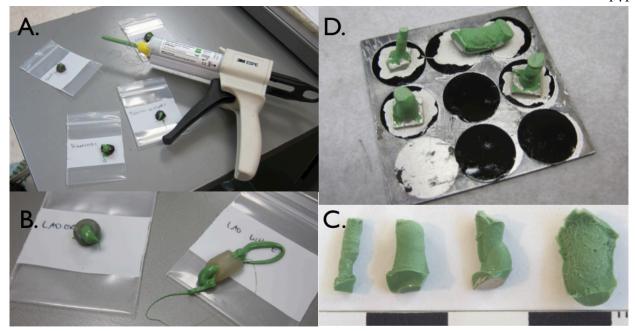



Figure 4.7: A. Taking impressions of stone bead perforations using dental impression gun. B. The beads with impression material while it is setting. C. The impressions after removal from the beads showing the different shapes of the interior perforations. D. The impressions mounted on a slide for SEM.

Once coated, the samples were then placed in the SEM chamber and images of the impressions were taken at multiple magnifications from 25-35x magnification, approximately 50x magnification and approximately 100x magnification. Previous research has highlighted the effectiveness of SEM in determining the drilling method (see Gorelick and Gwinnett 1988; Gwinnett and Gorelick 1986, 1998; Gorelick et al. 1996). However more recent research has emphasized the importance of using high-resolution SEM images to determine the different drill types (Kenoyer and Vidale 1992; Kenoyer 1997). SEM images were compared with SEM images from earlier experimental studies that tested different drilling techniques on a variety of stone materials. These comparisons provided a preliminary hypothesis regarding how the garnet beads were drilled. However, these must be further tested using experimental studies on garnet. These studies are ongoing, however they are outside the scope of this dissertation.

Examining the drilling methods used to produce garnet beads allows for the identification of a two distinct garnet bead types that were manufactured using two different drilling methods and with two distinct distributions. Examination of the drilling method also allows me to address questions regarding the control over distribution, as the identification of a drilling method that may be related to local manufacture has implications for control over the production of beads by Southeast Asian elites.

#### **Conclusion**

In this chapter I have discussed the various methods used to identify patterns in the distribution of stone and glass beads over time and space. By recording visible attributes on stone and glass beads I am able to identify preliminary patterns regarding the distribution of Phase 1 and Phase 2 beads, the distribution of various agate/carnelian and garnet bead shapes, and the distribution of different Indo-Pacific bead glass colors. These preliminary patterns were then explored further by using compositional analysis on a selection of stone and glass beads. This type of analysis allows for an identification of the geologic sources used to produce the stone beads and the different glass recipes used to produce the glass beads. Using a variety of statistical methods, the geologic sources were distinguished from one another and stone artifacts were assigned to these sources. These data, when combined with the attribute data, allow for the identification of more specific bead types that share both a raw material or glass recipe, as well as a variety of other characteristics including shape, color, or manufacturing method. Examination of garnet bead perforations using dental impression material and SEM analysis provide another layer of information regarding the manufacturing methods used to produce these beads. By identifying these specific bead types over time and space, I have been able to detect patterns in their circulation. These patterns can then be related to the changing exchange

networks and increasing participation in trade by elites at sites in the Mekong Delta. In the next three chapters I will discuss the results of these analyses in more detail, beginning with the agate and carnelian beads.

# Chapter 5: Agate and Carnelian Beads- Contextual and Morphological Analysis

Agate and carnelian beads make up only a small portion of the total bead collection examined as part of this study, however the information collected will fill the next two chapters. In this chapter I focus on contextual, morphological, and metric data from agate and carnelian beads to address the following questions:

- Based on morphological and metric analyses, is there a pattern in the types of beads being traded over time and space and can these patterns be linked to trade networks?
- Does evidence from trade patterns suggest increasing involvement in the trade of these objects by elites in the Mekong Delta?

I begin this chapter by discussing the identification and variations in rocks that are referred to as agate and carnelian. I also review the archaeological and ethnographic evidence on major production techniques used in the manufacture of agate and carnelian beads in Southeast Asia and South Asia. The complexity of the technology and knowledge required to produce these beads adds value to their status as prestige objects. I then review previous studies of agate and carnelian beads in Southeast Asia, explore how the study of agate and carnelian beads has changed over time, and discuss hypotheses raised by more recent studies about the production and trade of agate and carnelian beads. I also provide and overview of Southeast Asian sites believed to have been agate and carnelian bead manufacturing centers. Following this review, I begin my discussion of the agate and carnelian beads included in this study and their context. Nearly all of the beads were found in burial contexts and the beads appear to have had a restricted distribution within sites, with only a few people at a site having agate and carnelian

beads and an even smaller number having a large quantity of these beads. This evidence also indicates that certain sites had greater access to agate and carnelian beads, or even certain types of beads, than others.

Following the contextual discussion, I examine bead types, quality, and perforation in more detail, noting patterns in the distribution of certain types of beads across the region. Two scholars (Bellina 2007; Theunissen 2003) have already noted patterns in the types of beads being traded over time and space, which is believed to be related to different trade networks and possible local production of beads. By evaluating the bead shapes and perforation sizes of the agate and carnelian beads I aim to show that beads from different sites in Cambodia and Thailand appear to have been a part of different trading networks. These data is then used to inform the geochemical study of agate and carnelian beads, which I discuss in Chapter 6.

## **Agate and Carnelian: Definitions**

Agate and carnelian are sedimentary rocks made largely of microcrystalline quartz, and fall into the same family as flint, chalcedony, jasper and chert (Luedtke 1992). The term agate has generally been used to describe banded translucent rocks that are usually shades of white, grey, and brown. These colors are sometimes enhanced by bead-makers using a dying process, resulting in darker browns and blacks that archaeologists have called onyx (Francis 2002; Kenoyer 2003). Carnelian refers to translucent rocks that range in color from yellow, orange, and deep red, which are naturally occurring or enhanced by heating the stone (Kenoyer 2003). The formation processes of agate, carnelian, and chert in general are not well understood. However it is believed that most agates form in small cavities of other rocks, growing from the outside in (Luedtke 1992). Microcrystalline quartz is made primarily of silica with very small amounts of other impurities; it is these trace elements that aid in geochemically identifying geological

sources and assigning provenience to agate and carnelian artifacts. Agate and carnelian can be found today in primary contexts as part of host rocks, including dolomite or limestone, although many of the more outstanding examples of agate and carnelian form in volcanic rocks, specifically basaltic lavas (Luedtke 1992:33). However, agate and carnelians can form in any rock or even organic substance where silica can accumulate. Many agate and carnelian samples are also found in large secondary gravel deposits after having eroded from their host rock. These widespread secondary deposits can sometimes contain materials from multiple source locations, which can make "fingerprinting" these sources difficult. Samples from the same source can also have a high degree of variability (Luedtke 1992: 51). For this reason, it is important to know the geological context of the source being analyzed.

In addition to agate and carnelian, a small number of clear quartz beads were also examined. Clear quartz is part of agate and carnelian family and can sometimes be found in the same deposits with carnelian and agate. Although, clear rock quartz from South India does not occur with agates and instead comes from other deposits, (J. Mark Kenoyer, personal communication, 2012), quartz beads appear to be worked at the same Indian beadmaking sites as agate and carnelian (Francis 2002). Based on these similarities, I included a single quartz crystal bead from Angkor Borei with the rest of the agate and carnelian materials.

#### **Agate and Carnelian Bead Production**

Several ethnographic studies of modern beadmaking in India allow for a detailed understanding of the process of beadmaking from raw material acquisition to the finished product (Kenoyer et al. 1991, 1994, Possehl 1981; Roux 2000; Vidale et al. 1992, 1993).

Recording the manufacturing waste and debris from the different stages of production can assist with identifying bead workshops in the archaeological record (Figure 5.1). The first stage

involves the acquisition of raw materials, which can be either found on the surface or mined. Currently in Gujarat, state contractors control the mining of high-quality carnelian nodules. The raw materials are then sold to middlemen or sent to bead workshops in Khambhat (Kenoyer et al. 1991). After mining, the agate and carnelian nodules must then be dried in the sun for several months to remove any remaining moisture. Following this process, the nodules are slowly heated to approximately 340° C to remove any remaining moisture and allow the nodules to be more easily flaked and shaped. Large nodules are often sawn into smaller pieces in order to maximize raw material. The nodule can then be flaked into bead roughouts. In India a specialized technique is used called inverse indirect percussion, in which the bead nodule is held against an iron stake in the ground and hit by a hammer made from water buffalo horn to remove flakes and shape the bead. A bead roughout can continue to be shaped by chipping off additional small flakes or being ground on a grinding stone (Kenoyer et al. 1991; Kenoyer 2003).

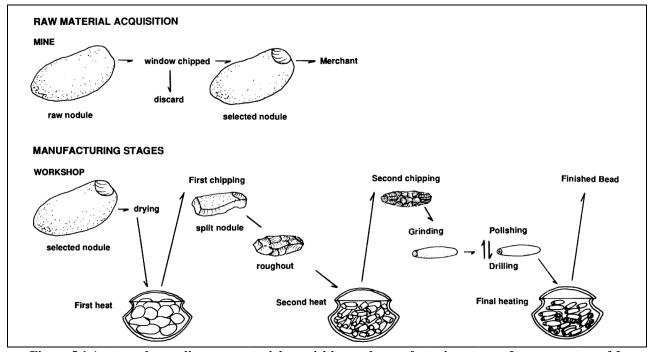



Figure 5.1 Agate and carnelian raw material acquisition and manufacturing stages. Image courtesy of J. Mark Kenoyer from Kenoyer, Vidale, and Bhan 1991: Figure 2.

The next steps in the process, perforation, heating, and polishing, can be performed in almost any order. Although, beadmakers often performed the polishing and heating stages after perforation, as many beads were broken during this process (Kenoyer 2003). In the perforation stage, the bead is drilled to create a hole. In India, a diamond tipped drill has been used to perforate beads since at least 600 BC (Kenoyer 2003). Modern Indian bead drillers use a special drill with two diamond chips mounted on the drill tip (Kenoyer and Vidale 1992). These two chips mounted on the side of the iron drill tip result in a straight cylindrical perforation, with distinctive spiraling striations from the drilling. The size of the drill hole depends on the size of the diamond chips and the overall mounting on the drill tip. This double-diamond technique appears to be limited to South Asian bead makers, specifically peninsular India and is still widely practiced in Khambhat, Gujarat (Kenoyer et al. 1991). Single diamond drills, in which a single diamond chip is inserted into the tip of a metal drill, were also used. However this drill type is more commonly found in the northern and western parts of Asia (Kenoyer 1992, 2003).

Most beads are currently polished using electrically powered abrasive wheels or tumbling barrels. However, in the past polishing was done by hand, for example by using abrasive wheels made from a mixture of insect resin (lac) and emery or corundum powder that were hand turned on a lathe (Kenoyer et al. 1991). Polishing could also be done using grinding stones or abrasive on a wooden or leather surface (Kenoyer 2003). These processes were time consuming, taking several hours or several days per bead. However, a mass polishing technique was introduced, perhaps as early as the third century BC (Kenoyer et al. 1991:54), in which a group of beads was put in a watertight leather bag with water, and abrasive powder or corundum. The bag was then rolled back and forth for 15 days, producing beads with a low-luster polish (Kenoyer 2003).

Agate and carnelian beads could also have their color enhanced by additional heating.

Brown and white agate beads can be soaked in a sugar solution, which saturates the stone (Kenoyer 2003). When heated, the sugar darkens the stone to a deep brown or black. Additional heating of carnelian beads can produce a deep red-orange color due to the iron present in the stone; heating a bead seven to ten times can produce a deep red color (Kenoyer et al. 1991).

As part of my research I recorded various aspects of the agate and carnelian beads that are related to different steps in their manufacturing process. Understanding the techniques used to make agate and carnelian beads is important for identifying similarities and differences in the production process that may be related to specific workshops or manufacturing locations. Furthermore, it is important to understand the technological complexity involved in manufacturing beads so that discussions of production in Southeast Asia can be critically evaluated.

# Agate and Carnelian Beads in Southeast Asia

Agate and carnelian beads have been found across sites in Southeast Asia. Early scholars assumed that all these beads were made in South Asia and imported to Southeast Asia. However as early as the early 20th century, scholars suggested that beads might have also been locally produced in Southeast Asia. In this section, I will describe some of the previous research on agate and carnelian beads in Southeast Asian, concluding with a discussion on local production.

#### Previous research on agate and carnelian beads in Southeast Asia

Early scholars and researchers were aware of the importance of stone beads found at sites in Southeast Asia, with many immediately recognizing the connections with India or even Rome (e.g., Gardner 1937). This earliest phase of research focused on describing beads and classifying them based on size, shape, and raw material type. The primary purpose was to identify

similarities to beads found at other sites, in order to recognize trade contexts and loosely date sites to a specific time period (e.g., Beck 1930). Other scholars identified similarities between ancient beads they found and others being used and worn by modern populations (Evans 1928, 1932), indicating the potential for curation of ancient beads.

In the 1970s and 80s, looting and subsequent excavation at the sites of Ban Don Ta Phet (BDTP) and Khlong Thom (also called Khuan Luk Pad) turned up additional unusual and diagnostic types of beads. These beads highlighted the intensive trade between India and Southeast Asia (Glover 1989). A leaping lion bead found at BDTP showed a striking similarity to lion pendants found at Gandharan reliquaries in northern India. The presence of this type of bead at BDTP suggested the presence of both Indian goods and ideologies in Southeast Asia prior to the presence of sculpture and images (Gupta 2003).

Beads from BDTP were amongst the first to undergo comprehensive scientific study (Basa et al. 1991; Basa 1991; Gorelick et al. 1996; Williams 1984). Analysis of the drill holes on stone beads showed that they were made with a diamond tipped drill, analogous to those found in India. Furthermore the beads showed evidence for hand polishing (Gorelick et al. 1996). A unique bead type frequently called etched beads was also found at Ban Don Ta Phet, among other sites. Etched beads generally refer to a bead that has a design painted on the surface.

Recent scholars have sometimes used the term "alkaline-etched" to refer more specifically to the beads that have been painted with a sodium carbonate mixture (Glover and Bellina 2001). These beads may have also been referred to as Bleached Carnelian as the surface decoration does not in fact etch the surface as explained by Kenoyer (2003). I use the term etched as it is commonly used in Southeast Asia, although technically not accurate. Etched beads from BDTP were examined using an Energy Dispersive X-Ray Analyzer (EDAX) in order to identify the recipe

used to etch the bead (Glover 1989: 25-6). Unfortunately, it was difficult to determine the presence of sodium carbonate using this technique.

Etched beads were initially produced during the Harappan period during the 3<sup>rd</sup> millennium BC, but were also made during a middle period (300 BC- AD 200) and late period (AD 600-1000) in India (Beck 1933). Several scholars have classified these beads based on their surface designs and the period in which they were found (Beck 1933; Dikshit 1949). The majority of etched beads in Southeast Asia are either carnelian with a white design or a dark brown or black agate with a white design (Glover and Bellina 2001, 2003). A recent study (Glover and Bellina 2003) has examined the distribution of these beads and found that while many are similar to those found in India (Beck middle period Type 1 and 2), there are also numerous types of beads that are common in India but rarely found in Southeast Asia and vice versa.

Research on the different types of beads found in Southeast Asia and their distribution has been greatly expanded by Bérénice Bellina (2001, 2003, 2007; Bellina and Glover 2004). In her work, Bellina examined over 1400 beads from South and Southeast Asia (2001, 2003, 2007). Approximately one third of the beads were from protohistorical Indian sites, including Hastinapur and Ahichhatra in northern India, Mahurjhari, Ujjain, and Mahurjhari, in central India, Sisupalgarh in eastern India, and Brahmagiri, Arikamedu, Karaikadu, and Kodumanal in southern India. The remainder of the beads (n=860) were from 28 Southeast Asian sites in Bali, Java, Malaysia, Myanmar, the Philippines, Thailand, and Vietnam. Bellina examined the raw material, size, shape, perforations, and finishing techniques of all of these beads in order to identify patterns in the types of beads found at South Asian sites versus Southeast Asian sites, as well as beads from sites dating to different time periods in South and Southeast Asia. As she

was unable to take beads out of the country, she also had high-quality resin replicas produced for further microscopic examination in order to determine the finishing processes used to produce the beads. Her results show that beads can be divided into two periods that relate to the two phases of interaction with South Asia discussed in Chapter 3 (Bellina and Glover 2004). Period 1 type beads are primarily found during Phase 1 exchange with South Asia (approximately 4<sup>th</sup> century BC – 2<sup>nd</sup> century AD) and are predominantly finely made beads with complex shapes, such as faceted beads, etched beads, and animal shapes. Bellina has observed that some of these Period 1 beads found in Southeast Asia had no analog in India and yet they were produced with high-quality Indian manufacturing techniques. Bellina argues that these beads are reflective of beads "made-to-order" by Southeast Asian elites who preferred beads in a local style. Some of these unique shapes include octagonal faceted bicones or flattened elliptical collar beads. Bellina (2003: 293) contends that these beads are reflective of an "active role" that Southeast Asians took in their exchange relationships with Indian traders and craftsmen; "by giving direction to Indian production and supply, Southeast Asian elites also took part in shaping the inter-regional exchange network."

During the second phase of interaction with South Asia, Bellina observed a shift to Period 2 type beads that were generally of a lower quality beads but appearing in higher quantities. Although she notes that there continued to be smaller quantities of the high-quality Indian beads seen during the earlier period. Bellina (2003, 2007) notes that the mass-produced lower-quality beads coincide with the emergence of Southeast Asian manufacturing centers. For this reason, she argues that these lower-quality beads were local productions and that elites at important trading centers were keeping the higher-quality beads for themselves and trading the lower quality materials inland. While this hypothesis is one interpretation for the pattern of agate

and carnelian beads observed, the assumption that all lower quality beads were produced in Southeast Asian workshops is problematic as the evidence for local production of these materials is not clear. Lower quality beads could have been produced at workshops in South Asia and imported to Southeast Asia. The distribution of lower-quality and higher-quality beads could also reflect cultural choices regarding the types of beads being traded or deposited in burials. While I agree with Bellina's observations regarding the presence of Period 1 and Period 2 types beads, there is not yet enough archaeological evidence to support her interpretation regarding local production of lower-quality agate and carnelian beads.

In his dissertation research Robert Theunissen (2003) traced the movement of specific bead types, such as black and white banded agate beads, long faceted carnelian beads, and notched agate pendants among other shapes, over time and space identifying potential trade networks and changing trade over time. More details on these networks will be discussed at the end of this chapter. However it is important to note that like Bellina, Theunissen also observed a difference in the types of beads being traded and their distribution over time. During the early Iron Age, Theunissen argues that beads were likely exchanged between elites at a smaller scale, with little evidence that elites within a core area were controlling the trade. Evidence for this is largely due to a lack of evidence for direct Indian-controlled trade. As beads had to travel through diverse communities overland, by river, and along the coast Theunissen (2003: 141) argues that local elites "must have exercised some control." However, during the later Iron Age phase Theunissen notes that there are large quantities of beads at sites in the Thai-Malay peninsula that were on a direct route from India. Theunissen (2003: 143-6) contends that Indian traders might have controlled bead distribution at these sites. However inland areas of mainland Southeast Asia appear to have been exchanging beads through an "elaborated prestige goods

exchange" network, with three sites that could potentially control trade of both imported objects as well as local production of artifacts.

However, upon more critical examination, it is evident that the sites that he proposes were controlling trade, Oc Eo in Vietnam, sites in the southern Thai peninsula, and a site near the central Thai agate source of Ban Khao Mogul, have little archaeological evidence to support this conclusion. For example, proposed manufacturing sites at Oc Eo and on the Thai-Malay peninsula have been heavily looted. While some manufacturing debris, as well as unfinished and undrilled beads have been identified in these locations they do not come from clear workshop contexts. Furthermore, the proposed site near the Ban Khao Mogul agate sources has not been identified. Nevertheless, Theunissen and Bellina's work has done much to expand our understanding of the agate and carnelian bead trade in Southeast Asia. Their evidence shows that Southeast Asian people were directly involved in the consumption, distribution, and possibly the production of important prestige objects, in contrast to early views that assumed Southeast Asians had taken a more passive role in trade relations.

## Determining the value of agate and carnelian beads

Several scholars have also discussed the value or symbolism of agate and carnelian beads found in Southeast Asia (Bellina 2007; Gupta 2003; Theunissen 1997, 1998, 2003, 2007; Theunissen et al. 2000). The scholar Sunil Gupta has suggested that beads were more than trade and status objects, but could in fact be interpreted as objects of "proto-Indianization," (Gupta 2003: 395). In his model, the etched and animal-shaped beads were specifically related to an aniconic religious tradition in circulation several centuries prior to the appearance of Indian religious sculptural traditions. Gupta (2003: 404) argued that this seemingly "sudden" appearance of Indian iconography "could only happen when the indigenous communities of

Southeast Asia had prior knowledge of the religious ideas underlying Buddhist/Brahmanical iconography." However, Gupta also notes that many Southeast Asian people most likely projected their own beliefs and ideologies on to the agate and carnelian beads as well.

On a smaller scale, Theunissen (1997, 1998, 2003, 2007; Theunissen et al. 2000) has examined the impact of agate and carnelian beads at sites in Northeast Thailand. Theunissen analyzed agate and carnelian beads found in Iron Age burials at Noen U-Loke. In order to assess the impact of the introduction of agate and carnelian beads on the Noen U-Loke community, Theunissen first had to identify the value of the beads in relation to other grave goods; evaluating them based on their physical traits, rarity of material, exoticness, the labor used to produce the object, and the skill/technology needed to produce the artifact. In his evaluation, agate and carnelian beads were the highest valued objects placed in graves, even more valuable than gold beads (Theunissen 2003: 199-203). The notched agate pendants may have been especially valued, as several were repaired after having been broken and continued to be used as ornaments prior to inclusion in the burial (Theunissen 1998).

Theunissen (2003: 211) also found that burials with agate and carnelian beads also had other high-value grave goods, making them amongst the wealthiest at the site. However, these beads were not highly restricted to only the most elite members of the community, as nearly one third of the burials contained these beads. Instead, Theunissen argues the inclusion of these beads signaled a shift in mortuary ritual at Noen U-Loke. During the earlier phases of the site communal feasting appears to have been associated with "the pursuit of prestige and power;" however with the appearance of agate and carnelian beads "there is a shift to the storage of wealth as durable and wearable personal ornaments used for the acquisition and expression of prestige, social status, and power" (Theunissen 2003: 220).

Bellina (2007) also supports the idea that in the earliest period of exchange with India, agate and carnelian beads were important symbolic status markers for elites. However, she points out that we know very little about the nature of exchange and the relationships in which prestige goods were exchanged. Despite this, a preexisting network that circulated Dongson drums, and nephrite earrings indicate the presence of a shared prestige good value system in place prior to contact with South Asia (Bellina 2007). During the later period of interaction, an increasing number of lower-quality beads appear at sites in Southeast Asia, which Bellina assumes are local products. In this case, Bellina (2007: 72) argues that the higher-quality Indian beads may have been perceived as more valuable than local productions that "have been stripped of any Indian cultural aspect." These lower quality beads were traded inland to communities that did not have direct access to the higher-quality imports. I will return to these ideas below, however it is important to note that Noen U-Loke, which was peripheral to the major prestige good networks, still received high-quality agate pendants (Theunissen 2003).

Although we may never know how Southeast Asian people perceived these artifacts, agate and carnelian beads were important prestige objects and appear to have been used to mark status within a community. The current study adds to this evidence by showing specific evidence for the unequal distribution of artifacts both within individual cemeteries and between sites. At sites like Prohear and Noen U-Loke, agate and carnelian beads appear to have been more highly valued than gold (Theunissen 2003; Reinecke et al. 2009). Furthermore, previous research has highlighted that morphological and metric analysis of beads can tell us about different trade networks, control over trade, and phases of trade. In the next section I will test these ideas against the agate and carnelian dataset that I collected in Cambodia and Thailand.

## Local production of agate and carnelian beads in Southeast Asia

Several scholars have argued for local production of agate and carnelian beads in Southeast Asia, however most of the evidence for production has been found in disturbed contexts and excavations at workshop sites have not produced enough data to allow us understand how production was organized. Nevertheless, most scholars agree that some form of bead manufacture was taking place in Southeast Asia (Figure 5.2). Several of these sites also have evidence for glass beads production, which will be discussed in more detail in Chapter 7.

Several scholars have hypothesized about how bead manufacturing came to be practiced in Southeast Asia. Bellina (2007: 73) has suggested that the Indian craftsmen living and working at Khao Sam Kaeo may have been invited there by Southeast Asian elites, due to the fact that many beads found at the site were unusual types produced for a "local elite" but using high-quality Indian techniques. Later historic documents also discuss the presence of Indian trade guilds within Southeast Asia (Bellina 2007:53; Francis 2002). The technological complexity of bead production and the long apprenticeship required to make beads likely prohibited Southeast Asians from learning this craft. However, it has been noted that if some beadmakers had settled in Southeast Asia they may have been able to pass on these skills to local craftsmen (Glover and Bellina 2011:40-1).



Figure 5.2: Map of Southeast Asian sites with evidence for bead production.

Kuala Selinsing, Malaysia

Kuala Selinsing, located in peninsular Malaysia, was one of the first sites where evidence of local production was found. Ivor Evans (1932) reports that carnelian beads were the most

common type found at the site. In addition to finished pieces, there were also unfinished beads that were polished but had no perforation or had a perforation but were not yet polished. However, he did not find any raw material and so hypothesized that semi-finished beads were sent to the site and finished there (Evans 1932:91). Francis reports that agate and carnelian waste material have been found at the site more recently, in addition to possible grinding stones used to shape or polish beads (2002: 142).

## Oc Eo, Vietnam

Louis Malleret reported over 10,000 beads from Oc Eo, unfortunately less than 1000 of them came from his excavations while the rest were from looted contexts. Malleret also found evidence for local production of stone beads, predominantly quartz and amethyst but also agate/carnelian and garnet (see Chapter 8 for a discussion of garnet bead production at Oc Eo). Evidence for this is found in unfinished and undrilled beads. Malleret (1962: 147) also notes the presence of flakes that may have been from the drilling process.

## Khlong Thom/Khuan Lukpad, Thailand

The site of Khlong Thom or Khuan Lukpad is located in Krabi province on the Thai-Malay peninsula. The site is known for its large number of stone and glass beads, primarily from a looted context (Veraprasert 1992). During excavation at the site numerous undrilled stone beads were found, indicating some type of manufacture at this location. Veraprasert (1992: 156) also reports a large "rectangular core stone" (10cm x 3cm) found amongst looted materials stored at the local Wat, from which pieces may have been flaked off to make beads. The large and diverse sets of artifacts from this site have lead several scholars to describe it as an important trade center or entrepôt. There have been no radiocarbon dates, however based on similarities of

artifacts it is believed to have been inhabited from the late centuries BC to the early centuries AD (Veraprasert 1992: 159). More recent work on glass production at this site (see Chapter 7) points towards dates ranging from the 1<sup>st</sup>/2<sup>nd</sup> century-7<sup>th</sup> century AD (Lankton and Dussubieux 2013).

## Giong Ca Vo, Vietnam

Giong Ca Vo is a Sa Huynh culture burial site located near the Mekong Delta and Ho Chi Minh City, dated to approximately 400 BC (Higham 2002). A very large quantity of jewelry, and especially carnelian and jade beads and objects, has been found at this site. Bellina (2007: 54-5) reports that a small number of knapping flakes found near the burials could indicate the presence of itinerant Indian craftsmen producing beads. Also notable is a carnelian earring with projections, known as a ling ling-o ear ornament, a local Sa Huynh artifact made in a non-local material, which may also suggest some kind of local production (Nguyen Kim Dung 2001). Nephrite blocks indicate that there may have been local production of nephrite ear ornaments and other objects at Giong Ca Vo as well (Hung et al. 2007).

#### Khao Sam Kaeo, Thailand

Khao Sam Kaeo is located on the Kra Isthmus in the Thai-Malay peninsula. As noted in earlier chapters, Khao Sam Kaeo is believed to have been an important urban trading center, dating to the 4<sup>th</sup>-2<sup>nd</sup> centuries BC. As with other sites discussed in this section, Khao Sam Kaeo was heavily looted. However numerous undrilled and unpolished, but shaped beads have been discovered from this site. Also present are chunks of agate and carnelian raw material, as well as very roughly shaped beads (Bellina 2007; Glover and Bellina 2011). Finished products show high-quality Indian manufacturing techniques, such as diamond drilling and hand-polishing and traditionally Indian bead styles. This has led Bellina to argue that Khao Sam Kaeo was a

manufacturing center likely inhabited by Indian craftsmen (Bellina 2003, 2007; Glover and Bellina 2011). It should be noted that Bellina has not ruled out the presence of local Southeast Asian beadmakers, but suggests they likely would have had to undergo a lengthy apprenticeship with Indian beadmakers (Glover and Bellina 2011).

# Buni Region, Java

The Buni cultural complex is found in western Java, and consists of a series of looted graves with carnelian and gold beads, a few fragments of Indian Rouletted ware, and other objects (Bellwood 2007). Bellina (2003: 289, 2007) has also mentioned the presence of unfinished beads at this site, which she suggests could have been made from local agate and carnelian sources located further inland.

# Myanmar

Myanmar is home to numerous semi-precious stone sources suitable for use in bead manufacture, including agate and carnelian (Campbell Cole 2003). Beadmakers in the Samon Valley region may have exploited local carnelian, chalcedony, and fossil wood sources to make beads found in burial sites in this area and bead roughouts and unfinished beads have been found at sites throughout this region (Campbell Cole 2003; Moore 2007). Additionally, Bead roughouts and raw material have been found near the Pyu sites of Thaton and at Sriksetra in Lower Myanmar (Campbell Cole 2003). Ancient beadmakers also etched or line-decorated agate, carnelian, and especially fossil wood beads, which is still practiced in Myanmar today, and believed to have been introduced to this region via influence from South Asia (Moore 2008).

Other sites with unfinished beads or raw materials

There are several other sites that have been briefly referenced as having evidence for unfinished beads and therefore could potentially be locations of bead manufacture. These include Muang Thong (Ko Kho Khao) in peninsular Thailand (A. Srisuchat 1996:268), Bukit Maris in Sarawak, Malaysia (Francis 2002:147), and Phu Khao Tong in peninsular Thailand (Chaisuwan 2011:87; Chaisuwan and Naiyawat 2009:99). Glover (1987: 89) reports seeing unfinished beads while visiting the village of Ban Plai Nam that may have come from the nearby site of Don Pacha in west-central Thailand. Survey in the Lopburi province region of central Thailand also identified fragments of agate and carnelian on the surface of the site of Dong Marum (Fiorella Rispoli, personal communication 2012) (Figure 5.3). The site of Ban Khao Mogul, also located in Lopburi province has also been discussed as a possible raw material source of agate and carnelian (discussed further in Chapter 6).



Figure 5.3: Image of agate and carnelian fragments from the surface of Dong Marum, Thailand. Collected by the Thai-Italian Lopburi Regional Archaeological Project during the 1993 survey in the Lopburi region.

Photo courtesy of Fiorella Rispoli.

Although the sites above are suggestive of bead production, I feel we must evaluate the evidence more critically. Ethnographic studies of contemporary bead production workshops have highlighted the large quantity of waste material produced during bead manufacturing, which often results in multiple dumps of lithic debitage (Vidale et al. 1993). Ethnoarchaeological work has identified patterns in the dumps from agate and carnelian bead production that can be used to distinguish between different types of workshops (Kenoyer et al. 1991; Vidale et al. 1993). Some sites have been classified as possible bead production centers simply due to the presence of unfinished beads. We can imagine, for example, that some if beads were being exported and sold by weight, that some unfinished beads would be included as a means of increasing the price. There are still many questions about the type and extent of bead production taking place at these sites. Were partially finished beads brought to Southeast Asia to be finished or did all stages of manufacturing take place in Southeast Asia? Were workshops attached to elites or working independently? While many of these questions will remain unanswered without additional archaeological research, we can begin to understand the nature of bead production and exchange through compositional analysis of the beads themselves.

## Agate and Carnelian Beads: Results from Contextual and Morphological Analyses

Over 200 agate and carnelian beads were examined as a part of my dissertation research. Appendix 5.1 lists all of the agate and carnelian beads in this study, their context, measurements, morphological information, and assessment of quality. Most of the beads in this study came from burial or cemetery contexts. In this section I argue that mortuary evidence points toward the differential distribution of agate and carnelian beads within burials. Burials with many beads could be markers of high status or an important member of a community. Furthermore, it appears that not all sites had equal access to agate and carnelian beads, indicating the presence of

multiple bead trade networks. I also argue that morphological and metric analysis points toward two groups of beads that may be related to different phases of trade with South Asia as defined by Bellina and Glover (Bellina 2003, 2007; Bellina and Glover 2004). The distribution of certain shapes or types of beads across space may also indicate specific trade networks or connections between different communities. Taken together, these data show that higher-quality beads appear to be more strongly associated with the earlier phase of trade, while lower-quality beads are more widespread and associated with intensified trade with South Asia during the later Iron Age.

# Context and Chronology for the Agate and Carnelian Beads

In this section I will review the contextual data for agate and carnelian beads from mortuary contexts at seven sites: Angkor Borei, Phnom Borei, Prohear, Village 10.8, Phum Snay, Ban Non Wat, and Promtin Tai (Figure 5.4). I will then consider the beads from Khao Sam Kaeo, Bit Meas, and Krek 52/62, which came from non-burial contexts, as well as a carnelian nodule discovered at Prei Khmeng (Figure 5.4). Beads from two sites are not considered: stone beads from Noen U-Loke were not recorded and the only carnelian bead from Prei Khmeng was on display in a museum exhibit and unavailable for study. Table 5.1 lists the beads sites discussed in this chapter, their dates, and the quantity and context of beads from each site.

| Site Name          | Date                                        | Beads<br>from | Burials with agate and carnelian | Beads<br>from Non- |
|--------------------|---------------------------------------------|---------------|----------------------------------|--------------------|
|                    |                                             | Burial        | beads/Total                      | burial             |
|                    | 200 7 G + 7                                 | contexts      | number of burials                | Contexts           |
| Angkor Borei,      | 200 BC – AD                                 | 2             | 2/111                            | 9                  |
| Cambodia           | 200                                         |               |                                  |                    |
| Ban Non Wat,       | 420 BC – AD                                 | 38            | 12/125                           | 19                 |
| Thailand           | 600                                         |               |                                  |                    |
| Bit Meas, Cambodia | Contemporary                                | 0             | N/A                              | 2                  |
|                    | with Prohear?                               |               |                                  |                    |
| Khao Sam Kaeo,     | 4 <sup>th</sup> -2 <sup>nd</sup> century    | 0             | N/A                              | 18                 |
| Thailand           | BC                                          |               |                                  |                    |
| Krek 52/62,        | 2 <sup>nd</sup> half of the 1 <sup>st</sup> | 0             | N/A                              | 1                  |
| Cambodia           | millennium BC                               |               |                                  |                    |
| Phnom Borei,       | 200 BC- 0                                   | 1             | 1/9                              | 1                  |
| Cambodia           | BC/AD                                       |               |                                  |                    |
| Phum Snay,         | 350 BC – AD                                 | 37            | 2/23                             | 13                 |
| Cambodia           | 200                                         |               |                                  |                    |
| Prei Khmeng,       | 1 <sup>st</sup> -6 <sup>th</sup> centuries  | 0             | 1/*                              | 1 (carnelian       |
| Cambodia           | AD                                          |               |                                  | nodule)            |
| Prohear, Cambodia  | 200 BC – AD                                 | 6             | 5/52                             | 0                  |
| ,                  | 200                                         |               |                                  |                    |
| Promtin Tai,       | 500 BC – AD                                 | 33            | 6/35                             | 14                 |
| Thailand           | 500?                                        |               |                                  |                    |
| Village 10.8,      | 400 BC – AD 50                              | 50            | 10/50                            | 3                  |
| Cambodia           |                                             |               |                                  |                    |

Table 5.1: List of the quantity of agate and carnelian beads from each site discussed in this chapter.

The bead from the Prei Khmeng burial was not available for study.

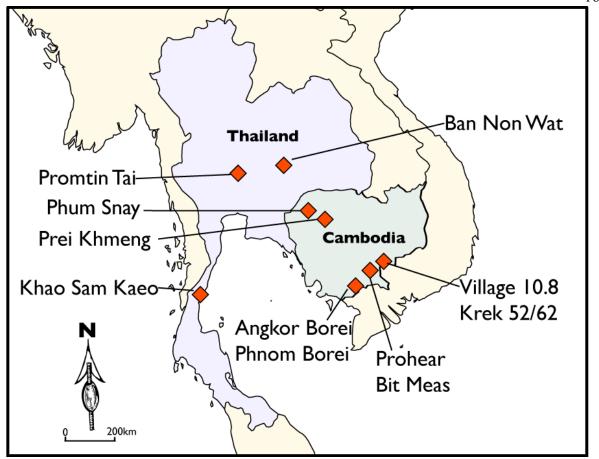



Figure 5.4: Map of sites with agate and carnelian beads analyzed as part of this study.

## Angkor Borei

A portion of a densely packed cemetery was excavated at the site of Angkor Borei over the course of two field seasons. A 5x7 meter unit was opened in the central and most elevated part of the site, near the modern Wat Komnou pagoda (Figure 5.5). The stratigraphy in this area was quite deep, with some units extending almost 7 meters below the surface (Stark 2001). Radiocarbon dates for the cemetery range from 200 BC – AD 200 (Stark 2001). Unfortunately, the tightly packed cemetery, occasionally with burials cutting into one another, prevents a more detailed seriation within this 400-year time span (Miriam Stark, personal communication 2011). However, 111 primary inhumation and secondary burials were recovered from this excavation (Ikehara-Quebral 2010). Most burials included pig skulls and globular earthenware jars as grave

offerings (Stark 2001). Only two burials contained carnelian beads (n=2) that were directly associated with a skeleton. The remaining agate and carnelian beads (n=9) as well as one quartz bead, were found within the cemetery matrix, but not associated with a specific burial.

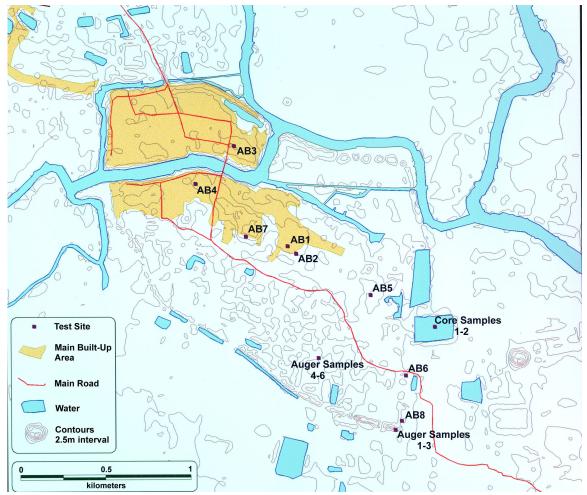



Figure 5.5: Angkor Borei contour map. Excavation units are listed as AB1-8. AB7 denotes the Vat Komnou cemetery excavation. Constructed by John Shearer, Anne Dunlop and Jane Drummond; first published in Bishop et al. 2003.

Burial 44 contained a female aged 35-44 and a portion of a young adult that was sorted in the lab (Ikehara-Quebral 2010). In addition to the rough spherical carnelian bead, animal bones, 13 gold beads, a garnet bead and glass beads in the pelvic and chest area (n=6) were found associated with this burial, making it one of the richer burials uncovered at Angkor Borei (Ikehara-Quebral 2010: 38). Furthermore, oxygen isotope analysis on the dental enamel from

Burial 44 indicates this person was non-local and may have immigrated from the north (Krigbaum et al. 2007 as discussed in Ikehara-Quebral 2010: 43-44). Burial 51 contained the burial of a small child, 1.5-2 years old. Four pottery vessels, animal bones, and a spherical carnelian bead were found associated with the body, as well as a possible bracelet on the right arm (Ikehara-Quebral 2010).

Angkor Borei is notable for the large number of skeletons recovered during excavation; nevertheless the quantity and quality of grave goods in these burials is low when compared with other contemporary sites. As only a small portion of the 300-hectare site has been excavated, it is possible that more richly equipped burials are located in a different portion of the site, however this can only be resolved with continued excavations.

#### Phnom Borei

Small excavations were undertaken at Phnom Borei, a small hill located seven km south of Angkor Borei (Figure 5.6). A 2x4 meter trench was opened, but extended to include a burial found during excavation. Additional burials were discovered in this extension, with nine total burials uncovered in Layer 5 (Phon 2004). As at Angkor Borei, the skeletons were buried close to one another and accompanied by few grave goods, primarily small pottery vessels, similar to those found at Angkor Borei (Figure 5.7). Two spherical carnelian beads were found during excavation, however only one bead was associated with a skeleton and found under the chin (Phon 2004). Radiocarbon dating from organic materials found in layers 3 and 4 are contemporary with Angkor Borei, dating from the last few centuries BC (Phon 2004). Unfortunately, detailed analyses of the skeletons have not yet been undertaken, however preliminary results indicate that males, females, and at least one child were buried in this small cemetery. As noted earlier, Miriam Stark has suggested that Phnom Borei may be part of the

larger Angkor Borei habitation sphere. If this is the case, the burials at Phnom Borei seem to have fewer beads than at the Wat Komnou cemetery at Angkor Borei. However, the samples size for the site is too small to make broad conclusions.



Figure 5.6: Angkor Borei and Phnom Borei as viewed from Google Earth.



Figure 5.7: A group burials found at Phnom Borei. Photo by Phon Kaseka.

#### Prohear

Although the Iron Age cemetery at Prohear was heavily looted, 52 burials were uncovered over two field seasons (2007-2008). Of these burials, five included agate and carnelian beads. Six beads from three burials were available for study. Two agate beads were found with Burial 2, the burial of a male dating from burial phase II (100/50 BC- AD 100). In addition to these agate beads and numerous other artifacts (Table 5.2), his burial also contained a unique phallic stone pestle that was placed between the legs (Reinecke et al. 2009). Burial 24 contained two carnelian beads, over 150 glass beads, iron bracelets on both arms, as well as gold and silver jewelry (Reinecke et al. 2009). As with Burial 2, this burial dates to burial phase II.

| Prohear              | Sex    | Time Period    | Beads found | Associated grave goods           |
|----------------------|--------|----------------|-------------|----------------------------------|
| <b>Burial Number</b> |        |                | in burial   |                                  |
| Burial 2             | Male   | Phase II       | Two agate   | Glass beads, Dongson drum        |
|                      |        | 100/50 BC – AD | beads       | fragments, iron and bronze       |
|                      |        | 100            |             | bangles and weapons/tools,       |
|                      |        |                |             | gold jewelry ceramics, and a     |
|                      |        |                |             | stone pestle.                    |
| Burial 4             | Female | Phase II       | Two agate   | Dongson drum, bronze buffalo     |
|                      |        | C14 dates: 44  | beads       | bracelet, ceramics, gold and     |
|                      |        | BC – AD 51     |             | silver jewelry, and glass beads. |
|                      |        |                |             | Additional carnelian beads.      |
| Burial 24            | N/A    | Phase II       | Two         | Over 150 glass beads, iron       |
|                      |        | 100/50 BC – AD | carnelian   | bracelets, and gold and silver   |
|                      |        | 100            | beads       | jewelry.                         |

Table 5.2: Burials from Prohear with agate and carnelian beads recorded in this study.

Two agate beads were identified within Burial 4, perhaps the richest burial uncovered at Prohear. This burial of a female over 40 years old, perhaps the oldest person at the site, was found with her head resting inside a Dongson drum (Figure 5.8), a large bronze "buffalo bracelet" (Reinecke et al. 2009) (Figure 5.9). Carnelian beads were also reported from this burial, but they

were unavailable for study. Charcoal from inside the bronze drum has been radiocarbon dated to 44 BC – AD 51, placing this burial within the second burial phase.



Figure 5.8: Heng Sophady restores a bronze Dongson drum from Burial 4 with the skull of an older female still inside.



Figure 5.9: Bronze buffalo bracelet from Burial 4.

The burials at Prohear are amongst the richest discovered in Southeast Asia and many burials also contained gold beads and other artifacts (Reinecke et al. 2009). Agate and carnelian beads are found less frequently than gold objects and are strongly associated with extremely rich burials. Four of burials with agate and carnelian beads were described as among the "wealthiest" or amongst the highest status burials at the site (Reinecke et al. 2009: 59). Only three burials (Burials 3, 12, and 40) considered to be "wealthy" contained no beads at all. These results suggest that not everyone had equal access to agate and carnelian beads and that these objects were used as status symbols. Andreas Reinecke has also noted that in general, burials women contained more beads and jewelry than those of men (Reinecke et al. 2009: 52).

#### Village 10.8

The cemetery at Village 10.8 contained approximately 50 burials. However, determining the exact number of individuals is difficult due to the highly acidic lateritic soil, which led to poor bone preservation. Unfortunately, this also means that additional details regarding the age, sex, and health of the people from Village 10.8 are not available. Burials were identified by the layout of pottery and associated artifacts, as it appears that many people were buried in a wooden coffin or tree trunk. Thirteen jar burials are believed to contain the burials of children (Heng et al., In Press). Fragments of a Dongson drum were found on the surface of the site, but unlike at Prohear, none were found in burials. Radiocarbon dates from this cemetery range from 400 BC-AD 50; however there has not been a seriation of the burials within this time frame, so they are treated as a single unit. Of the 50 burials from Village 10.8, ten burials contained agate and carnelian beads (Table 5.3). Fifty-three beads total were examined, of which only three were not from a clear burial context.

| Village<br>10.8 | Beads found in burial | Associated grave goods                                |
|-----------------|-----------------------|-------------------------------------------------------|
| Burial          |                       |                                                       |
| Number          |                       |                                                       |
| Burial 1        | Six carnelian beads   | Six garnet bead, two glass beads, broken ceramics,    |
|                 |                       | iron tools and an iron bangle                         |
| Burial 3        | 14 carnelian beads    | Two garnet beads, glass beads, iron bangle, and       |
|                 |                       | broken ceramics.                                      |
| Burial 4        | One carnelian bead    | One garnet bead, an iron tool, broken ceramics.       |
| Burial 15       | Two carnelian beads   | Glass beads, broken pottery                           |
| Burial 25       | Two carnelian beads   | One glass beads, broken pottery                       |
| Burial 26       | One carnelian bead    | Broken ceramics                                       |
| Burial 28       | Eight agate beads     | Glass rings, broken ceramics, iron tools, one garnet  |
|                 |                       | bead.                                                 |
| Burial 34       | Two carnelian beads   | One garnet bead, glass beads, an iron bangle, an iron |
|                 |                       | spade, broken ceramics.                               |
| Burial 37       | Four carnelian beads  | Broken ceramics, an iron spade?                       |
| Burial 48       | 10 carnelian beads    | Iron dagger, knife, iron bangles, iron spade, and     |
|                 |                       | broken ceramics.                                      |

Table 5.3: A list of burials with agate and carnelian beads from Village 10.8 and their associated grave goods.

Age and sex are unknown.

Most of the burials with beads contained only one or two beads, however there were four burials with larger numbers of agate and carnelian beads. Burial 28 contained eight agate beads, the only agate beads thus far uncovered at Village 10.8. Burial 1 contained 6 carnelian beads, while Burial 48 contained 10 small, finely made carnelian beads. Burial 3 had 14 carnelian beads, the largest number found at the site. These burials also contained a larger number of grave goods than burials with smaller quantities of beads and may represent elite burials. Although a higher quantity of agate and carnelian beads were found at Village 10.8, these burials appear to be less richly equipped than those found at Prohear.

# Phum Snay

As at Prohear, the cemetery at Phum Snay was also heavily looted. However, salvage excavations in 2001 and 2003 uncovered 23 burials and 50 agate (n=1) and carnelian (n=49)

beads. Thirteen beads were not directly associated with a burial and the remaining thirty-seven beads were found in two burials. Two carnelian beads were found as part of Burial 2, the burial of a middle-aged or older male. In addition to the beads this burial also contained a sun bear tooth, several iron weapons and unidentified iron objects, iron bangles, bronze bells, and several pottery vessels (O'Reilly et al. 2004). The remaining 35 beads all came from Burial 9, the burial of an adult woman that contained a large quantity of pottery vessels, glass beads, 35 carnelian beads around her chest, waist, and wrist, a gold bead, spindle whorls, bronze rings and bangles, iron tools, and a bronze bowl covering part of her face. A complete "Phimai Black" ceramic bowl, a unique pottery type found predominantly in Northeast Thailand, was also included amongst her offerings (O'Reilly et al. 2004; Domett and O'Reilly 2009).



Figure 5.10: Looted beads from Phum Snay currently stored at Wat Bo in Siem Reap, Cambodia. Scale in

While it seems that the distribution of agate and carnelian beads was extremely restricted at Phum Snay, it is important to take into account the small sample size and heavy looting that

has taken place at this site. Thousands of additional glass and stone beads have been identified from looted contexts (Lapteff 2006). Many of these looted objects were collected by a concerned monk in Siem Reap and stored at the Buddhist temple of Wat Bo in Siem Reap, Cambodia (Figure 5.10). Subsequent excavations at Phum Snay by a Japanese-Khmer team have uncovered additional burials with beads, including the burial of a female with 27 carnelian beads (Yoko Nijima, personal communication, 2012).

## Promtin Tai

Thirty-six individuals in 35 burials have been uncovered in excavations at the site of Promtin Tai. Forty-seven agate and carnelian artifacts were identified in these excavations of which 14 were not associated with a specific burial. The remaining 33 beads belonged to six burials (Table 5.4). Unfortunately, there are no radiocarbon dates for this site and the burials are described simply as belonging to the Iron Age (500 BC- AD 500). However, the burials were divided into an earlier or later period based on burial depth (Liu 2012). All of the burials with agate and carnelian belonged to the earlier period.

| Promtin Tai                 | Sex     | Age                                    | Beads found in                             | Associated grave goods                                                                                                     |
|-----------------------------|---------|----------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Burial Number Burial 9      | Unknown | Adult,<br>20+                          | One agate bead                             | One greenstone bead and glass beads                                                                                        |
| Burial 16                   | Female  | 20-22                                  | One agate bead                             | A bronze ring, bronze bell, animal bones, and shell.                                                                       |
| Burial 18 (two individuals) | Unknown | Adult,<br>20+ and<br>child,<br>3.5-4.5 | One agate bead                             | Greenstone beads, glass<br>beads, bronze bracelets, an<br>iron spear, and ceramics.                                        |
| Burial 19                   | Unknown | 9.5-11                                 | 14 agate beads                             | Glass and greenstone<br>beads, a bronze bracelet, 2<br>bronze rings, ceramics, two<br>spindle whorls, and animal<br>bones. |
| Burial 20                   | Female  | 20-25                                  | Five agate beads and seven carnelian beads | Greenstone and glass beads, ceramics, and shell.                                                                           |
| Burial 32                   | Unknown | Subadult                               | Four carnelian beads                       | Greenstone beads, glass beads, ceramics, a bronze bangle and an iron tool.                                                 |

Table 5.4: Burials with agate and carnelian beads from Promtin Tai.

Four burials contained fewer than five agate or carnelian beads. However two burials contained a large number of beads and are considered to be amongst the richest at the site (Thanik Lertcharnrit, personal communication, 2012). Burial 19 was the burial of a child, age 9.5-11, who had linear enamel hypoplasia (LEH) on their teeth indicating some kind of childhood physiological stress (Kathy Liu, personal communication, 2012). Burial 20 was of an adult female, age 20-25 who also experienced LEH as a child. Despite their apparent status differences, isotope analysis indicates that their oxygen and carbon isotope signatures were "normal" compared to the rest of the population at Promtin Tai (Kathy Liu, personal communication, 2012). However, we must also consider that the burials at Promtin Tai may not be contemporary with one another and that the discrepancy in grave goods could be related to a

trend towards increasing wealth in burials, similar to what is seen at sites in Northeast Thailand (Higham 2011b). Additional seriation of burials as well as radiocarbon dates would assist with understanding the burials at Promtin Tai.

## Ban Non Wat

At the site of Ban Non Wat the majority of burials (n=125) date to the Iron Age 1 period (420-100 BC). There were only 23 partial and complete burials from the later Iron Age periods, although these are better represented at the nearby site of Noen U-Loke (Higham 2011b). From 12 burials, 38 agate and carnelian beads were recovered, while 19 beads were uncovered from non-burial contexts (Table 5.5). Most burials were dated to Iron Age Period 1 (420-150 BC) although one burial dates to Iron Age Period 2 (150 BC- AD 200), and 4 to Iron Age Period 4 (AD 400-600).

| Ban Non Wat<br>Burial<br>Number | Sex      | Age                 | Beads found in<br>burial | Associated grave goods |
|---------------------------------|----------|---------------------|--------------------------|------------------------|
| Burial 36                       | Female   | Old adult? (female) | Five carnelian           | Glass beads,           |
| Iron Age                        | (1)      | Mid-adult (male)    | beads, two agate         | ceramics, gold bead,   |
| Period 4                        | Male (1) |                     | pendants (one            | spindle whorl,         |
|                                 |          |                     | broken into two          | bronze bangle          |
|                                 |          |                     | pieces)                  | fragment               |
| Burial 115                      | Unknown  | Adult               | One agate                | Pottery vessel         |
| Iron Age                        |          |                     | pendant                  |                        |
| Period 4                        |          |                     |                          |                        |
| Burial 203                      | Unknown  | Young adult         | 16 agate beads,          | Bronze bangles,        |
| Iron Age                        |          |                     | two agate                | earrings, and finger   |
| Period 4                        |          |                     | pendants                 | rings, and glass       |
|                                 |          |                     |                          | beads                  |
| Burial 259                      | Female   | Young adult         | Three carnelian          | Ceramics, glass        |
| Iron Age                        |          |                     | beads                    | beads, water buffalo   |
| Period 1                        |          |                     |                          | limb bone, red ochre   |
| Burial 266                      | Unknown  | Infant              | One agate                | Bronze bangles,        |
| Iron Age                        |          |                     | pendant                  | bronze ring, glass     |
| Period 4                        |          |                     |                          | beads and ceramics     |

|                     | <del></del> |                     | T               | 1/                             |
|---------------------|-------------|---------------------|-----------------|--------------------------------|
| Burial 312 Iron Age | Female      | Young adult         | One agate bead  | Ceramics, bronze bangles, bone |
| Period 1            |             |                     |                 | earplug, spindle               |
| 1 Criod 1           |             |                     |                 | whorl, pig limb                |
|                     |             |                     |                 | bones                          |
| Burial 317          | Unknown     | Young-mid adult     | One agate bead  | Ceramics, tin bead,            |
| Iron Age            | Chikhowh    | Toung inia addit    | One agate bead  | socketed iron tools,           |
| Period 1            |             |                     |                 | bivalve shell                  |
| Burial 321          | Unknown     | Adolescent/Adult?   | One agate bead  | Ceramics, shell                |
| Iron Age            |             | 1100100011011100101 | one again state | bangles, shell ring,           |
| Period 1            |             |                     |                 | red ochre, pig limb            |
|                     |             |                     |                 | bones, and spindle             |
|                     |             |                     |                 | whorls                         |
| Burial 322          | Female      | Young adult         | One agate bead  | Ceramics, iron                 |
| Iron Age            |             |                     |                 | blade, red ochre,              |
| Period 1            |             |                     |                 | shell earplug,                 |
|                     |             |                     |                 | spindle whorl, and             |
|                     |             |                     |                 | pig bones                      |
| Burial 343          | Unknown     | Infant (9 months)   | One agate bead  | 7 ivory bangles,               |
| Iron Age            |             |                     | _               | glass beads,                   |
| Period 1            |             |                     |                 | ceramics, shell                |
|                     |             |                     |                 | pendant, bronze                |
|                     |             |                     |                 | bangles, iron tool,            |
|                     |             |                     |                 | iron artifact, red             |
|                     |             |                     |                 | ochre, grey clay,              |
|                     |             |                     |                 | pig limb bones                 |
| Burial 356          | Female      | Older adult         | One agate bead  | Glass beads, iron              |
| Iron Age            |             |                     | and one         | bangles, shell                 |
| Period 1            |             |                     | carnelian bead  | bangle, spindle                |
|                     |             |                     |                 | whorls, ceramic                |
|                     |             |                     |                 | vessels, stone adze,           |
|                     |             |                     |                 | and red ochre                  |
| Burial 471          | Female      | Young-mid adult     | One agate bead  | Ceramics, iron                 |
| Iron Age            |             |                     |                 | knife, bronze                  |
| Period 2            |             |                     |                 | bangle?, spindle               |
|                     |             |                     |                 | whorl, and a golden            |
|                     |             |                     |                 | earring                        |

Table 5.5: Burials at Ban Non Wat with agate and carnelian beads.

Although most burials contained three or less beads, two burials are notable for their larger bead collections and both date to the Iron Age Period 4. Burial 36 was disturbed and contained both male and female adults, as well as two agate pendants and five faceted carnelian

burials. Burial 203 contained a partial burial of an adult with bronze bangles and finger rings, glass beads, two agate pendants, and a necklace of 16 agate barrel beads. Charles Higham has noted that during the very early Iron Age (Period 1) "[w]e have not found any evidence for hierarchic social distinctions," (2011b: 133). Therefore, it may be difficult to interpret the presence of beads with these burials as an indicator of social status. Mortuary wealth increased overtime at Ban Non Wat, so while Burials 36 and 203 appear impressive when compared to other burials with beads, they were not amongst those with the most grave goods at Ban Non Wat during Iron Age Period 4 (Higham and Kijngam 2012). However, agate and carnelian beads do appear to have been an important and high value object; at the nearby contemporary site of Noen U-Loke agate and carnelian beads are believed to have been high-value goods with the agate pendants perhaps acting as "symbols of status, or perhaps rank," (Theunissen 2007: 376). Therefore, I argue that while the people in Burial 36 and 203 may have not been amongst the wealthiest, they may have held important positions within their community.

Conclusions regarding the distribution of agate/carnelian beads in burials

Agate and carnelian beads are not evenly distributed within burials at sites in Cambodia and Thailand. At all of the sites, only a small portion of the total burials contained agate or carnelian beads. Table 5.6 summarizes the total number of burials uncovered from each site discussed above, and the number of burials with agate or carnelian beads found at each site.

Agate and carnelian bead were uncommon artifacts and only a few members of each community had access to these materials.

|              |                      | <b>Burials with</b>   |
|--------------|----------------------|-----------------------|
|              | <b>Total Burials</b> | agate/carnelian beads |
| Angkor Borei | 111                  | 2 (2%)                |
| Ban Non Wat  | 160                  | 12 (7.5%)             |
| Phnom Borei  | 9                    | 1 (11%)               |
| Phum Snay    | 23                   | 2 (9%)                |
| Prohear      | 52                   | 5 (10%)               |
| Promtin Tai  | 35                   | 6 (17%)               |
| Village 10.8 | 50                   | 10 (20%)              |

Table 5.6: The quantity and percentage of burials with agate and carnelian beads amongst the sites studied.

However, it should be kept in mind that there are numerous factors that could have influenced these counts. As noted above, evidence from sites in Northeast Thailand suggest that burials during the early Iron Age did not have clear status differences, but that mortuary wealth increased over time. It is not clear that this pattern is found elsewhere in Southeast Asia, however we must keep in mind the impact of changing mortuary rituals over time. At sites like Angkor Borei, the densely packed cemetery and intercutting of burials may have made it difficult to associate beads with specific burials. Furthermore, at sites like Prohear and Phum Snay, heavy looting of burials has left only a portion of burial contexts intact. Lastly, only small portions of all of these sites have been recovered. It is possible that additional burials with larger numbers of agate and carnelian bead exist, but they were not uncovered during excavation.

Despite these factors, less than one quarter of all burials at each site contained agate and carnelian beads. Furthermore, many of the burials with beads also had additional unique objects that highlighted them as high status individuals, such as Burial 4 from Prohear, the burial of an elderly female with her head inside a Dongson bronze drum.

Several burials had very high numbers of agate and carnelian beads in comparison to the other burials within their community (Table 5.7). Although the sex of all the burials is not known, it is striking that several of these burials are of women. Table 5.8 lists a table identifying

the number of male and female burials with and without agate/carnelian beads. While this table demonstrates the number greater quantity of female burials with beads, full interpretation of this pattern is hampered by a small samples size and 23 unsexed or subadult burials that also contained agate and carnelian beads. As noted above, during the more recent Japanese-Khmer excavations an additional female burial from Phum Snay was uncovered that contained over two-dozen beads. Additionally, in March 2012 I examined a collection of agate and carnelian beads from the site of Phum Sophy, located in Banteay Meanchey province near the site of Phum Snay, which contained the burial of a female with over 200 carnelian beads. Mortuary data from Prohear indicates that women's burials contained more beads and jewelry than men's burials. I am not yet sure how to interpret these data, however a similar pattern has been observed with the glass bead data, discussed further in Chapter 7. These burials will be considered together and discussed in more depth in Chapter 9.

| Site Name    | Burial<br>Information | Total number of agate beads | Total number of carnelian | Sex        |
|--------------|-----------------------|-----------------------------|---------------------------|------------|
|              |                       |                             | beads                     |            |
| Ban NonWat   | Burial 36             | 2 agate                     | 5 carnelian               | Female and |
|              |                       | pendants                    | beads                     | male       |
| Phum Snay    | Burial 9              | N/A                         | 35 carnelian              | Female     |
|              |                       |                             | beads                     |            |
| Promtin Tai  | Burial 19             | 14 agate beads              |                           | Female     |
| Promtin Tai  | Burial 20             | 5 agate beads               | 7 carnelian               | Female     |
|              |                       |                             | beads                     |            |
| Village 10.8 | Burial 3              | N/A                         | 14 carnelian              | Unknown    |
|              |                       |                             | beads                     |            |
| Village 10.8 | Burial 28             | 8 agate beads               |                           | Unknown    |
| Village 10.8 | Burial 48             | N/A                         | 10 carnelian              | Unknown    |
|              |                       |                             | beads                     |            |

Table 5.7: Table of burials with large quantities of beads.

|                | With beads | Without beads |
|----------------|------------|---------------|
| Male burials   | 3          | 156           |
| Female burials | 11         | 104           |

Table 5.8: Table denoting the number of male and female burials with and without agate and carnelian beads.

Beads were not evenly distributed among the sites studied. Some sites had higher numbers and seemingly greater access to agate and carnelian beads than others. Although this could be related to the extent of fieldwork or burials uncovered at each site there are obvious differences in the access to agate and carnelian beads across the region. For example, at Prei Khmeng a large number of glass beads have been found, however only one carnelian bead, not available for study, was uncovered. This disparity may be due to the small amount of fieldwork done at this site, however this may also reflect changing trade networks and access to beads by people at this site. Prei Khmeng is one of the later sites considered as part of this study, dating from the 1<sup>st</sup>-6<sup>th</sup> centuries AD. However, the upper layers at Noen U-Loke are contemporary with Prei Khmeng and contained a large amount and variety of agate and carnelian beads (Theunissen 2007). Other sites have had more extensive excavations, and yet the quantity of beads found at these sites is fewer than at sites with smaller excavations. For example, fieldwork at Angkor Borei and Ban Non Wat have uncovered over 100 burials at each site, and yet smaller numbers of agate and carnelian beads have been recovered from these burials than at Phum Snay, which has had less than a quarter of the burials excavated. For this reason, I argue that the differential distribution of agate and carnelian beads across Cambodia and Thailand is meaningful.

The distribution of beads in burials suggests that they were restricted objects to which not all communities or individuals in the communities had equal access. Furthermore, in many cases, burials with large numbers of beads appear to have been high-status individuals based on the presence of other high status goods. These individuals appear to have had additional goods such

as glass beads and metal objects that also connected them to long-distance exchange networks. At some sites, a few burials had high-quantities of similar looking beads that may have been produced in a single workshop and transmitted to the site in a single episode (discussed below). This suggests that beads may have been traded to a site for a specific person or event. In the next section I will discuss the bead shapes and types in more detail. The distribution of different bead types over time and space will allow for a more in depth understanding of trade networks and connections between different sites.

#### Sites with beads from non-burial contexts

In addition to the sites with beads from burial contexts discussed above. Three sites in this study also contained beads from non-burial contexts. The site of Prei Khmeng is located in the Angkor region, Siem Reap province, Cambodia (Figure 5.4) and is home to a small pre-Angkorian brick tower and lintel, one of the oldest in the Angkor area. Three excavations were undertaken by the Mission Archéologique Franco-Khmère sur l'Aménagement du Territoire Angkorien (MAFKATA), a joint project between the École Française d'Extrême-Orient and Apsara Authority led by Dr. Christophe Pottier. This project uncovered several prehistoric burials and an occupation area that dates from the 1st-6th centuries AD (Pottier, personal communication, 2009; Zoppi et al. 2004). A single short, truncated bicone carnelian bead was found in burial 12221 (Figure 5.11), but unavailable for study as it was on display in a museum exhibit. However, in addition to the bead there was also small carnelian nodule or manuport that was found in a layer that dates to sometime before 400 AD (Christophe Pottier, personal communication, 2008) (Figure 5.12). Despite the presence of this nodule, there is no evidence for stone bead manufacture at Prei Khmeng.



Figure 5.11: A short truncated bicone carnelian bead from Prei Khmeng on display at the National Museum, Phnom Penh.



Figure 5.12: Front and back views of a carnelian nodule found at Prei Khmeng. Scale in cm.

A single bead spherical carnelian bead from Krek 52/62 was opportunistically included in this study (Figure 5.13). Krek 52/62 is a circular earthwork site located in the Red Soil region of Kampong Cham province, Cambodia (Figure 5.4). The bead was excavated from a unit that sectioned the inner wall and ditch of the earthwork. Numerous artifacts were found in this unit including glass bangle fragments and garnet beads, pointing towards the Iron Age date of this context (Haidle 2009).



Figure 5.13: Spherical carnelian bead from Krek 52/62. Scale in cm.

Excavations at Khao Sam Kaeo (Figure 5.4), lead by Bérénice Bellina and Praon Silapanth have uncovered agate and carnelian beads as well as evidence for production (discussed above). However, the beads from this excavation have already been acquisitioned by the local museum and were unfortunately unavailable for study. Numerous beads have been looted from the site by local villagers and now belong to a collection owned by the Suthiratana Foundation, Thailand. In an effort to give a preliminary context to some of these looted beads, Bérénice Bellina asked villagers to show her where many of the specific beads were found and these locations were recorded using a GPS (Figure 5.14). Based on the archaeological excavations at the site, Bellina has identified different types of hard stone bead production at different portions of the site (Bérénice Bellina, personal communication, 2010). On Hills 1 and 2 were bead production areas using siliceous stone and skilled Indian techniques in a style found at sites connected via the South China Sea coastal trade networks. Another siliceous stone industry using skilled Indian techniques was found on Hill 3. Lastly, Hill 4 contained beads made with using "mass production Indian-adapted techniques," in styles associated with late

prehistoric sites such as Noen U-Loke or early historic sites in the Mekong Delta (Bérénice Bellina, personal communication, 2010). 18 finished and unfinished beads from the Suthirathana collection were selected by Dr. Bellina and kindly provided by Dr. Bunchar Pongpanich, director of the Suthirathana foundation, for LA-ICP-MS analysis in the United States. (Figure 5.15).

# The distribution of bead shapes and types

Notable bead shapes

Thirty-five distinct bead shapes/types were identified and recorded, drawing heavily on Kenoyer's Harappan Bead Code (unpublished field manual) and H. Beck's bead classification system (1928). The Harappan Bead Code system was used for identifying many of the simpler bead shapes, however Beck's system allowed for a more specific identification of many of the faceted beads and other unusual shapes. Figure 5.16 lists the bead shapes recorded. Several bead shapes were identified that did not exist in either system, therefore these beads were given their own identifiers. Beck has defined measurements for short, standard, and long bead sizes (1928:4), however I found his definitions unsatisfactory for the purposes of my study. Instead, I determined that long beads were those whose length was more than twice their width, while short beads were those whose length was less than twice their width.

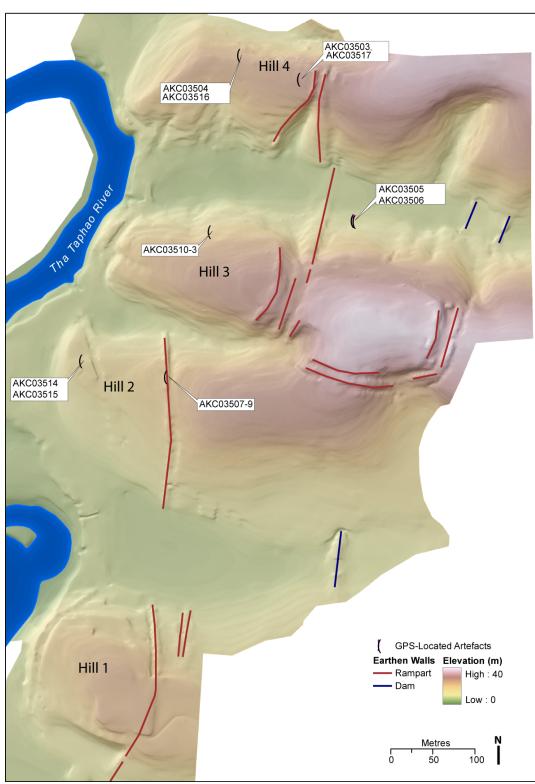



Figure 5.14: Map of Khao Sam Kaeo with general locations where beads were found. Adapted from map provided by Bérénice Bellina.

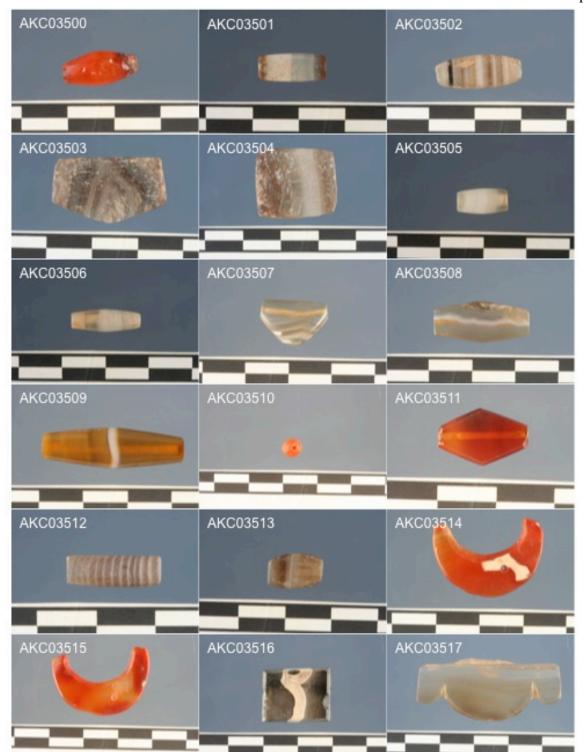



Figure 5.15: Finished and unfinished beads from Khao Sam Kaeo analyzed in the current study. Scale in cm.

| Bead Shape         | Bead<br>Code<br>System | Simple/<br>Complex | Notes                                                                           | Bead Shape                       | Bead<br>Code<br>System | Simple/<br>Complex | Notes                                               |
|--------------------|------------------------|--------------------|---------------------------------------------------------------------------------|----------------------------------|------------------------|--------------------|-----------------------------------------------------|
| Spherical •        | HBCS:<br>Type 22       | Simple             |                                                                                 | Short Oblate                     | HBCS:<br>Type 8        | Simple             | Found at<br>Village 10.8                            |
| Rough<br>Spherical | HBCS:<br>Type 23       | Simple             |                                                                                 | Flat Leech<br>Bead               | N/A                    | Complex            | Found at Khao<br>Sam Kaeo                           |
| Long Barrel        | HBCS:<br>Type 5        | Simple             |                                                                                 | Crescent                         |                        | Complex            | Found at Khao<br>Sam Kaeo                           |
| Short Barrel       | HBCS:<br>Type 4        | Simple             |                                                                                 | Hexagonal<br>Flattened<br>Bicone | N/A                    | Complex            | Bead shape<br>name used by<br>Theunissen<br>(2003). |
| Long Bicone        | HBCS:<br>Type 7        | Simple             |                                                                                 | Tabular<br>Truncated<br>Bicone   | Beck:<br>XVI D.2.f     | Complex            | Found at Khao<br>Sam Kaeo                           |
| Short Bicone       | HBCS:<br>Type 6        | Simple             |                                                                                 | Short Hexagonal Tabular Barrel   | N/A                    | Complex            | Found at<br>Promtin Tai                             |
| Bicone Barrel      | N/A                    | Simple             | Transitional<br>shape between<br>bicone and<br>barrel. Found<br>at Village 10.8 | Long Tabular<br>Rectangle        | Beck:<br>IX D.2.b      | Simple             | Found at Ban<br>Non Wat                             |
| Long Cylinder      | HBCS:<br>Type 2        | Simple             |                                                                                 | Chamfered<br>Square Disc         | Beck:<br>IX.A.2.b      | Complex            | Found at Khao<br>Sam Kaeo                           |
| Short Cylinder     | HBCS:<br>Type 1        | Simple             |                                                                                 | Rounded<br>Square                | N/A                    | Simple             | Found at Ban<br>Non Wat                             |
| Long Oblate        | HBCS:<br>Type 9        | Simple             | Found at<br>Village 10.8                                                        | Short Square                     | HBCS:<br>Type 24       | Simple             | Found at<br>Promtin Tai                             |

Figure 5.16: List of bead shapes recorded in the current study (continued below).

| Bead Shape                          | Bead<br>Code<br>System  | Simple/<br>Complex | Notes                                                                                                 | Bead Shape                           | Bead<br>Code<br>System | Simple/<br>Complex | Notes                     |
|-------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|--------------------|---------------------------|
| Long Triangular<br>Faceted Barrel   | Beck:<br>VIII<br>D.1.b  | Complex            | Found at Ban<br>Non Wat                                                                               | Broken Pendant, 1 notch              | N/A                    | Complex            | Found at Ban<br>Non Wat   |
| Long<br>Hexagonal<br>Bicone         | Beck:<br>XIII.C.2.<br>e | Complex            |                                                                                                       | Pendant, 1<br>notch                  | N/A                    | Complex            | Found At<br>Promtin Tai   |
| Short<br>Hexagonal<br>Bicone        | Beck:<br>XIII.B.2.<br>e | Complex            | Found at<br>Angkor Borei                                                                              | Broken Pendant, notch?               | N/A                    | Complex            | Found at<br>Promtin Tai   |
| Short<br>Hexagonal<br>Bicone, Rough | N/A                     | Complex            | Roughly made<br>with uneven<br>facets/shape.<br>Found at Phum<br>Snay and<br>Angkor Borei<br>(quartz) | Broken<br>Pendant, no<br>notch       | N/A                    | Complex            | Found at<br>Promtin Tai   |
| Long Octagonal<br>Bicone            | Beck<br>XIVC.2.<br>e    | Complex            | Found at<br>Village 10.8                                                                              | Long unfinished barrel               | N/A                    | Unknown            | Found at Khao<br>Sam Kaeo |
| Short Polygonal Bicone              | Beck:<br>XV.C.2.<br>e   | Complex            | 7 facets. Found at Village 10.8                                                                       | Short unfinished barrel (truncated?) | N/A                    | Unknown            | Found at Khao<br>Sam Kaeo |
| Long<br>Hexagonal<br>Faceted Barrel | Beck:<br>XIII<br>C.2.b  | Complex            |                                                                                                       | Unfinished tabular square            | N/A                    | Unknown            | Found at Khao<br>Sam Kaeo |
| Broken<br>Pendant, 2<br>notches     | N/A                     | Complex            | Found at Khao<br>Sam Kaeo                                                                             |                                      |                        |                    |                           |

Figure 5.16: List of bead shapes recorded in the current study (continued from above). Drawings by P. Madavi

while several shapes were found exclusively at only one site (Table 5.11). Beads from Ban Non Wat were recorded in only a limited fashion and so there were several beads for which I do not have specific bead shape data recorded. For example, there are 15 black and white agate beads found with AKC02071 that could be classified as either short bicones or short barrels, but require closer examination before making a final determination. Three hexagonal faceted barrels were also noted, but it is not clear if they would be classified as either long or short barrels, as measurements were not taken. Additionally, agate pendants in a variety of shapes were also noted. The bead shapes from Ban Non Wat that are noted in the tables below were those that were recorded in more detail.

It is important to note that the distribution of different bead types is not complete, as difficulties with looting and sample size has affected the presence or absence of bead types at each site. Khao Sam Kaeo was heavily looted and many additional bead types and shapes exist outside of the small number I recorded (see examples in Pongpanich 2009). More recent excavations at Phum Snay have identified 99 additional carnelian beads, of which 77 were spherical (Yoko Nojima, personal communication 2011). Excavators report that looted beads from Prohear also came in additional shapes (Reinecke et al. 2009: 119). Nevertheless, from the limited information collected we can begin to discern patterns in the distribution of different beads at sites across the region. Several specific bead shapes are notable and deserve further discussion.

|                  | Spherical | Rough<br>Spherical | Long<br>Barrel | Short<br>Barrel | Long<br>Bicone | Short<br>Bicone |
|------------------|-----------|--------------------|----------------|-----------------|----------------|-----------------|
| Angkor<br>Borei  | 3         | 5                  | 1              | 0               | 0              | 1               |
| Phnom<br>Borei   | 2         | 0                  | 0              | 0               | 0              | 0               |
| Prohear          | 0         | 0                  | 0              | 1               | 1              | 0               |
| Bit Meas         | 0         | 0                  | 2              | 1               | 0              | 0               |
| Village 10.8     | 1         | 0                  | 9              | 8               | 8              | 0               |
| Krek 52/62       | 1         | 0                  | 0              | 0               | 0              | 8               |
| Phum Snay        | 22        | 16                 | 0              | 0               | 0              | 0               |
| Ban Non<br>Wat   | 3         | 0                  | 0              | 24              | 4              | 1               |
| Promtin Tai      | 3         | 8                  | 6              | 1               | 0              | 5               |
| Khao Sam<br>Kaeo | 1         | 0                  | 0              | 1               | 2              | 0               |
| Total            | 36        | 29                 | 20             | 17              | 18             | 15              |

Table 5.9: The most common bead shapes and the quantity recorded at each site as part of this study.

|                  | Long<br>Hexagonal<br>Bicone | Short<br>Hexagonal<br>Faceted<br>Bicone,<br>(Rough) | Long<br>Hexagonal<br>Barrel | Hexagonal<br>Flattened<br>Bicone | Long<br>Cylindrical | Pendants (with and without notches) |
|------------------|-----------------------------|-----------------------------------------------------|-----------------------------|----------------------------------|---------------------|-------------------------------------|
| Angkor           |                             |                                                     |                             |                                  |                     |                                     |
| Borei            |                             | 1 (quartz)                                          |                             |                                  |                     |                                     |
| Prohear          |                             |                                                     |                             | 2                                | 1                   |                                     |
| Bit Meas         | 1                           |                                                     |                             |                                  |                     |                                     |
| Village 10.8     | 4                           |                                                     |                             |                                  | 1                   |                                     |
| Phum Snay        |                             | 10                                                  |                             |                                  |                     |                                     |
| Ban Non          |                             |                                                     |                             |                                  |                     |                                     |
| Wat              |                             |                                                     | 1                           |                                  | 1                   | 1                                   |
| Promtin Tai      | 1                           |                                                     | 2                           | 1                                | 1                   | 3                                   |
| Khao Sam<br>Kaeo |                             |                                                     |                             | 1                                | 1                   | 1                                   |
| Total            | 6                           | 11                                                  | 3                           | 4                                | 5                   | 5                                   |

Table 5.10: Less frequently encountered bead shapes and their quantities.

| Site          | Bead Shape(s)                                                          |
|---------------|------------------------------------------------------------------------|
| Angkor Borei  | Hexagonal Short Bicone                                                 |
| Village 10.8  | Long Octagonal Barrel (n=2), Short Polygonal Bicone, Bicone-Barrel     |
| _             | (n=15), Short Oblate, Long Oblate (n=2)                                |
| Ban Non Wat   | Triangular Faceted Barrel, Rounded Square, Long TabularRectangle,      |
| Promtin Tai   | Short Hexagonal Tabular Barrel, Short Square, Short Cylinder (n=4)     |
| Khao Sam Kaeo | Tabular Truncated Bicone, Chamfered Tabular Square, Crescent (n=2),    |
|               | Flat Leech Bead (n=2), Long Unfinished Barrel, Short Unfinished Barrel |
|               | (truncated?), Unfinished Tabular Square                                |

Table 5.11: Bead shapes found exclusively at one site. Unless otherwise noted, only a single version of each shape was recorded.

Perhaps the most unique bead shapes recorded in this study are the agate pendants (Figure 5.18) (Theunissen 2007). These pendants are somewhat similar to leech pendant beads (Figure 5.19) commonly found in South Asia (Beck 1941:7), but are a distinctly Southeast Asian bead shape. In the current study, these beads were found exclusively at sites in Thailand: Ban Non Wat, Promtin Tai, and Khao Sam Kaeo. There were several varieties of these pendants represented, including two broken fragments from Promtin Tai whose notches are missing or unclear. Previous studies have shown that these pendants are predominantly found in Northeast Thailand, especially at the sites of Noen U-Loke, Non Muang Kao, and central Thailand in the Lopburi, Saraburi, and Chonburi areas (Theunissen 2003:130). Therefore, it should not be surprising that additional pendants were found in these areas in the current study. However, the unfinished notched pendant at Khao Sam Kaeo is notable (Figure 5.18, lower right corner). The pendant was found on Hill 4, in an area producing beads similar to those found at late prehistoric and early historic period sites. The beads appear to have been mass-produced using "Indianadapted" techniques (Bellina, personal communication, 2010). Earlier studies have suggested that these beads may have been produced in Northeast Thailand or at Oc Eo in the Mekong Delta (Theunissen et al. 2000; Theunissen 2003, 2007). However, evidence for bead production at Oc

Eo is problematic and no beads of this type have been found in archaeological contexts at sites in Cambodia, although a notched agate pendant has been reported from Phum Snay from a looted context (Lapteff 2007). Evidence for stone bead production at Khao Sam Kaeo, including this broken pendant suggests this may be a more likely production center for these beads.

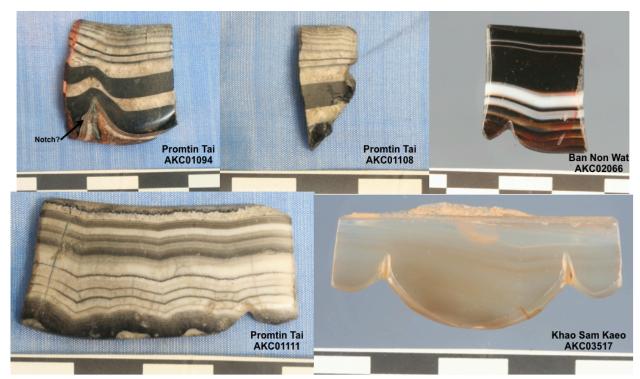



Figure 5.17:Examples of notched and unnotched pendants from Promtin Tai, Ban NonWat, and Khao Sam Kaeo. Additional examples of pendants from Ban Non Wat can be seen in Higham et al. 2009:240. Scale in cm.

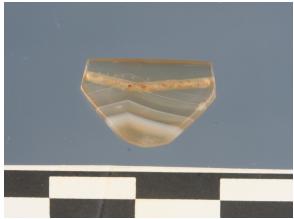



Figure 5.18: Example of a leech bead from Khao Sam Kaeo. Scale in cm.



Figure 5.19: A long hexagonal barrel bead from Promtin Tai. Scale in cm.

Another notable type of bead is the long hexagonal barrel (Figure 5.20). Previous studies have noted that this bead type is also predominantly found in Northeast and Central Thailand (Theunissen 2003: 130). Following this pattern, hexagonal barrel beads were also recorded at Ban Non Wat and Promtin Tai. Theunissen notes that both the faceted barrels and notched pendants have also been reported from Oc Eo and that "there are likely other contemporary sites in southern Vietnam that also yield these," (2003: 131). However, like the agate pendants, no similar beads have been reported at sites in Cambodia. This could be explained by Oc Eo and sites in Northeast and central Thailand receiving similar beads from the same source, although it is notable that these beads were not widely traded to inland sites in Cambodia.

The hexagonal flattened bicone bead is another important bead that was found at Prohear, Promtin Tai, and Khao Sam Kaeo (Figure 5.21). This is a unique bead shape that seems to primarily be found at coastal sites (Giong Ca Vo. Giong Phet, and Sa Huynh, Vietnam; Muang Thong, peninsular Thailand) or inland sites located on important trade networks (Ban Don Ta Phet and Ban Chiang, Thailand) (Theunissen 2003:124) (Figure 5.22). Researchers have already

noted the similarities in the bead collections, including these beads, that have been found at Ban Don Ta Phet, Khao Sam Kaeo and coastal Sa Huynh culture sites (Glover and Bellina 2011). The presence of this bead type at Prohear and Promtin Tai highlight their connections to these early coastal exchange networks.

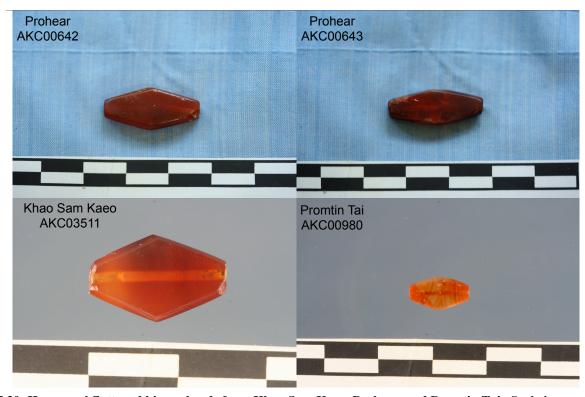



Figure 5.20: Hexagonal flattened bicone beads from Khao Sam Kaeo, Prohear, and Promtin Tai. Scale in cm.



Figure 5.21: Sites with hexagonal flattened bicone beads. Adapted from Theunissen 2003: 124.

Although several sites contained unique bead shapes in small quantities, two sites had unusual bead types in larger quantities. At Phum Snay, there were numerous short, hexagonal

beads found at Phum Snay (Figure 5.23). These are notable for their low quality manufacturing, as the facets were uneven and the beads were not well polished, with the surface also covered in nicks, scrapes, and small chips. Nine of the ten beads were found in Burial 9, a single bead from Burial 2 might also belong to this category. The similarity in shape and rough manufacturing style suggest that these beads were the product of a single workshop that were traded to Phum Snay together. Other beads from Phum Snay were of a similar low quality, most notably the Rough Spherical beads, which were drilled from one side, resulting in a pop out or depression on the opposing side of the bead. This is a less careful or more expedient method of drilling a bead, but the resulting beads have an uneven shape.



Figure 5.22: Hexagonal faceted bicone beads from Phum Snay. Scale in cm.

A group of beads I have classified as bicone-barrel were found at Village 10.8 (Figure 5.24). These beads represent a transitional bead type, with some slight tapering towards the ends as in a traditional bicone, but lacking the clear mid-point seen in traditional bicones making them

more similar to barrels. Unlike at Phum Snay, these beads were found in multiple burials. However, Village 10.8 is notable for its large numbers of bicones, barrels, and bicone-barrels, with larger numbers of this bead type than any other site (Table 5.16). While this may also suggest that people in Village 10.8 were receiving beads from a single location, it could also indicate that people at Village 10.8 were specifically choosing these bead types over others.

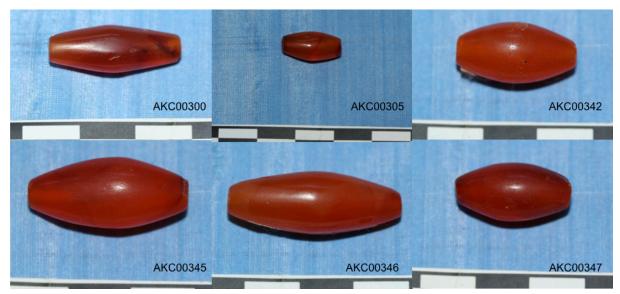



Figure 5.23: Examples of Bicone-Barrel beads from Village 10.8 Scale in cm.

The distribution of agate and carnelian beads

Figure 5.25 displays the quantity of agate versus carnelian beads found at these sites. As is clear from this figure, beads from the Thai sites of Promtin Tai and Ban Non Wat have higher quantities of agate beads than other sites. In fact, agate beads made up nearly 50% or more of the total bead collections at Ban Non Wat, Khao Sam Kaeo, Prohear, and Promtin Tai. Conversely, carnelian beads dominated Phum Snay and Angkor Borei.

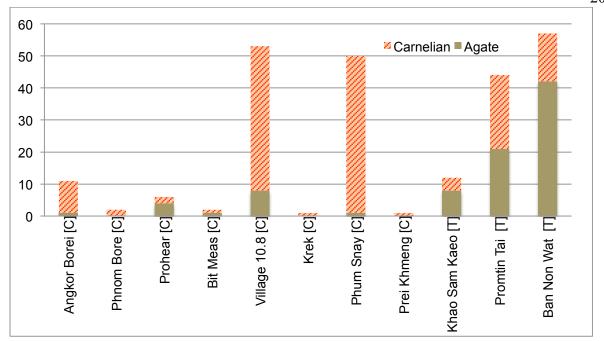



Figure 5.24: The distribution of agate and carnelian beads by site. Sites in Cambodia are marked by a [C] and sites in Thailand by a [T].

Agate beads appear to have made in a limited number of shapes. In this study, agate beads were only found in rectangular or square shapes, barrels, bicones, cylinders, and as pendants or leech beads. The most numerous kind were small agate beads, generally barrel, bicone, or cylinder shape, with an opaque center and brown or black bands on either end (Figure 5.26). This particular type of bead was found at Khao Sam Kaeo, Ban Non Wat, Village 10.8, Prohear, Promtin Tai, and Bit Meas. Theunissen has noted that this bead type is common with a fairly even distribution across mainland Southeast Asia (2003: 122). Pendants, both notched and un-notched, were exclusively made in agate and not carnelian.



Figure 5.25: A black and white banded agate bead from Village 10.8. Scale in cm.

Other scholars have noted a difference in the distribution of agate and carnelian beads across Southeast Asia. For example, agate etched beads, or beads with a white design on the surface are more commonly found in Southeast Asia, while carnelian etched beads are more common in India (Bellina 2007: 31; Glover and Bellina 2003). Agate beads in general appear to be more predominant in the upper Mun River Valley, Northeast Thailand, while carnelian beads tend to dominate bead collections at other sites in mainland Southeast Asia (Theunissen 2003:112). This discrepancy could be related to a preference for agate beads versus carnelian beads at these sites. However, Theunissen has argued that the upper Mun River Valley appears to have a unique exchange sphere. Agate beads in Cambodia are primarily concentrated at sites in southeast Cambodia. It appears then, that agate beads had a fairly restricted distribution and were exchanged within two regions of mainland Southeast Asia that were separated geographically and possibly temporally. There are some important distinctions in the types of agate beads found in both regions, therefore it does not appear that the agate beads were coming from the same source, but rather multiple sources. Conversely, carnelian beads were exchanged more widely and in higher quantities.

The limited distribution of several bead types points towards the existence of specific bead trade networks connecting regions of Southeast Asia. As discussed earlier, previous research by Bellina and Glover (2004) have identified two phases or periods of interaction with South Asia based on the distribution and types of artifacts found in Southeast Asia. Bellina (2007) has specifically identified morphological differences in the agate and carnelian beads between these two periods (Table 5.12).

| Earlier Southeast Asian beads                 | Later Southeast Asian beads                   |
|-----------------------------------------------|-----------------------------------------------|
| (Period 1 Type Beads)                         | (Period 2 Type Beads)                         |
| -Complex morphologies (faceted beads) and     | -Simple morphologies (spherical or elliptical |
| geometric shaped beads (octahedrons,          | beads etc.)                                   |
| icosahedrons)                                 |                                               |
| -Smaller overall mean sizes                   | -Larger overall mean sizes                    |
| -Higher quality stone                         | -Middle quality stone                         |
| -Smaller perforation diameters                | -Larger perforation diameters                 |
| -Polishing of beads generally performed using | -Polishing of beads generally in a drum       |
| a rotary grinding stone                       |                                               |
| -Higher standard of craftsmanship/higher      | -Lower standards of craftsmanship/lower       |
| quality beads                                 | quality beads                                 |

Table 5.12: Morphological differences between earlier and later period beads found in Southeast Asia. Adapted from Bellina 2007:32.

Beads in the current study were classified as belonging to either the "Period 1 Type" or "Period 2 type" drawing from three of the characteristics described above: simple versus complex bead shapes, overall quality of beads, and perforation diameter. I was unable to carefully address other characteristics noted by Bellina as stone quality was not carefully recorded while in the field. Additionally, Bellina's determination of polish types relied on casts of the surface of beads that were examined using a scanning electron microscope, and I was precluded from taking similar impressions of the bead surface due to time and budget limitations.

## Simple vs. Complex bead shapes

Following work by Bellina, agate and carnelian beads were first classified as simple or complex (Figure 5.16). Figure 5.27 below shows examples of simple and complex beads from Bellina's research. Simple shapes included beads that were spherical, barrel shaped, bicones, or cylindrical. Complex beads include pendants, faceted beads, and other complex geometric shapes. Table 5.13 lists the total number of simple and complex bead shapes at each site and the total number of beads classified as either simple or complex. Figure 5.28 visualizes the first 3 columns of Table 5.13.

|              |             |         | Unknown    |             | # of simple | fo#     | Unknown    |            |
|--------------|-------------|---------|------------|-------------|-------------|---------|------------|------------|
|              |             |         | or         |             | shaped      | complex | or         |            |
|              |             | # of    | unfinished |             | beads       | shaped  | unfinished |            |
|              | # of simple | complex | bead       | Total # of  |             | beads   | shapes     | Total # of |
|              | shapes      | shapes  | shapes     | bead shapes |             |         |            | beads      |
| Angkor       |             |         |            |             |             |         |            |            |
| Borei        | 4           | 2       | 0          | 9           | 10          | 2       | 0          | 12         |
| Ban Non      |             |         |            |             |             |         |            |            |
| Wat          | 7           | 6       | 0          | 91          | 38          | 19      | 0          | 57         |
| Bit Meas     | 1           | 1       | 0          | 2           | 1           | 1       | 0          | 2          |
| Khao Sam     |             |         |            |             |             |         |            |            |
| Kaeo         | 5           | 7       | 2          | 14          | 7           | 9       | 2          | I8         |
| Krek         |             |         |            |             |             |         |            |            |
| Earthwork    |             |         |            |             |             |         |            |            |
| 52/62        | 1           | 0       | 0          | I           | 1           | 0       | 0          | I          |
| Phnom        |             |         |            |             |             |         |            |            |
| Borei        | 1           | 0       | 0          | I           | 2           | 0       | 0          | 2          |
| Phum Snay    | 3           | 1       | 0          | 4           | 40          | 10      | 0          | 90         |
| Prohear      | 4           | 1       | 0          | 5           | 3           | 3       | 0          | 9          |
| Promtin      |             |         |            |             |             |         |            |            |
| Tai          | 6           | ∞       | 1          | 18          | 33          | 6       | 1          | 43         |
| Village 10.8 | 10          | 3       | 0          | 13          | 46          | 7       | 0          | 53         |
| )            |             |         | ,          |             |             |         | T          |            |

Table 5.13: The number of simple and complex bead shapes and number of beads classified as either simple or complex at each site.

| PERIOD I    |             | PERIO      | )D II       |
|-------------|-------------|------------|-------------|
| front view  | profil view | front view | profil view |
|             |             |            | •           |
|             |             | •          |             |
|             |             |            | •           |
|             |             |            | 9           |
| $\bigoplus$ |             |            |             |
|             | $\bigoplus$ |            |             |
|             |             |            |             |
|             |             |            |             |
|             |             |            |             |
|             |             |            |             |
|             |             |            |             |
|             | •           |            |             |
|             | •           |            |             |

Figure 5.26: Bead shapes typically found in Period 1 (more complex) and Period 2 (less complex) from Bellina 2003. Image courtesy of Bérénice Bellina.

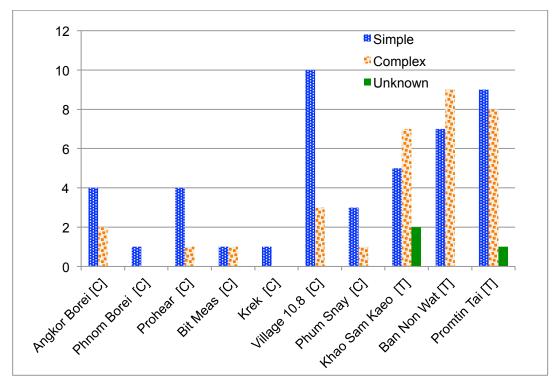



Figure 5.27: The quantity of different simple and complex bead shapes at each site. Sites in Cambodia are marked by a [C] and sites in Thailand by a [T].

If we look only at the number of bead shapes or types at each site we see that the Thai sites had a higher quantity of complex bead shapes than the Cambodian sites. Ban Non Wat contained nine different types of complex beads, Promtin Tai had eight different complex shapes, and Khao Sam Kaeo had seven different complex shapes. However, as noted previously, the number of bead shapes at Khao Sam Kaeo is low, as only a portion of the bead collection was available for study. The Cambodian sites generally did not have many different types of complex shaped beads, however Village 10.8 had the highest number of recorded bead shapes of any of the Cambodian sites (n=13). If we look at the quantity of beads classified by either simple or complex it is clear that there are generally higher numbers of simple shaped beads in circulation (Figure 5.29). I believe these differences are largely related to these bead types

circulating in two different bead trade networks, which is discussed more at the end of this chapter.




Figure 5.28: The total number of beads classified as either simple or complex by site. Sites in Cambodia are marked by a [C] and sites in Thailand by a [T].

### Overall bead quality

The perceived quality of these beads was also assessed (see Appendix 5.1). Misshapen beads, those made from poor quality stone, or those with many chips and surface scratches were classified as low quality. Conversely, well-made beads with a smooth, high polished surface were labeled as high quality. Some seemingly well-made beads did have scratched or nicked surfaces, however this may have been from use or post-depositional activities, and were therefore still classified as high quality beads. Additionally, some well-made beads appear to have been broken or chipped during drilling, these were assessed on a case-by-case basis. The

entire collection of beads from Ban Non Wat were examined only briefly, therefore quality assessments were only made for those beads analyzed using LA-ICP-MS and 29 additional beads from burials for which notes and photographs were available. Sixteen beads from Ban Non Wat were not included. Figure 5.30 presents the number of high quality, low quality, and unfinished beads at each site. Village 10.8, Promtin Tai, and Khao Sam Kaeo are notable for their large numbers of high quality beads. Conversely, Phum Snay and Angkor Borei, and Ban Non Wat had larger numbers of low quality beads.

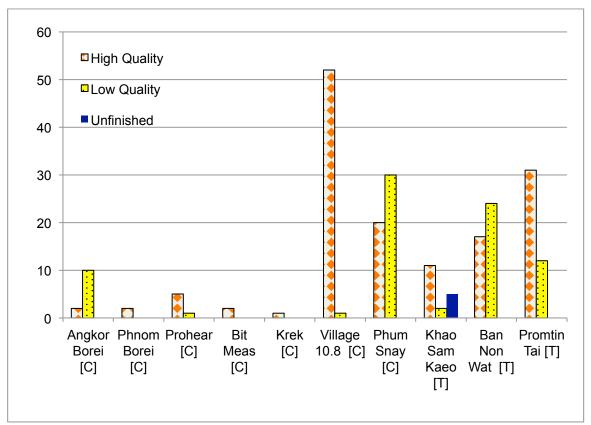



Figure 5.29: Quantity of high quality, low quality, and unfinished agate/carnelian beads by site.

## Bead perforation size

Bead perforations for all stone beads were measured and the mean and standard deviation were calculated for each site (Table 5.14). Perforation sizes from both sides of a single bead were

included in this calculation. In some cases, beads had two different sized perforations, with one side of a bead having a larger hole than the other. Beads from Bit Meas, Phnom Borei, and Krek were omitted due to their small samples size. By looking at Table 5.14, we can see that Khao Sam Kaeo, Promtin Tai, and Village 10.8 all have smaller perforations (less than 1.5mm) while Prohear, Angkor Borei, and Ban Non Wat all have perforations above 1.5mm.

|               | Mean | Standard<br>Deviation |
|---------------|------|-----------------------|
| Angkor Borei  | 1.63 | 0.26                  |
| Ban Non Wat   | 1.66 | 0.68                  |
| Khao Sam Kaeo | 1.24 | 0.25                  |
| Phum Snay     | 1.72 | 0.30                  |
| Prohear       | 1.59 | 0.47                  |
| Promtin Tai   | 1.47 | 0.33                  |
| Village 10.8  | 1.33 | 0.27                  |

Table 5.14: Mean and standard deviation of perforation hole sizes for all the agate and carnelian beads at each site.

In order to determine if the differences in perforation sizes were real, a single factor between-subjects analysis of variance test (ANOVA) was performed using the software program Aabel 3. ANOVA can be used to determine if there is a significant difference in the means of different groups, in this case it was used to determine if the difference in mean perforation sizes was significant. The results of the ANOVA test were significant (Table 5.15) indicating that there is a very small probability that the differences between the perforation sizes at each site these groups is related to the vagaries of sampling. Figure 5.31 presents the diamond mean comparison plot for the perforation sizes at each of the seven sites. From this figure it appears that Khao Sam Kaeo and Village 10.8 have much smaller perforations than the other sites.

| Singl                 | e-Factor Betwee | n-Subjects AN | OVA (Independ | lent Samples) |         |
|-----------------------|-----------------|---------------|---------------|---------------|---------|
| Source                | Sum of Squares  | df            | Mean Square   | F             | р       |
| Between Groups        | 8.98016         | 6             | 1.49669       | 13.2447       | < 0.001 |
| Within Groups (Error) | 38.8731         | 344           | 0.113003      |               |         |
| Total                 | 47.8532         | 350           |               |               |         |

Table 5.15: Results of ANOVA test showing significant difference between the mean perforation sizes.

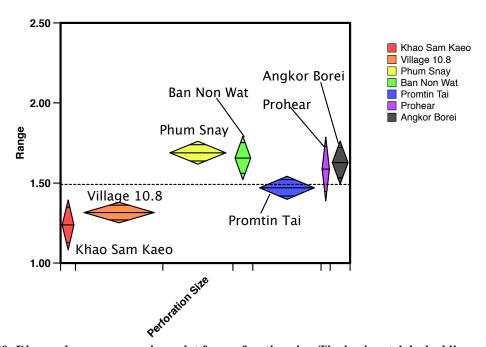



Figure 5.30: Diamond mean comparison plot for perforation size. The horizontal dashed line refers to the overall mean for all of the sites. The line in the middle of the center of the diamond denotes the group mean, with the top and bottom reflecting the 95% confidence limits. The width of the diamonds corresponds to the sample size at each site.

In order to better understand how the perforation sizes at the different sites a Scheffé test was performed. This test, which is included in the Aabel software package, can be used to determine which means or group of means is significantly different from one another. The Scheffé can be used when samples sizes are unequal, as in the current dataset. The results of this test are presented in Table 5.16; Figure 5.32 presents this table in visual form. The number in parentheses in Table 5.16 represents the number of beads measured; in most cases two perforations were measured per bead. The results show we can create several overlapping groups

of sites with similar bead perforation sizes. In the first group are Khao Sam Kaeo, Prohear, Promtin Tai, and Village 10.8, whose bead perforation sizes were determined not to be significantly different from one another, suggesting they could have been drawn from the same sample population. Bead perforation sizes from Prohear and Promtin Tai were also determined to be not significantly different from Angkor Borei and Ban Non Wat. However Phum Snay only shared similar bead perforation sizes with Angkor Borei, Ban Non Wat, and Prohear. That bead perforations from Prohear were not significantly different from any of the other sites may be due to the small sample size from this site.

| Scheffé Test                                    |                 |           |                   |             |  |  |  |
|-------------------------------------------------|-----------------|-----------|-------------------|-------------|--|--|--|
|                                                 | $\alpha = 0.05$ |           |                   |             |  |  |  |
| Groups                                          | Difference      | Statistic | Critical<br>Value | Significant |  |  |  |
| Khao Sam Kaeo (n=10) vs.<br>Village 10.8 (n=53) | -0.077          | 0.902     | 3.571             | No          |  |  |  |
| Khao Sam Kaeo (n=10) vs.<br>Phum Snay (n=50)    | -0.451          | 5.166     | 3.571             | Yes         |  |  |  |
| Khao Sam Kaeo (n=10) vs.<br>Ban Non Wat (n=12)  | -0.418          | 3.987     | 3.571             | Yes         |  |  |  |
| Khao Sam Kaeo (n=10) vs.<br>Promtin Tai (n=43)  | -0.231          | 2.648     | 3.571             | No          |  |  |  |
| Khao Sam Kaeo (n=10) vs.<br>Prohear (n=6)       | -0.349          | 2.712     | 3.571             | No          |  |  |  |
| Khao Sam Kaeo (n=10) vs.<br>Angkor Borei (n=12) | -0.389          | 3.713     | 3.571             | Yes         |  |  |  |

| Village 10.8 (n=53) vs.<br>Phum Snay (n=50)    | -0.373 | 7.627 | 3.571 | Yes |
|------------------------------------------------|--------|-------|-------|-----|
| Village 10.8 (n=53) vs. Ban<br>Non Wat (n=12)  | -0.341 | 4.482 | 3.571 | Yes |
| Village 10.8 (n=53) vs.<br>Promtin Tai (n=43)  | -0.154 | 3.128 | 3.571 | No  |
| Village 10.8 (n=53) vs.<br>Prohear (n=6)       | -0.272 | 2.551 | 3.571 | No  |
| Village 10.8 (n=53) vs.<br>Angkor Borei (n=12) | -0.312 | 4.104 | 3.571 | Yes |
| Phum Snay (n=50) vs. Ban<br>Non Wat (n=12)     | 0.033  | 0.421 | 3.571 | No  |
| Phum Snay (n=50) vs.<br>Promtin Tai (n=43)     | 0.219  | 4.225 | 3.571 | Yes |
| Phum Snay (n=50) vs.<br>Prohear (n=6)          | 0.102  | 0.944 | 3.571 | No  |
| Phum Snay (n=50) vs.<br>Angkor Borei (n=12)    | 0.061  | 0.791 | 3.571 | No  |
| Ban Non Wat (n=12) vs.<br>Promtin Tai (n=43)   | 0.186  | 2.394 | 3.571 | No  |
| Ban Non Wat (n=12) vs.<br>Prohear (n=43)       | 0.069  | 0.564 | 3.571 | No  |
| Ban Non Wat (n=12) vs.<br>Angkor Borei (n=12)  | 0.029  | 0.296 | 3.571 | No  |
| Promtin Tai (n=43) vs.<br>Prohear (n=6)        | -0.118 | 1.089 | 3.571 | No  |
| Promtin Tai (n=43) vs.<br>Angkor Borei (n=12)  | -0.158 | 2.025 | 3.571 | No  |
| Prohear (n=6) vs. Angkor<br>Borei (n=12)       | -0.04  | 0.329 | 3.571 | No  |

Table 5.16: Results of Scheffé test.

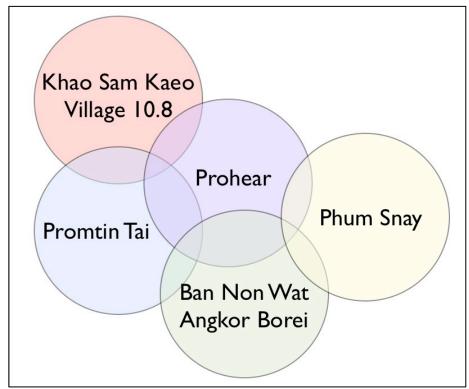



Figure 5.31: Based on results from the Scheffé test, this figure visualizes the similarity in bead perforation measurement by site.

Interpretation from metric and morphological analyses

If we examine all of the morphological data together, including the quantity and type of simple and complex bead shapes, the quality of beads, and their perforation sizes, I believe a pattern emerges in which some sites have beads that appear to belong to Bellina's "Period 1 Type beads", while other sites have beads that can be classified as belonging to Bellina's "Period 2 Type beads" (Table 5.16). I follow Bellina (2003, 2007) and Bellina and Glover (2004) in arguing that archaeological evidence suggests two different phases of contact with South Asia and that these differences are reflected in the different types of beads in circulation during each period. In Bellina and Glover's model Phase 1, dates from the fourth century BC through the second century AD and involves sporadic trade with South Asia. Phase 2 involves more intensive trade with South Asia and expanded trade contacts within Southeast Asia and dates to

the second through fourth centuries AD. However, it is likely that changing interaction and trade networks happened in different parts of Southeast Asia at different times, and as I argue below, there was likely a chronological overlap between these changing trade networks.

As noted earlier, Period 1 Type beads are generally of a higher quality, with more complex shapes, and smaller perforation sizes. The beads from Village 10.8 and Khao Sam Kaeo appear to fit in this category. This should not be surprising as both sites are amongst the earliest examined in the current study: the stone bead industry at Khao Sam Kaeo dates from the 4th- 2nd century BC while Village 10.8 has been radiocarbon dated from 400 BC- AD 50. Promtin Tai may also belong to the Period 1 group as the site had a fairly large number of complex bead shapes, small perforations, and numerous high quality beads. Furthermore, Promtin Tai and Khao Sam Kaeo share several additional characteristics including large numbers of agate beads in comparison with carnelian beads, agate pendants, and hexagonal flattened bicone beads.

Period 2 beads, in contrast, have more simple morphology, are generally of a lower quality, and have larger perforation sizes. In Bellina's model, beads with Period 2 Type beads generally date to the later Iron Age, or the first few centuries AD. Following these characteristics, I argue that beads from Angkor Borei and Phum Snay belong in this category. These sites also date slightly later than the Period 1 sites above, as the cemetery at Angkor Borei dates from 200 BC – AD 200 and Phum Snay has been radiocarbon dated from 350 BC- AD 200. Although the sample size was too small to consider in depth, I also argue that beads from Phnom Borei may belong to the Period 2 category, largely due to its proximity to Angkor Borei both temporally and geographically. However, this will need confirmation with additional fieldwork.

There are four sites for which determining the period in which the beads may belong is more difficult. The small sample size of beads from Prohear is problematic, however beads were generally of high quality with several complex shapes, including a hexagonal flattened bicone bead that links this site to both Khao Sam Kaeo and Promtin Tai. Furthermore, Prohear had several agate beads, a characteristic shared by all of the sites with Period 1 Type beads. For this reason, I believe that beads from Prohear can be classified as belonging to the Period 1 Type. Bit Meas is believed to be contemporary with Prohear and the beads from this site are reported to be similar to Prohear, for this reason I also classify Bit Meas as having Period 1 Type beads.

The difficulty of classifying the beads at Ban Non Wat as belonging to either the Period 1 or Period 2 category is likely due to the long occupation sequence. Although Ban Non Wat shares many characteristics with other sites that have Period 1 beads, including large numbers of agate beads and complex bead shapes, the unusual agate pendant beads found at Ban Non Wat are primarily from Iron Age 4 burials that date several hundred years after a similar notched pendant from Khao Sam Kaeo. For this reason, I cannot confidently assign Ban Non Wat to either Period 1 or Period 2 as it likely contains beads that belong to both periods. Lastly, the sample size from Krek 52/62, a single bead, was too small to assign to either period.

| Period 1 Beads: Smaller perforation, more complex shape, higher-quality beads | Period 2: Larger<br>perforation, simpler<br>shapes, lower-quality<br>beads | Unsure/Unknown              |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|
| Khao Sam Kaeo                                                                 | Angkor Borei                                                               | Ban Non Wat (both periods?) |
| Village 10.8                                                                  | Phum Snay                                                                  | Krek 52/62                  |
| Promtin Tai                                                                   | Phnom Borei                                                                |                             |
| Prohear                                                                       |                                                                            |                             |
| Bit Meas                                                                      |                                                                            |                             |

Table 5.17: Period 1 and Period 2 beads as determined by morphological characteristics. Sites in italic are those that have been tentatively classified as belonging to either Period 1 or Period 2.

#### Conclusion: Implications for agate and carnelian bead trade networks

In this chapter I presented contextual, morphological, and metric data on agate and carnelian artifacts from 11 sites in Cambodia and Thailand. I have aimed to demonstrate that agate and carnelian beads were important prestige objects that had a restricted distribution both at the site level and regionally. Classification of bead shapes allowed for the identification unique bead types that appear to link sites to one another or to a specific trade network. Furthermore, analysis of morphological and metric characteristics has allowed for the classification of beads from the sites in this study as belonging to either Bellina's Period 1 bead type, associated with trade networks dating to the mid-late centuries BC, or Period 2 Type beads associated with the later Iron Age period trade networks. Although Bellina and Glover have divided the phases of trade chronologically, the presence of Period 1 type beads at Prohear and Period 2 type beads at Angkor Borei – two sites that are contemporaneous with one another – suggests that these trade networks may have also overlapped briefly in time. In the introduction to this chapter I introduced two questions that I would now like to address in more detail.

Based on morphological analysis, is there a pattern in the type of beads being traded over time and space?

Based on the morphological analysis of bead shape, quality, and perforation size I suggest that beads can be classified into two broad categories that are related to different trade networks and phases of trade with South Asia. Period 1 Type beads found at Khao Sam Kaeo, Village 10.8, Promtin Tai, as well as Prohear and Bit Meas were generally of a higher quality and contained shapes that connected them to other sites in the region. In Bellina's (2007: 41) study, she argued that early Period 1 Type agate and carnelian beads were likely entering into a

pre-existing long-distance prestige goods exchange network that connected various communities to one another. The beads were important symbols that were recognized by all parties involved in the exchange as important signifiers of status or power within a community (Bellina 2007).

Based on the co-occurrence of Period 1 type agate and carnelian beads with nephrite ear ornaments (discussed in Chapter 9) I agree with both Bellina and other scholars (e.g. Christie 1990, 1995; Dzung 2011; Theunissen 2003) who have argued that during Phase 1 trade with South Asia, agate and carnelian beads were likely entering into pre-existing long-distance exchange networks. These pre-existing exchange networks appear to be largely tied to the Sa Huynh culture and their broad interaction sphere. Evidence from numerous Vietnamese Sa Huynh culture sites demonstrate that they were participating in both inter- and intra-regional trade networks that linked communities in Southeast Asia with both India and China (Lam Thi My Dzung 2009). I argue that sites I have classified as having Period 1 agate and carnelian beads, namely Khao Sam Kaeo, Village 10.8, Prohear, Bit Meas, and Promtin Tai, also had connections to these early coastal exchange networks. However, other sites including Angkor Borei, Phnom Borei, and Phum Snay have Period 2 Type beads, which are more strongly associated with the expanding trade networks with South Asia during the early centuries of the first millennium AD. I suggest, based on the data presented in this chapter, that elites at these sites were not heavily participating in early coastal exchange networks but instead connecting sites in the Mekong Delta with sites further inland in new trading networks.

Does evidence from trade patterns suggest that sites in the Mekong Delta were influencing trade of these objects?

Although contextual data demonstrates that agate and carnelian beads were not evenly distributed among the sites studied, the current morphological and metric study does not strongly suggest that trade of beads was tightly controlled by elites in the Mekong Delta. Certain types or styles of beads seem to have had a limited distribution in certain regions, such as notched agate pendants that were found predominantly in Northeast and central Thailand. These beads may have held certain significance for communities in this region and appear to be indicative of a strong regional trading network. However, it is not clear as Theunissen (2003) has suggested, that communities in Southeast Asia were controlling both the manufacture and distribution of these objects.

What is notable, however, is that communities in the Mekong Delta do not appear to have been participating in the earliest trade networks. Instead, I suggest that the bead distribution data at these sites and the inland site of Phum Snay show that they are not participating in trade until trade with South Asia began to expand and intensify in the early centuries AD. It is possible that Mekong Delta communities were taking advantage of expanding trade networks and greater numbers of agate and carnelian beads to expand their connections with elites at inland sites like Phum Snay. Data from glass beads supports this hypothesis and is discussed further in Chapter 7.

Bellina and Theunissen have both suggested that the higher quantities of beads available during the Phase 2 trading period were due in part to local manufacture of agate and carnelian in communities in Southeast Asia. In the next chapter, I will discuss my tess of this hypothesis

more thoroughly through geochemical examinations of a selection of the agate and carnelian artifacts.

# **Chapter 6: Agate and Carnelian Beads- Geochemical Analysis**

This chapter is an extension of the work from the previous chapter in which morphological, contextual, and metric data were used to identify patterns in the distribution of agate and carnelian beads. In this chapter I present the results of geochemical compositional analysis using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) on a group of 79 agate and carnelian beads as well as raw material samples from 12 geologic sources located in South and Southeast Asia. I use these data to address three questions:

- Were different stone sources being used to produce Period 1 Type beads versus Period 2
   Type beads?
- Is there evidence that certain bead types were being made from specific geologic sources?
- Is there geochemical evidence for the use of agate and carnelian from Southeast Asian sources for local bead production?

Ideally, compositional analysis should identify if different types of beads were being produced using a particular stone source, which may in turn allow for the identification of bead production workshops. Geochemical analysis will also assist in determining if raw material resource exploitation was changing over time. This is especially related to questions regarding the manufacture of agate and carnelian beads using Southeast Asian geologic sources. Previous studies have emphasized the use of Indian manufacturing techniques used to produce agate and carnelian beads found in Southeast Asia (Bellina 2001, 2003; Theunissen 2003). If both South and Southeast Asians were using the same methods to produce beads, it may be nearly

impossible to prove which group made the beads. However, the use of local raw material sources has implications regarding control over resources by Southeast Asian elites and could be a proxy for the presence of local Southeast Asian beadmakers. Additionally, control over local raw material sources to make agate and carnelian beads would indicate that local elites were controlling not just the production of beads, but also the raw material sources used to make these objects. Control over both the complex bead production technology and local raw material sources is an aspect of craft production most commonly seen in complex state-level societies (Vidale and Miller 2000).

I begin this chapter by reviewing previous geochemical provenience studies on agate and carnelian artifacts. This study represents an improvement over these previous studies due to the measurement of a greater number of elements and the use of a larger dataset. Following this review, I introduce the geologic sources and artifacts that underwent LA-ICP-MS analysis. A summary of the methods used to determine which elements were used in statistical analyses and their variability within the samples is also presented. Following this I present the results of my analysis and conclude that most of the beads found at sites in Southeast Asia were made from an Indian geologic source known as the Deccan Traps. As it was difficult to geochemically distinguish between the Deccan Traps sources, I was unable to determine more fine-grained resource exploitation patterns. One quarter of the beads (n=20) were from non-Deccan Traps sources. Although the exact geologic source used to produce these beads is thus far unknown, I present several suggestions. Some specific bead shapes do appear to be from unique non-Deccan Traps sources, however these conclusions are preliminary and require more research. Lastly, I return to the three questions presented above.

## Previous compositional studies of agate and carnelian

There have been several small studies that have sourced agate and carnelian artifacts in order to better understand trade networks. Attempting to answer questions regarding the local manufacture of artifacts in Southeast Asia, Robert Theunissen and others (2000) used a nondestructive technique, PIXE/PIGME, to analyze beads from the Thai Iron Age sites of Noen U-Loke (n=9) and Ban Don Ta Phet (n=9). As comparative source material they analyzed carnelian fragments from Arikamedu, south India (n=10), bead rough-outs from the site of Limodra in Gujarat (n=5), carnelian beads from a production site in Orissa, northeast India (n=3), carnelian samples from the Sri Lankan bead production site of Anuradhapura (n=16), and samples from a Thai agate source in Lopburi province, central Thailand (n=2). Their study found that PIXE/PIGME could discriminate between the various geologic source and artifacts and they concluded that the beads from the Thai sites of Ban Don Ta Phet and Noen U-Loke were compositionally distinct from the Indian geologic sources they sampled. Also significant was that the beads from Ban Don Ta Phet and Noen U-Loke were compositionally distinct from one another. There was some overlap between the Sri Lankan sources and the beads from Thailand, suggesting a possible origin for beads from this location. However, they also argued that there was a compositional similarity between the two Thai agate sources and the carnelian and agate artifacts. Although it is difficult to make strong conclusions when only using two geologic source samples, they authors argue it was suggestive of local manufacture of beads using local raw materials and suggested additional research to further test this hypothesis (Theunissen et al. 2000:98).

Theunissen's study raised several important points including the importance of questioning the Indian origin for all the agate and carnelian beads in Southeast Asia, instead focusing on a more complex and multi-source origin for these materials. Theunissen also suggested that compositional analysis could aid in identifying and tracing the movement of specific bead types. However, as the authors concede, their study had an extremely small sample size, which limited the interpretations they were able to make with their data.

Timothy Insoll and others (2004) used UV-LA-ICP-MS in order to examine carnelian trade between India and Africa. However, as with the previous study, the geologic source samples were problematic. Thirteen artifacts from sites in western Africa were compared with 13 geologic samples from a single widespread deposit in Ratanpur in Gujarat state, India. Although the authors found some overlap between the two groups, there were also samples that were compositionally distinct from the Ratanpur source and the study was limited by the lack of comparative geologic samples.

More recent studies using larger numbers of geologic source samples and a destructive technique, Instrumental Neutron Activation Analysis (INAA), have been more successful at distinguishing between geologic sources and assigning artifacts to these sources (Law 2011; Law et al. 2012). However, the destructive nature of this technique is not ideal for analyzing archaeological artifacts. For this reason, I used the virtually non-destructive technique of LA-ICP-MS. Furthermore, I wished to expand on previous studies by analyzing a higher quantity of geologic source samples in order to more accurately characterize numerous sources.

### Agate and Carnelian Geologic Sources

With increasing evidence that beads were produced in both South and Southeast Asia, there are numerous potential sources that could have been used to make beads. Although it would be ideal to analyze all potential sources, this was of course not possible due to limits in finances, time, and access. Nevertheless, a total of 12 potential sources were analyzed, making this the largest compositional study of agate in Southeast Asia yet undertaken (Table 6.1). I attempted to analyze at least 12 samples from each geologic source in order to accurately characterize the variation within that source. Unfortunately, the limited availability of samples from some sources required that I analyze smaller quantities.

| Source Name                                | Number of specimens analyzed |  |
|--------------------------------------------|------------------------------|--|
| Khandek, Gujarat State, India              | 15                           |  |
| Mardak Bet, Gujarat State, India           | 15                           |  |
| Ratanpur, Gujarat State, India             | 15                           |  |
| Mahurjhari, Maharashtra State, India       | 25                           |  |
| Paithan, Maharashtra State, India          | 15                           |  |
| Undhari, Maharashtra State, India          | 14                           |  |
| Shahr-i-Sokhta, Iran                       | 17                           |  |
| Ban Khao Mogul, Lopburi Province, Thailand | 17                           |  |
| Kon Tum, Vietnam                           | 9                            |  |
| Gia Lai, Vietnam                           | 4                            |  |
| Dong Nai, Vietnam                          | 6                            |  |
| Pacitan, East Java, Indonesia              | 9                            |  |

Table 6.1: Names and quantity of geologic source samples analyzed using LA-ICP-MS

South and Central Asian agate and carnelian sources

Perhaps the most well known agate and carnelian sources are those that lie in the Indian state of Gujarat and have been exploited by beadmakers dating back more than 4000 years (Allchin 1979; Barbosa 1517; Foster 1906; Huntingford 1980; Khan 1756; Kenoyer et al. 1991, 1994; McCrindle 1885; Poessehl 1981; Roux 2000). The Gujarati city of Khambhat (Cambay) has been a major bead production center since at least the 16th century AD (Arkell 1936). Three

Gujarati agate/carnelian sources were analyzed as part of this study. Additionally samples from three sources located in the nearby Maharashtra state were also analyzed. Historic and archaeological data discuss bead production in this region. Lastly, samples from the Iranian site of Shahr-i-Sokhta (Law et al. In Press; Tosi 1968) were included.

The agate from Gujarat and Maharashtra part of a larger geologic formation known as the Deccan Traps, a large igneous province that consists of a series of flood basalt layers (Mahoney 1988) (Figure 6.1). The Deccan Traps are not a homogeneous formation, but were rather formed through a succession of volcanic events. Agate, carnelian, and other microcrystalline silicates formed within the vesicles and can be found in both their primary geologic context or in secondary geologic sources, in which the agate and carnelian nodules have eroded from their host rock and been carried to a secondary location (Merh 1995). The famous source of Ratanpur is located within a well-known secondary deposit known as the Babaguru Formation that contains materials from potentially a large geographic area brought to the site through fluvial processes (Gadekar 1977; Law 2011). Despite theses complications, previous geochemical studies on agate from Ratanpur have been able to differentiate it from other sources (Law 2011).

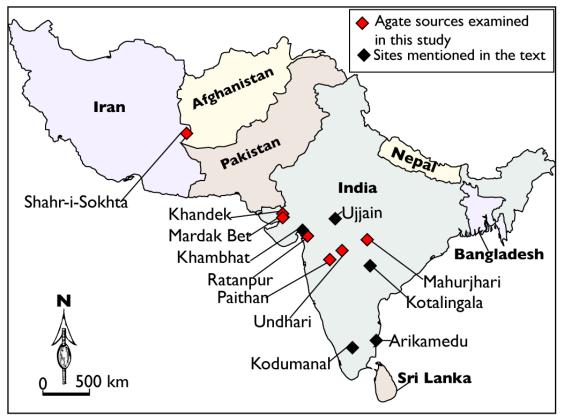



Figure 6.1: Map of Central and South Asian geologic sources and sites mentioned in the text.

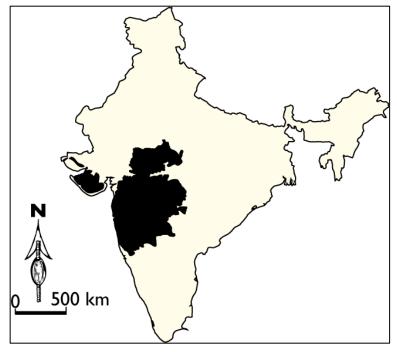



Figure 6.2: Map of the approximate location of the Deccan Traps. Adapted from Mahoney 1988.

# Khandek

The Khandek agate/carnelian source is located in Gujarat province about 5 km from the Indus site of Surkotada (Map Figure 6.2). The source is approximately 4 hectares in size with a variety of loose agates and other microcrystalline silicates on the surface (Law 2011). Dr. Randall Law collected samples from this source and kindly provided them for use in this study (Figure 6.3). Law (2011: 272-3) reports that it appears the source had been exploited in the past, although it was unclear when.



Figure 6.3: Geologic agate samples from Khandek, Gujarat Province, India. Photo courtesy of Randall Law.

Scale in cm.

### Mardak Bet

Ratanpur

Mardak Bet is a small island located in the "Little Rann" of Kutch (Figure 6.2). The site was visited by Law (2011: 277), who observed are two primary agate beds with a range of microcrystalline silicates. Additionally there is evidence that there were "numerous agate and jasper flakes, some with a heavy patina suggesting great antiquity." Samples were taken from both beds and treated as a single source due to their geographic proximity to one another (Figure 6.4).



Figure 6.4: Geologic agate samples from Mardak Bet, Gujarat Province, India. Scale in cm.

There are numerous well-known agate mines around the village of Ratanpur (Figure 6.2 and Figure 6.5). The sources are all within a short distance of a hilltop shrine to Baba Ghor (or Gori Pir), an Islamic saint who is said to have initiated beadmaking in the region around the 15<sup>th</sup> century AD (Francis 1986; Kenoyer and Bahn 2004). As discussed above, this region belongs to

the Babaguru Formation, a secondary agate deposit. The agate mines at Ratanpur are a major source for the historic and modern bead-making industry in Khambhat (Law 2011: 268).

Samples were collected by Law from agate mining areas in a 3km area around the base of the Gori Pir hill (Figure 6.6).

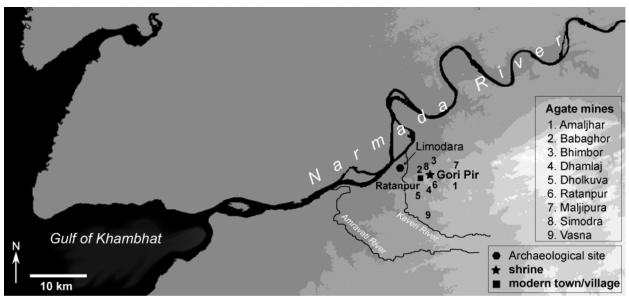



Figure 6.5: Map of notable agate mine locations around the village of Ratanpur. Map provided by Randall Law.



Figure 6.6: Geologic agate samples from Ratanpur, Gujarat Province, India. Photo courtesy of Randall Law. Scale in cm.

## Mahurjhari

Mahurjhari (Figure 6.2) located in Maharashtra state, is not a geologic source, but rather an archaeological site with evidence for bead manufacturing activities dating from the Megalithic through Early Historic periods (6-7<sup>th</sup> century BC- 4-5<sup>th</sup> century AD) (Mohanty 1999). Nodules, flakes, finished, and unfinished beads from surface collection were obtained by Dr. Mark Kenoyer and used as a proxy for an unknown nearby agate/carnelian source (Figure 6.7).

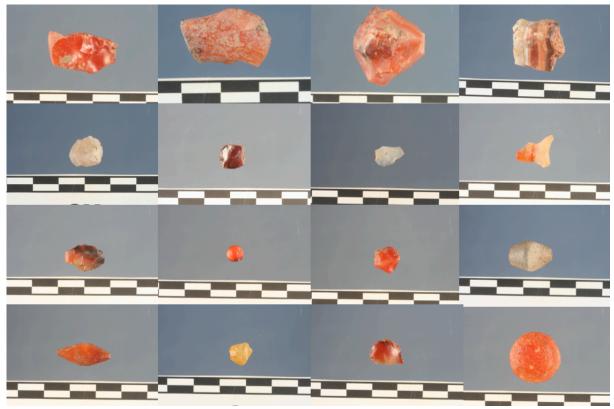



Figure 6.7: Samples from Mahurjhari, Maharashtra Province, India. Scale in cm.

#### Paithan

Paithan is located in interior Maharashtra (Figure 6.2) in central India and is a famous source of raw material that was mentioned in the Periplus of the Erythraean Sea (Francis 2002).

Dr. Randall Law collected samples (Figure 6.8) from the bed of the Godavari River south of

Paithan town and noted that there were high-quality banded agates found at this location (Randall Law, personal communication, 2012).

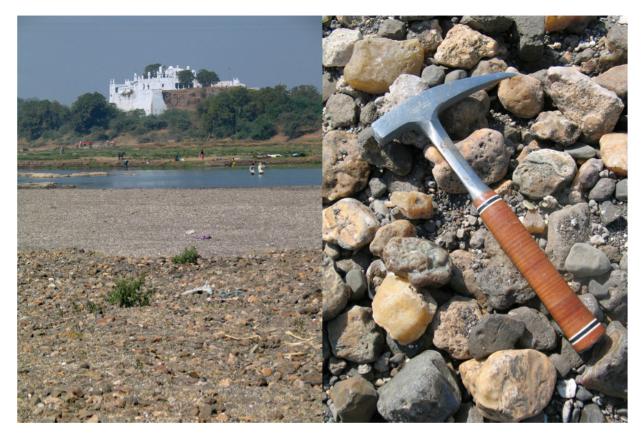



Figure 6.8: Left-Agate nodules in the Godavari River near Paithan, Maharashtra Province, India. Right-Detail of agate nodules at Paithan. Photos courtesy of Randall Law.

### <u>Undhari</u>

Undhari is also located in interior Maharashtra province, India (Figure 6.2). Samples were collected by Dr. Randall Law, who reports fairly large nodules on the surface (Figure 6.9). Law (personal communication, 2012) was told that some of the nodules were being sent to Cambay for use in bead manufacture and he notes that they were visually similar to agate from Ratanpur. Two samples from Undhari were also contributed by Dr. J. Mark Kenoyer and had been collected by colleagues from an area approximately 2 km northeast of Undhari village.



Figure 6.9: Left- Agate-filled agricultural fields at Undhari, Maharashtra province, India. Right- A large agate nodule from Undhari. Photos courtesy of Randall Law.

#### Shahr-i-Sokhta

Also included in this study were flakes and nodule fragments from the prehistoric site of Shahr-i-Sokhta, Iran, that were provided to Randall Law by Dr. Maurizio Tosi (Figure 6.2). Several Iranian agate sources have been discussed in the literature (see Law 2011: 282), however the Shahr-i-Sokhta samples were treated as a proxy for an unknown agate source in eastern Iran (Figure 6.10). Although it is unlikely that this region was a major producer of beads being traded to Southeast Asia, there are known contacts between Persia and Southeast Asia during the first millennium AD (Ritter 2010).



Figure 6.10: Archaeological agate samples from Shahr-i-Sokhta. Photo courtesy of Randall Law. Scale in cm. Southeast Asian agate and carnelian sources

Agate and carnelian is present in Southeast Asia, although exploited in smaller quantities than in South Asia. Decorative pieces of agate, carnelian, and other microcrystalline quartz are exported from Indonesia (David Bernstein, personal communication 2010). In Vietnam, agate used in jewelry, has been reported from Loc Ninh in Binh Phuoc province (Pham Van Long et al. 2004; Reinecke et al. 2009: 163). As noted earlier, there is strong evidence for bead production using local carnelian, chalcedony, and fossil wood sources in Myanmar (Campbell Cole 2003; Moore 2007:100). An agate/carnelian source in Lopburi province near the town of Ban Khao Mogul has been suggested as a possible source for locally produced beads by several scholars (Glover 1989; Theunissen et al. 2000). On a recent trip to Thailand I saw replica beads being sold in the markets that sellers said were coming from an agate/carnelian source in Lopburi. Agate and carnelian from Java has also been suggested as a possible source for raw material

(Bellina 2007:68). However, scholars have also suggested it is likely that raw material may have also been imported to Southeast Asia from elsewhere (Bellina 2007:68). With the exception of Myanmar, there is little evidence for exploitation of Southeast Asian agate/carnelian sources in the past. If local sources were being used for bead production, their identity and location has not been passed down. However, some small-scale sources are currently being exploited and it is valuable to analyze these materials in case they were also being used by beadmakers in the past.

#### Ban Khao Mogul, Lopburi Province, Thailand

The Ban Khao Mogul agate source has been discussed multiple times as a possible source for Iron Age beadmakers in central Thailand (Figure 6.11). In February 2007, I traveled to this location to collect samples for analysis. The deposit consists of small nodules of agate and other microcrystalline materials eroding from a small limestone outcrop. The age of the quarry at this location is not known. As recently as 15 years ago, several villagers were producing polished stones and cabochons from the local agate to use as ring settings (Nigel Chang personal communication, 2007). However, during my visit only one villager was still practicing this craft. Many samples were collected (Figure 6.12) of which 17 were analyzed.



Figure 6.11: Agate an carnelian samples from Ban Khao Mogul, Lopburi Province, Thailand. Scale in cm.




Figure 6.12: Map of Southeast Asian agate and carnelian geologic sources analyzed in the current study.

### Kon Tom and Gia Lai, Vietnam

In 2009 Dr. Andreas Reinecke, alerted me to several agate sources in Vietnam. Through assistance from a Vietnamese colleague I was able to obtain several small samples of agate/carnelian from sources in two provinces of the Central Highlands of Vietnam (Figure 6.11).

Figure 6.13 shows samples from Kon Tum province and Figure 6.14 the samples from Gia Lai province. These samples were broken into smaller fragments to facilitate LA-ICP-MS analysis. Kon Tum and Gia Lai are both located on the Kon Tum massif, a large area of exposed high-grade metamorphic rocks dating to the Precambrian period. Igneous rocks are also associated with this complex (Workman 1977). Diamonds have been found in Kon Tum along with other gemstones such as garnet, zircon, and tektites. Amethyst and peridot have been mined in Gia Lai. Unfortunately, the specific geologic context for these agate/carnelian samples is unknown.



Figure 6.13: Carnelian samples from Kon Tum province, Vietnam. Scale in cm.



Figure 6.14: Agate samples from Gia Lai province, Vietnam. Scale in cm.

### Dong Nai, Vietnam

Samples from Dong Nai (Map Figure 6.11) were found by chance while checking online gemstone retailers for possible geologic samples from Southeast Asia. Several carved pieces of agate were listed for sale on eBay and eight were purchase for this study (Figure 6.15). The seller said that the raw materials came from Dong Nai province, and were carved in Da Nang.

Although it is impossible to be sure these samples came from Dong Nai province, they are treated as such for the purposes of this study. The pieces are approximately 3-6 cm in size and described as "natural" stone in that the backs of the pieces are uneven and appear unworked, although they are highly polished (Figure 6.16).



Figure 6.15: Carnelian carved figures from Dong Nai province, Vietnam.



Figure 6.16:Back side of carnelian figures, showing their unworked "natural" appearance.

### Pacitan, East Java, Indonesia

Numerous agate sources in East Timor, Java, and Sumatra have been recently mined for jewelry and other decorative objects. I acquired several pieces of agate from David Bernstein, a wholesale gemstone and mineral exporter (Figure 6.17). The samples are from a source in Pacitan, East Java (Figure 6.11). This region of Indonesia is well known for its agate and there has recently been a push to recognize the Pacitan agate industry, with several hundred craftsmen producing numerous artifacts for souvenirs. As with Ban Khao Mogul, it appears that one popular product are cabochons for ring or jewelry settings (Bakti 2001).



Figure 6.17: Carnelian samples from Pacitan, East Java, Indonesia. Scale in cm.

### Agate and Carnelian Artifacts analyzed

Seventy-nine agate and carnelian artifacts were analyzed using LA-ICP-MS. As permission was needed to take materials out of the country, only a portion of the beads from each site were selected. While I tried to choose beads from secure burial contexts, I also selected interesting or unusual samples from non-burial contexts. Beads were selected to represent the variety of beads from a site. All the stone beads from Angkor Borei were analyzed, as the entire collection was available for study. Appendix 6.1 summarizes the artifacts and their context.

### LA-ICP-MS analysis of the geologic sources

The artifacts and geologic sources samples discussed above were analyzed using LA-ICP-MS using the method discussed in Chapter 4. Final measurements for all archaeological and geologic samples are listed in Appendix 6.2. 55 elements are included with major and minor elements listed as percent oxide and trace elements as parts per million (ppm). Appendix 6.3 lists the standardized canonical discriminant function coefficients for all CDA figures in this chapter.

Scholars have noted that the heterogeneous objects may be difficult to characterize using LA-ICP-MS (e.g. Roll et al. 2005:60). In order to understand the amount of variation within the agate and carnelian samples, I developed a methodology that determined which elements were "less variable," "variable," and "most variable." During statistical analysis an attempt was made to use elements that were "less variable" or "variable" in order to minimize this heterogeneity. This information is presented in detail in Appendix 6.4.

Appendix 6.5 presents a summary of the geochemical compositions of the different geologic sources and discusses how they differed from one another compositionally. What is important to note is that there was some overlap between the different geologic sources, and especially the Deccan Trap agate and carnelian sources. It is not surprising that the agate and carnelian source samples from the Deccan Traps appear to be compositionally similar to one another. As noted above, the Deccan Traps are a massive geological formation and the sources sampled may belong to secondary deposits. I believe that the overlap between Deccan Traps sources is not a limitation of LA-ICP-MS, but instead reflects the difficulty of distinguishing between the geochemically analogous Deccan Traps agate sources. I had hoped that the different sources would be compositionally distinct from one another, allowing for a more detailed analysis of agate exploitation over time and space. It is possible that analyses of additional samples from individual sources may increase the ability to distinguish between these sources. For the time being, assignments made to specific geologic sources within the Deccan Traps must be considered with caution.

As noted in the previous chapter, agate and carnelian beads are often modified through heat-treatment to change or deepen their color. However, the geologic samples used to characterize the sources are raw or unheated. We may wonder then about the affect of heattreatment on the geochemical composition of a sample or artifact. To address this question, three pieces of a single sample from Ratanpur were analyzed (Figure 6.18). The first was unheated, the second was heated once at approximately 400° C, and the third was heated multiple times at 400° C. Using the elements Ag, Al, Ba, Be, Bi, Ce, Cs, Cu, La, Li, Lu, Mg, Na, Ni, Sb, Sc, Si, Sm, Sn, Ta, Tb, Ti, U, V, W, Yb, and Zr, I performed Canonical Discriminant Analysis (CDA), using the method described in Chapter 4. 11 of the 12 Ratanpur source samples were successfully cross-validated to the Ratanpur group, one sample was misclassified as belonging to the Undhari group. The heat-treated samples were included as ungrouped cases and based on their discriminant scores, were assigned to a group whose group centroid they are nearest. This is the predicted group membership (PGM). However, a second highest PGM is given to the group with the next lowest Mahalanobis distance value to the group centroid (see Chapter 4 for further discussion). The first and second PGM for the heat-treated Ratanpur samples are listed in Table 6.2. Figure 6.19 displays the sources and heat-treated samples as plotted by their first, second, and third discriminant scores. Only one of the samples, RTP\_Unheated was assigned to the Ratanpur source and the other two samples were assigned to the Mardak Bet source. However, looking at the second PGM for the other two samples shows that the RTP\_HeatedOnce sample was assigned to Undhari, and the RTP\_Heated sample was assigned to the Ratanpur source. As noted above and discussed in Appendix 6.5, the Deccan Traps sources

are geochemically analogous to one another resulting in a low cross-validation rate between the sources. As Randall Law has noted, geochemical similarities between deposits can "result in a degree of overlap among the individual cases making them up," (2011: 224). I believe that these misclassifications are most likely explained by the compositional similarities between the Deccan Trap sources, and not geochemical changes due to heat-treatment. I argue that this small experimental study indicates that heat-treatment of agate and carnelian does not dramatically change their geochemical composition.



Figure 6.18: Heated and unheated geologic samples from the Ratanpur source. Only one of the samples in the "heated once" group was analyzed using LA-ICP-MS.

| Source sample       | 1st PGM    | 2nd PGM    |
|---------------------|------------|------------|
| RTP_Unheated        | Ratanpur   | Mardak Bet |
| RTP_HeatedOnce      | Mardak Bet | Undhari    |
| RTP HeatedManyTimes | Mardak Bet | Ratanpur   |

Table 6.2:First and second predicted group membership (PGM) for the heat-treated Ratanpur samples

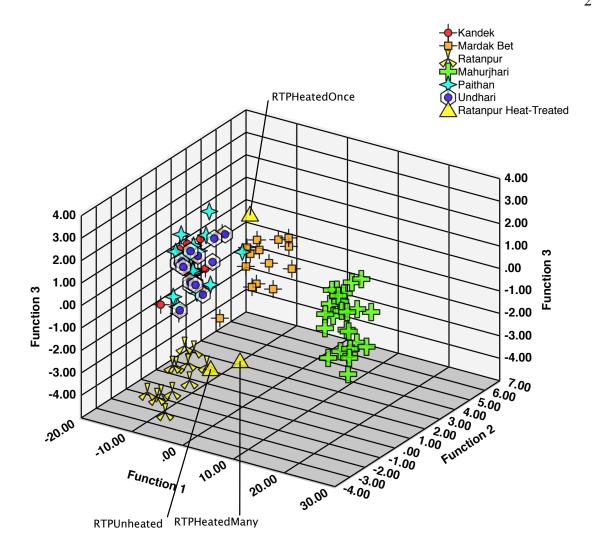



Figure 6.19: The Deccan Trap agate sources plotted by their first, second, and third discriminant functions.

Three samples from Ratanpur (yellow triangles) were plotted as ungrouped cases.

#### Assigning agate and carnelian artifacts to geologic sources

After statistically distinguishing between the geologic sources, the next step was to examine the artifacts and determine which, if any, were geochemically analogous to the sources tested. As with the heat-treated samples discussed above, the artifacts were included as ungrouped cases, compared to the compositional groups, and then assigned to the source whose centroid they are nearest. In my initial CDA, I compared the artifacts to all 12 of the geologic

sources using the elements: Ag, Al, Au, B, Ba, Bi, Co, Cs, Dy, Eu, In, La, Li, Mg, Na, Nd, Ni, Pb, Sb, Sc, Si, Sn, Sr, Tb, Th, Ti, Y, Zn, and Zr. As was expected, the cross-validation rate was low with only 72% of the cross-validated cases classifying correctly (Figure 6.20). The majority of the misclassification was between Deccan Trap sources as well as between the Kon Tum and Dong Nai sources. A single Kon Tum sample was misclassified as belonging to the Undhari source. Table 6.3 below lists the primary PGM assignment for the 79 artifacts in this analysis. The majority of the artifacts were assigned to one of the Deccan Traps sources, however ten artifacts were assigned to one of the Southeast Asian sources. Due to the considerable overlap between the sources, I believe these initial artifact assignments must be treated with caution. As demonstrated above in the heat-treating example, the geochemical similarity between the Deccan Traps sources allows for artifacts to be misclassified between the different Deccan Traps sources. Therefore, I performed a second CDA with the Deccan Traps sources grouped together.

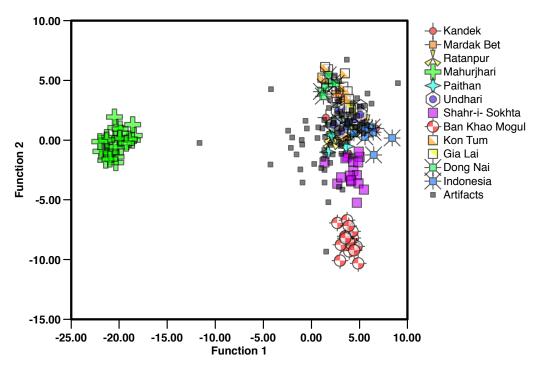



Figure 6.20: Geologic sources and artifacts plotted by their first and second discriminant scores.

In the second CDA, the artifacts were compared to the individual Southeast Asian sources, the Shahr-i-Sokhta source, and the grouped Deccan Traps source. Using the same elements as in the previous CDA a cross-validation rate of 93.8% was achieved. Figure 6.21 shows the artifacts, Deccan Traps, and Southeast Asian sources plotted by their first and second discriminant scores. The Mahurjhari source has been omitted from the scatterplot for clarity. A majority of the artifacts (n=59) were assigned to the Deccan Traps agate source group (Table 6.3 below). All ten of the artifacts that had been previously assigned to a Southeast Asian source were again assigned to the same Southeast Asian source (Figure 6.22). However, an additional ten artifacts that were assigned to one of the Deccan Traps sources in the previous analysis were assigned to a Southeast Asian source. I will return to these 20 artifacts below, however I will first discuss the artifacts assigned to the Deccan Traps sources in more depth.

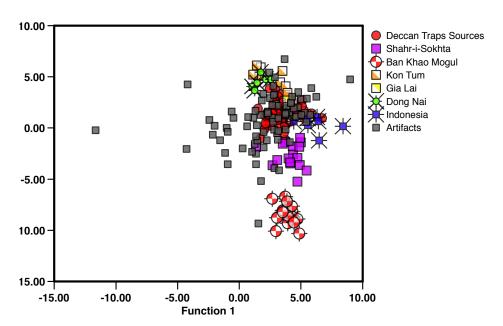



Figure 6.21: Geologic sources and artifacts plotted by their first and second discriminant scores. All of the Deccan Trap sources have been combined into a single group. The Mahurjhari source was omitted for visual clarity.

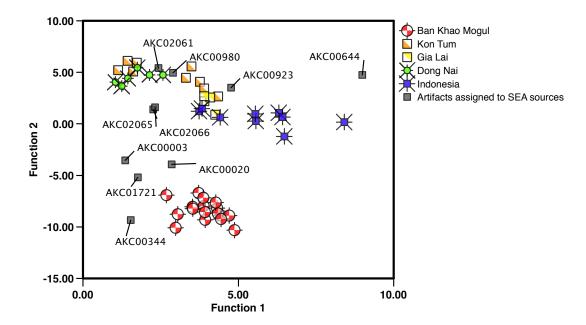



Figure 6.22: Southeast Asian geologic source and the 10 artifacts that were assigned to these sources plotted by their first and second discriminant scores.

Agate and carnelian beads assigned to the Deccan Trap sources

The 69 artifacts initially assigned to the Deccan Trap sources were analyzed an additional time, but in this discriminant analysis were only compared to the Deccan Trap sources. Three geologic source samples with missing values were eliminated (Mardak Bet 12, Khandek 15, Paithan 11) in order to allow for the inclusion of the elements Cu and Tm, which assisted with the improving the discrimination between the sources. CDA was performed using the elements Ag, Al, Au, B, Ba, Bi, Ca, Cs, Co, Cu, Eu, In, La, Li, Mg, Na, Nd, Ni, Sc, Si, Sn, Sr, Th, Tm, and Zr. As with previous analyses focusing on the Deccan Traps, the cross-validation rate was low at 65.6% as only the Mahurjhari samples cross-validated correctly (Figure 6.23).

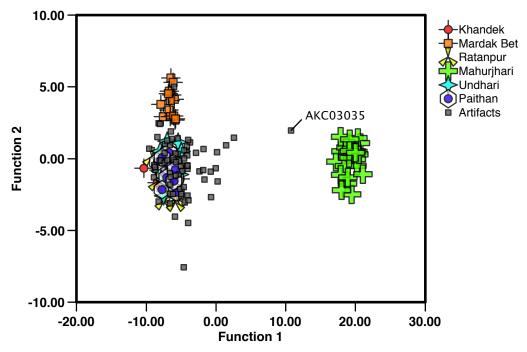



Figure 6.23: Deccan Traps sources and 69 agate and carnelian artifacts plotted by their first and second discriminant scores. AKC03035 is the only artifact assigned to the Mahurjhari source.

Table 6.3 lists the first PGM for all artifacts during their first (all geologic sources included), second (Deccan Traps sources grouped together), and third (only Deccan Traps sources) discriminant function analyses. When we focus just on those artifacts that were consistently assigned to the Deccan Traps sources, all but 13 classified with the same source during the first and third CDA. The majority of these samples (n=31) were assigned to the Ratanpur source, with eight artifacts each assigned to Undhari and Paithan, six artifacts assigned to Khandek, two to Mardak Bet, and one to Mahurjhari.

|             | Γ                    |               |                      |                 | ī                    | ·             | 248           |
|-------------|----------------------|---------------|----------------------|-----------------|----------------------|---------------|---------------|
|             |                      | $2^{nd}$ CDA: | ,                    |                 |                      | $2^{nd}$ CDA: | ,             |
|             | 1 <sup>st</sup> CDA: | Grouped       | 3 <sup>rd</sup> CDA: |                 | 1 <sup>st</sup> CDA: | Grouped       | $3^{rd}$ CDA: |
|             | All                  | DT            | DT                   |                 | All                  | DT            | DT            |
|             | sources,             | sources,      | sources,             |                 | sources,             | sources,      | sources,      |
|             | all beads            | all beads     | 69 beads             |                 | all beads            | all beads     | 69 beads      |
| Database    |                      |               |                      | Database        |                      |               |               |
| ID          | 1st PGM              | 1st PGM       | 1st PGM              | ID              | 1st PGM              | 1st PGM       | 1st PGM       |
| AKC00003    | Indonesia            | Indonesia     | N/A                  | AKC02063        | Paithan              | DT            | Paithan       |
| AKC00016    | Ratanpur             | DT            | Ratanpur             | AKC02064        | Ratanpur             | DT            | Ratanpur      |
| AKC00020    | BKM                  | BKM           | N/A                  | AKC02065        | Kon Tum              | Kon Tum       | N/A           |
| AKC00025    | Ratanpur             | DT            | Ratanpur             | AKC02066        | Kon Tum              | Kon Tum       | N/A           |
| AKC00026    | Ratanpur             | DT            | Ratanpur             | AKC02067        | Undhari              | Kon Tum       | Undhari       |
| AKC00035    | Ratanpur             | DT            | Ratanpur             | AKC02068        | Ratanpur             | DT            | Ratanpur      |
| AKC00044    | Ratanpur             | Indonesia     | Ratanpur             | AKC02069        | Khandek              | DT            | Khandek       |
| AKC00053    | Ratanpur             | DT            | Ratanpur             | AKC02070        | Paithan              | DT            | Paithan       |
| AKC00056    | Ratanpur             | DT            | Ratanpur             | AKC02071        | Khandek              | DT            | Khandek       |
| AKC00303    | Ratanpur             | Indonesia     | Ratanpur             | AKC03035        | Mahurjhari           | Mahurjhari    | Mahurjhari    |
| AKC00308    | Paithan              | DT            | Paithan              | AKC03036        | Paithan              | DT            | Paithan       |
| AKC00344    | BKM                  | BKM           | N/A                  | AKC03037        | Ratanpur             | DT            | Ratanpur      |
| AKC00348    | Ratanpur             | DT            | Ratanpur             | AKC03038        | Ratanpur             | DT            | Ratanpur      |
| AKC00364    | Ratanpur             | DT            | Ratanpur             | AKC03039        | Ratanpur             | DT            | Ratanpur      |
| AKC00433    | Ratanpur             | DT            | Ratanpur             | AKC03040        | Khandek              | DT            | Khandek       |
| AKC00437    | Ratanpur             | Indonesia     | Ratanpur             | AKC03041        | Ratanpur             | Kon Tum       | Ratanpur      |
| AKC00643    | Ratanpur             | Indonesia     | Ratanpur             | AKC03042        | Undhari              | DT            | Ratanpur      |
| AKC00644    | Indonesia            | Indonesia     | N/A                  | AKC03043        | Undhari              | DT            | Undhari       |
| AKC00646    | Ratanpur             | DT            | Ratanpur             | AKC03044        | Undhari              | DT            | Undhari       |
| AKC00647    | Ratanpur             | DT            | Ratanpur             | AKC03045        | Undhari              | DT            | Undhari       |
| AKC00730    | Ratanpur             | Indonesia     | Ratanpur             | AKC03046        | Ratanpur             | DT            | Undhari       |
| AKC00732    | Ratanpur             | DT            | Ratanpur             | AKC03500        | Khandek              | DT            | Undhari       |
| AKC00902    | Paithan              | DT            | Paithan              | AKC03501        | Undhari              | DT            | Paithan       |
| AKC00922    | Ratanpur             | DT            | Ratanpur             | AKC03502        | Ratanpur             | DT            | Undhari       |
| AKC00923    | Kon Tum              | Kon Tum       | N/A                  | AKC03503        | Ratanpur             | DT            | Ratanpur      |
| AKC00932    | Undhari              | DT            | Undhari              | AKC03504        | Paithan              | DT            | Paithan       |
| AKC00980    | Kon Tum              | Kon Tum       | N/A                  | AKC03505        | Paithan              | DT            | Paithan       |
| AKC00995    | Undhari              | DT            | Ratanpur             | AKC03506        | Khandek              | DT            | Khandek       |
| AKC00999    | Undhari              | DT            | Ratanpur             | AKC03507        | Undhari              | DT            | Khandek       |
| AKC01051    | Undhari              | DT            | Undhari              | AKC03508        | Khandek              | DT            | Khandek       |
| AKC01061    | Undhari              | DT            | Undhari              | AKC03509        | Khandek              | DT            | Khandek       |
| AKC01062    | Undhari              | DT            | MB                   | AKC03510        | MB                   | DT            | Khandek       |
| AKC01108    | Ratanpur             | Indonesia     | MB                   | AKC03511        | Ratanpur             | DT            | Ratanpur      |
| AKC01111    | Paithan              | DT            | MB                   | AKC03512        | MB                   | DT            | MB            |
| AKC01721    | BKM                  | BKM           | N/A                  | AKC03513        | Ratanpur             | DT            | Ratanpur      |
| AKC01950    | Ratanpur             | DT            | Ratanpur             | AKC03514        | Ratanpur             | Dong Nai      | Ratanpur      |
| AKC01951    | Ratanpur             | DT            | Paithan              | AKC03515        | Ratanpur             | Dong Nai      | Ratanpur      |
| AKC02060    | Paithan              | DT            | Paithan              | AKC03516        | MB                   | DT            | MB            |
| AKC02061    | Gia Lai              | Gia Lai       | N/A                  | AKC03517        | Ratanpur             | DT            | Ratanpur      |
| AKC02062    | Undhari              | DT            | Undhari              |                 |                      |               |               |
| TO 11 (2 TO | 11 66 4              | 1. 4 1        |                      | ins (PGM) for t |                      | 1             | DIZIA         |

Table 6.3: Table of first predicted group memberships (PGM) for the agate and carnelian artifacts. BKM=Ban Khao Mogul, DT=Deccan Traps, MB=Mardak Bet.

Due to the high overlap between the Deccan Trap geologic source samples I am cautious about accepting the PGM assignments without question. We can expect that the overall geochemical similarity between these sources will result in misclassifications amongst the artifacts. Furthermore, CDA will always assign an artifact to a group, even if they do not actually belong to that group. In a study with a limited number of sources there is always the possibility that the artifacts do not belong to any of the groups in the dataset. However, I do feel confident in making a regional assessment about the artifact assignments. Although one might not be able to say that the artifacts assigned to the Deccan Traps sources definitely derived form these sources, we can confidently state that the artifacts are <u>not</u> geochemically analogous to the

Despite these qualifications, I argue that at least 45 of the 79 agate and carnelian artifacts were made from raw material from the Deccan Traps. Although I am not comfortable assigning them to a specific source within this geologic formation, the large number of artifacts that were assigned to the Ratanpur source is not surprising based on historical and archaeological data indicating its importance in bead production. As discussed earlier, Ratanpur has been a major source of raw materials for bead production for hundreds of years (Arkell 1936; Francis 1986, 2002;) and was likely exploited as far back as the Harappan period (Law 2011). During the first or second century AD the Greek writer Ptolemy noted the export of onyx stones to Egypt from a region some have suggested may have been Ratanpur (McCrindle 1885: 77, 334).

Paithan is another important source used in bead production and also mentioned by Ptolemy as an exporter of onyx stones (Huntingford 1980: 49; Francis 2002: 104-5). The nearby

city of Ujjain (Map Figure 6.2) was also a well-known beadmaking center from approximately 500-200 BC (Banerjee 1959:190). The beadmaking center of Cambay (or Khambhat) (Map Figure 6.2) is also believed to have been in operation since the early first millennium AD (Arkell 1936:304). It is likely then, that this region could have been a source of both the raw materials and finished beads found in Southeast Asia. Little is known about the exploitation of the Undhari source and the Khandek and Mardak Bet sources were exploited during the Harappan period (Law 2011).

Only one bead was assigned to the Mahurjhari source group, a spherical carnelian bead from Angkor Borei (Figure 6.24). As discussed in Appendix 6.5, the Mahurjhari samples are notable for its high levels of tin (Sn). The Angkor Borei bead has higher levels than other artifacts analyzed (67 ppm), although not as high as the other materials from this site and therefore plots somewhat away from this source (Figure 6.23). The Angkor Borei bead may be an outlier of the geologic source used to make beads at Mahurjhari, or it could also derive from an untested source. Excavators believe the bead manufacturing began at Mahurjhari site around the 6 or 7<sup>th</sup> century BC and continued until the 4-5<sup>th</sup> century AD. Although Deccan Trap agates were thought to have been used by bead production centers throughout much of India, the scholar R.K. Mohanty has postulated that beadmakers at Mahurjhari might have been exploiting a central Indian raw material source (1999: 84). The distinctness of the Mahurjhari samples indicates they may in fact come from a non-Deccan Trap source, although this location is still unknown. Finished products from Mahurjhari are believed to have been traded to western and southern India as well as possibly Central Asia and Rome (Mohanty 1999: 84). However, Francis has argued that Mahurjhari likely did not "export its beads outside its neighborhood,"

(2002: 116). The single bead assigned to this source indicates that the large quantities of beads, if any, were likely not exported to Southeast Asia from this site.

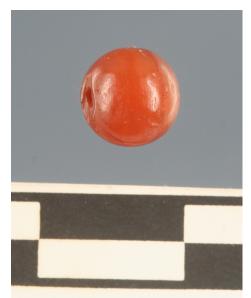



Figure 6.24: Spherical carnelian bead from Angkor Borei (AKC03035) assigned to the Mahurjhari source. Scale in cm.

14 artifacts were consistently assigned to the Deccan Traps sources, but when plotted by their discriminant scores plot somewhat away from the Deccan Traps sources (Figure 6.25). Two of these beads are rough carnelian hexagonal faceted short bicones from Phum Snay (AKC00016 and AKC00025), as well as two faceted bicone beads from Angkor Borei: a rough hexagonal faceted quartz bead (AKC03046) and a more finely made hexagonal short bicone (AKC03037). Also included in this group are spherical beads from Phum Snay (AKC00035) and Krek 52/62 (AKC00647), a rough spherical bead from Angkor Borei (AKC03041) and a short bicone bead from Angkor Borei (AKC03044). One broken long cylindrical agate bead from Ban Non Wat (AKC02070) also plotted away from the Deccan Trap sources, as did the five unfinished, unpolished agate beads from Khao Sam Kaeo (AKC03502-4, AKC03512-3).

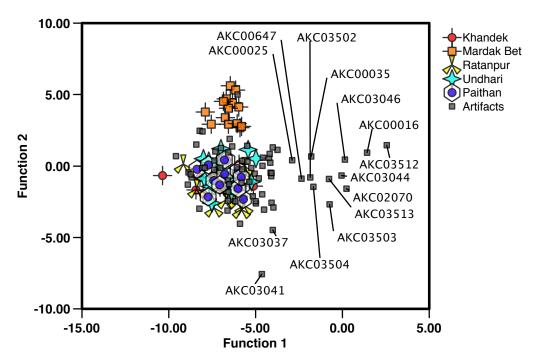



Figure 6.25: Deccan Traps sources and 69 archaeological artifacts plotted by their first and second discriminant scores from the third CDA. The labeled artifacts are those that plot away from the Deccan Trap sources group. The Mahurjhari source has been omitted for visual clarity.

All beads, except AKC03041, were assigned to the Deccan Traps sources in all three CDAs. Some of these beads may simply be outliers of the Deccan Traps sources. I believe this may especially be the case for the rough hexagonal faceted bicones from Phum Snay (AKC00016 and AKC00025), as a similar bead from the same burial (AKC00026) plotted more closely with the Deccan Traps sources. However, we must also consider that some of these beads derive form an as-of-yet untested source located in either South or Southeast Asia. Several of the beads discussed above are unique beads within the collections examined at the site. For example, the quartz bead and short carnelian faceted bicone from Angkor Borei are both the only examples of these types recorded in this study. The cylindrical bead from Ban Non Wat had one of the largest perforation sizes of any bead recorded, suggesting it may derive from different

workshop than beads with smaller perforations. Lastly, the five unpolished and undrilled agate beads from Khao Sam Kaeo (AKC03502-4 and AKC03512-3) found on Hill 3 and Hill 4 appear to belong to a distinct group. Analyses of additional geologic sources may help clarify the origins of these specific beads.

Agate and carnelian beads assigned to Southeast Asian geologic sources

Approximately one-quarter of the agate and carnelian beads were assigned to a Southeast Asian source, in either the first or second CDA (Table 6.3). In order to investigate these assignments more closely, these 20 artifacts were compared as ungrouped cases to the five Southeast Asian geologic sources and the Ratanpur source, which acted as a proxy for the Deccan Traps sources. Using the elements Ag, Au, B, Ba, Bi, Co, Mg, Mn, Pr, Rb, Si, Sr, Tm, Ti, and Y a cross-validation rate of 96.7% was achieved. A single Kon Tum sample misclassified with the Dong Nai source group and an Indonesian source sample classified with the Ratanpur source group. The PGMs for all four CDA analyses for these artifacts are listed in Table 6.4.

Only seven of these 20 artifacts were consistently assigned to the same Southeast Asian geologic source (marked in italic in Table 6.4), while the remaining thirteen artifacts were assigned to different Southeast and South Asian geologic sources throughout all four discriminant function analyses. Eight of these artifacts were reassigned to the Ratanpur source, despite having been assigned to a Southeast Asian source during at least one previous discriminant function analysis. Several of these artifacts appear to plot between two potential sources, and were assigned to either one or the other depending on elements used in the discriminant analyses.

|          | First CDA: All sources, all artifacts | Second CDA:<br>Grouped Deccan<br>Traps sources, all<br>artifacts | Third CDA: Deccan Traps sources, 69 artifacts | Fourth CDA: SEA sources, Ratanpur, and 20 artifacts |
|----------|---------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| AKC00003 | Indonesia                             | Indonesia                                                        | N/A                                           | Indonesia                                           |
| AKC00020 | BKM                                   | BKM                                                              | N/A                                           | Ratanpur                                            |
| AKC00044 | Ratanpur                              | Indonesia                                                        | Ratanpur                                      | Indonesia                                           |
| AKC00303 | Ratanpur                              | Indonesia                                                        | Ratanpur                                      | Ratanpur                                            |
| AKC00344 | BKM                                   | BKM                                                              | N/A                                           | BKM                                                 |
| AKC00437 | Ratanpur                              | Indonesia                                                        | Ratanpur                                      | Ratanpur                                            |
| AKC00643 | Ratanpur                              | Indonesia                                                        | Ratanpur                                      | Ratanpur                                            |
| AKC00644 | Indonesia                             | Indonesia                                                        | N/A                                           | Indonesia                                           |
| AKC00730 | Ratanpur                              | Indonesia                                                        | Ratanpur                                      | Indonesia                                           |
| AKC00923 | Kon Tum                               | Kon Tum                                                          | N/A                                           | Kon Tum                                             |
| AKC00980 | Kon Tum                               | Kon Tum                                                          | N/A                                           | Kon Tum                                             |
| AKC01108 | Ratanpur                              | Indonesia                                                        | Mardak Bet                                    | Ratanpur                                            |
| AKC01721 | BKM                                   | BKM                                                              | N/A                                           | Ratanpur                                            |
| AKC02061 | Gia Lai                               | Gia Lai                                                          | N/A                                           | Gia Lai                                             |
| AKC02065 | Kon Tum                               | Kon Tum                                                          | N/A                                           | Kon Tum                                             |
| AKC02066 | Kon Tum                               | Kon Tum                                                          | N/A                                           | Ratanpur                                            |
| AKC02067 | Undhari                               | Kon Tum                                                          | Undhari                                       | Kon Tum                                             |
| AKC03041 | Ratanpur                              | Kon Tum                                                          | Ratanpur                                      | Indonesia                                           |
| AKC03514 | Ratanpur                              | Dong Nai                                                         | Ratanpur                                      | Kon Tum                                             |
| AKC03515 | Ratanpur                              | Dong Nai                                                         | Ratanpur                                      | Ratanpur                                            |

Table 6.4: List of first predicted group measurements for the 20 artifacts that grouped with the Southeast Asian geologic sources. Artifacts in italics denote those that were consistently assigned to the same source during all four discriminant function analyses.

Figure 6.26 shows 11 such artifacts that do not appear to plot closely to any sources, or plot between two sources. While many of these artifacts may be outliers of the sources to which they are assigned, it is also possible that they may belong to an untested geologic source. Of special note is AKC01721, the carnelian nodule found at Prei Khmeng. Due to the small quantity of carnelian artifacts found at this site and lack of evidence for bead production, it is highly unlikely that this nodule was transported over long-distance exchange networks from South Asia. Instead, it is more probable that this nodule derives from an unknown local stone source. Two artifacts, AKC00303 and AKC01108 plot more closely to the Ratanpur source (Figure 6.27), and were assigned to a Deccan Traps geologic source in three of the four discriminant function

analyses. Although these objects were assigned to the Indonesian source during the second CDA, I propose that both may in fact derive from the Deccan Traps sources. However, I cannot yet rule out that they may belong to an unidentified source.

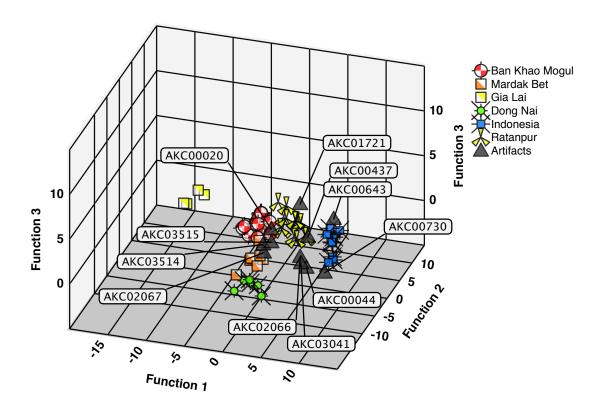



Figure 6.26: Geologic sources and artifacts from the fourth CDA plotted by their first, second, and third discriminant function. Labeled artifacts are those that appear to plot away from or in between the sources to which they were assigned.

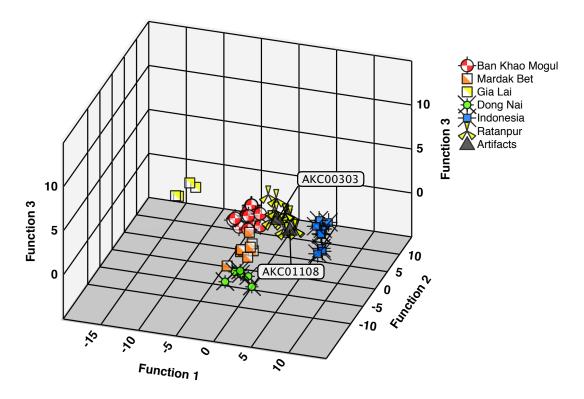



Figure 6.27: Geologic sources and artifacts from the fourth CDA plotted by their first, second, and third discriminant scores. The two artifacts noted in the scatterplot are those that appear to plot closely with the Ratanpur source.

The seven artifacts that were consistently assigned to the same Southeast Asian geologic source deserve a closer examination. These artifacts are shown in Figure 6.28, plotted by their first, second, and third discriminant scores. Two of these beads have characteristics that set them apart from other beads examined in this study. AKC02061 is a long carnelian barrel bead with the second largest drill hole size of all the beads examined, approximately 3mm (Figure 6.29). This bead was assigned to the Gia Lai source, but plots well away from it. However, the bead appears visually similar to carnelian beads found in the Samon Valley, Myanmar (see Moore 2007: 75); further investigation of raw materials from this region may confirm this hypothesis.

A short carnelian bicone from Village 10.8 (AKC00344) was assigned to the Ban Khao Mogul source. This bead was notable due to its low polish, with an almost matte finish (Figure 6.30). Although this bead does appear to plot near the source, the same cautions apply in regards to assigning the bead to this source. There is no evidence for bead production at Ban Khao Mogul, and no other beads from Village 10.8 were assigned to this source. Furthermore, it is unusual that no additional BKM beads were identified from geochemical analysis from sites closer to the source such as Promtin Tai or Ban Non Wat. That this bead was consistently assigned to the Ban Khao Mogul sources should be taken to mean that the bead is *not* geochemically analogous to the other sources tested, and not that the bead is geochemically comparable to the Ban Khao Mogul source. Therefore, I argue that this bead was likely made from an untested source, likely located somewhere in South or Southeast Asia.

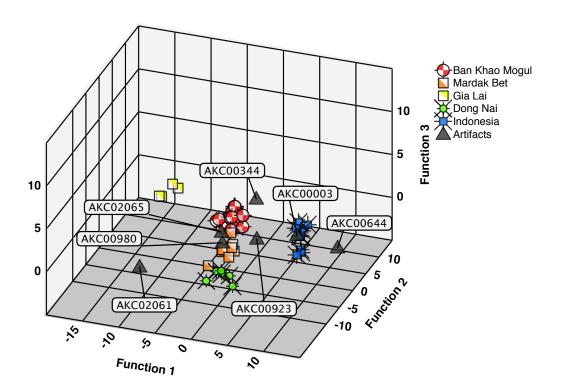



Figure 6.28: Artifacts consistently assigned to Southeast Asian sources plotted by their first, second, and third discriminant scores.



Figure 6.29:AKC02061 a long carnelian barrel bead from Ban Non Wat that may derive from a geologic source in Myanmar.



Figure 6.30: AKC00344, a short bicone bead from Village 10.8 with low polish.

Four agate barrel and bicone beads from four different sites were also consistently assigned to either the Indonesian or Kon Tum sources (Figure 6.31). Two beads were assigned to the Indonesian source, one from Phum Snay (AKC00003) and one from Prohear (AKC00644). These beads look similar to agates from the Gangetic region, which were used to produce barrel beads during the pre-Mauryan period, although the source for these beads is unknown (J. Mark

Kenoyer, personal communication, 2013). Both beads are long agate barrels, with dark brown/black and opaque white coloring. A second set of long barrel beads from Promtin Tai (AKC00923) and Ban Non Wat (AKC02065) were assigned to the Kon Tum source. The bead from Ban Non Wat (AKC02065) appears to have been burned and whitened, and may have been originally been a different color, perhaps red and white banded agate (J. Mark Kenoyer, personal communication, 2013). The agate bead from Phum Snay was the only agate bead recorded from this site, however similar agate beads were found at Ban Non Wat, Promtin Tai, and Prohear that were assigned to the Deccan Traps sources. Without stronger evidence for agate bead production in Vietnam or Indonesia, I hesitate to confidently state that these beads derive from these sources. However, it does appear that these beads are distinct from other beads in this collection and their similarity to one another points toward the possibility that they may have been produced from a single unknown geologic source. A carnelian flattened hexagonal bicone from Promtin Tai (AKC00980) was also assigned to the Kon Tum source. As discussed earlier, this bead shape was also identified at Khao Sam Kaeo and Prohear, however this group of beads does not appear to be made using the same raw material source. This suggests that multiple workshops may have been making beads in this shape.

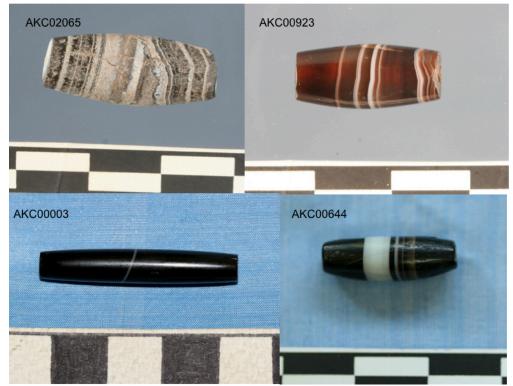



Figure 6.31: Agate beads assigned to the Kon Tum geologic source (top row) and Indonesian source (bottom row).

Summary of conclusions from the agate and carnelian bead composition data

To summarize the data presented above, geochemical analysis of agate and carnelian beads suggests that the majority (n=45) of the agate and carnelian artifacts were made from raw materials from the Deccan Traps. An additional 13 artifacts were consistently assigned to the Deccan Traps sources, however when plotted by their first and second discriminant scores, these beads appear to plot away from these sources. That these beads were consistently assigned to the Deccan Traps indicates that they are geochemically distinct from the Southeast Asian sources, however it is also possible that they do not belong to the Deccan Traps sources and were made from an untested raw material source. Several of these 13 beads are similar to beads assigned to the Deccan Traps sources and may in fact originate from sources, such as two short hexagonal faceted bicones from Phum Snay (AKC00016 and AKC00025) that are morphologically similar

to similar beads AKC00026 and AKC00053, which were assigned to the Deccan Traps. However, other beads are more unusual and could in fact represent beads that derive from an untested source. This includes the quartz bead (AKC03046) and the short hexagonal faceted bicone bead (AKC03044) from Angkor Borei, the broken agate cylinder bead with the larger perforation size from Ban Non Wat (AKC02070), and the group of unfinished agate beads from Khao Sam Kaeo (AKC03502-4, AKC03512-3). One carnelian bead from Angkor Borei (AKC03035) is fairly distinct due to high-levels of tin, however it is unclear if this bead is compositionally similar to the Mahurjhari source or if it belongs to a different untested source.

The remaining 20 beads were assigned to the Southeast Asian sources at least once during the course of statistical analysis of the compositional results, with seven beads consistently assigned to the same Southeast Asian source. While this compositional data supports the interpretation that these beads were not made from Deccan Traps agate sources, I do not believe that we can confidently assign them to a Southeast Asian source based on compositional data alone. There are still numerous potential untested sources in both South and Southeast Asia, and none of the sources included in this study have strong archaeological evidence for their involvement in ancient bead production. Despite these qualifications, there are still several beads in this group that do appear to be different from the larger collection and could be indicative of beads from a workshop not affiliated with the Deccan Traps sources. This includes the group of unfinished beads from Khao Sam Kaeo, the group of agate barrel beads from various sites discussed above, as well as the carnelian barrel bead with the large perforation from Ban Non Wat. Also of note are the two carnelian crescents from Khao Sam Kaeo (AKC03514-5) and two pendants, one from Ban Non Wat (AKC02066) and one from Promtin

| Database<br>ID | Site Name | Possible geologic<br>source<br>provenience                                                                   | Database<br>ID | Site Name      | Possible geologic source provenience                                           |
|----------------|-----------|--------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------|
| AKC00003       | Phum Snay | Assigned SEA, but likely from an untested source                                                             | AKC02063       | Ban Non<br>Wat | Deccan Traps                                                                   |
| AKC00016       | Phum Snay | Assigned to Deccan Traps, but plots away from group. Similar to ACK00026, could be an outlier of DT sources? | AKC02064       | Ban Non<br>Wat | Deccan Traps                                                                   |
| AKC00020       | Phum Snay | Assigned to both SEA/SA, but likely from an untested source                                                  | AKC02065       | Ban Non<br>Wat | Assigned SEA, more likely from an untested source                              |
| AKC00025       | Phum Snay | Assigned to Deccan Traps, but plots away. Similar to ACK00026, so could be an outlier of DT sources?         | AKC02066       | Ban Non<br>Wat | Assigned to both SEA/SA, more likely from an untested source                   |
| AKC00026       | Phum Snay | Deccan Traps                                                                                                 | AKC02067       | Ban Non<br>Wat | Assigned to both SEA/SA, more likely from an untested source                   |
| AKC00035       | Phum Snay | Assigned to Deccan Traps, but plots away and could be from an untested source.                               | AKC02068       | Ban Non<br>Wat | Deccan Traps                                                                   |
| AKC00044       | Phum Snay | Assigned to both SEA/SA, more likely from an untested source                                                 | AKC02069       | Ban Non<br>Wat | Deccan Traps                                                                   |
| AKC00053       | Phum Snay | Deccan Traps                                                                                                 | AKC02070       | Ban Non<br>Wat | Assigned to Deccan Traps, but plots away and could be from an untested source. |
| AKC00056       | Phum Snay | Deccan Traps                                                                                                 | AKC02071       | Ban Non<br>Wat | Deccan Traps                                                                   |

|          |                 |                                                                                |          |                  | 203                                                                                     |
|----------|-----------------|--------------------------------------------------------------------------------|----------|------------------|-----------------------------------------------------------------------------------------|
| AKC00303 | Village<br>10.8 | Assigned to both SEA/SA, but could belong to Deccan Traps.                     | AKC03035 | Angkor<br>Borei  | Deccan Traps<br>(Mahurjhari?)                                                           |
| AKC00308 | Village<br>10.8 | Deccan Traps                                                                   | AKC03036 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00344 | Village<br>10.8 | Assigned SEA,<br>more likely from<br>an untested source                        | AKC03037 | Angkor<br>Borei  | Assigned to Deccan Traps, but plots away and could be from an untested source.          |
| AKC00348 | Village<br>10.8 | Deccan Traps                                                                   | AKC03038 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00364 | Village<br>10.8 | Deccan Traps                                                                   | AKC03039 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00433 | Village<br>10.8 | Deccan Traps                                                                   | AKC03040 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00437 | Village<br>10.8 | Assigned to both<br>SEA/SA, more<br>likely from an<br>untested source          | AKC03041 | Angkor<br>Borei  | Assigned to both SEA/SA, more likely from an untested source                            |
| AKC00643 | Prohear         | Assigned to both<br>SEA/SA, more<br>likely from an<br>untested source          | AKC03042 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00644 | Prohear         | Assigned SEA,<br>more likely from<br>an untested source                        | AKC03043 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00646 | Prohear         | Deccan Traps                                                                   | AKC03044 | Angkor<br>Borei  | Assigned to Deccan Traps, but plots away and could be from an untested source.          |
| AKC00647 | Krek 52/62      | Assigned to Deccan Traps, but plots away and could be from an untested source. | AKC03045 | Angkor<br>Borei  | Deccan Traps                                                                            |
| AKC00730 | Bit Meas        | Assigned to both<br>SEA/SA, more<br>likely from an<br>untested source          | AKC03046 | Angkor<br>Borei  | Assigned to Deccan<br>Traps, but plots away<br>and could be from an<br>untested source. |
| AKC00732 | Bit Meas        | Deccan Traps                                                                   | AKC03500 | Khao Sam<br>Kaeo | Deccan Traps                                                                            |
| AKC00902 | Promtin<br>Tai  | Deccan Traps                                                                   | AKC03501 | Khao Sam<br>Kaeo | Deccan Traps                                                                            |
| AKC00922 | Promtin<br>Tai  | Deccan Traps                                                                   | AKC03502 | Khao Sam<br>Kaeo | Assigned to Deccan Traps, but plots away and could be from an untested source.          |

|                                                                                                        | ,              |                                                                            |          | ,                                                                                       | 264                                                                                     |
|--------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| AKC00923                                                                                               | Promtin<br>Tai | Assigned SEA, more likely from an untested source  AKC03503  Khao Sam Kaeo |          | Assigned to Deccan Traps, but plots away and could be from an untested source.          |                                                                                         |
| AKC00932                                                                                               | Promtin<br>Tai | Deccan Traps AKC03504 Khao Sam Kaeo                                        |          | Assigned to Deccan<br>Traps, but plots away<br>and could be from an<br>untested source. |                                                                                         |
| AKC00980                                                                                               | Promtin<br>Tai | Assigned SEA,<br>more likely from<br>an untested source                    | AKC03505 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC00995                                                                                               | Promtin<br>Tai | Deccan Traps                                                               | AKC03506 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC00999                                                                                               | Promtin<br>Tai | Deccan Traps                                                               | AKC03507 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC01051                                                                                               | Promtin<br>Tai | Deccan Traps                                                               | AKC03508 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC01061                                                                                               | Promtin<br>Tai | Deccan Traps                                                               | AKC03509 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC01062                                                                                               | Promtin<br>Tai | Deccan Traps                                                               | AKC03510 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC01108                                                                                               | Promtin<br>Tai | Assigned to both SEA/SA, but could belong to Deccan Traps.                 | AKC03511 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC01111                                                                                               | Promtin<br>Tai | Deccan Traps                                                               | AKC03512 | Khao Sam<br>Kaeo                                                                        | Assigned to Deccan<br>Traps, but plots away<br>and could be from an<br>untested source. |
| AKC01721                                                                                               | Prei<br>Khmeng | Assigned to both SEA/SA, more likely from an untested source               | AKC03513 | Khao Sam<br>Kaeo                                                                        | Assigned to Deccan<br>Traps, but plots away<br>and could be from an<br>untested source. |
| AKC01950                                                                                               | Phnom<br>Borei | Deccan Traps                                                               | AKC03514 | Khao Sam<br>Kaeo                                                                        | Assigned to both SEA/SA, more likely from an untested source                            |
| AKC01951                                                                                               | Phnom<br>Borei | Deccan Traps                                                               | AKC03515 | Khao Sam<br>Kaeo                                                                        | Assigned to both SEA/SA, more likely from an untested source                            |
| AKC02060                                                                                               | Ban Non<br>Wat | Deccan Traps                                                               | AKC03516 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC02061                                                                                               | Ban Non<br>Wat | Assigned SEA,<br>more likely from<br>an untested source                    | AKC03517 | Khao Sam<br>Kaeo                                                                        | Deccan Traps                                                                            |
| AKC02062                                                                                               | Ban Non<br>Wat | Deccan Traps                                                               |          |                                                                                         |                                                                                         |
| Table 6.5: Preliminary geologic source provenience assignment for the 79 agate and carnelian artifacts |                |                                                                            |          |                                                                                         |                                                                                         |

Table 6.5: Preliminary geologic source provenience assignment for the 79 agate and carnelian artifacts analyzed using LA-ICP-MS.

As discussed above, it is likely that approximately 34 beads were made with raw material sources that have not yet been geochemically tested and identified. There are numerous potential sources in South and Southeast Asia that deserves future testing and evaluation. The South Indian bead production industry is well known, as numerous sites have evidence for stone bead manufacture, including the port site of Arikamedu (Figure 6.2) and Kodumanal (Francis 2002, 2004; Kelly 2009). Many of these South Indian bead production sites made beads using a variety of raw materials including quartz and amethyst, as well as carnelian and agate (Francis 2002). Unfortunately, it is unclear what sources were being used to produce beads. Some scholars have suggested that agate and carnelian were being imported from northern India (Rajan 1990:102; Francis 2002: 117), however there are other sources located within the region that may have also been exploited. Francis describes nodules from the Deccan Traps found in the Godavari and Krishna riverbeds (2002: 117), however if these nodules were used they may geochemically indistinguishable from the other Deccan Traps sources. Distinct veins of agate and carnelian may be located elsewhere in South India, Francis suggests a possible vein of banded agate near the site of Kotalingala (Figure 6.2) (2002: 117), although the exact location of these sources is currently unknown. Further examination of bead production debris may assist in at least identifying a proxy for local South Indian agate and carnelian sources.

Another important potential source location for the purposes of this study would be agate and carnelian deposits located in eastern India, bordering Southeast Asia, and specifically those in Orissa state. The unissen has noted that there may have been overland trade into Southeast Asia through east India and that bead production sources in this region should be considered as

potential sources for beads found in Southeast Asia (Theunissen et al. 2000; Theunissen 2003). Several scholars have reported evidence for bead production in Orissa (Mohanty and Mishra 1999 in Theunissen et al. 2000). As discussed above, there is also evidence for both raw materials and stone bead production in Myanmar. A single carnelian bead from Ban Non Wat shared a visual similarity with beads from the Samon Valley, indicating that further investigation within this region is needed. It is hoped that with continued research and analysis the raw material source for all the agate and carnelian beads will be identified.

### Conclusion

This chapter has presented geochemical data on agate and carnelian artifacts from 11 sites in Cambodia and Thailand. By performing geochemical compositional analysis on a selection of agate and carnelian beads I was able to see clear patterns in the exploitation of stone sources, although these patterns were not as fine-grained as I had originally intended.

Nevertheless, the compositional data indicate that most (n=59) of the agate and carnelian beads in this study were made using Deccan Traps agate sources. Approximately one quarter, or 20 beads, appear to have been made using non-Deccan Traps sources, however the explicit use of a Southeast Asian raw material source to make beads is not yet clear. While I cannot yet clearly identify the sources used to make these beads, it is possible that sources in both South and Southeast Asia may have been used to make beads. In the beginning of this chapter I introduced several questions that I would now like to address in more detail.

# Were different stone sources used to produce Period 1 and Period 2 Type beads?

Metric and morphological differences in agate and carnelians showed a distinction between Period 1 Type beads and Period 2 Type beads. However, results show that there did not

appear to be strong compositional differences between the Period 1 and Period 2 Type beads. These two types of beads also appear to be related to changing trade networks with South Asia and between sites in Southeast Asia. As the quality of beads was changing over time and there also appears to have been an increase in the quantity of beads during the later Iron Age, one could wonder if this required the participation of new bead production workshops that were exploiting different stone sources to produce their beads. While LA-ICP-MS has proven to be an ideal method for distinguishing between sources and assigning artifacts to those sources, similarities in the composition of the Deccan Traps sources and a limited dataset have prevented me from achieving the fine-grained analysis of the agate and carnelian artifacts that I had expected. However, the geochemical data can be used to make regional assessments about the provenience of the beads. Approximately two-thirds of the beads analyzed from sites with Period 1 Type beads and Period 2 Type beads appear to derive from Deccan Traps geologic sources (Tables 6.6 and 6.7). A Fisher's Exact test provided a p-value of .2134, indicating there are not statistically significant differences between the sources used to produce the Period 1 and Period 2 beads. These results indicate that there were not major changes in the geologic raw material source being used between the two Periods. I argue that this evidence suggests the Deccan Traps geologic sources were the primary suppliers of raw materials used to produce both the Period 1 and Period 2 bead types found in Southeast Asia. If a non-Deccan Trap sources was being used to produce more beads in either Periods 1 or 2, it is not yet clearly identifiable. It is possible that the sources for the beads believed to have been made from non-Deccan Traps sources changed over time. However these assessments should be confirmed with further research in order to better identify the sources used to produce these beads.

| Site Name     | Number of beads<br>assigned to Deccan<br>Traps sources | Number of bead<br>assigned to Non-<br>Deccan Traps<br>sources |
|---------------|--------------------------------------------------------|---------------------------------------------------------------|
| Village 10.8  | 5                                                      | 2                                                             |
| Khao Sam Kaeo | 11                                                     | 7                                                             |
| Promtin Tai   | 10                                                     | 2                                                             |
| Prohear       | 1                                                      | 2                                                             |
| Bit Meas      | 1                                                      | 1                                                             |
| Total         | 28                                                     | 14                                                            |

Table 6.6: The total number of beads assigned to Deccan Trap and non-Deccan Traps sources from sites with Period 1 Type beads.

| Site Name    | Number of beads<br>assigned to Deccan<br>Traps sources | Number of bead<br>assigned to Non-<br>Deccan Traps<br>sources |
|--------------|--------------------------------------------------------|---------------------------------------------------------------|
| Angkor Borei | 8                                                      | 4                                                             |
| Phnom Borei  | 2                                                      | 0                                                             |
| Phum Snay    | 5                                                      | 4                                                             |
| Total        | 15                                                     | 8                                                             |

Table 6.7: The total number of beads assigned to Deccan Trap and non-Deccan Traps sources from sites with Period 2 Type beads.

### Is there evidence that certain bead types were being made from specific geologic sources?

Results show that a small number of beads do appear to be both morphologically and geochemically distinct and could represent the products of various different workshops that exploited a non-Deccan Traps source. Morphological analysis identified specific bead types, such as the flattened hexagonal bicones and notched agate pendants that appeared to be associated with specific trade networks or regions. I wondered if these unique bead types were made from distinct geologic sources indicating that perhaps they were the product of single workshops. Several bead types do appear to be geochemically distinct, including a group of unfinished beads from Khao Sam Kaeo, a group of agate barrel beads from Ban Non Wat, Phum Snay, Prohear, and Promtin Tai, and the carnelian bead from Ban Non Wat that may be from

Myanmar. In their earlier study, Theunissen and others also provided evidence for distinct bead types that may have been the product of specific workshops using a discrete stone source (2000: 102). I propose that these additional data indicate that continued geochemical analysis of bead shapes and raw materials sources from a variety of sites might be able to identify the products of specific workshops.

Is there geochemical evidence for the use of agate and carnelian from Southeast Asian source for local bead production?

In the current study I was unable to find clear evidence that beads were being made using Southeast Asian stone sources, As discussed in the previous chapter, Bellina (2001, 2003, 2007) and Theunissen (2003; Theunissen et al. 2000) have suggested that agate and carnelian beads may have been produced in Southeast Asia. According to Bellina's (2001, 2003, 2007) hypothesis, local production of beads increased during Period 2, when local bead manufacturers began mass-producing lower-quality beads for trade to inland sites. One would expect that if there were a change in how bead production was organized during Period 2, including the possible exploitation of local stone sources, that this would be identifiable geochemically. However, data from the current study suggests that there is not yet a clear geochemical difference between Period 1 and Period 2 sites. Furthermore, Theunissen (2003; Theunissen et al. 2000) has specifically suggested that craftsmen may have been exploiting local stone resources in central Thailand to produce beads during this period. I was unable to find evidence that beads were being produced using this raw material source. Although several beads were assigned to Southeast Asian sources, it was not clear that these beads originated from these sources. Combined with a lack of archaeological evidence for production in or around the source sites

examined, I argue that this evidence indicates that beads were not locally produced using Southeast Asian stone sources. Nevertheless, this does not mean that beads were not manufactured in Southeast Asia, as data from Khao Sam Kaeo provide evidence for local production of hard stone beads.

It should be noted that Bellina has mentioned that raw materials for beads were likely imported via maritime trade (2007: 68) and the current evidence supports this theory. In fact, it appears that raw materials from multiple different sources were being exploited at Khao Sam Kaeo in particular. Several finished beads from Khao Sam Kaeo as well as and polished but undrilled or partially drilled beads were assigned to the Deccan Traps sources. However, a small group of unpolished and undrilled beads appear to be from a non-Deccan Traps source.

More recent ethnographic research on the Khambhat bead industry highlights the tight control and protection over both raw materials and finished products by important merchant families (Kenoyer et al. 1991). We may hypothesize that both raw materials and the knowledge used to produce finished products would have been as tightly controlled in the past. If so, this would make it unlikely that South Asian beadmakers would be willing to teach their technology to Southeast Asian craftspeople. The long apprenticeship and technological knowledge required to make agate and carnelian beads did not lend itself towards being easily copied. The current evidence does not support the theory that some Southeast Asian elites were expanding their jurisdiction over bead production by exploiting local raw material sources they could directly control. Instead it appears that Indian beadmakers and/or importers of raw material played an important role in the production of beads in Southeast Asia. If Southeast Asian's were involved in some aspect of local production the compositional data presented in this chapter suggest they

had to work with and rely on the importation of raw material controlled by another party, and likely from Deccan Traps sources. However, I argue that during the early centuries AD Southeast Asian elites in the Mekong Delta were becoming more involved in the trade of finished products to inland sites.

In the following chapter I shift my focus to glass beads. Compositional analysis shows evidence for changing glass bead types over time, a pattern similar to that of the agate and carnelian.

# **Chapter 7: The Glass Beads**

Glass beads are perhaps the most ubiquitous bead artifacts found at Iron Age sites in Southeast Asia and previous research has identified numerous glass types in circulation during this period (Lankton and Dussubieux 2006). The majority of the glass beads at sites in Cambodia and Thailand were small oblate, monochromatic beads known as Indo-Pacific beads. However, there were also small amounts of other bead types as well as glass earrings, ring, and bangle fragments. The following questions will be addressed:

- How does the distribution of glass beads and artifacts change through time and space?
- Does evidence from glass bead trade patterns suggest increased participation in trade
   by elites at sites in the Mekong Delta?

Glass artifacts from ten sites in Cambodia and Thailand were examined as part of this study (Figure 7.1). Before looking at specific types of beads, it is important to first discuss glass technology and how glass beads and artifacts are made. I then focus specifically on Indo-Pacific beads, as these were the most common glass artifacts encountered. Next a discussion of glass bead research in Southeast Asia is provided, including an overview of the most common glass types found during the Iron Age. Following this discussion, the bead collections from ten sites in Cambodia and Thailand are presented. The types of glass artifacts, their context, and the distribution of glass colors at each site will be examined and preliminary patterns from these data will be identified. I then move into a discussion of the results of compositional analysis of glass artifacts from each site. Glass artifacts may often look similar to one another but actually be made from a different glass recipe. I conclude this chapter by identifying several different glass

bead trade networks. Some bead distribution patterns highlight the importance of regional exchange networks during the Iron Age period. However, it also appears that there was increased access to high alumina soda glass beads over time and that this may be related to the expansion of trade networks by elites in the Mekong Delta.

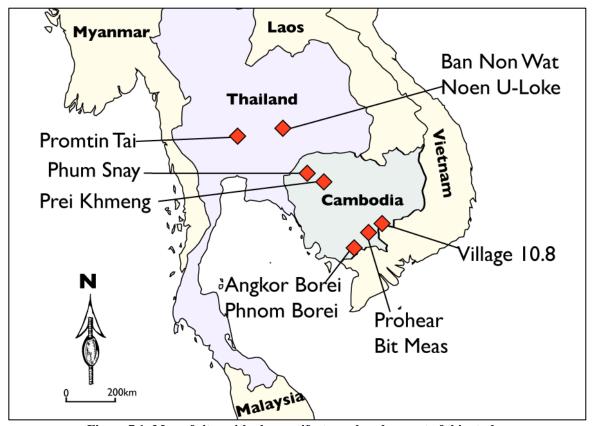



Figure 7.1: Map of sites with glass artifacts analyzed as part of this study.

### What is glass?

Ancient glasses were made from four important components: silica, fluxing agents, stabilizing agents and colorants. The primary component of glass is silica (SiO<sub>2</sub>), the source of which was generally sand or quartz pebbles (Henderson 2000). Because silica has a high melting point, fluxing agents were added in order to facilitate the melting process. The two principal fluxing agents were potassium oxide (potash, K<sub>2</sub>O) or sodium oxide (soda, Na<sub>2</sub>O). These fluxing

agents were often derived from plant sources, including such high-soda desert plants as Salicornia or Sasola; however soda from mineral deposits was also used (Henderson 2000). The magnesia (MgO) levels in a sample are useful for determining if the glass was made using a mineral vs. plant ash flux. Glass made with a mineral alkali flux generally has below 1.5 weight percent (wt%) MgO, while glasses made with a plant ash flux have MgO levels above 1.5 wt% (Sayre and Smith 1961; 1967). The last important component of glass was the stabilizer, which prevented the glass from dissolving in water; the most common stabilizers were lime (calcium oxide, CaO) and Alumina (aluminum oxide, Al<sub>2</sub>O<sub>3</sub>) (Turner 1956b). Other elements found in glass include intentionally added opacifiers or coloring agents, such as antimony, tin, cobalt, copper, lead and iron, along with naturally occurring impurities. Glass recipes can vary depending on the different types and amounts of silica, fluxing agents, and stabilizers used. Previous research has identified some of the raw materials that may have been used to produce glass found in Iron Age Southeast Asia, such as reh, an efflorescent salt that may have been used in the production of high alumina soda glass (Lankton and Dussubieux 2006: 132-3).

Raw glass is produced at workshop sites known as primary glass production centers.

This glass may then be worked into artifacts or sent in bulk to secondary glass workshops where the glass is then melted and worked into beads, bangles, and other objects. While one may assume that raw glass produced at a single workshop may all have similar compositions, scholars have found that glass recipes within a glass production centers can vary greatly (Lankton and Dussubieux 2006: 122). In this chapter certain glass recipes will be discussed that have been linked to specific workshop sites, while other glass types are unknown. Although we may not always be confident where the primary or secondary glass production site was located, we are

still able to trace patterns in the distributions of specific glass types over time and space. These data can in turn tell us about trade and exchange networks between these communities, even if we do not yet know the ultimate origin for the glass itself.

### Indo-Pacific beads

Indo-Pacific beads are the most common glass bead type found in Southeast Asia (Figure 7.2). The term "Indo-Pacific bead" does not refer to the composition of the glass used to make these beads, but instead the method of making beads from drawn glass. Archaeological and ethnographic data have helped scholars understand how Indo-Pacific beads were made (Francis 1990, 2002; Kanungo 2000). After acquiring raw glass, it is placed in a clay and mud-brick lowdomed furnace. At Papanaidupet, the only remaining Indo-Pacific beadmaking site in India, the glass furnace has four openings. One side is used to feed fuel into the furnace while the other openings have more specialized functions related to glass production that have not been found in other examples (Francis 2002: 22). The furnace requires near constant maintenance and must be covered with fresh clay several times a week. After the glass begins to melt, a tool called a geddu paru is used to stir and kneed the molten glass (Francis 2002; Kanungo 2000). Once the glass has been sufficiently melted, it is removed and placed an iron tube called a lada. Using the lada, the glass is then placed into the furnace once more and shaped into a cone. A different tool called a *cheatlek* is then used to pierce the cone to make a hole. The glass is then re-inserted into the furnace, and then a metal rod with a U-shaped hook is used to grab the tip of the glass cone and draw it out into one-meter long tubes. The speed with which the tube is pulled affects the size; the faster the tube is pulled the thinner the rod (Francis 2002; Kanungo 2000).

After cooling the tubes are cut into beads, although this sometimes occurs at a different location than the glass production. The glass tubes are placed on the ground and sliced into a smaller size using a metal blade. Following this process, the beads are then brought back to the kiln for re-heating in order to soften the edges. In some cases they are sold in bulk, or strung and then sold in hanks (Kanungo 2000). Beads made using the Indo-Pacific method have telltale linear striations from the drawing process (Figure 7.3).



Figure 7.2: Example of Indo-Pacific beads in a variety of colors and size from Angkor Borei.



Figure 7.3:An Indo-Pacific bead shown at 65x magnification. Note the linear striations from the glass drawing process.

### Glass bead research in Southeast Asia

Glass beads first appeared in Southeast Asia round 500 BC, marking the transition to the Iron Age period (Lankton and Dussubieux 2013). The predominance of glass beads at Iron Age sites was immediately noticed by archaeologists and researchers working in Southeast Asia (Beck 1930). As early as the mid-nineteenth century, scholars around the world were analyzing glass in order to determine the ingredients and colorants (Turner 1956b). Comprehensive chemical analyses of glass artifacts were possible as early as the early 20<sup>th</sup> century (Turner 1956b: 163). Therefore, early scholars working in Southeast Asia often undertook chemical analyses of their specimens, in addition to simply describing the shapes, colors, and suspected manufacturing methods of glass beads. The widespread trade of certain types of beads, such as opaque red beads called *mutisalah*, across the ancient world was also recognized (e.g. Lamb 1965a, 1965b). Some of these early scholars began performing chemical analysis on beads from multiple sites in South and Southeast Asia in order to determine trade patterns of specific types of glass over time and space (e.g. Harrison 1964; Lamb 1965a).

During the early and mid-twentieth century, Chinese and Near Eastern glasses were well studied and provided a useful comparison for glass found in Southeast Asia. Lamb suggested that many of the beads found in Southeast Asia might have been produced locally from glass scrap imported from the Middle East or Mediterranean (Lamb 1965a, 1965b). Later work by Brill (1993:75) identified unique glass types that were not found in India, the West, or China, although some glass types did appear to be derived from Indian glass types. The scholar Peter Francis Jr. (1990, 2002) also emphasized connections with India, especially in the production of Indo-Pacific beads. However, continued analysis also showed that there might have been some

locally produced glass during the first millennium BC, perhaps made in Southeast Asia or southern China (Glover and Henderson 1995).

In more recent years, there have been several more comprehensive studies of glass in Southeast Asia (Dussubieux 2001; Lankton et al. 2008; Lankton and Dussubieux 2013). Aided by LA-ICP-MS, these techniques have used major, minor, and trace elements to identify specific glass types. Work by Dussubieux (2001; Gratuze and Dussubieux 2003, 2010) has identified nine different glass types in circulation in South and Southeast Asia. This work was expanded by Lankton and Dussubieux (2006, 2013) and Lankton (Lankton et al. 2008). As Southeast Asia was a receiving trade goods from both East and South Asia, and even the Mediterranean and Middle East, it is unsurprising that there were multiple glass types in circulation during the Iron Age. In some cases the glass types identified by previous scholars can be tied to specific regional glass making traditions, time periods, and/or workshops. In other cases, specific glass types have been identified whose origins are more mysterious. Nevertheless, by identifying the different glass types and their proportions at sites and tracing this over time and space we can begin to understand the different glass bead trade networks in place during the Iron Age period. In the next section I will discuss the bead collections examined as part of this study in more depth.

# Glass bead production in Southeast Asia

As with agate and carnelian beads, scholars have suggested that glass beads may have been produced in Southeast Asia (Glover and Henderson 1995; Lankton and Dussubieux 2006, 2013, Lankton et al. 2008). The presence of large chunks of glass cullet, and unfinished or melted beads, point towards the presence of glass production or manipulation at several Iron Age

sites in mainland Southeast Asia. A brief review of sites with evidence for glass production (Figure 7.4) will highlight the diversity of evidence for production and provide a foundation for discussions of glass composition and trade networks using data from Cambodia and Thailand.

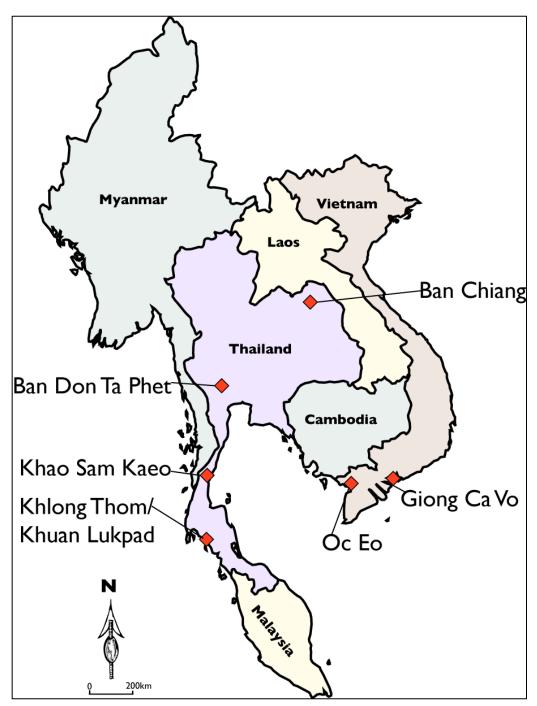



Figure 7.4: Map of sites with evidence for glass production

As discussed in Chapter 5, Khlong Thom is suspected of being both an agate and carnelian bead production site and may have also been a tin smelting and casting center, in addition to producing glass beads (Bronson 1990). Numerous large un-worked chunks of what Bronson (1990: 218) has called "bulk glass," or glass that was later melted to make beads and bangles, have been identified. Additional evidence includes melted glass affixed to pieces of ceramics, which may have been melting pots, as well as numerous pieces of glass slag, melted glass beads, and droplets that "formed from bits of liquid falling on the ground during glass working operations," (Bronson 1990: 218). Unfortunately most of these data comes from looted contexts, however Khlong Thom and the bead production activities are believed to date from the 1st-7th centuries AD (Lankton and Dussubieux 2013).

More recent compositional analysis on materials from Khlong Thom suggests that the melted glass beads were likely not produced at the site, but being re-melted from finished products. However there does appear to be production of a specific glass type, called m-Na-Ca-Al by Lankton and Dussubieux (2013) at Khlong Thom. Lankton and Dussubieux suggests that the high quantity of fragments of this glass as well as their large size suggest that there might have even been primary production of this glass at Khlong Thom. They suggest that this glass was part of a more widespread industrial production and trade of glass than found at Khao Sam Kaeo, which appears to have been primarily for elite production.

### Khao Sam Kaeo, Thailand

Khao Sam Kaeo was noted in Chapter 5 as a site with strong evidence for stone bead production. However, there is also evidence for other crafts including ceramics, metallurgy, and

glass. Glass waste and cullet, worked fragments with evidence for glass working tools, and finished products, including both beads and bangles, have all been found in abundance at this site. Khao Sam Kaeo was a secondary glass production site and may have been involved with primary glass production, however this evidence has only come from a disturbed area of the site (Lankton et al. 2008). Compositional analysis of glass at this site has identified two types that are unique to Khao Sam Kaeo and appear to have been produced there (Lankton et al. 2008; Lankton and Dussubieux 2013). The first is a type of high alumina soda glass (m-Na-Al KSK) that was the most common glass type at the site and used to make bangles and lapidary worked beads. This high alumina soda glass is compositionally distinct from high alumina soda glass found in South Asia and was generally an emerald green color (Dussubieux et al. 2010, and Dussubieux and Gratuze 2013).

A second glass type unique to Khao Sam Kaeo is a type of mixed alkali glass (mixed alkali KSK), generally a copper blue or red color, and was used to produce bangles as well as drawn glass beads (Lankton and Dussubieux 2013). Waste fragments from bangle production have been found, although similar waste products for drawn beads have not been uncovered. However, villagers at Khao Sam Kaeo did find iron tools that are similar to the *ladas* used to produce drawn glass beads in India (Lankton and Dussubieux 2013).

Two additional glass types show evidence for working at Khao Sam Kaeo, although they may not have been produced at the site. The first, mineral soda potash glass with moderate amounts of lime and alumina (m-K-Ca-Al) and was used to produce both bangles and drawn beads in copper or cobalt blue as well as an opaque red color. As with the m-Na-Al glass above, waste products from bangle production have been found, but evidence for drawn bead production

is lacking. Lankton and Dussubieux (2013: 428) note that this potash glass type is fairly widespread across Southeast Asia, especially in southern and northern Vietnam, "raising the possibility of multiple primary production areas." There is also evidence for drawn bead and bangle production using a low lime potash glass (m-K-Al), primarily in a copper blue. This glass appears to be distinct from the moderate lime and alumina potash glass, although Lankton and Dussubieux (2006. 2013) note that more research needs to be done in order to better understand these differences. Taken together, Khao Sam Kaeo has some of the strongest evidence for glass working and bead production in Southeast Asia.

# Ban Don Ta Phet, Thailand

Many of the glass beads found at Ban Don Ta Phet are a mixed alkali glass that appear to have been imported from Khao Sam Kaeo and points towards a robust trade network between the two sites. However, an additional type of bead has been found at Ban Don Ta Phet in which chunks of glass were ground and drilled using a lapidary technique, similar to what was used to produce stone beads (Francis 2002; Lankton and Dussubieux 2013). Chemical analyses of the lapidary worked beads show that they were low alumina potash glass, distinct from the potash glass found at Khao Sam Kaeo (Lankton and Dussubieux 2013). Lankton and Dussubieux speculate that there may be a primary glass production site near Ban Don Ta Phet where this glass was made and then a separate workshop where it the glass was made into beads.

# Giong Ca Vo, Vietnam

The coastal Sa Huynh culture of Giong Ca Vo has long been suspected of working glass, primarily due to the existence of glass versions of distinctly Sa Huynh ornaments, such as the lingling-o or double-animal headed earrings (Francis 1995). Giong Ca Vo represents the most

probable Sa Huynh glass manufacturing location thus far reported. Excavations at Giong Ca Vo in the 1990s have uncovered pits filled with sand that could have been used in glass production, as well as slag and waste materials (Francis 1995, 2002; Nguyen et al. 1995; Salisbury and Glover 1997). Only a small number of compositional analyses have been performed on glass artifacts from Giong Ca Vo. Preliminary analysis of these finished ornaments show evidence for both a low-alumina potash glass and high alumina soda glass, but it is not clear if any of the finished products may have been produced at the site (Salisbury and Glover 1997). However, later analyses show evidence for contact with Khao Sam Kaeo in the form of artifacts made from the m-Na-Al KSK glass (Lankton and Dussubieux 2013). Lankton and Dussubieux have noted "low alumina potash glass is not found in South Asia, suggesting a manufacturing site farther toward Southeast Asia," (2006: 137). It is possible that Giong Ca Vo could be a source for this glass (Lankton and Dussubieux 2006), however more research is needed.

### Oc Eo, Vietnam

In his excavations at Oc Eo in the 1940s, Louis Malleret (1962: 147-8) suggested that glass was produced at this site based on the high numbers of finished beads, as well as by the presence of glass fragments, slag, and crucible fragments. More recent research at the site has also suggested similar evidence (Manguin and Vo Si Khai in Stark and Dussubieux 2002). Dussubieux has also noted that Oc Eo has access to granite sources that could be used in primary glass production (Dussubieux 2001; Lankton and Dussubieux 2006). Both Angkor Borei and Oc Eo have large numbers of high alumina soda glass in comparison with other sites in the region, evidence that taken together may suggest local production of high alumina soda glass beads in

the Mekong Delta. However, strong evidence for glass bead production at this site has not yet been identified (Stark and Dussubieux 2002).

### Ban Chiang Culture

Although many glass beads are described as coming from the site of Ban Chiang, Thailand, most of these are actually from looted sites or unknown contexts and are therefore better described as belonging to the Ban Chiang culture (Francis 2002:133). A specific type of wound truncated bicone in blue or green glass has only been found in the Ban Chiang region, suggesting they may have been produced nearby. Another unique type of long tubular glass bead appears to be imitating similar beads found in the region made of stone. Although there is not clear evidence for glass working in this region, the presence of these unusual bead shapes found only in this region is suggestive of a nearby local production center (Francis 2002).

# Northern Vietnam/Southern China

As noted earlier, scholars have long suspected that there may have been potash glass production in northern Vietnam or southern China (Glover and Henderson 1995; Lankton and Dussubieux 2006). Lankton and Dussubieux (2006: 137) specifically suggest that low lime potash glass may originate in this region, due to the predominance of this glass type in northern Vietnam, China, Japan and Korea. Unfortunately, no glass production sites in this region have yet been identified, and so further research is needed to confirm this argument.

The organization of glass production in Southeast Asia

There is not yet clear evidence about how glass bead production was organized in Southeast Asia, and the identification of glass workshops has been hampered by looting and site destruction. Furthermore, the identification of glass production workshops may be difficult even

without site disturbance as glass waste can easily be recycled. Furthermore, ethnographic research has shown that aspects of bead production can take place in multiple locations away from the furnace where beads are produced and that debitage from the production processes can travel locations where beads are strung, for example, but not made (Kanungo 2000). While archaeological evidence may be lacking, compositional analysis has begun to shed light on many questions regarding bead production and exchange in Iron Age Southeast Asia. As many beads may look visually similar, compositional analysis is needed in order to distinguish beads made from specific glass recipes, some of which may be tied to a specific workshop or region.

Most archaeologists suspect that glass technology was brought to Southeast Asia and then adapted, although much like the stone beads it is not clear who- Indians or Southeast Asianswere producing the beads (Lankton et al. 2008). Francis (2002) suggested that there might have been a league of Indo-Pacific bead makers, which he calls the Arikamedu league, which connected beadmaking in South and Southeast Asia and whose beadmakers traveled between various sites. However, chemical analysis has all but disproven this theory, as the glass at Arikamedu is distinctly different from high alumina soda glass found at many Southeast Asian sites (Lankton and Dussubieux 2013). Further archaeological evidence will be needed in order to understand this aspect of bead production.

### Common glass types found in Southeast Asia

Work by Dussubieux has identified nine types of glass that were in circulation in South and Southeast Asia during the Iron Age period (Table 7.1) (Dussubieux 2001; Dussubieux and Gratuze 2003). These different types were more recently defined and clarified by Lankton and Dussubieux (2006; 2013). Specific glass types have also been discussed in more depth in

additional studies (e.g., Dussubieux et al. 2010; Lankton et al. 2008). In this study, I am using Lankton and Dussubieux's definition of these various glass types as a foundation for my own research. Glass compositions were compared to these existing glass types and assigned to one of these groups using Lankton and Dussubieux's (2006: 140-2) glass identification algorithm. The major glass types encountered in this study are discussed below. A small number of artifacts did not fit into these pre-existing groups and these will be discussed in more depth later in this chapter.

|           |           | Flux          |          |           |             |              |
|-----------|-----------|---------------|----------|-----------|-------------|--------------|
|           |           |               | Soda     |           |             |              |
|           |           | Mineral       | deposits | Plant ash | Potash      | Mixed soda   |
|           |           |               |          |           |             | potash       |
|           | High Al   | High          |          |           | Low lime    | Mixed        |
|           |           | alumina       |          |           | potash      | alkali glass |
|           |           | soda glass    |          |           | (m-K-Al)    |              |
|           |           | (m-Na-Al      |          |           |             |              |
|           |           | Type 1)       |          |           |             |              |
|           | Moderate  | Mineral       | "Arika"  |           |             |              |
|           | Al and Ca | soda glass    | glass    |           |             |              |
|           |           | with          |          |           |             |              |
| Sand      |           | moderate      |          |           |             |              |
| Surra     |           | amount of     |          |           |             |              |
|           |           | Ca and Al     |          |           |             |              |
|           |           | (m-Na-Ca-     |          |           |             |              |
|           |           | Al)           |          |           |             |              |
|           | Ca with   |               |          |           | Potash with |              |
|           | moderate  |               |          |           | moderate    |              |
|           | Al        |               |          |           | Ca and Al   |              |
|           |           |               |          |           | (m-K-Ca-    |              |
|           |           |               |          |           | Al)         |              |
|           | High Ca   |               |          | v-Na-Ca   | Low         |              |
|           |           |               |          |           | alumina     |              |
|           |           |               |          |           | potash      |              |
| T 11 51 T |           | .1 (.6, 11 12 | 1. 1     | 1. 1. 41. | (m-K-Ca)    |              |

Table.7.1: Table of glass types identified by Dussubieux and discussed in this chapter. Lead glass is not listed in this table but has been found in Southeast Asia. Adapted from Dussubieux 2001 and Dussubieux and Gratuze 2003.

Potash glass, which uses potash  $(K_2O)$  as a flux to lower the melting point of the glass, is one of the most common types of glass found in Southeast Asia, however it has also been described as one of the "least understood" (Lankton and Dussubieux 2006:135). The potash glass sub-types vary by differing levels of CaO and Al<sub>2</sub>O<sub>3</sub>, which are added as glass stabilizers, although the boundaries between these different sub-types are still nebulous. The three currently classified potash glass sub-types are: potash glass with moderate amounts of CaO and Al<sub>2</sub>O<sub>3</sub> (m-K-Ca-Al), potash glass with low calcium oxide (m-K-Al low C), and potash glass with low alumina (m-Ka-Ca low A). No potash glass workshops have yet been discovered, however the presence of these different sub-types of potash glass indicate the possibility of multiple production centers, with some possibly located in Southeast Asia, specifically northern Vietnam or southern China (Lankton and Dussubieux 2006). Although the large quantity of potash glass with moderate CaO and Al<sub>2</sub>O<sub>3</sub>, along with evidence for glass working, at the site of Arikamedu, India, also points toward this location as a possible primary manufacturing center (Lankton and Dussubieux 2006). Potash glass is also fairly common at the peninsular Thai site of Khao Sam Kaeo, where there is evidence for secondary glass working in the form of bracelet manufacture using potash glass (Lankton and Dussubieux 2013). The low alumina potash glass type remains poorly understood, but most likely dates to the 4th to 2nd century BC, with most examples found in Thailand at the site of Ban Don Ta Phet. Lastly, large numbers of the low CaO potash glass artifacts been found in many areas of Southeast Asia, with dates ranging from the 4th to 2nd century BC into the 2nd century AD (Lankton and Dussubieux 2006). Until glass production

workshops are identified archaeologically, the exact manufacturing location(s) for potash glass, with its various sub-types, remains unknown

High alumina Soda Glass

High alumina soda glass (m-Na-Al) is the most abundant type of glass found in South and Southeast Asia. In contrast to potash glass, high alumina soda glass uses soda (Na<sub>2</sub>O) as a flux and high levels of alumina (Al<sub>2</sub>O<sub>3</sub>) as a stabilizer. Dussubieux et al. (2010) have identified five different types of mineral soda alumina glass, of which m-Na-Al Type 1, recognized by its low uranium and high barium content, is the most prevalent during the Iron Age of Southeast Asia. The M-Na-Al Type 1 glass is often found in a wide variety of colors including opaque red, opaque orange, opaque yellow, opaque green, opaque light blue, black and translucent light blue. However, beads in this glass type were not colored with cobalt, and so there are no high alumina soda glass beads that appear in a dark blue cobalt color (Dussubieux et al. 2010). This glass type is believed to have been manufactured in South Asia, with evidence for primary glass production in the form of furnaces with vitrified glass and blocks of raw glass at the site of Giribawa, Sri Lanka (Dussubieux 2001; Lankton and Dussubieux 2006).

Mineral soda glass with variable amounts of alumina and lime (m-Na-Ca-Al)

In Lankton and Dussubieux initial article on glass types (2006) this glass type was described as a high-lime mineral soda glass (m-Na-Ca). However, in their more recent work, this glass type was revised to reflect "that both lime and alumina are continuously variable over a range of values, with no clear demarcations between examples lower or higher in either oxide," (Lankton and Dussubieux 2013: 436). Although these beads can be difficult to distinguish from high alumina soda glass, one notable difference is that in the current study many m-Na-Ca-Al

beads were a cobalt blue color. As cobalt blue beads are not present in the m-Na-Al Type 1 glass type, they can be more confidently assigned to the m-Na-Ca-Al glass type.

The m-Na-Ca-Al glass type has been found at locations across south India, Sri Lanka, and Southeast Asia (Carter 2010; Dussubieux and Gratuze 2010; Lankton and Dussubieux 2013), and the variations in major and trace elements make it likely that there is more than one variation of this glass type, with different archaeological meanings. The manufacturing locations may include Arikamedu, India, where the glass previously identified as 'Arika' has an m-Na-Ca-Al composition (Dussubieux and Gratuze 2013). Similar m-Na-Ca-Al glass has been found at the site of Phu Khao Thong, Thailand (Dussubieux and Gratuze 2010), although it remains rare at other, seemingly contemporaneous, peninsular sites. A different m-Na-Ca-Al glass, often cobalt blue, was probably produced at Khlong Thom/Khuan Lukpat on the west coast of the Thai/Malay peninsula (Lankton and Dussubieux 2013).

### Mixed Alkali Glass

Mixed alkali glass describes glass that contains both over 5% of both NaO and K<sub>2</sub>O and predominantly found in an opaque red or orange color. Lankton and Dussubieux note that this glass appears to be related to high alumina soda glass (2006: 138). More recent research at Khao Sam Kaeo has identified a local variation called Mixed Alkali KSK that was often red or copper blue in color (Lankton et al. 2008; Lankton and Dussubieux 2013). Recent research suggests that there were actually multiple types of mixed alkali glass in circulation (Carter and Lankton 2012; discussed further below).

Arika glass refers to a unique glass composition, perhaps related to the m-Na-Ca-Al glasses, first identified in large quantities from the site of Arikamedu, India (Dussubieux 2001). Arika glasses are generally red, green, or black in color. Arikamedu was an important glass production site and believed to have been producing glass beads that were widely traded around the world (Francis 1990, 2002). However, compositional analysis has shown that this glass type was not well circulated in Southeast Asia, save for a fairly large quantity found at the peninsular Thai site of Phu Khao Thong (Dussubieux and Gratuze 2013: 406). The large quantity of this glass type at Phu Khao Thong has led some scholars to speculate that it may have also been a bead production center (Dussubieux and Gratuze 2013; Dussubieux et al. 2012).

### Lead Glass

Lead glasses are generally believed to be imports from China. Lead beads are rare at Southeast Asian archaeological sites. Dussubieux's study (2001) identified only six lead beads: three from the site of Angkor Borei and three from the later 9th century AD site of Sarawak in Indonesia. Recent research indicates that there are also lead glass beads at the Sa Huynh site of Lai Nghi, Vietnam (Karsten Brabender, personal communication, 2008). It is possible that with continued study lead glass beads could be found to be more common. There also appears to be considerable variability within the lead glass type. The lead glass beads at Angkor Borei were notable for their high barium content, a characteristic usually thought to indicate a Chinese origin (Stark and Dussubieux 2002). Lead isotope analyses may assist in better understanding when and where these beads were manufactured (e.g. Henderson et al. 2005).

As discussed in Chapter 3, Bellina and Glover (2004) have identified a change in the type and intensity of trade between South and Southeast Asia during the Iron Age period. This shift was also identifiable in the type and quality of agate and carnelian beads (Bellina 2003). The scholars Lankton and Dussubieux (2006, 2013) have identified a similar change in glass types over time as well. During the late first millennium BC, potash glass artifacts are common at many Iron Age sites in Southeast Asia. However, during the early centuries AD, there appears to be a shift and Iron Age sites become dominated by high alumina soda glass. Lankton and Dussubieux (2013: 433) argue "the different glass compositional groups change more by the dates of the sites, rather than by their locations within Southeast Asia. Whatever happened was a *regional phenomenon*, occurring across the expanse of Southeast Asia" (emphasis added). Dussubieux's study of glass from the Angkor Borei cemetery found no potash glass artifacts, suggesting the dates for the cemetery (200 BC- AD 200) could pinpoint this shift (Dussubieux 2001; Stark and Dussubieux 2002; Lankton and Dussubieux 2013).

This compositional shift is also tied to a change in how glass production was organized. During the early Iron Age, glass appears to have been produced in Southeast Asia for Southeast Asian markets, but during the late Iron Age this had shifted to an influx of imported South Asian produced glass with "the selective production of other glass artifacts destined for markets near and far," (Lankton and Dussubieux 2013). Furthermore, scholars note the increased presence of glass from farther-flung regions, such as the Middle East, suggesting that trade networks were expanding in the early centuries AD (Dussubieux and Gratuze 2010). In this chapter I present

evidence from Cambodia and Thailand showing a similar shift in glass types over time, which I argue is related to changing trade networks and expansion of influence from the Mekong Delta.

### Glass beads in Cambodia and Thailand

Glass bead collections from 10 sites were measured, photographed and recorded (Table 7.2). Appendix 7.1 lists the contextual, morphological, and metric data from all the glass beads recorded in this study. A selection of these beads were then chosen for compositional analysis using LA-ICP-MS in order to determine the types of glass found at each site and the proportions of the different glass types at each site. These data were then used to better understand the glass bead trade networks in which each site was participating. Glass collections from two sites were not examined. Glass artifacts from Khao Sam Kaeo were not available for study, but have already been comprehensively examined elsewhere (see Lankton et al. 2008). Glass artifacts from Krek 52/62 were also not available for study, but a small number of artifacts were analyzed and I will refer to this research later in this chapter as well (Haidle and Neumann 2004). Before discussing the results of LA-ICP-MS analysis, I will first introduce the bead collections by site, paying special attention to the context in which the beads were found.

One aspect of recording that proved difficult involved the terms used to describe the different colors of glass artifacts. This was especially true for the blue and green glasses, which range from light to dark in color, with no clear discrete differences between colors. Future researchers may benefit from a newly published Munsell Bead Color Book (2012), however this resource was not available during bead recording. Instead, I have chosen to use more general categories for glass colors. The colors recorded include: red, orange, yellow, green, light blue, dark blue, blue-green, black, purple, grey, brown, and white or off-white. The opacity and

transparency of glass was also recorded and noted in Appendix 7.1, however, it is not discussed in detail here as I found this information was not relevant to the research questions being discussed. However, red, orange, yellow, green, white, and black beads were almost always opaque. High alumina soda glass green beads were generally a light opaque green color, while some dark greens were found to be potash glass. Light blues glass could be either opaque or translucent, however dark blue glass was generally translucent or semi-translucent. Some glass beads that were recorded as black later were discovered to be a semi-translucent dark purple. Red beads were sometimes found to have streaks of opaque orange, while others were a more brownish red or brick red. It should be remembered that color descriptions in Appendix 7.1 are by nature subjective.

The results from compositional analysis of glass beads from Cambodia and Thailand show that there were many different glass types in circulation during the Iron Age. However, the two most predominant types – potash glass and high-alumina soda glass – differed in their distribution. Sites in southeast Cambodia, as well as Promtin Tai in Thailand contained large amounts of potash glass, while the remaining sites contained large quantities of high-alumina soda glass. I argue that the distribution of these two glass types is representative of two different but overlapping bead trade networks. The potash glass distribution represents a coastal exchange network, while the high-alumina soda glass distribution represents an expanded trade network from the Mekong Delta.

| Site Name                 | Date                                             | Beads from<br>Burial<br>contexts | Burials<br>with glass<br>beads/Total<br>number of | Beads from<br>Non-burial<br>Contexts | Total |
|---------------------------|--------------------------------------------------|----------------------------------|---------------------------------------------------|--------------------------------------|-------|
| Angkor Borei,             | 200 BC – AD                                      | 720                              | <b>burials</b> 29/111                             | 648                                  | 1368  |
| Cambodia                  | 200                                              | , 20                             | 23,111                                            | 0.10                                 | 1800  |
| Ban Non Wat,<br>Thailand  | 420 BC – AD<br>600                               | 574                              | 13/160                                            | 172                                  | 746   |
| Bit Meas,<br>Cambodia     | Contemporary with Prohear?                       | 0                                | N/A                                               | 6                                    | 6     |
| Noen U-Loke,<br>Thailand  | 420 BC – AD<br>600                               | N/A                              | 56/120                                            | N/A                                  | 3531  |
| Phnom Borei,<br>Cambodia  | 200 BC- 0<br>BC/AD                               | 0                                | 0/9                                               | 48                                   | 48    |
| Phum Snay,<br>Cambodia    | 350 BC – AD<br>200                               | 194                              | 7/23                                              | 91                                   | 285   |
| Prei Khmeng,<br>Cambodia  | 1 <sup>st</sup> -6 <sup>th</sup> centuries<br>AD | 2011                             | 3/7                                               | 45                                   | 2056  |
| Prohear,<br>Cambodia      | 200 BC – AD<br>200                               | 476                              | 46/52                                             | 74                                   | 550   |
| Promtin Tai,<br>Thailand  | 500 BC – AD<br>500?                              | 125                              | 8/35                                              | 835                                  | 960   |
| Village 10.8,<br>Cambodia | 400 BC – AD 50                                   | 201                              | 6/50                                              | 8                                    | 209   |

Table 7.2 Number of glass beads examined by site.

### Glass beads in context

# Angkor Borei

Over 1300 glass beads were found at Angkor Borei within the cemetery matrix, of which just nearly half were associated with a burial (n=720). Almost all of them were Indo-Pacific beads in a variety of colors and sizes. These beads were previously studied as part of Esme Hammerle's (2004) undergraduate research at the University of Hawai'i-Manoa and almost 100 glass beads were analyzed using LA-ICP-MS as part of Laure Dussubieux's doctoral dissertation research (2001). More recently, these beads were recorded as a part of this study and entered into FileMaker Pro.

| Angkor Borei<br>Burial Number | Sex (Age)                                                                                                           | Glass Artifacts                                                                            | Other grave goods                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|
| F1                            | Male (young adult) Male (7-10 years)                                                                                | 5 glass beads:<br>yellow (n=3),<br>orange (n=1) and<br>red (n=1)                           | Ceramics                                    |
| F2                            | Female (20-25 years) Male (adult) Unidentified skeletal remains of third individual.                                | 1 yellow glass<br>bead.                                                                    | N/A                                         |
| F3                            | Female (middle-aged)                                                                                                | 1 orange bead and<br>1 green bead found<br>at skull                                        | Animal rib bone.                            |
| F4                            | Female (40-50<br>years) Male (young adult) Female (16-20<br>years) Remains of 4<br>additional males<br>and 1 female | 7 glass beads:<br>green (n=6) and<br>orange (n=1)                                          | Ceramics and pig remains.                   |
| F5                            | Female (19-21<br>years)<br>Adult male<br>Unknown (12-16<br>years)                                                   | 45 glass beads:<br>cream/off-white<br>(n=43), orange<br>(n=1), and red<br>(n=1).           | 1 garnet bead and<br>animal (pig?)<br>bones |
| F8                            | Male (19-25 years) Female (middleaged) Fragments of 2 infants.                                                      | 29 glass beads:<br>orange (n=13), red<br>(n=7), green (n=6),<br>blue (n=1), black<br>(n=2) | N/A                                         |
| F10                           | Male (35-40 years old) Male (adult) Female (adult) Child (7-12 years)                                               | 9 glass beads:<br>yellow (n=4),<br>orange (n=3),<br>green (n=2).                           | N/A                                         |
| F11                           | N/A                                                                                                                 | 1 red bead                                                                                 | N/A                                         |
| F16                           | Female (25-30 years) Unknown (12-20 years) Male (young adult)                                                       | 8 glass beads: dark<br>blue (n=7) and<br>yellow (n=1).                                     | 1 garnet bead                               |
| F17                           | Male (30-40 years)<br>2 Females (adult)<br>2 Males (adult)                                                          | 1 dark blue glass<br>bead                                                                  | Ceramics                                    |

| F20                                           | Female (18-25 years) Female? (10-12 years) Child (9-10 years) | 5 yellow beads                                                                                            | Animal bones, ceramics                                             |
|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| F22                                           | Female?<br>(young adult)<br>Child (6-8 years)                 | 7 glass beads:<br>orange (n=6) and<br>red (n=1)                                                           | N/A                                                                |
| F25                                           | Male (9.5-11<br>years)<br>Male (adult)                        | 1 orange bead                                                                                             | N/A                                                                |
| F26                                           | N/A                                                           | 1 light green bead                                                                                        | N/A                                                                |
| F27                                           | Male (young adult)                                            | 32 glass beads:<br>light green (n=25),<br>yellow (n=4),<br>black (n=1), and<br>orange (n=2)               | N/A                                                                |
| F30                                           | Part of Burial F35<br>below                                   | 1 yellow bead                                                                                             | N/A                                                                |
| F31                                           | Female? (3-5<br>years)<br>Male (25-35 years)                  | 12 glass beads:<br>yellow (n=10),<br>green (n=1), and<br>black (n=1).                                     | One tooth pendant.                                                 |
| F35<br>Includes disturbed<br>remains from F30 | Female<br>(17-20 years)<br>Child (3-5 years)                  | 212 glass beads:<br>green (n=132),<br>black (n=42),<br>orange (n=19), red<br>(n=15), and yellow<br>(n=4). | 4 gold beads                                                       |
| F36                                           | Male (34-45 years)<br>Male?<br>(middle-aged)                  | 175 glass beads:<br>orange (n=122),<br>green (n=32),<br>black (n=16), red<br>(n=4), and white<br>(n=1).   | 3 tooth pendants,<br>orange ceramic<br>anvil, and animal<br>bones. |
| F37                                           | Male? (18-19<br>years)                                        | 8 glass beads:<br>yellow (n=3),<br>green-yellow<br>(n=1), red (n=3),<br>and black (n=1).                  |                                                                    |

| F39                                      | Female (young adult) Male (young-middle aged adult) Male (young adult)- may belong to F56. | 12 glass beads: orange (n=3), green (n=6), blue- green (n=1), light blue (n=1), and yellow (n=1). | 2 gold beads                          |
|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|
| F42                                      | Adult Male?                                                                                | 1 red bead                                                                                        | Ceramics and pig mandibles.           |
| F43A Includes some bones from Feature 49 | Male (35-45 years)                                                                         | 1 orange bead                                                                                     |                                       |
| F43B                                     | Male<br>(45-55+ years)                                                                     | 1 green bead                                                                                      |                                       |
| F44                                      | Female<br>(35-45 years)<br>Female<br>(young adult)                                         | 82 glass beads:<br>orange (n=46),<br>black (n=35), and<br>dark green (n=1).                       | 1 carnelian bead<br>and 10 gold beads |
| F48                                      | Female<br>(30-35 years)<br>Male (adult)                                                    | 60 glass beads:<br>orange (n=43),<br>black (n=16), and<br>white (n=1).                            | 1 garnet bead                         |
| F51                                      | Female<br>(1.5-2 years)                                                                    | N/A                                                                                               | 1 carnelian bead,<br>and animal bones |
| F52                                      | Female<br>(middle-aged)<br>Female?<br>(6-8 years)                                          | 1 green bead                                                                                      | Animal remains                        |

Table 7.3: Burials with glass beads at Angkor Borei.

Table 7.3 lists the burials with glass beads at Angkor Borei recorded by the author in the current study. Figure 7.5 lists the color distribution of the glass beads found at Angkor Borei, where it is notable that green glass make up a large portion of the assemblage, with high numbers of yellow, red, and orange. Glass beads were found in a greater number of burials than stone beads, with two burials (F35 and F36) having over 150 glass beads. Some burials also included gold beads (F35, F39, and F44), while several burials contained both garnet and glass beads (F5, F16, and F48) and carnelian and glass beads (F44 and F51). However, due to the dense cemetery

at Angkor Borei it is difficult to determine if beads belonged with one specific individual in a burial or multiple individuals.

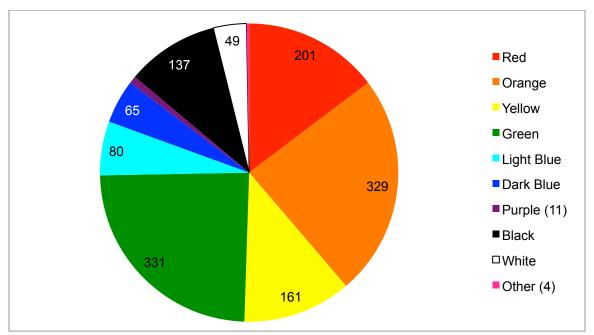



Figure 7.5: The distribution of glass bead colors at Angkor Borei (n=1268). Quantities for colors with less than 20 beads are listed in parentheses.

#### Phnom Borei

48 Indo-Pacific glass beads were uncovered in the small excavation at Phnom Borei. The majority of these beads from Phnom Borei were red (Figure 7.7). None of the glass beads actually came from burial contexts, but were instead found within the first and second layers of excavation and could be related to backfill from digging a pond nearby (Phon 2004). Although the context of these beads is not ideal, they still provide valuable information about the glass bead distribution at sites in the Mekong Delta and provide a useful comparison with the nearby site of Angkor Borei.

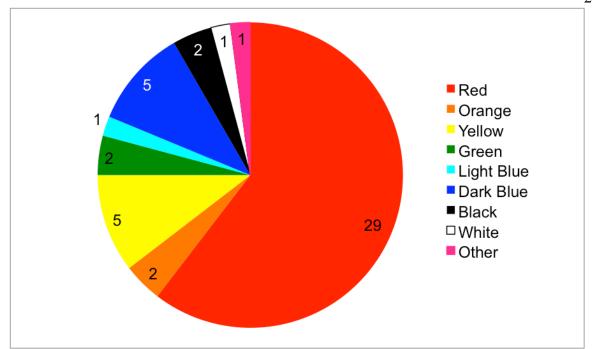



Figure 7.6: Distribution of glass bead colors at Phnom Borei (n=48).

#### Prohear and Bit Meas

Glass was very common at Prohear, occurring in nearly all of the 52 burials, save for 6 looted and disturbed burials. Unfortunately, not all of the glass beads were available for study; therefore I was only able to record 550 glass beads of which the majority (n=476) came from 25 burials. The majority of these beads were monochromatic Indo-Pacific beads, although several bangle or ring/earring fragments were also identified (Figure 7.8). Most of the beads were a dark blue color (Figure 7.9 and 7.10). As noted in earlier chapters, there were two burial phases identified at Prohear: an earlier Phase 1, which dates from 500 BC -150/100 BC and a later Phase 2, which dates from 150/100 BC- AD 100. Table 7.4 summarizes the glass bead data for the beads from burial contexts examined in this study, however this information should not be considered complete as not all beads from this site were available for study.

Many of the burials I recorded had only a small number of beads, although there were several notable burials with higher quantities of beads. This included the very rich burial of an elderly female with 91 glass beads and 2 rings/earrings (Burial 4) and Burial 14 that contained 138 glass beads, many of which were found in the wrist area. Burials 24, 33, and 34 are all reported as having over 150 glass beads, however I was only able to record smaller quantities. Also of note is Burial 46, which contained over 500 beads, although these were also not available for study (Reinecke et al. 2009: 118). Seven burials of those I recorded contained both stone and glass beads, although based on the currently recorded information it does not seem that any burials contained glass, garnet, and agate/carnelian beads together. Beads from Bit Meas were all from a looted context, however six glass beads were recorded. Of these, four were dark blue in color and 2 were light blue.

| Prohear  | Dates                                     | Sex/Age                   | Glass Artifacts                                                                                                               | Other Artifacts                                                                                                 |
|----------|-------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Burial   |                                           |                           |                                                                                                                               |                                                                                                                 |
| Number   |                                           |                           |                                                                                                                               |                                                                                                                 |
| Burial 2 | Phase 2b<br>(100/50 BC- AD<br>100)        | Male/unknown              | 1 blue-green glass<br>earring/ring fragment and<br>weathered/disintegrated<br>bead fragments bead.                            | 2 agate beads,<br>bronze drum<br>fragments, stone<br>pestle, bronze/iron<br>tools and jewelry,<br>gold jewelry. |
| Burial 3 | Phase 2b<br>(C14 dates: 203-55<br>BC)     | Female/20-30<br>years old | 9 dark blue glass beads                                                                                                       | Gold and silver<br>jewelry, spindle<br>whorls.                                                                  |
| Burial 4 | Phase 2b<br>(C14 dates: 44 BC –<br>AD 51) | Female/<br>Elderly        | 2 dark blue glass<br>earring/rings. 91 glass<br>beads: Dark purple<br>(n=29), dark blue (n=43),<br>black (n=18), white (n=1). | 2 agate beads,<br>bronze drum,<br>ceramics, buffalo<br>bracelet, gold and<br>silver jewelry.                    |
| Burial 6 | Disturbed by looters                      | N/A                       | 1 dark blue bead and 1<br>blue-green earring<br>fragment                                                                      | N/A                                                                                                             |
| Burial 7 | Phase 1<br>(C14 dates: 513-397<br>BC)     | Infant                    | 1 dark blue bead                                                                                                              | Jar Burial                                                                                                      |

| D : 10    | DI 0            | 37/4       |                            | 301                  |
|-----------|-----------------|------------|----------------------------|----------------------|
| Burial 8  | Phase 2         | N/A        | 1 black earring fragment   | N/A                  |
|           | (150/100 BC- AD |            | and 3 glass beads: dark    |                      |
|           | 100)            |            | blue (n=2) and purple      |                      |
| D         | Phase 2         | N/A        | (n=1).                     | C                    |
| Burial 9  |                 | N/A        | 1 black/dark purple        | Ceramics, bronze     |
|           | (150/100 BC- AD |            | earring/ring fragment and  | bracelets, water     |
|           | 100)            |            | 3 glass beads: dark blue   | buffalo teeth.       |
| D- 110    | DI 2            | NT/A       | (n=2) and black (n=1).     | D _ 1 _              |
| Burial 10 | Phase 2         | N/A        | 35 dark blue beads.        | Bronze drum          |
|           | (150/100 BC- AD |            |                            | fragments, gold      |
|           | 100)            |            |                            | and silver finger    |
|           |                 |            |                            | rings. Some          |
| D 1.1.11  | DI 2            | M. 1       | 5 1 1 1 1 1 1 1 1          | looting damage.      |
| Burial 11 | Phase 2         | Male       | 5 glass beads: dark blue   | Garnet beads,        |
|           | (150/100 BC- AD |            | (n=3), red $(n=1)$ , and   | stone pestle.        |
| D- : 1.12 | 100)            | M 1 0      | black (n=1).               | <b>C</b> .           |
| Burial 12 | Phase 2         | Male?      | 8 dark blue glass beads.   | Ceramics,            |
|           | (150/100 BC- AD |            |                            | gold/silver jewelry, |
|           | 100)            |            |                            | spindle whorl.       |
|           |                 |            |                            | Ceramic goblet       |
| D : 1.1.1 | DI A            | 27/4       | 120 1 1 1 1 1 1 1          | govered skull.       |
| Burial 14 | Phase 2         | N/A        | 138 glass beads: dark blue | Glass beads were     |
|           | (150/100 BC- AD |            | (n=136), light blue (n=2). | worn at wrists and   |
|           | 100)            |            |                            | found stuck to iron  |
|           |                 |            |                            | bracelets, gold      |
|           |                 |            |                            | jewelry.             |
| Burial 15 | Phase 2         | Male/Adult | 1 dark green weathered     | Garnet beads found   |
|           | (150/100 BC- AD |            | bead.                      | near mouth. Other    |
|           | 100)            |            |                            | glass beads          |
|           |                 |            |                            | reported but not     |
|           |                 |            |                            | recorded, iron       |
|           |                 |            |                            | tools, bronze        |
|           |                 | 2211       |                            | bracelets.           |
| Burial 16 | Phase 2         | N/A        | 1 black glass earring/ring | Ceramics             |
|           | (150/100 BC- AD |            | fragment and 10            |                      |
|           | 100)            | 2211       | dark blue beads.           | ~                    |
| Burial 18 | Phase 2         | N/A        | 2 dark blue glass beads.   | Gold finger ring,    |
|           | (150/100 BC- AD |            |                            | food offering?       |
| 7         | 100)            | ****       |                            |                      |
| Burial 20 | Phase 2         | N/A        | 56 glass beads: dark blue  | Garnet bead,         |
|           | (150/100 BC- AD |            | (n=55) and light blue      | ceramics, iron       |
|           | 100)            |            | (n=1).                     | bracelets, gold and  |
|           |                 |            |                            | silver jewelry.      |
| Burial 22 | Phase 2         | N/A        | 17 dark blue beads         | Iron bracelets, gold |
|           | (150/100 BC- AD |            |                            | and silver jewelry.  |
| 1         | 100)            |            |                            |                      |

| Burial 23 Burial 24 | Phase 2<br>(150/100 BC- AD<br>100)<br>Phase 2<br>(150/100 BC- AD<br>100) | N/A                                                   | 1 dark blue bead and 1 brown glass bead.  1 black glass ring/earring fragment and 71 glass beads: dark blue (n=57) and red (n=14). | Glass beads found at wrists with iron bracelets. Additional glass beads not recorded.  2 carnelian beads, iron bracelets, gold and silver jewelry.  Over 150 blue glass beads reported but only 54 were available for study. |
|---------------------|--------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burial 25           | Phase 2<br>(150/100 BC- AD<br>100)                                       | N/A                                                   | 2 dark blue glass beads<br>and 1 black glass bead                                                                                  | Gold and silver jewelry.                                                                                                                                                                                                     |
| Burial 28           | Phase 2<br>(150/100 BC- AD<br>100)                                       | N/A                                                   | 1 light blue bangle<br>fragment                                                                                                    |                                                                                                                                                                                                                              |
| Burial 31           | Phase 2<br>(150/100 BC- AD<br>100)                                       | N/A                                                   | 1 light blue earring fragment                                                                                                      |                                                                                                                                                                                                                              |
| Burial 33           | Phase 2b<br>(100/50 BC- AD<br>100)                                       | Female (based on presence of spindle whorls)          | 1 light blue bead                                                                                                                  | Garnet and carnelian beads, over 150 additional green and dark blue glass beads, gold jewelry, bronze bowl placed over the face, iron bracelets, spindle whorl.                                                              |
| Burial 34           | Phase 2<br>(150/100 BC- AD<br>100)                                       | Female (based<br>on presence of<br>spindle<br>whorls) | 1 dark blue bead and 1<br>black bead.                                                                                              | Over 150 black and red glass beads reported but not examined. Iron bracelets, gold and silver jewelry, spindle whorls.                                                                                                       |
| Burial 42           | Phase 2<br>(150/100 BC- AD<br>100)                                       |                                                       | 1 dark blue bead and 1<br>black bead.                                                                                              |                                                                                                                                                                                                                              |
| Burial 49           | Phase 1<br>(500- 150/100 BC)                                             | Child                                                 | 1 weathered ring or earring fragment                                                                                               | 21 glass beads<br>reported, garnet<br>beads.                                                                                                                                                                                 |
| Burial 52           | Phase 2<br>(150/100 BC- AD<br>100)                                       | (A. Charles                                           | 2 dark blue beads  I burial data from Prohear.                                                                                     | Looted grave.                                                                                                                                                                                                                |

Table 7.4: Glass bead and burial data from Prohear.



Figure 7.7: Examples of ring/earring/bangle fragments from Prohear.



Figure 7.8: Example of the dark blue glass beads common at Prohear.

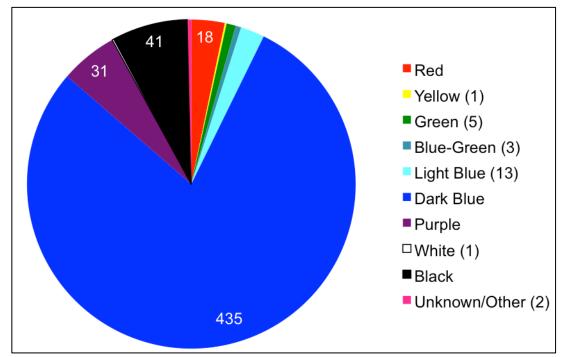



Figure 7.9: Distribution of glass colors at Prohear (n= 550). Quantities for colors with less than 15 beads are listed in parentheses.

## Village 10.8

209 glass artifacts were recorded from Village 10.8, of which the majority (n=201) is believed to come from burial or possible burial contexts (Table 7.5). As with Prohear, most glass at Village 10.8 are blue in color (Figure 7.12). All of the beads appear to be Indo-Pacific beads that were drawn and cut from a glass tube. In addition to glass beads, there were also several glass rings and ring fragments (these were sometimes classified by excavators as earrings) (Figure 7.11). They primarily came in a dark purple color, but a single black glass ring was also identified. As discussed in the previous chapter, the highly acidic soil prevented most skeletal remains from being preserved, so little is known about the people who were buried with these beads. However, it is interesting to observe that in contrast to the burials at Prohear, a greater number of burials contained stone beads than glass beads and only four burials contained both

stone and glass. Of note is Burial 11, which contained 124 glass beads, the largest number of glass beads found at the site.

| Village 10.7 Burial Number/Context | Glass Artifacts                                                                     | Other Artifacts                                                                                    | Notes            |
|------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|
| Burial 1                           | 1 blue glass bead                                                                   | 6 garnet beads, 6 carnelian<br>beads, broken ceramics, iron<br>tools and an iron bangle.           |                  |
| Burial 9                           | 2 dark blue glass beads                                                             | Broken ceramics                                                                                    |                  |
| Burial 11                          | 124 glass beads. Blue-<br>green (n=1), black (n=4),<br>dark blue (n=119)            | An iron ring and broken ceramics.                                                                  |                  |
| Burial 15                          | 27 glass beads. Blue-<br>green (n=2), dark green<br>(n=23), dark blue bead<br>(n=2) | 2 carnelian beads and broken pottery.                                                              |                  |
| Burial 28                          | 6 dark purple glass rings                                                           | 8 agate beads, 1 garnet bead,<br>broken ceramics, and iron<br>tools                                |                  |
| Burial 48                          | 24 dark blue glass beads                                                            | 10 carnelian beads, as well as a dagger, a knife, two iron bangles, a spade and pottery fragments. |                  |
| Unit EI                            | 6 dark blue glass beads                                                             |                                                                                                    | Could be         |
| Square T/92                        |                                                                                     |                                                                                                    | associated with  |
| Number 39                          |                                                                                     |                                                                                                    | Burial 3 or 4?   |
| Unit EI                            | 1 black glass ring                                                                  |                                                                                                    | Could be         |
| Square U91                         |                                                                                     |                                                                                                    | associated with  |
| Number 6                           |                                                                                     |                                                                                                    | Burial 3 or 4?   |
| Unit EIX                           | 1 black and 1 dark blue                                                             |                                                                                                    | Could be         |
| Square Q89                         | glass bead                                                                          |                                                                                                    | associated with  |
| Numbers 38 and 39                  |                                                                                     |                                                                                                    | Burial 11 or 12? |
| Unit EIX                           | 8 dark blue glass beads                                                             |                                                                                                    | Could be         |
| Square Q90                         |                                                                                     |                                                                                                    | associated with  |
| Number 18                          |                                                                                     |                                                                                                    | Burial 11 or 12? |

Table 7.5: Glass artifacts from burial or possible burial contexts from Village 10.8.



Figure 7.10: Example of a glass ring from Village 10.8.

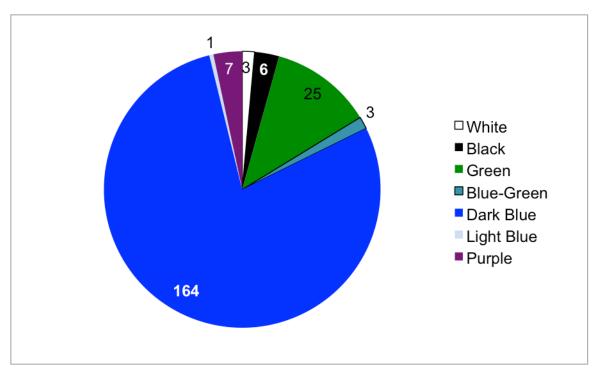



Figure 7.11: The distribution of glass bead colors at Village 10.8 (n=209).

## Phum Snay

285 glass beads were recorded at Phum Snay and all of the beads were Indo-Pacific glass beads, however, there were also a few small ring, earring, and bangle fragments (Figure 7.13).

Of note were a large number of extremely small Indo-Pacific beads, often measuring

approximately 1mm, which I call microbeads (Figure 7.14). Additionally, there are also numerous Indo-Pacific beads made with a mixed opaque red-orange glass. These beads often appear to be orange with red streaks (Figure 7.15). Although they are uncommon, similar bicolor beads have also been found at sites in South India and Sri Lanka (Dussubieux and Gratuze 2013), as well as Angkor Borei, Cambodia (Dussubieux 2001), Khlong Thom and Takua Pa in peninsular Thailand, Sungai Mas, Malaysia (Francis 2002), Noen U-Loke in Northeast Thailand, and Ban Non Noen in central Thailand (Pilditch 1992). Phum Snay was the first site recorded during fieldwork, and due to my inexperience many of these beads were initially recorded as only being orange glass beads, instead of red-orange beads. Therefore, the distribution of glass colors (Figure 7.16) lacks this distinction. It should be noted that while orange opaque glass dominated the assemblage from Phum Snay, many of these beads were not found in a burial context.

Of the 285 beads recorded, 194 of them were found in seven burials (Table 7.6). More burials contained glass beads than agate and carnelian, however the burial with the highest number of glass beads, Burial 9, also contained the largest number of stone beads. Several of the burials with beads also contained a large number of grave goods, with unique objects such jewelry and decorative objects with a buffalo horn motif (Burials 7 and 13) or weapons such as iron swords or projectile points (Burials 6 and 7).

| Burial          | Sex/Age | Glass Artifacts       | Other Artifacts      | Notes                  |
|-----------------|---------|-----------------------|----------------------|------------------------|
| Number/Context  |         |                       |                      |                        |
| Burial 1 (2001) | Adult   | 58 orange             | N/A                  | Disturbed burial       |
| D : 11 (2002)   | male    | microbeads            | 21                   |                        |
| Burial 1 (2003) | Older   | 1 orange microbead    | 2 bronze artifacts   |                        |
|                 | adult   |                       |                      |                        |
| D 116 (0001)    | female  |                       |                      |                        |
| Burial 6 (2001) | Young   | Glass bangle/earring  | Buried with a long   | Teeth were ablated,    |
|                 | adult   | fragment. Glass       | iron sword and a     | skeleton also showed   |
|                 | male    | beads were also       | second iron          | evidence for spinal    |
|                 |         | reported in the       | weapon, iron         | degeneration           |
|                 |         | thoracic area of the  | projectile points,   | (Domett and            |
|                 |         | skeleton, but not     | sun bear canine, 2   | O'Reilly 2009).        |
|                 |         | available for study.  | ivory bangles, a     |                        |
|                 |         |                       | bronze object,       |                        |
|                 |         |                       | bronze finger rings, |                        |
|                 |         |                       | ceramics, and a deer |                        |
|                 |         |                       | leg.                 |                        |
| Burial 7 (2003) | Middle  | 5 blue beads. A glass | Iron projectile      | Extremely tall         |
|                 | aged    | earring was also      | points, bronze       | woman; may have        |
|                 | adult   | reported, but not     | finger ring with     | been immigrant to      |
|                 | female  | examined.             | buffalo horns,       | the community          |
|                 |         |                       | pottery, spindle     | (Domett and            |
|                 |         |                       | whorls, bronze       | O'Reilly 2009).        |
|                 |         |                       | rings, additional    |                        |
|                 |         |                       | bronze and iron      |                        |
|                 |         |                       | artifacts, and a     |                        |
|                 |         |                       | bronze torque        |                        |
|                 |         |                       | around the neck.     |                        |
| Burial 9 (2001) | Young   | Some black glass      | Spindle whorl, a     | Beads not available    |
|                 | adult   | beads with skeleton.  | complete pot,        | for study              |
|                 | female? |                       | bronze rings, and    |                        |
|                 |         |                       | buffalo hooves and   |                        |
|                 |         |                       | a horn.              |                        |
| Burial 9 (2003) | Adult   | 105 glass beads       | 35 carnelian beads,  | Orange opaque glass    |
|                 | female  | associated with the   | gold bead, spindle   | (n=3), light blue      |
|                 |         | burial. Additional    | whorls, bronze rings | translucent (56), dark |
|                 |         | 15 glass beads may    | and bangles, iron    | blue translucent       |
|                 |         | be associated with    | tools, ceramics      | (n=3), red opaque      |
|                 |         | the burial.           | including a Phimai   | (n=9), yellow opaque   |
|                 |         |                       | black bowl, and a    | (n=48), dark green     |
|                 |         |                       | bronze bowl          | translucent (n=1).     |
|                 |         |                       | covering her face.   |                        |

| Burial 13 (2003) | Young  | 1 dark blue ring or                         | Spindle whorls, red ochre,   | Body was buried on |
|------------------|--------|---------------------------------------------|------------------------------|--------------------|
|                  | adult  | earring fragment. 2 iron artifacts, an iron |                              | her back with her  |
|                  | female | additional                                  | torque around the            | knees flexed       |
|                  |        | ring/earring/                               | neck, three bronze           | upward.            |
|                  |        | fragments may be                            | bangles, a bone bangle,      |                    |
|                  |        | associated with this                        | finger rings, and a ceramic  |                    |
|                  |        | burial.                                     | epaulette with miniature     |                    |
|                  |        |                                             | iron buffalo horns.          |                    |
| Unidentified     | Adult  | Three orange                                | 2 spindle whorls,            | Originally         |
| Burial (2003).   |        | microbeads                                  | ceramics, a clay pellet, and | classified as a    |
| Unit A/B Layer   |        |                                             | an iron object.              | feature, but       |
| 3:1 Feature 2    |        |                                             |                              | changed to burial  |
|                  |        |                                             |                              | after discovery of |
|                  |        |                                             |                              | an adult skull     |
|                  |        |                                             |                              | (O'Reilly et al.   |
|                  |        |                                             |                              | 2004: 220).        |

Table 7.6: Glass beads from burial contexts at Phum Snay. Beads from Burial 9 (2001) were not included in the current study.



Figure 7.12: Glass ring or earring fragments from Phum Snay.

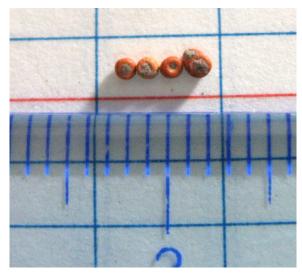



Figure 7.13: Example of orange opaque glass microbeads from Phum Snay Scale in mm.



Figure 7.14: Orange-red mixed glass bead from Phum Snay. Taken using a Dino-Lite digital microscope at 50x magnification.

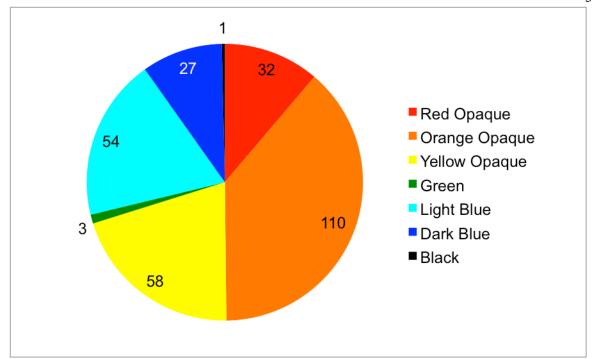



Figure 7.15: Distribution of glass colors at Phum Snay (n=285).

# Prei Khmeng

As noted in earlier chapters, burials at Prei Khmeng had almost no agate and carnelian beads, but did contain over 2000 (n=2056) glass beads. As with other sites discussed in this chapter, nearly all the beads were drawn Indo-Pacific beads in a variety of colors (Figure 7.18). However, there was also a short bicone opaque black glass bead with a red stripe around the outer edge (Figure 7.17). Approximately 45 beads were from non-burial contexts) with the remainder in burials or possible burials (i.e. pits with some objects but no skeletal material)(Table 7.7). Three burials with beads were examined, from a total of 7 burials that were excavated. Radiocarbon dates from two burials suggested the cemetery was used from the 1st through 6th centuries AD (Zoppi et al. 2004). Prei Khmeng is home to one of the earliest Angkorian period temples in the Angkor region, however the burials from Prei Khmeng are

different from "Indianized" burials of the later periods. Beads from two burials (Bony II and Bony IV) were previously analyzed using EDXRF, in which it was suggested the beads from Prei Khmeng were of an Indian origin (Latinis 2004).



Figure 7.16: Black glass short bicone bead with a red stripe from Prei Khmeng. The image on the right is a close-up of the red stripe at 60x magnification.

| Prei                                                | Sex/Age    | Glass Artifacts                                    | Other Artifacts                                                                                                                                                        | Notes                                                                                                                                                            |
|-----------------------------------------------------|------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Khmeng                                              |            |                                                    |                                                                                                                                                                        |                                                                                                                                                                  |
| Context                                             |            |                                                    |                                                                                                                                                                        |                                                                                                                                                                  |
| Burial 2<br>(Bony II)<br>Context<br>16016/<br>15017 | Juvenile   | 11 blue glass beads and 1 yellow glass bead        | An iron plate placed under the head, other undetermined long iron objects, a bronze bracelet and finger ring, a wooden artifact inserted into the mouth, and ceramics. | Blue glass beads<br>collected from<br>shoulder of<br>skeleton. An<br>additional 24<br>glass beads were<br>analyzed in an<br>earlier study (see<br>Latinis 2004). |
| Burial 3                                            | Female,    | 144 glass beads: red                               | Ceramics, bronze or                                                                                                                                                    | Beads were                                                                                                                                                       |
| (Bony III)                                          | approx. 28 | opaque (n=8), yellow                               | copper bracelets,                                                                                                                                                      | found under the                                                                                                                                                  |
| Context 21040                                       | years old  | opaque (n=16), yellow                              | copper earrings,                                                                                                                                                       | skull and                                                                                                                                                        |
|                                                     |            | translucent (n=2), dark<br>green (n=5), blue-green | ceramics, spindle whorls and, 2 iron                                                                                                                                   | mandible.                                                                                                                                                        |
|                                                     |            | (n=6), light blue $(n=11)$ ,                       | adzes.                                                                                                                                                                 |                                                                                                                                                                  |
|                                                     |            | dark blue (n=38), black                            | adzes.                                                                                                                                                                 |                                                                                                                                                                  |
|                                                     |            | (n=9), grey translucent                            |                                                                                                                                                                        |                                                                                                                                                                  |
|                                                     |            | (n=33), and brown/violet                           |                                                                                                                                                                        |                                                                                                                                                                  |
|                                                     |            | (n=16).                                            |                                                                                                                                                                        |                                                                                                                                                                  |

| Burial 4  | Female      | 1750 glass beads: orange    | Ceramics, some      | Beads were         |
|-----------|-------------|-----------------------------|---------------------|--------------------|
| Context   | 25-28 years | opaque (n=1078), black      | metal jewelry, iron | found around the   |
| 21045     | old         | (n=564), yellow             | objects including   | skull and neck.    |
| (Bony IV) |             | translucent (n=16), dark    | knives, and a pig's | An additional 16   |
|           |             | blue (n=3), and brown       | head offering.      | beads were         |
|           |             | (n=1).                      |                     | analyzed in an     |
|           |             |                             |                     | earlier study (see |
|           |             |                             |                     | Latinis 2004).     |
| Context   |             | 2 opaque yellow beads, 1    |                     | Possible burial    |
| 15021     |             | dark blue bead, and 1       |                     | context, but no    |
|           |             | black bicone with red       |                     | skeletal material  |
|           |             | stripe.                     |                     |                    |
| Context   |             | 50 glass beads: 1 dark blue |                     | Possible burial    |
| 21025     |             | bead, 23 opaque yellow      |                     | context, but no    |
|           |             | beads, and 26 light blue    |                     | skeletal material  |
|           |             | beads.                      |                     |                    |
| Context   |             | 3 beads: opaque orange      |                     | Possible burial    |
| 21038     |             | bead (n=1) and dark blue    |                     | context, but no    |
|           |             | beads (n=2).                |                     | skeletal material  |
| Context   |             | 5 beads: orange opaque      |                     | Possible burial    |
| 21052     |             | (n=4) and red opaque        |                     | context, but no    |
|           |             | (n=1).                      |                     | skeletal material  |

Table 7.7: Glass beads from burial and possible burial contexts at Prei Khmeng. Burial data from Baty 2003, Demeter 2004ab, and Pottier 2001.

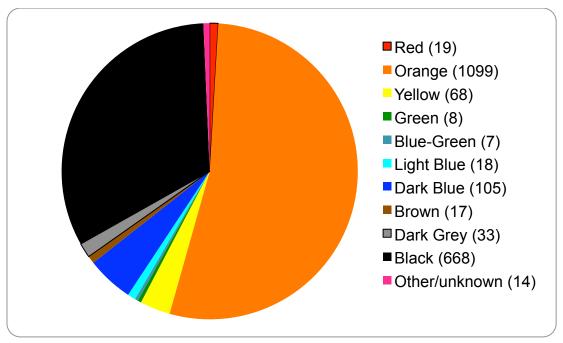



Figure 7.17: Glass bead color distribution at Prei Khmeng (n=2056).

Almost one thousand (n=960) glass beads were analyzed from the site of Promtin Tai, Lopburi province in central Thailand. While most of the beads were Indo-Pacific drawn beads, Promtin Tai also had a small but diverse group of other types of glass beads, including gold-glass beads, a ring or earring fragment similar to those found at Phum Snay, polychrome beads, and faience beads. These beads will be discussed in more depth below. A majority of the beads were found in the Promtin Tai cemetery matrix (n=835) and the remainder was found in eight of the 35 burials excavated at the site (Table 7.8).

The cemetery is believed to span the entire Iron Age (500 BC- AD 500) and into the Early Historic period. However, it is believed that material from 170cm below datum and deeper date to the Iron Age period. Some glass beads recorded in this study were from these upper layers and may date to the mid-first millennium AD (see Appendix 7.1 for more specific information on the context of these objects). Based on the burial depth, graves were divided into an earlier or later period (Table 7.8); all except Burial 6 were classified as belonging to the earlier period (Liu 2012). Five of the six burials with agate and carnelian beads also had glass beads. Burial 20 is notable for having large numbers of both glass and stone beads. Figure 7.18 shows the glass color distribution at Promtin Tai. As at Phum Snay, some of the beads were a red-orange mixed glass, but have been classified as opaque orange in the figure.

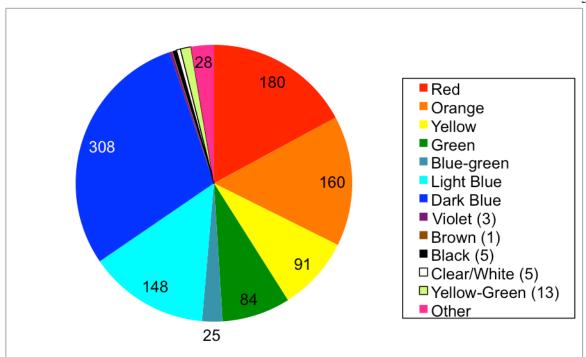



Figure 7.18: Glass bead color distribution at Promtin Tai (n=960). Glass colors with a small number of beads are listed in parenthesis.

| Promtin Tai          | Sex     | Age      | Beads found in     | Associated grave goods         |
|----------------------|---------|----------|--------------------|--------------------------------|
| <b>Burial Number</b> |         |          | burial             |                                |
| Burial 6             | Unknown | Subadult | 13 glass or        | N/A                            |
|                      |         | (1-2     | faience tubular    |                                |
|                      |         | years)   | beads              |                                |
| Burial 7             | Female  | 25-30    | Light blue earring | Pottery, 3 spindle whorls, and |
|                      |         | years    | fragment           | animal bones.                  |
| Burial 9             | Unknown | Adult,   | 32 dark blue glass | One greenstone bead and one    |
|                      |         | 20+      | beads              | agate bead.                    |
| Burial 12            | Male    | 18-22    | 8 dark blue glass  | Pottery, bracelets, and a bone |
|                      |         | years    | beads              | tool.                          |
| Burial 18 (two       | Unknown | Adult,   | 1 faience collar   | Greenstone beads, one agate    |
| individuals)         |         | 20+ and  | bead               | bead, bronze bracelets, an     |
|                      |         | child,   |                    | iron spear, and ceramics.      |
|                      |         | 3.5-4.5  |                    |                                |
| Burial 19            | Unknown | 9.5-11   | 2 dark blue glass  | 14 agate beads, greenstone     |
|                      |         |          | beads              | beads, shell bead, a bronze    |
|                      |         |          |                    | bracelet, 2 bronze rings,      |
|                      |         |          |                    | ceramics, two spindle whorls,  |
|                      |         |          |                    | and animal bones.              |

| Burial 20 | Female  | 20-25    | 134 glass beads:    | Greenstone beads, 5 agate    |
|-----------|---------|----------|---------------------|------------------------------|
|           |         |          | red opaque (n=1),   | beads, 7 carnelian beads,    |
|           |         |          | orange opaque       | ceramics, and shell.         |
|           |         |          | (n=14), blue-green  |                              |
|           |         |          | (n=2), light blue   |                              |
|           |         |          | (n=1), dark blue    |                              |
|           |         |          | (n=107), clear      |                              |
|           |         |          | beads (n=2), violet |                              |
|           |         |          | beads (n=2), black  |                              |
|           |         |          | and white striped   |                              |
|           |         |          | bead (n=2), gold-   |                              |
|           |         |          | glass beads (n=3).  |                              |
| Burial 32 | Unknown | Subadult | 26 dark blue glass  | Greenstone beads, four       |
|           |         |          | beads               | carnelian beads, ceramics, a |
|           |         |          |                     | bronze bangle and an iron    |
|           |         |          |                     | tool.                        |

Table 7.8: Glass beads from burial contexts at Promtin Tai.

#### Ban Non Wat and Noen U-Loke

Due to their proximity and similarity in recording the collections, the glass artifacts from Ban Non Wat and Noen U-Loke, will be considered together. Both sites are located just kilometers from one another in Northeast Thailand and due to time and access constraints, the collections from both sites were not examined in as much depth as the other sites discussed above. Nevertheless, the data recorded does provide ample information for an assessment of the collection and comparison with other sites. Table 7.9 lists the different phases at both sites and their corresponding dates. Many beads Indo-Pacific beads in a variety of colors were identified at both sites. However, another unique bead type was also common at Ban Non Wat and Noen U-Loke, these beads were opaque orange in color, with some red streaks, and were found in either a thin disc shape or as short tubular beads (Figure 7.20). Instead of being drawn like Indo-Pacific beads, these beads appear to have been made by wrapping a sheet of glass around a metal rod. In this study I refer to them as orange wrapped beads. Previous compositional analysis also

suggested that these beads were distinct from Indo-Pacific beads and made of a mixed alkali glass (Saitowitz and Reid 2001).

| Ban Non Wat               | Noen U-Loke                     |
|---------------------------|---------------------------------|
| Iron Age 1: 420-150 BC    | Mortuary Phase 3: 100 BC-AD 200 |
| Iron Age 2: 150 BC-AD 200 |                                 |
| Iron Age 3: AD 200-400    | Mortuary Phase 4: AD 200-400    |
| Iron Age 4: AD 400-600    | Mortuary Phase 5: AD 400-600    |

Table 7.9: Iron Age phases at Ban Non Wat and Noen U-Loke (from Higham et al. 2007; Higham et. al 2012; Higham 2011b).



Figure 7.19: Example of the two types of orange opaque wrapped glass beads found at Noen U-Loke and Ban Non Wat.

The glass data from Ban Non Wat in this chapter draws on both published information (Higham et al. 2009), data recorded during a brief examination of the collection in January 2010, and a closer examination of the 29 beads brought to the US for LA-ICP-MS analysis. Over 800 glass artifacts have been found at Ban Non Wat, of which 746 glass artifacts have been recorded in this study. Of these, approximately 77 % (n=574) came from 13 of 160 Iron Age burials (Table 7.10). With the exception of the "orange wrapped" category, all the glass colors discussed in Table 7.10 refer to Indo-Pacific beads. Six of the 13 burials contained both glass and stone beads and four burials contained over 50 glass beads. Of note are the 200 glass beads found in Burial 6, the burial of a young adult female, the 133 glass beads from the disturbed

burial of a young adult (Burial 203), and an infant jar burial (Burial 266) that contained 112 glass beads. Also of note is Burial 357, which contained two glass earrings and was one of the earliest burials to contain glass artifacts at Ban Non Wat. However, the quantity of glass found at Ban Non Wat pales in comparison to the large amount found at Noen U-Loke.

| Ban Non Wat<br>Burial<br>Number/Context | Age/Sex                                    | Date/Mortuary<br>Phase                     | Glass artifacts                                                                             | Associated grave goods                                                                                    |
|-----------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 6                                       | Young adult female                         | Iron Age 3<br>(200-400 AD)                 | 200 orange<br>wrapped beads (in<br>waist area)                                              | Ceramics, 2 carnelian beads. Glass beads buried at pelvis.                                                |
| 36                                      | Old adult female<br>and mid-adult<br>male  | Iron Age 4<br>AD 400-600                   | 86 orange beads                                                                             | Five carnelian beads, 2 agate pendants, ceramics, gold bead, spindle whorl, and a bronze bangle fragment. |
| 95                                      | Infant in a jar<br>burial                  | Iron Age II<br>(C14 dates: 250-<br>430 AD) | 4 orange beads                                                                              | Small pottery<br>vessel, iron<br>bangles, and iron<br>anklets.                                            |
| 101                                     | Adult                                      | Late Iron Age?                             | 1 broken orange<br>bead                                                                     | Bronze bangles<br>and rings,<br>bimetallic rings,<br>and ceramic<br>vessels.                              |
| 108                                     | Adult                                      | Late Iron Age?<br>(200-400 AD?)            | 1 broken orange<br>bead                                                                     | Bronze bangle<br>and finger ring, as<br>well as a pottery<br>vessel.                                      |
| 202                                     | Disturbed- only<br>maxilla bone<br>present | Iron Age<br>Period 4<br>(AD 400-600)       | 32 glass beads:<br>orange wrapped<br>beads (n=28),<br>dark blue (n=2),<br>light blue (n=2). | None                                                                                                      |

| 203 | Disturbed burial-<br>young adult | Iron Age<br>Period 4<br>(AD 400-600) | 133 glass beads:<br>orange wrapped<br>beads (n=115),<br>light blue (n=3),<br>dark blue (n=1),<br>14 orange glass<br>beads (n=14). | Bronze bangles<br>and finger rings,<br>agate pendants,<br>and an agate<br>bead.                                                                 |
|-----|----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 235 | Subadult<br>(10 years old)       | Iron Age 1<br>(420-150 BC)           | 2 light blue<br>earrings. A glass<br>bead necklace is<br>also reported.                                                           | Spindle whorls,<br>ceramics, iron<br>socketed artifact,<br>iron point, and<br>pig bones.                                                        |
| 259 | Young adult female               | Iron Age 1<br>(420-150 BC)           | 1 blue-green bead                                                                                                                 | 3 carnelian beads,<br>ceramics, red<br>ochre, and water<br>buffalo limb<br>bone.                                                                |
| 266 | Infant                           | Iron Age 4<br>AD 400-600             | 112 glass beads: yellow (n=55), light blue (n=14), dark blue (n=26), red (n=9), orange (n=6), white n=(1) black (n=1)             | Agate pendant,<br>bronze bangles,<br>bronze ring, and<br>ceramics.                                                                              |
| 356 | Older adult female               | Iron Age 1<br>(420-150 BC)           | Weathered blue-<br>green glass beads<br>in chin area                                                                              | 1 agate bead and<br>1 carnelian bead,<br>iron bangles, shell<br>bangle, spindle<br>whorls, stone<br>adze, red ochre,<br>and ceramic<br>vessels. |
| 357 | N/A                              | Iron Age 1 (420-150 BC)              | 2 light blue<br>earrings, heavily<br>weathered                                                                                    | Spindle whorl, red ochre, and 7 ceramic vessels.                                                                                                |
| 385 | N/A                              | N/A                                  | Broken/weathered<br>blue/green glass<br>bead fragments                                                                            | N/A                                                                                                                                             |

Table 7.10: Glass beads from burial contexts at Ban Non Wat.

Over 7000 glass beads were uncovered from burial contexts at Noen U-Loke. As with the glass artifacts from Ban Non Wat, the majority of information from this collection draws on the published excavation report (Higham et al. 2007) as well as a brief recording of the collection done at the Phimai Museum in December 2009. Unfortunately, many of the objects from the

Noen U-Loke excavations had been accessioned by the museum, a process in which all context information for the artifacts is removed. Additionally, not all beads in the museum were available for study, notably the beads from Mortuary Phase 4C. For this reason, I was only able to record 3531 glass artifacts from Noen U-Loke in this study, including 29 objects analyzed using LA-ICP-MS. Table 7.11 lists the context information for the 29 objects analyzed using LA-ICP-MS. Information on specific burials, when available, comes primarily from the published excavation report (Higham et al. 2007).

| Noen U-  | Cat. No | Artifact    | Color       | Context       | Period | Date       |
|----------|---------|-------------|-------------|---------------|--------|------------|
| Loke     |         |             |             | Information   |        |            |
| Database |         |             |             |               |        |            |
| ID       |         |             |             |               |        |            |
| AKC02001 | 1465    | Broken      | Black       | X1            |        | AD 200-400 |
|          |         | oblate bead | translucent | 3:13          | MP4A   |            |
| AKC02002 | 141     | Broken      | Yellow      |               | N/A    | AD 250-650 |
|          |         | oblate bead | opaque      | 3:6 Feature 1 |        |            |
| AKC02003 | 1457    | Broken      |             |               |        | AD 200-400 |
|          |         | short       | Blue        |               |        |            |
|          |         | cylinder    | translucent | T9B3          | MP4A   |            |
| AKC02004 | 1417    | Broken      | Grey        |               |        | Unknown    |
|          |         | oblate bead | translucent | T9B9          | N/A    |            |
| AKC02005 | 1414    | Broken      |             |               |        | AD 400-600 |
|          |         | short       | Dark blue   |               |        |            |
|          |         | cylinder    | translucent | T9B2          | MP5    |            |
| AKC02006 | 1414    | Broken      | Dark Blue   |               |        | AD 400-600 |
|          |         | oblate bead | Trans       |               |        |            |
|          |         |             | broken      | T9B1          | MP5    |            |
| AKC02007 | 1457    | Broken      | Dark Blue   |               |        | AD 200-400 |
|          |         | short       | Trans       |               |        |            |
|          |         | cylinder    | Broken      | T9B8          | MP4A   |            |
| AKC02008 | 1457    | Broken      | Dark        |               |        | AD 200-400 |
|          |         | oblate bead | turquoise   |               |        |            |
|          |         |             | translucent | T9B4          | MP4A   |            |
| AKC02009 | 1457    | Broken      |             |               |        | AD 200-400 |
|          |         | oblate bead | Dark blue   |               |        |            |
|          |         |             | turquoise   | T9 B7         | MP4A   |            |
| AKC02010 | 207     | Broken      | Bright blue |               |        | AD 400-600 |
|          |         | oblate bead | translucent | Burial 8      | MP5    |            |
| AKC02011 | 1417    | Broken      |             | 3:9 Feature 1 |        | 100 BC-    |
|          |         | oblate bead | Corroded    | T9 B10        | MP3A   | AD 200     |

|          |              |                     |              | _             |               | 321        |
|----------|--------------|---------------------|--------------|---------------|---------------|------------|
| AKC02012 | 1502         | Broken              | White        |               |               | AD 200-400 |
|          |              | oblate bead         | translucent  | Burial 105    | MP4A          |            |
| AKC02013 | 1417         | Oblate bead         | Dark         |               |               | AD 250-650 |
|          |              |                     | turquoise    |               |               |            |
|          |              |                     | translucent  | 3:9 Feature 1 | N/A           |            |
| AKC02014 | 1417         | Broken              |              |               |               | AD 250-650 |
|          |              | short               | Blue-green   |               |               |            |
|          |              | cylinder            | translucent  | 3:9 Feature 1 | N/A           |            |
| AKC02015 | 1414         | Broken              | Dark Blue    |               |               | AD 400-600 |
|          |              | oblate bead         | Trans        |               |               |            |
|          |              |                     | Broken       | T8B8          | MP5           |            |
| AKC02016 | 1414         | Broken              | Dark         |               |               | AD 400-600 |
|          |              | short               | blue/purple  |               |               |            |
|          |              | cylinder            | translucent  | T8B8          | MP5           |            |
| AKC02017 | N/A          | Broken              | Red, white,  |               |               | Unknown    |
|          |              | barrel bead         | blue, yellow |               |               |            |
|          |              |                     | opaque       |               |               |            |
|          |              |                     | mixed glass  | Unknown       | N/A           |            |
| AKC02018 | 207          | Oblate seed         | Yellow       | Burial 8      |               | AD 400-600 |
|          |              | bead                | opaque       |               | MP5           |            |
| AKC02019 | 207          | Oblate bead         | Turquoise    | Burial 8      |               | AD 400-600 |
|          |              |                     | translucent  |               | MP5           |            |
| AKC02020 | 207          | Oblate bead         | Dark blue    | Burial 8      |               | AD 400-600 |
|          |              |                     | translucent  |               | MP5           |            |
| AKC02021 | 207          | Oblate bead         | Dark blue    | Burial 8      |               | AD 400-600 |
|          |              |                     | translucent  |               | MP5           |            |
| AKC02022 | 207          | Oblate seed         | Red core     |               |               | AD 400-600 |
|          |              | bead                | with orange  |               |               |            |
|          |              |                     | coating      | Burial 8      | MP5           |            |
| AKC02023 | 207          | Oblate seed         | Red core     |               |               | AD 400-600 |
|          |              | bead                | with orange  |               |               |            |
|          |              |                     | coating      | Burial 8      | MP5           |            |
| AKC02024 | 207          | Oblate seed         | Red core     |               |               | AD 400-600 |
|          |              | bead                | with orange  |               |               |            |
|          |              |                     | coating      | Burial 8      | MP5           |            |
| AKC02025 | 207          | Oblate seed         | Red core     |               |               | AD 400-600 |
|          |              | bead                | with orange  |               |               |            |
|          |              |                     | coating      | Burial 8      | MP5           |            |
| AKC02026 | 207          | Oblate seed         | Red core     |               |               | AD 400-600 |
|          |              | bead                | with orange  |               |               |            |
|          |              |                     | coating      | Burial 8      | MP5           |            |
| AKC02027 | N/A          | Short tube          | Orange       |               |               | 100 BC-    |
|          |              |                     | opaque       | Burial 37     | MP3A          | AD 200     |
| AKC02028 | N/A          | Oblate bead         | Bright blue  |               |               | 100 BC-    |
|          |              |                     | translucent  | Burial 37     | MP3A          | AD 200     |
| AKC02029 | N/A          | Wound disc          | Orange       |               | MP3A          | 100 BC-    |
| <b></b>  | . = =        | bead                | opaque       | Burial 37     |               | AD 200     |
| Т        | abla 7 11. I | ist of beads from N |              |               | iging I A ICE |            |

Table 7.11: List of beads from Noen U-Loke that were analyzed using LA-ICP-MS.

A higher quantity of burials at Noen U-Loke had glass beads than at Ban Non Wat and the number of glass beads found within burials is also much higher. Twelve burials contained over 50 glass beads with one burial, Burial 13 of an infant, contained over 1700 glass beads. This discrepancy is notable when we consider that over 900 square meters have been excavated at Ban Non Wat during the 2002-2007 field seasons, while only 220 square meters were excavated at Noen U-Loke over two field seasons. However, the difference in glass bead quantities appears to be related to the dates of occupation at both sites. The majority of burials at Ban Non Wat date to the earlier Iron Age 1 period. Charles Higham has noted that the earliest glass artifacts appear at Ban Non Wat, and are not beads but glass earrings (Higham and Kijngam 2009). Glass does not appear at Noen U-Loke until Mortuary Phase 3 (100 BD- AD 200), with a peak in the quantity of glass occurring during Mortuary Phase 4 at Noen U-Loke (AD 200-400) (Talbot 2007), which is less well represented than at Ban Non Wat. This increase in mortuary wealth over time, as noted in the previous chapter, also makes it difficult to compare the status of graves from the early Iron Age with those from the later Iron Age. Nevertheless, when we look at both sites together we are able to see a broad shift in the types of glass over time. Figure 7.21 shows the distribution of glass colors at Ban Non Wat and Noen U-Loke over time.

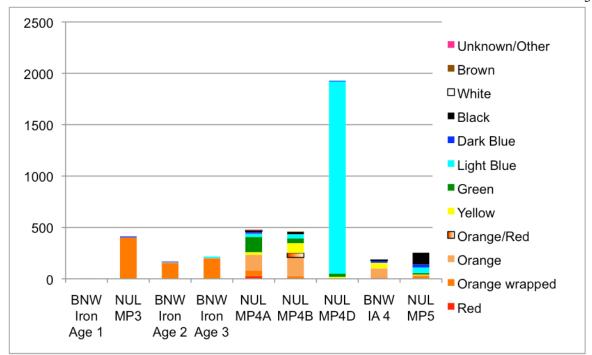



Figure 7.20: The distribution of glass colors at Ban Non Wat and Noen U-Loke.

#### Glass beads in context: A summary

An overall examination of the glass beads from these ten sites shows an immediate difference in the distribution of glass bead colors, with sites in southeast Cambodia (Village 10.8, Prohear, and Bit Meas) having a large number of dark blue beads, while the remaining sites had smaller quantities of dark blue and higher numbers of red, orange, yellow, green, light blue, and black beads. As demonstrated in the next section, these color differences are also related to differences in glass composition.

Glass beads are also found in a greater number of burials than agate and carnelian beads (Table 7.12). However, the frequency of beads in burials varies by site. At Prohear, nearly all of the burials contained glass artifacts, while at Village 10.8 or Ban Non Wat only 10-12% of burials contained glass beads and artifacts and at Phnom Borei no burials contained glass. It is

notable, however, that at Village 10.8 a higher number of burials (n=10) contained agate and carnelian beads than glass beads. At some sites glass beads were available in very high quantities, however this may have something to do with the availability of glass beads over time. The two burials with over 1000 beads, Prei Khmeng and Noen U-Loke, both date to the early-mid first millennium AD. As observed in the previous chapter, there are numerous factors that could have influenced the quantity of burials with beads observed in this study, such as issues regarding looting or changing mortuary rituals over time. Additionally, variation in the quantity of burials with beads as well as the total number of beads in burials may be related to cultural choices by the different communities regarding the depositing of glass beads in burials. Therefore, the burials noted in this chapter should not be taken as a representative sample. However, certain observations may be indicative of broader trends. For example, taken together the data support the interpretation that glass beads were generally more accessible and widespread than agate and carnelian beads there was still some variation in the availability of glass objects over time and space.

|              | <b>Total Burials</b> | <b>Burials with glass artifacts</b> |
|--------------|----------------------|-------------------------------------|
| Angkor Borei | 111                  | 29 (26%)                            |
| Ban Non Wat  | 160                  | 13 (8%)                             |
| Noen U-Loke  | 120                  | 56 (47%)                            |
| Phnom Borei  | 9                    | 0 (0%)                              |
| Phum Snay    | 23                   | 7 (30%)                             |
| Prei Khmeng  | 7                    | 3 (43%)                             |
| Prohear      | 52                   | 46 (75%)                            |
| Promtin Tai  | 35                   | 8 (23%)                             |
| Village 10.8 | 50                   | 6 (12%)                             |

Table 7.12: The number of burials with glass artifacts by site.

As noted in the previous chapter, the trend of women buried with large numbers of beads continued, although with a few notable exceptions (Table 7.13). Eight female burials at these

sites contained high quantities of glass beads, at least over 100, in comparison with the other burials at their site. However, there were also male burials, an infant burial, and other unknown burials that contained large numbers of glass beads. Scholars have noted that at Noen U-Loke, glass beads are found in fairly equal numbers of male and female burials during Mortuary Phase 3, but become more common in male burials during Mortuary Phase 4, although they also appeared in several unsexed burials (Talbot 2007: 338-340). At some sites, the value of glass beads may have changed over time as did the reasons one may earn or inherit such beads.

| Site         | Burial Number | Sex                    | Number of beads         |
|--------------|---------------|------------------------|-------------------------|
| Angkor Borei | F35           | Adult female and child | 254 glass beads         |
| Angkor Borei | F36           | 2 adult males          | 248 glass beads         |
| Prohear      | Burial 46     | Unknown                | Over 500 glass<br>beads |
| Prohear      | Burial 24     | Unknown                | Over 150 glass beads    |
| Prohear      | Burial 33     | Female                 | Over 150 glass beads    |
| Prohear      | Burial 34     | Female                 | Over 150 glass beads    |
| Village 10.8 | Burial 11     | Unknown                | 124 glass beads         |
| Phum Snay    | Burial 9      | Female                 | 105 glass beads         |
| Prei Khmeng  | Burial 3      | Female                 | 144 glass beads         |
| Prei Khmeng  | Burial 4      | Female                 | 1750 glass beads        |
| Promtin Tai  | Burial 20     | Female                 | 134 glass beads         |
| Ban Non Wat  | Burial 6      | Female                 | 200 glass beads         |
| Ban Non Wat  | Burial 203    | Unknown                | 133 glass beads         |
| Ban Non Wat  | Burial 266    | Infant                 | 112 glass beads         |
| Noen U-Loke  | Burial 13     | Infant                 | 1750 glass beads        |

Table 7.13: Table noting burials at each site that contained a large quantity of glass beads.

During the early Iron Age, some of the earliest glass artifacts were not beads but glass rings or earrings. Data from Ban Non Wat and Noen U-Loke, which cover the entire Iron Age, show increased quantities of glass beads over time. The Prei Khmeng and Noen U-Loke burials with over 1000 glass beads of one or two colors also indicates that in certain periods, these beads were moving through trade networks in bulk. Most of these beads were monochromatic Indo-Pacific beads. While many of these beads look visually similar to one another, they were often made using different glass bead recipes. In the next section, I discuss the results of compositional analysis of glass beads, which show that there were multiple bead exchange

networks in play during the Iron Age period and that different sites were participating in different trade networks.

## Compositional analysis of glass beads from Cambodia and Thailand

As discussed above, a selection of beads from each site were brought to the US for LA-ICP-MS analysis in the Elemental Analysis Facility at the Field Museum in Chicago, IL (Table 7.14). Beads were chosen in order to represent the diversity of beads found at each site, but they do not reflect a statistically significant sample. Beads were primarily chosen from burial contexts, although unique or unusual beads from non-burial contexts were also examined. In this section I will discuss the results of the LA-ICP-MS analysis and my interpretations for the overall glass bead collections at each site. Final measurements from LA-ICP-MS analysis are listed in Appendix 7.2. Major elements are listed as weight percent and minor and trace elements as parts per million (ppm).

| Site Name              | Total number of glass artifacts recorded | Number of glass artifacts analyzed using LA-ICP-MS |
|------------------------|------------------------------------------|----------------------------------------------------|
| Angkor Borei, Cambodia | 1368                                     | 15                                                 |
| Bit Meas, Cambodia     | 5                                        | 5                                                  |
| Phnom Borei, Cambodia  | 48                                       | 6                                                  |
| Phum Snay, Cambodia    | 285                                      | 30                                                 |
| Prei Khmeng, Cambodia  | 2056                                     | 42                                                 |
| Prohear, Cambodia      | 550                                      | 59                                                 |
| Village 10.8, Cambodia | 209                                      | 14                                                 |
| Ban Non Wat, Thailand  | 746                                      | 29                                                 |
| Noen U-Loke, Thailand  | 3531                                     | 29                                                 |
| Promtin Tai, Thailand  | 1050                                     | 23                                                 |

Table 7.14: Quantity of glass beads from each site analyzed using LA-ICP-MS.

## Results from LA-ICP-MS analysis of glass artifacts

In this section I present the results of LA-ICP-MS analysis on glass bead and artifacts.

Glass beads were analyzed providing a baseline for the distribution of glass types at each site.

However, as I did not select beads for analysis in a statistically significant way, I then estimated the overall distribution of four different glass types (high alumina soda glass, potash glass, m-Na-Ca-Al glass, and other) at each site based on visual similarities of the analyzed beads with known types and their context. For example, if a single blue bead of a group of 50 was found to be made form high alumina potash glass I estimated that the remaining 49 beads in this group were also made from the same glass. These estimates provide a general picture of the quantity and distribution of the different glass types by site.

## Angkor Borei

As part of her doctoral dissertation research, Laure Dussubieux (2001) analyzed 97 glass beads from the Angkor Borei cemetery excavation. In her study, the majority of Indo-Pacific glass beads from Angkor Borei in a variety of colors were found to be high alumina soda glass (n=79). A small number (n=9) of green and yellow opaque glass beads were found to belong to the m-Na-Ca-Al type, while four dark blue beads were assigned to the v-Na-Ca glass type. Three beads, blue, yellow, and blue-green in color, were found to be lead glass. Two glass beads were classified as "other," (Dussubieux 2001). Scholars have noted that the high alumina soda glass type was over-represented at Angkor Borei when compared to other sites in Southeast Asia and that there was a notable lack of potash glass beads (Stark and Dussubieux 2002). Dussubieux's analyses from the Oc Eo site also showed a large number of high alumina soda-glass beads (Dussubieux 2001; Stark and Dussubieux 2002). Estimates from the current study confirm this earlier research (Table 7.15).

| Glass bead type             | Number of glass beads identified | Estimated number of glass beads of this type in total |
|-----------------------------|----------------------------------|-------------------------------------------------------|
|                             |                                  | collection                                            |
| High alumina soda glass (m- | 82                               | 1127+                                                 |
| Na-Al)                      |                                  |                                                       |
| Potash glass                | 0                                | 0                                                     |
| m-Na-Ca-Al                  | 12                               | 65                                                    |
| Lead                        | 3                                | 176                                                   |
| v-Na-Ca                     | 7                                |                                                       |
| Other/weathered/Unknown     | 8                                | ]                                                     |

Table. 7.15: The distribution of different glass types at Angkor Borei. All of the yellow bead were placed in the other category is compositional analysis is needed to confirm if they belong to the lead glass or another category.

Fifteen additional beads were analyzed as part of the current study (Figure 7.22). Several beads were misclassified as stone beads and analyzed while undertaking this research. Other dark blue beads were specifically chosen in order to determine if they may have been made of potash glass, a glass type not found in Dussubieux's study (2001). Three additional beads were chosen for their unusual appearance. The results are consistent with the findings in Dussubieux's earlier study. Six beads were classified as belonging to the high alumina soda glass type; this included a translucent yellow bead (AKC02519), a dark blue-green translucent spherical bead (AKC02589), and one purple bead initially classified as garnet (AKC02590). Three additional purple glass beads (AKC02584, AKC02585, AKC02590) beads originally classified as garnet had compositions similar to high alumina soda glass, but had lower alumina levels (approximately 5%). Additionally, their Zr levels were too high to be considered as part of the m-Na-Ca-Al group. This glass type is unusual and have thus far found no other examples of this glass type in the current study or in published reports from other contemporary sites. For the moment, these three beads remain uncategorized. Three dark blue beads were classified as belonging to the m-

Na-Ca-Al type (AKC02586-2588) and three dark blue beads, including a square barrel, were classified as belonging to the v-Na-Ca type (AKC02592, AKC02594b, AKC02595). Two beads were too weathered to properly classify (AKC02594, AKC02596). However one yellow bead (AKC02594) may be a faience bead, although no similar beads have yet been identified in this study. It is significant that no potash glass beads were found in this additional study. Lankton and Dussubieux have noted that the lack of potash glass in the Angkor Borei cemetery could date the transition from potash to high alumina soda glass across Southeast Asia (2006, 2012). However, additional data may complicate this hypothesis (Carter 2010; discussed further below).

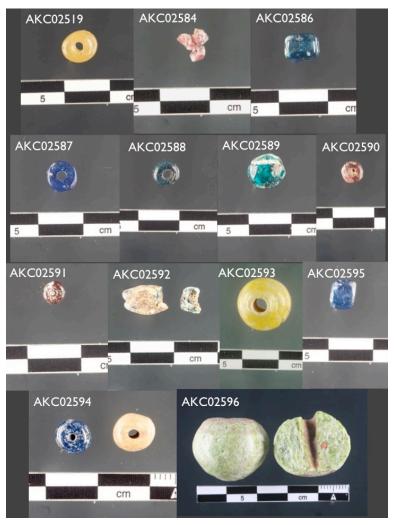



Figure 7.21: Glass beads analyzed from Angkor Borei. AKC02585 not pictured as bead was too fragmentary.

Six Indo-Pacifc glass beads from Phnom Borei were analyzed using LA-ICP-MS (Table 7.16). Four of the beads were found to be high alumina soda glass (m-Na-Al Type 1), including an opaque orange bead with slightly elevated levels of MgO. Lankton and Dussubieux (2006) have noted that certain glass colors including opaque orange appear to have higher levels of MgO, making them look like plant ash glasses. Despite these elevated levels of MgO, I believe this opaque orange bead belong to the m-Na-Al Type 1 group. Two glass beads were classified as belonging to the potash glass group. One dark blue glass bead was classified as a low lime potash glass (m-K-Al, low C) and the other dark blue bead was classified as a potash glass with moderate amounts of alumina and lime (m-Ka-Ca-Al). Based on visual similarities, I believe that the majority of beads at Phnom Borei belong to the high alumina soda glass type. A single bead was too weathered/deteriorated to determine its glass type and is classified as "other."

The presence of potash glass at Phnom Borei is significant, as previous work at the nearby site of Angkor Borei found no potash glass, suggesting that the glass bead trade at these sites post-dated the potash/high alumina soda glass transition. However, the presence of potash glass at Phnom Borei does suggest that the potash glass beads were circulated in the Mekong Delta region.

| Glass bead type                                                     | Number of glass<br>beads identified | Estimated number of glass beads of this type in total collection |
|---------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------|
| High alumina soda glass (m-Na-Al)                                   | 4                                   | 39                                                               |
| Potash glass with low lime (m-Ka-Al, low C)                         | 1                                   | 8                                                                |
| Potash glass with moderate amounts of lime and alumina (m-Ka-Ca-Al) | 1                                   |                                                                  |
| Other/weathered                                                     |                                     | 1                                                                |

Table 7.16: The distribution of different glass types at Phnom Borei.

# Village 10.8

12 glass beads and 2 glass ring fragments from Village 10.8 were analyzed and all of the artifacts were classified as belonging to one of two potash glass sub-types (Table 7.17). Of note is that both ring fragments (AKC00323 and AKC00327) were classified as belonging to the m-K-Ca-Al subtype. The remaining dark blue, black, and dark purple beads were classified as either m-K-Ca-Al glass or low lime potash glass. Unfortunately, four beads (AKC00376, AKC00381, AKC00389, AKC00424) were too weathered to produce meaningful results. This included a polychrome bead made of light blue or green glass with a white stripe. An estimate of the remaining glass collection suggests that Village 10.8 was dominated by potash glass beads (Table 7.17).

| Glass bead type                             | Number of glass<br>beads identified | Estimated number of glass beads of this type in total collection |
|---------------------------------------------|-------------------------------------|------------------------------------------------------------------|
| Potash glass with low lime (m-Ka-Al, low C) | 5                                   | 180                                                              |
| Potash glass with moderate amounts of lime  | 5                                   |                                                                  |
| and alumina (m-Ka-Ca-Al)                    |                                     |                                                                  |
| Other/weathered                             | 4                                   | 29                                                               |

Table 7.17: The distribution of different glass types at Village 10.8.

#### Prohear

Forty-six glass beads or bead fragments, three bangle fragments, and ten ring or earring fragments (n=59 total) were analyzed using LA-ICP-MS. Of these five ring/earring fragments, one bangle fragment, and one dark blue bead were too weathered to produce reliable results. One white glass bead also had an unusual composition and may have been a modern bead that found its way into the archaeological record; it will not be discussed in detail here. The remaining artifacts were predominantly various subtypes of potash glass, however there were also more

unusual types including Arika glass, lead glass, and m-Na-Ca-Al glass beads (Figure 7.23, Table 7.18).

| Glass bead type                                | Number of glass<br>beads identified | Estimated number of glass beads of this type |
|------------------------------------------------|-------------------------------------|----------------------------------------------|
|                                                |                                     | in total collection                          |
| Potash glass with low lime (m-Ka-Al, low C)    | 16                                  |                                              |
| Potash glass with low alumina (m-K-Ca, low A)  | 1                                   | 467                                          |
| Potash glass with moderate amounts of lime and | 21                                  | 407                                          |
| alumina (m-Ka-Ca-Al)                           |                                     |                                              |
| m-Na-Ca-Al glass                               | 8                                   | 65                                           |
| Arika glass                                    | 4                                   |                                              |
| Lead glass                                     | 1                                   | 18                                           |
| Other/weathered                                | 15                                  |                                              |

Table 7.18: The distribution of glass types from Prohear.

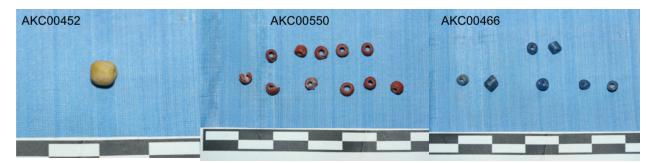



Figure 7.22: From left to right: A yellow lead glass bead, several Arika red glass beads, and blue m-Na-Ca-Al glass found at Prohear.

Interestingly, the glass rings and bangles were split between the different potash glass sub-types. Two light blue bangle fragments and a dark blue ring/earring were found to belong to the m-K-Ca-Al type, while a black, dark purple, and blue rings/earrings were found to belong to the m-K-A, low C type. A black ring/earring was the only artifact found to belong to the m-K-Ca, low A type. The m-Na-Ca-Al beads were all colored with cobalt (approximately 500 ppm Co). These beads were dark blue, but not as dark in color as the potash glass beads and appear to be different from the m-Na-Ca-Al glass beads found at Promtin Tai (below). Three red beads and a black bead were found to be Arika glass (Figure 7.23) and a single yellow bead was found to

contain high levels of lead (30 weight percent) (Figure 7.23), which was also often used to color yellow glass. The presence of Arika glass at Prohear is significant, as it was the only site in this study with evidence for this glass type. Although it was only present in small numbers, it does suggest some kind of connection with a trade network that originated in southern India or perhaps Phu Khao Thong in peninsular Thailand (Dussubieux et al. 2012). The remaining beads, primarily dark blue in color but also purple, green, and black, were classified as either m-K-Ca-Al or m-K-Al, low C potash glass.

#### Bit Meas

As noted earlier, Bit Meas was heavily looted and only five dark blue glass beads from this site were examined. All five glass beads were classified as potash glass, with one dark cobalt blue bead (over 800 ppm Co) belonging to the m-K-Ca-Al type while the remaining four dark blue (n=2), blue-green, and purple beads were assigned to the m-K-Al, low C subtype. Due to the looting at the site, it is impossible to estimate the overall distribution of different glass types at Bit Meas (Table 7.19).

| Glass bead type                             | Number of glass<br>beads identified | Estimated number of glass beads of this type in total collection |
|---------------------------------------------|-------------------------------------|------------------------------------------------------------------|
| Potash glass with low lime (m-Ka-Al, low C) | 1                                   | N/A                                                              |
| Potash glass with moderate amounts of lime  | 4                                   | N/A                                                              |
| and alumina (m-Ka-Ca-Al)                    |                                     |                                                                  |

Table 7.19: The distribution of glass types from Bit Meas.

## Phum Snay

Three ring/earring fragments and 26 glass beads were analyzed from Phum Snay. A single bead (AKC00232) was too weathered to produce reliable results. The three ring/earring fragments were all classified as m-K-Ca-Al glass, similar to those found at Village 10.8 and Prohear. 25 of

the 26 beads belonged to the m-Na-Al Type 1 glass type, and included a variety of glass colors. Perhaps the most unusual find was a single dark blue bead was classified as v-Na-Ca glass, or plant ash soda lime glass (Figure 7.24). This glass type is strongly associated with Middle Eastern glass production and during later periods was likely imported from this region. However, Lankton and Dussubieux note the presence of v-Na-Ca glass at early sites in Sri Lanka and common in Southeast Asia from the 3<sup>rd</sup> century AD, and question its Middle Eastern origin during this early phase. At present, current evidence leaves the origin of this glass unclear (Lankton and Dussubieux 2013).

There have been several previous compositional studies of glass from Phum Snay examining both looted beads (Gratuze 2005; Vanna 2007) and excavated materials (Sophy 2008). These previous studies found generally similar patterns in the distribution of glass types form Phum Snay as found in the current study. Analysis of materials from the 2001 and 2003 excavations identified a majority of high alumina soda glass as well as 16 potash glass beads from all three subtypes, and four beads described as soda lime glass. Three of these beads may be the v-Na-Ca glass, due to the high-levels of MgO signally a plant ask alkali source. However, one bead may belong to the m-Na-Ca-Al subtype (Sophy 2008). An additional study of looted materials from Phum Snay identified four additional v-Na-Ca glass beads (Gratuze 2005; Vanna 2007). Taken together theses analyses suggest that Phum Snay was dominated by high alumina soda glass, but contained a small but diverse group of other glass types. The estimates in Table 7.20 likely underestimate the glass diversity at Phum Snay.

| Glass bead type                                                     | Number of   | Estimated number of glass   |
|---------------------------------------------------------------------|-------------|-----------------------------|
|                                                                     | glass beads | beads of this type in total |
|                                                                     | identified  | collection                  |
| High alumina soda glass (m-Na-Al)                                   | 25          | 278                         |
| Potash glass with moderate amounts of lime and alumina (m-Ka-Ca-Al) | 3           | 6                           |
| Plant ash soda lime glass (v-Na-Ca)                                 | 1           | 1                           |
| Other/weathered                                                     |             | 1                           |

Table 7.20: The distribution of glass types at Phum Snay.

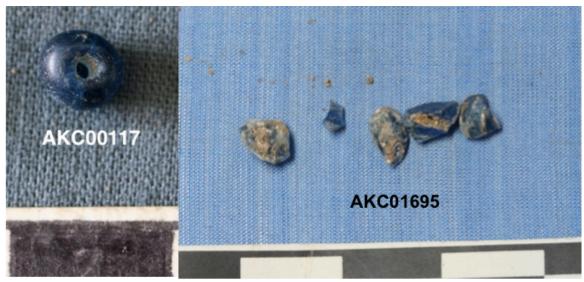



Figure 7.23: Example of the v-Na-Ca glass from Phum Snay (left) and Prei Khmeng (right).

# Prei Khmeng

42 glass beads from Prei Khmeng were analyzed and of these 40 belonged to the high alumina soda glass sub-type (m-Na-Al Type 1). Only two objects, broken fragments of a blue glass bead (Figure 7.24) and the black bicone with red trip (Figure 7.17) were assigned to the v-Na-Ca glass type, similar to the bead from Phum Snay discussed above. As Prei Khmeng is the latest site examined in this study, dating from the 1<sup>st</sup>-6<sup>th</sup> centuries AD, it should not be surprising

that so many of the beads from this site were classified as high alumina soda glass, as this glass type is common in Southeast Asia during the 1<sup>st</sup> millennium AD.

| Glass bead type                     | Number of glass<br>beads identified | Estimated number of glass beads of this type in total collection |
|-------------------------------------|-------------------------------------|------------------------------------------------------------------|
| High alumina soda glass (m-Na-Al)   | 40                                  | 2035                                                             |
| Plant ash soda lime glass (v-Na-Ca) | 2                                   | 21                                                               |
| Other/weathered                     |                                     | 21                                                               |

Table 7.21: The distribution of glass types at Prei Khmeng.

## Promtin Tai

17 glass Indo-Pacific beads were analyzed from Promtin Tai as well as several more unique glass artifacts including two faience beads, two polychrome black and white beads, a light blue earring fragment, and a gold-glass bead (Figure 7.25). Of the 23 glass artifacts analyzed the blue glass earring fragment was too weathered to produce results and a single bead was not glass but shell. The remaining 21 glass artifacts will be discussed here.



Figure 7.24: Examples of some of the unusual beads found at Promtin Tai.

Two dark blue beads were assigned to the m-K-Ca-Al subtype, and four glass beads were identified as belonging to the m-K-Al, low C subtype, including one large clear glass bead, two dark blue glass beads, and one dark purple bead. Three dark blue beads were assigned to the m-Na-Ca-Al group. Although the potash glass and m-Na-Ca-Al dark blue beads looked similar to one another, the m-Na-Ca-Al beads tended to be slightly smaller (2.5-5 mm) than the potash glass beads (4-5mm) and a much deeper cobalt blue color (Figure 7.26). Eight high alumina soda glass beads were identified at Promtin Tai, however only a small number, an estimate of approximately 16 beads, appear in burial contexts. Several hundred high alumina soda glass beads were found in the burial matrix and upper layers of the site. One of the polychrome beads, the black bicone with a white stripe, may also be related to the high alumina soda glass group (AKC01043 in Figure 7.25). The opaque black glass base appears to be consistent with the m-Na-Al Type 1 glass group, although there are elevated levels of magnesium perhaps related to the coloring of the glass (Lankton and Dussubieux 2006: 133-4). The white stripe appears to sit on the surface of this glass and its composition is unique. The white portion of the bead appears to be corroded, as it has very low levels of Na<sub>2</sub>O. A nearly identical black and white bicone bead from southern Thailand is pictured in Pongpanich (2009: 48).



Figure 7.25: Example of m-Na-Ca-Al beads (left) and potash glass beads (right) from Promtin Tai.

The other black and white bead, which appears to be imitating a striped agate bead, is more mysterious (AKC01059 in Figure 7.25). The bead, found in Burial 20, has three white stripes. Both the black and white portions of the broken bead were analyzed using LA-ICP-MS and found to be the same unusual glass type: a variety of potash glass with high levels of Na<sub>2</sub>O. Only a few other beads have been identified with a similar composition, including a blue-green glass bead from Ban Don Ta Phet and beads from southern India and Sri Lanka (Lankton and Dussubieux 2006: 139). It has been suggested that this high Na<sub>2</sub>O potash glass is a mixture of potash glass and Arikamedu glass, and that this particular glass type may have been made at Arikamedu (Lankton and Dussubieux 2006:140). However, the unbroken bead appears to have been made using a folding technique typical of beads made in the Middle East (see Francis 2002:93). An assortment of similar imitation stone beads has been found at sites in southern Thailand (Pongpanich 2009: 48-9). For the moment, this bead presents a puzzle and there is no clear answer as to the location of its manufacture.

Three gold-glass beads were found in Burial 20 at Promtin Tai (AKC01057 in Figure 7.25). These small beads were originally segmented, and later broken into individual beads leaving a spherical bead with a jagged protrusion around the bead hole. One bead was analyzed as part of the current study and found to be made from a soda-lime glass, typical of Mediterranean glasses made with a natron flux. Gold-glass beads first appeared in Egypt during the Ptolemaic period but continued to be manufactured during the Roman period, where they are found at sites across the Roman Empire (Boon and Dekowna 1977; Francis 2002).

Compositionally and stylistically, this bead seems quite similar to gold glass beads from the sites

of Caerleon in the United Kingdom as well as a burial from the Nubian site of Faras, which date to the second and third centuries AD (Boon and Dekowna 1977).

Gold-glass beads were believed to have been imported from Egypt and the Mediterranean to India and from there been traded into Southeast Asia, including the sites of Oc Eo, Vietnam, Kuala Selinsing, Malaysia, Ban Tha Kao, Thailand, and even Guangzho, China (Francis 2002; Lankton and Dussubieux 2006). Similar gold-glass beads have also been reported at Khlong Thom and analysis indicates they were also made from a Syro-Palestinian or natron glass (Lankton and Dussubieux 2010).

A group of three collared white faience beads were found in Burial 18 and one bead was selected for analysis (AKC01093 in Figure 7.25). This particular type of faience bead is fairly common at South Indian sites, including Arikamedu (Francis 2004:510). In Southeast Asia collared faience bead have also been found at the peninsular Thai site of Ta Chana (Pongpanich 2009:64-5) and Ban Bon Noen in central Thailand (Pilditch 1992). The beads appear to be unglazed, however Pilditch reports that a blue-green glaze was visible on some of the faience beads from Ban Bon Noen under a microscope. Francis argues that these beads may have been manufactured in South India, (Francis 2004:510).

Unfortunately, few faience beads have been analyzed compositionally. Lankton (personal communication, 2010) has analyzed faience glass beads from Johore Lama, Malaysia and Thung-thon, Vietnam. At Thung-thon there appear to be two different types of faience beads, a low-alkali and a mixed alkali. At Johore Lama the high silica levels point towards weathering. The faience bead from Promtin Tai has an extremely high level of silica (approximately 96 weight percent) with all other major elements under one weight percent except for alumina and

potassium oxide. This indicates the bead is also corroded, making its original composition difficult to determine. However, it does seem that there were multiple recipes used to create faience glass beads. Further research must be done in order to understand how and where these beads were made.

Lastly, the most unusual bead examined was a small tubular black bead with a heavily weathered surface from a group of thirteen similar beads from Burial 6 (AKC01022 in Figure 7. 25). This bead was quite curious in that it had high levels of alumina (16 weight percent) and iron (five weight percent). The weathering and corrosion makes further interpretation of this bead impossible at this time.

The glass artifact collection at Promtin Tai was quite varied, with numerous unusual bead types not found at other sites in this study, suggesting that Promtin Tai was a part of multiple diverse glass bead trade networks. Several of the unusual bead types including the gold glass beads, the faience, and the black and white bicone are similar to beads found in peninsular Thailand and other coastal sites in Southeast Asia and suggest that Promtin Tai may have been at the periphery of this broader coastal interaction sphere. The low number of high alumina glass beads in the burial contexts indicates that the burials may pre-date this shift. Of interest is Burial 20, which contained both potash glass and high alumina soda glass. Radiocarbon dates from this burial would illuminate this transition.

| Glass bead type                                                     | Number of<br>glass beads<br>identified | Estimated number of glass beads in total collection |
|---------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|
| High alumina soda glass<br>(m-Na-Al)                                | 8                                      | 690                                                 |
| Potash glass with low lime (m-Ka-Al, low C)                         | 4                                      |                                                     |
| Potash glass with moderate amounts of lime and alumina (m-Ka-Ca-Al) | 2                                      | 184                                                 |
| m-Na-Ca-Al glass                                                    | 3                                      | 131                                                 |
| Other/weathered                                                     | 6                                      | 48                                                  |

Table 7.22: The distribution of glass types at Promtin Tai.

#### Ban Non Wat

29 glass artifacts were analyzed from Ban Non Wat. The first group of 14 artifacts from the 2005- 2006 field season was analyzed in 2008. A second group of 15 glass artifacts from multiple excavation seasons was analyzed in 2010. The majority of the glass artifacts studied were Indo-pacific beads. However there were additional bead types including a flattened bicone (AKC02033), two coiled beads (AKC02031 and AKC02053, not pictured), earring or bangle fragments (n=9), a fragment of vessel glass (AKC02044), and one other unidentified blue glass fragment (AKC02057) (Figure 7.28). Unfortunately, four earning and bangle fragments as well as one bead were too weathered to produce confident results. As there is extensive information on the different layers and mortuary phases at Ban Non Wat, I was able to estimate the quantities of the three most common glass types at Ban Non Wat through time (Figure 7.30). Table 7.27 lists the different glass types identified at Ban Non Wat.

| Glass Type                                     | Quantity identified in LA-ICP-MS analysis |
|------------------------------------------------|-------------------------------------------|
| Potash glass with moderate amounts of lime and | 4                                         |
| alumina                                        |                                           |
| (m-Ka-Ca-Al)                                   |                                           |
| High alumina soda glass                        | 10                                        |
| (m-Na-Al)                                      |                                           |
| Lead glass                                     | 4                                         |
| m-Na-Ca-Al                                     | 1                                         |
| v-Na-Ca                                        | 2                                         |
| Mixed Alkali                                   | 1                                         |
| Potash lime glass with plant ash flux          | 2                                         |
| Weathered                                      | 5                                         |

Table 7.23: The different glass types identified at Ban Non Wat.

All potash glass artifacts were classified as belonging to the m-K-Ca-Al potash subgroup; they included three ring/earring fragments and one unidentified fragment of glass. All objects were blue or blue-green in color. Two of the samples (were found in a burial context dated to the Iron Age 1 period (400-200 BC) while the third sample (AKC02038) was dated to the later late Iron Age period (AD 200-400). These ring/earring fragments share a similar composition to those found at Phum Snay, Village 10.8 and Prohear. It is likely that the weathered earring and bangle fragments also belong in this category, although their corrosion makes this difficult to confirm.

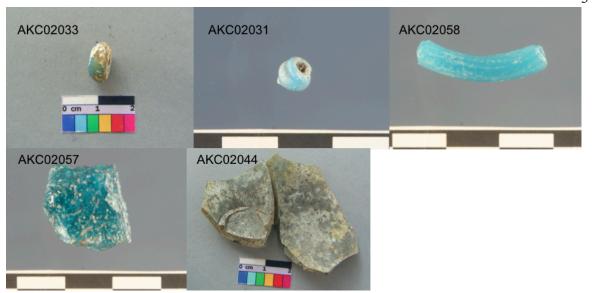



Figure 7.26: Examples of some of the more unusual glass beads and artifacts from Ban Non Wat. Photos of AKC02033 and AKC02044 taken by James Lankton.

Ten glass beads were assigned to the high alumina soda glass group (m-Na-Al Type 1). All the beads of this type were found in Layer through Layer 1, dating from approximately 200 BC- AD 600. Seven beads were from Burial 266, an infant jar burial dated to the late Iron Age, approximately AD 400- 600 (Higham and Kijngam 2009:73). Three other glass beads from non-burial contexts were also placed in the m-Na-Al Type 1 category. All three beads were from layer 2 and have been dated to approximately 200-400 AD. Based on similarities in color and form, it is believed that approximately 232 additional beads in burial and non-burial contexts may also be classified as high alumina mineral soda glass (Figure 7.30). These include Indo-Pacific beads in red, orange, yellow, green, turquoise blue, black, and white colors with a majority of this glass type found in layer 2. It is possible that some of the yellow beads are actually lead glass (see below) and not high alumina mineral soda glass, but this cannot be confirmed without additional compositional analysis.

Four beads from had high levels of PbO (30-50 wt%), classifying them as lead glass. The lead glass beads include two coiled light blue beads, an opaque blue flattened bicone bead, and a yellow oblate bead. All four samples date to the late Iron Age period (200-400 AD). During initial analysis, one bead (AKC02031) was described as a possible collared bead, however, during later excavations additional similar beads were found that appear to have been wound or coiled, and this classification was reassessed. In this method, the beads are produced by winding or coiling glass around a metal rod. These beads look remarkably similar to Chinese coil beads described by Francis (2002, color plate 16). However, Francis argues that the earliest Chinese coil beads date to the eighth century AD and that these beads were not common until the decline of Indo-Pacific beads during the 12th century AD (Francis 2002:76). These beads may represent early examples of this bead type that become common during a later period.

Also notable is that the lead glass beads from Ban Non Wat do not have a high barium content. Of the four lead glass beads analyzed, the yellow bead (AKC02053) has extremely low levels of CaO and high levels of SnO<sub>2</sub> in comparison to the other samples. The blue bicone bead and one of the coiled beads have much higher levels of Na<sub>2</sub>O. It is possible that these beads belong to the early period high-lead glasses without barium, which are characterized as containing higher levels of arsenic (Brill 1991). These glass samples do contain elevated levels of arsenic in comparison to the other beads studied; especially AKC02035 that contained 3876 ppm arsenic. As noted above, it is clear that further research is needed to better understand these beads and the lead glass type.

Thus far, only one bead has been identified as mineral soda glass with variable amounts of alumina and lime (m-Na-Ca-Al), although there are probably additional beads that fall into

this category. This bead was one of a group of seven similar beads found amongst a larger group of high alumina mineral soda glass beads in Burial 266 (noted above). The beads are unusual in that they are tubular with sharp, not rounded, edges and colored with cobalt (Figure 7.29).



Figure 7.27: Example of the m-Na-Ca-Al bead (circled) from Burial 266 at Ban Non Wat.

Two artifacts were classified as soda-lime glass with a plant-ash alkali source (v-Na-Ca). The first is a fragment of a glass vessel (AKC02044) that dates to the late Iron Age period (AD 200-400). The other is a light blue glass fragment (AKC02054), which may come from an earring or bangle. The glass fragment was found in a later Iron Age context, based on the presence of Phimai black pottery (Higham and Kijngam 2009: 137). Unlike the v-Na-Ca glass beads from Phum Snay and Prei Khmeng noted earlier, these glass fragments might be imports. The v-Na-Ca composition of the vessel glass is quite similar to that of a group of high magnesia (hMg type 1) glass fragments from the Sasanian-controlled site of Veh Ardasir (3rd-6th centuries AF) in central Iraq (Mirti et al. 2009), and its presence in Southeast Asia may be

interpreted in the context of increased control of Indian ocean trade by the Sasanians during the 4th-6th centuries AD (Lankton and Dussubieux 2006).

An orange disc bead (AKC02036) is the only sample to be classified as mixed-alkali glass, however there are numerous additional beads that may also fall in this category and will be discussed in more detail below after reviewing the evidence from Noen U-Loke. Lastly, two beads found in Layer 1 were of an unusual potash lime glass type, with a plant-ash flux. One colorless glass bead was about 10mm in diameter, while the other was a transparent greenish-blue bead and approximately 8mm in diameter. Both beads appear to have been wound. The beads have high levels of MgO (approximately 5 wt%) and CaO (13-15 wt%), as well as 6-10 wt% K<sub>2</sub>O and 5 wt% Al<sub>2</sub>O<sub>3</sub>. The beads are similar in composition to wound beads found in burials of members of the ma, K'ho, and Ru tribes in Vietnam, dating from the 16th-18th centuries AD (Brill 1999). These beads fall well outside the Iron Age period and therefore will not be explored in depth.

#### Noen U-Loke

29 glass artifacts were analyzed from Noen U-Loke and were chosen by the project director, Dr. Charles Higham. This analysis follows an earlier study of glass from this site by Saitowitz and Reid (2001), which included approximately 50 glass beads, as well as an object described as glassy slag found on a piece of black ceramic. Electron probe microanalysis (EPMA) was used to measure the major elements and LA-ICP-MS to analyze trace elements. Most of the beads from this earlier study were Indo-Pacific trade beads made from a high alumina soda glass (n=37), including a group of the red-orange beads (discussed earlier). Also identified were mixed alkali orange wrapped beads (n=5), four low-alumina potash glass (m-K-

Ca, low A) objects, three soda lime glass artifacts with plant-ash alkali (v-Na-Ca), and two m-Na-Ca-Al beads.

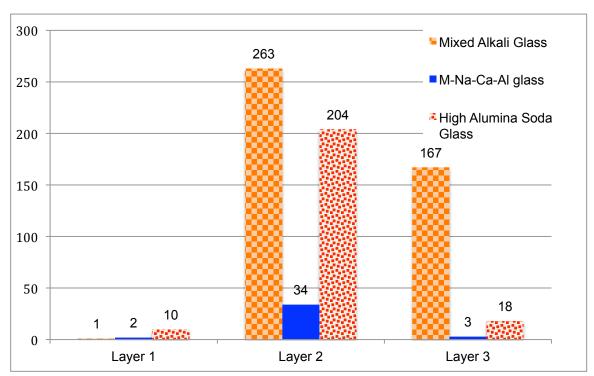



Figure 7.28: An estimate of the distribution of major glass types through time at Ban NonWat.

As LA-ICP-MS has expanded greatly since Saitowitz and Reid's earlier study, it was decided that an additional group of artifacts would be analyzed. These data, combined with the recording of the available Noen U-Loke glass collection (discussed earlier in this chapter) provides for a more comprehensive understanding of the glass collection at Noen U-Loke, how it changed over time, and how it compares with the glass collection at Ban Non Wat. Table 7.23 lists the different glass types identified during LA-ICP-MS analysis and their quantities. It should be noted that two of the 29 beads will not be included in the current discussion. The first,

AKC02011, was too corroded to provide confident results. The other, AKC02017, is an unusual polychrome bead that lacks adequate provenance information.

Four beads were classified as potash glass beads, although three of these (AKC02006, AKC02010, AKC02029) have relatively low levels of CaO and could be classified as m-K-Ca-Al glass, since they lack the high rubidium and high rubidium/strontium ratios that characterize the m-K-Al potash glass subtype. A dark blue purple bead (AKC02016) was classified as m-K-Ca-Al glass as well. Three of these potash beads were found in a Mortuary Phase 5 (MP5) context (AD 400- 600), however one bead (AKC02029) was found in Burial 37, which dates from 100 BC- AD 200 (MP3). This wide spread in composition and date provides evidence that there may in fact be more than one primary production center for m-K-Ca-Al glass in Southeast Asia.

Seventeen glass beads were assigned to the high alumina soda glass type (m-Na-Al Type 1). Nine beads were from Burial 8, which dates to MP5 (AD 400-600). Other glass beads were from MP4A (AD 200-400). Also found in Burial 8 were bicolor red-orange glass beads, identical to those described earlier at Phum Snay; these beads were also found to belong to the m-Na-Al Type 1 glass group. Four beads were classified as m-Na-Ca-Al glass. As with earlier examples of this glass discussed in this chapter, all four beads were colored with cobalt. Two of the beads were broken, but all appear to be tubular beads with sharp edges, similar to the bead from Ban Non Wat discussed above. These beads were found in contexts associated with MP4A and 5 (approximately AD 200-600).

Two orange opaque beads were identified as being mixed-alkali beads: a tubular bead and a disc bead (Figure 7.20). Both appear to have been wrapped, as discussed earlier in this

chapter. These two examples were from Burial 37, an adult female from MP3A (100 BC- AD 200) who was found with over 200 similar beads (Higham and Thosarat 2007:156). The high number of orange opaque disc beads at both sites is unusual when compared to other sites in Southeast Asia (see Lankton and Dussubieux 2013). Mixed-alkali glass is present, although rare, at the peninsular Thai site of Khao Sam Kaeo (Lankton and Dussubieux 2013). Additional orange wrapped beads have been found near Ban Non Wat at the sites of Non Muang Kao (Saitowitz and Reid 2001) and possibly Ban Bon Noen (Pilditch 1992). I recently identified one wrapped bead from the glass collection of Phum Sophy in northwest Cambodia. Similar orange and red opaque disc beads have also been reported at sites in southern India and Sri Lanka, where they may have been manufactured, as well as Chombeung, Thailand, Giong Ca Vo, Vietnam (Dussubieux 2001; Lankton and Dussubieux 2006), Ban Chiang (White 1982), and the peninsular Thai site of Ta Chana (Pongpanich 2009:51). However, Francis noted that many orange and red disc beads were not wrapped, but instead made from solid canes of glass that were sliced into discs and then perforated by drilling (Francis 2002: 136-7). While these disc beads appear to share a similar glass type and bead shape as the objects found at Ban Non Wat, their manufacturing method would appear to distinguish them from the wrapped beads found in northeast Thailand.

In order better to understand where the beads from Ban Non Wat and Noen U-Loke fall within the spectrum of mixed-alkali glass, the composition of beads from both sites were compared to orange mixed- alkali glass beads from several other sites in South and Southeast Asia. The compositions were evaluated using principal component analysis (PCA). Figure 7.31 shows the first three principal components, which account for 69.5% of the variance, graphed as

a scatterplot. PCA scores for this scatterplot are listed in Appendix 7.3. The scatterplot shows multiple possible groups of mixed-alkali glass beads, with those from the peninsular Thai sites of Khao Sam Kaeo and Phu Khao Thong being distinct from the mixed-alkali glass found at other sites in India and Southeast Asia. However, the Ban Non Wat and Noen U-Loke mixed-alkali glass may share a compositional similarity with beads found at the peninsular Thai site of Ta Chana, the central Thai site of Chombeung, and the northeast Thai site of Don Klang, as well as two sites in India: Dhalbhum and Dulhikotta. It should be noted that these groupings are only preliminary and cannot yet tell us where or when the beads were manufactured. Additional research on both the composition and manufacturing method of mixed-alkali beads is needed before confidently distinguishing between these clusters. Indeed, future research may find that the distinctions between the groups will change. However, this preliminary analysis does indicate the presence of several types of mixed-alkali glass in circulation during the Iron Age period (Carter and Lankton 2012).

| Glass Type                                     | Quantity identified in LA-ICP-MS analysis |
|------------------------------------------------|-------------------------------------------|
| Potash glass with moderate amounts of lime and | 1                                         |
| alumina                                        |                                           |
| (m-Ka-Ca-Al)                                   |                                           |
| m-K-Ca-Al glass or m-K-Al, low C               | 3                                         |
| High alumina soda glass                        | 17                                        |
| (m-Na-Al)                                      |                                           |
| m-Na-Ca-Al                                     | 4                                         |
| Mixed Alkali                                   | 2                                         |
| Weathered/Other                                | 2                                         |

Table 7.24: The different glass types identified at Noen U-Loke and their quantities.

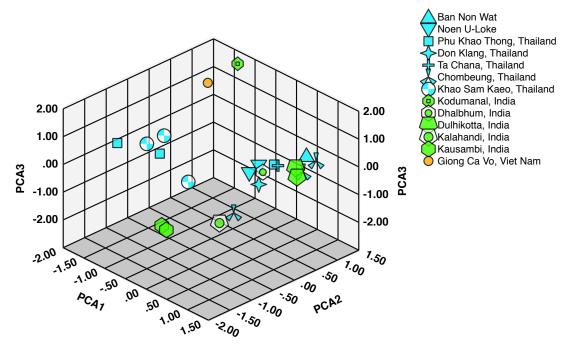



Figure 7.29: A 3D PCA scatterplot of the compositions of opaque orange mixed alkali beads from various sites in South and Southeast Asia Beads from sites in Thailand are blue, beads from sites in India are green, and a bead from a site in Vietnam is orange. Data for the scatterplot taken from Dussubieux 2001 and from unpublished data courtesy of Laure Dussubieux and Bernard Gratuze.

# Ban Non Wat and Noen U-Loke: Change over time

Overall, the glass types found at Ban Non Wat and Noen U-Loke are quite similar to one another, which is not surprising as the sites are less than 2 km apart. While the earliest glass artifacts appear at Ban NonWat during the Iron Age 1 period (420-100 BC), glass does not appear at Noen U-Loke until MP3 (100 BC-AD 200), with a peak in the quantity of glass beads during MP3 and MP4 (AD 200-400) (Talbot 2007). Taken together, we are able to see a broad shift in glass types over time (for further discussion and comparison of these two sites see Carter and Lankton 2012). Figure 7.32 displays an estimate of the quantities of different bead types and their change over time at both sites. The figure is not representative of all the glass beads uncovered at both sites, as not all of the beads were available to be recorded. For example, exact

numbers of the glass beads found in Mortuary Phase 3C at Noen U-Loke are unavailable, as are specifics regarding over 700 beads found in a burial during MP3b. Nevertheless, it does allow one to see the general distribution of glass types over time and space. We still do not know where the mixed alkali wrapped beads were made, although their limited circulation and compositional similarity to other beads found in Thailand may point toward a nearby manufacturing center.

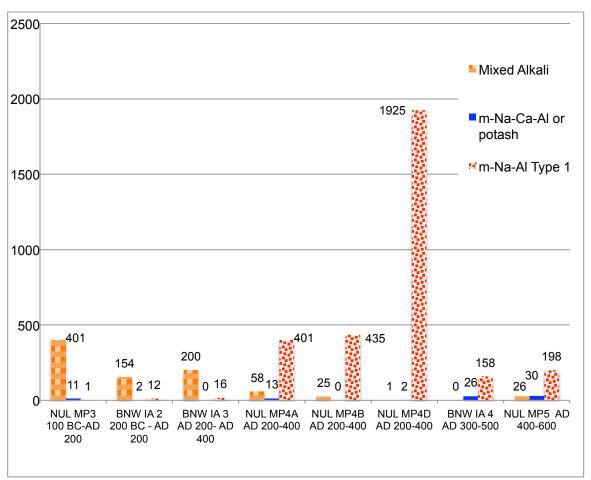



Figure 7.30: An estimate of the quantity of different glass types at Ban Non Wat and Noen U-Loke through time.

# Conclusion: The distribution of glass types within Cambodia and Thailand

Compositional analysis of glass beads has highlighted the diversity of different glass types found at each site, even if many of the beads looked visually similar. These analyses also confirmed that earlier differences in the distribution of glass colors (i.e., sites in southeast Cambodia were dominated by dark blue glass) are related to differences in glass type, and by extension, different glass bead trade routes. At the beginning of the chapter I asked two broad questions regarding the glass artifact data that I will now consider in more detail.

# How does the distribution of glass beads and artifacts change over time and space?

There are several patterns visible in the distribution of glass beads over both time and space. I will address these patterns point by point.

Potash glass as the earliest glass type in Southeast Asia

As noted earlier in this chapter, glass bangles, rings, and earrings were among the earliest glass artifacts found at several sites in Cambodia and Thailand. Compositional analysis of these artifacts shows that these objects were made of potash glass, specifically potash glass with moderate amounts of alumina and lime. (However, there is one exception to this at Prohear: a low alumina potash glass ring). Table 7.24 displays the sites with these artifacts and their dates, it is likely that the ring/earring fragment from Promtin Tai belongs in this group, however the sample was too weathered to produce reliable results.

| Site Name              | Dates          | Potash ring/earring/bangle    |
|------------------------|----------------|-------------------------------|
|                        |                | artifacts                     |
| Village 10.8           | 400 BC- AD 50  | 2 ring fragments              |
| Prohear                | 200 BC- AD 200 | 2 bangles, and 2 ring/earring |
|                        |                | fragments                     |
| Phum Snay              | 350 BC- AD 200 | 3 ring earring fragments      |
| Ban Non Wat Iron Age I | 420-200 BC     | 3 ring/earring fragments and  |
|                        |                | unidentified piece of glass   |

Table 7.25: Table of ring/earring/bangle artifacts made from Potash glass.

At two of the sites in Table 7.24 potash glass appears only sporadically and does not make up a major portion of the overall glass bead collection. However, at Prohear, Bit Meas, and Village 10.8 potash glass dominates the collection. In fact, potash glass is the only major glass type identified at Village 10.8, the earliest site examined in this study. Potash glass beads were also identified at the nearby circular earthwork site of Krek 52/62 (Haidle and Neumann 2004). This evidence adds weight to Lankton and Dussubieux's (2006) observation that potash glass is predominant at early Iron Age sites in Southeast Asia. It appears that early glassmakers were experimenting first with drawn rings, earrings, and bangles before beginning to make beads. Also of note is that blue potash glass appears to have been preferred by, or was the predominant color available to people living at sites in southeast Cambodia.

Potash glass and coastal exchange networks

Although it is unfortunate that we do not have a clear understanding of where potash glass was made or its three sub-types, research does show that potash glass is strongly associated with coastal exchange networks and sites that appear to have been trading centers. Potash glass has been found in high quantities at several important coastal sites and sites with connections to these coastal trading networks including Ban Don Ta Phet, Thailand, Khao Sam Kaeo and Phu Khao Thong in peninsular Thailand, Sa Huynh sites in southern Vietnam, Dongson sites in northern sites Vietnam, sites in the Samon Valley, Myanmar, and some sites in central and Northeast Thailand (Lankton and Dussubieux 2013: Figure 3). In addition to potash glass, these sites also have evidence for the long-distance trade of other artifacts including Dongson drums and personal ornaments made of nephrite (Calo 2009; Hung et al. 2007). There is also evidence for connections with coastal networks in this region during the very early Iron Age. At Krek

52/62, a site believed to date from the Neolithic/Bronze Age into the very early Iron Age, several fragments of glass bangles have been found that may have been produced at Khao Sam Kaeo (Haidle and Nuemann 2004; Lankton et al. 2008).

I argue that the large number of potash glass beads found at Village 10.8, Prohear, and likely at Bit Meas, are reflective of participation in these early coastal exchange networks. Dongson drums or drum fragments were found at both Village 10.8 and Prohear, as well as other objects likely exchanged on this long-distance coastal network (Reinecke et al. 2009; Heng Sophady 2004, 2005). Sites like Angkor Borei and Oc Eo were important trading centers in the first millennium AD and yet potash glass has only been infrequently found in this region. I believe that this indicates that these sites, as well as additional sites with lesser quantities of potash glass such as Phum Snay, Promtin Tai, and Ban Non Wat, likely did not intensively participate in these coastal networks and may have obtained these glass artifacts through other means, such as down-the-line exchange.

Potash glass and high alumina glass: Evidence for shifting trade networks?

As discussed earlier in this chapter, Lankton and Dussubieux have observed a shift in the availability of potash glass and high alumina soda glass over time; with the former being replaced by the later around approximately 200 BC –AD 200 (Lankton and Dussubieux 2006, 2013). Lankton and Dussubieux have noted that this shift appears to be "sudden," regional, and may be reflective of the changing nature of trade with South Asia as proposed by Bellina and Glover (2004) and discussed in Chapter 3.

Glass evidence from Angkor Borei and Prohear provide depth to this hypothesis. Both sites date to approximately 200 BC- AD 200. No high alumina soda glass beads have been

found at Prohear and no potash glass has been found at Angkor Borei, although a very small quantity was noted at the nearby site of Phnom Borei. Both communities share similarities in certain unique ceramic forms, and it is presumed that they were aware of one another (Reinecke et al. 2009: 41, 165). Nevertheless, the glass bead collections at both sites are extremely different. While the shift in glass types may have been relatively sudden, I argue that evidence from these two sites suggest that for at least several hundred years the two glass types were found in coexisting, perhaps competing, trade networks with little overlap.

With the shift to high alumina soda glass, more sites appear to have had access to glass beads and access to higher quantities of beads than in earlier periods. As evidence from Noen U-Loke and Prei Khmeng attest, extremely large quantities of high alumina soda glass was being traded in exchange networks across mainland Southeast Asia by 200-400 AD. Inland sites, such as Prei Khmeng, which appears to have had little contact with pre-existing coastal networks, were able acquire to high alumina glass beads.

The distribution of less common glass types

Three less common types of glass were found at multiple sites, and it is worth examining them in more depth, despite the small amount of evidence. Beads made from the m-Na-Ca-Al glass type, often in cobalt blue, have been found at Angkor Borei, Prohear, Promtin Tai, Ban Non Wat, and Noen U-Loke. As noted above, Dussubieux and others (Dussubieux and Gratuze 2013; Lankton and Dussubieux 2013) have suggested that this glass type may have been manufactured at different locations. Therefore, it is not yet clear that beads from all five sites derived from the same workshop. However, it is notable that both Prohear and Angkor Borei

have m-Na-Ca-Al glass, which could mean these beads may have been traveling on different trade routes than the potash or high alumina soda glass beads.

Phum Snay, Angkor Borei, and Prei Khmeng also contained v-Na-Ca glass. All of the beads, except for the bi-color black and red bead from Prei Khmeng, were a dark blue color. One blue bead from Angkor Borei was a different shape, a square barrel. The extremely small quantities of these beads make it difficult to determine the trade networks used to move them over the region. However, the presence of this glass links these three sites to one another and I argue is another line of evidence pointing towards the expansion of bead trade networks out of the Mekong Delta.

Lastly, the mixed alkali orange wrapped glass beads were found only at Ban Non Wat and Noen U-Loke and in very high quantities. This glass type appears to have had a limited distribution in central and Northeast Thailand. I argue that this glass type highlights the importance of regional exchange networks during the Iron Age.

The importance of regional exchange networks

I believe that the glass data presented in this chapter underscores the importance of regional exchange networks during the early Iron Age period. Village 10.8 and Prohear, as well as Bit Meas and Krek 52/62 in southeast Cambodia were linked to one another and a broader coastal exchange network trading in potash glass artifacts. Conversely, the dominance of opaque orange mixed-alkali glass at Ban Non Wat, Noen U-Loke, and other sites in Northeast and central Thailand points toward a strong regional exchange network in this area. At Promtin Tai, I argue that the diverse set of glass types and bead shapes indicates that this region of central Thailand may have been involved in exchange with peninsular Thai sites. While many of these

glass artifacts may have originated outside of these regional networks, their presence at most of these sites does not necessarily indicate a direct connection to these long-distance trading networks. Instead, it appears that goods may have entered into these regional networks through a distribution point, perhaps a coastal site with direct access to long-distance coastal networks.

Goods were then exchanged between sites within a regional network that connected these sites to one another. I believe these regional networks become even more apparent when all of the stone and glass bead data are examined together, and this will be discussed in the final chapter.

Does evidence from glass bead trade patterns suggest increased participation in trade by elites at sites in the Mekong Delta?

Over time potash glass, mixed alkali glass, and other glass types appear to decline as they are replaced by large quantities of high alumina soda glass beads. I agree with Lankton and Dussubieux's (2013) assessment that this shift could be related to more intensive trade and interaction with South Asia observed by Bellina and Glover (2004). Based on work by Dussubieux (2001; Dussubieux et al. 2010), the high alumina beads were likely being imported from South Asia. What is significant, however, is that the high alumina soda glass beads do not appear to be entering into the pre-existing coastal exchange networks in large quantities; sites with large quantities of potash glass are not suddenly flooded with high alumina soda glass beads. Instead, this glass type is often found in large numbers at sites that do not appear to have been participating in these earlier coastal exchange networks, such as Angkor Borei and Oc Eo in the Mekong Delta. I argue that the arrival of high alumina soda glass reflect the emergence of new trade networks connecting inland and coastal sites that had not been active participants in the earlier coastal exchange networks. In this way, we can view beads as markers of expanded

interaction and economic networks between elites in the Mekong Delta and communities further inland.

Although there is not clear evidence for the manufacture of high alumina soda glass in the Mekong Delta, nor strict control over the distribution of these artifacts, I do not think it is coincidental that this glass type becomes more predominant during a period when this region appears to have been expanding in power and influence. Glass beads, as artifacts made from a new material and technology, were likely considered to be presetige objects by Southeast Asian people. As they were appear to have been available in large quantities at sites in the Mekong Delta (Dussubieux 2001; Stark and Dussubieux 2002), their exchange could have facilitated the expansion socio-political and economic networks in the Mekong Delta and its emergence as an important center during the early first millennium AD. High alumina soda glass beads from the Mekong Delta could have been traded through inland riverine trading networks to Phum Snay, Prei Khmeng, Noen U-Loke, and Ban Non Wat, sites that did not previously have regular access to the coastal potash glass bead trade network.

This hypothesis is complicated by the relatively small excavations at Angkor Borei as well as problems with looting at possible manufacturing sites across Southeast Asia.

Nevertheless I propose that the existing evidence suggests that the communities in the Mekong Delta may have been taking advantage of increased trade with South Asia and increased availability of prestige objects like glass beads to expand their influence across the region.

Current archaeological data does not suggest that people at Angkor Borei and Oc Eo were active participants in the early Bronze and Iron Age coastal exchange networks, although sites nearby, such as Giong Ca Vo in Vietnam were. Perhaps people from these coastal sites established

communities in the Angkor Borei/Oc Eo region to take advantage of the increased trade with South Asia. Or perhaps these may have been competing communities who were actively seeking out alternate trading partners.

In the final chapter I examine these questions in more depth and look at all of the glass and stone data together in order to better understand trade and exchange networks in mainland Southeast Asia during the Iron Age and the emergence of socio-political complexity in the Mekong Delta. However, in the next chapter I look at a unique artifact found at only a small amount of sites: garnet beads.

# **Chapter 8: The Garnet Beads**

A small number of garnet beads were recorded from Angkor Borei, Village 10.8, Prohear, and Bit Meas. The shaped and polished beads from Angkor Borei were clearly different from the unshaped and unpolished beads identified from the sites in southeast Cambodia and a comparison between the two groups provided an opportunity to explore questions regarding the manufacture and trade of these objects. In this chapter I address the following questions:

- What are the morphological and manufacturing differences between the Angkor Borei garnets and garnet beads from Village 10.8, Prohear, and Bit Meas?
- Are there geochemical differences between beads from Angkor Borei and beads from Prohear, Bit Meas, and Village 10.8, and is there geochemical evidence for production of garnet beads using Southeast Asian stone sources?
- What can these beads tell us about trade and exchange networks during this period?

  This chapter begins with an introduction to garnet and a background on previous research on garnet beads in Southeast Asia. Following this overview, the garnet beads in this study are examined in more detail, focusing on their morphology and the methods used to make the beads. Impressions were taken of the bead perforations and examined using a scanning electron microscope in order to understand how the beads were drilled. Following this discussion, results from compositional analysis of the garnet beads are presented. An examination of previous studies shows that geochemical analysis of garnet has proven moderately successful at differentiating between garnet artifacts. Using LA-ICP-MS, 13 garnet beads and nine sources were analyzed in order to determine the geologic source used to produce these beads. I conclude

this chapter by arguing that the garnet beads from Village 10.8, Bit Meas, and Prohear were manufactured in Southeast Asia and had a limited distribution amongst a certain group of communities, while the beads from Angkor Borei were likely imported from South Asia.

#### **Garnet: Definitions**

Garnet is a type of gemstone commonly found in metamorphic as well as igneous rocks and detrital sediments (Deer W.A. et al. 1982). Garnets can be found in a variety of colors, from the more common deep red and purple, to orange, yellow, and green. The garnet group contains several species all of which share the same chemical formula:  $X_3Y_2Z_3O_{12}$  (Table 8.1). The different species of garnet have been sub-divided into two series in which there is fairly continuous variation between the species within the series. The pyralspite series contains pyrope, almandine, and spessartine garnets and is the primary focus of the current study. The ugrandite series contains uvarovite, grossular, and andradite garnets. However, garnets rarely occur in their pure end-member forms and a single sample can often contain a mix of these species. Geochemical analysis of garnet is an ideal way to identify the different elements within a sample and recent research can assist with the conversion of these data into molar proportions of various end-member components (Locock 2008). It should also be noted that previous geochemical studies of garnets have identified instances of chemical zoning, in which certain elements are not evenly distributed throughout the sample (Deer et al. 1982: 546). Zoning and heterogeneity was identified amongst the garnet samples in the current study. However as with the agate and carnelian materials, this heterogeneity is not believed to adversely affect the differentiation of garnet sources and assignment of archaeological samples to these sources. This topic is discussed further in Appendix 8.1.

Due to the varying proportions of different garnet species in a single sample, geochemical analysis of garnets have assisted with the identification of specific optical and physical characteristics that can be used to classify species of garnet using standard gem-testing equipment (Manson and Stockton 1985). Geologically, garnets have also been used in sediment provenance studies (Morton 1985). Different species of garnet are also known to be strongly associated with specific rock types (Wright 1938) and therefore have been used as indicator minerals for more valuable stones, such as diamonds. For the purposes of this study, it is significant that the composition of garnets is "related to that of the original host rock," (Bimson et al. 1982: 51). While major and minor elements can assist with determining the type of garnet and perhaps identifying the type of host rock in which garnets were formed, it was expected that the additional minor and trace elements associated with the host rock should assist in providing a unique fingerprint for garnets from specific sources.

| Pyrope         | $Mg_3Al_2Si_3O_{12}$                                                              |
|----------------|-----------------------------------------------------------------------------------|
| Almandine      | $Fe_3Al_2Si_3O_{12}$                                                              |
| Spessartine    | $Mn_3Al_2Si_3O_{12}$                                                              |
| Grossular      | $Ca_3Al_2Si_3O_{12}$                                                              |
| Andradite      | $Ca_3(Fe^{3+}, Ti)_2Si_3O_{12}$                                                   |
| Uvarovite      | $Ca_3Cr_2Si_3O_{12}$                                                              |
| Hydrogrossular | $\text{Ca}_3\text{Al}_2\text{Si}_2\text{O}_8(\text{SiO}_4)_{1-m}(\text{OH})_{4m}$ |

Table 8.1: Chemical formulas for the different varieties of major garnet species (from Deer et al. 1982: 468).

#### **Garnet Beads in Southeast Asia**

Garnet beads are fairly unusual at Southeast Asian archaeological sites, but have primarily been found at coastal sites in Vietnam and Thailand (Figure 8.1). 51 spherical, hexagonal prism, elliptical and oblate shaped garnet beads have been reported from the southern coastal site of Giong Ca Vo (Nguyen Kim Dung 2001). Garnet beads in a variety of shapes were

also found at the site of Oc Eo, Vietnam (Malleret 1962: 221-2). Small spherical garnet beads have also been reported from the central Vietnamese coastal site of Lai Nghi (Andreas Reinecke, personal communication, 2011). Garnet beads from looted contexts have been found in peninsular Thailand (Bunchar Pongpanich, personal communication, 2011). A small piece of raw garnet was recently found at the site of Phu Khao Thong in peninsular Thailand and is discussed further below.

Unshaped and unpolished garnet beads, similar to those found in southeast Cambodia have been reported in the upper layers of the Krek 52/62 earthwork site in Cambodia (Albrecht et al. 2001). While 19 beads from Go O Chua have been found in either burial or likely burial contexts (Andreas Reinecke, personal communication, 2011) (Figure 8.2). No comprehensive studies of garnet beads from Southeast Asian sites have yet been undertaken and so other sites with additional garnet beads may exist.



Figure 8.1: Photo of garnet beads from Go O Chua, courtesy of Andreas Reinecke.

# **Garnet beads from Cambodia**

A total of 23 garnet beads were recorded from four sites (Figures 8.2 and 8.3). Appendix 8.2 lists garnet beads in this study, their context, measurements, and morphological information. As discussed in previous chapters, Village 10.8, Prohear, Bit Meas, and Angkor Borei are all roughly contemporary with one another. Village 10.8 is the earliest of the sites, dating from 400

BC- AD 50, while the remaining three sites are believed to date from approximately 200 BC-AD 200.

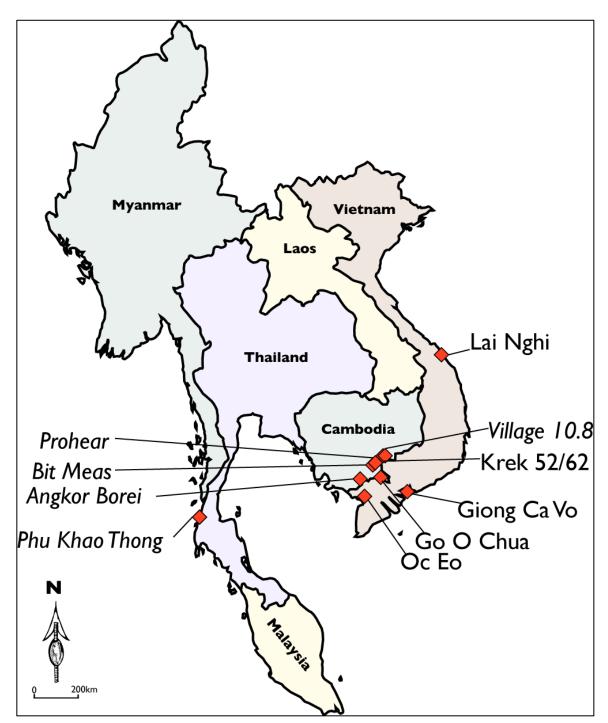



Figure 8.2: Map of sites discussed in this chapter. Sites in italic are those with artifacts analyzed in this study.



Figure 8.3: Map of site in Cambodia with beads analyzed in this study.

# Garnet beads from southeast Cambodia

18 beads from sites in southeast Cambodia, Village 10.8, Prohear, and Bit Meas, were recorded primarily from burial contexts (Table 8.2). All of the beads were notable for their natural, unmodified appearance (Figure 8.4). Beads were approximately 5-12mm in length,

made of a dark purple stone, and generally a rough oblate or barrel shaped. The surface of the beads was not polished and some had small nicks, chips, or imperfections. It seems that these garnet beads were simply picked up and drilled with no further modification. The bead perforations were also large and unusual.

| Database ID | Site         | Context     | Perforations       | Analyzed using |
|-------------|--------------|-------------|--------------------|----------------|
|             |              | information | examined using SEM | LA-ICP-MS      |
| AKC00651    | Bit Meas     | Unknown     |                    | X              |
| AKC00652    | Bit Meas     | Unknown     |                    |                |
| AKC00653    | Bit Meas     | Unknown     |                    |                |
| AKC00654    | Bit Meas     | Unknown     |                    |                |
| AKC00731    | Bit Meas     | Unknown     |                    | X              |
| AKC00606    | Prohear      | Burial 11   | X                  | X              |
| AKC00590    | Prohear      | Burial 20   |                    | X              |
| AKC00334    | Village 10.8 | Burial 1    | X                  |                |
| AKC00335    | Village 10.8 | Burial 1    |                    |                |
| AKC00337    | Village 10.8 | Burial 1    |                    |                |
| AKC00338    | Village 10.8 | Burial 1    | X                  | X              |
| AKC00340    | Village 10.8 | Burial 1    |                    |                |
| AKC00341    | Village 10.8 | Burial 1    |                    |                |
| AKC00336    | Village 10.8 | Burial 3    | X                  |                |
| AKC00339    | Village 10.8 | Burial 3    |                    | X              |
| AKC00333    | Village 10.8 | Burial 4    | X                  |                |
| AKC00310    | Village 10.8 | Burial 28   |                    | X              |
| AKC00311    | Village 10.8 | Burial 34   |                    | X              |

Table 8.2: Beads from Bit Meas, Prohear, and Village 10.8 examined as a part of this study.

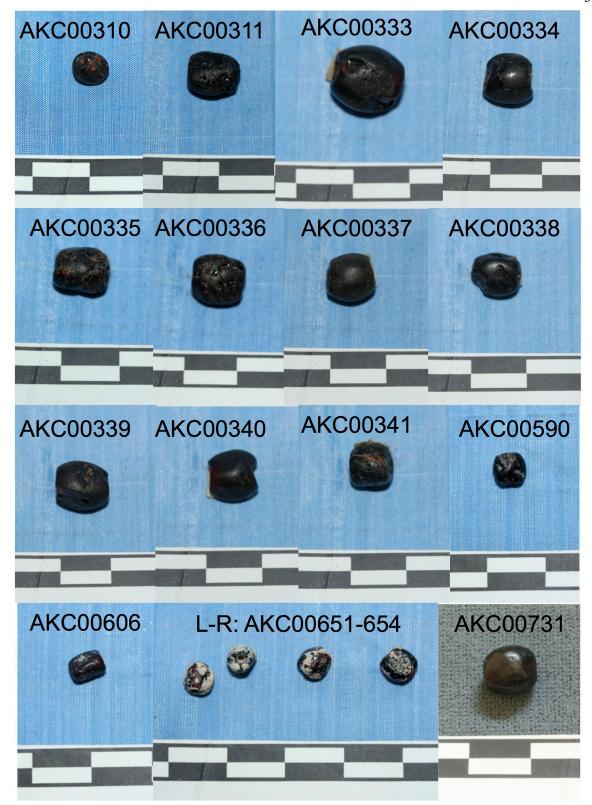



Figure 8.4: The 18 beads from southeast Cambodia recorded in this study.

## Garnet beads from Village 10.8

Garnet beads from Village 10.8 were from 4 burials, all of which also contained agate and carnelian beads, glass artifacts, and other objects (Table 8.3). As discussed in Chapter 5, the burials from Village 10.8 lacked skeletal material due to the highly acidic soil. Burial 1 contained the highest number of garnet beads (n=6), as well as six carnelian beads. Other burials that contained higher numbers of carnelian beads did not also contain a high quantity of garnet beads. Half as many burials contained garnet beads (n=5) as those that contained agate and carnelian beads (n=10). It would appear that the garnet beads were more unusual or rare than agate and carnelian beads, which appeared at Village 10.8 in higher quantities.

| Burial    | Beads found in burial | Associated grave goods                                    |  |
|-----------|-----------------------|-----------------------------------------------------------|--|
| Number    |                       |                                                           |  |
| Burial 1  | Six garnet beads      | Six carnelian beads, two glass beads, broken ceramics,    |  |
|           |                       | iron tools and an iron bangle                             |  |
| Burial 3  | Two garnet beads      | 14 carnelian beads, glass beads, iron bangle, and broken  |  |
|           |                       | ceramics.                                                 |  |
| Burial 4  | One garnet bead       | One carnelian bead, an iron tool, broken ceramics.        |  |
| Burial 28 | One garnet bead       | Eight agate beads, glass rings, broken ceramics, iron     |  |
|           |                       | tools.                                                    |  |
| Burial 34 | One garnet bead       | Two carnelian beads, glass beads, an iron bangle, an iron |  |
|           |                       | spade, broken ceramics.                                   |  |

Table 8.3: A list of burials with garnet beads from Village 10.8 and their associated grave goods.

### Garnet beads from Prohear and Bit Meas

Two garnet beads from Prohear were available for study, however about 200 beads have been recovered from a total of 76 burials excavated in the 2008, 2009, and 2011 field seasons (Andreas Reinecke, personal communication, 2011). The first bead examined was from Burial 11, which may be of a male, and was found with a stone pestle buried between his legs, bronze bracelets, iron objects, and blue glass beads. The other garnet bead was found in Burial 20, which also included iron bracelets. Garnet beads were also found at the nearby looted site of Bit

Meas, believed to be contemporary with Prohear (Reinecke et. al 2009). All five of the garnet beads studied from Bit Meas are from an unknown context.

## Garnet beads from Angkor Borei

Five spherical garnet beads were recorded from the Angkor Borei bead collection (Figure 8.5). In contrast to the beads from southeast Cambodia discussed above, the Angkor Borei beads are a deep reddish-purple, round or spherical in shape, and range from approximately 3-4mm in diameter, with one bead being slightly larger at about 5-6mm in diameter. The five beads were excavated from the densely packed Angkor Borei cemetery and are thus far the only garnet beads found at the site (Table 8.4). A single garnet bead, as well as several glass beads, was found in Burial 16, which contained the remains of a 25-35 year old female, a 12-20 year old male, and a young adult male. Burial 21 contained a single garnet bead and was found in a grave that contained portions of four skeletons: a 17-18 year old female, 30-35 year old male, a 30-50 year old male, and an unidentified adult. Lastly, a garnet bead was found in Burial 48, a burial that contained the remains of a 30-35 year old female and adult male. Burial 48 also contained several glass beads. Two other beads were found within the cemetery excavation but not directly associated with a burial.



Figure 8.5: Garnet beads from Angkor Borei.

| Database ID | Context           | Sex/Age            | Number of | Associated grave |
|-------------|-------------------|--------------------|-----------|------------------|
|             |                   |                    | beads     | goods            |
| AKC03030    | Burial F16        | F, 25-35 years old | 1         | Glass beads      |
|             | Cat # 1767        | M, 12-20 years old |           |                  |
|             |                   | M, Young adult     |           |                  |
| AKC03032    | Burial F21        | F, 17-18 years old | 1         | N/A              |
|             | Cat # 1835        | M, 30-35 years old |           |                  |
|             |                   | M, 30-50 years old |           |                  |
|             |                   | Unidentified adult |           |                  |
| AKC03031    | Burial F48        | F, 30-35 years old | 1         | Glass beads      |
|             | Cat #3284         | M, Adult           |           |                  |
| AKC03033    | Unit AB7 Block 4S | N/A                | 1         | N/A              |
|             | Layer 5, Level 26 |                    |           |                  |
|             | Cat # 2801        |                    |           |                  |
| AKC03034    | Unit AB7 Block 4N | N/A                | 1         | N/A              |
|             | Layer 5, Level 30 |                    |           |                  |
|             | Cat # 3333        |                    |           |                  |

Table 8.4: A list of garnet beads found at Angkor Borei.

## **Examining the bead perforations**

In addition to the clear morphological differences, the bead perforations on the garnet beads from southeast Cambodia were irregular or conically shaped and visually distinct from the cylindrical perforations seen on the garnet beads found at Angkor Borei, as well as the agate and carnelian beads (Figure 8.6). For this reason, I decided to take impressions of the perforations using dental impression material for further investigation using a scanning electron microscope (SEM). Investigating the method used to drill a bead is important because the different technologies and methods used are often related to distinct cultural traditions (Kenoyer 1992). Previous research using dental impression material to examine bead perforations has successfully identified unique traits related to specific drilling methods (see Gorelick and Gwinnett 1988; Gwinnett and Gorelick 1986, 1998; Gorelick et al. 1996;). Additional research has emphasized the importance of using high-resolution SEM images to determine the different drill types (Kenoyer and Vidale 1992; Kenoyer 1997). Impressions were taken on all of the beads recorded and a selection of beads was chosen for SEM analysis in the Biological & Biomaterials Preparation, Imaging, and Characterization Laboratory (BBPIC) at the University of Wisconsin-Madison. Results from SEM analysis show clear differences between the Angkor Borei garnet bead perforations and the beads from Southeast Cambodia. It also appears that the beads from southeast Cambodia were drilled using multiple methods.

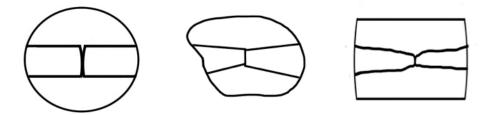



Figure 8.6: Drawing showing the difference between the cylindrical Angkor Borei perforations (left) and the bi-conical (middle) and irregular (right) perforations on garnet beads from southeast Cambodia.

### Garnet bead perforations from Angkor Borei

Drill hole impressions from two of the five garnet beads from Angkor Borei were analyzed using SEM (AKC03031 and AKC03033). The drill holes and their impressions were cylindrical with parallel drilling striae and rough cutting surface, typical of beads drilled using a diamond drill (Gorelick and Gwinnett 1988; Kenoyer and Vidale 1992). Under SEM the impressions displayed a pattern of regular, spiraling striae or grooves also representative of the double-diamond drilling technique (Gorelick and Gwinnett 1988) (Figure 8.7). Double-diamond drilling involves the use of a drill with two diamond chips mounted on the drill tip (Gorelick and Gwinnett 1988; Kenoyer and Vidale 1992). A similar drilling method is also assumed for the three additional beads that did not undergo SEM analysis, based on visual inspection of the impressions using a desktop digital microscope.

As noted in Chapter 5, diamond-drilling techniques have been practiced in India since at least 600 BC (Kenoyer 2003) and are strongly associated with the peninsular Indian bead industry (Kenoyer et al. 1991). Single diamond drills, in which a single diamond chip is inserted into the tip of a metal drill, were also used. However this drill type is more commonly found in the northern and western parts of Asia (Kenoyer 1992, 2003). It should be noted that no ethnographic or archaeological studies have been conducted on garnet bead production in either

South or Southeast Asia and that the aforementioned experimental and archaeological studies have focused on the bead production techniques and drill patterns produced on agate or quartz. However, it is expected that similar drill patterns would be produced on garnet beads, as garnet has a hardness of Mohs 6.5-7.5, while agate and carnelian have a hardness of Mohs 6.5-7.0.

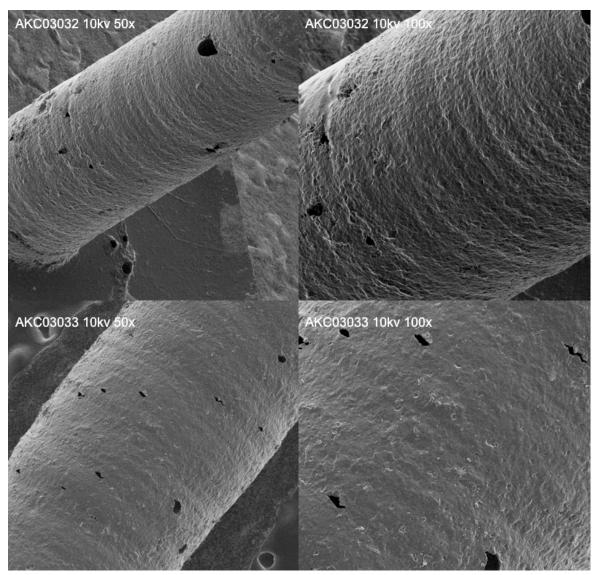



Figure 8.7: SEM images of bead perforations from Angkor Borei.

### Garnet bead perforations from sites in southeast Cambodia

The drill hole impressions from beads found in southeast Cambodia displayed a variety of shapes, from bi-conical drill holes, to those that were generally cylindrical but with irregularities. Drill hole impressions from five beads were analyzed using SEM (Table 8.5). The drill holes and impressions of two beads (AKC00333 and AKC00334) showed a tapered bi-conical shape (Figure 8.8 and 8.9). The side wall of the drill holes is rough, without any of the concentric lines or grooves as seen with the diamond-drilled beads. This rough side wall pattern has been replicated in experimental studies using copper drills with abrasive on both marble and hematite (Gwinnett and Gorelick 1987b). However, ongoing experimental studies using stone drills have also produced similar rounded impressions and rough side walls (Jonathan Mark Kenoyer, personal communication, 2011). Recent experimental studies undertaken by the author have used a chert drill with an abrasive. Garnet is a harder stone than both hematite and marble, and other garnet beads from this collection believed to have been drilled with a copper drill have a different impression. For this reason, AKC00333 and AKC00334 are tentatively classified having been drilled using a stone drill, possibly with abrasive.

| Site Name             | Database ID | Proposed Drilling Method     |
|-----------------------|-------------|------------------------------|
| Village 10.8          | AKC00333    | Stone drill (with abrasive?) |
| Village 10.8          | AKC00334    | Stone drill (with abrasive?) |
| Village 10.8          | AKC00336    | Copper drill with abrasive   |
| One drillVillage 10.8 | AKC00338    | Copper drill with abrasive   |
| Prohear               | AKC00606    | Unknown                      |

Table 8.5: Beads from southeast Cambodia whose perforations were examined using SEM.

Another garnet bead, AKC00606 also has a biconical drill hole impression, although with an important difference. While one side showed a rounded tip (AKC00606a) similar to that seen in AKC00333 and AKC00334, the other side (AKC00606b) has a dimple or central depression

(Figure 8.10). Similar depressions were found in experimental studies in which the leading edge of the drill becomes worn over time resulting in a tapered tip, and the subsequent creation of a depression in the stone bead being drilled (Gwinnett and Gorelick 1979). This result was found when using both wooden (Gwinnett and Gorelick 1979) and copper drills (Gwinnett and Gorelick 1987). The exact drilling method of this bead is currently unknown.

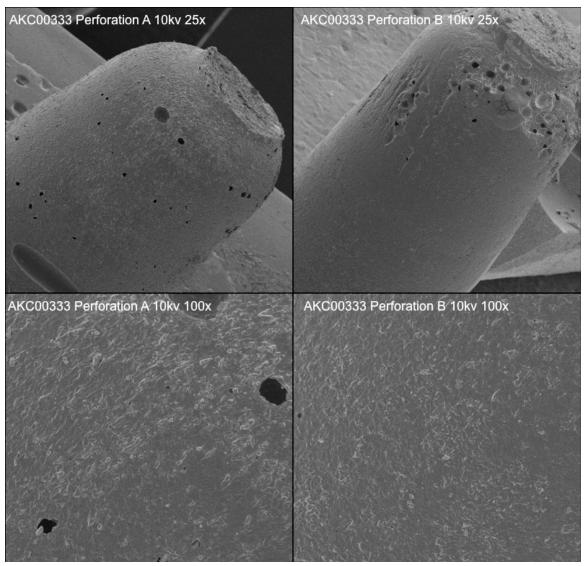



Figure 8.8: SEM images of perforations from AKC00333

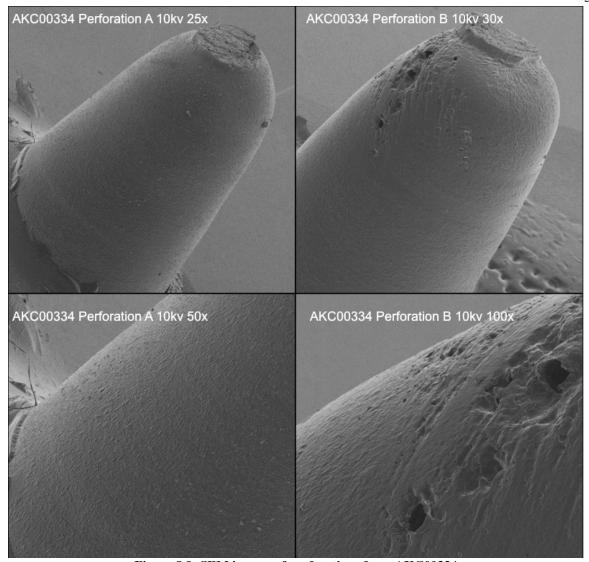



Figure 8.9: SEM images of perforations from AKC00334

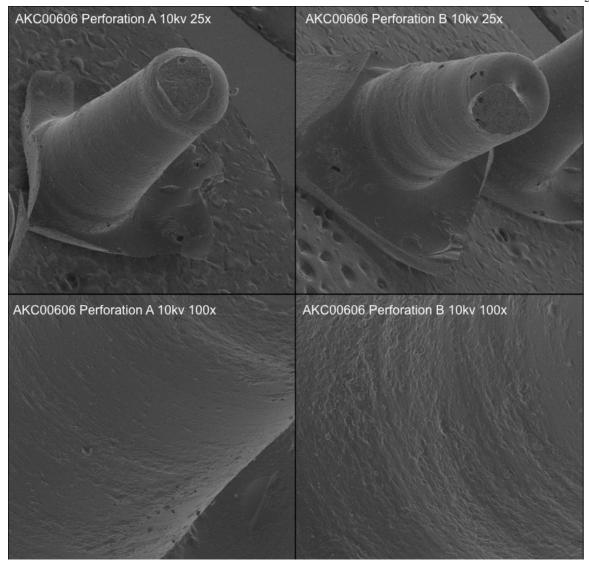



Figure 8.10: SEM SEM images of perforations from AKC00606

Two other beads (AKC00336 and AKC00338) have fairly cylindrical impressions, though they are irregular and not as straight as seen with the diamond-drilled beads (Figures 8.11 and 8.12). Unlike the AKC00333 and AKC00334 beads, these impressions show evidence for uneven lines and grooves in the side wall of the drill holes. Gwinnett and Gorelick observed similar irregular lines or bulges in their experimental studies when using a copper drill, noting that "the combination of pressure and heat during drilling produce[s] plastic deformation at the

leading edge of the copper drill" (1989: 41). This deformation, or flaring, of the copper drill then leaves the distinct bulges or collars in the side wall of the drill holes. Additionally, the concentric lines seen in these impressions could have been produced by the addition of a hard abrasive such as emery or corundum (Gwinnett and Gorelick 1987: 23). This type of bulging pattern has been seen on both solid copper and copper tubular drills in experimental studies (Jonathan Mark Kenoyer, personal communication, 2011). Both beads are believed to have been drilled using a copper drill with abrasive.

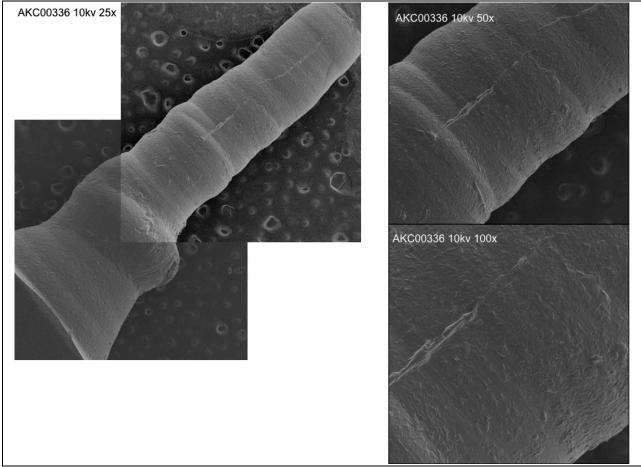



Figure 8.11: SEM images of perforations from AKC00336

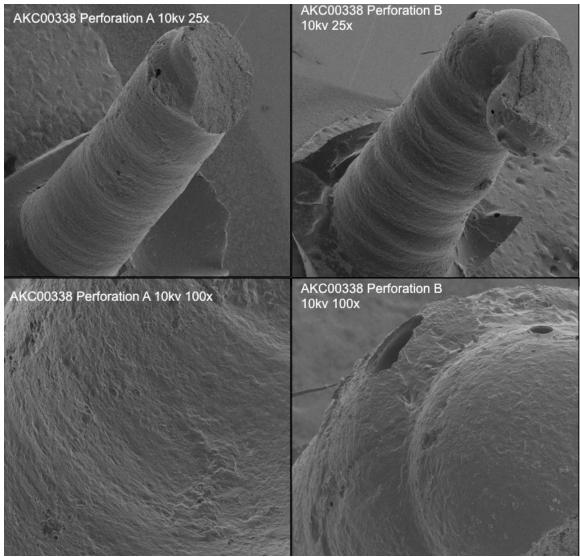



Figure 8.12: SEM images of perforations from AKC00338

It is clear that garnet beads from Village 10.8, Prohear, and Bit Meas were not drilled using a double-diamond drill, and that multiple drilling techniques were used, such as copper, stone, and wooden drills with an abrasive. Archaeologists have noted the use of bamboo drills with abrasive to perforate objects made of nephrite at both East and Southeast Asian sites (Hansford 1950; Nguyen Thi Kim Dung 1996). At the Bronze Age Trang Kanh jewelry workshop in northern Vietnam, researchers have identified stone drills with a ground circular

cross section as well as a bronze drill used to produce nephrite beads (Nguyen Thi Kim Dung 1996). Nephrite has a comparable hardness as some garnets (Mohs 6.5). Therefore it is possible that similar drilling methods were used on softer garnets to make beads. However, harder garnet beads would have to be drilled with corundum or emery. While these beads may have been drilled using locally known drilling techniques, they are distinct from the local nephrite jewelry tradition in that the beads were not shaped or polished, nor do they seem to have been widely traded outside of this regional area. Experimental studies using different drilling methods will help clarify the different methods used to drill the garnet beads and future studies may update and correct these classifications.

## **LA-ICP-MS** Analysis of garnet beads

The morphological and bead perforation differences between the garnet beads from Angkor Borei and the garnet beads from southeast Cambodia point towards the presence of two distinct bead making traditions. The diamond drill technique used on the Angkor Borei garnets tie these beads in with a South Asian beadmaking tradition, however the beads from southeast Cambodia may be representative of a local beadmaking tradition. Unfortunately, the identification of a local bead production workshop may be difficult as it appears natural stones were drilled without having been shaped or polished. As noted in Chapter 5, Ethnoarchaeological studies of contemporary agate and carnelian bead-making workshops in India have highlighted the importance of debitage and flaking debris in identifying ancient bead workshops (Kenoyer et al. 1991). While ongoing experimental studies will assist in the better understanding how these garnet beads were drilled, drilling natural stones produces little material evidence that would be visible archaeologically. For this reason, compositional analysis was performed on the garnet

bead artifacts in order to determine if the Angkor Borei and southeast Cambodia garnets were geochemically distinct from one another. These artifacts were also compared with several South and Southeast Asian geologic source samples in an attempt to identify the raw material source used to produce the beads. All five garnets from Angkor Borei and eight beads from the southeast Cambodia sites as well as and 68 samples from nine geologic sources were analyzed using LA-ICP-MS.

Two additional samples were opportunistically included in LA-ICP-MS analysis. Both were part of a larger selection of glass artifacts analyzed by Laure Dussubieux at the Field Museum's Elemental Analysis Facility. The first is a garnet bead from the site of Porunthal in south India (Figure 8.14). This bead appears to have been a natural pebble that was polished and drilled. The exact archaeological context of this garnet bead is unknown, however a cultural deposit containing thousands of glass beads and other materials has been tentatively dated from the 1st century BC to 3rd century AD (Rajan 2009). The second is a piece of raw garnet found in excavations at the site of Phu Khao Thong (Figure 8.14). Phu Khao Thong is located on the Thai peninsula, close to the important trading and craft production site of Khao Sam Kaeo (Map Figure 8.2). These samples were compared with the geologic sources and artifacts from Cambodia. Appendix 8.3 lists the final measurements for all archaeological and geologic samples. 42 elements are included with major and minor elements listed as percent oxide and trace elements as parts per million (ppm).



Figure 8.13: Garnet artifacts from Porunthal, India (left) and Phu Khao Thong, Thailand (right)

Previous compositional studies of garnet artifacts

There have been several recent archaeological studies attempting to provenience garnets using a variety of methods including PIXE (Calligaro et al. 2002; Farges 1998; Mathis et al. 2008; Perin et al. 2007) electron microprobe (Rösch et al. 1997; Quast and Schüssler 2000; (Velde and Courtois 1983), X-ray fluorescence analysis (Bimson et al. 1982) and X-ray diffraction analysis (Schüssler et al. 2001). While these studies were able to successfully analyze garnets using non-destructive methods, they were only able to provide preliminary conclusions about the source of garnet artifacts because no geological source samples were analyzed. Several studies relied on previously published data of non-specific sources from Europe and South Asia from Quast and Schüssler (2000) (e.g. Calligaro et al. 2002; Perin et al. 2007). Other studies focused more specifically on classifying the garnet end-member components and determining different groups, but not identifying their source, or else only compared analyzed samples to other archaeological garnets (Bimson et al. 1982; Farges 1998; Mathis et al. 2008; Rösch et al. 1997; Schüssler et al. 2001). The current study is an improvement on this previous research in that both geologic sources and artifacts were analyzed together, thus beginning a database of potential garnet sources that can be used by other scholars in the future.

## Garnet Geologic Sources

Nine geologic samples were analyzed in the current study, including seven sources in South and Southeast Asia (Table 8.7). However, unlike the agate and carnelian geologic samples, all samples used in this study were acquired through gem dealers as there was not time or funding to visit sources in person. For this reason, many samples have only general regional identifications. Additionally, I cannot be certain that all of these geologic sources came from the location I was told they originated from. Despite these caveats, this study provides an important first step in creating a database of potential garnet geologic sources. Garnets from the Anthill garnet source in Arizona, and garnets from a garnet mine Mozambique, Africa, well-known sources outside of Asia, were also sampled to determine if LA-ICP-MS could accurately distinguish between these samples and those collected from Asian sources.

| Source name        | Number of           | Range of Sum- | Range of<br>Sum- | Range of<br>Sum- | Range of Sum- |
|--------------------|---------------------|---------------|------------------|------------------|---------------|
|                    | samples<br>analyzed | Normalized    | Normalized       | Normalized       | Normalized    |
|                    | unary zea           | Ca            | Fe               | Mg               | Mn            |
| Sri Lanka Group 1  | 9                   | 3-5%          | 71-76%           | 8-11%            | 4-17%         |
| Sri Lanka Group 2  | 6                   | 2-5%          | 82-87%           | 7-14%            | <1-2%         |
| (Ratnapura?)       |                     |               |                  |                  |               |
| South India        | 10                  | 4-5%          | 80-82%           | 8-11%            | 1-7%          |
| Phu Tho province,  | 10                  | 5-12%         | 53-67%           | 19-37%           | 1-9%          |
| Vietnam            |                     |               |                  |                  |               |
| "India"            | 9                   | 1-5%          | 68-77%           | 20-25%           | 1-2%          |
| Orissa, India      | 10                  | 3-9%          | 59-73%           | 23-36%           | 1-4%          |
| Anthill, Arizona   | 6                   | 15-35%        | 31-54%           | 22-53%           | 1-2%          |
| Mozambique, Africa | 6                   | 10-13%        | 53-58%           | 29-34%           | 2-3%          |
| Lam Dong province, | 2                   | 1%            | 11-16%           | <1%              | 83-87%        |
| Vietnam            |                     |               |                  |                  |               |
| Total              | 68                  |               |                  |                  |               |

Table 8.6: Geologic sources analyzed in the current study

Three geologic samples from India were acquired from gem dealers, including samples from south India, Orissa, and an additional unknown source location in India, called "India" in

the table above (Figure 8.14). The exact location of the south Indian source is unknown, however garnet is currently mined in Tamil Nadu and Andhra Pradesh (Shigley et al. 2010). Additionally, the south Indian village of Kondapalli, Andhra Pradesh, has "long been famous" for its garnets and garnet gemstones (Bauer 1968: 354), as well as the sites of Mahurjhari, Arikamedu, and Kodumanal (Francis 2002).

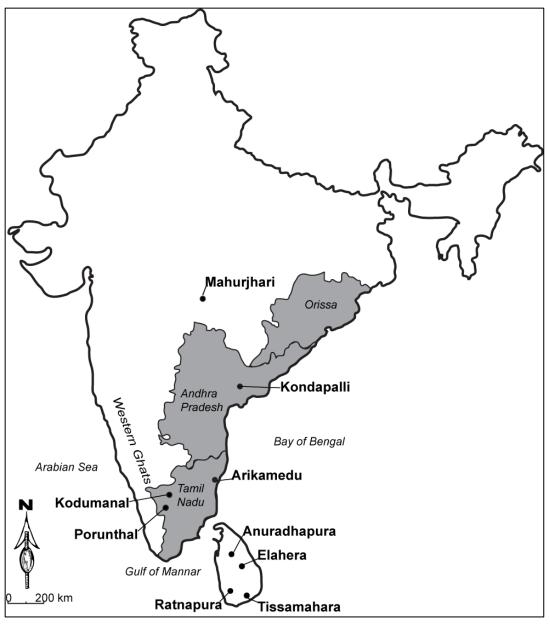



Figure 8.14: South Asian garnet sources and sites discussed in this chapter.

Two groups of samples were acquired from Sri Lanka, including one group from an unknown source (Sri Lanka Group 1) and a second (Sri Lanka Group 2) that may be from the mines at Ratnapura (Katie Lindstrom, personal communication, 2010) (Figure 8.14). Sri Lanka is an important center for gemstones and may have been discussed by ancient travelers as early as the 4th century BC (Zwaan 1982). Garnet beads may have been produced at two Early Historic period sites of Anuradhapura and Tissamahara (Coningham et al. 2006; Hannibal-Deraniyagala 2001; 2005) (Figure 8.14). Currently, almandine and pyrope-almandine garnets are mined in central Sri Lanka, especially at the mines of Elahera (Gunawardene and Rupasinghe 1986) and in the southern part of Sri Lanka, including the famous mine of Ratnapura (Dissanayake et al. 2000:14; Shigley et al. 2010)(Figure 8.14).

Garnet is also quite widespread across mainland Southeast Asia, however it is not mined in the quantities seen in India and Sri Lanka. Gem quality garnets have been found in Myanmar (Shigley et al. 2010), Thailand (Aranyakanon Payome 1983), Cambodia (Chrea Vichett et al. 1999), and Vietnam (Van Long et al. 2004). Two groups of garnet geologic samples were obtained from sources in Vietnam (Figure 8.15). The first are from a garnet mine in Phu Tho province in northern Vietnam. The second set of samples consists of two garnet inclusions in a piece of quartz from Lam Dong province in southern Vietnam. This source was selected for analysis based on a suggestion that garnets from Lam Dong province may have been the source of the garnet beads found at the Early Historic site of Oc Eo, Vietnam (Francis 2002:142).



Figure 8.15: Southeast Asian garnet sources and potential source areas discussed in this chapter.

## Analysis and results: Distinguishing between the geologic sources

Following LA-ICP-MS analysis, the first step was to determine which garnet species were present. As noted earlier, garnets rarely occur in their pure end-member form, and are

often a mixture of several sub-species. Recent research has provided a way to easily convert chemical analyses into molar proportions of various end-member components (Locock 2008). However, this method assumes a different stoichiometry than used in the current analysis, therefore a different approach was needed. For this reason, the major elements of almandine (Fe), pyrope (Mg), spessartine (Mn), and ugrandite series garnets (Ca) were sum-normalized to 100% as a proxy to determine the major sub-species present within a single garnet sample (Table 8.7). Based on the varying quantities of these major elements, the garnet sources were divided into three groups (Figure 8.16). Principal Components Analysis (PCA) and bivariate plots were also performed to identify more specific differences between the sources. This is discussed in more detail in Appendix 8.4. Principal Component scores used in the PCA plots in this chapter are listed in Appendix 8.4.

The almandine-rich group contained samples from Sri Lanka Group 1, Sri Lanka Group 2, and South India. Per the sum-normalized table, garnets in this group were predominantly iron rich almandine (70-87% Fe) with moderate amounts of pyrope (7-14% Mg) and lesser amounts of spessartine and ugrandite-series garnet. The second group, which I will call almandine-pyrope, contained garnets with a high percentage of Fe (44-77%), but higher levels of pyrope than the almandine group. These garnets also contained higher concentrations of Ca than Mn (Table 8.7). The sources in this group included Phu Tho, the unknown Indian source, Orissa, Anthill, and garnets from Mozambique. The final group consisted of garnets from a single source: Lam Dong. Although only two garnets were analyzed, these samples were clearly different from the other sources and artifacts due to the high levels of Mn (83-87%), classifying them as spessartine garnets.

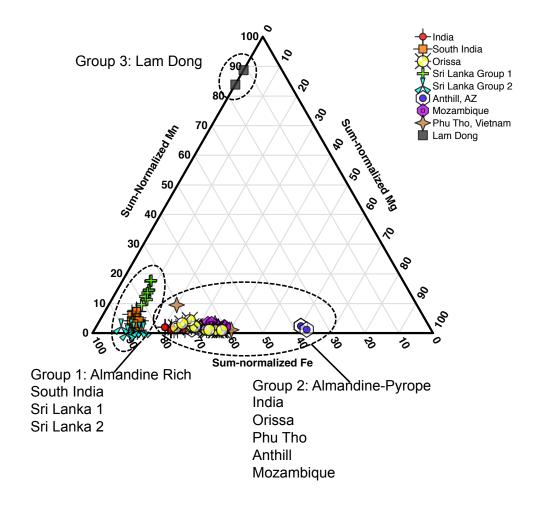



Figure 8.16: Ternary diagram of sum-normalized Fe, Mn, and Mg noting three different groups of garnets: group 1 (almandine rich), group 2 (almandine-pyrope), and group 3 (Lam Dong garnet).

## Assigning garnet artifacts to geologic sources

As with the geologic sources, the first step when examining geochemical data from the garnet artifacts was to classify them into different groups based on the sum-normalized totals of their major elements (Table 8.8). The Angkor Borei and Porunthal garnet artifact belonged to the

almandine rich group. However, despite similarities with the major elements, these artifacts were clearly distinct from the geologic sources in this group. In order to identify similarities and differences between these archaeological samples and the almandine-rich garnet sources, a PCA was performed using the elements Co, Tb, V, and Zn. Figure 8.17 shows both the artifacts and source samples plotted by their first and second components. These artifacts plot near to the South India source, although they are distinct from this source due to higher levels of Co and Zn. It is also notable that the Angkor Borei garnet beads and Porunthal garnet share a similar composition. Although it is clear that the geologic source material for these artifacts has not been found, it appears that they may derive from the same source. Although I was unable to take an impression of the Porunthal perforation visual inspection indicates that the drill hole was cylindrical and similar to the Angkor Borei perforations and beads drilled using a diamond drill. It is likely that the source for both beads may be in South Asia, due to the abundance of possible sources and the predominance of this unique drilling technique. However, a Southeast Asian source cannot yet be ruled out.

| Database | Site         | Sum-       | Sum-       | Sum-       | Sum-       |
|----------|--------------|------------|------------|------------|------------|
| ID       |              | Normalized | Normalized | Normalized | Normalized |
|          |              | Ca         | Fe         | Mg         | Mn         |
| AB1767   | Angkor Borei | 1.75%      | 87.02%     | 5.72%      | 5.51%      |
| AB1835   | Angkor Borei | 1.69%      | 89.91%     | 5.79%      | 2.62%      |
| AB2801   | Angkor Borei | 1.64%      | 88.25%     | 6.55%      | 3.56%      |
| AB3284   | Angkor Borei | 1.85%      | 89.03%     | 6.56%      | 2.55%      |
| AB3333   | Angkor Borei | 1.94%      | 89.77%     | 5.85%      | 2.44%      |
| AKC00310 | Village 10.8 | 20.36%     | 36.68%     | 41.54%     | 1.42%      |
| AKC00311 | Village 10.8 | 20.23%     | 39.52%     | 38.79%     | 1.46%      |
| AKC00338 | Village 10.8 | 19.27%     | 36.66%     | 42.68%     | 1.39%      |
| AKC00339 | Village 10.8 | 19.06%     | 35.11%     | 44.59%     | 1.24%      |
| AKC00590 | Prohear      | 19.18%     | 43.31%     | 35.91%     | 1.59%      |
| AKC00606 | Prohear      | 18.88%     | 43.43%     | 36.12%     | 1.57%      |
| AKC00651 | Bit Meas     | 18.74%     | 37.54%     | 42.29%     | 1.43%      |
| AKC00731 | Bit Meas     | 19.54%     | 39.24%     | 39.75%     | 1.47%      |

| Porunthal | Porunthal, |        |        |        |       |
|-----------|------------|--------|--------|--------|-------|
| Garnet    | India      | 1.46%  | 89.97% | 5.25%  | 3.33% |
| PKT       | Phu Khao   |        |        |        |       |
| Garnet    | Thong,     |        |        |        |       |
|           | Thailand   | 14.49% | 54.07% | 28.60% | 2.84% |

Table 8.7: Garnet artifacts analyzed in this study and their sum-normalized major elements.

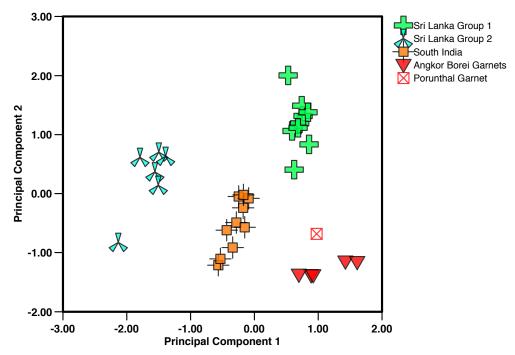



Figure 8.17: Principal component analysis of the Group 1 almandine garnets and artifacts from Angkor Borei and Porunthal. The first component summarizes 59% of the variance and the second component accounts for 32%.

The Southeast Cambodia garnets and Phu Khao Thong garnet were placed in the almandine-pyrope group, although these artifacts differed from one another. The Southeast Cambodia garnets had nearly equal proportions of Fe and Mg, a high concentration of Ca (19-20%) and a small concentration of Mn. The Phu Khao Thong garnet had higher levels of Fe and lower levels of Mg. However, when included in PCA with the almandine-pyrope geologic source groups, these artifacts clearly plot away from the other sources (Figure 8.18). The Southeast Cambodia garnets are distinctive for their moderate levels of Ca and extremely high levels of Ti

(over 2000 ppm), the highest of any garnet artifact or source sampled in this study (Figure 8.19). This composition is similar to the group 3 "common eclogite group" garnets identified by Dawson and Stephens (1975:603). Diamonds are also commonly found within the common eclogite group, and thus examining material from contemporary diamond mining operations in South and Southeast Asia may assist in also identifying this garnet source.

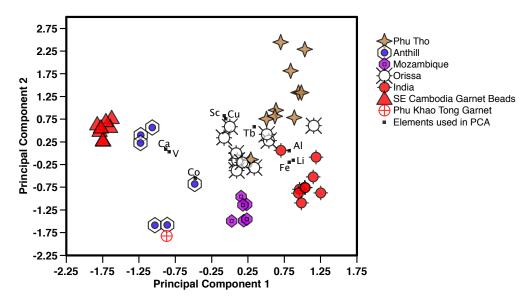



Figure 8.18: Principal component analysis of the group 2 almandine-pyrope garnets and artifacts from southeast Cambodia and Phu Khao Thong. The first component summarizes 44% of the variance and the second component accounts for 22%.

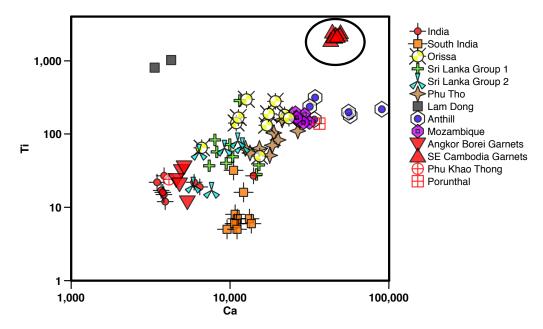



Figure 8.19: Bivariate plot of Ca vs Ti (logged). The Southeast Cambodia garnets (circled) have a high concentration of Ti in comparison with the other sources and artifacts.

The Phu Khao Thong garnet is distinguished by low concentrations of several elements, including Sc, V, and Y. Although the Phu Khao Thong garnet plots near the Anthill sources, it is clear that this garnet piece did not come from Arizona. Rather, it is more likely that the Phu Khao Thong artifact derives from an unknown source that shares a similar composition to the Anthill source. It is notable that this sample is also compositionally distinct from the other garnet artifacts, and points toward the complex bead production and trade networks in play during the Iron Age period. Phu Khao Thong was an important international trading center during the Iron Age and Early Historic period with numerous artifacts from South Asia (Noonsuk 2005: 42); therefore it is possible that this piece could derive from a source in either South or Southeast Asia.

### Other potential sources

Although the sources for the archaeological garnets have not yet been found, there are numerous potential sources in South and Southeast Asia. As noted above, diamond-mining sites in Vietnam often yield garnet deposits. Kane and others have also noted the widespread presence of garnets associated with sapphire, zircon, and ruby deposits in southern Vietnam (1991: 153). Large garnets have also been discovered near Bien Ho in central Vietnam (Figure 8.15) (Kane et al. 1991). It is possible that one of these deposits could be the source location for the SEA Garnet Beads. However, the restricted distribution of these artifacts strongly suggests a source located somewhere in southeast Cambodia or southern Vietnam. Further analysis will be needed to confirm to identify this source.

In their recent study, Calligaro and others (2002) identified three garnets that they believe originated from South Asia. Type 1 from an unknown Indian source is described as quasi-pure almandine, Type II believed to be from Rajasthan, India was classified as almandine with manganese, while Type III an intermediate "rhodolite" or almandine-pyrope, was believed to come from Sri Lanka. Although compositional data was only provided for the elements Fe, Mg, Ca, Mn, Cr, and Y (see Calligaro et al. 2002 Table 1), it appears that the South Asian garnets in this study are distinct from the sources studied by Calligaro. This highlights the great diversity of garnet sources found across South Asia. Opportunistic analysis of the garnet samples from Porunthal and Phu Khao Thong India point toward at least three distinct garnet sources used during the Iron Age period. A more comprehensive study using well-provenienced sources would have much archaeological value.

### Conclusion

This chapter presented morphological evidence, SEM analysis of bead perforations, and geochemical compositional data to demonstrate that the beads from Angkor Borei and sites in southeast Cambodia (Village 10.8, Prohear, Bit Meas) are different from one another. Although LA-ICP-MS was able to successfully measure and differentiate between geologic sources and artifacts, the inability to accurately characterize the proportion of garnet end-members within a sample using Locock's methodology (2008) is a drawback to this technique. Future studies may wish to combine LA-ICP-MS with techniques such as SEM-EDS to measure major elements. Additionally, future studies may wish to use more than five point ablations per sample in order to better account for the zoning of elements, as well as including additional samples in order to better characterize and understand the variation within a single source.

Despite these caveats, I argue that the geochemical and morphological evidence suggests that there was both importation and local manufacture of garnet beads. In the beginning of this chapter I introduced several questions that I would like to consider in more detail.

What are the morphological and manufacturing differences between the Angkor Borei garnets and garnet beads from Village 10.8, Prohear, and Bit Meas?

The Angkor Borei garnets have been shaped and polished. Additionally SEM analysis of drill hole impressions indicates that these beads were drilled using a diamond-drilling technique. This technique is strongly associated with the South Asian beadmaking industry. Conversely, the beads from southeast Cambodia do not appear to have been shaped or polished. SEM analysis of the drill hole impressions suggest beads were drilled using copper, wood, or stone

drills with an abrasive, techniques that were likely used in the local nephrite jewelry production industry. I argue that the SEA Garnet Beads are the product of a local bead production industry. Are there geochemical differences between beads from Angkor Borei and beads from Prohear, Bit Meas, and Village 10.8, and is there geochemical evidence for production of garnet beads using Southeast Asian stone sources?

LA-ICP-MS analysis confirms that there are clear geochemical differences between the two sets of beads. However, the limited number of geologic sources analyzed did not allow for the identification of the geologic sources used to produce either set of beads. Therefore, there is not yet clear geochemical evidence for production of beads in Southeast Asia. Nevertheless, a compositional similarity between the Angkor Borei beads and the bead from Porunthal, as well as the diamond drilling technique used, and the long history of bead production in South Asia strongly suggest an origin for these beads in South Asia. This connection with South Asia is not surprising, as noted earlier Angkor Borei is believed to have been an important trading center. Evidence from agate and carnelian beads suggests connections with South Asia. However, we cannot yet rule out possible bead production in Southeast Asia. Oc Eo was believed to have been a stone bead production center (Malleret 1962) and Francis has argued that bead-making traditions at Oc Eo may have ultimately derived from Arikamedu, India (2002). Despite their unknown manufacturing location, it is interesting to note that similar garnet beads have not yet been recorded at other Iron Age sites in Cambodia and only in small quantities at other sites in the region, and thus were not broadly distributed like agate, carnelian, and glass beads.

Although there is not yet clear geochemical evidence for the local production of the garnet beads from southeast Cambodia, the limited distribution of the unique garnet beads found

at sites in Southeast Cambodia and southern Vietnam suggests that bead were likely locally produced. Southeast Asian craftsmen were familiar with hard-stone jewelry production, as objects made from nephrite had been manufactured and widely distributed in Southeast Asia since the Neolithic period (e.g. Hung et al. 2007; Nguyen 1996). In contrast, SEA Garnet Beads seem to have been manufactured in smaller quantities and had a more localized distribution. They reflect a different scale and type of craft manufacturing and distribution from the local nephrite jewelry industries.

Nevertheless, as the exact geologic sources for these beads have not yet been identified, I cannot yet rule out that the beads from southeast Cambodia may have been imported. Garnet beads made from natural stones have also been reported from sites in southern India, including Arikamedu (Francis 2004: 493), Kodumanal (Gwen Kelly, personal communication, 2011) and Porunthal, although some of the beads from this site appear to have been polished. However, there has not yet been in-depth examination of the drilling method used to make these beads and it is possible they share similar drilling patterns as seen with the garnet beads found in Southeast Cambodia. Drilling techniques in India did vary by region and workshop, for example Peter Francis has noted that copper drills and abrasives were being used in western and southern India. However, he argued that by the time India began more extensive maritime relations with Southeast Asia "the double-tipped diamond drill was established" (2002: 110). Additionally, the Indian natural stone beads differ in that photographs indicate they may have been polished. Although garnet bead production is still poorly understood, the ubiquity of the double-diamond drilling technique in South Asia, the lack of this drilling technique amongst the beads from southeast Cambodia as well as their restricted distribution in southern Cambodia and Vietnam

points toward the presence of a local Southeast Asian hard stone beadmaking tradition. It is hoped that continued analysis of geologic source samples would eventually identify the raw material source for both sets of beads.

### What can these beads tell us about trade and exchange networks during this period?

The limited distribution of the garnet beads from southeast Cambodia and similar beads in southern Vietnam is notable and indicates that these beads may have been produced only for a regional exchange network connecting a geographically limited set of communities. While sites in southeast Cambodia had access to goods traveling through broader trade networks, including Dongson drums and agate and carnelian beads, the garnet beads do not appear to have been traded within these networks. The limited burial data also suggest that garnet beads were not found solely within burials that had large numbers of grave goods and may have been widely accessible to community members. It is possible that these distinctive beads may have also had unique and localized meanings and values, separate from imported carnelian and glass beads, whose value may have been related to their association with foreign craft producers (e.g., Bellina 2003).

The limited distribution of shaped, polished, and diamond-drilled garnet beads, like those found at Angkor Borei also points to a more restricted exchange of these artifacts than the agate/carnelian and glass beads. Numerous garnet artifacts have been reported at coastal sites in Vietnam and Thailand and at the Mekong Delta sites of Angkor Borei and Oc Eo. However, these beads have not yet been found at inland sites. Perhaps these objects were not popular among inland communities or people in coastal communities did not choose to include these objects in exchange networks with inland communities.

Data from garnet beads at both Angkor Borei and the southeast Cambodian sites highlight that there were multiple complex trade networks in play during the Iron Age period. Some of them may have been emphasizing regional connections such as in southeast Cambodia. While the Angkor Borei garnet beads appear to be tying this site with long-distance exchange networks in South Asia, and perhaps to other coastal communities participating in similar long-distance exchange networks. In the final chapter, I consider the data from this chapter in combination with the agate and carnelian and glass data in order to address questions regarding trade networks, the control of trade, and emerging socio-political complexity in the Mekong Delta during the Iron Age period.

# **Chapter 9: Discussion and Conclusion**

In previous chapters I presented evidence from agate/carnelian, glass, and garnet beads identifying different bead types and patterns in their geographical distribution. In this final chapter, I use these data to return to the questions raised in Chapter 1, explore in more depth the different trade and exchange networks present during the Iron Age period, and discuss the implications for socio-political development in the Mekong Delta. I begin by addressing evidence for distinctive bead trade networks over time and space. I then discuss how the glass and stone bead data can be used to identify emerging socio-political and economic networks in the Mekong Delta during the first few centuries AD. This is concluded by a brief discussion of people who had a high quantity of beads in their burial, followed by a discussion of the accomplishments of this dissertation and directions for future research.

### Bead trade and exchange patterns over time and space

### Connections to early coastal exchange networks

As discussed in Chapter 3, archaeological evidence across mainland Southeast Asia suggests two broad phases of interaction with South Asia (Bellina and Glover 2004): an earlier phase (Phase 1) during the mid-late first millennium BC, in which there was more sporadic trade with a variety of objects. This was followed by a later phase (Phase 2) of more intense trade during the early first millennium AD, in which there was a greater quantity of goods, but less variety than Phase 1. Scholars have noted a difference in the type of glass and stone beads available during each of these periods (Bellina 2003, 2007; Lankton and Dussubieux 2006, 2013). During Phase 1 (last half of the first millennium BC into the early centuries AD) agate and

carnelian beads are generally found in more complex shapes, are of a higher quality, and with a smaller perforation size, although generally drilled with a diamond drill (Bellina 2003, 2007).

Additionally, potash glass beads are found in high quantities at sites across mainland Southeast Asia (Lankton and Dussubieux 2006, 2013).

The Period 1 type agate and carnelian beads have predominantly been found at sites on the coasts or with links to coastal exchange networks (Bellina 2007). In Bellina's (2007) study, the early sites with the Period 1 Type beads also contained nephrite ear ornaments, evidence of connections to the Sa Huynh culture and participation in these coastal exchange networks. Furthermore, potash glass predominantly has also been found at coastal sites in northern and southern Vietnam, as well as peninsular Thailand, and at the important Thai trading site of Ban Don Ta Phet (Lankton and Dussubieux 2006, 2013). I argue that agate, carnelian, and potash glass beads were being incorporated into pre-existing regional trading networks that were already linking coastal sites and important inland sites to one another through the exchange of prestige objects including nephrite ear ornaments (Christie 1990, 1995; Dzung 2011) (Figures 9.1 and 9.2). Elites appear to have been incorporating these new objects into the pre-existing repertoire of personal ornaments (Bellina 2007).

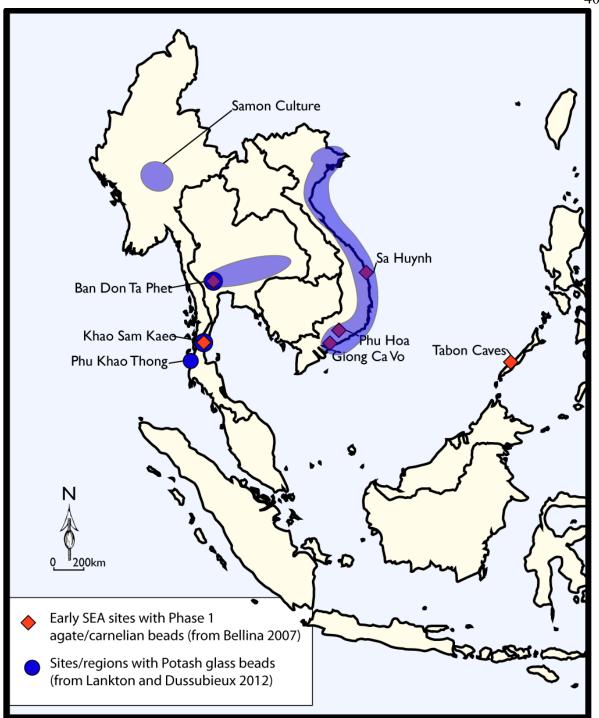



Figure 9.1: Map showing locations of sites with Phase 1 agate/carnelian beads and potash glass based on previous studies by Bellina (2007) and Lankton and Dussubieux (2013). Note the similarity in the distribution of these objects with the distribution of nephrite ear ornaments in mainland Southeast Asia noted by the blue and yellow stars in Figure 9.2 (below).

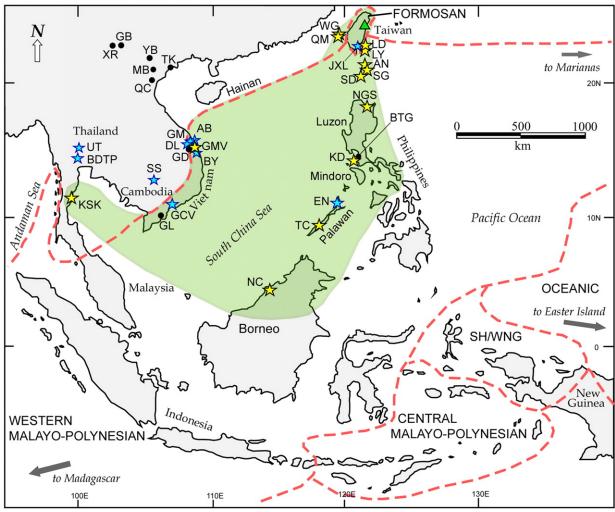



Figure 9.2: Map of the distribution of Taiwan nephrite artifacts in Southeast Asia from Hung et al. 2007 (Figure 3). The green shaded area represents the currently known distribution of Taiwan nephrite artifacts. The Fengtian nephrite deposit is noted by the green triangle. Yellow stars represent sites outside Taiwan with positively identified Fengtian nephrite artifacts and blue stars represent sites with jade artifacts of possible Fengtian origin. Black circles denote sites that have identified nephrite of non-Fengtian origin.

The question still remains if the agate, carnelian, and glass beads found at these sites during the early Iron Age actually originated in South Asia. Bellina (2007; Bellina and Glover 2011) has argued that evidence from Khao Sam Kaeo suggests that Indian craftsmen may have been living and working in Southeast Asia and several scholars (Glover and Henderson 1995; Lankton and Dussubieux 2006) have suggested that some potash glass may have been manufactured in northern Vietnam or southern China. Although more evidence is needed, one

could argue that Southeast Asians may not have associated these objects with South Asia or afforded them the prestige associated with exotic objects traded through long-distance exchange networks (Helms 1993). However, based on evidence from the current study, including the uneven distribution of stone and glass beads both within sites and between sites, I argue that stone and glass beads were considered to be prestige objects.

Based on the presence of Period 1 type agate and carnelian beads and large numbers of potash glass, I argue that sites in southeast Cambodia, Village 10.8, Prohear, and Bit Meas, as well as the peninsular Thai site of Khao Sam Kaeo had connections to these early coastal exchange networks (Figure 9.3). Promtin Tai in central Thailand may also belong to this group, but will be discussed separately below. Khao Sam Kaeo has already been considered to be an important early urban center and trading site by other scholars (Bellina 2007; Bellina and Silapanth 2006, 2008; Glover and Bellina 2011; Lankton et al. 2008). My new research using different sets of data provides additional confirmation of patterns suggested by these earlier scholars. However, my research has added new information by showing that sites in southeast Cambodia, located farther inland than other coastal sites noted above, also appear to be connected to these coastal exchange networks. Although Prohear had only a few agate and carnelian beads, the hexagonal flattened bicones are an especially diagnostic type associated with sites involved in the coastal exchange networks (Theunissen 2003). Fragments of or whole Dongson drums have also been found at all three sites (Reinecke et al. 2009; Heng 2005) and Prohear may even share connections with sites further to the northeast in southern China (Reinecke et al. 2009: 166-7).

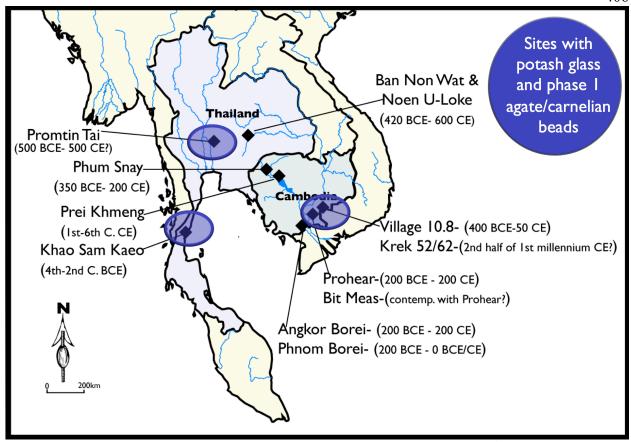



Figure 9.3: Map of sites in this study with potash glass beads and Phase 1 agate/carnelian beads.

It is likely that Krek 52/62, a circular earthwork site located near the other southeast Cambodia sites discussed above, may belong within this group as well. While the single carnelian bead included in this study was not particularly diagnostic, evidence from glass artifacts and a garnet bead link this site with both regional and coastal exchange networks. As noted in Chapter 7, potash glass beads were also found at Krek as well as a bangle fragments that appears compositionally similar to those produced at Khao Sam Kaeo. Taken together, this evidence suggests that Krek 52/62 had contact, although limited, with regional coastal exchange networks.

It is not clear how people living at these inland settlements were involved in the broader coastal exchange networks, however they likely provided natural or forest products for exchange to a coastal trading hub in a method suggested by Bronson (1977). Documents historic documents from later periods discuss the exploitation of aromatic woods, spices, and bird feathers from the forests (Reid 1988, 1992). Northeast Thailand was a well known source of salt during the prehistoric and historic periods (Nitta 1999), while the Thai/Malay peninsula was likely an important source for tin (Bronson 1992). It is unlikely that each of these sites had direct contact with a coastal site, for example, the distribution of locally made garnet beads in southeast Cambodia and mixed alkali glass in Northeast Thailand point toward a strong localized trading network connecting inland sites to one another.

These coastal exchange networks are associated with the early Iron Age period during the mid-late first millennium BC. While both Khao Sam Kaeo and Village 10.8 date to this early period, it is notable that Prohear- and perhaps Bit Meas- date to a slightly later period (200 BC – AD 200) and is contemporary with sites associated with a different trade network. I suggest that while there is a temporal dimension to the changing trade networks with South Asia, there was also a period of overlap when the two networks coexisted. During this period, elites at coastal sites may have been competing with newly emerging elites at sites in the Mekong Delta whose access to greater quantities of goods from South Asia may have allowed them to expand their influence and power.

#### Regional exchange: Southeast Cambodia

The sites in southeast Cambodia: Prohear, Bit Meas, Village 10.8, and possibly Krek 52/62, had both Period 1 type agate and carnelian beads and potash glass, connecting them to a

broader, regional, exchange network focused on coastal sites. However, these sites also contained another unique object: garnet beads. The garnet beads appear to have been produced locally and thus far have been found only at sites in southeast Cambodia and at one site on the Vietnamese border in southern Vietnam. I argue that these beads were important objects that connected the communities in this area to one another. The agate, carnelian, and glass beads likely circulated in similar exchange networks. Through these connections, communities may have been able to solidify alliances and in some cases may have helped buffer communities from "structural change" (White and Eyre 2010) or encouraged increased complexity through peerpolity interaction (Renfrew 1996). Future research on sites at a regional level will be able to help clarify the extent of connectedness between communities.

The presence of a garnet bead of this type in the upper layers of Krek 52/62 suggest some cultural continuity or connections between the somewhat older communities that lived in the circular earthwork sites of southern Cambodia and Vietnam and these slightly later communities. Analysis of ceramics at circular earthwork sites intimates that the earthwork sites were not exchanging ceramics with sites in the floodplains and that they were likely "a distinctive cultural grouping or tradition" (Latinis and Dega 2012: 73). The circulation of garnet beads among communities in this region may be an extension of the pre-existing, seemingly tightly knit, cultural groups in this area during the Neolithic and Bronze Age periods.

# Regional exchange: Northeast Thailand

In the current study it was not clear if agate and carnelian beads from Ban Non Wat and Noen U-Loke in Northeast Thailand belonged to either the Phase 1 or Phase 2 groups. The agate and carnelian beads at Noen U-Loke were not examined in depth, and the beads from Ban Non

Wat could not be clearly classified perhaps due to the long occupation sequence at this site.

However, evidence from other archaeological artifacts found at sites in the Khorat Plateau of

Northeast Thailand emphasize the strong regional exchange network among sites in this region,

including the exchange of unique objects found infrequently in other parts of Southeast Asia.

Archaeologists David Welch (1995, 1989) and Judith McNeill (1991) have also noted the strong intra-regional trade network on the Khorat Plateau especially as evidenced by the widespread distribution of a pottery type known as Phimai black. These authors have proposed a possible "interaction sphere" amongst Khorat Plateau communities, similar to the Hopewell Interaction Sphere in North America (Caldwell 1964; Struever 1964). More recently archaeologists Bill Boyd and Nigel Chang have argued that the moated settlement pattern may have resulted in a strong "regional self-identity," among the communities in this Khorat Plateau (Boyd and Chang 2010: 291).

Previous work by Theunissen (2003) on the stone beads at Noen U-Loke identified a distinctive type of notched agate pendant that was found primarily at sites in Northeast Thailand, with smaller quantities in central Thailand and elsewhere in mainland Southeast Asia. This type of pendant is unique to Southeast Asia and infrequently found India. Theunissen found this distribution pattern to be so significant that he suggested these notched agate pendants may have been manufactured in this region (Theunissen et al. 2000). However, compositional analysis does not clearly indicate that these artifacts were produced using local raw materials, as suggested by Theunissen and others (2000). In fact, the manufacturing location of these agate pendants is not clear. However we could speculate that this unique bead shape may have been commissioned by locals, similar to what may have been happening at Khao Sam Kaeo.

In my analysis of glass beads, I found that during the early Iron Age Noen U-Loke and Ban Non Wat did not have large amounts of potash glass, which would have tied them to the coastal exchange networks discussed above. Instead these sites had high quantities of wrapped orange opaque beads made from a mixed alkali glass. This type of glass appears to have been found in other regions of Northeast and central Thailand as well (Pilditch 1992; Saitowitz and Reid 2001). These beads were produced using a distinctive manufacturing method not found in other beads in this study and the composition of the mixed alkali glass was also not immediately identifiable to a specific workshop. It is possible that these beads may have been produced somewhere in Northeast or central Thailand (Carter and Lankton 2012). Taken together, I argue that sites in the Khorat Plateau participated in a strong regional interaction network that circulated specific types of objects, some of which were or may have been locally produced.

Charles Higham, in his recent summary of Iron Age socio-political and cultural development in the Mun River Valley, Northeast Thailand (2011b) has noted that a variety of factors, including the introduction of exotic new prestige goods like stone and glass beads could have provided an opportunity for individuals in a community to expand their power by controlling the exchange of these objects. Higham explicitly draws connections with examples from North America and Malawi, noting that in both regions the introduction of new long-distance exchange contacts and exotic prestige objects spurred increasing socio-political complexity and attempts to increase social status by local leaders (2011b: 139-140). The glass and stone bead evidence can be contextualized as part of these socio-political developments. However, I argue that they must also be situated as part of a long-standing regional exchange sphere. The cyclical fluorescence and decline of social status seen in burials in both the Bronze

and Iron Age periods at Ban Non Wat (Higham 2011a, 2011b) may be related to the inability of elites at any these sites to monopolize the exchange of these prestige objects over the long term. This in turn prevented the emergence of a single dominant center that may have controlled trade during this period as seen in the Mekong Delta.

### The importance of regional exchange networks during the early Iron Age

The two examples presented here are part of a larger trend recognizing the diversity of Iron Age communities in mainland Southeast Asia. A recent article by White and Eyre (2010: 59-60; White 2011) examining ceramics and mortuary ritual in Thailand has identified "enduring supravillage social groupings that used stylistic and technological practices and ritual behaviors to signal, demarcate, and maintain group identities in a regional system of dynamically counter poised and geographically situated 'middle range societies.'" The authors argue that their work in Thailand has evidence that the emergence of social complexity was "contextually specific" (White and Eyre 2010: 60). Using a different set of data, i.e., glass and stone beads, I agree with their interpretation. Although pottery is locally produced and glass and stone beads were likely imported to these sites, both objects were used in mortuary ritual. Evidence from glass and stone beads support previous research identifying the interaction sphere connecting sites in Northeast Thailand to one another, as well as a similar regional group identity in southeast Cambodia, extending into southern Vietnam.

I believe that as archaeological research is continued, especially in Cambodia, additional regional cultural groups will be identified. Survey work in the landscape around Angkor Borei has identified numerous settlements (Stark 2006a). Work in northwest Cambodia has also identified numerous Iron Age sites including Krosaing Thmei and Phum Sophy, both located

close to Phum Snay. A preliminary examination of glass and stone beads from Sophy shows a strong similarity to the bead collections at Phum Snay. Photographs of beads from Krosaing Thmei also show a resemblance to the Phum Snay collections (Sok Keo 2005). Excavations at Phum Snay have uncovered many iron weapons and examinations of the looted skeletal material suggest a high level of violence (Domett et al. 2011). Therefore, we must wonder if the regional interactions between sites in this area may not have been entirely peaceful. A study of the bead collections from additional sites in this area may help clarify the relationships between these communities and evidence for competition between these groups.

Some of the mortuary evidence presented in this dissertation has highlighted the diverse ways in which beads were used and deposited in burial contexts. There does not appear to be any consistent pattern regarding the use of stone and glass beads in mortuary ritual across the ten sites with mortuary data. At Prohear, nearly every burial had glass beads; while at Village 10.8 there were more burials with agate and carnelian beads than with glass. At several sites there were burials with many beads that appeared to indicate elites, while at Angkor Borei jumbled and intensively used cemetery made it difficult to associated beads with specific individuals. At Noen U-Loke a child was buried with over a thousand glass beads, while at Prei Khmeng an adult female had a similar grave offering. A more comprehensive study of mortuary ritual and material culture in these areas would prove fruitful.

An emphasis on regional interaction networks can also be seen as part of earlier discussions noting the importance of peer-polity interaction (Renfrew 1992) and the emergence of socio-political complexity in mainland Southeast Asia. Research by Christie has suggested that peer-polity interaction between communities in the maritime region of peninsular and insular

Southeast Asia was crucial to the emergence of states in this area (1995). Peer-polity interactions also were important for the emergence of complex societies in the Thai-Malay peninsula. Competition between communities for access to goods and exchange networks may have encouraged increased complexity and the local adaptation of South Asian religion and sociopolitical organization in this region (Noonsuk 2005). Other scholars have suggested peer-polity interaction was important in northern Vietnam and southern Yunnan (Kim 2010), and the Dvaravati sites in central Thailand (Mudar 1999). Further research on Iron Age sites in Southeast Asia will likely clarify the influence that these communities had on one another.

# Promtin Tai: Participation in multiple exchange networks?

The glass and stone bead data I presented from Promtin Tai implies that this site may actually span both the early and later Iron Age periods, making it unique among the sites studied in this dissertation. Unfortunately, a lack of reliable radiocarbon dates or clear burial seriation forces one to consider the bead collection as a whole. The majority of the beads found were high alumina soda glass, however approximately 17% of the beads may belong to the potash glass group indicating that people at this site had access to these materials through the early coastal exchange networks. Furthermore, the agate and carnelian beads at the site did not clearly fall into either Phase 1 or Phase 2 types. The presence of agate pendants ties Promtin Tai in with sites in Northeast Thailand where this bead shape is more common, while a flattened hexagonal bicone indicates a connection with coastal exchange networks to the south and sites like Prohear and Khao Sam Kaeo. Furthermore, the glass artifacts at Promtin Tai were amongst the most diverse of the sites studied, with ties to other sites in central Thailand as well as peninsular

Thailand and beyond. I argue that these data indicate that people at Promtin Tai had access to multiple bead exchange networks over both time and space.

Sites in central Thailand such as Promtin Tai had access to numerous trade networks through riverine networks that connected this region to the Gulf of Siam, coastal Cambodia and southern Vietnam, and sites in the Thai/Malay peninsula. Additionally, the western Chao Phraya River Valley has connections with the Three Pagodas pass and overland routes to Myanmar and eastern India. I believe that the glass and stone bead data from Promtin Tai highlights this community's access to a diverse group of beads through multiple different trade networks. More fine-grained research at additional sites in central Thailand would allow for this hypothesis to be tested further. Careful excavation and dating of burials could assist in identifying how different bead types changed over time, and the relationship changing access to various bead types had to changing trade networks.

Data from sites in central Thailand dating to the Dvaravati period, which just post-dates the Iron Age period, indicate similarities in material culture to Oc Eo and the Mekong Delta. These similarities were so strong that researchers described some of these sites as belonging to the Funan culture (Bronson 1976). However, additional research has identified them as part of a local tradition (Glover 2011). Nevertheless, there is evidence for strong archaeological connections between the Mekong Delta and central Thailand during the mid-first millennium AD. The presence of high alumina soda glass and some Phase or Period 2 agate and carnelian beads at Promtin Tai may indicate contacts between these two regions during the Iron Age period as well.

### Intensification of trade networks during the later Iron Age

During the later Iron Age period, the first few centuries AD, interaction with South Asia appears to have intensified. A larger quantity of South Asian derived goods appears in the archaeological record, although the diversity of these goods is less than the previous period (Bellina and Glover 2004). Agate and carnelian beads are found in larger quantities, but most beads have simple shapes and are of varying and often lesser quality than during the previous period (Bellina 2001, 2003, 2007). Furthermore, potash glass appears to fade away and is replaced by large quantities of high alumina soda glass beads, which are found at sites across Southeast Asia. During this period, trade networks were expanding not just between South and Southeast Asia, but also within Southeast Asia (Bellina and Glover 2004). I argue that some of these expanding trade networks are tied with the expansion of polities in the Mekong Delta.

In the current study there were several sites that had both high alumina soda glass beads and Period 2 type agate and carnelian beads: Angkor Borei, Phnom Borei, and Phum Snay. Prei Khmeng had large numbers of high alumina soda glass, and only one carnelian bead that was not examined. The later phases of Ban Non Wat and Noen U-Loke also contained large numbers of high alumina soda glass, although as discussed above the classification of the agate and carnelian beads is not yet clear (Figure 9.4).

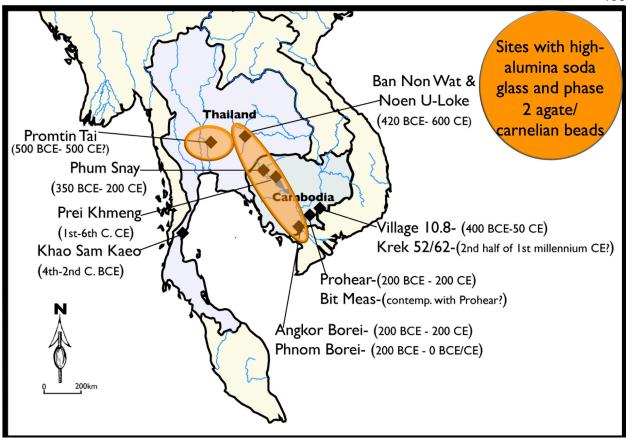



Figure 9.4: Sites in this study with high alumina soda glass beads and Phase 2 agate/carnelian beads.

Previous studies of glass artifacts from Angkor Borei and Oc Eo emphasized that these two sites had much higher proportions of high alumina soda glass than other sites in the region, arguing that this glass type was "over-represented" in this area (Stark and Dussubieux 2002). Additionally, large quantities of potash glass have not been found at either of these sites, and only a small quantity identified at the site of Phnom Borei, suggesting that this particular area of the Mekong Delta was not heavily involved in the early coastal exchange networks discussed above. Archaeologists have also noted that the appearance of Oc Eo culture sites in Vietnam is rather "sudden," (Manguin 2009: 108). Glass and stone bead evidence from the inland sites of Phum Snay, Prei Khmeng, Ban Non Wat, and Noen U-Loke also do not appear to have been intensively involved with the early coastal exchange networks. I argue that these sites were not

active participants in long-distance bead exchange networks until the later Iron Age period when the appearance of greater quantities of stone and glass beads indicates the formation of new trade networks. The distribution of stone and glass beads can be seen as markers for expanding sociopolitical and economic networks between elites in the Mekong Delta and communities at inland sites.

# Changing patterns of socio-political organization in the Mekong Delta

I argue that the similarity in glass and stone beads found at inland sites in Cambodia and Thailand indicates expanding influence and connections between these regions and the Mekong Delta. The lack of potash glass and Period 1 type agate and carnelian beads at these inland sites points toward the absence of a strong relationship with other pre-existing coastal centers involved in long-distance regional exchange networks. Instead, the bead collections at these sites share a greater similarity to the beads found at Angkor Borei and Oc Eo, suggesting that the Mekong Delta was the primary source for these materials. As noted in Chapter 1, the exchange of prestige goods as a means of expanding connections and alliances with other communities has been extensively examined in the archaeological literature (e.g., Dillian and White 2010; Renfrew and Shennan 1982; Sabloff and Lamberg-Karlovsky 1975; Schortman and Urban 1992). Archaeological evidence and Chinese historical documents suggest that Angkor Borei and Oc Eo were expanding as centers during the early centuries AD. This is the same period that trade networks with South Asia were expanding, allowing for an influx of stone and glass beads that could be used to build alliances with elites at inland sites.

It should be noted that there is no direct evidence for control over these objects in the form of, for example, hoards or caches of glass and stone beads in elite contexts at the Mekong

Delta sites. Additionally, while it has been suggested that Oc Eo was a manufacturing center for both stone and glass beads, the primary evidence is from looted contexts, so there is no clear understanding of workshop organization. Nevertheless, I believe that the distribution patterns of stone and glass beads at Phum Snay, Prei Khmeng, Phnom Borei, Ban Non Wat and Noen U-Loke suggest that the Mekong Delta was the primary provider of beads to these communities. Furthermore, as both Angkor Borei and Oc Eo were walled, they could have used these physical barriers to control the movement of goods inside and outside of the city (e.g., Kenoyer 1998). Beads were not evenly distributed between sites, nor were they evenly distributed within burials, therefore, the distribution of these objects was being restricted.

The exact nature of the exchanges taking place between elites in the Mekong Delta and people at inland communities is still unknown. Burial evidence suggests that beads were incorporated into mortuary rituals differently at each site. I believe that people at these inland communities may have distributing beads within their communities in culturally specific ways. For example, in some communities beads could be seen as a sign of wealth or a display of connections to long-distance exchange networks and sources of power. In other communities, beads may have been bestowed upon certain individuals due to a specific role they played in the community.

Stark has noted that the ceramic traditions in the Mekong Delta differ from those found in Northeast Thailand and northwest Cambodia (2006a: 100). Additionally, a recent compositional study of ceramics from Angkor Borei, Phum Snay, Village 10.8, and Prohear indicate that ceramics from each area were compositionally distinct from one another and likely not exchanged between sites (Feherenbach 2009). However, the types of stone and glass beads found

at many of these sites are similar to one another. This suggests that stone and glass beads were likely exchanged in a prestige goods network and not tied to the exchange of utilitarian objects like ceramics.

As prestige objects and objects for display, the influx of stone and glass beads and the similarity of the types of beads found at these later Iron Age period sites across Cambodia and Thailand may have served to incorporate elites into a broader integrated network of shared cultural symbols. This may have been especially true during the second phase of trade when stone and glass beads were being imported in greater quantities and in the case of the agate and carnelian beads, with less variety in the shapes. This can be compared with the trade of nephrite ear ornaments or Dongson drums and their use as cultural symbols during the early Iron Age period. However, with a greater number of stone and glass beads a broader group of communities could be included into these expanded networks. In this way, stone and glass beads may have been setting a foundation for a later "Integration Period," in which several of these communities may have been incorporated under a single ruler, with shared material culture, as well as economic, religious, and socio-political ideologies. Chinese historic documents describe Funan and Chenla as kingdoms (e.g. Coedès 1968); however, archaeological research has not yet confirmed the presence of such integrated communities. Nevertheless, the creation of a loosely integrated network of elites across Cambodia and Thailand was likely an important first step to later consolidation by a powerful ruler.

It is important to note that the presence of stone and glass beads at these inland sites does not indicate that they were under the control of elites in the Mekong Delta or part of the Funan polity. Some of these communities may not have even been directly trading with elites in the

Mekong Delta. Rather, as noted above, I argue that the Mekong Delta was likely the primary source of stone and glass beads and that the distribution of these objects can be seen as proxies for these expanding connections inland. Trade with inland sites may have been to gain access to forest products, such as hardwoods, tree resin, and other valuable materials for trade (e.g. Bronson 1977). The exchange of beads was one way that elites in the Mekong Delta likely expanded their power and influence, but the emergence of socio-political complexity in this region was likely a combination of several factors (Higham 2002; Stark 2006b).

In the mid-first millennium AD, trade networks shifted to insular Southeast Asia, and power began to move further inland up the Mekong and Tonle Sap rivers (Stark 2004, 2006c). Although there has yet been little prehistoric archaeological research done in these areas, I suggest that future studies should find evidence for large quantities of high alumina soda glass beads and Phase 2 agate and carnelian beads, as elites in the Mekong Delta likely were trying to build alliances with communities in this region.

### The Mekong Delta and Prohear

In his recent work on the site of Prohear, Reinecke (Reinecke et a. 2009: 170) has argued that the site of Prohear may be related to the Funan polity. Reinecke draws on an early interpretation of the Chinese historical documents describing Funan noting that the capital of Funan was located 500 *li* from the sea. The scholar George Coedès argued that this would put the capital at the site of Ba Phnom, Cambodia, a site located more closely to Prohear (Figure 9.5). As discussed in Chapter 1, copious archaeological evidence has convinced most scholars that this "capital" was instead located at Angkor Borei, despite the inconsistencies with the distance. However, Reinecke notes that if the first capital of Funan were in fact located more closely to

Prohear at Ba Phnom, this would explain the extremely rich burials found there. The cemetery of Prohear could then be interpreted as a burial of Funanese elites.

In contrast to this interpretation, I believe that evidence from the glass and stone bead support the interpretation that Angkor Borei and Prohear, though contemporary with one another, were participating in very different trade networks. Prohear's burials indicate a connection with sites in Vietnam, the Sa Huynh culture, and wealth gathered through coastal exchange networks. Conversely, evidence from Angkor Borei suggestions participation in a new and different exchange network, with more intense contact with South Asia and access to large quantities of new types of stone and glass beads. Angkor Borei and Oc Eo. While there is similarity in some pottery styles between both Angkor Borei and Prohear (Reinecke et al. 2009) they are compositionally distinct (Fehrenbach 2009). I believe evidence from the glass and stone bead support the interpretation that that Prohear and Angkor Borei represent two different communities that were interacting with different cultural groups and with two different cultural trajectories.

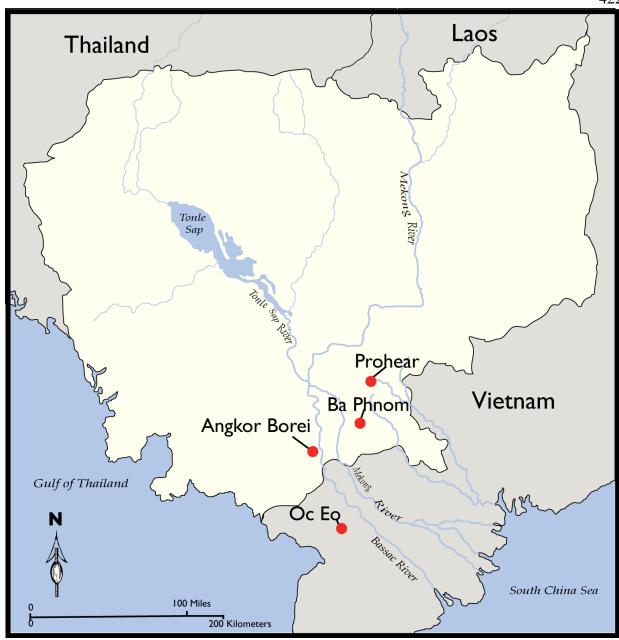



Figure 9.5: Map showing location of Ba Phnom in relation to Angkor Borei, Prohear and Oc Eo.

# The local production of beads

Control over the production of beads, especially agate and carnelian beads, is a reoccurring theme in discussions regarding the emergence of socio-political complexity in Southeast Asia (e.g. Bellina 2003, Theunissen et al. 2007). During the early Iron Age period,

jewelry producers appeared to produce objects for elites. However there is not clear evidence that they were attached craft specialists, with some arguing they may have been itinerant craftsmen (Hung et al. 2007). Bellina (2007: 54) has also suggested that the beadmakers at Khao Sam Kaeo, Thailand and Giong Ca Vo, Vietnam were also itinerant craftsmen. Additionally, Bellina (2007) has argued that some of the lower quality agate and carnelian beads found during the later Iron Age period were produced in Southeast Asia under the control of elites who were deliberately trading these materials to inland sites and keeping the higher quality Indian productions for themselves. This hypothesis can only be tested through the careful excavation of multiple bead production workshops.

However, if elites in the Mekong Delta were attempting to expand their power and control over valuable prestige objects like stone and glass beads, they would most likely shift to a system in which these craft specialists were attached to elite households were both production and distribution could be more easily controlled (Kenoyer 2000; Vidale and Miller 2000).

Christie (1995: 278) has noted that "it was probably easier for would-be elites to dominate the local collecting or trading networks that produced the exports for exchange, in fact, than it was to limit access to foreign valuables." Malleret (1959-1962) believed that Oc Eo was a bead-production center, but due to heavy looting we do not have specific information regarding the types of bead manufacture or how it was organized. However, his assessments have not stopped other scholars from assuming that such craft production was taking place (e.g. Francis 2002; Higham 2002). While I do not deny that bead production may have taken place in the Mekong Delta, we still lack specific and convincing evidence for this activity. Furthermore, we do not know if bead production was being controlled by elites, or if a system of itinerant unattached

craftspeople were responsible for producing beads as seen during the earlier period.

Compositional analysis of agate and carnelian beads does not indicate that Southeast Asian raw materials sources were being used to produce these objects. This indicates, at the very least, that Southeast Asian elites were likely not able to control access to the raw materials used to produce beads. Moreover, we must also consider that perhaps increased production in South Asia was responsible for the increase in lower quality beads, not necessarily local production.

Without clear evidence for bead production *and* evidence for control over this production, scholars must be careful about how they frame discussions regarding socio-political complexity and the production of beads in the Mekong Delta. Based on such slim evidence, one must be careful about assuming both that production was taking place and that a spectrum of associated traits associated with socio-political complexity was also present. However, if undisturbed evidence for local production were to be found we could better evaluate if specialists were attached craft specialists, indicating that elites in the Mekong Delta had reached a high level of complexity in that they were controlling both the production and distribution of prestige objects. Conversely, the presence of independent craft specialists would point toward significant autonomy and the inability of local elites to exercise control over the production of this object.

# Who was involved in the trade of stone and glass beads?

Mortuary data presented in this dissertation emphasize that stone and glass beads were not evenly distributed within Iron Age communities. As noted in Chapters 5, 6, 7, and 8 agate/carnelian, garnet, and glass beads were generally found in only a small number of burials. Of these burials there were a handful of individuals that had a much higher quantity of beads than others in their community. The burial data from the previous chapters are collated and

summarized in Table 9.1. Although I am not yet certain how to interpret these data, I believe these patterns highlight the importance of investigating the individuals who were wearing and using beads. As many scholars have argued, elites in the Mekong Delta were presumably trading stone and glass beads to build alliances with elites at important inland communities (Bellina 2003, 2007, Bronson 1977; Higham 2002). If this is true, then we may speculate that burials at inland sites with large quantities of beads may have been important elites who were on the receiving end of these alliance-building exchange networks.

That many of these burials are of women may be notable and worth further investigation. Numerous historical documents from the second millennium AD emphasize the role of women in trade across mainland and island Southeast Asia (Reid 1988: 163-165). In 1296-7 a Chinese ambassador to Angkor, Zhou Daguan, wrote about life in the Angkorian capital and noted, "The local people who know how to trade are all women. So when a Chinese goes to this country, the first thing he must do is take in a woman, partly with a view to profiting from her trading abilities," (Daguan 2007: 70). Additionally, the folktale discussed in Chapter 1 on the founding of Angkor Borei emphasizes the role that the princess took in establishing and cultivating longdistance trade contacts (Keo 2010). While her husband joins her as a co-ruler, it is the princess' ingenuity and business savvy that spurs the establishment of an important trading center in the Mekong Delta. However in contrast to this evidence a different Cambodian folktale, Keng Kang Snake, details the story of a woman whose husband is a bead trader. His bead trading takes him away from his family for two to three years, and while he is gone the wife falls in love with a snake, with tragic consequences. In this folktale, it is specifically the man who is involved in this long-distance trade.

In some cases, one could imagine that people with large numbers of beads were individuals involved in long-distance trade for their communities and that beads were symbols of their connections to these external trade networks. However, the presence of large quantities of beads with infants or young adults, as seen at sites in Northeast Thailand, indicates that in some communities beads were not correlated with achieved status. Furthermore, many of the sites I have discussed today were heavily looted and the burials excavated by archaeologists may not be representative of the entire cemetery. At Noen U-Loke and Ban Non Wat the amount of grave goods included in burials changed over time, making it difficult to compare the relative wealth or status of burials between periods. However, the graves from these sites noted in Table 9.1 were perceived to be wealthy, high-status burials (Talbot 2007). Although I am as of yet unable to provide solid interpretations for these bead-rich burials, I believe the patterning seen in burials is significant and that more research should be done to investigate the people who were consuming beads, the roles they played within their community, and how this may have changed between communities and over time.

| Site         | Burial | Beads                                                                                                                   | Sex                |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------|--------------------|
| Angkor Borei | F35    | 212 glass beads and 4 gold beads                                                                                        | Female, with child |
|              |        | 175 glass beads, 3 tooth pendants, ceramic anvil,                                                                       |                    |
| Angkor Borei | F36    | animal bones                                                                                                            | Male (n=2)         |
| Angkor Borei | F44    | 83 glass beads, 1 carnelian bead, 10 gold beads                                                                         | Female (n=2)       |
|              |        | 200 orange wrapped beads, 2 carnelian beads, and                                                                        |                    |
| Ban Non Wat  | 6      | ceramics.                                                                                                               | Female             |
| Ban Non Wat  | 36     | 86 orange beads, 5 carnelian beads, 2 agate pendants, ceramics, gold bead, spindle whorl, and a bronze bangle fragment. | Female and male    |
| Ban Non Wat  | 203    | 133 glass beads, bronze bangles and finger rings, agate pendants and an agate bead.                                     | Young adult        |
| Dan Man Was  | 266    | 112 glass beads, agate pendant, bronze bangles and                                                                      | I., f.,4           |
| Ban Non Wat  | 266    | rings, ceramics.                                                                                                        | Infant             |

|                |          |                                                                                                              | 427      |
|----------------|----------|--------------------------------------------------------------------------------------------------------------|----------|
| Noen U-Loke    | 37       | Large number of glass beads                                                                                  | Female   |
|                |          | 0 1700 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                 |          |
|                |          | Over 1700 glass beads, 2 agate pendants, bimetallic                                                          |          |
| Noon II Lalea  | 12       | rings, bronze rings and earring, iron spear point, ceramics.                                                 | Infant   |
| Noen U-Loke    | 13       | ceramics.                                                                                                    | Infant   |
|                |          |                                                                                                              |          |
|                |          | Over 400 glass beads, agate bead, two agate pendants,                                                        |          |
|                |          | three bronze belts, 75 bronze bangles, 66 bronze finger                                                      |          |
|                |          | rings, 4 bronze two rings, 2 silver-gold ear coils,                                                          |          |
| Noen U-Loke    | 14       | ceramics, and an iron blade.                                                                                 | Male     |
|                |          |                                                                                                              |          |
|                |          |                                                                                                              |          |
|                |          | 22 agate beads, sixty-eight gold beads, two agate                                                            |          |
|                |          | pendants, four pots, a bimetallic ring, an iron knife, a                                                     |          |
|                |          | silver finger ring and a silver toe ring, bronze earrings,                                                   |          |
| N 11 1         | 110      | thirty-eight bronze bangles, sixty-four bronze finger                                                        | F 1      |
| Noen U-Loke    | 113      | rings and nine bronze toe rings.                                                                             | Female   |
|                |          | 105 1 1 1 25 1' 1 1 ' 111 1                                                                                  |          |
|                |          | 105 glass beads, 35 carnelian beads, spindle whorls,                                                         |          |
| ļ              |          | bronze rings and bangles, iron tools, ceramics including a Phimai black bowl, and a bronze bowl covering her |          |
| Phum Snay      | Burial 9 | face.                                                                                                        | Female   |
| Prei Khmeng    | 21045    | Large number of glass beads                                                                                  | Female   |
| Tierinineng    | 21015    | Daige number of glass seads                                                                                  | Temate   |
| Prohear        | 44       | Over 500 glass beads, gold jewelry, iron bracelets                                                           | Female   |
|                |          | 40 glass earrings, garnet beads, iron tools, bronze                                                          |          |
| Prohear        | 15       | bracelets                                                                                                    | Male     |
|                |          | Over 150 glass beads, iron bracelets, gold/silver                                                            |          |
| Prohear        | 24       | jewelry, carnelian beads.                                                                                    | Unknown  |
|                |          |                                                                                                              |          |
| <sub>5</sub> . | 22       | Over 150 glass beads, garnet and carnelian beads, iron                                                       | <b>.</b> |
| Prohear        | 33       | bracelets, gold objects, bronze bowl.                                                                        | Female   |
| Dua!           | 24       | Over 150 glass beads, iron bracelets, gold/silver                                                            | F1       |
| Prohear        | 34       | jewelry.                                                                                                     | Female   |
|                |          |                                                                                                              |          |
|                |          | 14 agate beads, 2 glass beads, greenstone beads, shell                                                       |          |
|                |          | beads, a bronze bracelet, 2 bronze rings, ceramics, two                                                      |          |
| Promtin Tai    | 19       | spindle whorls, and animal bones.                                                                            | Female   |
|                |          | ,                                                                                                            |          |
|                |          | 134 glass beads, greenstone beads, 5 agate beads, 7                                                          |          |
| Promtin Tai    | 20       | carnelian beads, ceramics, and shell beads.                                                                  | Female   |
| Village 10.8   | 11       | 124 glass beads                                                                                              | Unknown  |
|                |          |                                                                                                              |          |
| Village 10.8   | 28       | 8 agate, 1 garnet bead, 6 glass rings/earrings                                                               | Unknown  |

| Village 10.8 | 48 | 10 carnelian beads                    | Unknown |
|--------------|----|---------------------------------------|---------|
|              |    |                                       |         |
| Village 10.8 | 3  | 14 carnelian beads and 2 garnet beads | Unknown |

Table 9.1: Table noting burials with large numbers of stone and glass beads encountered in this study.

#### **Conclusion**

This dissertation has provided the first comprehensive study of artifacts from Iron Age sites in Cambodia, filling in a crucial gap in the discussion of Iron Age trade, which has largely relied on data from English language publications of Thai archaeological sites. As the Mekong Delta of Cambodia and Vietnam was home to an important Iron Age trading center, examination of glass and stone beads allows for scholars to finally consider the impact this region had on Iron Age trade networks.

This dissertation also provides evidence for the timing of expanding socio-political and economic networks in the Mekong Delta. Stone and glass bead evidence does not suggest that communities in the Mekong Delta were participating in the late first millennium BC coastal exchange networks, but instead appear to have been intensifying during the early first millennium AD, coinciding with increased trade with South Asia. High alumina glass beads and Period 2 type agate and carnelian stone beads, found in large quantities at the Mekong Delta as well as at inland sites, can be seen as markers of the expanding socio-political and economic networks by elites in the Mekong Delta.

The methodologies employed in undertaking this dissertation research also represent significant contributions to the field. The examination of both glass and stone beads is also a unique approach that I argue provides for a more holistic understanding of trade. While earlier scholars have studied either glass or stone beads in both Cambodia and Thailand, it was by examining them together that I could see clear patterns in the distribution of different types of

stone and glass beads and how these trading networks changed over time and space. The glass and stone bead data complemented and reinforced models regarding the changing nature of trade over time and the importance of regional trade networks.

With the assistance of Laure Dussubieux, I also developed a methodology to geochemically analyze agate/carnelian and garnet objects using LA-ICP-MS and was successfully able to use this technique to differentiate between different geologic sources and assign artifacts to these sources. The ability to use LA-ICP-MS to geochemically analyze archaeological artifacts is significant as it is virtually non-destructive and requires no sample preparation. The successful implementation of this method will allow future scholars to build a database of geologic sources and confidently provenience agate/carnelian and garnet artifacts from sites around the world.

Lastly, I feel a major accomplishment of this dissertation was the ability to examine almost 10,000 beads from a diverse set of sites in both Cambodia and Thailand. I feel very honored that I was able to collaborate with so many different scholars and that they believed in the viability of this project enough to assist with the often complicated export permissions process so that beads could be examined in the United States. Without the geographic and temporal breadth of sites examined in this study, I do not believe I would have been able to see the trade and exchange patterns discussed in this dissertation.

There is still much future work to be undertaken that would expand on this current study.

The number of Iron Age archaeological sites being excavated in Cambodia and Thailand continues to grow, and at the very least, future studies could follow the methodologies in this dissertation in order to understand how bead collections at new sites fit within the trade networks

identified here. Perhaps more important would be an expansion of this study to include data from other sites in Thailand, Laos, Vietnam and Myanmar. Although this kind of study would likely take up one's entire career, future studies could look more closely at regional trade networks within these locations and then fit them in with the broader trade networks identified by myself and other scholars (e.g. Bellina 2007, Lankton and Dussubieux 2013; Theunissen 2003). I am especially interested in examining bead collections from the Vietnamese side of the Mekong Delta in order to determine if my hypotheses regarding shifting glass and stone bead trade networks is consistent with the bead collections at these sites.

It is also crucial that we continue to build geologic source databases for both agate and carnelian and garnet, with a focus on Southeast Asian sources. Questions regarding the local production of stone beads cannot be resolved until the geologic sources used to produce the beads are confidently identified. In collaboration with Dr. Randall Law, I have already begun some work on building an Old World Agate Database, a project that we hope to continue in the future. I would also like to visit the region near the sites with garnet beads in southern Cambodia and Vietnam in an attempt to identify a possible raw material source for garnet in this location.

In relation to this, I also hope to complete experimental drilling studies on garnet in order to identify the drilling methods used to produce the beads in southeast Cambodia. A preliminary study has already been begun, and with continued practice drilling I hope that future studies will be able to successfully identify the drilling methods used to produce garnet and identify their relationship with pre-existing stone drilling traditions in Southeast Asia.

There was also a large collection of greenstone beads from Promtin Tai, likely made from nephrite, which were not considered in this dissertation due to time and financial restrictions

(Figure 9.6). However, the beads were measured, recorded, photographed, and impressions were taken of their drill holes. Similar beads have also been found at other sites in central Thailand (Rammanat 2009), although the ultimate origin of these objects is unknown. In the future, I would like to comprehensively examine these beads using methods from this dissertation in order to better understand where they were from, how they were made, and how and where they were traded.



Figure 9.6: Greenstone beads with carnelian and glass beads from Promtin Tai.

This dissertation has used a comprehensive analysis of stone and glass beads from Iron Age sites in Cambodia and Thailand to identify trade and exchange networks during the Iron Age period and how they varied over time and space. Using these data, I argue that during the later Iron Age elites in the Mekong Delta were becoming increasingly involved in the trade of glass and stone beads. This increased participation in trade likely coincided with the expansion of the Mekong Delta polities and points towards increased connections with communities at

inland sites that had not been previously participating in long-distance prestige goods networks. This data is in contrast to the supposition by Christie (1995) who argued that early centers of trade in the maritime region were likely the preexisting polities that were already controlling movement between the coasts and inland areas. The earliest state level societies do not appear to have been growing out of sites involved in these early coastal exchange networks. Instead, it appears that during the early first millennium AD, elites in the Mekong Delta were taking advantage of increased quantities of goods from South Asia to expand their connections and create new exchange networks with these inland sites.

Evidence from Prohear and Angkor Borei is also important for understanding the nature of this early trade. These two sites were contemporary with one another and yet they had very different bead collections. From this data it appears that elites in the Mekong Delta were not trying to tap into the pre-existing coastal exchange networks and instead trading with inland communities that had not been a part of these coastal networks. Elites could have been using objects like stone and glass beads to create alliances with elites at inland sites, or using them to trade for goods and products that could be used in long-distance exchange (e.g. Bronson 1977).

These expanding trade networks were apparently a part of suite of changes taking place during this period, detailed in Chapter 1, which led towards the emergence of an early state-level society in the Mekong Delta. Evidence from the stone and glass bead data presented in this study point towards the first few centuries AD for the emergence of these expanded networks.

Therefore I argue that this may be the beginning of the processes leading towards the development of a state, and that the Mekong Delta may have been the home to a state level

society for several centuries prior to development of stone inscriptions and sculpture in the midlate first millennium AD.

Examination of glass and stone bead has also allowed for the identification of smaller regional exchange networks in southeast Cambodia and Northeast Thailand. Furthermore, the distribution of beads from within burials suggests that at each site there were often a handful of individuals who had greater access to beads than the rest of their community. Although these data are still preliminary, I argue that at least some of the people buried with large numbers of beads may have held high-status positions in their community. That many of the burials with large numbers of beads were adult females suggest that women played important roles in Iron Age communities.

Unfortunately, these stone and glass beads are popular amongst contemporary collectors and many important sites have been heavily looted, including many sites that may have been involved in bead production. This has severely affected our understanding of how craft production in Iron Age and early historic Southeast Asia was organized, which in turn has implications for our understanding of the socio-political organization of these communities. I strongly feel that archaeologists and cultural heritage groups should continue to expand their outreach efforts regarding looting, so that local communities will learn to protect and curate their heritage rather than sell it on the antiquities market.

# References

Albrecht, Gerd, Miriam Noel Haidle, Chhor Sivleng, Heang Leang Hong, Heng Sophady, Heng Than, Mao Someaphyvath, Sirik Kada, Som Sophal, Thuy Chanthourn, and Vin Laychour 2001 Circular Earthwork Krek 52/62: Recent Research on the Prehistory of Cambodia. *Asian Perspectives* 39 (1-2): 20-46.

# Allchin, Bridget

1979 The Agate and Carnelian Industry of Western India and Pakistan. In *South Asian Archaeology* 1975, edited by J.E Van Lohuizen De Leeuw, pp. 91-105. E.J. Brill, Leiden.

### Allen, Jane

1991 Trade and site distribution in early historic-period Kedah: geoarchaeological, historic, and locational evidence. *Bulletin of the Indo-Pacific Prehistory Association* 10: 307-19.

# Andaya, Barbara Watson

2006 The Flaming Womb: Repositioning Women in Early Modern Southeast Asia. University of Hawaii Press, Honolulu.

### Aranyakanon, Payome

1983 The Gem Deposits of Thailand. Department of Mineral Resources, Bangkok.

#### Arkell, A J

1936 Cambay and the Bead Trade. Antiquity 10: 292-305.

# Aung Myint, U. and Elizabeth Moore

1991 Finger-marked designs on ancient bricks in Myanmar. *Journal of the Siam Society* 79 (2): 80-102.

### Bakti, R. Agus

2001 Pacitan's agate, long-lasting souvenir. The Jakarta Post, 3 November.

### Banerjee, NR

1959 The Technique of the Manufacture of Stone Beads in Ancient Ujjain. *Journal of the Asiatic Society* 1 (2): 189-196.

### Barbosa, D.

1866 A Description of the Coasts of East Africa and Malabar in the Beginning of the Sixteenth Century. Hakluyt Society, London.

# Barram, Andrew and Ian C Glover

2008 Re-Thinking Dvaravati. In From Homo Erectus to the Living Traditions. Choice of Papers from the 11th International Conference of the European Association of Southeast

Asian Archaeologists, edited by Jean-Pierre Pautreau, Anne-Sophie Coupey, Valery Zeitoun, and Emma Rambault, pp. 175-182. Siam Ratana, Chiang Mai, Thailand.

#### Basa, Kishor, K.

1991 The Westerly Trade of Southeast Asia from c. 400 BC to 500 AD with Special Reference to Glass Beads. Unpublished Ph.D. dissertation, Institute of Archaeology, University College London.

1992 Early Historic Glass Beads in Thailand and Peninsular Malaysia. Southeast Asian Archaeology 1990: Proceedings of the Third Conference of the European Association of Southeast Asian Archaeologists: 85-102. University of Hull, Hull.

### Basa, Kishor, Ian C Glover, and Julian Henderson

1991 The Relationship Between Early Southeast Asian and Indian Glass. *Indo-Pacific Prehistory Association Bulletin* 10: 366-385.

# Baty, Pierre

2003 Prei Khmeng 2003-Le sondage 21000. In *Mission Archaeologique Franco-Khmere sur L'Amenagement du Territoire Angkorien (MAFKATA). Campagne 2003 Rapport*, pp. 4-19. École Française d'Extrême-Orient, Siem Reap.

#### Bauer, Max

1968 The Garnet Group. In *Precious Stones*, pp. 345-361. Dover Publications, New York.

#### Baxter, M.J.

1994 Exploratory Multivariate Analysis in Archaeology. Edinburgh University Press, Edinburgh.

### Bayard, Donn

1984 A Tentative Regional Phase Chronology for Northeast Thailand. In *Southeast Asia at the XV Pacific Science Conference*, edited by Donn Bayard, pp. 161-182. Department of Anthropology, University of Otago, Dunedin.

1987 Chronology, evolution and diffusion in the later Southeast Asian cultural sequence: some comments on Higham's recent revision. *Bulletin of the Indo-Pacific Prehistory Association* 7: 118-140.

1992 Models, Scenarios, Variables and Supposition; Approaches to the Rise of Social Complexity in Mainland Southeast Asia, 700 BC- AD 500. In *Early Metallurgy, Trade, and Urban Centres in Thailand and Southeast Asia: 13 Archaeological Essays*, edited by Ian Glover, Pornchai Suchitta, and John Villiers, pp. 13-28. White Lotus, Bangkok.

### Beck, Horace C.

1928 Classification and nomenclature of beads and pendants. Society of Antiquaries of London, London.

1930 Notes on Sundry Asiatic Beads. Man 30: 166-182.

1933 Etched Carnelian Beads. Antiquaries Journal XVIII: 384-398.

### Bellina, Bérénice

2001 Témoignages archéologiques d'échanges entre l'Inde et l'Asie du Sud-Est, morphologie, morphométrie et techniques de fabrication des perles en agate et en cornaline (VIe siècle avant notre ere- VIe siècle de notre ere). Unpublished Ph.D. dissertation, Paris III, Sorbonne Nouvelle, Paris.

2003 Beads, Social Change and Interaction Between India and South-east Asia. *Antiquity* 77 (296): 285-297.

2007 Cultural Exchange between India and Southeast Asia: Production and distribution of hard stone ornaments (VI c. BC-VI c. AD). Éditions de la Maison des Sciences de l'Homme, Paris.

#### Bellina, Bérénice and Ian Glover

2004 The Archaeology of Early Contact with India and the Mediterranean World, from the Fourth Century BC to the Fourth Century AD. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, pp. 68-87. RoutledgeCurzon, New York.

### Bellina, Bérénice and Praon Silapanth

2006 Khao Sam Kaeo and the Upper Thai Peninsula: Understanding the Mechanisms of Early Trans-Asiatic Trade and Cultural Exchange. In *Uncovering Southeast Asia's Past – Selected papers from the Tenth Biennial Conference of the European Association of Southeast Asian Archaeologists*, *London*, 14th – 17th September 2004, edited by Elizabeth Bacus, Ian Glover, and Vincent Piggott, pp. 378-391. National University Press, Singapore.

2008 Weaving Cultural Identities on Trans-Atlantic Networks: Upper Thai-Malay Peninsula-- an Early Socio-Political Landscape. *Bulletin de l'Ecole Française d'Extreme-Orient* 93: 257-293.

# Bellwood, Peter

2004 The origins and dispersals of agricultural communities in Southeast Asia. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, pp. 21-40. RoutledgeCurzon, New York.

2005 The First Farmers: The Origins of Agricultural Societies. Blackwell, Oxford.

2007 Prehistory of the Indo-Malaysian Archipelago. ANU E Press, Canberra.

### Bellwood, Peter and Ian Glover

2004 Southeast Asia: Foundations for an archaeological history. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, pp. 4-20. RoutledgeCurzon, New York.

# Bentley, G. Carter

1986 Indigenous States of Southeast Asia. Annual Review of Anthropology 15: 275-305.

- Bentley, R. Alexander, Nancy Tayles, Charles Higham, C Macpherson, and Tim C. Atkinson 2007 Shifting Gender Relations at Khok Phanom Di, Thailand. *Current Anthropology* 48 (2): 301-314.
- Bentley, R Alexander, Michael Pietrusewsky, Michael T Douglas, and Tim C Atkinson 2005 Matrilocality during the Prehistoric Transition to Agriculture in Thailand?. *Antiquity* 79: 865-881.
- Bimson, M, S La Neice, and M Leese 1982 The Characterisation of mounted garnets. *Archaeometry* 24 (1): 51-58.
- Bishop, Paul, David C. W. Sanderson, and Miriam T. Stark
  2004 OSL and Radiocarbon Dating of a Pre-Angkorian Canal in the Mekong Delta,
  Southern Cambodia. *Journal of Archaeological Science* 31: 319-336.
- Bishop, Paul, Dan Penny, Miriam Stark, and Marian Scott 2003 A 3.5 ka Record of Paleoenvironments and Human Occupation at Angkor Borei, Mekong Delta, Southern Cambodia. *Geoarchaeology: An International Journal* 18 (3): 359-393.
- Blanton, Richard E, Gary M Feinman, Stephan A Kowalewski, and Peter N Peregrine 1996 A Dual-Processual Theory for the Evolution of Mesoamerican Civilization. *Current Anthropology* 37 (1): 1-14.
- Boon, George and Maria Dekowna

1977 Glass-in-Gold Beads from the Ancient World. Britannia 8: 193-207.

### Bowdler, Sandra

2006 The Hoabinhian: Early Evidence for SE Asian Trade Networks? . In *Uncovering Southeast Asia's Past: Selected Papers from the 10th International Conference of the European Association of Southeast Asian Archaeologists*, edited by Elisabeth A. Bacus, Ian Glover, and Vincent C. Pigott, pp. 355-359. NUS Press, Singapore.

### Boyd, William E.

2007 The Geoarchaeology of Noen U-Loke and Non Muang Kao. In *The Origins of the Civilization of Angkor Volume II: The Excavation of Noen U-Loke and Non Muang Kao*, edited by C.F.W Higham, A. Kijngam, and S. Talbot, pp. 29-53. The Thai Fine Arts Department, Bangkok.

### Boyd, William E. and Nigel Chang

2010 Integrating social and environmental change in prehistory: a discussion of the role of landscape as a heuristic in defining prehistoric possibilities in NE Thailand. In *Terra Australis: 21: Altered ecologies - fire, climate and human influence on terrestrial landscapes*, edited by S Haberle, J Stevenson, and M Prebble, pp. 273-297. ANU E Press, Canberra.

#### Brill, Robert H.

1993 Scientific Investigations of Ancient Asian Glasses. In *Nara Symposium '91: UNESCO Maritime Route of Silk Roads: Report*, edited by UNESCO, pp. 70-79. Nara International Foundation, Nara, Japan.

#### **Bronson Bennet**

1976 Excavations at Chansen and the cultural chronology of protohistoric central Thailand. Unpublished Ph.D. dissertation, Department of Anthropology. University of Pennsylvania.

1977 Exchange at the Upstream and Downstream Ends: Notes Toward a Functional Model of the Coastal State in Southeast Asia. In *Economic Exchange and Social Interaction in Southeast Asia*, edited by Karl Hutterer, pp. 39-52. Michigan Southeast Asian Studies, Ann Arbor.

1990 Glass and Beads at Khuan Lukpad, Southern Thailand. In *Southeast Asian Archaeology* 1986, pp. 213-229. B.A.R., Oxford.

1992 Patterns in the Early Southeast Asian Metals Trade. In *Early Metallurgy, Trade and Urban Centres in Thailand and Southeast Asia*, edited by Ian Glover, Pornchai Suchitta, and John Villiers, pp. 63-115. White Lotus Press, Bangkok.

### Brumfiel, Elizabeth and Timothy Earle

1987 Specialization, Exchange, and Complex Societies: An Introduction. In *Specialization, Exchange, and Complex Societies*, edited by Elizabeth Brumfiel and Timothy Earle, pp. 1-9. Cambridge University Press, Cambridge.

# Caldwell, J.R.

1964 Interaction Spheres in Prehistory. In *Hopewellian Studies*, edited by J.R. Caldwell and R.L. Hall, pp. 133-143. Illinois State Museum, Springfield.

# Calligaro, T., S. Colinart, J.P. Poirot, and C. Sudres

2002 Combined external-beam PIXE and [mu]-Raman characterisation of garnets used in Merovingian jewellery. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 189 (1-4): 320-327.

### Calò, Ambra

2009 The Distribution of Bronze Drums in Early Southeast Asia. Trade Routes and Cultural Spheres. Archaeopress, Oxford.

### Campbell Cole, Barbie

2003 Ancient Hard Stone Beads and Seals of Myanmar. In *Ornaments from the Past-Bead Studies After Beck*, edited by Ian Glover, Helen Hughes-Brock, and Julian Henderson, pp. 118-133. The Bead Study Trust, London.

#### Carneiro, Robert

1970 A Theory on the Origin of the State. Science 169: 733-738.

#### Carter, Alison

2009 From Prasats to Phnoms: International Collaborative Research in Cambodia. *The SAA Archaeological Record* 9 (3): 11-14.

2010 Trade and Exchange Networks in Iron Age Cambodia: Preliminary Results from a Compositional Analysis of Glass Beads. *Bulletin of the Indo-Pacific Prehistory Association* 30: 178-188.

# Carter, Alison, Piphal Heng, Sophady Heng, and Kaseka Phon

2013 Archaeology in Post-Khmer Rouge Cambodia. In *Encyclopedia of Global Archaeology*, edited by Claire Smith, Springer, New York.

#### Carter, Alison and James Lankton

2012 Analysis and comparison of glass beads from Ban Non Wat And Noen U-Loke. In *The Origins of Angkor Volume 3: The Excavation of Ban Non Wat, The Iron Age*, edited by Charles Higham, pp. 91-114. Fine Arts Department of Thailand, Bangkok.

#### Cawte, Hayden James

2009 Archaeometallurgical investigations at Puen Baolo and Dragon Field, Savannakhet Province, Laos: Stage one results and recommendations. Report on file with James Cook University, http://eprints.jcu.edu.au/10770/.

#### Chaisuwan, Boonyarit

2011 Early Contacts between India and the Andaman Coast in Thailand from the Second Century BCE to Eleventh Century CE. In *Early Interactions Between South and* 

Southeast Asia. Reflections on Cross-Cultural Exchange, edited by Pierre-Yves Manguin, A. Mani, and Geoff Wade, pp. 83-112. ISEAS Publishing, Singapore.

## Chaisuwan, Boonyarit, and Rerai Naiyawat

2009 Thung Tuk. A Settlement Linking Together the Maritime Silk Route. Trio Creation, Songkhla.

## Chang Nigel J.

1996 Personal Ornaments on Thai Prehistory: Some Preliminary Observations from Nong Nor, Central Thailand. *Bulletin of the Indo-Pacific Prehistory Association* 14: 140-50.

2001 Personal Ornaments in Thai Prehistory: Nong Nor, Ban Lum Khao, and Noen U-Loke. Unpublished Ph.D dissertation, University of Otago, Dunedin, New Zealand.

#### Chang, Nigel and Judy Voelker

2003 Ceramic Bangles as Everyday Personal Ornaments. *Bulletin of the Indo-Pacific Prehistory Association* 23: 19-26.

## Chapman, Robert and Klavs Randsborg

1981 Approaches to the archaeology of death. In *The Archaeology of Death*, edited by Robert Chapman, Ian Kinnes, and Klavs Randsborg, pp. 1-24. Cambridge University Press, Cambridge.

## Chi, Zhang and Hsiao-Chun Hung

2008 The Neolithic of Southern China – Origin, Development, and Dispersal. *Asian Perspectives* 47 (2): 299-329.

Chrea, Vichett, Sotham Sieng, Boly Mak, Vannda Tep, Salorn Phok, and Saroeun Mom 1999 *Mineral Deposits in Cambodia*. General Department of Mineral Resources, Ministry of Industry, Mines, and Energy, Phnom Penh.

### Christie, Jan Wisseman

1990 Trade and State Formation in the Malay Peninsula and Sumatra, 300 B.C. - A.D. 700. In *Southeast Asia Port and Polity*, edited by J Kathrithamby-Wells and John Villiers, pp. 39-60. Singapore University Press, Kent Ridge, Singapore.

1995 State Formation in Early Maritime Southeast Asia: A Consideration of the Theories and the Data. *Bigdragen Tot de Taal-, Land- En Volkenkunde* 151: 235-288.

## Clark, John E and Michael Blake

1994 The Power of Prestige: Competitive Generosity and the Emergence of Rank Societies in Lowland Mesoamerica. In *Factional Competition and Political Development in the New World*, edited by Elizabeth Brumfiel and John Fox, Cambridge University Press, Cambridge.

## Coedès, George

1968 The Indianized States of Southeast Asia. The University of Hawaii Press, Honolulu.

## Commission des Moeurs et Coutumes du Cambodge

1967 Recueil des Contes et Legendes Cambodgiens: Relatif à l'Origine historique et Géographique. Edition de l'Institut Bouddhique, Phnom Penh.

# Coningham, Robin, Daniella Burroni, Randolph Donahue, and Louise Ford 2006 Stone Objects. In *Anuradhapura: The British-Sri Lankan Excavations at Anuradhapura Salgaha Watta 2*, edited by Robin Coningham, pp. 377-413. Archaeopress, Oxford.

## Connelly, R.

2007 The Iron and Bimetallic Artefacts. In *The Origins of the Civilization of Angkor Volume II: The Excavation of Noen U-Loke and Non Muang Kao*, edited by Charles F.W. Higham, Amphan Kijngam, and Sarah Talbont, pp. 431-446. The Thai Fine Arts Department, Bangkok.

## Daguan, Zhou

2007 A Record of Cambodia: The land and its people. Silkworm Books, Chiang Mai.

## Dalsheimer, N and P Y Manguin

1998 Visnu mitrés et réseaux marchands en Asie du Sud-Est: nouvelles données archéologiques sur le Ier millénaire apr. J.-C.. *Bulletin de l'Ecole française d'Extrême-Orient* 85 (1): 87-123.

## D'Altroy, Terence and Timothy Earle

1985 Staple Finance, Wealth Finance and Storage in the Inka Political Economy. *Current Anthropology* 26 (2): 187-206.

## Dawson, J.B. and W.E. Stephens

1975 Statistical classification of garnets from kimberlite and associated xenoliths. *The Journal of Geology* 83 (5): 589-607.

#### Deer, W.A., R.A. Howie, and J. Zussman

1982 Rock Forming Minerals. Volume 1A: Orthosilicates. 2 Longman Group Limited, London.

#### Dega, Michael

2002 Prehistoric Circular Earthworks of Cambodia. Archaeopress, Oxford.

## Dega, Michael and D. Kyle Latinis

2012 A Brief Study of Cambodian Circular Earthwork Ceramics as Explained Through EDXRF Analysis. *Bulletin of the Indo-Pacific Prehistory Association* 31: 63-74.

### Demeter, Fabrice

2004a Étude biométrique des individus 21040 du site Prei Khmeng (Bony 3 dite "Paulette"). In *Mission Archéologique Franco-Khmère sur l'Aménagement du Territoire Angkorien (MAFKATA). Campagine 2004 Rapport*, pp. 70-75. École Française d'Extrême-Orient, Siem Reap.

2004b Étude biométrique des individus 21045 et 22035 du site Prei Khmeng. In *Mission Archéologique Franco-Khmère sur l'Aménagement du Territoire Angkorien (MAFKATA)*. *Campagne 2004 Rapport.*, pp. 76-86. École Française d'Extrême-Orient, Siem Reap.

Demeter, Fabrice, Laura L. Shackelford, Anne Marie Bacon, Philippe Duringer, Kira Westaway, Thongsa Sayavongkhamdy, Jose Braga, Phonephanh Sichanthongtip, Phimmasaeng Khamdalavong, Jean-Luc Ponche, Hong Wang, Craig Lundstrom, Elise Patole-Edoumba, and Anne-Marie Karpoff

2012 Anatomically modern human in Southeast Asia (Laos) by 46 ka. *Proceedings of the National Academy of Sciences* 109 (36): 14375-14380.

## Dikshit, Moreshwar Gangadhar

1949 Etched Beads in India. Deccan College: Postgraduate and Research Institute, Poona.

## Dillian, Carolyn D. and Carolyn L. White

2010 Introduction: Perspectives on Trade and Exchange. In *Trade and Exchange: Archaeological Studies from History and Prehistory*, pp. 3-14. Springer, New York.

## Dissanayake, C.B., Rohana Chandrajith, and H.J. Tobschall

2000 The Geology, Mineralogy and Rare Element Geochemistry of the Gem Deposits of Sri Lanka. *Bulletin of the Geological Society of Finland* 72 (1-2): 5-20.

## Domett, Kate, Dougald O'Reilly, and H.R. Buckley

2011 Bioarchaeological Evidence for Conflict in Iron Age North-west Cambodia. *Antiquity* 85: 441-458.

#### Domett, Kate and Dougald O'Reilly

2009 Health in Pre-Angkorian Cambodia: A Bioarchaeological Analysis of the Skeletal Remains from Phum Snay. *Asian Perspectives* 48 (1): 56-79.

#### Dowling, Nancy H.

1999 A New Date for the Phnom Da Images and its Iimplications for Early Cambodia. *Asian Perspectives* (1): 51-61.

Druce, Stephen, David Bulbeck, and Irfan Mahmud

2005 A Transitional Islamic Bugis Cremation in Bulubangi, South Sulawesi: Its Historical and Archaeological Context. *RIMA: Review of Indonesian and Malaysian Affairs* 39 (1): 1-22.

#### **Dussubieux Laure**

2001 L'Apport de l'ablation laser couplée a l'ICP-MS à la caractérisation des verres: Application a l'étude du verre de l'océan Indien. Unpublished Ph.D. dissertation, Université d'Orléans, Orléans, France.

Dussubieux, Laure, Mark Golitko, Patrick Ryan Williams, and Robert J Speakman 2007 Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis Applied to the Characterization of Peruvian Wari Ceramics. In *Archaeological Chemistry:*Analytical Techniques and Archaeological Interpretation, edited by Glascock, Speakman, and Popelka-Filcoff, pp. 349-363. American Chemical Society, Washington D.C..

#### Dussubieux, Laure and Bernard Gratuze

2003 Non-Destructive Characterization of Glass Beads: An Application to the Study of Glass Trade Between India and Southeast Asia. In *Fishbones and Glittering Emblems: Southeast Asian Archaeology* 2002, edited by Anna Karlstrom and Anna Kallen, pp. 135-101. Museum of Far Eastern Antiquities, Stockholm.

2010 Glass in Southeast Asia. In 50 Years of Archaeology in Southeast Asia. Essays in honour of Ian Glover, edited by Berenice Bellina, Elisabeth A. Bacus, Thomas Oliver Pryce, and Jan Wisseman Christie, pp. 247-260. River Books, Bangkok.

2013 Glass in South Asia. In *Modern Methods for Analysing Archaeological and Historic Glass*, edited by Koen Janssens, pp. 397-412. Wiley and Sons, West Sussex.

Dussubieux, Laure, James W. Lankton, Bellina-Pryce Berenice, and Boonyarit Chaisuwan 2012 Early Glass Trade in South and Southeast Asia: New Insights from Two Coastal Sites, Phu Khao Thong in Thailand and Arikamedu in South India. In *Crossing Borders: Selected Papers from the 13th International Conference of the European Association of Southeast Asian Archaeologists, Volume 1*, edited by Mai-Lin Tjoa-Bonatz, Andreas Reinecke, and Dominik Bonatz, pp. 307-328. NUS Press, Singapore.

## Dzung, Lam Thi My

2009 Sa Huynh Regional and Inter-regional Interactions in the Thu Bon Valley, Quang Nam Province, Central Vietnam. *Bulletin of the Indo-Pacific Prehistory Association* 29: 68-75.

2011 Central Vietnam During the Period from 500 BCE - CE 500. In *Early Interactions Between South and Southeast Asia*, edited by Pierre-Yves Manguin, A. Mani, and Geoff Wade, pp. 3-16. Institute of Southeast Asian Studies, Singapore.

#### Evans, I H N

1928 On ancient remains from Kuala Selinsing Perak and further notes on remains from Kuala Selising. *Journal of the Federated Malay States Museums* 12 (5): 121-131.

1932 Excavations at Tanjong Rawa, Kuala Selinsing, Perak. *Journal of the Federated Malay States Museums* 15 (3): 79-134.

## Eyre, Chureekamol Onsuwan

2011 Social Variation and Dynamics in Metal Age and Protohistoric Central Thailand: A Regional Perspective. *Asian Perspectives* 49 (1): 43-84.

## École française d'Extrême-Orient

2011 *Un siècle d'histoire : l'École française d'Extrême-Orient et le Cambodge*. Magellan & Cie, École française d'Extrême-Orient, Paris.

## Farges, Francois

1998 Mineralogy of the Louvres Merovingian garnet cloisonne jewelry; origins of the gems of the first kings of France. *American Mineralogist* 83 (3-4): 323.

## Fehrenbach, Shawn

2010 Compositional Analysis of 35 Ceramic Sherds from Phum Snay, Prohear, Choeung Ek, and Village 10.8, Kingdom of Cambodia, using Instrumental Neutron Activation Analysis. Report on file with the Ministry of Culture and Fine Arts, Cambodia.

## Flad, R. K. and Z. X. Hruby

2007 Specialized Production in Archaeological Contexts: Rethinking Specialization, the Social Value of Products, and the Practice of Production. *Archaeological Papers of the American Anthropological Association* 17 (1): 1-19.

#### Foster, W.

1906 The English Factories in India, 1612-1621: A Calendar of Documents in the India Office, British Museum and Public Record Office. Clarendon Press, Oxford.

## Fox, Jeff and Judy Ledgerwood

1999 Dry-Season Flood-Recession Rice in the Mekong Delta: Two Thousand Years of Sustainable Agriculture?. *Asian Perspectives* 38 (1): 37-50.

#### Francis Jr., Peter

1986 Baba Ghor and the Ratanpur Rakshisha. *Journal of the Economic and Social History of the Orient* 29 (2): 198-205.

1990 Glass Beads In Asia Part 2: Indo-Pacific Beads. Asian Perspectives 29 (1): 1-23.

1996 Beads, the Bead Trade, and State Development in Southeast Asia. In *Ancient Trades and Cultural Contacts in Southeast Asia*, edited by Nandana Chutiwongs, pp. 139-160. The Office of the National Culture Commission, Bangkok.

2002 Asia's Maritime Bead Trade. 300 B.C. to the Present. University of Hawai'i Press, Honolulu.

2004 Beads and selected small finds from the 1989-1992 excavations. In *The Ancient Port of Arikamedu: New Excavations and Researches 1989-1992*, *Volume 2*, edited by Vimala Begley, pp. 447-604. Ecole Française d'Extreme Orient, Paris.

#### Frankenstein, S and M J Rowlands

1978 The Internal Structure and Regional Context of Early Iron Age Society in South-Western Germany. *Bulletin of the Institute of Archaeology* 15: 73-112.

## Fuller, D., N. Boivin, T. Hoogervorst, and R. Allaby

2011 Across the Indian Ocean: the prehistoric movement of plants and animals. *Antiquity* 85: 544-558.

#### Gadekar, DR

1977 Sedimentary Structures in the Tertiary Rocks of South Gujarat and Their Environmental Significance. *Journal of the Geological Society of India* 18: 549-557.

#### Gardner, GB

1937 Ancient beads from the Johore River as evidence of an early link by sea between Malaya and the Roman Empire. *The Journal of the Royal Asiatic Society of Great Britain and Ireland* (3): 467-470.

## Gaudes, Rudiger

1993 Kaundinya, Preah Thaong, and the "Nagi Soma": Some Aspects of a Cambodian Legend. *Asian Folklore Studies* 52 (2): 333-358.

#### Glover, Ian

1989a Early Trade Between India and Southeast Asia: A Link in the Development of a World Trading System. Centre for South-East Asian Studies, Hull.

1989b Early Trade Between India and Southeast Asia: A Link in the Development of a World Trading System. The University of Hull Centre for South-East Asian Studies, Hull. Glover, I C

1993 Other people's pasts--Western archaeologists and Thai prehistory. *Journal of the Siam Society* 81 (1): 45-53.

1996 The Southern Silk Road: Archaeological Evidence for Early Trade Between India and Southeast Asia. In *Ancient Trades and Cultural Contacts in Southeast Asia*, edited by Nandana Chutiwongs, pp. 57-94. The Office of the National Culture Commission, Bangkok, Thailand.

2011 The Dvaravati Gap-Linking Prehistory and History in Early Thailand. *Bulletin of the Indo-Pacific Prehistory Association* 30: 79-86.

#### Glover, Ian and Bérénice Bellina

2001 Alkaline Etched Beads East of India in the Late Prehistoric and Early Historic Periods. *Bulletin de l'Ecole Française d'Extreme-Orient* 88: 191-215.

2003 Alkaline Etched Beads in Southeast Asia. In *Ornaments from the Past: Bead Studies after Beck*, edited by Ian C Glover, Helen Hughes-Brock, and Julian Henderson, pp. 92-107. The Bead Study Trust, London.

2006 Some National, Regional, and Political Uses of Archaeology in East and Southeast Asia. In *Archaeology of Asia*, edited by Miriam Stark, pp. 17-36. Blackwell, Malden.

2011 Ban Don Ta Phet and Khao Sam Keo: The Earliest Indian Contacts Re-assessed. In *Early Interactions Between South and Southesat Asia. Reflections on Cross-Cultural Exchange*, edited by Pierre-Yves Manguin, A. Mani, and Geoff Wade, ISEAS Publishing, Singapore.

## Glover, Ian and Peter Bellwood(editors)

2004 Southeast Asia: From Prehistory to History. RoutledgeCurzon, New York.

#### Glover, Ian and Julian Henderson

1995 Early Glass in South and South East Asia and China. In *South East Asia and China: Art, Interaction and Commerce*, edited by Rosemary Scott and John Guy, pp. 141-170. Percival David Foundation of Chinese Art, London.

#### Gorelick, Leonard and A. John Gwinnett

1978 Ancient seals and modern science. Expedition 20 (2): 38-47.

1988 Diamonds from India to Rome and beyond. *American Journal of Archaeology* 92 (4): 547-552.

1989 "Collars" in the Holes of Near Eastern Cylinder Seals. Archaeomaterials 3: 39-46.

#### Gorelick, L., A.J. Gwinnett, and Ian. C Glover

1996 An Examination of the Methods Used to Make the Semiprecious Stone Beads from Ban Don Ta Phet, Thailand. *Bead Study Trust Newsletter* 28: 8-11.

## Gorman, C. F. and P. Charoenwongsa

1976 Ban Chiang: a mosaic of impressions from the first two years. *Expedition* 18 (4): 14-26.

#### Gratuze, Bernard

1999 Obsidian Characterization by Laser Ablation ICP-MS and its Application to Prehistoric Trade in the Mediterranean and the Near East: Sources and Distribution of Obsidian within the Aegean and Anatolia. *Journal of Archaeological Science* 26: 869-881.

2005 Etude d'Objects en Verre Provenant des sites Cambodgiens de Phum-Snay et Samrong-Sen. Centre National de la Recherche Scientifique,

## Griffin, P Bion, Miriam Stark, and Judy Ledgerwood

1996 Research, Education, and Cultural Resource Management at Angkor Borei, Cambodia. *CRM* 19 (3): 37-41.

## Groslier, Bernard Phillippe

1966 Archaeologia Mundi: Indochine. Nagel, Geneva.

1966 Découvertes archéologiques récentes au Cambodge. Kambuja 16: 76-81.

## Gunawardene, Mahinda and Mahinda Rupasinghe

1986 The Elahera gem field in central Sri Lanka. Gems & Gemology 22 (2): 80-95.

## Gupta, Avijit

2005a Landforms of Southeast Asia. In *The Physical Geography of Southeast Asia*, edited by Avijit Gupta, pp. 38-64. Oxford University Press, Oxford.

2005b Rivers of Southeast Asia. In *The Physical Geography of Southeast Asia*, edited by Avijit Gupta, pp. 65-79. Oxford University Press, Oxford.

## Gupta, Sunil

2003 From Archaeology to Art in the Material Record of Southeast Asia: The Indianization Phenomenon Reviewed. In *Fishbones and Glittering Emblems: Southeast Asian Archaeology* 2002, edited by Anna Karlstrom and Anna Kallen, pp. 391-404. Museum of Far Eastern Antiquities, Stockholm.

2005 The Bay of Bengal Interaction Sphere (1000 BC - AD 500). *Bulletin of the Indo-Pacific Prehistory Association* 25: 21-30.

## Gutman, Pamela and Bob Hudson

2004 The Archaeology of Burma (Myanmar) from the Neolithic to Pagan. *Southeast Asia: From Prehistory to History:* 149-76.

#### Gwinnett, A.John and Leonard . Gorelick

1979 Ancient Lapidary. *Expedition* 22 (1): 17-32.

1986 Evidence for the Use of a Diamond Drill for Bead Making in Sri-Lanka c. 700-1000 A.D.. *Scanning Electron Microscopy* II: 473-477.

1987a Experimental evidence for the use of a diamond drill in sri lanka ca. Ad. 700-1000. *Archeomaterials* 1 (2): 149-152.

1987b The Change from Stone Drills to Copper Drills in Mesopotamia: An Experimental Perspective. *Expedition* 29 (3): 15-24.

1998 A Brief History of Drills and Drilling. Beads 10-11: 49-56.

#### Haidle, Miriam Noel

2001 Fragments of Glass Bangles from Krek 52/62 and Their Implications for the Dating of the Mimotien Culture. *Asian Perspectives* 40 (2): 195-208.

2009 Shouldered Adzes, Bifaces, and Chert Prisms: A Characterization of Mimotien Stone Tool Assemblages From Later Cambodian Prehistory. *Bulletin of the Indo-Pacific Prehistory Association* 29: 15-20.

#### Haidle, Miriam Noel and Udo Neumann

2004 Shiny Expectations? Glass in Mimotien Context. *Bulletin of the Indo-Pacific Prehistory Association* 24: 121-128.

#### Hall, Kenneth R.

1982 The" Indianization" of Funan: An economic history of Southeast Asia's first state. *Journal of Southeast Asian Studies* 13 (1): 81-106.

1985 Maritime Trade and State Development in Early Southeast Asia. University of Hawaii Press, Honolulu.

#### Hammerle Esme

2004 An Archaeological Study of Ancient Beads from Cambodia. Unpublished Ph.D. dissertation, Department of Anthropology, University of Hawai'i,

#### Hannibal-Deraniyagala, Anne Sibylle

2001 Beads from Tissamaharama: A typology of Sri Lankan glass and semi-precious stone beads. In *Ancient Ruhuna*. *Sri Lankan-German Archaeological Project in the Southern Province*. *Volume 1*, edited by H.-J. Weisshaar, H. Roth, and W. Wijeyapala, pp. 203-226. Von Zabern, Mainz am Rhein.

2005 Beads from Anuradhapura and Tissmaharama, Sri Lanka: Trade Contacts in the Early Historic Period. *Journal of Indian Ocean Archaeology* 2: 21-24.

#### Hansford, S. Howard

1950 Chinese Jade Carving. Lund Humphries & Co. LTD, London.

## Hayden, Brian

1998 Practical and Prestige Technologies: The Evolution of Material Systems. *Journal of Archaeological Science* 5 (1): 1-53.

## Heger, F.

1902 Alte Metalltrommeln aus sudost Asien. Leipzig, Hiersemann.

## Helms, Mary

1992 Long-Distance Contacts, Elite Aspirations, and the Age of Discovery in Cosmological Context. In *Resources, Power, and Interregional Interaction*, edited by Edward Schortman and Patricia Urban, pp. 157-173. Plenum Press, New York.

1993 Craft and the Kingly Ideal: Art, Trade, and Power. University of Texas Press, Austin.

#### Henderson, Julian

2000 *The Science and Archaeology of Materials. An Investigation of Inorganic Materials.* Routledge, London.

Henderson, Julian, J. A. Evans, H. J. Sloane, M. J. Leng, and C. Doherty 2005 The use of oxygen, strontium, and lead isotopes to provenance ancient glasses in the Middle East. *Journal of Archaeological Science* 32: 665-673.

## Hendrickson Mitch

2008 Arteries of Empire: An Operational Study of Transport and Communication in Angkorian Southeast Asia (9th to 15th centuries CE). Unpublished PhD dissertation, Department of Archaeology, University of Sydney.

## Heng, Sophady

2004 Recent Excavations at the Archaeological Site Krek, Village 18. Bulletin of the Students of the Department of Archaeology 3: 5-14.

2005 Village 10.8: Preliminary Results of the Excavation of an Iron Age Cemetery in the Red Soil Region, Eastern Cambodia. Report on file with the Ministry of Culture and Fine Arts, Phnom Penh, Cambodia.

Heng, Sophady, Laychour Vin, and Sonetra Seng

2012 *The Memot Archaeological Museum*. The Memot Centre for Archaeology, Phnom Penh.

## Heng Piphal

2009 A Political Economy Approach to Pre-Angkor Cambodia. Unpublished Masters Thesis, University of Hawaii at Manoa,

Hickmott, D.D., N. Shimizu, F.S. Spear, and J. Selverstone 1987 Trace-Element Zoning in a Metamorphic Garnet. *Geology* 15 (6): 573-576.

## Hickmott Donald Degarmo

1988 Trace Element Zoning in Garnets: Implications for Metamorphic Processes. Unpublished Ph.D. dissertation,

## Higham, Charles F.W.

1986 Chronology, Evolution and Diffusion in the Later Southeast Asian Cultural Sequence: Further Comments. *Bulletin of the Indo-Pacific Prehistory Association* 7: 141-7.

1989 *The Archaeology of Mainland Southeast Asia*. Cambridge University Press, Cambridge.

1996 The Bronze Age of Southeast Asia. Cambridge University Press, Cambridge.

2002 Early Cultures of Mainland Southeast Asia. River Books, Bangkok.

2004 Mainland Southeast Asia from the Neolithic to the Iron Age. In *Southeast Asia: From Prehistory to History*, edited by Peter Bellwood and Ian Glover, pp. 41-67. RoutledgeCurzon, New York.

2011a The Bronze Age of Southeast Asia: New Insight on Social Change from Ban Non Wat. *Cambridge Archaeological Journal* 21 (3): 365-389.

2011b The Iron Age of the Mun Valley, Thailand. *The Antiquaries Journal* 91 (1): 101-144.

### Higham, Charles, X. Guangmao, and L. Qiang

2011 The Prehistory of a Friction Zone: First Farmers and Hunters-Gatherers in Southeast Asia. *Antiquity* 85: 529-543.

## Higham, Charles and Tom Higham

2009 A New Chronological Framework for Prehistoric Southeast Asia, Based on a Bayesian Model from Ban Non Wat. *Antiquity* 83: 125-144.

## Higham, Charles and Amphan Kijngam (editors)

1984 Prehistoric Investigations in Northeast Thailand, part iii. B.A.R., Oxford.

2010 The Origins of Angkor IV: The Excavation of Ban Non Wat, Part Two-The Neolithic Occupation. The Thai Fine Arts Department, Bangkok.

2012 The Origins of Angkor IV: Excavation of Ban Non Wat, Part Three- The Iron Age. The Thai Fine Arts Department, Bangkok.

## Higham, Charles F.W., Amphan. Kijngam, and Sarah Talbot (editors)

2007 The Origins of the Civilization of Angkor Volume 2: The Excavation of Noen U-Loke and Non Muang Kao. The Thai Fine Arts Department, Bangkok.

## Higham, Charles F. W., Y. V. Kuzmin, and G. S. Burr

2010 The AMS 14C dating of Iron Age rice chaff ceramic temper from Ban Non Wat, Thailand: First results and its interpretation. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 268 (7-8): 1022-1025.

## Higham, Charles, and Rachanie Thosarat

1994 *Khok Phanom Di: Prehistoric Adaptation to the World's Richest Habitat*. Harcourt Brace College Publishers, Fort Worth.

2009 The Origins of the Civilization of Angkor. Volume III. The Excavation of Ban Non Wat: Introduction. The Fine Arts Department of Thailand, Bangkok.

2012 Early Thailand: From Prehistory to Sukhothai. River Books, Bangkok.

## Higham, Charles F.W. and Rachanie Thosarat(editors)

1993 *The Excavation of Khok Phanom Di. Volume III: The Material Culture (Part 1).* Oxbow Books, London.

#### Hodder, Ian

1980 Trade and Exchange: Definitions, Identification and Function. In *Models and Methods in Regional Exchange*, edited by Robert E. Fry, Society for American Archaeology, Washington D.C..

#### Hudson, Bob

2005 A Pyu Homeland in the Samon Valley: a new theory of the origins of Myanmar's early urban system. *Myanmar Historical Commission Conference Proceedings*, *Part 2* 59-79. Universities Historical Research Centre, Yangon.

## Hung, Hsiao-Chun and Peter Bellwood

2010 Movement of raw materials and manufactured goods across the South China Sea after 500 BCE: from Taiwan to Thailand, and back. In 50 Years of Archaeology in Southeast Asia. Essays in honour of Ian Glover, edited by Berenice Bellina, Elisabeth A. Bacus, Thomas Oliver Pryce, and Jan Wisseman Christie, pp. 234-246. River Books, Bangkok.

Hung, Hsiao-Chun, Yoshiyuki Lizuka, Peter Bellwood, Kim Dung Nguyen, Berenice Bellina, Praon Silapanth, Eusebio Dizon, Rey Santiago, Ipoi Datan, and Jonathan Manton 2007 Ancient Jades map 3000 years of prehistoric exchange in Southeast Asia. *Proceedings of the National Academy of Sciences* 104 (50): 19745-19750.

## Huntingford, G.W.B

1980 The Periplus of the Erythraean Sea. The Hakluyt Society, London.

#### Ikehara-Quebral R M

2010 An assessment of health in early historic (200 BC To AD 200) inhabitants of Vat Komnou, Angkor Borei, southern Cambodia: A bioarchaeological perspective. Unpublished Ph.D. dissertation, University of Hawaii at Manoa,

#### Indrawooth, Phasook

2004 The Archaeology of the Early Buddhist Kingdoms of Thailand. In *Southeast Asia: From Prehistory to History*, edited by Peter Bellwood and Ian Glover, pp. 120-148. RoutledgeCurzon, New York.

Insoll, Timothy, David A Polya, Kuldeep Bhan, Duncan Irving, and Kym Jarvis 2004 Towards an understanding of the carnelian bead trade from Western India to sub-Saharan Africa: the application of UV-LA-ICP-MS to carnelian from Gujarat, India, and West Africa. *Journal of Archaeological Science* 31: 1161-1173.

#### Ishizawa, Yoshiaki

1995 Chinese Chronicles of 1st-5th Century AD, Funan, Southern Cambodia. In *South East Asia and China: Art, Interaction and Commerce*, edited by Rosemary Scott and John Guy, pp. 11-31. University of London, Percival David Foundation of Chinese Art, London.

#### Jacob, J.M.

1979 Pre-Angkor Cambodia: Evidence from the inscriptions concerning the common people and their environment. In *Early South East Asia: Essays in Archaeology, History, and Historical Geography*, edited by R.B. Smith and W. Watson, pp. 406-424. Oxford University Press, New York.

## Jacobsen, Trudy

2008 Lost Goddesses: The Denial of Female Power in Cambodian History. NIAS Press, Copenhagen.

## Jacq-Hergoualc'h, Michel

2002 The Malay Peninsula: Crossroads of the Maritime Silk Road. Brill, Leiden.

#### Jacques, Claude, and Philippe Lafond

2007 The Khmer Empire: Cities and Sanctuaries from the 5th to the 13th Century. River Books, Bangkok.

#### Javier, E.L.

1997 *Rice Production in Cambodia*, edited by H.J. Nesbitt, pp. 39-81. International Rice Research Institute, Manila.

#### Junker, Laura Lee

1994 The Development of Centralized Craft Production Systems in A.D. 500-1600 Philippine Chiefdoms. *Journal of Southeast Asian Studies* 25 (1): 1-30.

Kane, Robert, Shane McClure, Robert Kammerling, Dang Khoa Nguyen, Carlo Mora, Saverio Repetto, Duc Khai Nguyen, and John Koivula

1991 Rubies and Fancy Sapphires from Vietnam. Gems & Gemology Fall: 136-155.

## Kanungo, Alok Kumar

1996 Beads Among the Juang of India. Beads 8-9: 3-10.

## Kelly, Gwendolyn O.

2009 Craft Production and Technology During the Iron Age to Early Historic Transition at Kodumanal, Tamil Nadu. *Tamil Civilization* 23 (Oct-Dec): 1-14.

#### Kenoyer, Jonathan Mark

1991 The Indus Valley Tradition of Pakistan and Western India. *Journal of World Prehistory* 5 (4): 331-385.

1992a Lapis Lazuli Beadmaking in Afghanistan and Pakistan. Ornament 15 (3): 71-73.

1992b Harappan Craft Specialization and the Question of Urban Segregation and Stratification. *The Eastern Anthropologist* 45 (1-2): 39-54.

1997 Trade and technology of the Indus Valley: new insights from Harappa, Pakistan. *World Archaeology* 29 (2): 262-280.

1998 Ancient Cities of the Indus Valley Civilization. Oxford University Press, Karachi.

2000 Wealth and Socio-Economic Hierarchies of the Indus Valley Civilization. In *Order*, *Legitimacy and Wealth in Early States*, edited by Janet Richards and Mary Van Buren, pp. 90-112. Cambridge University Press, Cambridge.

2003 The Technology of Stone Beads. In *A Bead Timeline: Volume 1: Prehistory to 1200 CE. A Resource for Identification, Classification and Dating*, edited by James Lankton, pp. 14-19. The Bead Society of Greater Washington, Washington D.C..

## Kenoyer, Jonathan Mark and Kuldeep K. Bhan

2004 Sidis and the Agate Bead Industry of Western India. In *Sidis and Scholars: Essays on African Indians*, edited by Amy Catlin-Jairazbhoy and Edward A. Alpers, pp. 42-60. Rainbow Publishers, Noida, India.

## Kenoyer, Jonathan Mark and Massimo Vidale

1992 A new look at stone drills of the Indus Valley Tradition. In *Materials Issues in Art and Archaeology, III*, edited by P Vandiver, J R Druzick, G S Wheeler, and I Freestone, pp. 495-518. Materials Research Society, Pittsburgh.

## Kenoyer, Jonathan Mark, Massimo Vidale, and Kuldeep Kumar Bhan

1991 Contemporary Stone Bead Making in Khambhat India: patterns of craft specialization and organization of production as reflected in the archaeological record. *World Archaeology* 23 (1): 44-63.

1994 Carnelian Bead Production in Khambhat India: An Ethnoarchaeological Study. In *Living Traditions: Studies in the Ethnoarchaeology of South Asia*, edited by B Allchin, pp. 281-306. Oxford and IBH, New Delhi.

#### Keo, Rathana

2010 Phnom Borei Phnom Da. Books World, Phnom Penh.

#### Khai, Vo Si

2003 The Kingdom of Funan and the Culture of Oc Eo. In *Art and Archaeology of Fu Nan: Pre-Khmer Kingdom of the Mekong Valley*, edited by James C.M. Khoo, pp. 35-86. Orchid Press, Bangkok.

#### Khan, A.M., and Charles Norman Seddon

1924 Supplement to the Mirat-i-Ahmadi: With Explanatory Notes and Appendices. Syed Nawab Ali, Baroda.

## Kim Nam C.

2010 The Underpinnings of Sociopolitical Complexity and Civilization in the Red River Valley of Vietnam. Unpublished Ph.D. dissertation, Department of Anthropology, University of Illinois at Chicago.

## Kim, Nam, Lai Van Toi, and Trinh Hoang Hiep

2010 Co Loa: an investigation of Vietnam's ancient capital. *Antiquity* 84 (326): 1011-1027.

## Kipp, Rich and Edward Schortmann

1989 The Political Impact of Trade in Chiefdoms. *American Anthropologist* 91 (2): 370-385.

#### Kolb, Michael J. and James E. Snead

1997 It's a small world after all: Comparative analyses of community organization in archaeology. *American Antiquity:* 609-628.

## Krais, Simone

2010 The Skeletal Remains from Prohear. *Bioarchaeology in Southeast Asia and the Pacific Newsletter* 6: 11-13.

## Krigbaum, J.R., A. Bentley, M.T. Stark, M. Pietrusewsky, and W. Belcher

2007 New perspectives on diet, ecology, and residence during the transition to history in the Mekong Delta. Paper presented at the 72<sup>nd</sup> Annual Society for American Archaeology Meeting, Austin.

## Kulke, Hermann

1990 Indian Colonies, Indianization or Cultural Convergence? Reflections on the Changing Image of India's role in South-East Asia. *Onderzoek in Zuidoost-Azie: Agendas voor de Jaren Negentig*: 8-32.

#### Lamb, Alastair

1965a Some Observations on stone and glass beads in early South-East Asia. *The Journal of Malaysian Branch of the Royal Asiatic Society* 38 (2): 87-124.

1965b Some Glass Beads from the Malay Peninsula. *Man. A Record of Anthropological Science* 65 (30): 36-38.

#### Lankton, James, Bunchar Pongpanich, and Bernard Gratuze

2009 Chinese Han period glass cup fragments in peninsular Thailand. Paper presented at Paper presented at the 19<sup>th</sup> Indo Pacific Prehistory Association Congress, Hanoi, Vietnam.

## Lankton, James and Laure Dussubieux

2006 Early Glass in Asian Maritime Trade: A Review and an Interpretation of Compositional Analysis. *Journal of Glass Studies* 48: 121-144.

2013 Early Glass in Southeast Asia. In *Modern Methods for Analysing Archaeological and Historic Glass*, edited by Koen Janssens, pp. 413-441. Wiley and Sons, West Sussex.

## Lankton, James, Laure Dussubieux, and Bernard Gratuze

2008 Glass from Khao Sam Kaeo: Transferred Technology for an Early Southeast Asian Exchange Network. *Bulletin de l'École française d'Extrême- Orient* 93: 317-351.

## Lankton, James W., Laure Dussubieux, and Thilo Rehren

2008 A Study of Mid-First Millennium CE Southeast Asian Specialized Glass Beadmaking Traditions. In *Interpreting Southeast Asia's Past: Monument, Image, and Text*, edited by Elisabeth Bacus, Ian C. Glover, and Peter D. Sharrock, pp. 335-356. NUS Press, Singapore.

## Lapteff, Sergey

2006 Stone and Glass beads of Bronze and Early Iron Age in Cambodia. *Journal of Indian Ocean Archaeology* 3: 117-125.

2007 Phum Snay Site Findings and the Birth of Hinduist Kingdoms in Indochina. *Journal of Indian Ocean Archaeology* 4: 67-77.

2009 *Phum Snay and the Origins of Pre-Angkor Cambodia*. The Institute of Practical Oriental Studies, Moscow.

#### Latinis, Kyle

2004 Prei Khmeng Glass Beads Preliminary EDXRF Report. In *Mission Archaeologique Franco-Khmere sur L'Amenagement du Territoire Angkorien (MAFKATA) Campagne* 2004, pp. 108-130. École Française d'Extrême-Orient, Siem Reap.

#### Law Randall

2008 Inter-Regional Interaction and Urbanism in the Ancient Indus Valley: A Geologic Provenance Study of Harappa's Rock and Mineral Assemblage. Unpublished Ph.D. dissertation, The University of Wisconsin-Madison, Madison, WI.

2011 Inter-Regional Interaction and Urbanism in the Ancient Indus Valley. Research Institute for Humanity and Nature, Kyoto.

Law, Randall, Alison Carter, Kuldeep Bhan, Arun Malik, and Michael Glascock 2012. INAA of agate sources and artifacts from the Indus, Helmand, and Thailand Regions. In South Asian Archaeology 2007: Proceedings of the 19th Meeting of the European Association of South Asian Archaeology in Ravenna, Italy, July 2007. Volume 1, edited by Dennys Frenez and Maurizio Tosi, pp. 177-184. British Archaeological Reports, Oxford.

#### Lertcharnrit, Thanik

2006 The Moated Site of Promtin Tai and the Transition from Late Prehistory to Early History in Central Thailand. In *Uncovering Southeast Asia's Past – Selected papers from the Tenth Biennial Conference of the European Association of Southeast Asian* 

*Archaeologists*, *London*, *14th* – *17th September 2004*, edited by Elisabeth Bacus, Ian Glover, and Vincent Pigott, pp. 258-265. NUS Press, Singapore.

2010 The Archaeology of Iron Age Thailand: Recent Investigations in Central Thailand. Paper presented at the 2010 Council on Thai Studies Conference, Madison, WI.

#### Lien, Le Thi

2005 Gold Plaques and their Cultural Contexts in the Oc Eo Culture. *Bulletin of the Indo-Pacific Prehistory Association* 25: 145-154.

## Liu, L, G. A. Lee, L. Jiang, and J. Zhang

2007 Evidence for the Early Beginning (c. 9000 cal. BP) of rice domestication in China: a response. *The Holocene* 17 (8): 1059.

## Liu Chin-hsin

2012 Human Skeletal Health and Dietary Assessment of Metal Age Central Thailand: The Impact of Changing Social Complexity and Regional Variation. Unpublished Ph.D. dissertation, Department of Anthropology, University of Florida, Gainesville.

#### Locock, Andrew J.

2008 An Excel Spreadsheet to Recast Analyses of Garnet into End-Member Components, and a Synopsis of the Crystal Chemistry of Natural Silicate Garnets. *Computers & Geosciences* 34 (12): 1769-1780.

#### Loofs-Wissow, H.E.

1982. Prehistoric and protohistoric links between the Indochinese Peninsula and the Philippines, as exemplified by two types of ear-ornaments. *Journal of the Hong Kong Archaeological Society* 9: 57-76.

1983 The Distribution of Dongson Drums: Some Thoughts. In *Ethnologie und Geschichte*, edited by P Snoy, pp. 410-417. Wiesbaden.

## Luedtke, Barbara

1992 An Archaeologist's Guide to Chert and Flint. UCLA Institute of Archaeology, Los Angeles, CA.

## Mabbett, Ian W.

1977a The "Indianization" of Southeast Asia: Reflections on the Historical Sources. *Journal of Southeast Asian Studies* 8 (2): 143-161.

1977b The "Indianization" of Southeast Asia: Reflections on the Prehistoric Sources. *Journal of Southeast Asian Studies* 8 (1): 1-14.

1997 The Indianization of Mainland Southeast Asia: A Reappraisal.. Living a Life in Accord with Dhamma: Papers in Honor of Professor Jean Boisselier on his Eightieth Birthday: 342-55.

## Mahoney John J.

1988 Deccan Traps. In *Continental Flood Basalts*, edited by J.D. MacDougall, pp. 151-194. Kluwer Academic Publishers, The Netherlands.

#### Malleret, Louis

1959a L'Archéologie du Delta du Mékong, Part 1, L'Exploration Archéologique et Les Fouilles d'Oc-Èo. École Française d'Extrême-Orient, Paris.

1959b Ouvrages circulaires en terre dans l'Indochine méridionale. *Bulletin de l'École française d'Extrême-Orient* 49 (2): 409-434.

1960a L'Archéologie du Delta du Mékong, Part 2, La Civilisation Matérielle d'Oc-Èo. École Française d'Extrême-Orient, Paris.

1962 L'Archéologie du Delta du Mékong, Part 3, La Culture du Fou-Nan. École Française d'Extrême-Orient, Paris.

1963 L'Archéologie du Delta du Mékong,, Part 4, La Cisbassac. École Française d'Extrême-Orient, Paris.

## Manguin, Pierre-Yves

2000 City-States and City-State Cultures in pre-15th-Century Southeast Asia. In *A Comparative Study of 30 City-State Cultures: An Investigation*, edited by M H Hansen, pp. 409-416. Kangelige Danske Videnskabenes Selskab, Copenhagen.

2004 The Early Maritime Polities of Southeasat Asia. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, pp. 282-313. RoutledgeCurzon, New York and London.

2009 The Archaeology of Fu Nan in the Mekong River Delta: The Oc Eo culture of Viet Nam. In *Arts of Ancient Viet Nam, From River Plain to Open Sea*, edited by Nancy Tingley, pp. 100-118. Yale University Press, New Haven.

2010 Pan-Regional Responses to South Asian Imputs in Early Southeast Asia. In 50 Years of Archaeology in Southeast Asia. Essays in honour of Ian Glover, edited by Berenice Bellina, Elisabeth A. Bacus, Thomas Oliver Pryce, and Jan Wisseman Christie, pp. 171-182. River Books, Bangkok.

## Manguin, Pierre-Yves, A. Mani, and Geoff Wade(editors)

2011 Early Interactions Between South and Southeast Asia: Reflections on Cross-Cultural Exchange. Institute of Southeast Asian Studies, Singapore.

### Manson, D V and C M Stockton

1982 Gem-quality grossular garnets. Gems & Gemology 18 (4): 204-213.

## Mathis, F., O. Vrielynck, K. Laclavetine, G. Chene, and D. Strivay

2008 Study of the provenance of Belgian Merovingian garnets by PIXE at IPNAS cyclotron. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 266 (10): 2348-2352.

#### Matthews, J. M.

1966 A review of the 'Hoabinhian' in Indo-China. Asian Perspectives 9 (1): 86-95.

## McCargo, D and K Hongladarom

2004 Contesting Isan-ness: discourses of politics and identity in Northeast Thailand. *Asian Ethnicity* 5 (2): 219-234.

#### McCrindle, J.W.

1885 Ancient India as described by Ptolemy. Trübner & Co, London.

## McGrath, R. J. and W. E. Boyd

2001 The Chronology of the Iron Age "Moats" of Northeast Thailand. *Antiquity* 75 (288): 349-360.

#### McNeill, Judith R. and David J. Welch

1991 Regional and Interregional Interaction on the Khorat Plateau. *Bulletin of the Indo-Pacific Prehistory Association* 10: 327-40.

#### Merh, S. S.

1995 Geology of Gujarat. Geological Society of India, Bangalore.

## Miksic, John

2003 The Beginning of Trade in Ancient Southeast Asia: The Role of OC Eo and the Lower Mekong River. In *Art and Archaeology of Fu Nan: Pre-Khmer Kingdom of the Mekong Valley*, edited by James C.M. Khoo, pp. 1-34. Orchid Press, Bangkok.

Mirti, Piero, Marco Pace, Mery Malandrino, and Mariamaddalena Negro Ponzi 2009 Sasanian glass from Veh Ardasir: new evidences by ICP-MS analysis. *Journal of Archaeological Science* 36: 1061-1069.

## Mohanty, P. and B. Mishra

1999 Beads from the Archaeological sites of Kalahandi District, Orissa.. *Bead Study Trust Newsletter* 34: 14-15.

## Mohanty, R.K.

1999 Significance of a Bead Manufacturing Centre at Mahurjhari, District Nagpur, Maharashtra, India. *Man and Environment* (24): 79-89.

Molina, J, M Sikora, N Garud, J M Flowers, S Rubinstein, A Reynolds, P Huang, S Jackson, B A Schaal, and C D Bustamante

2011 Molecular Evidence for a Single Evolutionary Origin of Domesticated Rice. *Proceedings of the National Academy of Sciences* 108 (20): 8351-8356.

#### Moore, Elizabeth

2004 Interpreting Pyu material culture: Royal chronologies and finger-marked bricks. *Myanmar Historical Research Journal* 13 : 1-57.

2007 Early Landscapes of Myanmar. River Books, Bangkok.

#### Moore, Elizabeth and T. Tan

2008 Eyes on the past: Samon and Pyu beads in Myanmar. Arts of Asia 38 (1): 134-141.

#### Moore, Elizabeth and San Win

2007 The Gold Coast: Suvannabhumi? Lower Myanmar Walled Sites of the First Millennium A.D.. *Asian Perspectives* 46 (1): 203-231.

#### Morton, Andrew C.

1985 A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. *Sedimentology* 32: 553-556.

### Mudar, Karen

1999 How Many Dvaravati Kingdoms? Locational Analysis of First Millennium A.D. Moated Settlements in Central Thailand. *Journal of Anthropological Archaeology* 18 (1): 1-28.

#### Muhly, J. D.

1986 The Beginnings of Metallurgy in the Old World. In *The Beginning of the Use of Metals and Alloys*, edited by R. Maddin, pp. 2-20. MIT Press, Cambridge, Mass.

#### Munsell Color

2012 Munsell Bead Color Book. Munsell Color, Grand Rapids.

Murillo-Barroso, M, T. O. Pryce, B. Bellina, and M. Martinón-Torres 2010 Khao Sam Kaeo-an archaeometallurgical crossroads for trans-asiatic technological traditions. *Journal of Archaeological Science* 37 (7): 1761-1772.

### Nesbitt, H.J.

1997 Topography, climate, and rice production. In *Rice production in Cambodia*, edited by H.J. Nesbitt, pp. 15-19. International Rice Research Institute, Manila.

#### Nesbitt, H. J. and Chan Phaloeun

1997 *Rice Production in Cambodia*, edited by H.J. Nesbitt, pp. 31-37. International Rice Research Institute, Manila.

## Nguyen, Khac Su

2004 The Neolithic Cultures of Vietnam. In *Southeast Asia: From Prehistory to History*, edited by Ian C. Glover and Peter Bellwood, pp. 177-188. RoutledgeCurzon, New York.

## Nguyen, Kim Dung

1996 The Trang Kenh Jewellery Workshop Site: An Experimental and Microwear Study. *Bulletin of the Indo-Pacific Prehistory Association* 14: 161-165.

2001 Jewellry from late prehistoric sites recently excavated in South Vietnam. *Bulletin of the Indo-Pacific Prehistory Association* 21 : 107-113.

Nguyen, Kim Dung, Can Trinh, Van Thang Dan, Quoc Hien Vu, and Thi Hau Nguyen 1995 Ornaments from Jar Burial Sites in Can Gio. *Khao Co Hoc* 2 : 27-46 (in Vietnamese).

## Nitta, Eiji

1991 Archaeological study on the ancient iron-smelting and salt-making industries in the northeast of Thailand: Preliminary report on the excavations of Non Yang and Ban Don Phlong. *Journal of Southeast Asian Archaeology* 11: 1-46.

1997 Iron-Smelting and Salt-Making Industries in Northeast Thailand. *Bulletin of the Indo-Pacific Prehistory Association* 16: 153-160.

1999 Iron and Salt Industries in Isan. In *The Dry Areas in Southeast Asia: Harsh or Benign Environment*, edited by Fukui Hayao, pp. 75-94. Center for Southeast Asian Studies (CSEAS), Kyoto University, Kyoto.

2007 Heger I drums, bronze halberds and ranked societies in the Mekong Basin. *Bulletin of the Indo-Pacific Prehistory Association* 25: 125-128.

## Noonsuk, Wannsasarn

2005 The Significance of Peninsular Siam in the Southeast Asian Maritime World During 500 BC to AD 1000. Unpublished Masters Thesis, University of Hawaii at Manoa,

## Oka, Rahul and Chapurukha M. Kusimba

2008 The Archaeology of Trading Systems, Part 1: Towards a New Trade Synthesis. *Journal of Archaeological Research* 16: 339-395.

## O'Reilly, Dougald J.W.

2000 From the Bronze Age to the Iron Age in Thailand: Applying the Heterarchical Approach. *Asian Perspectives* 39 (1/2): 1-19.

2003 Further Evidence of Heterarchy in Bronze Age Thailand. *Current Anthropology* 44 (2): 300-306.

2004 A Preliminary Report on the Excavation of a Late Prehistoric Cemetery in Northwest Cambodia. *Bulletin of the Indo-Pacific Prehistory Association* 24: 129-132.

2007 Early Civilizations of Southeast Asia. AltaMira, Lanham.

## O'Reilly, Dougald J.W and Sytha Pheng

2001 Recent Excavations in Northwest Cambodia. Antiquity 75 (288): 265-266.

## O'Reilly, Dougald J.W, Thuy Chanthourn, and Kate Domett

2004 A Preliminary Report on the Excavation of an Iron Age Cemetery at Phum Snay, Banteay Menchey, Cambodia, 2003. *Udaya* (5): 219-225.

#### Paris, Pierre

1931 Anciens canaux reconnus sur photographies aériennes dans les provinces de Ta-Kev et de Chau-Doc. *Bulletin de l'École Française d'Extrême Orient* 31: 221-224.

1941a Anciens canaux reconnus sur photographies aériennes dans les provinces de Takeo, Châu-dôc, Long-xuyèn et Rch-giá (Complément à la note parue dans le Bulletin de l'École française d'Extrême-Orient, 1931, p. 221 et suivantes). *Bulletin de l'École française d'Extrême-Orient* 41 (1): 365-370.

1941b Autres canaux reconnus à l'Est du Mékong par examen d'autres photographies aériennes (provinces de Châu-dôc et de Long-xuyên). *Bulletin de l'École française d'Extrême-Orient* 41 (1): 371-372.

#### Parsons, Jeffrey R.

1972 Archaeological Settlement Patterns. Annual Review of Anthropology 1: 127-150.

Perin, Patrick, Thomas Calligaro, Francoise Vallet, Jean-Paul Poirot, and Dominique Bagault 2007 Provenancing Merovingian garnets by PIXE and u-Raman spectrometry. In *Post-Roman towns, trade and settlement in Europe and Byzantium. Volume 1. The heirs of the Roman West*, edited by Joachim Henning, pp. 69-76. Walter de Gruyter, Berlin.

### Pham, Minh Huyen

2004 The Metal Age in the North of Vietnam. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, pp. 189-201. RoutledgeCurzon, New York.

## Phon, Kaseka

2004 Phnom Borei and its Relationship to Angkor Borei. Report on file with the Ministry of Culture and Fine Arts, Phnom Penh.

## Pigott, Vincent and Gerd Weisgerber

1998 Mining Archaeology in Geological Context. Metallurgica Antiqua 8: 135-162.

## Pigott, Vincent C., Andrew Weiss, and Surapol Natapintu

1997 Archaeology of Copper Production: Excavations in the Khao Wong Prachan Valley, Central Thailand. In *South-East Asian Archaeology 1992. Proceedings of the Fourth International Conference of the European Association of Southeast Asian Archaeologists. Rome*, 28th September-4th October 1992, edited by Roberto Ciarla and Fiorella Rispoli, pp. 119-157. Istituto Italiano per l'Africa e l'Oriente, Rome.

## Pilditch, Jacqueline S.

1992 The Glass Beads of Ban Bon Noen, Central Thailand. *Asian Perspectives* 31 (2): 171-181.

## Polanyi, Karl

1957 The Economy as Instituted Process. In *Trade and Market in the Early Empires*, edited by Karl Polanyi, Conrad M. Arensberg, and Harry W. Pearson, pp. 243-270. The Free Press, Glencoe, IL.

#### Pongpanich, Bunchar

2009 Beyond Beads. Matichon Publishing House, Bangkok, Thailand.

#### Possehl, G L

1981 Cambay Beadmaking. Expedition 23 (4): 39-47.

#### Pottier, Christophe

2001 Prei Khmeng: Synthese et phasage du tertre. In *Mission Archaeologique Franco-Khmere sur L'Amenagement du Territoire Angkorien (MAFKATA). Rapport Preliminaire Sur La Campagne de Fouilles 2001*, École française d' Extrême-Orient, Siem Reap.

- Pryce, T. Oliver, Bellina Bellina-Pryce, and Anna Bennett 2008 The Development of Metal Technologies in the Upper Thai-Malay Peninsula: Initial Interpretation of the archaeometallurgical evidenec form Khao Sam Kaeo. *Bulletin de L'Ecole Français d'Extreme-Orient* 93: 295-315.
- Pryce, T.Oliver, M. Pollard, M. Martinon-Torres, V.C. Pigott, and E. Pernicka 2011 Southeast Asia's First Isotopically Defined Prehistoric Copper Production System: When did Extractive Metallurgy Begin in the Khao Wong Prachan Valley of Central Thailand? *Archaeometry* 53 (1): 146-163.
- Quast, Von Dieter and Ulrich Schüssler 2000 Mineralogische Untersuchungen zur Herkunft der Granate merowingerzeitlicher Cloisonnéarbeiten. *Germania* 78: 75-96 (In German).

## Rajan, K

1990 New Light on the Megalithic Culture of the Kongu Region, Tamil Nadu. *Man and Environment* 15 (1): 93-102.

2009 Archaeological Excavations at Porunthal 2009. Pondicherry University, Pondicherry, India.

## Rammanat, Thawatchai

2009 Pre-History Ornament and Beads in Thailand Volume 1. Pasark River Basin. Phraram Creation, Bangkok.

## Ray, Himanshu Prabha

1996 Early Trans-Oceanic Contacts Between South and Southeast Asia. In *Ancient Trades and Cultural Contacts in Southeast Asia*, edited by Nandana Chutiwongs, pp. 43-94. The Office of the National Culture Commission, Bangkok.

1989 Early Maritime Contacts Between South and Southeast Asia. *Journal of Southeast Asian Studies* 20 (1): 42-54.

2003 The Archaeology of Seafaring in Ancient South Asia. Cambridge University Press, Cambridge.

Reddy, B. M., B. T. Langstieh, V. Kumar, T. Nagaraja, A. N. S. Reddy, A. Meka, A. G. Reddy, K. Thangaraj, and L. Singh

2007 Austro-Asiatic tribes of Northeast India provide hitherto missing genetic link between South and Southeast Asia. *PLoS One* 2 (11): e1141.

## Reid, Anthony

1988 Southeast Asia in the Age of Commerce 1450-1680. Volume One, The Lands below the winds. Yale University Press, New Haven.

1995 Humans and Forests in Pre-Colonial Southeast Asia. *Environment and History* 1 (1): 93-110.

#### Reinecke, Andreas

1996 Bi-Cephalous Animal-Shaped Ear Pendants in Vietnam. *Bead Study Trust Newsletter* 28: 5-7.

2009 Early Cultures (first millennium B.C. to second century A.D.). In *Arts of Ancient Viet Nam: From River Plain to Open Sea*, edited by Nancy Tingley, pp. 23-49. Yale Univeristy Press, New Haven.

## Reinecke, Andreas, D.S. Le, and D.P. Le

1999 Zur Vorgeschichte im Nördlichen Mittelvietnam- Ve tien su Binh-Tri-Thien (Bac Trung Bo Viet Nam). Verglag, Mainz.

## Reinecke, Andreas, Vin Laychour, and Seng Sonetra

2009 *The First Golden Age of Cambodia: Excavation at Prohear*. German Archaeological Institute, Bonn.

#### Renfrew, Colin

1969 Trade and culture process in European prehistory. *Current Anthropology* 10 (2/3): 151-169.

1975 Trade as Action at a Distance: Questions of Integration and Communication. In *Ancient Civilizations and Trade*, edited by Sabloff and Lamberg-Karlovsky, pp. 3-59. University of New Mexico Press, Albuquerque.

1996 Peer-Polity Interaction and Social Change. In *Contemporary Archaeology in Theory: A Reader*, edited by Robert W. Preucel and Ian Hodder, pp. 114-164. Blackwell Publishing, Malden, MA.

## Renfrew, Colin and Stephan Shennan (editors)

1982 Ranking, Resource, and Exchange: Aspects of the Archaeology of Early European Society. Cambridge University Press, Cambridge.

1996 Peer-Polity Interaction and Social Change. In *Contemporary Archaeology in Theory: A Reader*, edited by Robert W. Preucel and Ian Hodder, pp. 114-164. Blackwell Publishing, Malden, MA.

#### Reynolds, Craig J.

1995 A New Look at Old Southeast Asia. The Journal of Asian Studies 54 (2): 419-446.

#### Richter, Anne

2000 Jewelry of Southeast Asia. Harry N. Abrams, New York.

## Rispoli, Fiorella

1997 Late Third-Mid Second Millennium B.C. Pottery Traditions in Central Thailand: Some Preliminary Observations in a Wider Perspective. In *South-East Asian Archaeology* 1992: Proceedings of the Fourth International Conference of the European Association of Southeast Asian Archaeologists. Rome, 28th September-4th October 1992, edited by Roberto Ciarla and Fiorella Rispoli, pp. 59-97. Istituto Italiano per l'Africa e l'Oriente, Rome.

2005 To the West and India. East and West 44 (1-4): 243-265.

## Ritter, Nils Christoph

2010 From Euphrates to Mekong – Maritime contacts between pre-Islamic Persia and Southeast Asia. Paper presented at the 13th International Conference of the European Association of Southeast Asian Archaeologists, Berlin.

Roll, Tom E., Michael P. Neeley, Robert J. Speakman, and Michael D. Glascock 2005 Characterization of Montana Cherts by LA-ICP-MS. In *Laser Ablation-ICP-MS in Archaeological Research*, edited by Robert Speakman and Hector Neff, pp. 59-74. University of New Mexico Press, Albuquerque.

## Rosch, C, R Hock, U Schussler, P Yule, and A Hannibal

1997 Electron microprobe analysis and X-ray dif fraction methods in archaeometry: Investigations on ancient beads from the Sultanate of Oman and from Sri Lanka. *European Journal of Mineralogy* 9: 763-783.

#### Roux, Valentine

2000 Cornaline de l'Inde: Des pratiques techniques de Cambay aux techno-systèmes de l'Indus. Éditions de la Maison des sciences de l'homme, Paris.

# Sabloff, Jeremy A. and C.C. Lamberg-Karlovsky (editors) 1975 *Ancient Civilization and Trade*. University of New Mexico Press, Albuquerque.

## Saitowitz, S.J. and Reid, D.L.

2001 Physical and chemical analysis of glass beads and glassy slag from Iron age sites in northeast Thailand: Preliminary Findings. *Australasian Connections and New Directions: Proceedings of the 7th Australasian Archaeometry Conference, University of Auckland* 307-327. University of Auckland, Auckland.

## Salisbury, Amy and Ian Glover

1997 New Analyses of Early Glass from Thailand and Vietnam. *Bead Study Trust Newsletter* 30 (Winter): 7-14.

- Sanderson, David CW, Paul Bishop, Miriam Stark, Sally Alexander, and Dan Penny 2007 Luminescence dating of canal sediments from Angkor Borei, Mekong Delta, Southern Cambodia. *Quaternary Geochronology* 2 (1-4): 322-329.
- Sanderson, David CW, Paul Bishop, Miriam Stark, and J. Q. Spencer 2003 Luminescence Dating of Anthropogenically Reset Canal Sediments from Angkor Borei, Mekong Delta, Cambodia. *Quaternary Science Reviews* 22: 1111-1121.
- Sayavongkhamdy, Thongsa, Peter Bellwood, and David Bulbeck 2000 Recent Archaeological Research in Laos. *Bulletin of the Indo-Pacific Prehistory Association* 19: 101-110.
- Sayre, E.V. and R.W. Smith 1961 Compositional Categories of Ancient Glass. *Science* 133 (3467): 1824-1826.

1967 Some Materials of Glass Manufacturing in Antiquity. In *Archaeological Chemistry*, a *Symposium*, *Third Symposium on Archaeological Chemistry*, edited by M. Levey, pp. 279-312. University of Pennsylvania Press, Phildelphia.

- Schortman, Edward and Patricia Urban (editors)
  1992 Resources, Power, and Interregional Interaction. Plenum Press, New York.
- Schussler, U., C. Rosch, and R. Hock
  2001 Beads from ancient Sri Lanka- First results of a systematic material analysis. In

  Ancient Ruhuna. Sri Lankan-German Archaeological Project in the Southern Province.

  Volume 1, edited by H.-J. Weisshaar, H. Roth, and W. Wijeyapala, pp. 227-242. Von
  Zabern, Mainz.
- Shaffer, Jim G.
  1992 The Indus Valley, Baluchistan, and Helmand Traditions: Neolithic through Bronze Age. In *Chronologies in Old World Archaeology, Volume 1*, edited by R. Ehrich, pp. 425-446. Chicago.
- Shigley, James, Brendan Laurs, A.J.A. Janse, Sheryl Elen, and Dona Dirlam 2010 Gem Localities of the 2000s. *Gems & Gemology* Fall: 188-216.
- Smith, Monica L.
  1999 Indianization" from the Indian Point of View: Trade and Cultural Contacts with Southeast Asia in the Early First Millennium CE. *Journal of the Economic and Social History of the Orient* 42 (1): 1-26.
- Sok Keo, Sovannara
  2005 Archaeological excavation and data analysis work project. Iron Age cemetery site in north-west of Cambodia: Secondary report on second excavation work at Krasang

Thmei village site. Report on file with the Ministry of Culture and Fine Arts, Phnom Penh.

#### Solheim, Wilhem G.

1964 Further relationships of the Sa Huynh--Kalanay Pottery Tradition. *Asian Perspectives* 8 (1): 196-211.

1968 Early bronze in northeastern Thailand. Current Anthropology 9 (1): 59-62.

1972 An Earlier Agricultural Revolution. Scientific American 226 (4): 34-41.

1984 Remarks on the lingling-o and bi-cephalous ornaments. *Journal of the Hong Kong Archaeological Society* 10: 107-111.

## Song Sophy

2008 A Study of Glass Beads from Phum Snay Iron Age Archaeological Site and Settlement, Cambodia. Data from excavation in 2001 and 2003. Unpublished Masters Thesis, Master Erasmus Mundus in Quaternario e Preistoria, Universita degli Studi di Ferrara.

#### Southworth, William A.

2004 The Coastal States of Champa. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, pp. 209-233. RoutledgeCurzon, New York.

## Sovath Bong

2003 The Ceramic Chronology of Angkor Borei, Takeo province, Southern Cambodia. Unpublished Ph.D. dissertation, University of Hawaii at Manoa, Department of Anthropology.

## Spear, Frank S. and Matthew J. Kohn

1996 Trace Element Zoning in Garnet as a Monitor of Crustal Melting. *Geology* 24 (12): 1099-1102.

#### Srisuchat, Amara

1996 Merchants, Merchandise, Markets: Archaeological Evidence in Thailand Concerning Maritime Trade Interaction Between Thailand and Other Countries Before the 16th Century A.D.. In *Ancient Trades and Cultural Contacts in Southeast Asia*, edited by Nandana Chutiwongs, pp. 237-266. The National Office of the Culture Commission, Bangkok.

#### Stark, Miriam T.

1998 The Transition to History in the Mekong Delta: A View from Cambodia. *International Journal of Historical Archaeology* 2 (3): 175-303.

2001 Some Preliminary Results of the 1999-2000 Archaeological Field Investigations at Angkor Borei, Takeo Province. *Udaya*. *The Journal of Khmer Studies* 2: 19-35.

2003 Angkor Borei and the Archaeology of Cambodia's Mekong Delta. In *Art & Archaeology of Fu Nan. Pre-Khmer Kingdom of the Lower Mekong Valley*, edited by James C M Khoo, pp. 87-106. Orchid Press, Bangkok.

2004 Pre-Angkorian and Angkorian Cambodia. In *Southeast Asia: From Prehistory to History*, edited by Ian Glover and Peter Bellwood, RoutledgeCurzon, London.

2006a Pre-Angkorian Settlement Trends in Cambodia's Mekong Delta and the Lower Mekong Archaeological Project. *Bulletin of the Indo-Pacific Prehistory Association* 26: 98-109.

2006b Early Mainland Southeast Asian Landscapes in the First Millennium A.D. *Annual Review in Anthropoogy* 35 (21): 21-48.

2006c From Funan to Angkor. Collapse and Regeneration in Ancient Cambodia. In *After Collapse: The Regeneration of Complex Societies*, edited by Glenn M Schwartz and John J Nichols, pp. 144-167. The University of Arizona Press, Tucson.

#### Stark, Miriam and Laure Dussubieux

2002 Paper presented at Paper presented at the 17th Congress of the Indo-Pacific Prehistory Association 9-15 September, 2002, Taipei, Taiwan.

Stark, Miriam T, P Bion Griffin, Chuch Phoeurn, Judy Ledgerwood, Michael Dega, Carol Mortland, Nancy Dowling, James Bayman, Bong Sovath, Tea Van, Chhan Chamroeun, and Kyle Latanis

1999 Results of the 1995-1996 Archaeological Field Investigations at Angkor Borei, Cambodia. *Asian Perspectives* 38 (1): 7-36.

## Stark, Miriam, David C. W. Sanderson, and R. G. Bingham 2006 Monumentality in the Mekong: Luminescence Dating and Implications. *Bulletin of the Indo-Pacific Prehistory Association* 26:110-120.

#### Stark, Miriam T and Bong Sovath

2001 Recent Research on Emergent Complexity in Cambodia's Mekong. *Indo-Pacific Prehistory Association Bulletin* Melaka Papers Vol 5 (21): 85-98.

#### Stockton, Carol and D. Vincent Manson

1985 A Proposed New Classification for Gem-Quality Garnets. *Gems & Gemology* (Winter): 205-218.

#### Struever, S.

1964 The Hopewell Interaction Sphere in Riverine-Western Great Lakes Culture History. In *Hopewellian Studies*, edited by J.R. Caldwell and R.L. Hall, pp. 85-106. Illinois State Museum, Springfield.

#### Talbot, Sarah

2007 The Analysis of the Mortuary Record. In *The Excavation of Noen U-Loke and Non Muang Kao. Volume Two*, edited by C.F.W. Higham, A. Kijngam, and S. Talbot, pp. 305-352. The Thai Fine Arts Department, Bangkok.

#### Theunissen, Robert

1997 Agate and Carnelian Ornaments from Noen U-Loke, an Iron-Age Settlement in Northeast Thailand. *Bead Study Trust Newsletter* Winter: 4-7.

1998 Agate and Carnelian Ornaments from Noen U-Loke, Northeast Thailand: Some Thoughts on their Social Function and "Value". *Bead Study Trust Newsletter* 32 (Winter): 8-11.

2003 Agate and Carnelian Beads and the Dynamics of Social Complexity in Iron Age Mainland Southeast Asia. Unpublished Ph.D. dissertation, Department of Archaeology and Palaeoanthropology, University of New England, Australia.

2007 The agate and carnelian ornaments. In *The Origins of the Civilization of Angkor Volume 2: The Excavation of Noen U-Loke and Non Muang Kao*, edited by Charles Higham, Amphan Kijngam, and Sarah Talbot, pp. 359-378. The Thai Fine Arts Department, Bangkok.

## Theunissen, Robert George, Peter Grave, and Grahame Bailey

2000 Doubts on Diffusion: Challenging the Assumed Indian origin of Iron Age Agate and Carnelian beads in Southeast Asia . *World Archaeology* 32 (1): 84-105.

#### Tosi, M.

1968 Excavations at Shahr-i Sokhta, a Chalcolithic Settlement in the Iranian Sistan. Preliminary Report on the First Campaign, October-December 1967. *East and West:* 9-66.

#### Tracy, Robert J., Peter Robinson, and Alan B. Thompson

1976 Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. *American Mineralogist* 61: 762-775.

## Tripati, S and L N Raut

2006 Monsoon wind and maritime trade: a case study of historical evidence from Orissa, India. *Current Science* 90 (6): 864-871.

## Turner, W.E.S.

1956a Studies in Ancient Glasses and Glassmaking Processes. Part III. The Chronology of Glassmaking Constituents. *Journal of the Society of Glass Technology* 40: 39-52.

1956b Studies in Ancient Glasses and Glassmaking Processes: Part IV: The Chemical Composition of Ancient Glasses. *Journal of the Society of Glass Technology* 40: 162-186.

#### United Nations Statistics Division

2011 Composition of Macro Geographical (Continental) Regions, Geographical Sub-Regions, and Selected Economic and Other Groupings. Electronic document, http://millenniumindicators.un.org/unsd/methods/m49/m49regin.htm, accessed December 12, 2011.

#### Vallibhotama, Srisakra

1992 Early Urban Centres in the Chao Phraya Valley of Centra Thailand. In *Early Metallurgy*, *Trade and Urban Centres in Thailand and Southeast Asia*, edited by Ian Glover, Pornchai Suchitta, and John Villiers, pp. 123-129. White Lotus Press, Bangkok.

#### Van Leur, J.C.

1955 Indonesian Trade and Society. W. van Hoeve Ltd, Bandung.

Van Long, Pham, Gaston Giuliani, Virginie Garnier, and Daniel Ohnenstetter 2004 Gemstones in Vietnam: A Review. *The Australian Gemmologist* 22 (4)

## Vanna, Ly

2007 Chemical Characterization of Glass Beads from the Iron Age Site of Snay, Northwestern Cambodia. In *Regional Diversity in Archaeology: Southeast Asia Region*, edited by Masako Marui, pp. 347-359. Yuzankaku, Japan.

## VanPool, Todd, and Robert Leonard

2011 Quantitative Analysis in Archaeology. Wiley-Blackwell, Malden, Ma.

#### Velde, B. and L. Courtois

1983 Yellow garnets in roman amphorae--a possible tracer of ancient commerce. *Journal of Archaeological Science* 10 (6): 531-539.

#### Veraprasert, Mayuree

1992 Klong Thom: An Ancient Bead-Manufacturing Location and an Ancient Entrepôt. In *Early Metallurgy, Trade and Urban Centres in Thailand and Southeast Asia*, edited by Ian Glover, Pornchai Suchitta, and John Villiers, pp. 149-162. White Lotus, Bangkok.

## Vickery, Michael

1998 Society, Economics, and Politics in Pre-Angkor Cambodia. The 7th and 8th Centuries. The Centre for East Asian Cultural Studies for Unesco, Tokyo.

## Vidale, Massimo

1989 Specialized Producers and Urban Elites: on the Role of Craft Industries in Mature Harappan Urban Contexts. In *Old Problems and New Perspectives in the Archaeology of South Asia*, edited by J Mark Kenoyer, pp. 171-182. Wisconsin Archaeological Reports, Madison, WI.

### Vidale, Massimo, Jonathan Mark Kenoyer, and Kishor Bhan

1992 A discussion of the concept of "chaîne opératoire" in the study of stratified societies: evidence from ethnoarchaeology and archaeology. In *Ethnoarcheologie: Justification, Problèmes, Limites*, edited by A Gallay, pp. 181-194. Centre De Recherches Archéologiques, Juan-Le-Pins, France.

1993 Ethnoarchaeological Excavations of the Bead Making Workshops of Khambhat: A View From Beneath the Floors. In *South Asian Archaeology*, 1991, edited by A J Gail and G J Mevissen, pp. 273-288. G. J. R. Verlag, Stuttgart.

#### Vidale, Massimo and Heather Miller

2000 On the Development of Indus Technical Virtuosity and its Relation to Social Structure. In *South Asian Archaeology 1997*, edited by Maurizio Taddei and Giuseppe De Marco, pp. 115-132. IsIAO, Rome.

Weber, Steve, Heather Lehman, Timothy Barela, Sean Hawks, and David Harriman 2010 Rice or Millets: Early Farming Strategies in Prehistoric Central Thailand. *Archaeological and Anthropological Sciences* 2:79-88.

#### Welch, David

1985 Adaptation to Environmental Unpredictability: Intensive Agriculture and Regional Exchange at Late Prehistoric Centres in the Phimai Region, Thailand. Unpublished Ph.D. dissertation, University of Hawaii, Honolulu,

1989 Late Prehistoric and Early Historic Exchange Patterns in the Phimai Region, Thailand. *Journal of Southeast Asian Studies* 20 (1): 11-26.

## Wheatley, Paul

1979 Urban Genesis in Mainland South East Asia. In *Early South East Asia*. *Essays in Archaeology, History, and Historical Geography*, edited by R B Smith and W Watson, pp. 288-303. Oxford University Press, New York.

1982 Presidential Address: India Beyond the Ganges--Desultory Reflections on the Origins of Civilization in Southeast Asia. *The Journal of Asian Studies* 42 (1): 13-28.

1983 Nagara and Commandery. Origins of the Southeast Asian Urban Traditions. The University of Chicago, Chicago.

## White, Joyce

1982 Ban Chiang: Discovery of a Lost Bronze Age. The University Museum, University of Pennsylvania, Philadelphia.

1995 Incorporating Heterarchy into Theory on Socio-Political Development: The Case from Southeast Asia. In *Heterarchy and the Analysis of Complex Societies*, edited by Robert Ehrenreich, Carole Crumley, Janet Levy, and William Fitzhugh, pp. 101-123. American Anthropological Association, Arlington, Va.

2008 Dating Early Bronze at Ban Chiang, Thailand. In *From Homo Erectus to the Living Traditions*. Choice of Papers from the 11th International Conference of the European Association of Southeast Asian Archaeologists, edited by Jean-Pierre Pautreau, Anne-Sophie Coupey, Valéry Zeitoun, and Emma Rambault, pp. 91-104. Siam Ratana, Chiang Mai.

2011 Emergence of cultural diversity in mainland Southeast Asia: a view from prehistory. In *Dynamics of Human Diversity: The Case of Mainland Southeast Asia*, edited by N.J. Enfield, Pacific Linguistics, Canberra.

## White, Joyce C. and Chureekamol Onsuwan Eyre

2010 Residential Burial and the Metal Age of Thailand. *Archeological Papers of the American Anthropological Association* 20 (1): 59-78.

## White, Joyce C. and E. G. Hamilton

2009 The Transmission of Early Bronze Technology to Thailand: New Perspectives. *Journal of World Prehistory* 22 (4): 357-397.

## White, Joyce C. and Vincent Pigott

1996 From Community to Craft to Regional Specialization: Intensification of Copper Production in Pre-state Thailand. In *Craft Specialization and Social Evolution: In Memory of V. Gordon Childe*, edited by Bernard Wailes, pp. 151-175. The University Museum of Archaeology and Anthropology, Philadelphia.

#### Williams-Hunt, PDR

1950 Irregular Earthworks in Eastern Siam: An Air Survey. Antiquity 24 (93): 30-36.

#### Williams Lucy

1984 A New Approach to the Study of Beadmaking Workshop Practices, with Special Reference to Carnelian and Agate beads from Ban Don Ta Phet, Thailand. Unpublished BA Honor's Thesis, University of London Institute of Archaeology, London.

#### Winzeler, Robert L

1976 Ecology, Culture, Social Organization, and State Formation in Southeast Asia. *Current Anthropology* 17 (4): 623-640.

Wolters, O. W.

1999 History, Culture, and Region in Southeast Asian Perspectives. Revised Edition. Southeast Asia Program Publications, Cornell.

## Workman, DR

1977 Geology of Laos, Cambodia, South Vietnam and the eastern part of Thailand. HMSO, London,

## Wright, W.I.

1938 The Composition and Occurrence of Garnets. *American Mineralogist* 23 (7): 436-449.

## Yasuda, Yoshinori

2009 Preliminary Report of the Excavation in Phum Snay 2008/2009. International Research Center for Japanese Studies, Kyoto Japan.

## Yasuda, Yoshinori and Chuch Phoeurn (editors)

2008 Preliminary Report for the Excavation in Phum Snay 2007. International Research Center for Japanese Studies, Kyoto Japan.

Yi, Seonbok, June-Jeong Lee, Seongnam Kim, Yongwook Yoo, and Dongwan Kim 2008 New Data on the Hoabinhian: Investigations at Hang Cho Cave, Northern Vietnam. *Bulletin of the Indo-Pacific Prehistory Association* 28: 73-9.

## Zwaan, P.C.

1982 Sri Lanka: The Gem Island. Gems & Gemology 18 (2): 62-71.

Appendices

## Appendix 5.1: Agate and Carnelian beads in this study

In this appendix I present a table of the agate and carnelian beads examined as a part of this study. This table includes:

- Database ID,
- Site Name,
- Context Information,
- Catalogue number as assigned by the excavators,
- Raw Material Type and color description
- Bead Shape
- Drill type
- Polish description
- Exterior surface description
- Quality assessment
- Metric measurements of length, width, thickness, and perforation size.

Several beads from Ban Non Wat are included at end of this table but were not carefully recorded as a part of this study and therefore lack a Database ID number, metric measurements, and clear information on the bead shape and polish. These beads were examined only briefly, but are included here as a quality assessment was made about some of these beads and discussed in more depth in Chapter 5.

| Database ID | Site Name                 | Context                                                | Catalogue Number | Raw<br>Material |
|-------------|---------------------------|--------------------------------------------------------|------------------|-----------------|
| AKC03035    | Angkor Borei,<br>Cambodia | Unit AB7 Block 4S Layer<br>5 Level 30 Burial 51        | 3394             | Carnelian       |
| AKC03036    | Angkor Borei,<br>Cambodia | Unit AB7 Block 5S/4S<br>Layer 4 Level 24 Burial<br>F44 | 3200             | Carnelian       |
| AKC03037    | Angkor Borei,<br>Cambodia | Unit AB7 Block 3 Layer 5<br>Level 7                    | 1163             | Carnelian       |
| AKC03038    | Angkor Borei,<br>Cambodia | Unit AB7 Block 3 Layer 5<br>Level 10                   | 1255             | Carnelian       |
| AKC03039    | Angkor Borei,<br>Cambodia | Unit AB7 Block 5 Layer 4<br>Level 12                   | 2176             | Carnelian       |
| AKC03040    | Angkor Borei,<br>Cambodia | Unit AB7 Block 4 Layer 4<br>Level 14                   | 2182             | Carnelian       |
| AKC03041    | Angkor Borei,<br>Cambodia | Unit AB7 Block 4 Layer 4<br>Level 16                   | 2208             | Carnelian       |
| AKC03042    | Angkor Borei,<br>Cambodia | Unit AB7 Block 2S Layer<br>7 Level 23                  | 2575 (large)     | Carnelian       |
| AKC03043    | Angkor Borei,<br>Cambodia | Unit AB7 Block 2S Layer<br>7 Level 23                  | 2575 (small)     | Carnelian       |
| AKC03044    | Angkor Borei,<br>Cambodia | Unit AB7 Block 2 Layer 5<br>Level 11                   | 1278             | Carnelian       |
| AKC03045    | Angkor Borei,<br>Cambodia | Unit AB7 Block 4 Layer<br>19 Level 4                   | 2273             | Agate           |
| AKC03046    | Angkor Borei,<br>Cambodia | Unit AB7 Block 1 Layer 3<br>Level 5                    | 1080             | Quartz          |
| AKC02060    | Ban Non Wat,<br>Thailand  | BNW 05/06<br>Burial 312                                | 21071            | Agate           |
| AKC02061    | Ban Non Wat,<br>Thailand  | BNW 05/06<br>Burial 356                                | 23404            | Carnelian       |
| AKC02062    | Ban Non Wat,<br>Thailand  | BNW 03/04<br>C3<br>2:4/S5 Feature 4<br>Bag 2290        | 17874            | Carnelian       |
| AKC02063    | Ban Non Wat,<br>Thailand  | BNW 07<br>E8<br>3:3<br>Bag 11767                       | 20455            | Agate           |

| Database ID | Site Name                | Context                                                       | Catalogue<br>Number | Raw Material |
|-------------|--------------------------|---------------------------------------------------------------|---------------------|--------------|
| AKC02064    | Ban Non Wat,<br>Thailand | BNW 06/07<br>D2/E2/F2 II<br>3:S1 Feature 6                    | 23509               | Agate        |
| AKC02065    | Ban Non Wat,<br>Thailand | Bag 10612<br>BNW 05/06<br>E5<br>4:1<br>Burial 356<br>Bag 7960 | 17173               | Agate        |
| AKC02066    | Ban Non Wat,<br>Thailand | BNW 02/03<br>B4<br>2:3<br>Bag 1334<br>Burial 36               | 3518                | Agate        |
| AKC02067    | Ban Non Wat,<br>Thailand | BNW 05/06<br>E7<br>3:3<br>Burial 259<br>Bag 8324              | 17391               | Carnelian    |
| AKC02068    | Ban Non Wat,<br>Thailand | BNW 02/03<br>B4<br>2:2<br>Bag 1332<br>Burial 36               | 3520                | Carnelian    |
| AKC02069    | Ban Non Wat,<br>Thailand | BNW 03/04<br>C2<br>2:4<br>Bag 2558                            | 6034                | Agate        |
| AKC02070    | Ban Non Wat,<br>Thailand | BNW 06/07<br>D3<br>2:1<br>Bag 10401                           | 22501               | Agate        |
| AKC02071    | Ban Non Wat,<br>Thailand | BNW 04<br>B7<br>3:S1<br>Burial 203<br>Bag 5932                | 11520               | Agate        |
| AKC00730    | Bit Meas,<br>Cambodia    | N/A Looted                                                    | N/A                 | Agate        |
| AKC00732    | Bit Meas,<br>Cambodia    | N/A Looted                                                    | N/A                 | Carnelian    |

| Database ID | Site Name                  | Context                         | Catalogue<br>Number | Raw Material |
|-------------|----------------------------|---------------------------------|---------------------|--------------|
| AKC03500    | Khao Sam Kaeo,<br>Thailand | N/A                             | KSK008a             | Carnelian    |
| AKC03501    | Khao Sam Kaeo,<br>Thailand | N/A                             | KSK008b             | Agate        |
| AKC03502    | Khao Sam Kaeo,<br>Thailand | N/A                             | KSK008c             | Agate        |
| AKC03503    | Khao Sam Kaeo,<br>Thailand | Hill 4                          | KSK008d             | Agate        |
| AKC03504    | Khao Sam Kaeo,<br>Thailand | Hill 4                          | KSK008e             | Agate        |
| AKC03505    | Khao Sam Kaeo,<br>Thailand | Hill 3                          | KSK246a             | Agate        |
| AKC03506    | Khao Sam Kaeo,<br>Thailand | Hill 3                          | KSK246b             | Agate        |
| AKC03507    | Khao Sam Kaeo,<br>Thailand | Hill 2                          | KSK272a             | Agate        |
| AKC03508    | Khao Sam Kaeo,<br>Thailand | Hill 2                          | KSK272b             | Agate        |
| AKC03509    | Khao Sam Kaeo,<br>Thailand | Hill 2                          | KSK272c             | Agate        |
| AKC03510    | Khao Sam Kaeo,<br>Thailand | Hill 3                          | KSK033a             | Carnelian    |
| AKC03511    | Khao Sam Kaeo,<br>Thailand | Hill 3                          | KSK033b             | Carnelian    |
| AKC03512    | Khao Sam Kaeo,<br>Thailand | Hill 3                          | KSK033c             | Agate        |
| AKC03513    | Khao Sam Kaeo,<br>Thailand | Hill 3                          | KSK033d             | Agate        |
| AKC03514    | Khao Sam Kaeo,<br>Thailand | Hill 2                          | KSK133a             | Carnelian    |
| AKC03515    | Khao Sam Kaeo,<br>Thailand | Hill 2                          | KSK133b             | Carnelian    |
| AKC03516    | Khao Sam Kaeo,<br>Thailand | Hill 4                          | KSK037a             | Agate        |
| AKC03517    | Khao Sam Kaeo,<br>Thailand | Hill 4                          | KSK037b             | Agate        |
| AKC00647    | Krek 52/62, Cambodia       | Unit II Square J14<br>Number 45 | 45                  | Carnelian    |
| AKC01950    | Phnom Borei, Cambodia      | Unit 1 Depth 167 cm             | N/A                 | Carnelian    |
| AKC01951    | Phnom Borei, Cambodia      | Unit 1 Depth 241 cm             | N/A                 | Carnelian    |

| Database ID | Site Name  | Context              | Catalogue Number | Raw Material |
|-------------|------------|----------------------|------------------|--------------|
| AKC00003    | Phum Snay, | Unit B               | 77               | Agate        |
|             | Cambodia   | Layer 3:3            |                  |              |
|             |            | Feature 1            |                  |              |
|             |            | Bag 20               |                  |              |
| AKC00004    | Phum Snay, | Unit C/E             | 322              | Carnelian    |
|             | Cambodia   | 2:2 Feature 1 Burial |                  |              |
|             |            | 9                    |                  |              |
|             |            | Bag 37               |                  |              |
| AKC00005    | Phum Snay, | Unit C               | 36               | Carnelian    |
|             | Cambodia   | 2:3                  |                  |              |
|             |            | Bag 6                |                  |              |
| AKC00006    | Phum Snay, | Bag 6                | 34               | Carnelian    |
|             | Cambodia   | Unit B               |                  |              |
|             |            | 2:3                  |                  |              |
| AKC00007    | Phum Snay, | Unit C/E             | 285              | Carnelian    |
|             | Cambodia   | 2:4                  |                  |              |
|             |            | Bag 7                |                  |              |
| AKC00008    | Phum Snay, | Unit C/E             | 257              | Carnelian    |
|             | Cambodia   | 2:2 Feature 1        |                  |              |
|             |            | Bag 37               |                  |              |
| AKC00009    | Phum Snay, | Unit C/E             | 261              | Carnelian    |
|             | Cambodia   | 2:2 Feature 1        |                  |              |
|             |            | Bag # 37             |                  |              |
| AKC00010    | Phum Snay, | Unit C/E             | 265              | Carnelian    |
|             | Cambodia   | 2:2 Feature 1        |                  |              |
|             |            | Bag 37               |                  |              |
| AKC00011    | Phum Snay, | Unit C/E             | 269              | Carnelian    |
|             | Cambodia   | 2:2 Feature 1        |                  |              |
|             |            | Bag 27               |                  |              |
| AKC00012    | Phum Snay, | Unit A               | 62               | Carnelian    |
|             | Cambodia   | 3:1 Feature 1        |                  |              |
|             |            | Bag # 12             |                  |              |
| AKC00013    | Phum Snay, | Unit C/E             | 479              | Carnelian    |
|             | Cambodia   | 2:2 Feature 1        |                  |              |
|             |            | Burial 9             |                  |              |
|             |            | Bag 37               |                  |              |

| Database ID | Site Name  | Context             | Catalogue Number | Raw Material |
|-------------|------------|---------------------|------------------|--------------|
| AKC00014    | Phum Snay, | Unit C/E            | 313 (a)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Left wrist |                  |              |
|             |            | Bag 37              |                  |              |
| AKC00015    | Phum Snay, | Unit C/E            | 313 (b)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Left wrist |                  |              |
|             |            | Bag 37              |                  |              |
|             |            | Cat 313             |                  |              |
| AKC00016    | Phum Snay, | Unit C/E            | 313 (c)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Left wrist |                  |              |
|             |            | Bag 37              |                  |              |
|             |            | Cat 313             |                  |              |
| AKC00017    | Phum Snay, | Unit C/E            | 313 (d)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00018    | Phum Snay, | Unit C/E            | 313 (e)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00019    | Phum Snay, | Unit C/E            | 330 (a)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       | , ,              |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00020    | Phum Snay, | Unit C/E            | 330 (b)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       | , ,              |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00021    | Phum Snay, | Unit C/E            | 330 (c)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       | , ,              |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00022    | Phum Snay, | Unit C/E            | 330 (d)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00023    | Phum Snay, | Unit C/E            | 330 (e)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Bag 37     |                  |              |
| AKC00024    | Phum Snay, | Unit C/E            | 330 (f)          | Carnelian    |
|             | Cambodia   | 2:2 Feature 1       |                  |              |
|             |            | Burial 9 Bag 37     |                  |              |
|             |            |                     |                  |              |
|             |            | •                   |                  |              |

| Database ID  | Site Name  | Context         | Catalogue Number | Raw Material |
|--------------|------------|-----------------|------------------|--------------|
| AKC00025     | Phum Snay, | Unit C/E        | 359(a)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00026     | Phum Snay, | Unit C/E        | 359(b)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00027     | Phum Snay, | Unit C/E        | 359(c)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   | , ,              |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00028     | Phum Snay, | Unit C/E        | 359(d)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   | ( )              |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00029     | Phum Snay, | Unit C/E        | 359(e)           | Carnelian    |
| 11100002     | Cambodia   | 2:2 Feature 1   |                  | Currentur    |
|              | 0411100414 | Burial 9 Bag 37 |                  |              |
| AKC00030     | Phum Snay, | Unit C/E        | 359(f)           | Carnelian    |
| 7111000050   | Cambodia   | 2:2 Feature 1   | 335(1)           | Carnonan     |
|              | Cambodia   | Burial 9 Bag 37 |                  |              |
| AKC00031     | Phum Snay, | Unit C/E        | 359(g)           | Carnelian    |
| ARCOOOSI     | Cambodia   | 2:2 Feature 1   | 339(g)           | Carnenan     |
|              | Callibodia | Burial 9 Bag 37 |                  |              |
| AKC00032     | Phum Snay, | Unit C/E        | 359(h)           | Carnelian    |
| AKC00032     | Cambodia   | 2:2 Feature 1   | 339(II)          | Carnenan     |
|              | Cambodia   |                 |                  |              |
| AKC00033     | Dl C       | Burial 9 Bag 37 | 250(:)           | Carnelian    |
| AKC00033     | Phum Snay, | Unit C/E        | 359(i)           | Carnenan     |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
| 4 IZ G0000 4 | DI C       | Burial 9 Bag 37 | 250()            | - T'         |
| AKC00034     | Phum Snay, | Unit C/E        | 359(j)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00035     | Phum Snay, | Unit C/E        | 359(k)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00036     | Phum Snay, | Unit C/E        | 359(1)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
|              |            | Burial 9 Bag 37 |                  |              |
|              |            |                 |                  |              |
| AKC00038     | Phum Snay, | Unit C/E        | 359(m)           | Carnelian    |
|              | Cambodia   | 2:2 Feature 1   |                  |              |
|              |            | Burial 9 Bag 37 |                  |              |
| AKC00039     | Phum Snay, | Unit C/E        | 359(n)           | Carnelian    |
| MICOUUSS     | Cambodia   | 2:2 Feature 1   | 339(11)          | Carlicitali  |
|              | Calliboula | Burial 9 Bag 37 |                  |              |
|              |            | Duriar 9 Dag 3/ |                  |              |

| Database ID | Site Name              | Context                                      | Catalogue Number | Raw Material |
|-------------|------------------------|----------------------------------------------|------------------|--------------|
| AKC00040    | Phum Snay,<br>Cambodia | Unit C/E<br>2:2 Feature 1<br>Burial 9 Bag 37 | 359(o)           | Carnelian    |
| AKC00044    | Phum Snay,<br>Cambodia | Unit C/E<br>2:2 Feature 1<br>Burial 9 Bag 37 | 275              | Carnelian    |
| AKC00045    | Phum Snay,<br>Cambodia | Unit C/E<br>2:2 Feature 1<br>Burial 9 Bag 37 | 321              | Carnelian    |
| AKC00046    | Phum Snay,<br>Cambodia | Unit A<br>3:2 Feature 1<br>Bag 18            | 76               | Carnelian    |
| AKC00047    | Phum Snay,<br>Cambodia | Unit A East<br>2:4<br>Cat 276 Bag 7          | 276              | Carnelian    |
| AKC00048    | Phum Snay,<br>Cambodia | Unit B<br>3:4 Bag 22                         | 113              | Carnelian    |
| AKC00049    | Phum Snay,<br>Cambodia | Unit B 3:2 Feature 2 Bag 19                  | 68               | Carnelian    |
| AKC00050    | Phum Snay,<br>Cambodia | Unit A<br>2:3 Bag 6                          | 30               | Carnelian    |
| AKC00051    | Phum Snay,<br>Cambodia | Unit B<br>3:6 Bag 27                         | 157              | Carnelian    |
| AKC00052    | Phum Snay,<br>Cambodia | Unit B<br>3.5 Bag 26                         | 133              | Carnelian    |
| AKC00053    | Phum Snay,<br>Cambodia | Unit A 3:4 Feature 1 Burial 2 Bag 21         | 70               | Carnelian    |
| AKC00054    | Phum Snay,<br>Cambodia | Unit A<br>3:3 Bag 16                         | 103              | Carnelian    |
| AKC00055    | Phum Snay,<br>Cambodia | Unit C/E<br>2:2 Feature 1<br>Bag 37          | 268              | Carnelian    |

| Database ID | Site Name                | Context                                                      | Catalogue Number | Raw Material |
|-------------|--------------------------|--------------------------------------------------------------|------------------|--------------|
| AKC00056    | Phum Snay,<br>Cambodia   | Unit A West<br>3:4<br>Burial 2 Bag 21                        | 364              | Carnelian    |
| AKC01721    | Prei Khmeng,<br>Cambodia | US# 22021                                                    | N/A              | Agate        |
| AKC00642    | Prohear, Cambodia        | Unit B<br>Square LM/143-144                                  | 56               | Carnelian    |
| AKC00643    | Prohear, Cambodia        | Unit B<br>Square LM/143-144                                  | 51               | Carnelian    |
| AKC00644    | Prohear, Cambodia        | Unit A<br>Square K/107                                       | 79               | Agate        |
| AKC00645    | Prohear, Cambodia        | Unit A<br>LM/104-105                                         | 10               | Agate        |
| AKC00646    | Prohear, Cambodia        | Unit A<br>Square IK/104-105                                  | 8                | Agate        |
| AKC00682    | Prohear, Cambodia        | Unit A<br>K/107                                              | 88               | Agate        |
| AKC00902    | Promtin Tai,<br>Thailand | PTT- S3/2 East 230-<br>240 cm below datum<br>(bd). Burial 16 |                  | Agate        |
| AKC00918    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20                    |                  | Carnelian    |
| AKC00919    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20                    |                  | Carnelian    |
| AKC00920    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20                    |                  | Carnelian    |
| AKC00921    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20                    |                  | Carnelian    |

| Database ID | Site Name                | Context                                   | Catalogue Number | Raw Material |
|-------------|--------------------------|-------------------------------------------|------------------|--------------|
| AKC00922    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20 |                  | Carnelian    |
| AKC00923    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20 |                  | Agate        |
| AKC00924    | Promtin Tai,<br>Thailand | PTT S3/2 West 240-<br>250 cm bd Burial 20 |                  | Agate        |
| AKC00931    | Promtin Tai,<br>Thailand | PTT West<br>Burial 32                     |                  | Carnelian    |
| AKC00932    | Promtin Tai,<br>Thailand | PTT West<br>Burial 32                     |                  | Carnelian    |
| AKC00933    | Promtin Tai,<br>Thailand | PTT West<br>Burial 32                     |                  | Carnelian    |
| AKC00934    | Promtin Tai,<br>Thailand | PTT West<br>Burial 32                     |                  | Carnelian    |
| AKC00979    | Promtin Tai,<br>Thailand | PTT S3/2 East 210-<br>220 cm bd           | 45               | Agate        |
| AKC00980    | Promtin Tai,<br>Thailand | PTT S3/2 East 210-<br>220 cm bd           | 45               | Carnelian    |
| AKC00990    | Promtin Tai,<br>Thailand | PTT S3 East 90-100<br>cm bd               | 3                | Carnelian    |
| AKC00995    | Promtin Tai,<br>Thailand | PTT S3 East 130-<br>140 cm bd             | 7                | Carnelian    |
| AKC00996    | Promtin Tai,<br>Thailand | PTT S3 East<br>130-140 cm bd              | 7                | Carnelian    |
| AKC00997    | Promtin Tai,<br>Thailand | PTT S3 East 130-<br>140 cm bd             | 7                | Carnelian    |
| AKC00998    | Promtin Tai,<br>Thailand | PTT S3 East 130-<br>140 cm bd             | 7                | Carnelian    |
| AKC00999    | Promtin Tai,<br>Thailand | PTT S3 East 130-<br>140 cm bd             | 7                | Carnelian    |
| AKC01028    | Promtin Tai,<br>Thailand | PTT S3/2 East 80-<br>90 cm bd             | 32               | Carnelian    |
| AKC01038    | Promtin Tai,<br>Thailand | PTT S3/2 West 130-<br>140 cm bd           | 21               | Carnelian    |

| Database ID | Site Name                | Context                                     | Catalogue Number | Raw Material |
|-------------|--------------------------|---------------------------------------------|------------------|--------------|
|             |                          |                                             | _                |              |
| AKC01042    | Promtin Tai,<br>Thailand | PTT S3 West 150-<br>160 cm bd               | 24               | Agate        |
| AKC01045    | Promtin Tai,<br>Thailand | PTT S3 West 160-<br>170 cm bd               | 25               | Agate        |
| AKC01051    | Promtin Tai,<br>Thailand | PTT S3/2 West 190-<br>200 cm bd (S3L4)      | 60               | Carnelian    |
| AKC01055    | Promtin Tai,<br>Thailand | PTT S3/2 West 230-<br>240 cm bd Burial 20   | 63               | Agate        |
| AKC01060    | Promtin Tai,<br>Thailand | PTT S3/2 West 230-<br>240 cm bd Burial 20   | 64               | Carnelian    |
| AKC01061    | Promtin Tai,<br>Thailand | PTT S3/2 West 230-<br>240 cm bd Burial 20   | 64               | Carnelian    |
| AKC01062    | Promtin Tai,<br>Thailand | PTT S3/2 West 230-<br>240 cm bd Burial 20   | 64               | Agate        |
| AKC01067    | Promtin Tai,<br>Thailand | \$3/2 West<br>240-250 cm bd<br>Burial 9     | 65               | Agate        |
| AKC01075    | Promtin Tai,<br>Thailand | PTT S3 East 190-<br>200 cm bd Burial<br>20  | 13               | Agate        |
| AKC01087    | Promtin Tai,<br>Thailand | PTT S3/2 West 220-<br>230 cm bd Burial 19   | 72               | Agate        |
| AKC01089    | Promtin Tai,<br>Thailand | PTT S3/2 West 220-<br>230 cm bd Burial 19   | 72               | Agate        |
| AKC01091    | Promtin Tai,<br>Thailand | PTT S3/2 West 220-<br>230 cm bd Burial 18   | 71               | Agate        |
| AKC01094    | Promtin Tai,<br>Thailand | PTT S3/2 West<br>220-230 cm bd<br>Burial 19 | 74               | Agate        |
| AKC01098    | Promtin Tai,<br>Thailand | PTT S3/2 West 220-<br>230 cm bd Burial 19   | 74               | Agate        |

| Database ID | Site Name                 | Context                                            | Catalogue Number | Raw Material |
|-------------|---------------------------|----------------------------------------------------|------------------|--------------|
|             |                           |                                                    |                  |              |
| AKC01100    | Promtin Tai,<br>Thailand  | PTT S3/2 West 220-<br>230 cm bd Burial 19          | 74               | Agate        |
| AKC01106    | Promtin Tai,<br>Thailand  | PTT S3/2 West 220-<br>230 cm bd Burial 19          | 74               | Agate        |
| AKC01108    | Promtin Tai,              | PTT S3/2 West 220-                                 | 74               | Agate        |
|             | Thailand                  | 230 cm bd Burial 19                                |                  | C            |
| AKC01110    | Promtin Tai,<br>Thailand  | PTT S3/2 West 220-<br>230 cm bd Burial 19          | 74               | Agate        |
| AKC01111    | Promtin Tai,<br>Thailand  | PTT S3/2 West 220-<br>230 cm bd Burial 19          | 74               | Agate        |
| AKC01112    | Promtin Tai,<br>Thailand  | PTT S3/2 West 220-<br>230 cm bd Burial 19          | 74               | Agate        |
| AKC01114    | Promtin Tai,<br>Thailand  | PTT S3/2 West 220-<br>230 cm bd Burial 19          | 74               | Agate        |
| AKC00300    | Village 10.8,<br>Cambodia | Unit EXXXIII Square K/85 Associated with Burial 37 | 25               | Carnelian    |
| AKC00301    | Village 10.8,<br>Cambodia | Unit EXXXIII Square K/85 Associated with Burial 37 | 26               | Carnelian    |
| AKC00302    | Village 10.8,<br>Cambodia | Unit EXXXIII Square K/85 Associated with Burial 37 | 27               | Carnelian    |
| AKC00303    | Village 10.8,<br>Cambodia | Unit EXXXII Square I/84 Associated with Burial 34  | 28               | Carnelian    |
| AKC00304    | Village 10.8,<br>Cambodia | Unit EXXXIII Square K/85 Associated with Burial 37 | 28               | Carnelian    |

| Database ID  | Site Name     | Context                     | Catalogue Number | Raw Material |
|--------------|---------------|-----------------------------|------------------|--------------|
|              |               |                             | 8                |              |
| AKC00305     | Village 10.8, | Unit EXXXII                 | 29               | Carnelian    |
|              | Cambodia      | Square I/84                 |                  |              |
|              |               | Associated with             |                  |              |
|              |               | Burial 34                   |                  |              |
| AKC00306     | Village 10.8, | II 's EVVVII                |                  | Carnelian    |
|              | Cambodia      | Unit EXXXII                 |                  |              |
| AKC00307     | Village 10.8, | Square I/83-4               |                  | Carnelian    |
| AKC00307     | Cambodia      | Unit EXXXII                 |                  | Carnenan     |
|              | Caliloodia    | Square I/83-4               |                  |              |
| AKC00308     | Village 10.8, | Unit EXVIII                 | 44               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
|              |               | Burial 28                   |                  |              |
| AKC00309     | Village 10.8, | Unit EXVIII                 | 45               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
|              |               | Burial 28                   |                  |              |
| AKC00312     | Village 10.8, | Unit EXVIII                 | 26               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
|              |               | Burial 28                   |                  |              |
| AKC00313     | Village 10.8, | Unit EXVIII                 | 24               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
|              |               | Burial 28                   |                  |              |
| AKC00314     | Village 10.8, | Unit EXVIII                 | 16               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
|              | *****         | Burial 28                   |                  |              |
| AKC00315     | Village 10.8, | Unit EXVIII                 | 14               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
|              | *****         | Burial 28                   |                  |              |
| AKC00316     | Village 10.8, | Unit EXVIII                 | 17               | Agate        |
|              | Cambodia      | Square N/85                 |                  |              |
|              |               | Associated with             |                  |              |
| A IZ C000217 | W:11 100      | Burial 28                   | 27               | Α            |
| AKC00317     | Village 10.8, | Unit EXVIII                 | 25               | Agate        |
|              | Cambodia      | Square N/85 Associated with |                  |              |
|              |               | Associated with Burial 28   |                  |              |
|              |               | Duriai 28                   |                  |              |

| Database ID | Site Name     | Context         | Catalogue Number | Raw Material |
|-------------|---------------|-----------------|------------------|--------------|
|             |               |                 |                  |              |
| AKC00342    | Village 10.8, | Unit EI         | 32               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |
| AKC00343    | Village 10.8, | Unit E          | 31               | Carnelian    |
|             | Cambodia      | Square 21/94    |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 1        |                  |              |
| AKC00344    | Village 10.8, | Unit E          | 29               | Carnelian    |
|             | Cambodia      | Square 21/94    |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 1        |                  |              |
| AKC00345    | Village 10.8, | Unit EI         | 35               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |
| AKC00346    | Village 10.8, | Unit EI         | 36               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |
| AKC00347    | Village 10.8, | Unit EI         | 25               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |
| AKC00348    | Village 10.8, | Unit EI         | 27               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |
| AKC00349    | Village 10.8, | Unit E          | 22               | Carnelian    |
|             | Cambodia      | Square 21/94    |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 1        |                  |              |
| AKC00350    | Village 10.8, | Unit EI         | 26               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |
| AKC00351    | Village 10.8, | Unit EI         | 37               | Carnelian    |
|             | Cambodia      | Square T/92     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 3        |                  |              |

| Database ID Site Name |                                    | atabase ID Site Name Context                          |    | Raw Material |  |
|-----------------------|------------------------------------|-------------------------------------------------------|----|--------------|--|
| AKC00352              | Village 10.8,<br>Cambodia          | Unit EI<br>Square T/92<br>Associated with             | 24 | Carnelian    |  |
| AKC00353              | Village 10.8,<br>Cambodia          | Burial 3 Unit EI Square T/92 Associated with          | 23 | Carnelian    |  |
| AKC00354              | Village 10.8,<br>Cambodia          | Burial 3 Unit EI Square T/92 Associated with          | 25 | Carnelian    |  |
| AKC00355              | Village 10.8,<br>Cambodia          | Burial 3 Unit E Square 21/94 Associated with Burial 1 | 18 | Carnelian    |  |
| AKC00356              | Village 10.8,<br>Cambodia          | Unit EI Square T/92 Associated with Burial 3          | 38 | Carnelian    |  |
| AKC00357              | Village 10.8,<br>Cambodia          | Unit EI<br>T/92<br>Associated with<br>Burial 4        | 48 | Carnelian    |  |
| AKC00358              | Village 10.8,<br>Cambodia          | Unit E0<br>R/92                                       | 19 | Carnelian    |  |
| AKC00359              | Village 10.8,<br>Cambodia          | Unit EI 21/93 Associated with Burial 3                | 23 | Carnelian    |  |
| AKC00360              | AKC00360 Village 10.8,<br>Cambodia |                                                       | 24 | Carnelian    |  |
| AKC00361              | Village 10.8,<br>Cambodia          | Burial 3 Unit E 21/94 Associated with Burial 1        | 30 | Carnelian    |  |
| AKC00362              | Village 10.8,<br>Cambodia          | Unit EI 21/93 Associated with Burial 3                | 22 | Carnelian    |  |

| Database ID | Site Name     | Context         | Catalogue Number | Raw Material |
|-------------|---------------|-----------------|------------------|--------------|
|             |               |                 |                  |              |
| AKC00363    | Village 10.8, | Unit E          | 23               | Carnelian    |
|             | Cambodia      | 21/94           |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 1        |                  |              |
| AKC00364    | Village 10.8, | Unit EXII       | 21               | Carnelian    |
|             | Cambodia      | Square T/87     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 15       |                  |              |
| AKC00365    | Village 10.8, | Unit EXII       | 20               | Carnelian    |
|             | Cambodia      | Square T/87     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 15       |                  |              |
| AKC00366    | Village 10.8, | Unit EXVI       | 7                | Carnelian    |
|             | Cambodia      | R/86            |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 25       |                  |              |
| AKC00367    | Village 10.8, | Unit EXVI       | 8                | Carnelian    |
|             | Cambodia      | R/86            |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 25       |                  |              |
| AKC00368    | Village 10.8, | Unit EXVII      | 19               | Carnelian    |
|             | Cambodia      | Square Q/85     |                  |              |
|             |               | Associated with |                  |              |
|             |               | Burial 26       |                  |              |
| AKC00431    | Village 10.8, | Unit EXXXXIX    | 6                | Carnelian    |
|             | Cambodia      | Square Ad/87    |                  |              |
|             |               | Burial 48       |                  |              |
| AKC00432    | Village 10.8, | Unit EXXXXIX    | 6                | Carnelian    |
|             | Cambodia      | Square Ad/87    |                  |              |
|             |               | Burial 48       |                  |              |
| AKC00433    | Village 10.8, | Unit EXXXXIX    | 6                | Carnelian    |
|             | Cambodia      | Square Ad/87    |                  |              |
|             |               | Burial 48       |                  |              |
| AKC00434    | Village 10.8, | Unit EXXXXIX    | 6                | Carnelian    |
| -           | Cambodia      | Square Ad/87    |                  | -            |
|             |               | Burial 48       |                  |              |
| AKC00435    | Village 10.8, | Unit EXXXXIX    | 6                | Carnelian    |
|             | Cambodia      | Square Ad/87    |                  |              |
|             |               | Burial 48       |                  |              |

| Database ID | Site Name | Context      | Catalogue Number | Raw Material |
|-------------|-----------|--------------|------------------|--------------|
|             |           |              |                  |              |
| AKC00436    | Village   | Unit EXXXXIX | 6                | Carnelian    |
|             | 10.8,     | Square Ad/87 |                  |              |
|             | Cambodia  | Burial 48    |                  |              |
| AKC00437    | Village   | Unit EXXXXIX | 6                | Carnelian    |
|             | 10.8,     | Square Ad/87 |                  |              |
|             | Cambodia  | Burial 48    |                  |              |
| AKC00438    | Village   | Unit EXXXXIX | 6                | Carnelian    |
|             | 10.8,     | Square Ad/87 |                  |              |
|             | Cambodia  | Burial 48    |                  |              |
| AKC00439    | Village   | Unit EXXXXIX | 6                | Carnelian    |
|             | 10.8,     | Square Ad/87 |                  |              |
|             | Cambodia  | Burial 48    |                  |              |
| AKC00440    | Village   | Unit EXXXXIX | 6                | Carnelian    |
|             | 10.8,     | Square Ad/87 |                  |              |
|             | Cambodia  | Burial 48    |                  |              |

| Database ID | Color(s)                                       | Bead Shape                | Drill Hole<br>Type | Polish             | Exterior<br>surface                                                          |
|-------------|------------------------------------------------|---------------------------|--------------------|--------------------|------------------------------------------------------------------------------|
| AKC03035    | Dark<br>Red/Orange<br>with White<br>Inclusions | Spherical                 | Type 2             | Low polish         | Smooth<br>surface, but<br>still some<br>imperfections<br>around bead<br>hole |
| AKC03036    | Light Red/Orange with White Inclusions         | Rough Spherical           | Type 3             | Med-high<br>polish | Pop-out, chips<br>on surface                                                 |
| AKC03037    | Light<br>Red/Orange                            | Short Bicone              | Type 2             | Medium<br>polish   | Smooth<br>surface, but<br>with large chip                                    |
| AKC03038    | Light Red/Orange with Dark Inclusions          | Rough Spherical           | Type 2             | Medium<br>polish   | Pop-out, chips<br>on surface                                                 |
| AKC03039    | Dark Red/Orange with White Inclusions          | Spherical                 | Type 2             | High polish        | Smooth high-<br>polish surface                                               |
| AKC03040    | Dark<br>Red/Orange                             | Spherical                 | Type 2             | High polish        | Smooth<br>surface, but<br>still some<br>imperfections<br>around bead<br>hole |
| AKC03041    | Dark<br>Red/Orange<br>with White<br>Inclusions | Rough Spherical           | Type 3             | Low polish         | Pop-out, chips<br>on surface                                                 |
| AKC03042    | Dark<br>Red/Orange<br>with White<br>Inclusions | Rough Spherical           | Type 3             | High polish        | Pop-out, chips<br>on surface                                                 |
| AKC03043    | Dark<br>Red/Orange<br>with White<br>Inclusions | Rough Spherical           | Type 3             | Med-high<br>polish | Pop-out, chips<br>on surface                                                 |
| AKC03044    | Dark<br>Red/Orange                             | Short Hexagonal<br>Bicone | Type 2             | High polish        | High polished, nicely made                                                   |

| TD ( ) ***  | 0.1.43                                | D 100                                    | D 111 1            |                    | 494                                                 |
|-------------|---------------------------------------|------------------------------------------|--------------------|--------------------|-----------------------------------------------------|
| Database ID | Color(s)                              | Bead Shape                               | Drill Hole<br>Type | Polish             | Exterior surface                                    |
| AKC03045    | Banded White                          | Long Barrel                              | Type 2             | Medium<br>polish   | Roughly made, nicks and scratches                   |
| AKC03046    | Clear                                 | Short<br>Hexagonal<br>Faceted<br>(rough) | Type 2             | Low polish         | Roughly made, nicks and scratches                   |
| AKC02060    | Brown and<br>Opaque<br>White          | Long Barrel                              | Type 2             | High polish        | Smooth surface, nice banding                        |
| AKC02061    | Light<br>Red/Orange                   | Long Barrel                              | Type 2             | Low polish         | Smooth surface, but low polish. Large bead hole     |
| AKC02062    | Light Red/Orange with decoration      | Long Barrel                              | Type 2             | High polish        | Etched bead, but simple                             |
| AKC02063    | Brown and<br>Opaque<br>White          | Rounded<br>Square                        | Type 2             | Med-high<br>polish | High-polish surface, slightly beveled edges?        |
| AKC02064    | Black and<br>White Banded             | Short Barrel                             | Type 2             | Medium<br>polish   | Scratches/imperfections on surface                  |
| AKC02065    | Black and<br>White Banded             | Long Barrel                              | Type 2             | No polish          | Nicely shaped, but not polished. Unfinished?        |
| AKC02066    | Black and<br>White Banded             | Notched<br>Pendant                       | Type 1             | Medium<br>polish   | Polished surface, although broken                   |
| AKC02067    | Light<br>Red/Orange                   | Spherical                                | Type 2             | Med-high<br>polish | Smooth surface                                      |
| AKC02068    | Light Red/Orange with Dark Inclusions | Long<br>Hexagonal<br>Faceted Barrel      | Type 2             | Medium<br>polish   | Smooth surface, uneven facets and chip at bead hole |
| AKC02069    | Brown and<br>Opaque<br>White          | Long Tabular<br>Rectangle                | Type 1             | Medium<br>polish   | Smooth surface, but uneven shape                    |
| AKC02070    | Brown and<br>Opaque<br>White          | Long Cylinder                            | Type 1             | Medium<br>polish   | High polish, some scratches on edges                |

| Database ID | Color(s)                                         | Bead Shape                      | Drill Hole<br>Type     | Polish                                       | Exterior surface                                    |
|-------------|--------------------------------------------------|---------------------------------|------------------------|----------------------------------------------|-----------------------------------------------------|
| AKC02071    | Black and<br>White Banded                        | Short Bicone                    | Type 2?                | Medium<br>polish                             | Stone had imperfections on surface/nicks            |
| AKC00730    | Brown and<br>Opaque<br>White                     | Short Barrel                    | Type 2                 | Low-<br>medium<br>polish                     | Smooth surface, almost bicone shape?                |
| AKC00732    | Dark Red/Orange with Yellow Inclusions           | Long<br>Hexagonal<br>Bicone     | Type 2                 | Low-<br>Medium<br>polish                     | Nice facets, smooth high-polish surface             |
| AKC03500    | Red-orange                                       | Long Bicone                     | Type 5 (Unfinished)    | Low polish                                   | Chips on surface                                    |
| AKC03501    | Brown and<br>White<br>Translucent                | Long Barrel                     | Type 5<br>(Unfinished) | High polish,<br>but ends are<br>not polished | Hole not drilled, chip and imperfections on surface |
| AKC03502    | Banded dark<br>brown and<br>white                | Long<br>Unfinished<br>Barrel    | Type 5 (Unfinished)    | Unfinished                                   | Unfinished                                          |
| AKC03503    | Banded<br>brown and<br>white                     | Flat Leech<br>Bead              | Type 5 (Unfinished)    | Unfinished                                   | Unfinished                                          |
| AKC03504    | Brown and<br>White<br>Translucent                | Unfinished<br>Tabular<br>Square | Type 5 (Unfinished)    | Unfinished                                   | Unfinished                                          |
| AKC03505    | Banded White                                     | Short Barrel                    | Type 2                 | High polish                                  | Smooth high-polish surface                          |
| AKC03506    | Banded<br>brown and<br>white                     | Long Barrel                     | Type 2                 | High polish                                  | Smooth high-polish surface                          |
| AKC03507    | Banded<br>brown/grey<br>and white                | Flat Leech<br>Bead              | Type 2                 | High polish                                  | Smooth, high-polish surface                         |
| AKC03508    | Banded<br>brown/grey<br>and white                | Tabular<br>Truncated<br>Bicone  | Type 2                 | High polish                                  | High polish, small drill hole                       |
| AKC03509    | Translucent<br>brown grey<br>and opaque<br>white | Long Bicone                     | Type 2                 | High polish                                  | Smooth surface, high polish                         |

| Database ID | Color(s)                               | Bead Shape                           | Drill Hole<br>Type     | Polish             | Exterior surface                                        |
|-------------|----------------------------------------|--------------------------------------|------------------------|--------------------|---------------------------------------------------------|
| AKC03510    | Red-orange                             | Spherical                            | Type 5 (Unfinished)    | Unfinished         | Low-polish, some nicks/chips                            |
| AKC03511    | Dark red                               | Hexagonal<br>Flattened<br>Bicone     | Type 2                 | High polish        | Smooth, high-polish<br>surface. Nicely beveled<br>edges |
| AKC03512    | Banded<br>greyish brown<br>and white   | Long Cylinder                        | Type 5<br>(Unfinished) | Unfinished         | Unfinished                                              |
| AKC03513    | Banded<br>grey/brown                   | Short Unfinished Barrel (Truncated?) | Type 5<br>(Unfinished) | Unfinished         | Unfinished                                              |
| AKC03514    | Red Orange                             | Crescent                             | Type 2                 | High polish        | Some scratches on surface, unusual shape                |
| AKC03515    | Red-orange                             | Crescent                             | Type 2                 | High polish        | Some scratches on surface, unusual shape                |
| AKC03516    | Onyx                                   | Chamfered<br>Square Disc             | Type 2                 | High polish        | Smooth, high-polish<br>surface. May have been<br>burnt? |
| AKC03517    | White and brown                        | Broken<br>Pendant, 2<br>notches      | Broken                 | High polish        | Smooth surface, nicely shaped.                          |
| AKC00647    | Light Red/Orange with White Inclusions | Spherical                            | Type 2                 | Low-med<br>Polish  | Smooth surface, some chips around bead hole             |
| AKC01950    | Dark Red<br>with Brown<br>Inclusions   | Spherical                            | Type 2                 | Low-med<br>Polish  | Smooth surface, some nicks/chips                        |
| AKC01951    | Light Red/Orange with White Inclusions | Spherical                            | Type 2                 | Med-high<br>polish | Smooth surface, some nicks/chips                        |
| AKC00003    | Brown and<br>Opaque<br>White           | Long Barrel                          | Type 2                 | Low polish         | Smooth high-polish surface                              |
| AKC00004    | Light<br>Red/Orange                    | Spherical                            | Type 2                 | Med polish         | High-polish surface, but nicks and chips                |

| Database ID | Color(s)                                     | Bead Shape                          | Drill Hole | Polish             | Exterior surface                               |
|-------------|----------------------------------------------|-------------------------------------|------------|--------------------|------------------------------------------------|
| Database ID | Color(s)                                     | Dead Shape                          | Type       | ronsn              | Exterior surface                               |
| AKC00005    | Light Red/Orange<br>with White<br>Inclusions | Rough<br>Spherical                  | Type 3     | Low polish         | Pop-out, nicks/chips on surface                |
| AKC00006    | Dark Red/Orange<br>with White<br>Inclusions  | Rough<br>Spherical                  | Type 1     | Low polish         | Pop-out, nicks/chips on surface                |
| AKC00007    | Dark Red/Orange<br>with Dark Inclusions      | Spherical                           | Type 2     | Med-high<br>polish | High-polish but some nicks on surface          |
| AKC00008    | Dark Red with<br>Brown Inclusions            | Spherical                           | Type 1     | Med-high<br>polish | Smooth surface, high polish                    |
| AKC00009    | Dark Red with<br>Brown Inclusions            | Spherical                           | Type 2     | High polish        | High-polish but some nicks on surface          |
| AKC00010    | Light Red/Orange with Dark Inclusions        | Spherical                           | Type 2     | High polish        | Smooth high-polish surface                     |
| AKC00011    | Light Red/Orange<br>with White<br>Inclusions | Spherical                           | Type 2     | High polish        | Smooth high-polish surface                     |
| AKC00012    | Dark Red/Orange<br>with Dark Inclusions      | Rough<br>Spherical                  | Type 3     | Med-high<br>polish | Pop-out, nicks/chips on surface                |
| AKC00013    | Dark Red with<br>Brown Inclusions            | Spherical                           | JMK Type 2 | Low polish         | High-polish but some nicks on surface          |
| AKC00014    | Dark Red/Orange<br>with Dark Inclusions      | Spherical                           | Type 2     | Low polish         | Low polish, surface has numerous nicks/chips   |
| AKC00015    | Light Red/Orange                             | Spherical                           | Type 2     | High polish        | Smooth high-polish surface                     |
| AKC00016    | Dark Red/Orange                              | Short<br>Hexagonal<br>Bicone, Rough | Type 2     | Low polish         | Uneven facets, surface had scratches and nicks |

| Database ID   | Color(s)         | Bead Shape    | Drill Hole | Polish      | Exterior surface        |
|---------------|------------------|---------------|------------|-------------|-------------------------|
| Database ID   | Color(s)         | Dead Shape    | Туре       | 1 Olish     | Exterior surface        |
|               |                  |               | Турс       |             |                         |
| AKC00017      | Dark Red/Orange  | Short         | Type 2     | Low polish  |                         |
|               |                  | Hexagonal     |            |             | Uneven facets, surface  |
|               |                  | Bicone, Rough |            |             | had scratches and nicks |
| AKC00017      | Dark Red/Orange  | Short         | Type 2     | Low polish  |                         |
|               |                  | Hexagonal     |            |             | Uneven facets, surface  |
|               |                  | Bicone, Rough |            |             | had scratches and nicks |
| AKC00018      | Light            | Short         | Type 2     | Low polish  |                         |
|               | Red/Orange       | Hexagonal     |            |             | Uneven facets, surface  |
|               |                  | Bicone, Rough |            |             | had scratches and nicks |
| AKC00019      | Dark Red         | Spherical     | Type 2     | Very low    | 0 0 1                   |
|               |                  |               |            | polish      | Surface has numerous    |
| A T/ C/000000 | D 1 D 1 11       | 0.1.1         | T 2        | TT: 1 1: 1  | nicks/chips             |
| AKC00020      | Dark Red with    | Spherical     | Type 3     | High polish | High polish, some nicks |
|               | Brown Inclusions |               |            |             | and chips               |
| AKC00021      | Light            | Rough         | Type 2     | Low polish  |                         |
| 1111000021    | Red/Orange with  | Spherical     | 1740 -     | Zo ponon    | Pop-out, nicks/chips on |
|               | Dark Inclusions  | ~F            |            |             | surface                 |
| AKC00022      | Dark Red/Orange  | Rough         | Type 2     | Low polish  |                         |
|               | with White       | Spherical     | 71         | 1           | Pop-out, nicks/chips on |
|               | Inclusions       | 1             |            |             | surface                 |
| AKC00023      | Dark Red/Orange  | Rough         | Type 3     | Med polish  |                         |
|               | with Dark        | Spherical     | 71         | 1           | Pop-out, nicks/chips on |
|               | Inclusions       | 1             |            |             | surface                 |
| AKC00024      | Light            | Rough         | Type 3     | High polish |                         |
|               | Red/Orange       | Spherical     | 71         |             | Pop-out, nicks/chips on |
|               |                  | 1             |            |             | surface                 |
| AKC00025      | Dark Red/Orange  | Short         | Type 2     | Low polish  |                         |
|               | with White       | Hexagonal     |            |             | Uneven facets, surface  |
|               | Inclusions       | Bicone, Rough |            |             | had scratches and nicks |
| AKC00026      | Dark Red/Orange  | Short         | Type 2     | Low polish  |                         |
|               | with White       | Hexagonal     |            |             | Uneven facets, surface  |
|               | Inclusions       | Bicone, Rough |            |             | had scratches and nicks |

| Database ID | Color(s)                     | Bead Shape    | Drill Hole<br>Type | Polish        | Exterior surface           |
|-------------|------------------------------|---------------|--------------------|---------------|----------------------------|
|             |                              |               | Туре               |               |                            |
| AKC00027    | Dark Red/Orange              | Short         | Type 2             | High polish   |                            |
|             |                              | Hexagonal     | • •                |               | Uneven facets, surface     |
|             |                              | Bicone, Rough |                    |               | had scratches and nicks    |
| AKC00028    | Dark Red/Orange              | Short         | Type 2             | High polish   |                            |
|             |                              | Hexagonal     |                    |               | Uneven facets, surface     |
|             |                              | Bicone, Rough |                    |               | had scatches and nicks     |
| AKC00029    | Dark Red/Orange              | Short         | Type 2             | Low polish    |                            |
|             | with Dark                    | Hexagonal     |                    |               | Uneven facets, surface     |
|             | Inclusions                   | Bicone, Rough |                    |               | had scatches and nicks     |
| AKC00030    | Light                        | Short         | Type 2             | High polish   |                            |
|             | Red/Orange with              | Hexagonal     |                    |               | Uneven facets, surface     |
|             | White Inclusions             | Bicone, Rough |                    |               | had scatches and nicks     |
| AKC00031    | Light                        | Spherical     | Type 2             | High polish   |                            |
|             | Red/Orange with              |               |                    |               | High-polish surface, but   |
|             | Dark Inclusions              |               |                    |               | nicks and chips            |
| AKC00032    | Light                        | Spherical     | Type 2             | High polish   |                            |
|             | Red/Orange with              |               |                    |               | High-polish surface, but   |
|             | Dark Inclusions              |               |                    |               | nicks and chips            |
| AKC00033    | Dark Red                     | Spherical     | Type 2             | Low polish    | III ah maliah amerana hasi |
|             |                              |               |                    |               | High-polish surface, but   |
| AKC00034    | Light                        | Rough         | Type 3             | High polish   | nicks and chips            |
| AKC00034    | Red/Orange with              |               | Type 5             | High polish   | Pop-out, nicks/chips on    |
|             | White Inclusions             | Spherical     |                    |               | surface                    |
| AKC00035    |                              | Subariant     | Type 2             | High polish   | surface                    |
| AKC00033    | Dark Red/Orange<br>with Dark | Spherical     | Type 2             | High polish   | High-polish surface, but   |
|             | Inclusions                   |               |                    |               | nicks and chips            |
| AKC00036    | Dark Red/Orange              | Spherical     | Type 2             | High polish   | meks and emps              |
| AKCOOOSO    | with White                   | Spherical     | 1 ype 2            | Trigii ponsii | High-polish surface, but   |
|             | Inclusions                   |               |                    |               | nicks and chips            |
| AKC00038    | Light                        | Spherical     | Type 2             | High polish   | meks and emps              |
| AKCUUU30    | Red/Orange with              | Spilerical    | 1 ype 2            | Trigii ponsii | High-polish surface, but   |
|             | White Inclusions             |               |                    |               | nicks and chips            |
|             | vv illic Hiclusiolis         |               |                    |               | meks and emps              |

| Database ID | Color(s)                                     | Bead Shape                              | Drill Hole | Polish             | Exterior surface                              |
|-------------|----------------------------------------------|-----------------------------------------|------------|--------------------|-----------------------------------------------|
|             |                                              |                                         | Туре       |                    |                                               |
| AKC00039    | Light Red/Orange                             | Rough<br>Spherical                      | Type 1     | High polish        | Pop-out, nicks/chips on surface               |
| AKC00040    | Black and White<br>Banded                    | Rough<br>Spherical                      | Type 2     | High polish        | Pop-out, nicks/chips on surface               |
| AKC00044    | Dark Red/Orange<br>with White<br>Inclusions  | Spherical                               | Type 2     | High polish        | Smooth high-polish surface                    |
| AKC00045    | Dark Red/Orange<br>with Dark<br>Inclusions   | Spherical                               | Type 2     | High polish        | Smooth high-polish surface                    |
| AKC00046    | Light Red/Orange                             | Spherical                               | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00047    | Dark Red with<br>Brown Inclusions            | Rough<br>Spherical                      | Type 2     | Med-high<br>polish | Pop-out, nicks/chips on surface               |
| AKC00048    | Light Red/Orange<br>with White<br>Inclusions | Rough<br>Spherical                      | Type 1     | High polish        | Pop-out, nicks/chips on surface               |
| AKC00049    | Dark Red with<br>Brown Inclusions            | Spherical                               | Type 3     | High polish        | Smooth high-polish surface                    |
| AKC00050    | Dark Red/Orange<br>with White<br>Inclusions  | Rough<br>Spherical                      | Type 3     | Med polish         | Pop-out, nicks/chips on surface               |
| AKC00051    | Dark Red/Orange<br>with White<br>Inclusions  | Rough<br>Spherical                      | Type 3     | Low polish         | Pop-out, nicks/chips on surface               |
| AKC00052    | Dark Red/Orange                              | Spherical                               | Type 2     | High polish        | Smooth high-polish surface                    |
| AKC00053    | Light Red/Orange<br>with White<br>Inclusions | Short<br>Hexagonal<br>Bicone,<br>Rough? | Type 2     | High polish        | Uneven facets, surface had scatches and nicks |
| AKC00054    | Light Red/Orange<br>with White<br>Inclusions | Rough<br>Spherical                      | Type 3     | High polish        | Pop-out, nicks/chips on surface               |

| Database ID    | Color(a)                               | Dood Chans                 | Drill Hole | Polish         | Exterior surface                 |
|----------------|----------------------------------------|----------------------------|------------|----------------|----------------------------------|
| Database ID    | Color(s)                               | Bead Shape                 | Type       | Polish         | Exterior surface                 |
| AKC00055       | Dark                                   | Rough Spherical            | Type 2     | High polish    |                                  |
|                | Red/Orange with                        |                            |            |                | Pop-out, nicks/chips             |
|                | Dark Inclusions                        |                            |            |                | on surface                       |
| AKC01721       | Dark                                   | Agate                      | N/A        | N/A            |                                  |
|                | Red/Orange with                        | nodule/manuport            |            |                | 27/4                             |
| A IZ C00 C 40  | White Inclusions                       | 77 1                       | T. 2       | TT' 1 1' 1     | N/A                              |
| AKC00642       | Dark Red                               | Hexagonal Flattened Bicone | Type 2     | High polish    | Smooth surface, even             |
|                |                                        | Flattened Bicone           |            |                | beveled edges                    |
| AKC00643       | Dark Red                               | Hexagonal                  | Type 2     | High polish    | Smooth surface, even             |
|                |                                        | Flattened Bicone           |            |                | beveled edges                    |
| A IZ C00 C 4 4 | D1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | I D 1                      | T. 2       | 3.6.12         | C 41 C                           |
| AKC00644       | Black and White<br>Banded              | Long Barrel                | Type 2     | Medium         | Smooth surface, some nicks. Nice |
|                | Danded                                 |                            |            | polish         | banding                          |
| AKC00645       | Brown and                              | Long Bicone                | Type 2     | High polish    | Smooth surface,                  |
| /IIC00043      | White Banded                           | Long Dicone                | Type 2     | Trigii polisii | some nicks. Nice                 |
|                | Willie Bullded                         |                            |            |                | banding                          |
| AKC00646       | Brown and                              | Long Cylinder              | Type 2     | Medium         | Smooth surface,                  |
|                | White Banded                           | <i>C</i> ,                 | <b>71</b>  | polish         | especially at ends.              |
|                |                                        |                            |            | 1              | High polish                      |
| AKC00682       | Brown and                              | Short Barrel               | Type 2     | Medium         | Uneven shape,                    |
|                | White Banded                           |                            |            | polish         | polished surface but             |
|                |                                        |                            |            |                | some nicks/chips                 |
| AKC00902       | Brown and                              | Long Barrel                | Type 2     | Medium         |                                  |
|                | White Banded                           |                            |            | Polish         | Smooth surface                   |
| AKC00918       | Dark                                   | Short Cylinder             | Type 1     | High polish    | Smooth, high polish              |
| 7111000710     | Red/Orange                             | Short Cymider              | Турст      | Ingh polish    | surface but several              |
|                | rious orango                           |                            |            |                | chips/scratches                  |
| AKC00919       | Light                                  | Short Cylinder             | Type 1     | High polish    | 1                                |
|                | Red/Orange with                        | •                          |            |                | Smooth high-polish               |
|                | White Inclusions                       |                            |            |                | surface                          |
| AKC00920       | Dark                                   | Short Cylinder             | Type 1     | High polish    |                                  |
|                | Red/Orange with                        |                            |            |                | Smooth high-polish               |
|                | White Inclusions                       |                            |            |                | surface                          |

| Datak ID    | Col (-)                                     | Dood Cl                       | D-::11                | Polish             | Exterior surface                                                   |
|-------------|---------------------------------------------|-------------------------------|-----------------------|--------------------|--------------------------------------------------------------------|
| Database ID | Color(s)                                    | Bead Shape                    | Drill<br>Hole<br>Type |                    | Exterior surface                                                   |
| AKC00921    | Dark Red/Orange                             | Short Cylinder                | Type 2                | High polish        |                                                                    |
|             | with White                                  |                               |                       |                    | Smooth high-polish                                                 |
|             | Inclusions                                  |                               |                       |                    | surface                                                            |
| AKC00922    | Dark Red/Orange<br>with Dark<br>Inclusions  | Long Hexagonal<br>Bicone      | Type 2                | High polish        | Smooth high-polish surface                                         |
| AKC00923    | Brown and White<br>Banded                   | Long Barrel                   | Type 2                | High polish        | Smooth surface, high polish                                        |
| AKC00924    | Brown and White<br>Banded                   | Long Bicone                   | Type 2                | High polish        | Smooth surface, high polish                                        |
| AKC00931    | Light<br>Red/Orange                         | Spherical                     | Type 1?               | High polish        | Smooth high-polish surface                                         |
| AKC00932    | Light<br>Red/Orange                         | Rough Spherical               | Type 3                | High polish        | Pop-out, nicks/chips on surface                                    |
| AKC00933    | Dark Red/Orange<br>with White<br>Inclusions | Rough Spherical               | Type 3                | High polish        | Pop-out, nicks/chips on surface                                    |
| AKC00934    | Dark Red with<br>Brown Inclusions           | Short Square                  | Type 1                | Med-high<br>polish | Generally smooth surface, but chips/imperfections around bead hole |
| AKC00979    | Black and White<br>Banded                   | Long Bicone                   | Type 2                | High polish        | Smooth surface, high polish                                        |
| AKC00980    | Light Red/Orange with White Inclusions      | Hexagonal<br>Flattened Bicone | Type 2                | High polish        | High polish, smooth surface                                        |
| AKC00990    | Dark Red/Orange<br>with White<br>Inclusions | Short Bicone                  | Type 1                | Low polish         | Smooth surface but some nicks                                      |
| AKC00995    | Light<br>Red/Orange                         | Rough Spherical               | Type 3                | High polish        | Pop-out, nicks/chips on surface                                    |
| AKC00996    | Dark Red/Orange<br>with White<br>Inclusions | Rough Spherical               | Type 3                | High polish        | Pop-out, nicks/chips on surface                                    |

| Database ID | Color(s)                                     | Bead Shape                        | Drill Hole<br>Type | Polish                 | Exterior surface                                   |
|-------------|----------------------------------------------|-----------------------------------|--------------------|------------------------|----------------------------------------------------|
| AKC00997    | Dark Red/Orange                              | Rough Spherical                   | Type 3             | High polish            | Pop-out, nicks/chips<br>on surface                 |
| AKC00998    | Dark Red/Orange                              | Spherical                         | Type 2             | Low polish             | Round shape, but<br>surface has<br>scratches/nicks |
| AKC00999    | Dark Red/Orange                              | Spherical                         | Type 2             | Medium<br>polish       | Smooth surface, some nicks                         |
| AKC01028    | Light Red/Orange<br>with White<br>Inclusions | Rough Spherical                   | Type 2?            | Medium<br>polish       | Pop-out, nicks/chips<br>on surface                 |
| AKC01038    | Dark Red                                     | Short Hexagonal<br>Tabular Barrel | Type 2?            | High polish            | High polish, smooth surface                        |
| AKC01042    | Brown and White<br>Banded                    | Short Bicone                      | Type 2             | High polish            | Nice bicone shape,<br>surface has<br>nicks/chips   |
| AKC01045    | Brown and White<br>Banded                    | Long Barrel                       |                    | Medium-<br>high polish | Smooth surface, low polish                         |
| AKC01051    | Dark Red/Orange                              | Rough Spherical                   | Type 3             | Medium<br>polish       | Pop-out, nicks/chips<br>on surface                 |
| AKC01055    | Brown and Opaque White                       | Short Bicone                      | Type 2             | High polish            | Smooth surface, some nicks                         |
| AKC01060    | Dark Red/Orange                              | Long Hexagonal Faceted Barrel     | Type 2?            | High polish            | High polish, smooth surface                        |
| AKC01061    | Dark Red/Orange                              | Long Hexagonal Faceted Barrel     | Type 2?            | High polish            | High polish, smooth surface                        |
| AKC01062    | Brown and White<br>Banded                    | Long Barrel                       | Type 2             | High polish            | Smooth surface, high polish, finely made.          |
| AKC01067    | Dark Brown                                   | Long Bicone                       | Type 2             | High polish            | Smooth surface, high polish                        |
| AKC01075    | Black and White<br>Banded                    | Long Barrel                       | Type 1             | Med polish             | Smooth high-polish<br>surface, some<br>scratches   |

| Database ID | Color(s)                       | Bead Shape                     | Drill Hole<br>Type             | Polish                                         | Exterior surface                                                         |
|-------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------------------|--------------------------------------------------------------------------|
| AKC01087    | Black and White<br>Banded      | Short Barrel                   | Type 2                         | High polish                                    | Smooth surface, but a large chip                                         |
| AKC01089    | Brown and White<br>Translucent | Rough Spherical                | Type 3                         | High polish                                    | Pop-out, nicks/chips<br>on surface                                       |
| AKC01091    | Brown and White<br>Banded      | Long Cylinder                  | Type 1                         | Medium<br>polish                               | Stone quality is poor, area around one bead hole is heavily worn.        |
| AKC01094    | Black and White<br>Banded      | Broken Pendant, notch?         | Type 2                         | High polish                                    | Smooth surface,<br>unique shape.<br>Possibly burnt?                      |
| AKC01098    | Black and White<br>Banded      | Long Bicone                    | Type 2                         | Medium-<br>high polish                         | Smooth surface, but large chips                                          |
| AKC01100    | Black and White<br>Banded      | Broken fragment, shape unknown | Type 1                         | Medium-<br>high polish                         | Portion of pendant?                                                      |
| AKC01106    | Black and White<br>Banded      | Broken Long<br>Bicone?         | Type 2?                        | Low polish,<br>broken edge<br>us<br>unpolished | Broken bead? Low polish.                                                 |
| AKC01108    | Black and White<br>Banded      | Broken Pendant                 | Type 1 or<br>broken<br>Type 2? | Low-med polish                                 | Smooth surface,<br>unique shape.<br>Possibly burnt?                      |
| AKC01110    | Brown and White<br>Banded      | Short Bicone                   | Type 2                         | Medium<br>polish                               | Smooth high-polish surface                                               |
| AKC01111    | Black and White<br>Banded      | Short Bicone                   | Type 2                         | Medium<br>polish                               | Smooth surface, but<br>imperfections in the<br>stone. Possibly<br>burnt? |
| AKC01112    | Black and White<br>Banded      | Pendant, 1 notch               | Type 2                         | Medium<br>polish                               | Smooth surface,<br>unique shape.<br>Possibly burnt?                      |
| AKC01114    | Black and White<br>Banded      | Long Barrel                    | Type 2                         | Medium<br>polish                               | Smooth, high-polish<br>surface but large<br>chip at bead hole            |

| Database ID | Color(s)                              | Bead Shape                | Drill Hole | Polish             | Exterior surface                                                       |
|-------------|---------------------------------------|---------------------------|------------|--------------------|------------------------------------------------------------------------|
|             |                                       |                           | Туре       |                    |                                                                        |
| AKC00300    | Light Red/Orange with Dark Inclusions | Bicone-Barrel             | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00301    | Light<br>Red/Orange                   | Long Bicone               | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00302    | Dark Red/Orange                       | Long Oblate               | Type 2     | Low polish         | Smooth surface but some nicks                                          |
| AKC00303    | Light<br>Red/Orange                   | Short Barrel              | Type 2     | Low polish         | Smooth high-polish surface                                             |
| AKC00304    | Dark Red/Orange                       | Short Polygonal<br>Bicone | Type 2     | Low polish         | High polish, nice<br>facets but<br>chipped/broken<br>around drill hole |
| AKC00305    | Dark Red/Orange                       | Bicone-Barrel             | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00306    | Light<br>Red/Orange                   | Long Barrel               | Type 2     | Low polish         | Smooth high-polish surface                                             |
| AKC00307    | Light<br>Red/Orange                   | Long Bicone               | Type 2     | Medium<br>polish   | Smooth high-polish surface                                             |
| AKC00308    | Black and White<br>Banded             | Short Barrel              | Type 2     | Low polish         | Smooth high-polish surface                                             |
| AKC00309    | Brown and White<br>Banded             | Short Barrel              | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00312    | Brown and White Banded                | Long Cylinder             | Type 2     | Med-High<br>polish | Smooth high-polish surface                                             |
| AKC00313    | Brown and White Banded                | Short Barrel              | Type 2     | Med polish         | Smooth high-polish surface                                             |
| AKC00314    | Brown and White Banded                | Short Barrel              | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00315    | Brown and White<br>Banded             | Short Barrel              | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00316    | Brown and White Banded                | Short Barrel              | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00317    | Brown and White Banded                | Short Barrel              | Type 2     | High polish        | Smooth high-polish surface                                             |
| AKC00342    | Light<br>Red/Orange                   | Bicone-Barrel             | Type 2     | Low polish         | Smooth high-polish surface                                             |

| Database ID | Color(s)                                     | Bead Shape    | Drill Hole | Polish             | Exterior surface                              |
|-------------|----------------------------------------------|---------------|------------|--------------------|-----------------------------------------------|
|             | 2 (-)                                        |               | Туре       |                    |                                               |
| AKC00343    | Dark Red/Orange                              | Short Bicone  | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00344    | Light Red/Orange                             | Short Bicone  | Type 2     | Very low polish    | Smooth high-polish surface                    |
| AKC00345    | Dark Red/Orange                              | Bicone-Barrel | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00346    | Light Red/Orange                             | Bicone-Barrel | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00347    | Dark Red/Orange                              | Bicone-Barrel | Type 2     | Low Polish         | Smooth high-polish surface                    |
| AKC00348    | Light Red/Orange                             | Short Bicone  | Type 2     | Low-Med<br>Polish  | Smooth high-polish surface                    |
| AKC00349    | Dark Red/Orange                              | Short Bicone  | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00350    | Dark Red/Orange                              | Long Oblate   | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00351    | Light Red/Orange                             | Bicone-Barrel | Type 2     | Low Polish         | Smooth high-polish surface                    |
| AKC00352    | Dark Red/Orange                              | Short Bicone  | Type 2     | Low polish         | Low polish but smooth surface                 |
| AKC00353    | Dark Red/Orange                              | Bicone-Barrel | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00354    | Dark Red/Orange                              | Short Oblate  | Type 2     | Med-High<br>polish | Smooth high-polish surface                    |
| AKC00355    | Light Red/Orange<br>with Dark<br>Inclusions  | Bicone-Barrel | Type 2     | Low polish         | Smooth high-polish surface                    |
| AKC00356    | Dark Red/Orange                              | Bicone-Barrel | Type 2     | High polish        | Smooth high-polish surface                    |
| AKC00357    | Dark Red/Orange<br>with White<br>Inclusions  | Long Bicone   | Type 2     | Med polish         | Smooth high-polish surface                    |
| AKC00358    | Light Red/Orange<br>with White<br>Inclusions | Spherical     |            | Low polish         | Round shape but<br>surface has<br>nicks/chips |

| Database ID | ID Color(s) Bead Shape Drill Hole Type Polish |                          | Polish                  | Exterior surface       |                                                                        |
|-------------|-----------------------------------------------|--------------------------|-------------------------|------------------------|------------------------------------------------------------------------|
| AKC00359    | Light Red/Orange<br>with White<br>Inclusions  | Short Bicone             | Type 2                  | Low polish             | Smooth high-polish surface                                             |
| AKC00360    | Light Red/Orange<br>with Dark<br>Inclusions   | Long Bicone              | Type 2                  | Low polish             | Smooth high-polish surface                                             |
| AKC00361    | Light Red/Orange<br>with White<br>Inclusions  | Short Bicone             | Type 2                  | Very low<br>polish     | Smooth high-polish surface                                             |
| AKC00362    | Dark Red/Orange                               | Bicone-Barrel            | Type 2                  | Low polish             | Smooth high-polish surface                                             |
| AKC00363    | Dark Red/Orange                               | Long Bicone              | Type 2 Medium<br>Polish |                        | Smooth high-polish surface                                             |
| AKC00364    | Light Red/Orange<br>with White<br>Inclusions  | Long Bicone              | Type 2                  | High polish            | Smooth high-polish surface                                             |
| AKC00365    | Light Red/Orange                              | Short Bicone             | Type 2                  | Low polish             | Smooth high-polish surface                                             |
| AKC00366    | Dark Red/Orange<br>with White<br>Inclusions   | Bicone-Barrel            | Type 2                  | Low- med polish        | Smooth high-polish surface                                             |
| AKC00367    | Dark Red/Orange                               | Long Octagonal<br>Bicone | Type 2                  | High polish            | High polish, nice<br>facets but<br>chipped/broken<br>around drill hole |
| AKC00368    | Dark Red/Orange<br>with Dark<br>Inclusions    | Long Octagonal<br>Bicone | Type 2                  | Low polish             | High polish, smooth surface                                            |
| AKC00431    | Dark Red/Orange<br>with White<br>Inclusions   | Bicone-Barrel            | Type 2                  | Medium<br>polish       | Smooth high-polish surface                                             |
| AKC00432    | Light Red/Orange                              | Bicone-Barrel            | Type 2                  | Medium-<br>high polish | Smooth high-polish surface                                             |

| Database ID | Color(s)                                    | Bead Shape               | Drill Hole<br>Type | Polish             | Exterior surface            |
|-------------|---------------------------------------------|--------------------------|--------------------|--------------------|-----------------------------|
| AKC00433    | Light<br>Red/Orange                         | Long Bicone              | Type 2             | Med-high<br>polish | Smooth high-polish surface  |
| AKC00434    | Dark Red/Orange                             | Long Bicone              | Type 2             | Med-high<br>polish | Smooth high-polish surface  |
| AKC00435    | Dark Red/Orange<br>with White<br>Inclusions | Long Barrel              | Type 2             | Med-high<br>polish | Smooth high-polish surface  |
| AKC00436    | Light Red/Orange with Dark Inclusions       | Bicone-Barrel            | Type 2             | High polish        | Smooth high-polish surface  |
| AKC00437    | Light<br>Red/Orange                         | Long Hexagonal<br>Bicone | Type 2             | High polish        | High polish, smooth surface |
| AKC00438    | Dark Red/Orange<br>with White<br>Inclusions | Long Hexagonal<br>Bicone | Type 2             | High polish        | High polish, smooth surface |
| AKC00439    | Light<br>Red/Orange                         | Long Hexagonal<br>Bicone | Type 2             | High polish        | High polish, smooth surface |
| AKC00440    | Light<br>Red/Orange                         | Long Hexagonal<br>Bicone | Type 2             | High polish        | High polish, smooth surface |

| Database ID    | Quality  | Interior<br>Perf A | Interior<br>Perf B | Max<br>Length | Max<br>Width | Min<br>Width | Min<br>Width | Thickness (mm) |
|----------------|----------|--------------------|--------------------|---------------|--------------|--------------|--------------|----------------|
|                |          | (mm)               | (mm)               | (mm)          | (mm)         | A (mm)       | B (mm)       | (11111)        |
| AKC03035       | Low-     | 1.22               | 1.17               | 6.35          | 6.62         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03036       | Low-     | 1.54               | 1.65               | 10.16         | 11.75        |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03037       | Low-     | 1.52               | 1.52               | 7.7           | 6.06         | 4.39         | 4.68         |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03038       | Low-     | 1.44               | 1.44               | 5.12          | 6.12         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03039       | High-    | 1.74               | 1.74               | 7.49          | 7.65         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03040       | Low-     | 2.09               | 1.89               | 7.87          | 8.36         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03041       | Low-     | 1.58               | 1.57               | 5.51          | 6.67         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03042       | Low-     | 1.94               | 1.71               | 10.26         | 11.82        |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03043       | Low-     | 1.78               | 1.54               | 8.49          | 10.47        |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03044       | High-    | 1.22               | 1.24               | 4.59          | 6.28         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03045       | Low-     | 1.94               | 2.11               | 19.22         | 8.42         | 5.86         | 0            | 7.73           |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC03046       | Low-     | 1.72               | 1.75               | 11.76         | 7.65         | 4.16         | 4.63         | 5.52           |
|                | quality  |                    |                    |               |              |              |              |                |
| AKC02060       | High-    | 1.15               | 1.18               | 35.13         | 7.49         | 5.71         | 5.72         |                |
|                | quality  | 2.02               |                    |               | 0.00         |              |              |                |
| AKC02061       | Low-     | 3.03               | 2.87               | 44.95         | 8.89         | 6.75         | 5.46         |                |
|                | quality  |                    | 4.04               |               |              |              |              |                |
| AKC02062       | High-    | 1.72               | 1.31               | 16.46         | 7.93         |              |              |                |
| A 17 CO 20 C 2 | quality  | 1.22               | 0.04               | 10.00         | 16.6         |              |              | 11.71          |
| AKC02063       | High-    | 1.23               | 0.94               | 19.09         | 16.6         |              |              | 11.71          |
| 1 T G0 20 6 1  | quality  | 0.05               | 0.06               | <b>.</b> .    | 2.00         |              |              |                |
| AKC02064       | Low-     | 0.87               | 0.86               | 5.8           | 2.98         |              |              |                |
| ATZ C020 C 7   | quality  | 1.26               | 1.71               | 22.52         | 0.62         | ( ( )        | E E ( ( O (  | 0.17           |
| AKC02065       | Low-     | 1.36               | 1.51               | 23.52         | 9.62         | 6.64         | 5.56696      | 8.15           |
| AVC02066       | quality  | 1 27               | 1.01               | 10 27         | 22.11        |              |              | 4.52           |
| AKC02066       | High-    | 1.37               | 1.01               | 18.37         | 23.11        |              |              | 4.53           |
|                | quality, |                    |                    |               |              |              |              |                |
| AKC02067       | broken   | 1.72               | 1.68               | 0.50          | 9.93         |              |              |                |
| AKC02007       | High-    | 1.72               | 1.08               | 9.58          | 9.93         |              |              |                |
|                | quality  |                    |                    |               |              |              |              |                |

| Database ID | Quality                     | Interior<br>Perf A | Interior<br>Perf B | Max            | Max           | Min        | Min        | Thickness |
|-------------|-----------------------------|--------------------|--------------------|----------------|---------------|------------|------------|-----------|
|             |                             | (mm)               | (mm)               | Length<br>(mm) | Width<br>(mm) | Width<br>A | Width<br>B | (mm)      |
|             |                             | (111111)           | (111111)           | (111111)       | (11111)       | (mm)       | (mm)       |           |
| AKC02068    | Low-quality                 | 1.28               | 1.7                | 17.74          | 5.14          | (11111)    | (11111)    |           |
| AKC02069    | Low-quality                 | 1.78               | 1.78               | 21.55          | 9.76          |            |            | 4.95      |
| AKC02070    | High-<br>quality,<br>broken | 3.06               | 3.06               | 28.9           | 11.08         |            |            |           |
| AKC02071    | Low-quality                 | 1.65               | 1.63               | 10.59          | 5.84          | 4.34       | 4.06       |           |
| AKC00730    | High-quality                | 1.02               | 1.37               | 8.69           | 5.72          |            |            | 5.13      |
| AKC00732    | High-quality                | 1.08               | 1.08               | 19.03          | 6.53          | 4.05       | 3.95       |           |
| AKC03500    | Low-quality                 | 1.15               |                    | 15.64          | 6.91          | 4.02       | 4.41       |           |
| AKC03501    | High-                       |                    |                    | 14.39          | 6.02          | 5.23       |            |           |
|             | quality,<br>unfinished      |                    |                    |                |               |            |            |           |
| AKC03502    | Unfinished                  |                    |                    | 18.2           | 7.13          | 3.66       |            | 4.5       |
| AKC03503    | Unfinished                  |                    |                    | 24.51          | 14.17         | 10.81      | 11.12      | 4.37      |
| AKC03504    | Unfinished                  |                    |                    | 21.06          | 18.35         | 16.52      | 18.02      | 3.8       |
| AKC03505    | High-quality                | 1.42               | 1.82               | 11.53          | 5.82          | 4.79       | 5.25       |           |
| AKC03506    | High-quality                | 1.67               | 1.48               | 15.61          | 5.02          | 3.28       | 3.73       |           |
| AKC03507    | High-quality                | 0.96               | 0.96               | 15.49          | 10.2          | 4.41       | 4.46       | 4.17      |
| AKC03508    | High-quality                | 1.08               | 1.06               | 21.62          | 9.52          | 6.18       | 6.12       | 4.01      |
| AKC03509    | High-quality                | 1.2                | 1.3                | 30.9           | 8.86          | 5.93       | 6.08       |           |
| AKC03510    | Low-quality                 | 1.17               |                    | 5.05           | 5.39          |            |            |           |
| AKC03511    | High-quality                | 1.05               | 0.85               | 15.24          | 9.63          | 2.72       | 3.17       | 3.29      |
| AKC03512    | Unfinished                  |                    |                    | 15.7           | 5.21          | 4.85       | 4.76       |           |
| AKC03513    | Unfinished                  |                    |                    | 11.38          | 7.36          | 4.97       | 5.45       | 5.52      |
| AKC03514    | High-quality                | 1.12               | 1.44               | 24.62          |               |            |            | 5.18      |
| AKC03515    | High-quality                |                    |                    | 27.9           | -             |            |            | 4.14      |

| Database ID | Quality                     | Interior<br>Perf A | Interior<br>Perf B | Max<br>Length | Max<br>Width | Min<br>Width | Min<br>Width | Thickness (mm) |
|-------------|-----------------------------|--------------------|--------------------|---------------|--------------|--------------|--------------|----------------|
|             |                             | (mm)               | (mm)               | (mm)          | (mm)         | A (mm)       | B (mm)       |                |
| AKC03516    | High-<br>quality            | 1.25               | 1.31               | 19.1          |              |              |              | 3.93           |
| AKC03517    | High-<br>quality,<br>broken |                    | 41.53              | 17.84         | 9.85         | 9.73         | 5.35         |                |
| AKC00647    | High-<br>quality            | 1.6                | 0.92               | 7.42          | 9.4          |              |              |                |
| AKC01950    | High-<br>quality            | 0.9                | 1.37               | 7.94          | 8.39         |              |              |                |
| AKC01951    | High-<br>quality            | 1.1                | 1.29               | 12.01         | 12.24        |              |              |                |
| AKC00003    | High-<br>quality            | 2.15               | 2.16               | 35.88         |              |              |              | 6.28           |
| AKC00004    | High-<br>quality            | 1.35               | 1.35               | 7.12          |              |              |              | 7.36           |
| AKC00005    | Low-<br>quality             | 1.26               | 1.18               | 5.8           |              |              |              | 7.47           |
| AKC00006    | Low-<br>quality             | 1.19               | 1.5                | 6.29          |              |              |              | 7.52           |
| AKC00007    | High-<br>quality            | 1.6                | 1.7                | 8.4           |              |              |              | 8.57           |
| AKC00008    | High-<br>quality            | 1.9                | 1.9                | 14.33         |              |              |              | 14.65          |
| AKC00009    | High-<br>quality            | 1.33               | 1.36               | 6.84          |              |              |              | 7.12           |
| AKC00010    | High-<br>quality            | 1.72               | 1.71               | 7.63          |              |              |              | 8.2            |
| AKC00011    | High-<br>quality            | 1.47               | 1.48               | 7.52          |              |              |              | 7.81           |
| AKC00012    | Low-<br>quality             | 1.37               | 1.36               | 6.77          |              |              |              | 7.17           |
| AKC00013    | High-<br>quality            | 1.9                | 1.91               | 15.56         |              |              |              | 16.51          |
| AKC00014    | Low-<br>quality             | 2.5                | 2.62               | 16.32         | 17.5         |              |              |                |
| AKC00015    | High-<br>quality            | 2.07               | 2.08               | 14.46         |              |              |              | 14.78          |
| AKC00016    | Low-<br>quality             | 1.96               | 1.87               | 16.4          | 13.06        | 89           |              |                |
| AKC00017    | Low-<br>quality             | 1.97               | 1.99               | 15.13         | 11.35        | 78.5         |              |                |

| Database<br>ID | Quality          | Interior<br>Perf A<br>(mm) | Interior<br>Perf B<br>(mm) | Max<br>Length<br>(mm) | Max<br>Width<br>(mm) | Min<br>Width<br>A (mm) | Min<br>Width<br>B (mm) | Thickness<br>(mm) |
|----------------|------------------|----------------------------|----------------------------|-----------------------|----------------------|------------------------|------------------------|-------------------|
| AKC00018       | Low-<br>quality  | 1.96                       | 2.05                       | 15.13                 | 12.11                | 89.2                   |                        |                   |
| AKC00019       | Low-<br>quality  | 1.99                       | 1.98                       | 17.24                 | 17.54                |                        |                        |                   |
| AKC00020       | Low-<br>quality  | 1.6                        | 1.52                       | 8.88                  | 9.53                 |                        |                        |                   |
| AKC00021       | Low-<br>quality  | 1.6                        | 1.7                        | 9.11                  | 9.56                 |                        |                        |                   |
| AKC00022       | Low-<br>quality  | 1.62                       | 1.62                       | 8.64                  | 9.35                 |                        |                        |                   |
| AKC00023       | Low-<br>quality  | 1.47                       | 1.4                        | 6.34                  | 8.13                 |                        |                        |                   |
| AKC00024       | Low-<br>quality  | 1.7                        | 1.71                       | 8.42                  | 8.84                 |                        |                        |                   |
| AKC00025       | Low-<br>quality  | 1.75                       | 1.8                        | 16.55                 | 10.21                | 6.575                  |                        |                   |
| AKC00026       | Low-<br>quality  | 1.78                       | 1.83                       | 15.72                 | 11.33                | 67                     |                        |                   |
| AKC00027       | Low-<br>quality  | 1.82                       | 1.9                        | 14.29                 | 9.26                 | 5.98752                |                        |                   |
| AKC00028       | Low-<br>quality  | 1.99                       | 1.89                       | 13.2                  | 11.28                | 78                     |                        |                   |
| AKC00029       | Low-<br>quality  | 1.88                       | 1.88                       | 14.4                  | 11.84                | 67.9                   |                        |                   |
| AKC00030       | Low-<br>quality  | 2.18                       | 2.15                       | 15.03                 | 11.22                | 78.5                   |                        |                   |
| AKC00031       | High-<br>quality | 1.88                       | 1.93                       | 12.98                 | 13.33                |                        |                        |                   |
| AKC00032       | High-<br>quality | 1.68                       | 1.7                        | 12.89                 | 13.98                |                        |                        |                   |
| AKC00033       | High-<br>quality | 1.93                       | 1.97                       | 11.75                 | 12.25                |                        |                        |                   |
| AKC00034       | Low-<br>quality  | 2.08                       | 1.3                        | 9.75                  | 11.11                |                        |                        |                   |
| AKC00035       | High-<br>quality | 2.03                       | 1.93                       | 10.22                 | 11                   |                        |                        |                   |

| Database ID | Quality          | Interior<br>Perf A<br>(mm) | Interior<br>Perf B<br>(mm) | Max<br>Length<br>(mm) | Max<br>Width<br>(mm) | Min<br>Width A<br>(mm) | Min<br>Width<br>B<br>(mm) | Thickness<br>(mm) |
|-------------|------------------|----------------------------|----------------------------|-----------------------|----------------------|------------------------|---------------------------|-------------------|
| AKC00036    | High-<br>quality | 1.87                       | 1.89                       | 8.8                   | 9.41                 |                        |                           |                   |
| AKC00038    | High-<br>quality | 1.83                       | 1.76                       | 8.45                  | 8.71                 |                        |                           |                   |
| AKC00039    | Low-<br>quality  | 1.76                       | 1.1                        | 7.66                  | 9.45                 |                        |                           |                   |
| AKC00040    | Low-<br>quality  | 1.7                        | 1.67                       | 7.41                  | 8.36                 |                        |                           |                   |
| AKC00044    | High-<br>quality | 1.38                       | 1.43                       | 7.54                  | 7.95                 |                        |                           |                   |
| AKC00045    | High-<br>quality | 1.56                       | 1.58                       | 8                     | 8.29                 |                        |                           |                   |
| AKC00046    | High-<br>quality | 1.81                       | 1.87                       | 10.04                 | 10.04                |                        |                           |                   |
| AKC00047    | Low-<br>quality  | 1.83                       | 1.78                       | 8.54                  | 8.57                 |                        |                           |                   |
| AKC00048    | Low-<br>quality  | 1.57                       | 1.75                       | 9.9                   | 11.37                |                        |                           |                   |
| AKC00049    | High-<br>quality | 1.42                       | 2.36                       | 10.33                 | 10.77                |                        |                           |                   |
| AKC00050    | Low-<br>quality  | 1.61                       | 2.04                       | 8.83                  | 10.59                |                        |                           |                   |
| AKC00051    | Low-<br>quality  | 1.92                       | 1.98                       | 8.83                  | 10.2                 |                        |                           |                   |
| AKC00052    | High-<br>quality | 1.51                       | 1.54                       | 9.47                  | 9.58                 |                        |                           |                   |
| AKC00053    | Low-<br>quality  | 1.62                       | 1.09                       | 15.33                 | 9.6                  | 5.23                   |                           |                   |
| AKC00054    | Low-<br>quality  | 1.1                        | 1.15                       | 6.67                  | 7.68                 |                        |                           |                   |
| AKC00055    | Low-<br>quality  | 1.62                       | 1.56                       | 8.53                  | 9.06                 |                        |                           |                   |
| AKC00056    | Low-<br>quality  | 1.25                       | 1.15                       | 14.84                 | 7.06                 | 4.58                   | 4.26                      |                   |
| AKC01721    | N/A              |                            |                            | 20.96                 | 11.43                |                        |                           | 4.01              |
| AKC00642    | High-<br>quality | 1.07                       | 0                          | 22.39                 | 10.17                | 4.6                    | 4.82                      | 4.68              |
| AKC00643    | High-<br>quality | 1.28                       | 1.32                       | 22.27                 | 8.86                 | 4.37                   | 4.18                      | 4.55              |

| Database ID | Quality          | Interior<br>Perf A<br>(mm) | Interior<br>Perf B<br>(mm) | Max<br>Length<br>(mm) | Max<br>Width<br>(mm) | Min<br>Width A<br>(mm) | Min<br>Width<br>B<br>(mm) | Thickness (mm) |
|-------------|------------------|----------------------------|----------------------------|-----------------------|----------------------|------------------------|---------------------------|----------------|
| AKC00644    | High-<br>quality | 2.3                        | 1.35                       | 18.37                 | 7.13                 | 4.57                   | 4.48                      | 6.02           |
| AKC00645    | High-<br>quality | 1.54                       | 1.86                       | 24.5                  | 7.58                 | 4.25                   | 4.6                       | 6.7            |
| AKC00646    | High-<br>quality | 1.2                        | 1.53                       | 13.74                 | 6.06                 | 5.41                   | 5.8                       |                |
| AKC00682    | Low-<br>quality  | 1.45                       | 2.56                       | 12.91                 | 8.33                 | 5.14                   | 5.13                      | 7.04           |
| AKC00902    | High-<br>quality | 1.22                       | 1.55                       | 10.13                 | 4.93                 | 3.95                   | 3.83                      |                |
| AKC00918    | Low-<br>quality  | 1.32                       | 1.26                       | 5.7                   | 3.88                 | 3.85                   | 3.75                      |                |
| AKC00919    | High-<br>quality | 1.68                       | 1.41                       | 7.31                  | 4.29                 |                        |                           |                |
| AKC00920    | High-<br>quality | 1.2                        | 1.2                        | 6.82                  | 3.77                 |                        |                           |                |
| AKC00921    | High-<br>quality | 1.72                       | 1.7                        | 16.02                 | 8.41                 | 7.3                    | 7.21                      |                |
| AKC00922    | High-<br>quality | 1.44                       | 1.33                       | 16.66                 | 9.01                 | 5.55                   | 5.7                       |                |
| AKC00923    | High-<br>quality | 1.88                       | 1.98                       | 18.44                 | 8.12                 | 6.54                   | 6.49                      |                |
| AKC00924    | High-<br>quality | 1.93                       | 1.94                       | 22.43                 | 10.69                | 5.93                   | 7.1                       |                |
| AKC00931    | High-<br>quality | 1.1                        | 0.98                       | 7.05                  | 7.11                 |                        |                           |                |
| AKC00932    | Low-<br>quality  | 1.43                       | 1.43                       | 5.44                  | 6.82                 |                        |                           |                |
| AKC00933    | Low-<br>quality  | 1.27                       | 0.98                       | 6.58                  | 7.28                 |                        |                           |                |
| AKC00934    | Low-<br>quality  | 1.48                       | 1.49                       | 6.67                  | 4.08                 |                        |                           |                |
| AKC00979    | High-<br>quality | 1.24                       | 1.21                       | 11.2                  | 5.84                 | 3.96                   | 4.04                      |                |
| AKC00980    | High-<br>quality | 0.9                        | 0.95                       | 10.81                 | 6.05                 |                        |                           | 3.11           |
| AKC00990    | High-<br>quality | 0.95                       | 1.14                       | 4.26                  | 6.82                 |                        |                           |                |
| AKC00995    | Low-<br>quality  | 1.56                       | 1.56                       | 7.62                  | 9.67                 |                        |                           |                |

| Database ID | Quality                     | Interior<br>Perf A<br>(mm) | Interior<br>Perf B<br>(mm) | Max<br>Length<br>(mm) | Max<br>Width<br>(mm) | Min<br>Width<br>A (mm) | Min<br>Width<br>B (mm) | Thickness (mm) |
|-------------|-----------------------------|----------------------------|----------------------------|-----------------------|----------------------|------------------------|------------------------|----------------|
| AKC00996    | Low-<br>quality             | 1.45                       | 1.56                       | 5.43                  | 7.52                 |                        |                        |                |
| AKC00997    | Low-<br>quality             | 1                          | 1.02                       | 3.51                  | 4.13                 |                        |                        |                |
| AKC00998    | Low-<br>quality             | 1.08                       | 0.78                       | 4.35                  | 4.94                 |                        |                        |                |
| AKC00999    | High-<br>quality            | 1.31                       | 0.76                       | 3.92                  | 4.26                 |                        |                        |                |
| AKC01028    | Low-<br>quality             | 1.68                       | 1.72                       | 6.24                  | 7.27                 |                        |                        |                |
| AKC01038    | High-<br>quality,<br>broken | 0.84                       | 0                          | 9.22                  | 4.69                 | 2.23                   | 0                      | 2.44           |
| AKC01042    | High-<br>quality            | 1.64                       | 1.7                        | 12                    | 7.79                 | 3.72                   | 3.12                   |                |
| AKC01045    | High-<br>quality            | 1.68                       | 1.68                       | 11.32                 | 5.59                 | 3.17                   | 3.9                    |                |
| AKC01051    | Low-<br>quality             | 1.57                       | 1.6                        | 5.61                  | 6.91                 |                        |                        |                |
| AKC01055    | High-<br>quality            | 1.48                       | 2.12                       | 17.59                 | 11.82                | 8.3                    | 8.07                   |                |
| AKC01060    | High-<br>quality,<br>broken | 1.12                       | 0                          | 17.38                 | 3.39                 | 2.91                   | 0                      |                |
| AKC01061    | High-<br>quality,<br>broken | 1.12                       | 0                          | 8.42                  | 3.68                 | 2.66                   | 0                      |                |
| AKC01062    | High-<br>quality            | 1.42                       | 1.44                       | 14.53                 | 3.52                 | 3.38                   | 2.84                   |                |
| AKC01067    | High-<br>quality            | 1.6                        | 1.74                       | 38.4                  | 10.64                | 6.41                   | 6.9                    |                |
| AKC01075    | High-<br>quality            | 1.12                       | 1.4                        | 10.23                 | 4.47                 | 3.47                   | 3.64                   |                |
| AKC01087    | High-<br>quality            | 1.61                       | 1.63                       | 18.45                 | 9.93                 | 6.73                   | 5.5                    | 7.85           |
| AKC01089    | Low-<br>quality             | 1.5                        | 1.4                        | 5.82                  | 8.07                 |                        |                        |                |
| AKC01091    | Low-<br>quality             | 1.3                        | 150                        | 9.45                  | 5.23                 | 4.61                   | 4.66                   |                |

| Database ID | Quality                     | Interior<br>Perf A<br>(mm) | Interior<br>Perf B<br>(mm) | Max<br>Length<br>(mm) | Max<br>Width<br>(mm) | Min<br>Width<br>A (mm) | Min<br>Width<br>B (mm) | Thickness (mm) |
|-------------|-----------------------------|----------------------------|----------------------------|-----------------------|----------------------|------------------------|------------------------|----------------|
| AKC01094    | High-<br>quality            | 1.32                       | 1.48                       | 21.52                 | 24.17                |                        |                        | 5.54           |
| AKC01098    | High-<br>quality            | 1.66                       | 1.63                       | 25                    |                      | 4.66                   | 4.91                   | 7.15           |
| AKC01100    | High-<br>quality,<br>broken | 1.43                       | 2.45                       | 7.67                  | 14.39                |                        |                        | 7.42           |
| AKC01106    | High-<br>quality,<br>broken | 1.65                       | 1.65                       | 12.66                 | 9.79                 | 7.15                   |                        |                |
| AKC01108    | High-<br>quality            | 1.51                       | 1.47                       | 9.48                  | 20.12                |                        |                        | 5.29           |
| AKC01110    | High-<br>quality            | 2.23                       | 2.26                       | 16.38                 | 9.85                 | 7.79                   | 7.52                   |                |
| AKC01111    | High-<br>quality            | 1.68                       | 1.63                       | 21.25                 | 11.34                | 7.8                    | 8.83                   |                |
| AKC01112    | High-<br>quality            | 1.67                       | 1.72                       | 0                     | 4.83                 | 17.85                  | 20.09                  |                |
| AKC01114    | High-<br>quality            | 1.82                       | 1.73                       | 21.11                 | 9.39                 | 6.92                   | 7.51                   | 8.58           |
| AKC00300    | High-<br>quality            | 1.2                        | 1.25                       | 23.75                 | 8.7                  | 4.73                   | 3.4                    |                |
| AKC00301    | High-<br>quality            | 1.17                       | 0.95                       | 16.9                  | 7.43                 | 3.74                   | 3.51                   |                |
| AKC00302    | High-<br>quality            | 1.31                       | 1.1                        | 17.34                 | 8.78                 | 4.66                   | 3.78                   |                |
| AKC00303    | High-<br>quality            | 1.25                       | 1.37                       | 16.43                 | 6.8                  | 4.64                   | 4.8                    |                |
| AKC00304    | High-<br>quality            | 1.36                       | 1.35                       | 15.63                 | 9.6                  | 4.88                   | 4.76                   |                |
| AKC00305    | High-<br>quality            | 1.07                       | 1.29                       | 15.6                  | 7.98                 | 4.12                   | 4.61                   |                |
| AKC00306    | High-<br>quality            | 1.59                       | 1.35                       | 19.08                 | 7.46                 | 4.83                   | 4.08                   |                |
| AKC00307    | High-<br>quality            | 1.19                       | 1.34                       | 23.21                 | 8.54                 | 3.9                    | 4.11                   |                |
| AKC00308    | High-<br>quality            | 1.15                       | 1.16                       | 11.38                 | 6.38                 | 4.82                   | 4.67                   |                |
| AKC00309    | High-<br>quality            | 1.62                       | 1.21                       | 12.27                 | 6.62                 | 5.09                   | 5.21                   |                |

| Database ID | Quality          | Interior<br>Perf A | Interior<br>Perf B | Max<br>Length | Max<br>Width | Min<br>Width | Min<br>Width | Thickness<br>(mm) |
|-------------|------------------|--------------------|--------------------|---------------|--------------|--------------|--------------|-------------------|
|             |                  | (mm)               | (mm)               | (mm)          | (mm)         | A (mm)       | B (mm)       | (11111)           |
| AKC00312    | High-<br>quality | 1.34               | 1.25               | 10.93         | 5.17         | 4.25         | 3.86         |                   |
| AKC00313    | High-<br>quality | 1.36               | 1.13               | 11.55         | 6.21         | 4.41         | 4.76         |                   |
| AKC00314    | High-<br>quality | 1.18               | 1.42               | 11.73         | 6.42         | 4.26         | 4.7          |                   |
| AKC00315    | High-<br>quality | 1.23               | 1.52               | 13.17         | 6.01         | 4.46         | 4.1          |                   |
| AKC00316    | High-<br>quality | 1.58               | 1.1                | 11.14         | 5.62         | 4.43         | 4.25         |                   |
| AKC00317    | High-<br>quality | 1.61               | 1.27               | 12.75         | 6.06         | 4.49         | 3.88         |                   |
| AKC00342    | High-<br>quality | 1.33               | 1.34               | 31.44         | 11.45        | 5.49         | 5.24         |                   |
| AKC00343    | High-<br>quality | 1.36               | 1.37               | 19.49         | 10.53        | 3.74         | 4.12         |                   |
| AKC00344    | High-<br>quality | 1.76               | 2                  | 17.7          | 9.63         | 4.96         | 5.18         |                   |
| AKC00345    | High-<br>quality | 1.4                | 1.62               | 25.23         | 11.31        | 4.59         | 4.74         |                   |
| AKC00346    | High-<br>quality | 1.68               | 1.26               | 21.7          | 11.09        | 5.5          | 4.61         |                   |
| AKC00347    | High-<br>quality | 1.44               | 1.98               | 21.35         | 10.72        | 4.83         | 5.59         |                   |
| AKC00348    | High-<br>quality | 1.08               | 1.25               | 19.57         | 11.13        | 5.73         | 6.49         |                   |
| AKC00349    | High-<br>quality | 1.27               | 1.03               | 20.62         | 11.26        | 5.9          | 6.03         |                   |
| AKC00350    | High-<br>quality | 1.25               | 1.31               | 19.61         | 10.82        | 3.75         | 3.9          |                   |
| AKC00351    | High-<br>quality | 1.51               | 1.51               | 22.76         | 10.88        | 5.38         | 5.05         |                   |
| AKC00352    | High-<br>quality | 1.81               | 1.2                | 20.18         | 11.08        | 7.35         | 6.87         |                   |
| AKC00353    | High-<br>quality | 1.42               | 1.22               | 23.32         | 11.61        | 4.23         | 3.78         |                   |

| Database ID   | Quality          | Interior | Interior | Max      | Max   | Min    | Min    | Thickness |
|---------------|------------------|----------|----------|----------|-------|--------|--------|-----------|
| Database ID   | Quanty           | Perf A   | Perf B   | Length   | Width | Width  | Width  | (mm)      |
|               |                  | (mm)     | (mm)     | (mm)     | (mm)  | A (mm) | B (mm) | (11111)   |
| AKC00354      | High-            | 1.61     | 1.65     | 13.58    | 8.18  | 4.01   | 3.85   |           |
| 7111200331    | quality          | 1.01     | 1.05     | 13.50    | 0.10  | 1.01   | 3.03   |           |
| A I/ C00255   | III:-1-          | 1.42     | 1.44     | 21.1     | 10.75 | 4.29   | 4.64   |           |
| AKC00355      | High-            | 1.42     | 1.44     | 21.1     | 10.75 | 4.29   | 4.04   |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00356      | High-            | 1.37     | 1.74     | 22.52    | 11.8  | 4.26   | 4.52   |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00357      | High-            | 1.23     | 1.15     | 15.87    | 7.6   | 2.7    | 2.96   |           |
| /HC00357      | quality          | 1.23     | 1.13     | 15.07    | 7.0   | 2.7    | 2.70   |           |
|               |                  |          |          |          |       |        |        |           |
| AKC00358      | Low-             | 0.67     | 0.94     | 6.37     | 6.37  |        |        |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00359      | High-            | 1.68     | 1.71     | 15.17    | 9.42  | 4.79   | 3.72   |           |
| /HC00337      | quality          | 1.00     | 1.71     | 15.17    | 7.42  | 7.77   | 3.72   |           |
|               |                  |          |          |          |       |        |        |           |
| AKC00360      | High-            | 1.14     | 1.38     | 15.37    | 7.61  | 3.97   | 4.43   |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00361      | High-            | 1.22     | 1.77     | 17.83    | 10.62 | 5.23   | 4.96   |           |
| 711100501     | quality          | 1.22     | 1.77     | 17.03    | 10.02 | 3.23   | 4.50   |           |
|               |                  |          |          |          |       |        |        |           |
| AKC00362      | High-            | 1.71     | 1.73     | 16.59    | 8.19  | 4.17   | 4.84   |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00363      | High-            | 1.36     | 1.02     | 20.79    | 10.89 | 4.22   | 6.05   |           |
| AKC00303      | quality          | 1.30     | 1.02     | 20.79    | 10.89 | 4.22   | 0.03   |           |
|               | quanty           |          |          |          |       |        |        |           |
| AKC00364      | High-            | 1.34     | 1.29     | 20.2     | 9.84  | 4.39   | 4.42   |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00365      | High-            | 1.33     | 1.26     | 19.42    | 10.26 | 3.64   | 3.57   |           |
|               | quality          |          |          |          |       |        |        |           |
| A IZ C002 ( ( | TT: 1            | 1.31     | 1.20     | 24.44    | 12.25 | 5.10   | 0      |           |
| AKC00366      | High-<br>quality | 1.31     | 1.28     | 34.44    | 12.23 | 5.12   | U      |           |
|               | quanty           |          |          |          |       |        |        |           |
| AKC00367      | High-            | 1.38     | 1.26     | 26.6     | 9.68  | 0      | 0      |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00368      | High-            | 1.21     | 1.68     | 26.02    | 10.48 | 3.81   | 0      |           |
| AKC00306      | quality          | 1.21     | 1.06     | 20.02    | 10.46 | 3.01   | U      |           |
|               | quanty           |          |          |          |       |        |        |           |
| AKC00431      | High-            | 1.01     | 1.1      | 15.78    | 6.57  | 2.95   | 3.89   |           |
|               | quality          |          |          |          |       |        |        |           |
| AKC00432      | High-            | 1.16     | 1.32     | 16.74    | 5.79  | 3.26   | 3.65   |           |
| ANC00432      | quality          | 1.10     | 1.32     | 10./4    | 3.19  | 3.20   | 5.05   |           |
|               |                  |          |          | <u> </u> |       |        |        |           |
| AKC00433      | High-            | 1.23     | 1.02     | 16.47    | 6.5   | 3.31   | 3.75   |           |
|               | quality          |          |          |          |       |        |        |           |
| _             |                  | 1        | 1        | I        |       |        |        |           |

| Database ID | Quality          | Interior<br>Perf A | Interior<br>Perf B | Max<br>Length | Max<br>Width | Min<br>Width | Min<br>Width | Thickness<br>(mm) |
|-------------|------------------|--------------------|--------------------|---------------|--------------|--------------|--------------|-------------------|
|             |                  | (mm)               | (mm)               | (mm)          | (mm)         | A (mm)       | B (mm)       |                   |
| AKC00434    | High-<br>quality | 1.18               | 1.01               | 15.02         | 6.36         | 2.94         | 2.83         |                   |
| AKC00435    | High-<br>quality | 1.28               | 1.22               | 16.29         | 5.84         | 3.77         | 4.04         |                   |
| AKC00436    | High-<br>quality | 1.3                | 1.24               | 14.94         | 6.49         | 4.29         | 3.58         |                   |
| AKC00437    | High-<br>quality | 1.3                | 1.11               | 17.38         | 5.91         | 3.7          | 3.31         |                   |
| AKC00438    | High-<br>quality | 0.92               | 1.02               | 15.47         | 5.59         | 3.64         | 3.24         |                   |
| AKC00439    | High-<br>quality | 0.8                | 1.08               | 12.88         | 5.19         | 3.18         | 3.22         |                   |
| AKC00440    | High-<br>quality | 1.3                | 0.91               | 14.34         | 5.18         | 3.7          | 3.52         |                   |

## Ban Non Wat Beads not recorded in detail as part of this study.

| Context       | Cat<br>Number | Raw<br>Material | Color(s)                     | Bead Shape                           | Exterior surface                                                                         | Quality          |
|---------------|---------------|-----------------|------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|------------------|
| Burial<br>36  | 3520          | Carnelian       | N/A                          | Long Hexagonal Faceted Barrel        | Smooth surface, uneven facets                                                            | Low-<br>quality  |
| Burial<br>36  | 3520          | Carnelian       | N/A                          | Long Hexagonal Faceted Barrel        | Smooth surface, uneven facets                                                            | Low-<br>quality  |
| Burial<br>36  | 3520          | Carnelian       | N/A                          | Long Hexagonal Faceted Barrel        | Smooth surface, uneven facets                                                            | Low-<br>quality  |
| Burial<br>36  | 3537          | Carnelian       | N/A                          | Long<br>Triangular<br>Faceted Barrel | Looks good in picture                                                                    | High-<br>quality |
| Burial<br>36  | 3519          | Agate           | N/A                          | Triangular<br>pendant                | The picture makes it seem as if the edges are not as smooth, stone is not great quality. | Low-<br>quality  |
| Burial<br>115 | 5089          | Agate           | N/A                          | Broken<br>Pendant, 1<br>notch        | despite being broken, looks<br>like it's pretty good quality                             | High-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and<br>White<br>Banded | Bicone or<br>Barrel                  | Higher quality stone?                                                                    | High-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and<br>White<br>Banded | Bicone or<br>Barrel                  | Higher quality stone?                                                                    | High-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and<br>White<br>Banded | Bicone or<br>Barrel                  | Higher quality stone?                                                                    | High-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and<br>White<br>Banded | Bicone or<br>Barrel                  | Imperfections on surface/nicks                                                           | Low-<br>quality  |

| Context       | Cat<br>Number | Raw<br>Material | Color(s)                  | Bead Shape          | Exterior surface               | Quality         |
|---------------|---------------|-----------------|---------------------------|---------------------|--------------------------------|-----------------|
| Burial<br>203 | 11520         | Agate           | Black and White<br>Banded | Bicone or<br>Barrel | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White<br>Banded | Bicone or<br>Barrel | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or<br>Barrel | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or Barrel    | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or Barrel    | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or Barrel    | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or Barrel    | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or Barrel    | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or Barrel    | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or<br>Barrel | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11520         | Agate           | Black and White Banded    | Bicone or<br>Barrel | Imperfections on surface/nicks | Low-<br>quality |
| Burial<br>203 | 11525         | Agate           | N/A                       | broken<br>pendant?  | Imperfections on surface/nicks | Low-<br>quality |

| Context       | Cat<br>Number | Raw<br>Material | Color(s)                  | Bead Shape          | Exterior surface             | Quality          |
|---------------|---------------|-----------------|---------------------------|---------------------|------------------------------|------------------|
| Burial<br>203 | 11523         | Agate           | N/A                       | Notched<br>Pendant  | Smooth surface               | High-<br>quality |
| Burial<br>259 | 18038         | Carnelian       | N/A                       | Spherical           | Smooth surface               | High-<br>quality |
| Burial<br>259 | 18039         | Carnelian       | N/A                       | Spherical           | Smooth surface               | High-<br>quality |
| Burial<br>266 | 15507         | Agate           | N/A                       | Broken<br>pendant   | Smooth surface, with repair? | High-<br>quality |
| Burial<br>317 | 17866         | Agate           | Black and White<br>Banded | Bicone or<br>Barrel | N/A                          | N/A              |
| Burial<br>321 | 21204         | Agate           | Black and White<br>Banded | Bicone or<br>Barrel | N/A                          | N/A              |
| Burial<br>322 | 21113         | Agate           | Black and White<br>Banded | Long Barrel         | Smooth surface               | High-<br>quality |
| Burial<br>343 | 19660         | Agate           | Black and White<br>Banded | Long Barrel         | Smooth surface               | High-<br>quality |
| Burial<br>471 | 23022         | Agate           | N/A                       | Bicone              | Uneven shape                 | Low-<br>quality  |

Appendix 6.1: The agate and carnelian artifacts analyzed using LA-ICP-MS.

| Site Name    | Database<br>ID | Context                             | Agate/<br>Carnelian | Bead Shape                       |
|--------------|----------------|-------------------------------------|---------------------|----------------------------------|
| Angkor Borei | AKC03035       | Burial F51                          | Carnelian           | Spherical                        |
| Angkor Borei | AKC03036       | Burial F44                          | Carnelian           | Rough Spherical                  |
| Angkor Borei | AKC03037       | AB7 Block 3<br>Layer 5 Level 7      | Carnelian           | Short Bicone                     |
| Angkor Borei | AKC03038       | AB7 Block 3<br>Layer 5 Level 10     | Carnelian           | Rough Spherical                  |
| Angkor Borei | AKC03039       | AB7 Block 5<br>Layer 4 Level 12     | Carnelian           | Spherical                        |
| Angkor Borei | AKC03040       | AB7 Block 4<br>Layer 4 Level 14     | Carnelian           | Spherical                        |
| Angkor Borei | AKC03041       | AB7 Block 4<br>Layer 4 Level 16     | Carnelian           | Rough Spherical                  |
| Angkor Borei | AKC03042       | AB7 Block 2S<br>Layer 7 Level 23    | Carnelian           | Rough Spherical                  |
| Angkor Borei | AKC03043       | AB7 Block 2S<br>Layer 7 Level 23    | Carnelian           | Rough Spherical                  |
| Angkor Borei | AKC03044       | AB7 Block 2<br>Layer 5 Level 11     | Carnelian           | Hexagonal Short<br>Bicone        |
| Angkor Borei | AKC03045       | AB7 Block 4<br>Layer 19 Level 4     | Agate               | Long Barrel                      |
| Angkor Borei | AKC03046       | AB7 Block 1<br>Layer 3 Level 5      | Quartz              | Hexagonal Faceted Bicone (rough) |
| Ban Non Wat  | AKC02070       | Unit D3 Layer 2 Spit 1              | Agate               | Long Cylinder                    |
| Ban Non Wat  | AKC02061       | Burial 356                          | Carnelian           | Long Barrel                      |
| Ban Non Wat  | AKC02060       | Burial 312                          | Agate               | Long Barrel                      |
| Ban Non Wat  | AKC02065       | Burial 356                          | Agate               | Long Barrel                      |
| Ban Non Wat  | AKC02063       | Unit E8 Layer 3 Spit 3              | Agate               | Rounded Square                   |
| Ban Non Wat  | AKC02069       | Unit C2 Layer 2 Spit 4              | Agate               | Long Tabular<br>Rectangle        |
| Ban Non Wat  | AKC02066       | Burial 36                           | Agate               | Notched Pendant (broken)         |
| Ban Non Wat  | AKC02062       | Unit C3 Layer 2 Spit 4<br>Feature 4 | Carnelian           | Long Barrel                      |
| Ban Non Wat  | AKC02064       | Unit 3<br>Feature 6<br>Bag 10612    | Agate               | Short Barrel                     |

| Site Name     | Database<br>ID | Context      | Agate/<br>Carnelian | Bead Shape                     |
|---------------|----------------|--------------|---------------------|--------------------------------|
| Ban Non Wat   | AKC02068       | Burial 36    | Carnelian           | Hexagonal Faceted Barrel       |
| Ban Non Wat   | AKC02071       | Burial 203   | Agate               | Short Bicone                   |
| Ban Non Wat   | AKC02067       | Burial 259   | Carnelian           | Spherical                      |
| Bit Meas      | AKC00730       | No context   | Agate               | Short Barrel                   |
| Bit Meas      | AKC00732       | No context   | Carnelian           | Long Hexagonal Bicone          |
| Khao Sam Kaeo | AKC03500       | Unknown      | Carnelian           | Long Bicone (Unfinished)       |
| Khao Sam Kaeo | AKC03501       | Unknown      | Agate               | Long Barrel (Unfinished)       |
| Khao Sam Kaeo | AKC03502       | Unknown      | Agate               | Long Barrel (Unfinished)       |
| Khao Sam Kaeo | AKC03503       | Hill 4       | Agate               | Leech Bead (Unfinished)        |
| Khao Sam Kaeo | AKC03504       | Hill 4       | Agate               | Tabular Square<br>(Unfinished) |
| Khao Sam Kaeo | AKC03505       | Hill 3       | Agate               | Short Barrel                   |
| Khao Sam Kaeo | AKC03506       | Hill 3       | Agate               | Long Barrel                    |
| Khao Sam Kaeo | AKC03507       | Hill 2       | Agate               | Leech bead                     |
| Khao Sam Kaeo | AKC03508       | Hill 2       | Agate               | Tabular Truncated Bicone       |
| Khao Sam Kaeo | AKC03509       | Hill 2       | Agate               | Long Bicone                    |
| Khao Sam Kaeo | AKC03510       | North Hill 3 | Carnelian           | Spherical (Unfinished)         |
| Khao Sam Kaeo | AKC03511       | North Hill 3 | Carnelian           | Hexagonal Flattened Bicone     |
| Khao Sam Kaeo | AKC03512       | North Hill 3 | Agate               | Long Cylinder<br>(Unfinished)  |
| Khao Sam Kaeo | AKC03513       | North Hill 3 | Agate               | Short Barrel (Unfinished)      |
| Khao Sam Kaeo | AKC03514       | Hill 2       | Carnelian           | Crescent                       |
| Khao Sam Kaeo | AKC03515       | Hill 2       | Carnelian           | Crescent                       |
| Khao Sam Kaeo | AKC03516       | Hill 4       | Agate               | Chamfered Square               |
| Khao Sam Kaeo | AKC03517       | Hill 4       | Agate               | Notched pendant (Broken)       |

| Site Name   | Database<br>ID | Context                            | Agate/<br>Carnelian | Bead Shape                                |
|-------------|----------------|------------------------------------|---------------------|-------------------------------------------|
| Krek 52/62  | AKC00647       | Unit II Square J14 GH<br>1 AH 2    | Carnelian           | Spherical                                 |
| Phnom Borei | AKC01950       | Unit 1 Level 167<br>Layer 3        | Carnelian           | Spherical                                 |
| Phnom Borei | AKC01951       | Unit 1 Level 241<br>Layer 4        | Carnelian           | Spherical                                 |
| Phum Snay   | AKC00003       | Unit B Layer 3 Spit 3<br>Feature 1 | Agate               | Long Barrel                               |
| Phum Snay   | AKC00016       | Burial 9                           | Carnelian           | Hexagonal Faceted<br>Short Bicone (rough) |
| Phum Snay   | AKC00020       | Burial 9                           | Carnelian           | Spherical                                 |
| Phum Snay   | AKC00025       | Burial 9                           | Carnelian           | Hexagonal Faceted<br>Short Bicone (rough) |
| Phum Snay   | AKC00026       | Burial 9                           | Carnelian           | Hexagonal Faceted Short Bicone (rough)    |
| Phum Snay   | AKC00035       | Burial 9                           | Carnelian           | Spherical                                 |
| Phum Snay   | AKC00044       | Burial 9                           | Carnelian           | Spherical                                 |
| Phum Snay   | AKC00053       | Burial 2                           | Carnelian           | Hexagonal Faceted<br>Short Bicone (rough) |
| Phum Snay   | AKC00056       | Burial 2                           | Carnelian           | Long Barrel                               |
| Prei Khmeng | AKC01721       | US 22021                           | Carnelian           | Nodule                                    |
| Prohear     | AKC00644       | Burial 4                           | Agate               | Long Barrel                               |
| Prohear     | AKC00646       | Burial 2                           | Agate               | Long Cylinder                             |
| Prohear     | AKC00643       | Burial 24                          | Carnelian           | Hexagonal Flattened Bicone                |
| Promtin Tai | AKC01061       | Burial 20                          | Carnelian           | Hexagonal Faceted Barrel                  |
| Promtin Tai | AKC01062       | Burial 20                          | Agate               | Long Barrel                               |
| Promtin Tai | AKC00932       | Burial 32                          | Carnelian           | Rough Spherical                           |
| Promtin Tai | AKC00922       | Burial 20                          | Carnelian           | Long Hexagonal Bicone                     |
| Promtin Tai | AKC00923       | Burial 20                          | Agate               | Long Barrel                               |
| Promtin Tai | AKC01108       | Burial 19                          | Agate               | Pendant (broken)                          |
| Promtin Tai | AKC01111       | Burial 19                          | Agate               | Short Bicone                              |
| Promtin Tai | AKC00995       | S3 East Section<br>130-130 cmbd    | Carnelian           | Rough Spherical                           |
| Promtin Tai | AKC00999       | S3 East Section<br>130-130 cmbd    | Carnelian           | Spherical                                 |

| Site Name    | Database<br>ID | Context                            | Agate/<br>Carnelian | Bead Shape                 |
|--------------|----------------|------------------------------------|---------------------|----------------------------|
| Promtin Tai  | AKC00902       | Burial 16                          | Agate               | Long Barrel                |
| Promtin Tai  | AKC00980       | S3/2 East Section 210-<br>220 cmbd | Carnelian           | Hexagonal Flattened Bicone |
| Promtin Tai  | AKC01051       | S3/2 West Section<br>190-200 cmbd  | Carnelian           | Rough Spherical            |
| Village 10.8 | AKC00433       | Burial 48                          | Carnelian           | Long Bicone                |
| Village 10.8 | AKC00437       | Burial 48                          | Carnelian           | Long Hexagonal Bicone      |
| Village 10.8 | AKC00308       | Burial 28                          | Agate               | Short Barrel               |
| Village 10.8 | AKC00348       | Burial 3                           | Carnelian           | Short Bicone               |
| Village 10.8 | AKC00303       | Burial 34                          | Carnelian           | Short Barrel               |
| Village 10.8 | AKC00364       | Burial 15                          | Carnelian           | Long Bicone                |
| Village 10.8 | AKC00344       | Burial 1                           | Carnelian           | Short Bicone               |

LA-ICP-MS data for agate and carnelian geologic samples and artifacts Appendix 6.2:

| Database<br>ID | Site         | SiO2          | Na2O | MgO  | A12O3 | P203 | K20  | CaO  | MnO  | Fe2O3 | OnO  | SnO2 |
|----------------|--------------|---------------|------|------|-------|------|------|------|------|-------|------|------|
| AKC03035       | Angkor Borei | %5'66         | 0.0% | 0.0% | 0.1%  | 0.0% | 0.1% | 0.2% | %0.0 | 0.1%  | 0.0% | 0.0% |
| AKC03036       | Angkor Borei | %2.66         | %0.0 | %0.0 | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | 0.0% | %0.0 |
| AKC03037       | Angkor Borei | %8.66         | 0.0% | 0.0% | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | 0.0% | %0.0 |
| AKC03038       | Angkor Borei | %2.66         | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC03039       | Angkor Borei | %9.66         | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.2%  | %0.0 | %0.0 |
| AKC03040       | Angkor Borei | %9.66         | %0.0 | %0.0 | %0.0  | 0.0% | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| AKC03041       | Angkor Borei | %2'96         | %0.0 | %0.0 | 0.1%  | 0.0% | %0.0 | 0.2% | %0.0 | 2.8%  | %0.0 | %0.0 |
| AKC03042       | Angkor Borei | %2.66         | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC03043       | Angkor Borei | %2.66         | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC03044       | Angkor Borei | %9.66         | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| AKC03045       | Angkor Borei | %9.66         | %0.0 | 0.0% | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC03046       | Angkor Borei | %9.66         | %0.0 | 0.0% | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | 0.0% | %0.0 |
| AKC02060       | Ban Non Wat  | %5'66         | %0.0 | 0.0% | %0.0  | %0.0 | %0.0 | 0.3% | %0.0 | %0.0  | 0.0% | %0.0 |
| AKC02061       | Ban Non Wat  | 99.3%         | %0.0 | 0.3% | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| AKC02062       | Ban Non Wat  | %2.66         | %0.0 | %0.0 | %0.0  | 0.0% | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC02063       | Ban Non Wat  | %9.66         | %0.0 | %0.0 | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC02064       | Ban Non Wat  | %9.66         | %0.0 | %0.0 | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | 0.0% | %0.0 |
| AKC02065       | Ban Non Wat  | 99.4%         | 0.1% | %0.0 | %0.0  | %0.0 | 0.1% | 0.2% | %0.0 | %0.0  | 0.0% | %0.0 |
| AKC02066       | Ban Non Wat  | <b>%9</b> ′66 | %0.0 | %0.0 | %0.0  | %0.0 | %0'0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC02067       | Ban Non Wat  | %L'66         | %0.0 | %0.0 | %0.0  | %0.0 | %0'0 | 0.3% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC02068       | Ban Non Wat  | %L'66         | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC02069       | Ban Non Wat  | <b>%9</b> ′66 | %0.0 | %0.0 | %0.0  | %0.0 | %0'0 | 0.3% | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC02070       | Ban Non Wat  | %9.66         | %0.0 | 0.0% | %0.0  | %0.0 | %0.0 | 0.3% | %0.0 | 0.1%  | 0.0% | %0.0 |
|                |              |               |      |      |       |      |      |      |      |       |      |      |

| SnO2           | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0       | %0.0        | %0.0        | %0.0      | %0.0      | 528 |
|----------------|-------------|----------|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------------|-------------|-------------|-----------|-----------|-----|
| CuO            | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0       | %0.0        | %0.0        | %0.0      | %0.0      |     |
| Fe2O3          | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.1%          | 0.1%          | %0.0          | 0.1%          | %9.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0       | %0.0        | %0.0        | %0.0      | %0.0      |     |
| MnO            | 0.0%        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0       | %0.0        | 0.0%        | 0.0%      | %0.0      |     |
| CaO            | 0.3%        | %0.0     | %0.0     | 0.2%          | 0.2%          | 0.2%          | 0.3%          | 0.1%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | %0.0       | 0.1%        | 0.1%        | 0.1%      | 0.1%      |     |
| K20            | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.0%          | 0.1%          | %0.0          | %0.0          | 0.0%          | 0.0%          | %0.0          | 0.1%          | 0.0%          | %0.0       | %0.0        | %0.0        | %0.0      | %0.0      |     |
| P2O3           | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.0%          | %0.0          | %0.0          | 0.0%          | %0.0       | %0.0        | 0.0%        | %0.0      | 0.0%      |     |
| Al2O3          | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | 0.1%          | 0.1%          | 0.1%          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.1%          | 0.2%          | 0.1%          | 0.1%          | 0.1%          | 0.0%          | %0.0          | %0.0          | 0.0%          | %0.0       | %0.0        | 0.1%        | %0.0      | 0.0%      |     |
| MgO            | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.0%          | %0.0          | %0.0          | 0.0%          | %0.0       | %0.0        | 0.0%        | %0.0      | 0.0%      |     |
| Na2O           | %0.0        | %0.0     | %0.0     | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.1%          | %0.0          | %0.0       | %0.0        | %0.0        | %0.0      | %0.0      |     |
| SiO2           | %9.66       | %6.66    | %6.66    | %8.66         | %L'66         | %9.66         | %5'66         | %L'66         | %L'66         | %8.66         | %L'66         | %9.66         | %L'66         | 99.4%         | 99.1%         | %L'66         | %9.66         | %L'66         | %8.66         | %9.66         | %L'66         | %6.66      | %6.66       | %8.66       | %8.66     | %8.66     |     |
| Site           | Ban Non Wat | Bit Meas | Bit Meas | Khao Sam Kaeo | Krek 52/62 | Phnom Borei | Phnom Borei | Phum Snay | Phum Snay |     |
| Database<br>ID | AKC02071    | AKC00730 | AKC00732 | AKC03500      | AKC03501      | AKC03503      | AKC03504      | AKC03505      | AKC03506      | AKC03507      | AKC03508      | AKC03509      | AKC03510      | AKC03511      | AKC03511      | AKC03512      | AKC03513      | AKC03514      | AKC03515      | AKC03516      | AKC03517      | AKC00647   | AKC01950    | AKC01951    | AKC00003  | AKC00016  |     |

| SnO2           | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0        | %0.0     | %0.0     | %0.0     | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0         | %0.0         | %0.0         | 529 |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|----------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|-----|
| CuO            | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0        | %0.0     | %0.0     | %0.0     | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0         | %0.0         | %0.0         |     |
| Fe2O3          | 0.1%      | %0.0      | %0.0      | %0.0      | %0.0      | 0.1%      | %0.0      | %0.0        | 0.2%     | %0.0     | %0.0     | %0.0        | 0.1%        | %0.0        | %0.0        | 0.1%        | %0.0        | %0.0        | %0.0        | 0.1%        | %0.0        | %0.0        | %0.0        | %0.0         | %0.0         | %0.0         |     |
| MnO            | 0.0%      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | 0.0%        | %0.0     | %0.0     | %0.0     | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | 0.0%        | %0.0        | %0.0        | %0.0         | %0.0         | %0.0         |     |
| CaO            | %0.0      | %0.0      | 0.1%      | 0.1%      | 0.0%      | 0.1%      | 0.0%      | %0.0        | 0.0%     | 0.1%     | 0.1%     | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.2%        | 0.1%        | 0.2%        | 0.0%         | 0.1%         | %0.0         |     |
| K20            | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0        | %0.0     | %0.0     | %0.0     | 0.1%        | %0.0        | %0.0        | 0.0%        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | 0.0%        | 0.1%        | 0.1%        | %0.0         | %0.0         | 0.0%         |     |
| P203           | %0.0      | 0.0%      | %0.0      | 0.0%      | 0.0%      | 0.1%      | %0.0      | 0.0%        | 0.0%     | 0.0%     | %0.0     | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | 0.0%        | %0.0        | %0.0        | 0.0%         | 0.0%         | 0.0%         |     |
| Al203          | 0.1%      | %0.0      | %0.0      | 0.1%      | %0.0      | 0.0%      | %0.0      | 0.1%        | 0.0%     | %0.0     | %0.0     | 0.1%        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | 0.1%        | %0.0        | 0.0%        | 0.0%        | %0.0        | %0.0         | 0.1%         | %0.0         |     |
| MgO            | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0        | %0.0     | %0.0     | %0.0     | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0         | %0.0         | %0.0         |     |
| Na2O           | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0        | %0.0     | %0.0     | %0.0     | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0        | %0.0         | %0.0         | %0.0         |     |
| SiO2           | %8.66     | %6.66     | %6.66     | %8.66     | %6.66     | %2.66     | 100.0%    | %8.66       | %2.66    | %8.66    | %8.66    | %5'66       | %2.66       | %2.66       | %2.66       | %9.66       | %9.66       | %2.66       | %2.66       | %9.66       | %2.66       | %2.66       | %9.66       | %6.66        | %8.66        | %6.66        |     |
| Site           | Phum Snay | Prei Khmeng | Prohear  | Prohear  | Prohear  | Promtin Tai | Village 10.8 | Village 10.8 | Village 10.8 |     |
| Database<br>ID | AKC00020  | AKC00025  | AKC00026  | AKC00035  | AKC00044  | AKC00053  | AKC00056  | AKC01721    | AKC00643 | AKC00644 | AKC00646 | AKC00902    | AKC00922    | AKC00923    | AKC00932    | AKC00980    | AKC00995    | AKC00999    | AKC01051    | AKC01061    | AKC01062    | AKC01108    | AKC01111    | AKC00303     | AKC00308     | AKC00344     |     |

| Database<br>ID | Site         | SiO2  | Na2O | $_{ m MgO}$ | A12O3 | P203 | K20  | CaO  | OuM  | Fe2O3 | CnO  | SnO2 |
|----------------|--------------|-------|------|-------------|-------|------|------|------|------|-------|------|------|
| AKC00348       | Village 10.8 | %6.66 | %0.0 | %0.0        | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | 0.0% |
| AKC00364       | Village 10.8 | %6.66 | %0.0 | %0.0        | %0.0  | %0.0 | %0.0 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 |
| AKC00433       | Village 10.8 | %6.66 | %0.0 | %0.0        | %0.0  | %0.0 | %0.0 | %0.0 | %0.0 | %0.0  | %0.0 | 0.0% |
| AKC00437       | Village 10.8 | %8.66 | %0.0 | %0.0        | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | 0.0% |

| Database<br>ID | Li    | Be    | В      | Sc    | Ті     | Λ      | Cr    | N      | Co    | Zn     | As    |
|----------------|-------|-------|--------|-------|--------|--------|-------|--------|-------|--------|-------|
| AKC03035       | 6.841 | 0.922 | 689'L  | 3.262 | 2.027  | 2.013  | 1.003 | 5.386  | 0.074 | 0.840  | 0.000 |
| AKC03036       | 3.618 | 1.539 | 17.822 | 2.741 | 2.452  | 0.455  | 1.801 | 4.608  | 0.139 | 2.110  | 0.404 |
| AKC03037       | 0.446 | 1.689 | 3.982  | 2.304 | 2.872  | 0.924  | 1.483 | 4.301  | 0.103 | 3.006  | 3.150 |
| AKC03038       | 0.329 | 1.193 | 14.277 | 2.837 | 4.177  | 0.200  | 1.422 | 5.080  | 0.109 | 1.298  | 0.000 |
| AKC03039       | 0.455 | 1.284 | 12.210 | 2.838 | 1.494  | 1.702  | 1.276 | 5.111  | 0.099 | 1.208  | 0.000 |
| AKC03040       | 0.407 | 1.149 | 16.926 | 2.818 | 1.076  | 1.322  | 1.311 | 5.795  | 0.163 | 0.578  | 1.885 |
| AKC03041       | 0.950 | 1.179 | 4.764  | 4.589 | 6.280  | 41.268 | 5.255 | 15.110 | 7.820 | 14.423 | 0.917 |
| AKC03042       | 0.707 | 1.297 | 7.285  | 2.776 | 2.828  | 0.807  | 1.536 | 6.347  | 0.152 | 1.966  | 0.459 |
| AKC03043       | 0.461 | 1.634 | 13.045 | 2.852 | 2.349  | 0.411  | 1.998 | 6.131  | 0.163 | 2.914  | 0.000 |
| AKC03044       | 0.088 | 0.049 | 16.376 | 4.211 | 1.139  | 1.939  | 0.113 | 7.466  | 0.107 | 4.071  | 0.000 |
| AKC03045       | 0.346 | 1.003 | 16.545 | 3.968 | 4.595  | 0.537  | 0.350 | 7.176  | 0.064 | 4.707  | 0.000 |
| AKC03046       | 8.108 | 0.205 | 1.308  | 4.223 | 16.085 | 0.785  | 1.786 | 8.752  | 0.281 | 25.189 | 766.0 |
| AKC02060       | 1.247 | 2.374 | 15.974 | 4.248 | 1.023  | 0.265  | 0.501 | 8.992  | 0.104 | 0.442  | 1.659 |
| AKC02061       | 1.866 | 0.000 | 0.834  | 4.536 | 1.972  | 0.469  | 5.498 | 61.219 | 0.144 | 3.125  | 2.242 |
| AKC02062       | 0.616 | 1.632 | 2.824  | 3.284 | 11.976 | 4.375  | 1.366 | 6.297  | 0.251 | 2.118  | 2.723 |
| AKC02063       | 3.038 | 1.603 | 27.358 | 3.245 | 2.662  | 0.248  | 928.0 | 6.113  | 0.107 | 0.752  | 3.228 |
| AKC02064       | 1.411 | 3.006 | 17.405 | 2.863 | 4.579  | 0.508  | 0.885 | 4.067  | 0.240 | 4.944  | 0.577 |
| AKC02065       | 898.0 | 0.944 | 0.681  | 3.533 | 10.353 | 0.765  | 0.962 | 5.771  | 0.128 | 666'9  | 1.370 |
| AKC02066       | 0.949 | 2.111 | 9.557  | 3.445 | 1.517  | 0.483  | 1.247 | 5.507  | 0.132 | 2.318  | 4.812 |
| AKC02067       | 0.383 | 0.982 | 0.730  | 3.714 | 1.836  | 0.241  | 0.620 | 7.534  | 0.088 | 299.0  | 2.157 |
| AKC02068       | 3.135 | 1.446 | 5.120  | 3.487 | 1.963  | 0.447  | 0.916 | 6.208  | 0.157 | 3.035  | 2.731 |
| AKC02069       | 2.352 | 2.601 | 19.945 | 4.184 | 4.114  | 0.338  | 0.824 | 7.576  | 0.101 | 4.618  | 0.919 |
| AKC02070       | 0.426 | 0.804 | 13.859 | 4.205 | 1.142  | 0.190  | 0.406 | 629.2  | 0.063 | 0.734  | 1.230 |
| AKC02071       | 3.026 | 1.441 | 16.530 | 3.785 | 3.117  | 0.576  | 0.680 | 7.859  | 0.123 | 3.804  | 1.008 |
| AKC00730       | 0.227 | 0.559 | 12.502 | 1.846 | 0.811  | 0.811  | 0.291 | 0.611  | 0.008 | 0.564  | 1.695 |
| AKC00732       | 0.191 | 0.729 | 9.166  | 1.905 | 1.581  | 0.170  | 0.415 | 0.455  | 0.041 | 0.711  | 0.053 |

| Database<br>ID | Li    | Be    | В      | Sc    | Ti    | V     | $\mathbf{Cr}$ | N      | Co    | Zn     | As    |
|----------------|-------|-------|--------|-------|-------|-------|---------------|--------|-------|--------|-------|
| AKC03500       | 0.120 | 0.195 | 8.239  | 3.460 | 0.437 | 0.158 | 0.383         | 5.900  | 0.037 | 1.852  | 3.728 |
| AKC03501       | 2.370 | 1.767 | 15.653 | 3.294 | 1.895 | 0.158 | 0.415         | 6.236  | 0.143 | 2.745  | 3.349 |
| AKC03503       | 0.618 | 0.174 | 15.492 | 5.358 | 8.826 | 1.195 | 0.826         | 9.018  | 0.043 | 5.382  | 6.879 |
| AKC03504       | 4.767 | 0.202 | 15.870 | 5.234 | 2.617 | 1.821 | 0.923         | 8.882  | 090.0 | 5.614  | 2.963 |
| AKC03505       | 3.820 | 1.835 | 10.778 | 4.775 | 5.163 | 0.285 | 0.636         | 5.795  | 0.024 | 1.476  | 0.971 |
| AKC03506       | 2.087 | 0.034 | 20.963 | 4.078 | 8.015 | 0.164 | 0.354         | 6.603  | 0.021 | 1.628  | 0.239 |
| AKC03507       | 0.665 | 0.215 | 0.892  | 3.634 | 0.376 | 0.041 | 0.260         | 6.460  | 0.011 | 2.170  | 1.202 |
| AKC03508       | 0.583 | 0.085 | 1.830  | 3.600 | 0.213 | 0.141 | 0.337         | 6.118  | 0.020 | 0.829  | 1.081 |
| AKC03509       | 0.799 | 1.209 | 20.565 | 4.243 | 0.202 | 0.768 | 0.170         | 6.488  | 0.010 | 0.340  | 0.415 |
| AKC03510       | 0.237 | 0.368 | 8.690  | 3.856 | 6.613 | 0.498 | 0.689         | 10.205 | 0.128 | 11.438 | 1.413 |
| AKC03511       | 8.949 | 0.211 | 1.228  | 5.678 | 9.558 | 0.903 | 0.962         | 9.267  | 0.083 | 3.954  | 699.0 |
| AKC03511       | 1.111 | 0.282 | 0.631  | 3.308 | 1.351 | 3.710 | 0.471         | 5.411  | 0.070 | 1.579  | 0.244 |
| AKC03512       | 2.320 | 1.323 | 14.899 | 3.367 | 2.532 | 0.383 | 0.462         | 6.100  | 0.073 | 3.958  | 0.852 |
| AKC03513       | 3.210 | 0.297 | 908.0  | 3.567 | 4.254 | 0.308 | 0.558         | 6.486  | 0.082 | 10.495 | 1.175 |
| AKC03514       | 0.612 | 0.151 | 0.640  | 4.215 | 0.722 | 0.142 | 0.463         | 7.050  | 0.026 | 0.776  | 0.490 |
| AKC03515       | 0.380 | 0.108 | 0.589  | 3.912 | 0.616 | 0.078 | 0.371         | 7.061  | 0.023 | 0.634  | 0.602 |
| AKC03516       | 0.224 | 0.374 | 11.677 | 5.392 | 1.058 | 0.249 | 0.661         | 7.287  | 0.036 | 4.049  | 0.722 |
| AKC03517       | 2.465 | 0.682 | 6.197  | 5.242 | 0.744 | 2.744 | 0.554         | 8.764  | 0.026 | 1.090  | 2.877 |
| AKC00647       | 0.094 | 0.277 | 3.489  | 1.900 | 2.247 | 0.328 | 1.201         | 1.669  | 0.059 | 2.613  | 0.963 |
| AKC01950       | 0.324 | 0.576 | 14.663 | 1.663 | 2.031 | 0.139 | 3.294         | 0.667  | 0.035 | 0.787  | 0.000 |
| AKC01951       | 2.054 | 0.424 | 26.846 | 1.730 | 0.619 | 0.539 | 0.332         | 0.446  | 0.012 | 1.058  | 0.000 |
| AKC00003       | 1.648 | 0.550 | 21.401 | 2.507 | 0.292 | 0.197 | 0.343         | 0.988  | 0.004 | 4.469  | 0.000 |
| AKC00016       | 0.995 | 0.250 | 18.641 | 2.271 | 0.615 | 0.215 | 0.337         | 0.616  | 0.021 | 13.084 | 0.000 |
| AKC00020       | 0.682 | 0.477 | 5.973  | 2.404 | 4.053 | 0.905 | 0.189         | 0.991  | 0.023 | 29.773 | 0.000 |
| AKC00025       | 0.248 | 0.378 | 7.312  | 2.047 | 0.460 | 0.223 | 0.315         | 0.433  | 0.009 | 0.463  | 0.000 |
| AKC00026       | 0.125 | 0.413 | 11.045 | 1.964 | 0.383 | 0.076 | 0.656         | 0.513  | 0.015 | 0.681  | 0.000 |

| Database<br>ID | Ľ     | Be    | В      | Sc    | Ti     | ^     | Cr    | Ņ     | Co    | Zn    | As    |
|----------------|-------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|
| AKC00035       | 1.116 | 0.329 | 24.263 | 1.808 | 1.739  | 0.890 | 0.758 | 0.443 | 0.036 | 1.139 | 0.000 |
| AKC00044       | 0.134 | 0.214 | 9.790  | 1.730 | 0.102  | 0.294 | 0.000 | 0.420 | 0.016 | 2.730 | 0.000 |
| AKC00053       | 0.220 | 0.269 | 16.620 | 1.693 | 1.707  | 1.559 | 4.939 | 0.388 | 900.0 | 868.0 | 0.000 |
| AKC00056       | 0.086 | 0.297 | 2.542  | 1.812 | 0.728  | 0.371 | 2.345 | 0.514 | 0.012 | 0.271 | 0.000 |
| AKC01721       | 0.604 | 0.553 | 41.512 | 2.236 | 11.173 | 0.456 | 0.506 | 0.540 | 0.049 | 1.776 | 3.202 |
| AKC00643       | 1.005 | 0.821 | 12.920 | 2.450 | 0.481  | 3.334 | 0.432 | 1.637 | 980.0 | 2.964 | 1.418 |
| AKC00644       | 1.633 | 0.888 | 15.339 | 1.781 | 0.224  | 0.226 | 0.348 | 0.506 | 0.040 | 0.525 | 0.223 |
| AKC00646       | 0.332 | 0.260 | 13.382 | 1.920 | 0.328  | 0.117 | 0.296 | 0.561 | 0.031 | 0.437 | 0.993 |
| AKC00902       | 0.939 | 1.521 | 13.613 | 3.013 | 2.319  | 0.238 | 1.579 | 6.240 | 0.104 | 1.960 | 3.345 |
| AKC00922       | 0.181 | 1.164 | 2.861  | 3.114 | 1.387  | 0.704 | 1.097 | 5.846 | 0.081 | 0.908 | 0.612 |
| AKC00923       | 0.555 | 1.727 | 18.038 | 3.129 | 0.897  | 0.572 | 1.363 | 7.451 | 0.115 | 0.933 | 0.000 |
| AKC00932       | 0.239 | 1.379 | 6.020  | 3.113 | 3.048  | 0.268 | 1.143 | 7.175 | 0.115 | 1.226 | 0.381 |
| AKC00980       | 0.557 | 0.920 | 1.664  | 3.263 | 0.948  | 0.132 | 0.930 | 7.532 | 0.077 | 0.454 | 1.378 |
| AKC00995       | 3.026 | 2.040 | 6.523  | 2.978 | 6.934  | 0.450 | 1.443 | 5.213 | 0.358 | 4.023 | 4.416 |
| AKC00999       | 0.607 | 1.786 | 4.955  | 2.912 | 3.901  | 0.367 | 1.381 | 6.095 | 0.099 | 3.116 | 3.875 |
| AKC01051       | 1.448 | 1.173 | 5.088  | 3.855 | 1.227  | 0.288 | 1.581 | 5.878 | 0.107 | 2.519 | 5.318 |
| AKC01061       | 1.676 | 2.278 | 7.836  | 2.671 | 1.354  | 1.165 | 1.323 | 5.516 | 0.271 | 4.906 | 5.856 |
| AKC01062       | 1.004 | 2.716 | 15.869 | 2.600 | 1.572  | 969.0 | 0.881 | 5.093 | 0.089 | 1.189 | 2.254 |
| AKC01108       | 1.305 | 1.442 | 5.393  | 2.476 | 1.226  | 1.406 | 1.190 | 5.287 | 0.073 | 1.363 | 1.213 |
| AKC01111       | 1.339 | 0.893 | 23.051 | 2.508 | 1.663  | 0.895 | 0.863 | 4.006 | 0.074 | 2.282 | 5.915 |
| AKC00303       | 1.095 | 669.0 | 4.111  | 1.902 | 0.883  | 0.252 | 0.388 | 0.333 | 0.037 | 1.197 | 2.799 |
| AKC00308       | 2.070 | 1.790 | 18.957 | 1.805 | 6.788  | 0.319 | 0.936 | 0.780 | 0.049 | 902.0 | 1.153 |
| AKC00344       | 0.045 | 0.277 | 1.055  | 1.879 | 5.272  | 0.122 | 0.458 | 0.446 | 0.018 | 0.756 | 2.502 |
| AKC00348       | 0.397 | 0.397 | 13.445 | 1.930 | 1.761  | 0.318 | 0.532 | 969.0 | 0.023 | 1.019 | 1.641 |
| AKC00364       | 0.157 | 0.292 | 3.910  | 1.795 | 2.785  | 0.084 | 0.196 | 0.356 | 0.022 | 0.290 | 4.435 |
| AKC00433       | 0.900 | 0.833 | 10.292 | 1.821 | 0.965  | 0.137 | 0.603 | 0.655 | 0.052 | 0.483 | 1.016 |

| Database | Ľi    | Be    | В      | Sc    | Ti    | Λ     | $^{1}$ O | Ni    | $C_0$ | Zn    | As    |
|----------|-------|-------|--------|-------|-------|-------|----------|-------|-------|-------|-------|
| П        |       |       |        |       |       |       |          |       |       |       |       |
| AKC00437 | 0.915 | 0.339 | 16.129 | 1.828 | 1.236 | 0.632 | 995.0    | 0.973 | 0.046 | 0.764 | 1.044 |

| Database ID | Rb    | Sr    | $\mathbf{Zr}$ | qN    | $\mathbf{Ag}$ | In    | Sb    | Cs    | Ba     | La    | Ce    |
|-------------|-------|-------|---------------|-------|---------------|-------|-------|-------|--------|-------|-------|
| AKC03035    | 2.029 | 1.952 | 0.241         | 0.039 | 0.133         | 0.078 | 0.516 | 0.029 | 9.731  | 0.058 | 0.025 |
| AKC03036    | 0.367 | 1.512 | 0.098         | 0.063 | 0.170         | 0.035 | 0.854 | 0.035 | 1.031  | 0.065 | 0.063 |
| AKC03037    | 0.119 | 0.231 | 0.159         | 0.067 | 0.306         | 0.038 | 0.330 | 0.017 | 0.374  | 0.048 | 0.051 |
| AKC03038    | 0.116 | 0.552 | 0.174         | 690'0 | 0.137         | 0.027 | 0.667 | 0.021 | 1.423  | 0.033 | 0.045 |
| AKC03039    | 0.223 | 0.584 | 0.089         | 0.051 | 0.098         | 0.031 | 0.540 | 0.029 | 0.552  | 0.055 | 0.054 |
| AKC03040    | 0.429 | 0.464 | 890.0         | 0.048 | 690.0         | 0.019 | 0.478 | 0.019 | 1.458  | 0.045 | 0.053 |
| AKC03041    | 0.462 | 2.826 | 0.956         | 0.032 | 0.084         | 0.045 | 0.614 | 0.019 | 6.532  | 0.557 | 2.050 |
| AKC03042    | 0.387 | 0.779 | 0.126         | 0.084 | 0.208         | 0.028 | 0.671 | 0.038 | 1.798  | 0.044 | 0.073 |
| AKC03043    | 0.357 | 1.040 | 0.118         | 0.089 | 0.274         | 0.036 | 0.658 | 0.023 | 929.0  | 690.0 | 0.127 |
| AKC03044    | 0.222 | 0.460 | 0.109         | 600.0 | 0.016         | 900.0 | 0.627 | 0.010 | 0.842  | 0.019 | 0.051 |
| AKC03045    | 1.002 | 0.832 | 0.583         | 0.034 | 0.412         | 0.019 | 0.940 | 0.042 | 1.062  | 0.093 | 0.178 |
| AKC03046    | 1.291 | 1.648 | 0.759         | 0.217 | 1.037         | 0.130 | 1.155 | 0.145 | 4.519  | 0.196 | 0.590 |
| AKC02060    | 0.342 | 1.098 | 0.065         | 0.040 | 0.077         | 0.044 | 1.458 | 0.013 | 2.691  | 0.027 | 0.035 |
| AKC02061    | 0.830 | 0.359 | 0.143         | 0.037 | 0.192         | 0.020 | 0.123 | 0.199 | 1.568  | 0.022 | 0.037 |
| AKC02062    | 0.369 | 0.357 | 0.214         | 0.108 | 0.153         | 0.028 | 0.340 | 890.0 | 1.436  | 0.188 | 0.220 |
| AKC02063    | 0.610 | 1.034 | 0.104         | 060'0 | 0.103         | 0.036 | 1.436 | 0.036 | 2.240  | 0.064 | 0.083 |
| AKC02064    | 0.635 | 1.262 | 0.201         | 0.075 | 0.398         | 0.065 | 1.075 | 0.082 | 4.062  | 0.112 | 0.263 |
| AKC02065    | 1.868 | 2.738 | 0.195         | 080.0 | 0.079         | 0.016 | 0.325 | 0.028 | 13.209 | 0.064 | 0.178 |
| AKC02066    | 1.965 | 892.0 | 0.174         | 0.070 | 0.102         | 0.047 | 0.655 | 0.136 | 2.713  | 0.034 | 0.102 |
| AKC02067    | 0.506 | 098.0 | 0.099         | 0.049 | 0.100         | 0.023 | 0.093 | 0.038 | 4.206  | 0.075 | 090.0 |
| AKC02068    | 0.093 | 692'0 | 0.084         | 0.045 | 0.141         | 0.029 | 0.298 | 0.041 | 4.149  | 0.036 | 0.043 |
| AKC02069    | 0.362 | 0.640 | 0.102         | 0.075 | 0.268         | 0.054 | 0.652 | 0.065 | 1.274  | 0.082 | 0.083 |
| AKC02070    | 0.113 | 1.087 | 0.113         | 0.035 | 0.048         | 0.021 | 928.0 | 0.023 | 7.008  | 0.085 | 0.596 |
| AKC02071    | 0.478 | 0.670 | 0.109         | 620.0 | 0.124         | 0.024 | 0.405 | 0.041 | 5.342  | 0.179 | 0.450 |
| AKC00730    | 0.172 | 0.636 | 890.0         | 0.101 | 7.839         | 0.002 | 0.454 | 900'0 | 9.579  | 0.019 | 0.033 |
| AKC00732    | 0.232 | 0.910 | 0.062         | 0.004 | 0.050         | 0.005 | 0.183 | 0.010 | 1.939  | 0.016 | 0.066 |

| Database ID | Rb     | Sr    | Zr    | Nb    | $\mathbf{Ag}$ | In    | qs    | Cs    | Ba    | La    | Ce    |
|-------------|--------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|-------|
| AKC03500    | 0.119  | 0.883 | 0.104 | 0.008 | 0.067         | 0.016 | 909.0 | 0.014 | 0.500 | 0.051 | 0.095 |
| AKC03501    | 0.349  | 1.327 | 0.137 | 0.027 | 0.246         | 0.045 | 0.533 | 0.044 | 0.519 | 0.047 | 0.122 |
| AKC03503    | 0.734  | 0.838 | 0.294 | 0.050 | 0.133         | 0.013 | 0.258 | 0.031 | 1.833 | 0.578 | 1.672 |
| AKC03504    | 1.133  | 1.266 | 0.271 | 0.100 | 0.103         | 0.022 | 0.358 | 0.049 | 4.078 | 0.279 | 0.955 |
| AKC03505    | 0.641  | 1.712 | 0.055 | 0.024 | 0.105         | 0.021 | 0.750 | 0.021 | 0.858 | 0.014 | 690.0 |
| AKC03506    | 0.746  | 0.812 | 0.204 | 0.022 | 0.076         | 0.006 | 0.048 | 0.012 | 2.480 | 0.050 | 0.217 |
| AKC03507    | 0.409  | 0.274 | 0.052 | 0.016 | 0.065         | 0.034 | 0.125 | 0.011 | 0.902 | 0.057 | 0.247 |
| AKC03508    | 0.385  | 0.227 | 0.081 | 0.009 | 0.062         | 0.006 | 0.089 | 0.024 | 0.997 | 0.075 | 0.330 |
| AKC03509    | 0.144  | 0.292 | 0.038 | 0.013 | 0.014         | 0.004 | 0.244 | 0.003 | 0.729 | 0.313 | 1.759 |
| AKC03510    | 0.565  | 0.301 | 0.198 | 690.0 | 0.893         | 0.027 | 1.224 | 090.0 | 1.168 | 0.299 | 0.534 |
| AKC03511    | 2.507  | 0.820 | 0.560 | 980.0 | 0.725         | 0.044 | 0.298 | 0.082 | 3.075 | 0.375 | 1.147 |
| AKC03511    | 0.518  | 0.539 | 0.110 | 0.013 | 0.029         | 0.002 | 0.031 | 600.0 | 4.612 | 0.194 | 0.558 |
| AKC03512    | 0.533  | 0.418 | 0.135 | 0.026 | 3.810         | 0.025 | 0.791 | 0.019 | 1.483 | 0.307 | 966'0 |
| AKC03513    | 1.133  | 0.482 | 0.123 | 0.169 | 1.338         | 0.043 | 0.454 | 0.033 | 1.964 | 0.067 | 0.210 |
| AKC03514    | 0.694  | 0.518 | 0.124 | 0.008 | 0.100         | 0.005 | 0.031 | 0.012 | 7.976 | 0.103 | 0.357 |
| AKC03515    | 0.561  | 0.472 | 0.040 | 0.013 | 0.186         | 0.011 | 0.032 | 600'0 | 8.754 | 0.102 | 0.443 |
| AKC03516    | 1.395  | 0.618 | 0.037 | 0.026 | 3.330         | 0.051 | 0.207 | 0.035 | 0.961 | 0.177 | 0.737 |
| AKC03517    | 0.220  | 0.643 | 0.051 | 0.019 | 0.208         | 0.003 | 0.499 | 0.014 | 6.590 | 0.104 | 0.473 |
| AKC00647    | 0.457  | 0.441 | 0.161 | 0.172 | 0.061         | 0.008 | 0.140 | 0.014 | 0.583 | 0.015 | 0.049 |
| AKC01950    | 0.1111 | 0.526 | 0.161 | 0.000 | 0.081         | 0.002 | 0.367 | 0.005 | 1.520 | 0.028 | 0.034 |
| AKC01951    | 0.035  | 1.737 | 0.354 | 0.000 | 0.028         | 0.003 | 0.651 | 800.0 | 2.285 | 0.095 | 0.125 |
| AKC00003    | 0.191  | 1.697 | 0.115 | 0.136 | 0.087         | 0.012 | 1.391 | 0.038 | 5.803 | 0.087 | 0.201 |
| AKC00016    | 0.062  | 0.839 | 0.082 | 0.000 | 0.019         | 0.003 | 0.212 | 600'0 | 1.251 | 0.013 | 0.016 |
| AKC00020    | 0.184  | 1.270 | 0.225 | 0.202 | 0.019         | 0.003 | 608.0 | 0.031 | 4.108 | 0.036 | 0.099 |
| AKC00025    | 0.928  | 0.518 | 0.129 | 0.116 | 0.013         | 0.003 | 0.166 | 900'0 | 0.481 | 0.027 | 0.044 |
| AKC00026    | 0.052  | 0.453 | 0.101 | 0.074 | 0.035         | 0.003 | 0.299 | 0.016 | 1.618 | 0.032 | 0.039 |

| 0.073<br>0.033<br>1.982<br>0.000<br>1.079<br>2.398<br>1.578 | 0.633<br>0.633<br>1.208<br>0.166<br>0.457<br>0.887<br>1.054<br>1.521<br>1.972<br>0.802 | 0.030<br>0.028<br>0.024<br>0.042<br>0.042<br>0.066<br>0.072<br>0.080 | 0.027<br>0.000<br>0.000<br>0.036<br>0.086<br>0.086<br>0.047 | 0.078<br>0.019<br>0.024<br>0.014<br>0.059<br>0.961<br>1111.217<br>0.588 | 0.003<br>0.002<br>0.002<br>0.003<br>0.001<br>0.002 | 1.028 | 0.010 | 7.646  | 0.086 | 0.119 |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|-------|-------|--------|-------|-------|
| 0.033<br>1.982<br>0.000<br>1.079<br>2.398<br>1.578<br>0.223 | .633<br>.208<br>.1166<br>.1457<br>.1887<br>.054<br>.972<br>.972                        | 0.030<br>0.028<br>0.024<br>0.042<br>0.042<br>0.066<br>0.072<br>0.072 | 0.000<br>1.332<br>0.000<br>0.036<br>0.185<br>0.007<br>0.086 | 0.019<br>0.024<br>0.014<br>0.059<br>0.961<br>111.217<br>0.588           | 0.002<br>0.002<br>0.003<br>0.001<br>0.002          | 0.091 | 0.005 | 11.709 | 0.143 | 0.056 |
| 1.982<br>0.000<br>1.079<br>2.398<br>1.578<br>0.223          | .208<br>.166<br>.1457<br>.887<br>.054<br>.972<br>.972                                  | 0.028<br>0.024<br>0.0316<br>0.042<br>0.066<br>0.072<br>0.316         | 0.000<br>0.036<br>0.086<br>0.086<br>0.047                   | 0.024<br>0.014<br>0.059<br>0.961<br>1111.217<br>0.588<br>0.136          | 0.002<br>0.003<br>0.001<br>0.002                   | 1     |       |        |       |       |
| 0.000<br>1.079<br>2.398<br>1.578<br>0.223                   | .166<br>.457<br>.887<br>.054<br>.521<br>.972<br>.802                                   | 0.024<br>0.816<br>0.042<br>0.066<br>0.072<br>0.316<br>0.080          | 0.000<br>0.036<br>0.185<br>0.007<br>0.086<br>0.047          | 0.014<br>0.059<br>0.961<br>111.217<br>0.588<br>0.136                    | 0.003                                              | 0.356 | 900.0 | 1.581  | 0.012 | 0.011 |
| 1.079<br>2.398<br>1.578<br>0.223                            | .457<br>.887<br>.054<br>.054<br>.972<br>.972                                           | 0.816<br>0.042<br>0.066<br>0.072<br>0.316<br>0.080                   | 0.036<br>0.185<br>0.007<br>0.086<br>0.047                   | 0.059<br>0.961<br>111.217<br>0.588<br>0.136                             | 0.001                                              | 0.350 | 0.005 | 0.344  | 0.009 | 0.008 |
| 2.398<br>1.578<br>0.223                                     | .887<br>.054<br>.521<br>.972<br>.802                                                   | 0.042<br>0.066<br>0.072<br>0.316<br>0.080                            | 0.185<br>0.007<br>0.086<br>0.047<br>0.043                   | 0.961<br>111.217<br>0.588<br>0.136                                      | 0.002                                              | 2.172 | 0.042 | 2.505  | 0.077 | 0.211 |
| 0.223                                                       | .054<br>.521<br>.972<br>.802                                                           | 0.066 0.072 0.316 0.080                                              | 0.007<br>0.086<br>0.047<br>0.043                            | 0.588                                                                   |                                                    | 0.163 | 0.032 | 2.716  | 0.097 | 0.067 |
| 0.223                                                       | .972                                                                                   | 0.072 0.316 0.080                                                    | 0.086                                                       | 0.588                                                                   | 0.005                                              | 0.761 | 0.012 | 2.320  | 0.050 | 0.083 |
|                                                             | .802                                                                                   | 0.080                                                                | 0.047                                                       | 0.136                                                                   | 0.004                                              | 0.261 | 900.0 | 2.214  | 0.015 | 0.016 |
| AKC00902 3.085 1.                                           | .802                                                                                   | 0.080                                                                | 0.043                                                       | 0.122                                                                   | 0.061                                              | 1.036 | 0.088 | 5.105  | 0.049 | 0.087 |
| AKC00922 0.286 0.                                           | 1/2/                                                                                   | 0.100                                                                |                                                             | 0.133                                                                   | 0.020                                              | 0.447 | 600.0 | 2.731  | 0.041 | 0.052 |
| AKC00923 0.371 2.                                           | + 7 + :                                                                                | 0.129                                                                | 0.045                                                       | 0.072                                                                   | 0.061                                              | 0.848 | 900.0 | 2.689  | 0.022 | 0.081 |
| AKC00932 0.663 1.                                           | 1.123                                                                                  | 0.108                                                                | 0.039                                                       | 0.095                                                                   | 0.061                                              | 0.158 | 0.023 | 3.399  | 0.043 | 0.049 |
| AKC00980 0.654 0.                                           | 0.392                                                                                  | 0.073                                                                | 0.024                                                       | 0.095                                                                   | 0.013                                              | 0.077 | 0.013 | 3.602  | 0.053 | 0.168 |
| AKC00995 0.258 1.                                           | 1.402                                                                                  | 0.168                                                                | 0.075                                                       | 0.295                                                                   | 0.041                                              | 0.391 | 0.031 | 7.711  | 0.043 | 0.107 |
| AKC00999 0.192 0                                            | 0.362                                                                                  | 0.121                                                                | 0.074                                                       | 0.187                                                                   | 0.052                                              | 0.713 | 0.056 | 0.643  | 0.033 | 0.071 |
| AKC01051 0.339 1.                                           | 1.281                                                                                  | 0.090                                                                | 0.083                                                       | 0.144                                                                   | 0.040                                              | 0.217 | 0.014 | 1.341  | 0.029 | 0.052 |
| AKC01061 0.390 0.                                           | 0.921                                                                                  | 660.0                                                                | 0.124                                                       | 0.304                                                                   | 0.105                                              | 1.489 | 0.035 | 0.901  | 0.058 | 0.105 |
| AKC01062 0.413 0.                                           | 0.704                                                                                  | 0.102                                                                | 0.050                                                       | 0.121                                                                   | 0.053                                              | 806.0 | 0.020 | 0.737  | 0.037 | 0.053 |
| AKC01108 1.378 4.                                           | 4.014                                                                                  | 0.105                                                                | 0.067                                                       | 0.439                                                                   | 0.025                                              | 2.115 | 0.031 | 14.898 | 0.038 | 0.037 |
| AKC01111 1.506 2                                            | 2.206                                                                                  | 0.111                                                                | 0.044                                                       | 0.189                                                                   | 0.017                                              | 0.593 | 0.030 | 2.592  | 0.039 | 0.059 |
| AKC00303 0.205 0.                                           | 0.344                                                                                  | 0.074                                                                | 0.010                                                       | 0.023                                                                   | 0.003                                              | 0.533 | 800.0 | 0.728  | 0.048 | 0.125 |
| AKC00308 0.465 3.                                           | 3.681                                                                                  | 0.220                                                                | 0.263                                                       | 0.043                                                                   | 0.002                                              | 0.622 | 0.014 | 1.219  | 0.091 | 0.219 |
| AKC00344 0.199 0.                                           | 0.935                                                                                  | 7.250                                                                | 0.250                                                       | 0.027                                                                   | 0.002                                              | 0.188 | 0.014 | 1.630  | 0.021 | 0.055 |
| AKC00348 0.071 0.                                           | 0.582                                                                                  | 0.085                                                                | 0.063                                                       | 0.034                                                                   | 0.003                                              | 0.417 | 0.004 | 0.778  | 600.0 | 0.024 |
| AKC00364 0.125 0.                                           | 0.298                                                                                  | 0.064                                                                | 0.063                                                       | 0.022                                                                   | 0.002                                              | 0.215 | 0.004 | 1.014  | 0.008 | 0.023 |
| AKC00433 0.218 0.                                           | 0.551                                                                                  | 0.048                                                                | 0.161                                                       | 0.045                                                                   | 0.005                                              | 0.974 | 0.008 | 0.404  | 0.008 | 0.021 |

| Database ID Rb | Sr    | Zr    | NP    | $\mathbf{Ag}$ | In    | qS    | Cs    | Ba    | La    | Ce    |
|----------------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|-------|
| AKC00437 0.231 | 969.0 | 0.120 | 0.143 | 0.111         | 0.004 | 0.530 | 0.007 | 1.176 | 0.020 | 0.021 |

| Database ID | Pr    | Та    | γn    | Y     | Pb    | Bi    | Ω     | M     | Mo    | PΝ    | Sm    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| AKC03035    | 0.024 | 0.049 | 0.198 | 0.382 | 1.522 | 0.065 | 0.037 | 0.092 | 0.148 | 0.141 | 0.116 |
| AKC03036    | 0.033 | 890.0 | 0.577 | 980.0 | 0.391 | 0.054 | 0.034 | 0.124 | 0.238 | 0.132 | 0.159 |
| AKC03037    | 0.036 | 0.074 | 1.013 | 0.058 | 1.419 | 990.0 | 0.051 | 0.154 | 0.206 | 0.148 | 0.000 |
| AKC03038    | 0.025 | 0.084 | 0.743 | 0.097 | 0.523 | 0.055 | 0.722 | 1.248 | 0.163 | 0.179 | 0.184 |
| AKC03039    | 0.049 | 0.033 | 0.614 | 0.105 | 0.570 | 0.040 | 0.048 | 960'0 | 0.306 | 0.193 | 0.167 |
| AKC03040    | 0.017 | 0.107 | 0.206 | 0.078 | 0.322 | 690.0 | 0.034 | 0.107 | 0.156 | 0.099 | 0.123 |
| AKC03041    | 0.445 | 0.000 | 0.070 | 4.614 | 0.692 | 0.026 | 0.048 | 0.087 | 0.177 | 2.621 | 1.267 |
| AKC03042    | 0.021 | 0.074 | 0.438 | 060.0 | 0.634 | 0.077 | 0.085 | 0.138 | 0.226 | 0.107 | 0.199 |
| AKC03043    | 0.038 | 0.082 | 969.0 | 0.150 | 1.319 | 0.141 | 0.051 | 0.127 | 0.293 | 0.114 | 0.192 |
| AKC03044    | 0.005 | 0.005 | 0.123 | 0.032 | 0.411 | 0.008 | 0.035 | 0.020 | 0.011 | 0.019 | 0.012 |
| AKC03045    | 0.035 | 0.011 | 0.707 | 0.657 | 2.593 | 0.116 | 0.031 | 0.029 | 0.070 | 0.083 | 0.050 |
| AKC03046    | 0.087 | 0.065 | 7.018 | 0.131 | 6.758 | 0.415 | 0.202 | 0.107 | 0.184 | 0.223 | 0.125 |
| AKC02060    | 0.018 | 0.025 | 0.282 | 0.262 | 0.116 | 0.028 | 0.029 | 0.071 | 0.077 | 0.080 | 0.277 |
| AKC02061    | 0.019 | 0.045 | 0.248 | 0.040 | 0.466 | 0.029 | 0.022 | 2.563 | 0.133 | 0.349 | 0.000 |
| AKC02062    | 890.0 | 990'0 | 0.311 | 0.388 | 0.645 | 660'0 | 4.253 | 0.164 | 0.225 | 0.229 | 0.272 |
| AKC02063    | 0.023 | 0.320 | 0.857 | 0.072 | 0.211 | 0.048 | 0.144 | 3.344 | 0.200 | 0.106 | 1.320 |
| AKC02064    | 0.063 | 890.0 | 0.947 | 1.563 | 1.993 | 0.082 | 0.104 | 0.771 | 0.152 | 0.195 | 0.196 |
| AKC02065    | 0.032 | 0.188 | 0.720 | 0.109 | 0.564 | 0.028 | 0.046 | 0.100 | 0.115 | 0.099 | 0.100 |
| AKC02066    | 0.027 | 0.194 | 0.208 | 1.391 | 0.299 | 0.046 | 0.071 | 0.853 | 0.214 | 0.145 | 0.205 |
| AKC02067    | 0.026 | 0.028 | 0.203 | 0.173 | 0.188 | 0.055 | 0.032 | 0.093 | 2.113 | 0.111 | 0.113 |
| AKC02068    | 0.026 | 0.278 | 0.318 | 0.048 | 0.800 | 0.051 | 0.043 | 0.117 | 0.240 | 0.114 | 0.122 |
| AKC02069    | 0.031 | 0.074 | 0.673 | 1.085 | 1.329 | 0.050 | 0.095 | 0.362 | 0.195 | 0.133 | 0.232 |
| AKC02070    | 0.056 | 0.028 | 0.174 | 0.088 | 989.0 | 0.025 | 0.023 | 0.045 | 0.107 | 0.238 | 0.107 |
| AKC02071    | 0.048 | 0.258 | 0.448 | 0.162 | 0.804 | 0.038 | 0.412 | 1.360 | 0.130 | 0.162 | 0.204 |
| AKC00730    | 0.007 | 900'0 | 0.025 | 0.080 | 0.463 | 0.016 | 0.021 | 0.015 | 0.012 | 0.016 | 0.018 |
| AKC00732    | 0.011 | 0.010 | 0.029 | 0.142 | 0.222 | 0.015 | 0.018 | 0.021 | 0.013 | 0.040 | 0.035 |

| Database ID | Pr    | Та    | Au    | Y     | Pb    | Bi    | Ω     | M     | Mo    | PΝ    | Sm    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| AKC03500    | 0.014 | 0.020 | 0.442 | 0.023 | 1.202 | 0.052 | 800.0 | 0.035 | 0.054 | 090.0 | 0.120 |
| AKC03501    | 0.015 | 0.040 | 1.764 | 0.542 | 4.689 | 0.095 | 0.026 | 080.0 | 0.142 | 0.121 | 0.297 |
| AKC03503    | 0.073 | 0.015 | 0.572 | 0.095 | 4.205 | 0.083 | 0.027 | 0.051 | 0.198 | 0.278 | 0.056 |
| AKC03504    | 0.053 | 0.057 | 0.722 | 0.067 | 1.462 | 0.114 | 0.014 | 0.148 | 0.150 | 0.169 | 0.167 |
| AKC03505    | 0.015 | 0.011 | 0.176 | 0.934 | 0.454 | 0.034 | 900.0 | 0.019 | 0.028 | 0.038 | 0.020 |
| AKC03506    | 0.015 | 0.030 | 0.101 | 0.046 | 0.330 | 0.012 | 0.008 | 0.042 | 0.056 | 0.124 | 0.044 |
| AKC03507    | 0.022 | 900'0 | 0.418 | 0.045 | 0.280 | 0.057 | 900.0 | 0.025 | 0.032 | 0.044 | 0.022 |
| AKC03508    | 0.020 | 0.019 | 0.334 | 0.039 | 0.421 | 0.022 | 0.027 | 0.034 | 0.020 | 0.088 | 0.017 |
| AKC03509    | 0.137 | 0.007 | 0.019 | 0.295 | 1.830 | 0.012 | 0.027 | 0.024 | 0.024 | 0.354 | 0.082 |
| AKC03510    | 0.058 | 0.021 | 6.992 | 0.062 | 5.283 | 5.882 | 0.042 | 0.062 | 0.053 | 0.170 | 0.041 |
| AKC03511    | 0.089 | 0.040 | 1.119 | 0.129 | 3.267 | 0.260 | 0.034 | 0.058 | 0.079 | 0.222 | 690.0 |
| AKC03511    | 0.079 | 0.014 | 0.023 | 0.235 | 1.789 | 0.050 | 0.029 | 0.017 | 0.031 | 0.229 | 0.054 |
| AKC03512    | 0.042 | 0.014 | 0.188 | 0.245 | 2.211 | 0.128 | 0.036 | 0.067 | 0.033 | 0.133 | 0.021 |
| AKC03513    | 0.022 | 0.021 | 2.446 | 0.072 | 4.082 | 0.105 | 0.039 | 92000 | 0.092 | 0.072 | 0.055 |
| AKC03514    | 0.036 | 0.010 | 980.0 | 0.073 | 1.143 | 0.008 | 0.005 | 0.039 | 0.028 | 0.071 | 0.037 |
| AKC03515    | 0.037 | 0.009 | 0.072 | 0.070 | 1.173 | 0.005 | 0.014 | 0.047 | 0.039 | 0.091 | 0.064 |
| AKC03516    | 0.044 | 0.058 | 0.165 | 0.088 | 1.295 | 0.027 | 0.057 | 0.136 | 0.061 | 0.158 | 0.100 |
| AKC03517    | 0.026 | 0.054 | 0.325 | 0.120 | 0.499 | 0.052 | 0.020 | 0.126 | 0.018 | 0.171 | 0.172 |
| AKC00647    | 0.007 | 0.007 | 0.044 | 0.137 | 0.318 | 0.016 | 1.229 | 0.039 | 0.021 | 0.028 | 0.019 |
| AKC01950    | 0.008 | 900'0 | 0.026 | 0.043 | 0.176 | 0.011 | 0.017 | 0.030 | 0.035 | 0.025 | 0.016 |
| AKC01951    | 0.012 | 0.008 | 090.0 | 0.043 | 0.176 | 0.013 | 0.019 | 0.024 | 600.0 | 0.039 | 0.026 |
| AKC00003    | 0.021 | 0.009 | 0.018 | 0.227 | 0.168 | 0.011 | 0.009 | 0.052 | 0.010 | 0.056 | 0.023 |
| AKC00016    | 0.004 | 900'0 | 0.024 | 0.025 | 690.0 | 0.010 | 0.007 | 0.018 | 200'0 | 0.018 | 0.016 |
| AKC00020    | 0.018 | 0.007 | 0.023 | 0.567 | 0.122 | 0.014 | 0.016 | 0.036 | 0.052 | 0.070 | 0.031 |
| AKC00025    | 0.005 | 900'0 | 0.022 | 0.031 | 0.075 | 600.0 | 800.0 | 0.019 | 800.0 | 0.024 | 0.015 |
| AKC00026    | 0.005 | 900.0 | 0.018 | 0.031 | 0.127 | 0.014 | 0.009 | 0.041 | 0.193 | 0.021 | 0.028 |

| Database ID | Pr    | Та    | Au    | Y     | Pb    | Bi    | Ω     | W     | $\mathbf{Mo}$ | Nd    | Sm    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|
| AKC00035    | 0.016 | 0.007 | 0.022 | 0.099 | 0.251 | 0.011 | 0.257 | 0.027 | 0.016         | 0.061 | 0.028 |
| AKC00044    | 0.036 | 0.013 | 0.023 | 0.100 | 0.360 | 0.006 | 0.091 | 0.015 | 0.010         | 0.149 | 0.031 |
| AKC00053    | 0.004 | 0.039 | 0.024 | 0.037 | 0.031 | 0.011 | 0.014 | 0.033 | 0.035         | 0.014 | 0.014 |
| AKC00056    | 0.008 | 0.005 | 0.019 | 0.151 | 0.031 | 0.009 | 600.0 | 0.033 | 0.010         | 0.035 | 0.026 |
| AKC01721    | 0.010 | 0.005 | 0.012 | 0.034 | 0.152 | 0.007 | 0.021 | 0.012 | 0.024         | 0.070 | 0.013 |
| AKC00643    | 0.056 | 0.004 | 0.029 | 0.310 | 0.447 | 0.009 | 0.019 | 0.055 | 0.044         | 0.250 | 0.079 |
| AKC00644    | 0.010 | 0.008 | 0.031 | 0.325 | 2.724 | 0.012 | 0.007 | 0.020 | 0.017         | 0.036 | 0.030 |
| AKC00646    | 0.004 | 0.004 | 0.028 | 0.008 | 0.175 | 0.010 | 0.005 | 0.027 | 0.018         | 0.015 | 0.021 |
| AKC00902    | 0.031 | 0.109 | 0.967 | 0.237 | 1.005 | 0.227 | 0.000 | 3.063 | 0.151         | 0.125 | 0.155 |
| AKC00922    | 0.024 | 0.031 | 0.181 | 0.173 | 0.250 | 0.035 | 0.127 | 0.100 | 0.136         | 0.146 | 0.109 |
| AKC00923    | 0.019 | 0.033 | 0.270 | 1.791 | 0.250 | 0.030 | 0.044 | 0.000 | 0.127         | 0.102 | 0.138 |
| AKC00932    | 0.028 | 0.045 | 0.424 | 0.095 | 0.397 | 0.046 | 0.026 | 0.107 | 0.315         | 0.111 | 0.170 |
| AKC00980    | 0.031 | 0.028 | 0.079 | 0.114 | 0.428 | 0.029 | 0.028 | 0.056 | 0.110         | 0.138 | 0.167 |
| AKC00995    | 0.041 | 0.085 | 1.125 | 0.065 | 1.277 | 0.202 | 1.019 | 0.252 | 0.184         | 0.165 | 0.163 |
| AKC00999    | 0.035 | 0.048 | 1.474 | 0.120 | 1.164 | 0.358 | 0.000 | 0.156 | 0.174         | 0.165 | 0.129 |
| AKC01051    | 0.023 | 0.032 | 0.245 | 0.084 | 1.153 | 0.039 | 0.167 | 0.067 | 0.197         | 060.0 | 0.135 |
| AKC01061    | 0.046 | 0.074 | 1.430 | 0.101 | 1.664 | 0.262 | 0.000 | 0.177 | 0.355         | 0.175 | 0.193 |
| AKC01062    | 0.020 | 0.133 | 0.561 | 0.920 | 902.0 | 0.301 | 0.000 | 0.492 | 0.220         | 0.119 | 0.119 |
| AKC01108    | 0.034 | 0.024 | 0.166 | 0.330 | 0.371 | 0.030 | 0.154 | 0.000 | 0.134         | 0.084 | 0.099 |
| AKC01111    | 0.016 | 0.033 | 0.144 | 0.067 | 0.087 | 0.037 | 0.153 | 0.079 | 0.201         | 0.109 | 0.109 |
| AKC00303    | 0.020 | 0.005 | 0.016 | 0.238 | 0.109 | 900.0 | 900.0 | 0.016 | 0.010         | 0.111 | 0.026 |
| AKC00308    | 0.034 | 800.0 | 0.024 | 0.816 | 0.194 | 0.013 | 0.011 | 0.292 | 0.023         | 0.103 | 0.041 |
| AKC00344    | 0.009 | 900.0 | 0.052 | 0.050 | 0.501 | 0.015 | 0.100 | 0.020 | 0.008         | 0.017 | 0.019 |
| AKC00348    | 0.004 | 900.0 | 0.031 | 0.030 | 680.0 | 0.008 | 0.007 | 0.017 | 0.009         | 0.023 | 0.017 |
| AKC00364    | 0.003 | 0.005 | 0.039 | 0.028 | 0.085 | 0.008 | 600.0 | 0.016 | 0.010         | 0.014 | 0.018 |
| AKC00433    | 0.005 | 900.0 | 0.038 | 0.054 | 890.0 | 0.017 | 0.022 | 0.031 | 0.017         | 0.025 | 0.023 |

| Sm          | 0.031    |  |
|-------------|----------|--|
| S           | 0.0      |  |
| PΝ          | 0.043    |  |
| Mo          | 0.016    |  |
| W           | 0.091    |  |
| n           | 0.014    |  |
| Bi          | 0.011    |  |
| Pb          | 0.114    |  |
| Y           | 0.194    |  |
| Au          | 0.042    |  |
| Ta          | 0.047    |  |
| Pr          | 900.0    |  |
| Database ID | AKC00437 |  |

| AKC03035         0.028         0.123         0.017         0.086         0.026         0.093         0.122         0.053         0.019         8.638           AKC03036         0.039         0.522         0.032         0.138         0.041         0.111         0.053         0.049         0.159         0.049         0.118         0.049         0.118         0.049         0.118         0.049         0.118         0.049         0.118         0.049         0.118         0.049         0.118         0.049         0.118         0.049         0.049         0.129         0.049         0.049         0.129         0.049         0.049         0.118         0.029         0.114         0.026         0.083         0.044         0.129         0.049         0.136         0.029         0.114         0.026         0.083         0.034         0.136         0.029         0.136         0.049         0.183         0.020         0.114         0.026         0.083         0.034         0.136         0.049         0.184         0.017         0.029         0.049         0.184         0.017         0.029         0.184         0.029         0.049         0.184         0.029         0.049         0.184         0.114         0.029         <                                                                                                                                                                                           | Database ID | Eu    | Cq    | Tb    | Dy    | Ho    | Er    | Tm    | AV    | Lu    | Hf    | Th      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| 0.039         0.252         0.032         0.138         0.041         0.111         0.057         0.033         0.032         0.169           0.053         0.151         0.044         0.150         0.041         0.122         0.052         0.183         0.049         0.122           0.040         0.003         0.150         0.044         0.150         0.048         0.092         0.046         0.192         0.049         0.122           0.051         0.050         0.029         0.150         0.048         0.092         0.046         0.192         0.049         0.122           0.051         0.030         0.014         0.056         0.097         0.044         0.016         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.019         0.012         0.049         0.018         0.029         0.049         0.022         0.049         0.022         0.049         0.022         0.049         0.022         0.049         0.022         0.049         0.022         0.049         0.022         0.041         0.022         0.041         0.022         0.049         0.022         0.049         0.022                                                                                                                                                                                                                                 | AKC03035    | 0.028 | 0.123 | 0.017 | 980'0 | 0.026 | 0.092 | 0.043 | 0.122 | 0.052 | 0.093 | 1.111   |
| 0.053         0.151         0.044         0.150         0.041         0.122         0.052         0.183         0.049         0.122           0.040         0.020         0.029         0.150         0.048         0.092         0.046         0.192         0.040         0.135           0.051         0.031         0.137         0.029         0.150         0.048         0.093         0.044         0.019         0.049         0.136           0.031         0.132         0.020         0.114         0.026         0.083         0.034         0.136         0.049         0.126           0.031         0.132         0.020         0.114         0.026         0.083         0.034         0.136         0.049         0.126           0.031         0.132         0.020         0.043         0.034         0.136         0.026         0.049         0.136         0.150           0.049         0.187         0.026         0.043         0.043         0.043         0.043         0.043         0.049         0.150           0.049         0.118         0.034         0.012         0.044         0.013         0.043         0.044         0.019         0.043           0.044 <td>AKC03036</td> <td>0.039</td> <td>0.252</td> <td>0.032</td> <td>0.138</td> <td>0.041</td> <td>0.111</td> <td>0.057</td> <td>0.233</td> <td>0.032</td> <td>0.169</td> <td>8.638</td>                                                                            | AKC03036    | 0.039 | 0.252 | 0.032 | 0.138 | 0.041 | 0.111 | 0.057 | 0.233 | 0.032 | 0.169 | 8.638   |
| 0.040         0.0040         0.029         0.150         0.092         0.046         0.192         0.040         0.126           0.051         0.051         0.027         0.157         0.056         0.097         0.044         0.010         0.046         0.126           0.031         0.182         0.020         0.114         0.026         0.083         0.034         0.136         0.024         0.126           0.049         0.182         0.020         0.114         0.026         0.083         0.034         0.136         0.024         0.136         0.150           0.049         0.183         0.026         0.106         0.043         0.081         0.092         0.080         0.152         0.068           0.0449         0.188         0.020         0.146         0.061         0.032         0.047         0.209         0.083           0.054         0.015         0.020         0.040         0.020         0.047         0.020         0.043         0.022         0.083         0.022           0.059         0.054         0.014         0.020         0.020         0.020         0.044         0.017         0.022           0.059         0.054         0.014<                                                                                                                                                                                                                                                                | AKC03037    | 0.053 | 0.151 | 0.044 | 0.150 | 0.041 | 0.122 | 0.052 | 0.183 | 0.049 | 0.122 | 8.907   |
| 0.051         0.137         0.027         0.157         0.056         0.097         0.044         0.201         0.046         0.126           0.031         0.182         0.020         0.114         0.026         0.083         0.034         0.136         0.024         0.092           0.0318         1.120         0.197         1.289         0.187         0.053         0.055         0.058         0.150           0.049         0.183         0.026         0.106         0.043         0.083         0.092         0.080         0.192         0.035           0.049         0.188         0.020         0.146         0.061         0.032         0.047         0.209         0.043         0.164         0.164         0.154           0.044         0.015         0.020         0.040         0.047         0.029         0.049         0.022         0.049         0.022           0.044         0.015         0.020         0.047         0.020         0.047         0.020         0.049         0.022         0.099         0.032           0.059         0.059         0.040         0.020         0.020         0.020         0.044         0.017         0.022         0.089         0.0                                                                                                                                                                                                                                                        | AKC03038    | 0.040 | 0.000 | 0.029 | 0.150 | 0.048 | 0.092 | 0.046 | 0.192 | 0.040 | 0.393 | 6.997   |
| 0.031         0.182         0.020         0.114         0.026         0.083         0.034         0.136         0.024         0.092           0.318         1.120         0.197         1.289         0.187         0.574         0.063         0.575         0.058         0.150           0.049         0.183         0.026         0.106         0.043         0.092         0.080         0.192         0.038         0.164           0.077         0.188         0.030         0.146         0.061         0.132         0.047         0.209         0.043         0.125           0.047         0.188         0.030         0.146         0.061         0.033         0.025         0.008         0.003         0.088         0.092         0.088         0.025         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008                                                                                                                                                                                                                                 | AKC03039    | 0.051 | 0.137 | 0.027 | 0.157 | 0.056 | 0.097 | 0.044 | 0.201 | 0.046 | 0.126 | 7.451   |
| 0.318         1.120         0.197         1.289         0.187         0.574         0.063         0.575         0.058         0.150           0.049         0.183         0.026         0.106         0.043         0.092         0.080         0.192         0.053         0.164           0.077         0.188         0.030         0.146         0.061         0.032         0.004         0.062         0.080         0.093         0.063           0.015         0.016         0.003         0.012         0.003         0.004         0.017         0.083         0.003         0.004         0.017         0.082         0.009         0.032         0.008         0.003         0.005         0.008         0.003         0.008         0.003         0.005         0.008         0.003         0.004         0.008         0.003         0.004         0.008         0.003         0.008         0.003         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009         0.008         0.009                                                                                                                                                                                                                     | AKC03040    | 0.031 | 0.182 | 0.020 | 0.114 | 0.026 | 0.083 | 0.034 | 0.136 | 0.024 | 0.092 | 0.030   |
| 0.049         0.183         0.026         0.106         0.043         0.092         0.080         0.192         0.035         0.164           0.077         0.188         0.030         0.146         0.061         0.132         0.047         0.209         0.043         0.025           0.004         0.016         0.034         0.012         0.003         0.004         0.017         0.083         0.004         0.017         0.089         0.0093         0.064         0.017         0.089         0.0093         0.0064         0.017         0.089         0.0093         0.0064         0.017         0.089         0.0093         0.0064         0.017         0.089         0.0091         0.0093         0.0064         0.017         0.089         0.0093         0.0064         0.017         0.008         0.0091         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0099         0.0199         0.0199         0.0199                                                                                                                                                                                            | AKC03041    | 0.318 | 1.120 | 0.197 | 1.289 | 0.187 | 0.574 | 0.063 | 0.575 | 0.058 | 0.150 | 0.031   |
| 0.077         0.188         0.030         0.146         0.061         0.132         0.047         0.209         0.043         0.022           0.004         0.016         0.016         0.003         0.003         0.003         0.005         0.009         0.008           0.015         0.016         0.003         0.017         0.064         0.017         0.082         0.009         0.008           0.019         0.034         0.017         0.053         0.063         0.061         0.075         0.089         0.009         0.098           0.019         0.095         0.040         0.093         0.063         0.061         0.075         0.075         0.099         0.099           0.019         0.091         0.020         0.083         0.062         0.070         0.026         0.017         0.029         0.099           0.019         0.091         0.020         0.043         0.025         0.076         0.024         0.017         0.026         0.099         0.017           0.033         0.094         0.027         0.048         0.124         0.041         0.024         0.014         0.024         0.014           0.044         0.199         0.023 <td>AKC03042</td> <td>0.049</td> <td>0.183</td> <td>0.026</td> <td>0.106</td> <td>0.043</td> <td>0.092</td> <td>0.080</td> <td>0.192</td> <td>0.035</td> <td>0.164</td> <td>9.580</td>                                                                            | AKC03042    | 0.049 | 0.183 | 0.026 | 0.106 | 0.043 | 0.092 | 0.080 | 0.192 | 0.035 | 0.164 | 9.580   |
| 0.004         0.016         0.003         0.003         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.009         0.032         0.009         0.003         0.063         0.061         0.017         0.022         0.009         0.003         0.063         0.061         0.017         0.022         0.009         0.003         0.009         0.003         0.004         0.004         0.003         0.063         0.061         0.017         0.022         0.009         0.003         0.009         0.003         0.009         0.003         0.009         0.003         0.009         0.003         0.009         0.008         0.009         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.009         0.008         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009 <th< td=""><td>AKC03043</td><td>0.077</td><td>0.188</td><td>0.030</td><td>0.146</td><td>0.061</td><td>0.132</td><td>0.047</td><td>0.209</td><td>0.043</td><td>0.222</td><td>15.951</td></th<> | AKC03043    | 0.077 | 0.188 | 0.030 | 0.146 | 0.061 | 0.132 | 0.047 | 0.209 | 0.043 | 0.222 | 15.951  |
| 0.015         0.034         0.017         0.057         0.027         0.064         0.017         0.082         0.009         0.032           0.059         0.095         0.040         0.093         0.063         0.061         0.075         0.052         0.085         0.099           0.019         0.020         0.083         0.025         0.070         0.026         0.117         0.029         0.081           0.019         0.021         0.083         0.025         0.076         0.026         0.117         0.029         0.081           0.033         0.097         0.228         0.074         0.023         0.068         0.028         0.074         0.029         0.079         0.081           0.043         0.224         0.049         0.227         0.048         0.124         0.041         0.226         0.173         0.117           0.045         0.199         0.051         0.164         0.068         0.144         0.048         0.156         0.119         0.159           0.021         0.091         0.018         0.263         0.194         0.118         0.046         0.049         0.159           0.021         0.011         0.021         0.164 <td>AKC03044</td> <td>0.004</td> <td>0.016</td> <td>0.003</td> <td>0.012</td> <td>0.003</td> <td>0.008</td> <td>0.003</td> <td>0.025</td> <td>800.0</td> <td>0.008</td> <td>0.093</td>                                                                            | AKC03044    | 0.004 | 0.016 | 0.003 | 0.012 | 0.003 | 0.008 | 0.003 | 0.025 | 800.0 | 0.008 | 0.093   |
| 0.059         0.095         0.040         0.093         0.063         0.061         0.075         0.052         0.085         0.099           0.019         0.019         0.020         0.083         0.025         0.070         0.026         0.117         0.029         0.081           0.033         0.097         0.228         0.074         0.023         0.068         0.028         0.074         0.029         0.081           0.043         0.254         0.049         0.227         0.048         0.124         0.041         0.226         0.173         0.017           0.045         0.138         0.023         2.609         0.342         0.000         0.038         0.156         0.119         0.049         0.159         0.117         0.029         0.117         0.049         0.159         0.117         0.049         0.159         0.114         0.048         0.150         0.159         0.159         0.144         0.048         0.150         0.049         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159         0.159                                                                                                                                                                                                                                 | AKC03045    | 0.015 | 0.034 | 0.017 | 0.057 | 0.027 | 0.064 | 0.017 | 0.082 | 600.0 | 0.032 | 17.189  |
| 0.019         0.091         0.020         0.083         0.025         0.070         0.026         0.117         0.029         0.081           0.033         0.097         0.228         0.074         0.023         0.068         0.028         0.074         0.024         0.094           0.043         0.054         0.027         0.048         0.124         0.026         0.173         0.117           0.043         0.254         0.048         0.124         0.041         0.226         0.173         0.117           0.160         0.138         0.023         2.609         0.342         0.000         0.038         0.156         0.119         0.119         0.144         0.048         0.170         0.049         0.159           0.045         0.194         0.068         0.144         0.048         0.170         0.049         0.159           0.021         0.091         0.018         0.164         0.055         0.184         0.144         0.045         0.049         0.159           0.022         0.137         0.025         0.104         0.105         0.045         0.142         0.045         0.144         0.045         0.045         0.143           0.032 <td>AKC03046</td> <td>0.059</td> <td>0.095</td> <td>0.040</td> <td>0.093</td> <td>0.063</td> <td>0.061</td> <td>0.075</td> <td>0.052</td> <td>0.085</td> <td>0.099</td> <td>210.633</td>                                                                          | AKC03046    | 0.059 | 0.095 | 0.040 | 0.093 | 0.063 | 0.061 | 0.075 | 0.052 | 0.085 | 0.099 | 210.633 |
| 0.033         0.097         0.228         0.074         0.023         0.068         0.028         0.074         0.094         0.074         0.098         0.068         0.028         0.074         0.094         0.079         0.049         0.077         0.048         0.124         0.041         0.226         0.173         0.117         0.117         0.117         0.017         0.017         0.017         0.017         0.019         0.017         0.019         0.019         0.023         0.194         0.118         0.046         0.097         0.038         0.194         0.118         0.046         0.097         0.038         0.194         0.118         0.046         0.097         0.038         0.194         0.118         0.046         0.097         0.038         0.194         0.118         0.046         0.097         0.038         0.194         0.118         0.046         0.097         0.038         0.194         0.194         0.118         0.046         0.049         0.038         0.194         0.018         0.046         0.049         0.031         0.049         0.136         0.049         0.136         0.049         0.013         0.044         0.049         0.049         0.049         0.049         0.043 <th< td=""><td>AKC02060</td><td>0.019</td><td>0.091</td><td>0.020</td><td>0.083</td><td>0.025</td><td>0.070</td><td>0.026</td><td>0.117</td><td>0.029</td><td>0.081</td><td>0.022</td></th<>  | AKC02060    | 0.019 | 0.091 | 0.020 | 0.083 | 0.025 | 0.070 | 0.026 | 0.117 | 0.029 | 0.081 | 0.022   |
| 0.043         0.254         0.049         0.227         0.048         0.124         0.041         0.226         0.173         0.117           0.160         0.138         0.023         2.609         0.342         0.000         0.038         0.156         0.119         0.209           0.045         0.138         0.023         2.609         0.342         0.000         0.038         0.156         0.119         0.209           0.021         0.091         0.018         0.263         0.194         0.118         0.045         0.049         0.159           0.047         0.171         0.029         0.161         0.055         0.155         0.045         0.200         0.045         0.136           0.032         0.137         0.025         0.090         0.023         0.079         0.026         0.000         0.031         0.045           0.027         0.162         0.023         0.124         0.191         0.166         0.038         0.142         0.045         0.143           0.024         0.182         0.025         0.045         0.169         0.063         0.041         0.063         0.141         0.015         0.049         0.143           0.025 <td>AKC02061</td> <td>0.033</td> <td>0.097</td> <td>0.228</td> <td>0.074</td> <td>0.023</td> <td>890.0</td> <td>0.028</td> <td>0.074</td> <td>0.024</td> <td>0.094</td> <td>4.461</td>                                                                            | AKC02061    | 0.033 | 0.097 | 0.228 | 0.074 | 0.023 | 890.0 | 0.028 | 0.074 | 0.024 | 0.094 | 4.461   |
| 0.160         0.138         0.023         2.609         0.342         0.000         0.038         0.156         0.119         0.209           0.045         0.194         0.051         0.068         0.144         0.048         0.170         0.049         0.159           0.021         0.091         0.018         0.263         0.194         0.118         0.046         0.097         0.038         0.194           0.047         0.171         0.029         0.161         0.055         0.155         0.045         0.200         0.045         0.136           0.032         0.137         0.025         0.090         0.023         0.079         0.026         0.000         0.031         0.004           0.027         0.162         0.090         0.023         0.079         0.026         0.000         0.031         0.045         0.143           0.027         0.162         0.023         0.045         0.169         0.063         0.045         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049                                                                                                                                                                                                                                                         | AKC02062    | 0.043 | 0.254 | 0.049 | 0.227 | 0.048 | 0.124 | 0.041 | 0.226 | 0.173 | 0.117 | 1.750   |
| 0.045         0.199         0.051         0.164         0.068         0.144         0.048         0.170         0.049         0.159           0.021         0.091         0.018         0.263         0.194         0.118         0.046         0.097         0.338         0.194           0.047         0.041         0.023         0.194         0.118         0.045         0.038         0.194         0.118           0.032         0.171         0.029         0.161         0.055         0.079         0.045         0.000         0.045         0.142         0.136           0.027         0.162         0.023         0.079         0.026         0.000         0.031         0.000           0.027         0.162         0.023         0.106         0.038         0.142         0.143         0.043           0.044         0.182         0.022         0.045         0.169         0.063         0.340         0.049         0.315           0.023         0.118         0.016         0.055         0.014         0.050         0.102         0.141         0.015         0.142         0.049         0.125           0.023         0.118         0.018         0.024         0.105 <td>AKC02063</td> <td>0.160</td> <td>0.138</td> <td>0.023</td> <td>2.609</td> <td>0.342</td> <td>0.000</td> <td>0.038</td> <td>0.156</td> <td>0.119</td> <td>0.209</td> <td>2.029</td>                                                                            | AKC02063    | 0.160 | 0.138 | 0.023 | 2.609 | 0.342 | 0.000 | 0.038 | 0.156 | 0.119 | 0.209 | 2.029   |
| 0.021         0.091         0.018         0.263         0.194         0.118         0.046         0.097         0.338         0.194           0.047         0.171         0.029         0.161         0.055         0.155         0.045         0.000         0.045         0.136           0.032         0.137         0.025         0.090         0.023         0.079         0.026         0.000         0.031         0.000           0.027         0.162         0.023         0.124         0.191         0.106         0.038         0.142         0.031         0.003           0.044         0.182         0.022         0.045         0.063         0.063         0.049         0.340         0.049         0.315           0.020         0.108         0.016         0.055         0.014         0.050         0.049         0.049         0.049         0.049         0.043           0.023         0.118         0.018         0.054         0.014         0.005         0.102         0.049         0.015         0.065         0.016           0.003         0.018         0.004         0.013         0.004         0.005         0.015         0.005         0.016         0.005         0.01                                                                                                                                                                                                                                                        | AKC02064    | 0.045 | 0.199 | 0.051 | 0.164 | 890.0 | 0.144 | 0.048 | 0.170 | 0.049 | 0.159 | 0.119   |
| 0.047         0.171         0.029         0.161         0.055         0.155         0.045         0.045         0.036         0.045         0.036         0.036         0.031         0.036           0.032         0.137         0.023         0.079         0.026         0.000         0.031         0.000           0.027         0.162         0.023         0.191         0.106         0.038         0.142         0.054         0.143           0.044         0.182         0.0220         0.045         0.045         0.169         0.063         0.340         0.049         0.315           0.020         0.108         0.016         0.025         0.014         0.050         0.049         0.015         0.063           0.023         0.118         0.018         0.014         0.105         0.102         0.141         0.015         0.141         0.015         0.063           0.003         0.018         0.004         0.013         0.004         0.015         0.005         0.016         0.005         0.016           0.006         0.032         0.005         0.005         0.014         0.003         0.015         0.005         0.016         0.005         0.016         0.0                                                                                                                                                                                                                                                        | AKC02065    | 0.021 | 0.091 | 0.018 | 0.263 | 0.194 | 0.118 | 0.046 | 0.097 | 0.338 | 0.194 | 0.039   |
| 0.032         0.137         0.025         0.090         0.023         0.079         0.026         0.000         0.031         0.000           0.027         0.162         0.023         0.124         0.191         0.106         0.038         0.142         0.054         0.143           0.044         0.182         0.022         0.045         0.065         0.069         0.045         0.069         0.063         0.049         0.015           0.020         0.108         0.016         0.055         0.014         0.050         0.101         0.063         0.114         0.105         0.105         0.063           0.003         0.018         0.004         0.013         0.004         0.015         0.005         0.016           0.006         0.032         0.018         0.005         0.004         0.013         0.004         0.015         0.005         0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AKC02066    | 0.047 | 0.171 | 0.029 | 0.161 | 0.055 | 0.155 | 0.045 | 0.200 | 0.045 | 0.136 | 1.291   |
| 0.027         0.162         0.023         0.124         0.191         0.106         0.038         0.142         0.054         0.143           0.044         0.182         0.0220         0.045         0.065         0.0169         0.063         0.340         0.049         0.315           0.020         0.108         0.016         0.055         0.014         0.050         0.022         0.141         0.015         0.063           0.023         0.118         0.018         0.541         0.114         0.105         0.102         1.869         0.125         0.266           0.003         0.018         0.004         0.013         0.004         0.015         0.005         0.016           0.006         0.032         0.005         0.005         0.014         0.003         0.016         0.005         0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AKC02067    | 0.032 | 0.137 | 0.025 | 060'0 | 0.023 | 0.079 | 0.026 | 0.000 | 0.031 | 0.000 | 1.140   |
| 0.044         0.182         0.0220         0.045         0.169         0.063         0.340         0.049         0.315           0.020         0.108         0.016         0.055         0.014         0.050         0.141         0.015         0.063           0.023         0.118         0.018         0.541         0.114         0.105         0.102         1.869         0.125         0.266           0.003         0.018         0.004         0.013         0.004         0.015         0.005         0.016           0.006         0.032         0.005         0.005         0.004         0.003         0.014         0.003         0.005         0.005         0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AKC02068    | 0.027 | 0.162 | 0.023 | 0.124 | 0.191 | 0.106 | 0.038 | 0.142 | 0.054 | 0.143 | 1.074   |
| 0.020         0.108         0.016         0.055         0.014         0.050         0.022         0.141         0.015         0.063           0.023         0.118         0.018         0.541         0.114         0.105         0.102         1.869         0.125         0.266           0.003         0.018         0.004         0.013         0.004         0.015         0.005         0.016           0.006         0.032         0.005         0.005         0.014         0.003         0.021         0.006         0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AKC02069    | 0.044 | 0.182 | 0.028 | 0.220 | 0.045 | 0.169 | 0.063 | 0.340 | 0.049 | 0.315 | 5.405   |
| 0.023         0.118         0.018         0.541         0.114         0.105         0.102         1.869         0.125         0.266           0.003         0.018         0.004         0.013         0.004         0.015         0.005         0.016           0.006         0.032         0.005         0.005         0.014         0.003         0.021         0.006         0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AKC02070    | 0.020 | 0.108 | 0.016 | 0.055 | 0.014 | 0.050 | 0.022 | 0.141 | 0.015 | 0.063 | 0.024   |
| 0.003         0.018         0.004         0.013         0.004         0.013         0.005         0.005         0.016           0.006         0.032         0.005         0.005         0.014         0.003         0.021         0.006         0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AKC02071    | 0.023 | 0.118 | 0.018 | 0.541 | 0.114 | 0.105 | 0.102 | 1.869 | 0.125 | 0.266 | 0.967   |
| 0.006 0.032 0.005 0.025 0.005 0.014 0.003 0.021 0.006 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AKC00730    | 0.003 | 0.018 | 0.003 | 0.018 | 0.004 | 0.013 | 0.004 | 0.015 | 0.005 | 0.016 | 0.011   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AKC00732    | 900.0 | 0.032 | 0.005 | 0.025 | 0.005 | 0.014 | 0.003 | 0.021 | 900'0 | 0.021 | 0.010   |

| Th          | 1.042    | 9.871    | 0.385    | 1.556    | 0.017    | 0.053    | 0.148    | 0.191    | 0.021    | 6.256    | 0.273    | 0.016    | 0.077    | 3.668    | 0.010    | 0.007    | 990.0    | 1.419    | 0.016    | 0.009    | 0.014    | 0.011    | 0.010    | 0.020    | 0.009    | 0.012    |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| JH          | 0.045    | 0.080    | 0.071    | 0.047    | 0.013    | 0.013    | 0.032    | 0.025    | 0.016    | 0.051    | 0.054    | 0.046    | 0.022    | 0.089    | 0.020    | 0.058    | 0.048    | 0.095    | 0.034    | 0.018    | 0.025    | 0.023    | 0.029    | 0.019    | 0.016    | 0.019    |
| Lu          | 800.0    | 0.021    | 0.018    | 0.053    | 0.016    | 0.012    | 0.007    | 0.019    | 900.0    | 0.019    | 0.025    | 900.0    | 0.005    | 0.016    | 0.004    | 0.014    | 0.029    | 0.049    | 0.007    | 0.005    | 0.012    | 0.010    | 0.007    | 900.0    | 0.005    | 0.005    |
| Ay          | 0.013    | 0.126    | 0.056    | 0.207    | 0.133    | 0.093    | 0.130    | 0.150    | 0.018    | 0.041    | 0.047    | 0.038    | 0.044    | 0.017    | 0.010    | 0.016    | 0.087    | 0.195    | 0.036    | 0.018    | 0.020    | 0.020    | 0.016    | 0.041    | 0.027    | 0.030    |
| Tm          | 0.009    | 0.017    | 0.015    | 0.034    | 0.019    | 0.013    | 0.028    | 0.020    | 0.011    | 0.024    | 0.021    | 600.0    | 0.012    | 0.015    | 0.005    | 0.004    | 0.016    | 0.026    | 0.005    | 0.005    | 0.005    | 0.007    | 0.004    | 0.007    | 0.004    | 0.004    |
| Er          | 0.028    | 0.087    | 0.051    | 0.043    | 0.072    | 0.032    | 0.017    | 0.011    | 0.037    | 0.025    | 0.072    | 0.021    | 0.026    | 090.0    | 0.067    | 900.0    | 0.091    | 0.050    | 0.025    | 0.012    | 0.017    | 0.017    | 0.012    | 0.043    | 0.012    | 0.013    |
| Ho          | 0.012    | 0.022    | 0.010    | 0.053    | 0.014    | 0.007    | 0.003    | 0.005    | 0.014    | 0.026    | 0.020    | 0.008    | 900.0    | 0.017    | 0.004    | 0.005    | 0.037    | 0.024    | 0.074    | 0.005    | 0.004    | 0.010    | 0.004    | 0.013    | 0.004    | 0.004    |
| Dy          | 0.067    | 0.047    | 0.051    | 0.171    | 0.050    | 0.023    | 600.0    | 0.044    | 0.039    | 0.035    | 0.074    | 0.045    | 0.037    | 0.108    | 0.018    | 0.026    | 0.070    | 0.136    | 0.035    | 0.017    | 0.019    | 0.026    | 0.013    | 890.0    | 0.012    | 0.014    |
| Tb          | 0.028    | 0.035    | 0.011    | 0.024    | 0.005    | 0.021    | 0.007    | 900.0    | 0.009    | 0.012    | 0.029    | 0.007    | 0.021    | 0.019    | 0.010    | 0.008    | 0.025    | 0.014    | 0.005    | 0.003    | 0.004    | 900.0    | 0.002    | 0.008    | 0.004    | 0.004    |
| РS          | 0.081    | 0.188    | 0.071    | 0.258    | 0.026    | 0.057    | 690.0    | 0.037    | 0.065    | 0.077    | 0.072    | 890.0    | 090.0    | 0.167    | 0.025    | 0.025    | 0.091    | 0.167    | 0.021    | 0.013    | 0.015    | 0.022    | 0.010    | 0.028    | 0.012    | 0.013    |
| Eu          | 0.015    | 0.036    | 0.014    | 0.021    | 600.0    | 0.013    | 0.004    | 0.005    | 0.010    | 0.036    | 0.036    | 0.007    | 0.028    | 0.049    | 0.014    | 0.013    | 0.052    | 0.021    | 900'0    | 0.007    | 0.005    | 800.0    | 0.003    | 900'0    | 0.004    | 0.004    |
| Database ID | AKC03500 | AKC03501 | AKC03503 | AKC03504 | AKC03505 | AKC03506 | AKC03507 | AKC03508 | AKC03509 | AKC03510 | AKC03511 | AKC03511 | AKC03512 | AKC03513 | AKC03514 | AKC03515 | AKC03516 | AKC03517 | AKC00647 | AKC01950 | AKC01951 | AKC00003 | AKC00016 | AKC00020 | AKC00025 | AKC00026 |

| Database ID | Eu    | рS    | Tb    | Dy    | Ho    | Er    | Tm    | AV    | Lu    | Hf    | Th    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| AKC00035    | 0.005 | 0.025 | 0.004 | 0.024 | 0.009 | 0.013 | 0.004 | 0.029 | 900.0 | 0.019 | 0.015 |
| AKC00044    | 0.010 | 0.020 | 0.007 | 0.024 | 0.005 | 0.011 | 0.003 | 0.016 | 0.004 | 0.011 | 900.0 |
| AKC00053    | 0.004 | 0.014 | 0.003 | 0.015 | 0.004 | 0.013 | 0.004 | 0.025 | 0.007 | 0.044 | 0.009 |
| AKC00056    | 0.007 | 0.019 | 0.005 | 0.032 | 0.008 | 0.022 | 0.005 | 0.034 | 0.005 | 0.020 | 0.010 |
| AKC01721    | 0.002 | 0.010 | 0.002 | 0.017 | 0.003 | 0.009 | 0.002 | 0.018 | 0.003 | 0.023 | 0.021 |
| AKC00643    | 0.023 | 0.059 | 0.018 | 0.102 | 900.0 | 0.027 | 900.0 | 0.052 | 900.0 | 0.023 | 0.009 |
| AKC00644    | 0.007 | 0.041 | 0.005 | 0.040 | 900.0 | 0.015 | 0.004 | 0.020 | 0.005 | 0.017 | 0.012 |
| AKC00646    | 0.004 | 0.016 | 0.003 | 0.015 | 0.000 | 0.009 | 900.0 | 0.022 | 0.005 | 0.018 | 0.013 |
| AKC00902    | 0.043 | 0.257 | 0.026 | 0.141 | 0.000 | 0.081 | 0.041 | 0.170 | 0.057 | 0.093 | 0.470 |
| AKC00922    | 0.031 | 0.139 | 0.020 | 0.112 | 0.030 | 0.075 | 0.032 | 0.135 | 0.029 | 0.083 | 2.775 |
| AKC00923    | 0.027 | 0.170 | 0.031 | 0.208 | 0.040 | 0.179 | 0.035 | 0.230 | 0.030 | 0.170 | 4.019 |
| AKC00932    | 0.031 | 0.146 | 0.031 | 0.095 | 0.031 | 0.110 | 0.044 | 0.000 | 0.030 | 0.106 | 5.950 |
| AKC00980    | 0.030 | 0.091 | 0.019 | 0.107 | 0.027 | 990.0 | 0.018 | 0.084 | 0.099 | 0.053 | 0.354 |
| AKC00995    | 0.055 | 0.225 | 0.024 | 0.119 | 0.000 | 0.089 | 0.046 | 0.728 | 0.079 | 0.483 | 8.341 |
| AKC00999    | 0.034 | 0.150 | 0.034 | 0.118 | 0.000 | 0.077 | 0.043 | 0.139 | 0.053 | 0.000 | 9.016 |
| AKC01051    | 0.030 | 0.105 | 0.016 | 0.112 | 0.034 | 0.088 | 0.024 | 0.111 | 0.043 | 0.122 | 1.013 |
| AKC01061    | 0.081 | 0.214 | 0.035 | 0.170 | 0.172 | 0.130 | 0.054 | 0.197 | 0.048 | 0.000 | 5.368 |
| AKC01062    | 0.122 | 0.181 | 0.024 | 0.124 | 0.000 | 0.160 | 0.039 | 0.189 | 0.043 | 0.000 | 9.245 |
| AKC01108    | 680.0 | 660'0 | 0.022 | 0.093 | 0.027 | 0.149 | 0.028 | 0.137 | 0.030 | 0.000 | 1.303 |
| AKC01111    | 0.033 | 0.119 | 0.016 | 0.117 | 0.021 | 0.087 | 0.019 | 0.109 | 0.000 | 0.080 | 0.019 |
| AKC00303    | 0.005 | 0.036 | 0.004 | 0.039 | 900.0 | 0.022 | 0.003 | 0.021 | 0.005 | 0.015 | 0.008 |
| AKC00308    | 0.015 | 0.050 | 0.007 | 0.071 | 0.014 | 0.055 | 0.011 | 0.123 | 0.012 | 0.027 | 0.018 |
| AKC00344    | 0.002 | 0.013 | 0.003 | 0.018 | 0.004 | 0.011 | 0.004 | 870.0 | 0.004 | 0.022 | 0.008 |
| AKC00348    | 0.001 | 0.017 | 0.004 | 0.023 | 0.004 | 0.009 | 0.002 | 0.017 | 0.005 | 0.021 | 0.009 |
| AKC00364    | 0.001 | 0.012 | 0.002 | 0.017 | 0.003 | 0.010 | 0.003 | 0.015 | 0.004 | 0.015 | 0.010 |
| AKC00433    | 0.007 | 0.018 | 0.003 | 0.023 | 0.000 | 0.016 | 0.005 | 0.025 | 900.0 | 0.021 | 0.059 |

| Th          | 0.557    |  |
|-------------|----------|--|
| JH          | 0.027    |  |
| Lu          | 0.007    |  |
| AV          | 0.026    |  |
| Tm          | 0.004    |  |
| Er          | 0.014    |  |
| 0H          | 600.0    |  |
| Dy          | 0.044    |  |
| Tb          | 0.005    |  |
| рЭ          | 0.044    |  |
| Eu          | 0.010    |  |
| Database ID | AKC00437 |  |

| Database ID     | SiO2  | Na2O | $M_{\rm gO}$ | A1203 | P203 | K20  | CaO  | MnO  | Fe2O3 | CnO  | SnO2 |
|-----------------|-------|------|--------------|-------|------|------|------|------|-------|------|------|
| $Kandek_1$      | %9.66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | 0.1% | %0.0 | 0.1%  | %0'0 | %0.0 |
| Kandek_2        | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| Kandek_3        | %2.66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Kandek_4        | %9.66 | %0.0 | %0.0         | 0.0%  | %0.0 | %0.0 | 0.3% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Kandek_5        | %2.66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Kandek_6        | %2'66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| Kandek_7        | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| Kandek_8        | %2'66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Kandek_9        | %8.66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 |
| Kandek_10       | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| Kandek_11       | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.1% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Kandek_12       | %2'66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Kandek_13       | %2'66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| Kandek_14       | %9.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.3% | %0.0 | %0.0  | %0.0 | 0.0% |
| $Kandek_15$     | %9.66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| MardakBet_1     | %2.66 | %0.0 | %0.0         | 0.1%  | %0.0 | %0.0 | 0.1% | 0.0% | 0.0%  | %0.0 | %0.0 |
| MardakBet_2     | %9.66 | 0.1% | %0.0         | 0.1%  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | 0.0% |
| MardakBet_3     | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| MardakBet_4     | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | %0.0 | 0.0% | 0.0%  | %0.0 | %0.0 |
| MardakBet_5     | %2.66 | 0.1% | %0.0         | 0.1%  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| MardakBet_6     | %6.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.0% | %0.0 | %0.0  | %0'0 | %0.0 |
| $MardakBet_7$   | %6.66 | %0.0 | %0.0         | 0.0%  | %0.0 | %0.0 | %0.0 | 0.0% | 0.0%  | %0.0 | %0.0 |
| MardakBet_8     | %8.66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| MardakBet_9     | %L'66 | %0.0 | %0.0         | 0.0%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| $MardakBet\_10$ | %L'66 | %0.0 | %0.0         | %0.0  | %0.0 | %0.0 | 0.1% | 0.0% | 0.0%  | %0'0 | %0.0 |
| MardakBet_11    | %5'66 | 0.1% | 0.0%         | 0.1%  | 0.0% | 0.0% | 0.1% | 0.0% | 0.1%  | %0.0 | 0.0% |
| $MardakBet_12$  | %2.66 | 0.1% | 0.0%         | 0.0%  | 0.0% | 0.0% | 0.1% | 0.0% | 0.0%  | %0.0 | 0.0% |

| Database ID   | SiO2  | Na2O | $M_{gO}$ | A12O3 | P2O3 | K20  | CaO  | MnO  | Fe2O3 | OnO  | SnO2 |
|---------------|-------|------|----------|-------|------|------|------|------|-------|------|------|
| MardakBet_13  | %L'66 | 0.1% | 0.0%     | 0.0%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| MardakBet_14  | %2.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.1%  | %0.0 | %0.0 |
| MardakBet_15  | %9.66 | 0.1% | %0.0     | 0.1%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.1%  | %0.0 | %0.0 |
| Ratanpur_1    | %8.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_2    | %8.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_3    | %8.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_4    | %8.66 | %0.0 | %0.0     | 0.1%  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_5    | %2.66 | %0.0 | %0.0     | 0.1%  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_6    | %L'66 | %0.0 | %0.0     | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | 0.0%  | %0.0 | %0.0 |
| Ratanpur_7    | %8.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_8    | %6.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_9    | %2.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| Ratanpur_10   | %2.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.1%  | %0.0 | %0.0 |
| Ratanpur_12   | %L'66 | %0.0 | 0.0%     | 0.1%  | 0.0% | 0.0% | 0.2% | 0.0% | 0.0%  | %0.0 | 0.0% |
| Ratanpur_14   | %5'66 | %0.0 | %0.0     | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | 0.0% |
| RTPUnheated   | %6.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | %0.0 | %0.0 | 0.0%  | %0.0 | %0.0 |
| RTPHeatedOnce | %6.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | %0.0 | %0.0 | 0.1%  | %0.0 | 0.0% |
| RTPHeated     | %8.66 | %0.0 | %0.0     | 0.1%  | %0.0 | %0.0 | %0.0 | %0.0 | 0.1%  | %0.0 | 0.0% |
| Mahurjhari_1  | %8.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.0%  | %0.0 | %0.0 |
| Mahurjhari_2  | %2.66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| Mahurjhari_3  | %L'66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.2% | 0.0% | %0.0  | %0.0 | %0.0 |
| Mahurjhari_4  | %4.66 | %0.0 | %0.0     | 0.2%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.2%  | %0.0 | %0.0 |
| Mahurjhari_5  | %9'86 | %0.0 | 0.1%     | 0.4%  | %0.0 | 0.1% | 0.3% | %0.0 | 0.4%  | %0.0 | %0.0 |
| Mahurjhari_6  | %L'66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.2% | 0.0% | 0.0%  | %0.0 | %0.0 |
| Mahurjhari_7  | 99.2% | %0.0 | %0.0     | 0.1%  | %0.0 | %0.0 | 0.2% | 0.0% | 0.5%  | %0.0 | %0.0 |
| Mahurjhari_8  | %8.66 | 0.0% | 0.0%     | 0.0%  | 0.0% | 0.0% | 0.1% | 0.0% | 0.0%  | 0.0% | 0.0% |
| Mahurjhari_9  | %L'66 | %0.0 | %0.0     | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | 0.0% |

| SnO2        | 0.0%          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | %0.0          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.0%          | %0.0          | %0.0      | %0.0      | 0.0%      | %0.0      | 0.0%      | 0.0%      | %0.0      | 0.0%      | 0.0%      | %0.0       | 0.0%       |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| OnO         | %0.0          | %0.0          | %0.0          | %0.0          | 0.5%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0      | %0.0      | %0.0      | %0.0      | 0.0%      | %0.0      | %0.0      | 0.0%      | %0.0      | %0.0       | %0.0       |
| Fe2O3       | %0.0          | 0.1%          | %0.0          | %0.0          | 0.2%          | 0.1%          | 2.5%          | %0.0          | %0.0          | 0.1%          | 0.1%          | 0.1%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0      | %0.0      | %0.0      | 0.7%      | 0.1%      | %0.0      | %0.0      | %0.0      | 0.1%      | 0.1%       | 0.0%       |
| MnO         | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0      | %0.0      | %0.0      | %0.0      | 0.0%      | %0.0      | %0.0      | 0.0%      | %0.0      | %0.0       | 0.0%       |
| CaO         | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.3%          | 0.2%          | 0.3%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.2%          | 0.3%      | 0.3%      | 0.3%      | 0.1%      | 0.2%      | 0.1%      | 0.2%      | 0.2%      | 0.1%      | 0.3%       | 0.2%       |
| K20         | %0.0          | %0.0          | 0.0%          | 0.1%          | 0.1%          | 0.0%          | %9.0          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.0%          | %0.0          | %0.0          | %0.0          | 0.0%          | 0.1%      | %0.0      | 0.0%      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0       | %0.0       |
| P203        | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0       | %0.0       |
| A1203       | %0.0          | 0.1%          | %0.0          | 0.1%          | 0.2%          | 0.1%          | %9.0          | %0.0          | %0.0          | %0.0          | 0.1%          | %0.0          | %0.0          | %0.0          | %0.0          | 0.1%          | 0.3%      | %0.0      | 0.1%      | 0.1%      | 0.0%      | %0.0      | 0.1%      | 0.0%      | 0.1%      | 0.1%       | 0.0%       |
| MgO         | 0.0%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.4%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0      | %0.0      | %0.0      | %0.0      | 0.0%      | %0.0      | %0.0      | 0.0%      | %0.0      | 0.0%       | %0.0       |
| Na2O        | %0.0          | %0.0          | %0.0          | 0.1%          | %0.0          | %0.0          | 0.1%          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | %0.0          | 0.1%      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0      | %0.0       | %0.0       |
| SiO2        | %2.66         | %9.66         | %8.66         | %5.66         | %2.86         | %9.66         | %9.26         | %2'66         | %1.66         | %9.66         | %9.66         | %9.66         | %2.66         | %2.66         | %1.66         | %9.66         | 99.3%     | %9.66     | %9.66     | 99.2%     | %L'66     | %6.66     | %2.66     | %L'66     | %2.66     | %5.66      | %8.66      |
| Database ID | Mahurjhari_10 | Mahurjhari_12 | Mahurjhari_13 | Mahurjhari_14 | Mahurjhari_15 | Mahurjhari_16 | Mahurjhari_17 | Mahurjhari_18 | Mahurjhari_19 | Mahurjhari_20 | Mahurjhari_21 | Mahurjhari_22 | Mahurjhari_23 | Mahurjhari_24 | Mahurjhari_25 | Mahurjhari_26 | Paithan_1 | Paithan_2 | Paithan_3 | Paithan_4 | Paithan_5 | Paithan_6 | Paithan_7 | Paithan_8 | Paithan_9 | Paithan_10 | Paithan_11 |

| SnO2        | %0.0       | %0.0       | %0.0       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | 0.0%     | %0.0      | %0.0      | %0.0      | %0.0         | %0.0         | %0.0             | %0.0             | 0.0%             | %0.0             | %0.0             | %0.0             | 0.0%             | %0.0             | %0.0             |
|-------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| CuO         | 0.0%       | 0.0%       | 0.0%       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0      | %0.0      | %0.0      | %0.0         | %0.0         | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             |
| Fe2O3       | 0.0%       | %0.0       | %0.0       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | 0.1%     | %0.0     | %0.0     | %0.0     | 0.1%     | 0.2%      | %0.0      | %0.0      | %0.0         | 0.1%         | %0.0             | 0.1%             | %0.0             | 0.1%             | %0.0             | 0.1%             | %0.0             | 0.1%             | 0.1%             |
| MnO         | 0.0%       | %0.0       | %0.0       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0      | %0.0      | %0.0      | %0.0         | %0.0         | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             |
| CaO         | 0.2%       | 0.2%       | 0.2%       | 0.3%       | %0.0     | 0.3%     | 0.2%     | 0.1%     | 0.2%     | 0.2%     | 0.2%     | 0.2%     | 0.2%     | %0.0      | 0.2%      | 0.3%      | 0.1%         | 0.2%         | %0.0             | 0.1%             | %0.0             | 0.1%             | %0.0             | 0.1%             | 0.1%             | 0.1%             | 0.1%             |
| K20         | 0.0%       | %0.0       | %0.0       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0      | %0.0      | %0.0      | %0.0         | 0.0%         | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             |
| P203        | %0.0       | %0.0       | %0.0       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0      | %0.0      | %0.0      | %0.0         | %0.0         | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             |
| A12O3       | 0.2%       | 0.1%       | %0.0       | 0.1%       | %0.0     | %0.0     | 0.1%     | 0.1%     | %0.0     | %0.0     | %0.0     | 0.1%     | %0.0     | %0.0      | 0.1%      | 0.1%      | 0.0%         | 0.1%         | %0.0             | %0.0             | %0.0             | 0.1%             | %0.0             | 0.1%             | 0.1%             | %0.0             | 0.1%             |
| MgO         | 0.0%       | 0.0%       | 0.0%       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0      | %0.0      | %0.0      | %0.0         | %0.0         | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             | %0.0             |
| Na2O        | 0.1%       | %0.0       | 0.0%       | %0.0       | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | 0.1%     | %0.0     | %0.0      | %0.0      | %0.0      | %0.0         | %0.0         | 0.1%             | 0.1%             | %0.0             | 0.1%             | 0.1%             | 0.1%             | 0.1%             | 0.1%             | %0.0             |
| SiO2        | %5.66      | %L'66      | %L'66      | %5'66      | %6.66    | %9.66    | %2.66    | %2.66    | %9.66    | %2.66    | %2.66    | %5.66    | %9.66    | %2.66     | %9.66     | %5.66     | %8.66        | %5.66        | %8.66            | %2.66            | %6.66            | %9.66            | %8.66            | %9.66            | %9.66            | %5.66            | %9.66            |
| Database ID | Paithan_12 | Paithan_13 | Paithan_14 | Paithan_15 | Undari_1 | Undari_2 | Undari_3 | Undari_4 | Undari_5 | Undari_6 | Undari_7 | Undari_8 | Undari_9 | Undari_10 | Undari_11 | Undari_12 | Undhari_JMK1 | Undhari_JMK2 | Shahr-i-Sokhta_1 | Shahr-i-Sokhta_2 | Shahr-i-Sokhta_3 | Shahr-i-Sokhta_4 | Shahr-i-Sokhta_5 | Shahr-i-Sokhta_6 | Shahr-i-Sokhta_7 | Shahr-i-Sokhta_8 | Shahr-i-Sokhta_9 |

| 22          | %                 | %                 | %                 | %                 | %                 | %                 | %                 | %                 | %              | %              | %              | %              | %              | %              | %              | %               | %               | %               | %               | %               | %               | %               | %               | %               | %               | %        | %        |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|----------|
| SnO2        | %0.0              | %0.0              | 0.0%              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | 0.0%           | %0.0           | 0.0%           | %0.0           | %0.0           | %0.0           | 0.0%           | %0.0            | %0.0            | 0.0%            | 0.0%            | %0.0            | 0.0%            | 0.0%            | %0.0            | %0.0            | 0.0%            | %0.0     | 0.0%     |
| CnO         | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0           | %0.0           | %0.0           | %0.0           | %0.0           | %0.0           | %0.0           | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0'0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0     | %0.0     |
| Fe2O3       | 0.0%              | %0.0              | %0.0              | 0.1%              | 0.0%              | 0.1%              | %0.0              | 0.1%              | 0.1%           | 0.7%           | 1.2%           | %0.0           | 0.2%           | %0.0           | %0.0           | %0.0            | %0.0            | %0.0            | 0.0%            | %0.0            | %0.0            | %0.0            | %0.0            | 0.1%            | %0.0            | 0.3%     | 0.3%     |
| MnO         | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0           | 0.0%           | %0.0           | %0.0           | 0.0%           | 0.0%           | %0.0           | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0     | 0.0%     |
| CaO         | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | 0.1%              | 0.1%           | 0.1%           | 0.1%           | %0.0           | 0.1%           | %0.0           | %0.0           | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | 0.2%     | 0.3%     |
| K20         | %0.0              | %0.0              | 0.0%              | 0.0%              | %0.0              | %0.0              | %0.0              | %0.0              | 0.1%           | 1.1%           | 0.3%           | %0.0           | 0.7%           | %0.0           | %0.0           | 0.0%            | 0.1%            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | 0.1%            | %0.0            | %0.0     | 0.0%     |
| P203        | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0           | %0.0           | %0.0           | %0.0           | %0.0           | %0.0           | %0.0           | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0     | 0.0%     |
| A12O3       | %0.0              | %0.0              | %0.0              | %0.0              | 0.1%              | 0.1%              | %0.0              | %0.0              | 1.0%           | 2.6%           | 1.8%           | %0.0           | 2.3%           | %0.0           | %0.0           | 0.1%            | %8.0            | %0.0            | %0.0            | 0.1%            | %0.0            | %0.0            | 0.1%            | 0.7%            | 0.1%            | %0.0     | 0.0%     |
| MgO         | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | %0.0              | 0.1%           | 0.1%           | 0.1%           | %0.0           | 0.1%           | %0.0           | %0.0           | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | %0.0     | 0.0%     |
| Na2O        | %0.0              | 0.1%              | %0.0              | 0.1%              | 0.1%              | 0.1%              | 0.1%              | 0.1%              | 0.1%           | 0.1%           | 0.1%           | %0.0           | 0.1%           | %0.0           | %0.0           | %0.0            | %0.0            | %0.0            | %0.0            | %0.0            | 0.0%            | %0.0            | %0.0            | %0.0            | 0.0%            | %0.0     | 0.0%     |
| SiO2        | %6.66             | %8.66             | %8.66             | %8.66             | %8.66             | %L'66             | %8.66             | %9.66             | %9.86          | 95.3%          | 96.4%          | %6.66          | 96.4%          | %6.66          | %6.66          | %8.66           | %0.66           | %6.66           | %6.66           | %6.66           | %6.66           | %6.66           | %8.66           | %0.66           | %8.66           | 99.4%    | 99.4%    |
| Database ID | Shahr-i-Sokhta_10 | Shahr-i-Sokhta_11 | Shahr-i-Sokhta_12 | Shahr-i-Sokhta_13 | Shahr-i-Sokhta_14 | Shahr-i-Sokhta_15 | Shahr-i-Sokhta_16 | Shahr-i-Sokhta_17 | BanKhaoMogul_1 | BanKhaoMogul_2 | BanKhaoMogul_4 | BanKhaoMogul_5 | BanKhaoMogul_6 | BanKhaoMogul_7 | BanKhaoMogul_9 | BanKhaoMogul_10 | BanKhaoMogul_11 | BanKhaoMogul_12 | BanKhaoMogul_13 | BanKhaoMogul_15 | BanKhaoMogul_16 | BanKhaoMogul_17 | BanKhaoMogul_18 | BanKhaoMogul_20 | BanKhaoMogul_21 | KonTum_1 | KonTum_2 |

| Database ID | SiO2  | Na2O | MgO  | A12O3 | P203 | K20  | CaO  | MnO  | Fe2O3 | OnO  | SnO2 |
|-------------|-------|------|------|-------|------|------|------|------|-------|------|------|
| KonTum_3    | %6.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | %0.0 | %0.0 | 0.0%  | %0.0 | %0.0 |
| KonTum_4    | %6.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | %0.0 | 0.0% | %0.0  | %0.0 | %0.0 |
| KonTum_5    | %2.66 | 0.0% | 0.0% | %0.0  | %0.0 | %0.0 | 0.3% | 0.0% | 0.0%  | %0.0 | %0.0 |
| KonTum_6    | %6.66 | 0.0% | %0.0 | %0.0  | %0.0 | %0.0 | %0.0 | %0.0 | 0.0%  | %0.0 | %0.0 |
| KonTum_7    | %9.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.3% | %0.0 | 0.1%  | %0.0 | %0.0 |
| KonTum_8    | %8.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.0%  | %0.0 | %0.0 |
| KonTum_9    | %9.66 | %0.0 | 0.0% | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| GiaLai_1    | %5'86 | %0.0 | 0.2% | 0.4%  | %0.0 | %0.0 | 0.1% | %0.0 | 0.7%  | %0.0 | %0.0 |
| GiaLai_2    | 98.4% | %0.0 | 0.2% | 0.5%  | %0.0 | %0.0 | 0.1% | %0.0 | %8.0  | %0.0 | %0.0 |
| GiaLai_3    | 98.4% | %0.0 | 0.1% | 0.5%  | %0.0 | %0.0 | 0.3% | %0.0 | 0.7%  | %0.0 | 0.0% |
| GiaLai_4    | 98.2% | 0.0% | 0.2% | 0.5%  | %0.0 | %0.0 | 0.3% | %0.0 | %8.0  | %0.0 | %0.0 |
| DongNai_1   | %5'66 | %0.0 | %0.0 | 0.1%  | %0.0 | %0.0 | 0.3% | %0.0 | 0.1%  | %0.0 | %0.0 |
| DongNai_2   | %9.66 | %0.0 | %0.0 | 0.1%  | %0.0 | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| DongNai_3   | %9.66 | %0.0 | 0.0% | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.1%  | %0.0 | %0.0 |
| DongNai_4   | %2.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | %0.0  | %0.0 | %0.0 |
| DongNai_5   | 99.4% | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.4%  | %0.0 | %0.0 |
| DongNai_6   | %5'66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.2% | %0.0 | 0.3%  | %0.0 | 0.0% |
| Pacitan_1   | %2'66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.2%  | %0.0 | %0.0 |
| Pacitan_2   | %5'66 | %0.0 | 0.0% | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.3%  | %0.0 | %0.0 |
| Pacitan_3   | %9.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.2%  | %0.0 | %0.0 |
| Pacitan_4   | %8.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Pacitan_5   | %L'66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | 0.0% | 0.1%  | %0.0 | %0.0 |
| Pacitan_6   | %L'66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.2%  | %0.0 | %0.0 |
| Pacitan_7   | %6.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | %0.0  | %0.0 | %0.0 |
| Pacitan_8   | %8.66 | %0.0 | %0.0 | %0.0  | %0.0 | %0.0 | 0.1% | %0.0 | 0.1%  | %0.0 | %0.0 |
| Pacitan_9   | 99.3% | %0.0 | %0.0 | %0.0  | %0.0 | 0.0% | 0.1% | 0.0% | 0.5%  | 0.0% | 0.0% |
|             |       |      |      |       |      |      |      |      |       |      |      |

| Database ID   | Li    | Be   | В     | Sc   | Τi    | ^    | Cr   | Z    | Co   | Zn   | As    |
|---------------|-------|------|-------|------|-------|------|------|------|------|------|-------|
| $Kandek_1$    | 2.43  | 0.46 | 27.73 | 0.41 | 20.60 | 4.59 | 1.50 | 1.78 | 0.59 | 1.21 | 1.17  |
| Kandek_2      | 0.91  | 0.73 | 9.27  | 3.62 | 0.56  | 0.26 | 0.17 | 6.61 | 0.01 | 0.64 | 0.00  |
| Kandek_3      | 2.43  | 0.59 | 15.22 | 3.75 | 3.96  | 0.57 | 0.35 | 08.9 | 0.05 | 1.67 | 0.58  |
| Kandek_4      | 0.28  | 92.0 | 5.81  | 4.66 | 1.28  | 0.10 | 1.21 | 8.35 | 0.08 | 0.87 | 1.99  |
| Kandek_5      | 1.71  | 0.23 | 26.78 | 4.04 | 0.77  | 0.21 | 6.02 | 8.60 | 0.03 | 2.24 | 13.36 |
| Kandek_6      | 2.19  | 0.88 | 18.75 | 4.43 | 1.30  | 0.77 | 0.15 | 8.22 | 60.0 | 1.47 | 0.39  |
| Kandek_7      | 0.33  | 0.14 | 23.41 | 3.29 | 0.53  | 0.27 | 3.06 | 5.74 | 0.03 | 0.77 | 0.00  |
| Kandek_8      | 68.0  | 0.30 | 27.74 | 3.32 | 66.9  | 0.97 | 1.02 | 6.05 | 0.17 | 3.12 | 0.93  |
| Kandek_9      | 2.88  | 0.85 | 7.78  | 0.36 | 3.40  | 0.37 | 0.00 | 1.37 | 0.08 | 1.07 | 2.14  |
| Kandek_10     | 0.12  | 0.27 | 7.56  | 3.05 | 5.56  | 1.14 | 0.21 | 5.41 | 0.11 | 0.73 | 0.00  |
| Kandek_11     | 0.32  | 0.51 | 68.05 | 0.33 | 1.41  | 1.81 | 0.00 | 1.20 | 0.10 | 1.46 | 0.00  |
| Kandek_12     | 0.67  | 0.21 | 10.90 | 3.99 | 1.01  | 1.72 | 0.32 | 7.23 | 0.10 | 1.40 | 0.00  |
| Kandek_13     | 0.10  | 0.43 | 5.62  | 3.38 | 1.34  | 0.24 | 0.40 | 5.65 | 0.08 | 29.0 | 0.37  |
| Kandek_14     | 1.14  | 06.0 | 13.93 | 4.54 | 1.23  | 0.29 | 0.92 | 7.82 | 80.0 | 0.56 | 2.03  |
| Kandek_15     | 3.75  | 0.35 | 16.45 | 3.49 | 4.86  | 0.24 | 0.33 | 6.47 | 0.12 | 1.04 | 0.64  |
| MardakBet_1   | 0.51  | 0.31 | 12.86 | 4.98 | 89.9  | 0.58 | 0.59 | 0.70 | 0.18 | 1.44 | 06.0  |
| MardakBet_2   | 1.64  | 0.27 | 22.05 | 0.54 | 7.57  | 2.71 | 1.11 | 08.0 | 0.31 | 2.88 | 0.38  |
| MardakBet_3   | 0.25  | 0.18 | 8.12  | 4.98 | 2.56  | 0.43 | 0.52 | 0.55 | 0.04 | 0.84 | 0.81  |
| MardakBet_4   | 0.13  | 0.22 | 4.19  | 0.61 | 1.25  | 1.01 | 0.51 | 0.54 | 0.04 | 62.0 | 1.18  |
| MardakBet_5   | 13.81 | 0.29 | 5.87  | 2.31 | 1.32  | 0.10 | 0.18 | 3.44 | 0.03 | 0.23 | 66.0  |
| MardakBet_6   | 0.23  | 0.12 | 4.30  | 0.97 | 2.50  | 0.84 | 0.57 | 0.71 | 0.03 | 0.39 | 1.64  |
| $MardakBet_7$ | 0.25  | 0.15 | 4.74  | 1.00 | 1.62  | 0.83 | 0.40 | 0.48 | 0.02 | 0.31 | 0.87  |
| MardakBet_8   | 0.28  | 1.02 | 28.15 | 6.20 | 4.38  | 06.0 | 0.23 | 2.75 | 90.0 | 0.65 | 1.54  |
| MardakBet_9   | 0.91  | 0.11 | 10.76 | 4.26 | 2.82  | 0.32 | 0.23 | 3.71 | 0.03 | 0.52 | 0.74  |
| MardakBet_10  | 2.59  | 0.25 | 6.10  | 1.25 | 0.21  | 1.40 | 0.23 | 3.18 | 0.02 | 0.21 | 1.47  |
| MardakBet_11  | 1.12  | 0.52 | 31.43 | 1.83 | 8.75  | 3.67 | 2.00 | 3.53 | 0.41 | 4.18 | 5.26  |
| MardakBet_12  | 1.85  | 0.26 | 21.21 | 3.87 | 0.28  | 0.36 | 0.53 | 2.55 | 0.05 | 0.23 | 0.00  |

| As          | 1.87         | 6.35         | 2.36         | 15.89      | 1.25       | 0.00       | 0.73       | 2.19       | 0.35       | 0.00       | 1.08       | 4.23       | 4.86        | 3.07        | 3.60        | 09.0        | 0.93          | 0.00      | 0.00         | 0.97         | 0.38         | 1.28         | 1.72         | 0.00         | 0.39         | 0.00         | 0.51         |
|-------------|--------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|---------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Zn          | 1.07         | 2.12         | 5.06         | 1.25       | 0.26       | 0.65       | 0.78       | 0.50       | 0.87       | 0.54       | 0.47       | 1.31       | 1.41        | 4.53        | 7.37        | 0.52        | 0.32          | 1.46      | 1.57         | 3.99         | 62.0         | 2.25         | 14.92        | 8.21         | 0.91         | 1.55         | 2.42         |
| Co          | 0.10         | 0.11         | 0.15         | 90.0       | 0.04       | 0.02       | 0.04       | 0.04       | 0.13       | 90.0       | 0.02       | 0.10       | 0.10        | 0.17        | 0.14        | 90.0        | 60.0          | 0.05      | 0.07         | 0.14         | 0.05         | 0.22         | 1.57         | 0.07         | 0.27         | 90.0         | 0.16         |
| ï           | 4.86         | 4.24         | 5.10         | 3.89       | 3.82       | 4.22       | 3.51       | 2.83       | 2.96       | 3.71       | 2.80       | 4.35       | 4.22        | 7.27        | 6.63        | 0.79        | 0.94          | 08.0      | 4.37         | 5.19         | 5.56         | 6.47         | 8.60         | 6.17         | 4.61         | 5.17         | 4.58         |
| Cr          | 0.34         | 1.12         | 0.32         | 0.29       | 60.0       | 0.12       | 0.31       | 0.28       | 0.47       | 09.0       | 0.15       | 0.46       | 1.36        | 1.19        | 1.42        | 0.74        | 09.0          | 0.75      | 0.24         | 0.53         | 0.24         | 0.63         | 2.70         | 0.43         | 0.48         | 0.19         | 09.0         |
| Λ           | 0.71         | 1.10         | 1.28         | 0.95       | 0.38       | 0.47       | 0.19       | 0.59       | 1.33       | 1.24       | 0.26       | 0.71       | 1.33        | 2.43        | 4.82        | 1.15        | 1.42          | 99.0      | 0.50         | 1.03         | 0.45         | 3.03         | 6.74         | 0.84         | 4.01         | 66.0         | 0.81         |
| Τi          | 2.49         | 4.12         | 6.73         | 1.49       | 0.23       | 1.03       | 0.85       | 1.59       | 13.88      | 7.63       | 0.25       | 3.95       | 2.02        | 35.79       | 24.60       | 69.0        | 0.20          | 1.09      | 18.87        | 10.24        | 2.18         | 38.31        | 130.80       | 1.87         | 2.31         | 1.57         | 3.65         |
| Sc          | 4.87         | 1.81         | 6.20         | 2.20       | 1.86       | 1.76       | 1.51       | 1.42       | 1.67       | 1.54       | 1.25       | 1.61       | 1.70        | 2.64        | 2.54        | 1.89        | 1.84          | 1.93      | 3.19         | 3.07         | 3.16         | 3.16         | 3.49         | 3.53         | 2.63         | 2.80         | 2.41         |
| В           | 39.28        | 6.03         | 33.64        | 2.41       | 27.90      | 32.98      | 10.42      | 2.76       | 82.9       | 9.16       | 12.76      | 13.89      | 16.81       | 22.95       | 20.90       | 11.37       | 9.62          | 4.96      | 8.53         | 8.43         | 10.17        | 3.69         | 4.43         | 23.87        | 8.55         | 6.15         | 8.50         |
| Be          | 0.78         | 0.26         | 0.51         | 0.29       | 0.28       | 0.23       | 0.35       | 0.33       | 0.15       | 0.28       | 0.36       | 0.39       | 0.36        | 0.48        | 0.48        | 0.61        | 69.0          | 0.77      | 0.21         | 0.13         | 0.07         | 0.32         | 0.20         | 0.21         | 0.18         | 1.47         | 0.15         |
| Li          | 0.81         | 0:30         | 3.24         | 0.22       | 1.62       | 1.48       | 2.02       | 9.21       | 1.70       | 1.32       | 0.77       | 0.70       | 0.53        | 0.55        | 99:9        | 1.21        | 0.84          | 0.46      | 1.19         | 0.24         | 80.0         | 47.44        | 2.94         | 1.83         | 0.45         | 0.33         | 0.20         |
| Database ID | MardakBet_13 | MardakBet_14 | MardakBet_15 | Ratanpur_1 | Ratanpur_2 | Ratanpur_3 | Ratanpur_4 | Ratanpur_5 | Ratanpur_6 | Ratanpur_7 | Ratanpur_8 | Ratanpur_9 | Ratanpur_10 | Ratanpur_12 | Ratanpur_14 | RTPUnheated | RTPHeatedOnce | RTPHeated | Mahurjhari_1 | Mahurjhari_2 | Mahurjhari_3 | Mahurjhari_4 | Mahurjhari_5 | Mahurjhari_6 | Mahurjhari_7 | Mahurjhari_8 | Mahurjhari_9 |

| As          | 1.02          | 1.26          | 0.17          | 06.0          | 62.0          | 1.24          | 29.0          | 0.00          | 0.42          | 1.13          | 1.06          | 0.00          | 1.05          | 0.26          | 2.74          | 1.41          | 3.16      | 2.08      | 1.45      | 1.55      | 0.00      | 0.00      | 0.00      | 1.15      | 0.92      | 2.75       | 0.46       |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| Zn          | 1.44          | 3.53          | 0.50          | 4.66          | 14.76         | 3.44          | 8.75          | 3.30          | 10.02         | 1.84          | 5:35          | 4.00          | 3.54          | 1.48          | 1.48          | 2.15          | 3.48      | 1.71      | 3.76      | 1.39      | 0.82      | 0.49      | 08.0      | 2.17      | 0.46      | 0.51       | 0.74       |
| Co          | 0.07          | 0.11          | 0.03          | 0.10          | 0.42          | 0.12          | 1.90          | 60.0          | 0.07          | 0.22          | 0.12          | 0.11          | 0.18          | 0.05          | 0.03          | 0.15          | 0.11      | 0.13      | 0.15      | 0.03      | 90.0      | 0.07      | 0.03      | 0.03      | 0.15      | 0.22       | 0.03       |
| ïZ          | 4.92          | 5.09          | 5.69          | 4.33          | 10.89         | 4.73          | 7.18          | 5.79          | 6.93          | 5.34          | 4.82          | 6.37          | 5.51          | 5.37          | 6.35          | 5.22          | 8.23      | 6.40      | 76.7      | 1.01      | 5.36      | 0.88      | 5.70      | 5.27      | 1.44      | 8.80       | 6.14       |
| Cr          | 0.29          | 0.42          | 0.20          | 0.78          | 1.09          | 0.61          | 1.00          | 0.38          | 0.32          | 0.26          | 0.61          | 0.34          | 0.36          | 0.19          | 0.16          | 0.44          | 1.49      | 66.0      | 1.51      | 3.12      | 0.19      | 00.00     | 0.35      | 0.55      | 2.03      | 0.85       | 0.28       |
| Λ           | 1.13          | 0.61          | 0.21          | 1.66          | 5.36          | 0.92          | 31.59         | 89.0          | 99.0          | 1.63          | 2.10          | 29.0          | 0.72          | 0.33          | 1.22          | 1.46          | 0.62      | 1.32      | 0.33      | 92.0      | 6.04      | 1.17      | 0.23      | 0.13      | 2.32      | 0.95       | 0.65       |
| Ti          | 3.86          | 6.17          | 1.68          | 11.19         | 44.54         | 7.19          | 25.64         | 5.48          | 4.99          | 10.60         | 7.98          | 1.71          | 8.22          | 3.08          | 0.95          | 56.36         | 1.49      | 7.83      | 2.61      | 3.10      | 2.22      | 3.05      | 0.79      | 0.83      | 4.40      | 1.37       | 1.72       |
| Sc          | 2.72          | 3.23          | 2.76          | 2.65          | 2.75          | 2.82          | 2.63          | 4.16          | 5.01          | 3.09          | 2.64          | 3.90          | 2.94          | 3.52          | 3.20          | 2.70          | 4.35      | 3.96      | 4.19      | 0.38      | 3.30      | 0.41      | 3.92      | 3.21      | 0.37      | 4.75       | 3.52       |
| В           | 14.38         | 5.71          | 3.82          | 14.93         | 11.79         | 25.30         | 2.22          | 15.42         | 9.48          | 25.14         | 27.82         | 15.97         | 18.17         | 16.29         | 15.71         | 3.22          | 5.37      | 10.82     | 11.62     | 42.77     | 4.48      | 47.96     | 11.81     | 8.10      | 27.13     | 12.04      | 2.57       |
| Be          | 0.14          | 0.37          | 60.0          | 0.94          | 0.19          | 0.16          | 0.34          | 0.13          | 0.14          | 0.32          | 0.21          | 0.20          | 0.15          | 80.0          | 0.17          | 0.37          | 1.33      | 76.0      | 1.34      | 0.18      | 0.11      | 86.0      | 0.17      | 0.61      | 1.23      | 1.32       | 0.36       |
| Ľ           | 0.12          | 0.22          | 0.05          | 11.06         | 1.18          | 2.50          | 37.20         | 0.75          | 0.51          | 0.93          | 1.59          | 98.0          | 0.07          | 0.92          | 1.04          | 11.62         | 14.75     | 2.89      | 2.82      | 3.06      | 3.07      | 0.24      | 2.53      | 2.30      | 1.91      | 5.24       | 0.16       |
| Database ID | Mahurjhari_10 | Mahurjhari_12 | Mahurjhari_13 | Mahurjhari_14 | Mahurjhari_15 | Mahurjhari_16 | Mahurjhari_17 | Mahurjhari_18 | Mahurjhari_19 | Mahurjhari_20 | Mahurjhari_21 | Mahurjhari_22 | Mahurjhari_23 | Mahurjhari_24 | Mahurjhari_25 | Mahurjhari_26 | Paithan_1 | Paithan_2 | Paithan_3 | Paithan_4 | Paithan_5 | Paithan_6 | Paithan_7 | Paithan_8 | Paithan_9 | Paithan_10 | Paithan_11 |

| Database ID      | Ľ     | Be   | В     | Sc   | Τi    | Λ    | Cr   | Ņ    | Co   | Zu   | As   |
|------------------|-------|------|-------|------|-------|------|------|------|------|------|------|
| Paithan_12       | 9.05  | 0.56 | 23.28 | 3.49 | 3.09  | 0.30 | 0.37 | 90.9 | 0.02 | 1.00 | 0.71 |
| Paithan_13       | 2.04  | 0.29 | 14.07 | 4.29 | 1.75  | 0.84 | 0.65 | 8.10 | 90.0 | 3.22 | 0.00 |
| Paithan_14       | 68.0  | 0.21 | 10.11 | 4.10 | 66.0  | 1.01 | 0.19 | 6.94 | 0.01 | 0.40 | 0.00 |
| Paithan_15       | 5.26  | 1.79 | 20.45 | 5.10 | 3.31  | 86.0 | 0.88 | 9.27 | 60.0 | 1.01 | 3.73 |
| Undari_1         | 1.43  | 0.61 | 23.65 | 0.31 | 4.52  | 0.30 | 0.00 | 1.03 | 0.12 | 0.57 | 1.04 |
| Undari_2         | 0.33  | 0.75 | 10.35 | 4.98 | 1.29  | 2.10 | 0.97 | 9.02 | 80.0 | 0.54 | 2.02 |
| Undari_3         | 4.67  | 0.22 | 4.38  | 3.50 | 7.80  | 98.0 | 0.43 | 5.48 | 0.08 | 5.74 | 1.63 |
| Undari_4         | 10.37 | 0.30 | 5.04  | 0.33 | 09.0  | 08.0 | 80.0 | 09.0 | 0.07 | 0.23 | 2.74 |
| Undari_5         | 0.15  | 0.16 | 20.26 | 4.72 | 4.88  | 1.36 | 0.37 | 8.71 | 0.14 | 0.93 | 0.00 |
| Undari_6         | 0.05  | 0.12 | 23.50 | 4.38 | 1.53  | 0.27 | 0.31 | 8.04 | 0.04 | 0.91 | 0.13 |
| Undari_7         | 0.51  | 0.95 | 4.82  | 4.03 | 2.13  | 3.65 | 98.0 | 7.00 | 0.11 | 0.33 | 3.68 |
| Undari_8         | 17.92 | 0.33 | 4.02  | 4.19 | 2.73  | 1.46 | 0.43 | 8.34 | 0.30 | 4.55 | 0.00 |
| Undari_9         | 1.18  | 0.55 | 16.07 | 3.21 | 1.04  | 0.85 | 1.05 | 6.23 | 0.12 | 1.04 | 0.00 |
| Undari_10        | 2.78  | 0.35 | 4.53  | 0.38 | 1.21  | 1.08 | 62.0 | 0.87 | 0.15 | 0.36 | 0.00 |
| Undari_11        | 4.16  | 69'0 | 8.93  | 4.69 | 89.0  | 1.10 | 0.16 | 8.54 | 6.03 | 1.00 | 0.00 |
| Undari_12        | 2.04  | 0.21 | 18.06 | 5.20 | 12.51 | 1.08 | 0.64 | 9.47 | 0.12 | 3.43 | 0.41 |
| Undhari_JMK1     | 80.0  | 0.33 | 14.78 | 2.36 | 29.0  | 0.87 | 0.34 | 4.15 | 0.03 | 0.84 | 0.71 |
| Undhari_JMK2     | 0.32  | 0.22 | 5.72  | 2.45 | 5.85  | 0.45 | 0.57 | 5.05 | 0.31 | 1.01 | 0.45 |
| Shahr-i-Sokhta_1 | 0.56  | 1.12 | 43.41 | 1.10 | 0.40  | 0.02 | 0.39 | 0.37 | 0.01 | 0.32 | 3.24 |
| Shahr-i-Sokhta_2 | 0.51  | 2.22 | 96.94 | 1.11 | 5.04  | 1.23 | 69.0 | 0.61 | 90'0 | 2.08 | 9.21 |
| Shahr-i-Sokhta_3 | 0.31  | 1.16 | 36.46 | 66.0 | 0.24  | 0.02 | 67.0 | 0.54 | 0.01 | 95.0 | 99.0 |
| Shahr-i-Sokhta_4 | 1.32  | 1.63 | 86.69 | 0.65 | 8.93  | 0.56 | 0.74 | 1.04 | 60.0 | 3.33 | 0.79 |
| Shahr-i-Sokhta_5 | 0.41  | 1.48 | 46.85 | 0.59 | 0.45  | 0.33 | 0.37 | 0.28 | 0.01 | 1.18 | 96.0 |
| Shahr-i-Sokhta_6 | 0.73  | 2.90 | 96.23 | 69.0 | 8.06  | 0.74 | 0.94 | 0.71 | 90.0 | 3.98 | 8.63 |
| Shahr-i-Sokhta_7 | 0.62  | 1.10 | 58.46 | 0.56 | 3.85  | 0.97 | 1.00 | 0.45 | 60.0 | 3.93 | 2.21 |
| Shahr-i-Sokhta_8 | 0.56  | 1.48 | 39.32 | 0.51 | 3.99  | 1.00 | 1.11 | 99.0 | 0.11 | 1.84 | 2.66 |
| Shahr-i-Sokhta_9 | 0.95  | 1.80 | 41.93 | 0.82 | 12.22 | 1.29 | 1.32 | 1.79 | 0.24 | 4.98 | 1.55 |

| As          | 1.02              | 47.09             | 1.69              | 7.16              | 0.36              | 7.42              | 0.74              | 2.90              | 1.78           | 0.52           | 2.10           | 1.31           | 2.04           | 1.94           | 1.25           | 1.43            | 1.45            | 1.97            | 1.52            | 1.74            | 1.65            | 4.25            | 337             | 6.53 | 0.82            | 0.82                            | 0.82                                     |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|-----------------|---------------------------------|------------------------------------------|
| 7 n         | 0.58              | 0.35              | 5.99              | 0.52              | 0.58              | 1.80              | 1.82              | 3.10              | 3.22           | 8.88           | 2.53           | 0.39           | 4.89           | 0.57           | 0.92           | 0.62            | 0.65            | 0.28            | 0.25            | 0.35            | 0.29            | 0.27            | 1.68            |      | 0.72            | 0.72                            | 0.72 0.52 2.93                           |
| $C_0$       | 0.01              | 0.01              | 0.10              | 0.01              | 0.02              | 60.0              | 0.04              | 0.05              | 0.26           | 0.79           | 0.30           | 0.01           | 0.38           | 0.01           | 0.03           | 0.01            | 0.04            | 0.02            | 0.01            | 0.02            | 0.01            | 0.01            | 0.02            |      | 0.01            | 0.01                            | 0.01                                     |
| Z           | 0.50              | 0.36              | 1.11              | 09.0              | 0.55              | 1.37              | 0.64              | 0.51              | 0.77           | 1.44           | 0.82           | 0.52           | 0.87           | 0.62           | 08.0           | 0.59            | 0.38            | 0.51            | 0.54            | 0.36            | 0.56            | 0.62            | 0.55            |      | 0.42            | 0.30                            | 0.42<br>0.30<br>8.26                     |
| Ċ           | 0.43              | 0.34              | 0.59              | 0.27              | 0.25              | 1.27              | 0.49              | 0.81              | 0.85           | 3.85           | 4.81           | 0.50           | 2.36           | 0.46           | 0.47           | 0.44            | 0.24            | 0.18            | 0.35            | 0.19            | 0.24            | 0.23            | 0.34            |      | 0.22            | 0.22                            | 0.22 0.14 0.39                           |
| >           | 0.04              | 0.03              | 0.44              | 0.05              | 0.02              | 0.23              | 0.07              | 0.44              | 3.58           | 37.74          | 39.30          | 0.12           | 10.37          | 90.0           | 0.05           | 0.07            | 0.10            | 0.05            | 0.07            | 0.07            | 0.04            | 0.02            | 0.11            |      | 1.01            | 1.01                            | 1.01 0.62 0.96                           |
| ΙL          | 0.23              | 0.25              | 3.49              | 0.30              | 0.33              | 2.92              | 1.30              | 4.04              | 62.22          | 356.70         | 208.84         | 1.08           | 232.21         | 1.07           | 0.57           | 1.06            | 1.81            | 0.32            | 0.71            | 1.88            | 0.61            | 0.17            | 12.68           |      | 4.46            | 4.46                            | 4.46<br>1.76<br>1.35                     |
| Sc          | 0.92              | 0.63              | 69.0              | 0.72              | 0.61              | 0.65              | 0.59              | 0.61              | 1.60           | 3.01           | 1.61           | 1.01           | 2.20           | 1.02           | 1.11           | 1.11            | 0.95            | 1.07            | 0.88            | 0.79            | 08.0            | 0.82            | 0.87            |      | 0.83            | 0.83                            | 0.83<br>0.76<br>4.71                     |
| В           | 34.57             | 64.89             | 39.34             | 118.27            | 34.71             | 35.31             | 21.44             | 93.11             | 1.70           | 2.14           | 1.39           | 1.48           | 1.63           | 4.37           | 1.87           | 3.35            | 1.79            | 7.12            | 10.59           | 7.36            | 60.9            | 11.98           | 10.41           |      | 1.91            | 1.91                            | 1.91 0.96 3.42                           |
| Be          | 1.19              | 0.30              | 2.17              | 2.56              | 1.34              | 1.05              | 0.74              | 2.09              | 1.93           | 1.82           | 1.64           | 2.47           | 2.41           | 1.01           | 1.55           | 0.62            | 3.59            | 1.55            | 1.61            | 1.57            | 0.95            | 1.64            | 1.58            |      | 3.34            | 3.34                            | 3.34<br>0.66<br>0.57                     |
| Li          | 0.51              | 9.02              | 0.85              | 0.51              | 0.95              | 1.58              | 0.19              | 0.59              | 51.21          | 31.56          | 16.69          | 0.33           | 38.21          | 0.48           | 0.84           | 2.76            | 58.04           | 0.19            | 0.14            | 0.26            | 0.16            | 0.18            | 0.35            |      | 63.88           | 63.88                           | 63.88 17.09 0.21                         |
| Database ID | Shahr-i-Sokhta_10 | Shahr-i-Sokhta_11 | Shahr-i-Sokhta_12 | Shahr-i-Sokhta_13 | Shahr-i-Sokhta_14 | Shahr-i-Sokhta_15 | Shahr-i-Sokhta_16 | Shahr-i-Sokhta_17 | BanKhaoMogul_1 | BanKhaoMogul_2 | BanKhaoMogul_4 | BanKhaoMogul_5 | BanKhaoMogul_6 | BanKhaoMogul_7 | BanKhaoMogul_9 | BanKhaoMogul_10 | BanKhaoMogul_11 | BanKhaoMogul_12 | BanKhaoMogul_13 | BanKhaoMogul_15 | BanKhaoMogul_16 | BanKhaoMogul_17 | BanKhaoMogul_18 |      | BanKhaoMogul_20 | BanKhaoMogul_20 BanKhaoMogul_21 | BanKhaoMogul_20 BanKhaoMogul_21 KonTum_1 |

| As          | 0.00     | 0.00     | 5.12     | 0.00     | 2.15     | 0.00     | 0.00     | 1.31     | 0.00     | 0.48     | 0.62     | 1.21      | 0.59      | 0.77      | 0.75      | 0.34      | 9.02      | 0.00      | 0.00      | 0.00      | 1.71      | 0.50      | 2.96      | 0.00      | 0.00      | 0.00      |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Zn          | 1.43     | 3.55     | 15.10    | 0.57     | 0.81     | 1.53     | 1.33     | 6.53     | 4.97     | 1.75     | 2.40     | 2.33      | 1.52      | 0.50      | 1.58      | 62.0      | 0.93      | 3.06      | 2.16      | 2.06      | 2.30      | 1.65      | 2.65      | 1.05      | 0.46      | 2.48      |
| Co          | 90.0     | 0.30     | 9.49     | 0.02     | 0.07     | 80.0     | 0.20     | 5.08     | 5.63     | 0.87     | 1.08     | 0.15      | 0.10      | 0.02      | 0.17      | 0.03      | 0.07      | 0.21      | 0.17      | 0.12      | 90.0      | 0.05      | 0.13      | 60.0      | 0.03      | 0.77      |
| ï           | 0.82     | 29.0     | 13.80    | 1.54     | 9.92     | 5.76     | 7.41     | 20.71    | 23.89    | 16.04    | 18.36    | 11.73     | 10.25     | 8.80      | 69'9      | 5.27      | 5.38      | 2.44      | 2.62      | 2.47      | 2.49      | 2.82      | 2.76      | 2.06      | 1.75      | 1.38      |
| Cr          | 00.00    | 0.00     | 1.49     | 0.00     | 0.39     | 0.13     | 0.28     | 0.28     | 0.70     | 0.65     | 0.75     | 08.0      | 1.35      | 0.40      | 0.59      | 0.23      | 0.42      | 1.76      | 1.86      | 1.64      | 0.41      | 0.36      | 0.74      | 0.22      | 0.42      | 0.58      |
| ^           | 0.04     | 0.00     | 0.36     | 0.12     | 0.15     | 0.16     | 0.11     | 9.04     | 9.55     | 12.45    | 24.94    | 0.11      | 0.15      | 90.0      | 0.04      | 0.65      | 90.0      | 0.18      | 0.23      | 0.18      | 80.0      | 0.29      | 60.0      | 0.07      | 0.13      | 2.24      |
| Τi          | 66.0     | 0.70     | 2.84     | 0.58     | 1.64     | 1.41     | 98.0     | 26.17    | 26.95    | 9.48     | 10.27    | 1.56      | 0.78      | 1.59      | 1.13      | 0.32      | 0.33      | 0.22      | 0.15      | 0.30      | 0.75      | 0.62      | 09.0      | 0.17      | 0.05      | 99.8      |
| Sc          | 0.34     | 0.31     | 4.54     | 0.39     | 5.38     | 3.15     | 4.22     | 0.52     | 0.59     | 4.83     | 5.26     | 7.11      | 5.91      | 4.91      | 3.77      | 3.46      | 3.41      | 1.44      | 1.42      | 1.31      | 1.17      | 1.23      | 1.24      | 1.16      | 1.11      | 1.27      |
| В           | 1.94     | 2.08     | 2.45     | 2.23     | 2.64     | 1.76     | 2.72     | 1.10     | 92.0     | 29.0     | 0.30     | 6.04      | 3.49      | 3.01      | 2.07      | 1.72      | 2.54      | 27.81     | 26.55     | 25.81     | 28.39     | 28.11     | 31.31     | 27.20     | 25.52     | 27.91     |
| Be          | 0.18     | 0.28     | 1.53     | 0.50     | 0.55     | 0.07     | 0.21     | 0.52     | 0.51     | 0.30     | 0.24     | 0.25      | 0.41      | 0.17      | 0.18      | 0.37      | 60.0      | 0.27      | 0.17      | 0.13      | 0.30      | 0.14      | 0.35      | 0.29      | 0.18      | 0.20      |
| Li          | 60.0     | 90.0     | 0.59     | 0.15     | 0.34     | 0.85     | 0.05     | 0.16     | 0.16     | 60.0     | 0.12     | 0.22      | 0.10      | 0.18      | 60.0      | 1.71      | 0.03      | 0.18      | 0.11      | 80.0      | 1.03      | 66.0      | 0.27      | 0.35      | 0.17      | 09.0      |
| Database ID | KonTum_3 | KonTum_4 | KonTum_5 | KonTum_6 | KonTum_7 | KonTum_8 | KonTum_9 | GiaLai_1 | GiaLai_2 | GiaLai_3 | GiaLai_4 | DongNai_1 | DongNai_2 | DongNai_3 | DongNai_4 | DongNai_5 | DongNai_6 | Pacitan_1 | Pacitan_2 | Pacitan_3 | Pacitan_4 | Pacitan_5 | Pacitan_6 | Pacitan_7 | Pacitan_8 | Pacitan_9 |

| Ce          | 0.48     | 0.01     | 0.12     | 0.04     | 0.05     | 90.0     | 0.03     | 0.15     | 0.03     | 0.12      | 0.21      | 0.03      | 0.15      | 0.03      | 0.07      | 0.14        | 0.44        | 80.0        | 0.05        | 0.07        | 0.10        | 0.04        | 0.15        | 90.0        | 0.04         | 0.32         | 0.04         |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|
| La          | 0.27     | 0.00     | 90.0     | 0.03     | 0.02     | 0.03     | 0.01     | 80.0     | 0.01     | 0.04      | 0.13      | 0.01      | 90.0      | 0.04      | 0.03      | 60.0        | 0.13        | 0.02        | 0.02        | 0.04        | 0.02        | 0.03        | 0.05        | 0.04        | 0.02         | 0.12         | 0.02         |
| Ba          | 2.71     | 1.44     | 2.15     | 0.31     | 1.23     | 1.66     | 0.51     | 0.95     | 3.79     | 0.95      | 09.0      | 1.25      | 0.30      | 0.77      | 1.41      | 1.80        | 8.99        | 86.0        | 0.54        | 4.62        | 0.87        | 1.12        | 99.0        | 144.63      | 0.20         | 2.24         | 32.31        |
| Cs          | 0.05     | 0.01     | 0.02     | 0.02     | 0.03     | 0.02     | 0.01     | 0.02     | 0.01     | 0.01      | 0.02      | 0.01      | 0.00      | 0.03      | 0.02      | 0.02        | 90.0        | 0.01        | 0.02        | 0.03        | 0.02        | 0.02        | 0.01        | 0.04        | 0.01         | 0.02         | 0.01         |
| qs          | 0.24     | 90.0     | 0.21     | 0.63     | 1.28     | 0.45     | 0.11     | 0.42     | 0.18     | 90.0      | 62.0      | 0.61      | 0.54      | 0.31      | 0.36      | 0.61        | 0.10        | 60.0        | 0.07        | 0.34        | 0.07        | 0.07        | 76.0        | 0.15        | 0.23         | 0.41         | 0.19         |
| In          | 0.02     | 0.01     | 0.02     | 0.03     | 0.03     | 0.02     | 0.00     | 0.00     | 0.01     | 0.00      | 0.01      | 0.00      | 0.01      | 0.02      | 0.01      | 0.01        | 0.01        | 0.00        | 0.01        | 0.03        | 0.01        | 0.01        | 0.01        | 0.01        | 0.01         | 0.01         | 0.01         |
| Ag          | 0.02     | 0.03     | 0.12     | 80.0     | 0.42     | 0.04     | 0.01     | 0.05     | 0.03     | 0.02      | 0.02      | 0.02      | 0.04      | 0.05      | 0.03      | 0.01        | 0.05        | 0.01        | 0.03        | 0.11        | 0.03        | 0.01        | 0.05        | 0.05        | 0.05         | 0.38         | 0.05         |
| qN          | 0.11     | 0.01     | 0.02     | 0.10     | 0.02     | 0.03     | 0.01     | 0.02     | 0.03     | 0.02      | 0.03      | 0.01      | 0.01      | 0.05      | 0.04      | 0.03        | 0.03        | 0.01        | 0.02        | 0.03        | 0.02        | 0.03        | 0.02        | 0.02        | 0.02         | 90.0         | 0.01         |
| Zr          | 0.87     | 0.03     | 0.23     | 80.0     | 0.07     | 0.19     | 0.03     | 0.21     | 0.03     | 80.0      | 60.0      | 0.19      | 0.18      | 60.0      | 0.56      | 0.17        | 09.0        | 0.07        | 0.04        | 1.08        | 0.04        | 0.03        | 0.13        | 0.93        | 0.03         | 69.0         | 0.05         |
| Sr          | 96.0     | 0.74     | 0.97     | 0.58     | 0.61     | 1.77     | 0.27     | 0.83     | 1.42     | 0.89      | 0.42      | 99.0      | 0.58      | 0.52      | 1.92      | 1.18        | 3.06        | 1.67        | 0.49        | 1.04        | 0.54        | 0.57        | 0.62        | 8.06        | 0.93         | 1.40         | 0.76         |
| Rb          | 0.38     | 0.24     | 0.27     | 80.0     | 0.62     | 0.32     | 0.07     | 0.20     | 06.0     | 0.21      | 0.36      | 0.12      | 0.07      | 0.40      | 0.71      | 0.26        | 1.20        | 0.13        | 0.12        | 0.48        | 0.17        | 0.15        | 0.18        | 0.32        | 0.18         | 29.0         | 0.15         |
| Database ID | Kandek_1 | Kandek_2 | Kandek_3 | Kandek_4 | Kandek_5 | Kandek_6 | Kandek_7 | Kandek_8 | Kandek_9 | Kandek_10 | Kandek_11 | Kandek_12 | Kandek_13 | Kandek_14 | Kandek_15 | MardakBet_1 | MardakBet_2 | MardakBet_3 | MardakBet_4 | MardakBet_5 | MardakBet_6 | MardakBet_7 | MardakBet_8 | MardakBet_9 | MardakBet_10 | MardakBet_11 | MardakBet_12 |

| Ce                     | 0.17         | 0.03         | 0.19         | 0.05       | 0.04       | 0.04       | 0.02       | 0.05       | 60.0       | 0.04       | 0.02       | 0.04       | 80.0        | 0.15        | 0.31        | 0.01        | 90.0          | 0.03      | 80.0         | 0.13         | 0.02         | 0.39         | 1.06         | 0.10         | 0.07         | 0.03         | 0.08         |
|------------------------|--------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|---------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| La                     | 90.0         | 0.02         | 0.05         | 0.02       | 0.02       | 0.02       | 0.01       | 0.01       | 90.0       | 0.01       | 0.01       | 0.03       | 0.05        | 90.0        | 0.13        | 0.01        | 60.0          | 0.04      | 0.05         | 0.05         | 0.01         | 0.13         | 0.39         | 0.04         | 0.07         | 0.01         | 0.02         |
| Ba                     | 0.28         | 89.0         | 1.09         | 0.37       | 1.35       | 1.54       | 1.03       | 2.52       | 1.25       | 09.0       | 06.0       | 1.70       | 1.57        | 2.13        | 13.97       | 1.03        | 69.0          | 4.05      | 1.55         | 0.95         | 0.39         | 3.29         | 4.50         | 0.83         | 1.20         | 0.47         | 2.17         |
| Cs                     | 0.02         | 0.01         | 0.04         | 0.01       | 0.01       | 0.01       | 0.01       | 0.02       | 0.03       | 0.02       | 0.01       | 0.01       | 0.02        | 0.03        | 0.04        | 0.01        | 0.00          | 0.01      | 0.02         | 0.04         | 0.01         | 0.05         | 0.16         | 0.03         | 0.01         | 0.01         | 0.01         |
| qs                     | 1.28         | 0.17         | 0.83         | 0.18       | 0.42       | 0.41       | 0.27       | 0.17       | 29.0       | 0.50       | 0.26       | 0.44       | 0.42        | 0.87        | 1.14        | 0.39        | 0.17          | 0.36      | 0.41         | 0.27         | 0.23         | 0.23         | 0.17         | 06.0         | 0.44         | 0.44         | 0.34         |
| In                     | 0.02         | 0.01         | 90.0         | 0.01       | 0.00       | 0.00       | 0.01       | 0.00       | 0.02       | 0.01       | 0.01       | 0.02       | 0.03        | 0.02        | 0.03        | 0.00        | 0.00          | 0.00      | 0.00         | 0.01         | 0.00         | 0.01         | 0.05         | 0.03         | 0.02         | 0.01         | 0.02         |
| $\mathbf{A}\mathbf{g}$ | 0.29         | 0.14         | 0.33         | 0.03       | 0.03       | 0.05       | 80.0       | 0.02       | 60.0       | 60.0       | 0.07       | 0.13       | 0.11        | 0.45        | 1.05        | 0.05        | 0.02          | 0.25      | 0.04         | 60.0         | 0.01         | 60.0         | 0.53         | 0.29         | 0.02         | 0.04         | 0.19         |
| qN                     | 0.02         | 0.03         | 0.05         | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.05       | 0.03       | 0.01       | 0.03       | 0.02        | 0.07        | 0.07        | 0.18        | 80.0          | 0.14      | 0.04         | 0.03         | 0.01         | 0.25         | 0.37         | 0.03         | 0.01         | 0.02         | 0.02         |
| Zr                     | 0.22         | 0.23         | 0.58         | 0.16       | 90.0       | 0.07       | 0.14       | 0.03       | 0.29       | 90.0       | 0.05       | 0.10       | 0.23        | 0.27        | 2.47        | 0.04        | 0.14          | 0.14      | 0.19         | 0.31         | 90.0         | 2.50         | 2.75         | 0.15         | 60.0         | 80.0         | 0.10         |
| Sr                     | 0.65         | 0.52         | 0.84         | 0.30       | 0.78       | 0.71       | 99.0       | 1.35       | 0.97       | 0.65       | 0.55       | 0.59       | 0.53        | 1.05        | 2.66        | 0.72        | 0.59          | 3.58      | 0.74         | 1.02         | 0.37         | 0.91         | 3.84         | 0.61         | 0.97         | 0.34         | 1.22         |
| Rb                     | 0.26         | 0.21         | 0.67         | 80.0       | 0.35       | 0.34       | 0.53       | 0.84       | 0.39       | 0.18       | 80.0       | 0.23       | 0.29        | 0.30        | 0.41        | 0.22        | 0.24          | 0.21      | 0.20         | 0.31         | 0.12         | 66.0         | 2.08         | 0.41         | 0.17         | 0.12         | 0.15         |
| Database ID            | MardakBet_13 | MardakBet_14 | MardakBet_15 | Ratanpur_1 | Ratanpur_2 | Ratanpur_3 | Ratanpur_4 | Ratanpur_5 | Ratanpur_6 | Ratanpur_7 | Ratanpur_8 | Ratanpur_9 | Ratanpur_10 | Ratanpur_12 | Ratanpur_14 | RTPUnheated | RTPHeatedOnce | RTPHeated | Mahurjhari_1 | Mahurjhari_2 | Mahurjhari_3 | Mahurjhari_4 | Mahurjhari_5 | Mahurjhari_6 | Mahurjhari_7 | Mahurjhari_8 | Mahurjhari_9 |

| Database ID   | Rb    | Sr   | Zr   | Nb   | $\mathbf{A}\mathbf{g}$ | In    | Sb   | Cs   | Ba    | La   | Ce   |
|---------------|-------|------|------|------|------------------------|-------|------|------|-------|------|------|
| Mahurjhari_10 | 0.11  | 0.33 | 80.0 | 0.01 | 90.0                   | 0.03  | 0.37 | 0.01 | 0.56  | 0.02 | 0.02 |
| _12           | 0.21  | 86.0 | 0.18 | 0.02 | 90.0                   | 0.02  | 0.48 | 0.02 | 0.73  | 60.0 | 0.17 |
| Mahurjhari_13 | 80.0  | 0.49 | 80.0 | 0.01 | 0.02                   | 00.00 | 0.18 | 0.01 | 1.32  | 0.01 | 0.03 |
| Mahurjhari_14 | 1.12  | 1.24 | 0.23 | 90.0 | 0.46                   | 0.02  | 0.41 | 90.0 | 2.39  | 90.0 | 0.15 |
| _15           | 1.29  | 1.81 | 1.99 | 0.12 | 0.10                   | 0.00  | 0.37 | 0.03 | 2.52  | 0.40 | 0.63 |
| Mahurjhari_16 | 0.34  | 0.87 | 0.25 | 0.02 | 0.15                   | 0.03  | 1.18 | 0.03 | 1.42  | 0.02 | 80.0 |
| Mahurjhari_17 | 25.61 | 4.35 | 3.01 | 0.29 | 0.03                   | 90.0  | 0.04 | 0.12 | 14.27 | 0.16 | 0.42 |
| Mahurjhari_18 | 0.19  | 0.57 | 0.23 | 0.03 | 0.08                   | 0.01  | 06.0 | 0.02 | 1.27  | 0.03 | 60.0 |
| Mahurjhari_19 | 0.21  | 0.82 | 0.16 | 0.01 | 0.20                   | 00.00 | 0.50 | 0.01 | 19.0  | 0.03 | 80.0 |
| Mahurjhari_20 | 0.17  | 0.57 | 0.23 | 0.02 | 0.08                   | 0.03  | 0.58 | 0.02 | 1.49  | 0.04 | 0.12 |
| Mahurjhari_21 | 0.37  | 0.92 | 0.18 | 0.03 | 0.14                   | 0.02  | 0.82 | 0.04 | 2.59  | 0.04 | 60.0 |
| Mahurjhari_22 | 0.24  | 0.63 | 80.0 | 0.02 | 0.15                   | 0.01  | 0.77 | 0.02 | 0.49  | 0.04 | 0.07 |
| Mahurjhari_23 | 0.24  | 0.39 | 0.14 | 0.07 | 0.08                   | 0.02  | 0.10 | 0.01 | 1.01  | 0.04 | 80.0 |
| Mahurjhari_24 | 0.11  | 0.63 | 0.16 | 0.01 | 0.05                   | 0.01  | 0.43 | 0.01 | 08.0  | 0.02 | 0.04 |
| Mahurjhari_25 | 60'0  | 0.43 | 90.0 | 0.01 | 80.0                   | 0.01  | 0.53 | 0.01 | 08.0  | 0.02 | 0.05 |
| Mahurjhari_26 | 08.0  | 92.0 | 66.0 | 0.14 | 0.10                   | 0.00  | 0.25 | 0.04 | 1.70  | 0.07 | 0.31 |
| Paithan_1     | 1.05  | 3.92 | 0.78 | 0.05 | 0.22                   | 0.05  | 0.53 | 0.03 | 5.41  | 60.0 | 0.07 |
| Paithan_2     | 0.17  | 1.50 | 0.12 | 0.05 | 0.08                   | 0.02  | 0.28 | 0.11 | 1.50  | 0.05 | 0.14 |
| Paithan_3     | 0.53  | 1.01 | 0.15 | 0.10 | 0.15                   | 0.04  | 0.27 | 90'0 | 1.02  | 0.04 | 90.0 |
| Paithan_4     | 0.14  | 3.52 | 0.31 | 0.01 | 0.05                   | 0.01  | 0.54 | 0.01 | 3.10  | 0.05 | 0.05 |
| Paithan_5     | 69'0  | 0.54 | 29.0 | 0.05 | 6.03                   | 0.01  | 0.10 | 0.01 | 08.0  | 0.02 | 0.03 |
| Paithan_6     | 0.12  | 68.0 | 0.10 | 0.02 | 0.04                   | 0.01  | 0.83 | 0.02 | 1.53  | 90.0 | 0.16 |
| Paithan_7     | 0.57  | 0.87 | 0.04 | 0.02 | 0.02                   | 0.01  | 0.07 | 0.02 | 1.18  | 0.02 | 0.05 |
| Paithan_8     | 0.17  | 0.65 | 0.04 | 0.05 | 0.10                   | 0.03  | 0.71 | 0.02 | 1.40  | 0.02 | 90.0 |
| Paithan_9     | 0.28  | 3.11 | 0.23 | 0.04 | 80.0                   | 0.01  | 0.78 | 0.02 | 2.90  | 90.0 | 0.20 |
| Paithan_10    | 0.22  | 4.35 | 0.19 | 90.0 | 0.05                   | 0.02  | 0.31 | 0.01 | 8.84  | 0.05 | 80.0 |
| Paithan_11    | 0.03  | 0.31 | 0.04 | 0.01 | 0.01                   | 0.00  | 0.15 | 0.00 | 0.54  | 0.02 | 0.05 |

| Database ID      | Rb   | Sr   | Zr   | NP   | Ag   | In   | qs   | Cs   | Ba   | La   | Ce   |
|------------------|------|------|------|------|------|------|------|------|------|------|------|
| Paithan_12       | 1.04 | 4.00 | 0.16 | 0.11 | 0.05 | 0.00 | 0.13 | 0.04 | 1.04 | 0.02 | 0.04 |
| Paithan_13       | 0.20 | 1.45 | 90.0 | 0.03 | 0.04 | 0.01 | 0.28 | 0.01 | 2.80 | 0.03 | 0.13 |
| Paithan_14       | 0.11 | 69.0 | 0.24 | 0.01 | 0.04 | 0.00 | 0.38 | 0.00 | 0.72 | 0.02 | 0.05 |
| Paithan_15       | 0.37 | 1.49 | 0.16 | 60.0 | 0.11 | 0.04 | 1.24 | 0.03 | 1.08 | 0.10 | 0.23 |
| Undari_1         | 0.13 | 0.85 | 60.0 | 0.02 | 0.04 | 0.01 | 0.81 | 0.03 | 0.85 | 0.07 | 0.17 |
| Undari_2         | 0.07 | 0.51 | 80.0 | 0.05 | 0.05 | 0.02 | 0.57 | 0.02 | 9.02 | 0.02 | 0.02 |
| Undari_3         | 0.36 | 0.78 | 0.23 | 0.02 | 90.0 | 0.01 | 80.0 | 0.02 | 0.83 | 0.04 | 80.0 |
| Undari_4         | 0.29 | 0.79 | 60.0 | 0.02 | 0.03 | 0.00 | 0.25 | 0.01 | 0.87 | 0.02 | 0.03 |
| Undari_5         | 0.11 | 0.65 | 0.12 | 0.02 | 0.02 | 0.01 | 0.50 | 0.01 | 0.41 | 0.04 | 60.0 |
| Undari_6         | 0.07 | 0.28 | 0.07 | 0.01 | 0.03 | 0.01 | 0.43 | 0.01 | 0.30 | 0.03 | 0.05 |
| Undari_7         | 90.0 | 0.50 | 0.10 | 0.05 | 90.0 | 0.02 | 0:30 | 0.02 | 0.47 | 0.03 | 0.03 |
| Undari_8         | 0.51 | 1.80 | 0.81 | 90.0 | 0.24 | 0.02 | 0.53 | 0.04 | 3.37 | 0.07 | 0.22 |
| Undari_9         | 0.12 | 0.52 | 0.07 | 0.03 | 0.05 | 0.02 | 1.13 | 0.01 | 0.91 | 0.01 | 0.02 |
| Undari_10        | 89.0 | 0.78 | 0.46 | 0.02 | 0.01 | 0.00 | 90.0 | 0.02 | 1.16 | 0.01 | 0.01 |
| Undari_11        | 0.39 | 06.0 | 0.05 | 0.02 | 60.0 | 0.01 | 0.37 | 0.01 | 2.72 | 0.02 | 0.04 |
| Undari_12        | 0.37 | 0.83 | 0.34 | 90.0 | 0.12 | 0.03 | 0.55 | 0.04 | 2.90 | 80.0 | 0.15 |
| Undhari_JMK1     | 0.29 | 0.95 | 0.05 | 0.01 | 0.02 | 0.02 | 90.0 | 0.01 | 0.35 | 0.02 | 0.03 |
| Undhari_JMK2     | 0.73 | 2.09 | 0.25 | 0.03 | 0.02 | 0.00 | 0.13 | 0.04 | 1.30 | 0.07 | 0.23 |
| Shahr-i-Sokhta_1 | 0.19 | 0.33 | 0.05 | 0.24 | 0.01 | 0.00 | 1.41 | 0.02 | 0.07 | 0.00 | 0.00 |
| Shahr-i-Sokhta_2 | 0.28 | 4.56 | 0.23 | 0.15 | 0.02 | 0.00 | 2.70 | 0.02 | 0.73 | 90.0 | 0.11 |
| Shahr-i-Sokhta_3 | 0.12 | 3.11 | 0.03 | 0.02 | 0.02 | 00.0 | 2.02 | 0.01 | 0.12 | 0.02 | 0.01 |
| Shahr-i-Sokhta_4 | 0.75 | 5.55 | 69.0 | 0.65 | 0.03 | 00.0 | 1.51 | 0.05 | 3.63 | 20.0 | 0.31 |
| Shahr-i-Sokhta_5 | 0.11 | 06.0 | 0.04 | 0.10 | 0.03 | 0.00 | 1.67 | 0.01 | 0.07 | 0.01 | 0.01 |
| Shahr-i-Sokhta_6 | 0.31 | 7.60 | 0.40 | 0.10 | 90.0 | 0.01 | 1.63 | 0.04 | 2.35 | 90'0 | 0.17 |
| Shahr-i-Sokhta_7 | 0.25 | 4.02 | 0.27 | 80.0 | 0.04 | 0.02 | 1.05 | 0.04 | 1.41 | 6.03 | 0.11 |
| Shahr-i-Sokhta_8 | 0.40 | 3.03 | 0.15 | 0.11 | 0.05 | 0.03 | 1.30 | 0.07 | 0.63 | 0.05 | 0.10 |
| Shahr-i-Sokhta_9 | 1.13 | 95.9 | 0.53 | 0.15 | 0.04 | 0.03 | 1.02 | 0.17 | 5.97 | 0.14 | 0.36 |

| Ce            | 0.02              | 0.01              | 60.0              | 0.02              | 0.02              | 60.0              | 0.02              | 0.26              | 1.61           | 20.27          | 4.56           | 0.07           | 10.61          | 0.02           | 0.02           | 0.02            | 0.10            | 0.01            | 0.01            | 0.02            | 0.04            | 0.02            | 0.18            | 0.21            | 0.04            | 0.14     | 0.06     |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|----------|
| La            | 0.02              | 0.01              | 0.04              | 0.01              | 0.01              | 90.0              | 0.01              | 0.12              | 0.94           | 9.70           | 3.34           | 0.02           | 5.16           | 0.02           | 0.01           | 0.01            | 0.02            | 0.01            | 0.00            | 0.02            | 0.02            | 0.03            | 0.11            | 0.13            | 0.02            | 0.04     | 0.02     |
| Ba            | 0.15              | 1.09              | 09.0              | 0.12              | 0.17              | 17.40             | 0.30              | 3.28              | 176.82         | 110.27         | 235.23         | 0.56           | 106.41         | 1.54           | 3.63           | 4.74            | 81.59           | 1.34            | 0.87            | 4.89            | 3.05            | 1.03            | 93.61           | 84.00           | 11.05           | 2.55     | 1.32     |
| Cs            | 0.03              | 0.02              | 0.05              | 0.02              | 0.03              | 0.07              | 0.02              | 0.04              | 0.35           | 0.42           | 0.82           | 0.02           | 0.58           | 0.02           | 0.01           | 0.03            | 0.26            | 0.01            | 0.01            | 0.01            | 0.01            | 0.01            | 0.02            | 0.24            | 0.03            | 0.01     | 0.01     |
| Sb            | 1.60              | 0.40              | 4.46              | 2.28              | 1.75              | 1.83              | 0.39              | 2.31              | 0.87           | 0.52           | 1.81           | 15.16          | 0.58           | 2.26           | 1.94           | 1.86            | 5.99            | 1.90            | 5.00            | 3.17            | 2.12            | 3.15            | 2.27            | 6.41            | 1.61            | 0.10     | 0.05     |
| In            | 0.03              | 0.01              | 0.01              | 0.01              | 0.02              | 0.03              | 0.01              | 0.02              | 0.02           | 0.01           | 0.01           | 0.01           | 0.01           | 0.01           | 0.01           | 0.01            | 0.01            | 0.01            | 0.01            | 0.00            | 0.00            | 0.01            | 0.00            | 0.00            | 0.01            | 0.01     | 0.00     |
| $\mathbf{Ag}$ | 0.04              | 0.03              | 0.03              | 0.05              | 0.03              | 0.04              | 0.04              | 0.03              | 60.0           | 0.07           | 90.0           | 0.07           | 90.0           | 0.03           | 0.03           | 0.03            | 0.03            | 0.03            | 0.07            | 0.02            | 0.03            | 0.02            | 0.02            | 0.03            | 0.02            | 0.04     | 0.02     |
| qN            | 0.04              | 0.03              | 0.04              | 80.0              | 0.03              | 0.10              | 0.03              | 0.16              | 86.0           | 2.30           | 3.36           | 0.22           | 2.99           | 0.11           | 0.15           | 0.13            | 0.03            | 0.13            | 0.10            | 1.25            | 60.0            | 0.02            | 0.11            | 60.0            | 60.0            | 0.03     | 0.01     |
| Zr            | 0.03              | 88.40             | 0.50              | 0.11              | 0.05              | 0.18              | 1.24              | 0.25              | 21.54          | 29.76          | 24.38          | 99.0           | 50.11          | 86.0           | 0.84           | 1.81            | 0.33            | 2.81            | 1.18            | 1.46            | 1.20            | 0.44            | 0.79            | 0.40            | 0.21            | 0.10     | 0.03     |
| Sr            | 0.24              | 0.28              | 2.20              | 0.41              | 0.42              | 8.07              | 1.24              | 20.22             | 53.60          | 40.33          | 36.62          | 0.75           | 41.97          | 09.0           | 1.33           | 1.39            | 13.58           | 66.0            | 0.47            | 2.38            | 98.0            | 0.78            | 9.02            | 12.82           | 2.29            | 0.47     | 0.44     |
| Rb            | 0.15              | 0.21              | 0.45              | 0.07              | 0.30              | 0.36              | 0.11              | 0.21              | 3.57           | 19.62          | 14.93          | 0.10           | 11.80          | 0.36           | 0.31           | 0.67            | 2.51            | 90.0            | 0.03            | 0.14            | 0.15            | 0.10            | 0.44            | 2.11            | 0.33            | 0.31     | 0.35     |
| Database ID   | Shahr-i-Sokhta_10 | Shahr-i-Sokhta_11 | Shahr-i-Sokhta_12 | Shahr-i-Sokhta_13 | Shahr-i-Sokhta_14 | Shahr-i-Sokhta_15 | Shahr-i-Sokhta_16 | Shahr-i-Sokhta_17 | BanKhaoMogul_1 | BanKhaoMogul_2 | BanKhaoMogul_4 | BanKhaoMogul_5 | BanKhaoMogul_6 | BanKhaoMogul_7 | BanKhaoMogul_9 | BanKhaoMogul_10 | BanKhaoMogul_11 | BanKhaoMogul_12 | BanKhaoMogul_13 | BanKhaoMogul_15 | BanKhaoMogul_16 | BanKhaoMogul_17 | BanKhaoMogul_18 | BanKhaoMogul_20 | BanKhaoMogul_21 | KonTum_1 | KonTum_2 |

| KonTum_5 0.18 KonTum_5 0.29 VonTum_6 0.46 |      |       |      |      |       |      | !    |        |      | <b>)</b> |
|-------------------------------------------|------|-------|------|------|-------|------|------|--------|------|----------|
|                                           | 0.53 | 0.03  | 0.01 | 0.03 | 0.00  | 80.0 | 0.01 | 0.74   | 0.01 | 0.02     |
| 5_                                        | 0.40 | 0.03  | 0.01 | 0.02 | 00.00 | 90.0 | 0.01 | 0.56   | 0.01 | 0.02     |
| 9                                         | 0.48 | 0.15  | 80.0 | 0.18 | 0.20  | 0.42 | 0.04 | 1.45   | 90.0 | 90.0     |
| ٥,                                        | 0.93 | 0.04  | 0.03 | 0.05 | 0.01  | 0.14 | 0.01 | 1.49   | 0.01 | 0.01     |
| KonTum_7 0.25                             | 0.38 | 0.07  | 0.03 | 0.04 | 0.01  | 0.10 | 0.01 | 1.72   | 0.02 | 0.02     |
| KonTum_8 0.30                             | 0.46 | 0.04  | 0.01 | 90.0 | 0.01  | 0.14 | 0.01 | 0.54   | 00.0 | 0.02     |
| KonTum_9 0.24                             | 0.32 | 0.05  | 0.01 | 0.01 | 0.00  | 0.04 | 0.00 | 0.82   | 0.01 | 0.01     |
| GiaLai_1 0.55                             | 7.17 | 20.35 | 1.05 | 0.05 | 0.01  | 0.17 | 0.10 | 92.9   | 0.52 | 0.18     |
| GiaLai_2 0.64                             | 7.53 | 22.56 | 1.31 | 0.02 | 0.00  | 90.0 | 0.11 | 4.48   | 0.13 | 0.03     |
| GiaLai_3 0.90                             | 4.85 | 3.33  | 0.58 | 0.01 | 00.00 | 0.02 | 0.11 | 3.36   | 0.14 | 0.27     |
| GiaLai_4 1.15                             | 7.62 | 4.13  | 69.0 | 0.01 | 0.01  | 0.07 | 0.12 | 11.05  | 0.26 | 0.53     |
| DongNai_1 0.36                            | 0.51 | 0.10  | 0.01 | 0.15 | 0.02  | 0.12 | 0.01 | 4.09   | 0.05 | 0.07     |
| DongNai_2 0.28                            | 0.36 | 0.05  | 0.03 | 0.03 | 0.02  | 60.0 | 0.01 | 1.83   | 0.01 | 0.03     |
| DongNai_3 0.37                            | 0.40 | 0.04  | 0.01 | 0.00 | 0.00  | 0.07 | 0.01 | 1.63   | 0.01 | 0.02     |
| DongNai_4 0.33                            | 0.37 | 60'0  | 0.02 | 0.05 | 00.0  | 0.12 | 0.01 | 3.79   | 0.01 | 0.02     |
| DongNai_5 0.59                            | 0.74 | 0.04  | 0.01 | 0.02 | 0.00  | 0.02 | 0.01 | 2.04   | 0.01 | 0.04     |
| DongNai_6 0.29                            | 0.53 | 0.03  | 0.00 | 0.01 | 0.00  | 0.01 | 0.01 | 10.24  | 0.02 | 0.04     |
| Pacitan_1 0.25                            | 0.57 | 0.02  | 0.05 | 0.05 | 0.01  | 2.54 | 0.01 | 0.15   | 0.04 | 0.05     |
| Pacitan_2 0.18                            | 0.62 | 0.01  | 0.00 | 0.03 | 00.0  | 2.48 | 0.01 | 0.17   | 0.04 | 90.0     |
| Pacitan_3 0.12                            | 0.46 | 90.0  | 0.01 | 0.03 | 00.0  | 2.05 | 00'0 | 0.13   | 0.03 | 0.03     |
| Pacitan_4 0.20                            | 0.57 | 0.22  | 0.01 | 0.18 | 0.00  | 1.49 | 0.01 | 0.33   | 0.03 | 60.0     |
| Pacitan_5 0.23                            | 0.58 | 0.16  | 0.04 | 0.14 | 0.01  | 1.43 | 0.01 | 0.63   | 0.03 | 0.10     |
| Pacitan_6 0.18                            | 0.29 | 90.0  | 0.03 | 0.07 | 0.01  | 1.41 | 0.01 | 0.33   | 0.03 | 0.10     |
| Pacitan_7 0.27                            | 0.37 | 0.03  | 0.04 | 0.16 | 0.04  | 1.76 | 0.02 | 0.42   | 0.04 | 0.11     |
| Pacitan_8 0.04                            | 89.0 | 0.04  | 90.0 | 0.07 | 0.02  | 2.84 | 0.01 | 0.21   | 0.05 | 0.07     |
| Pacitan_9 0.15                            | 8.23 | 0.54  | 0.05 | 0.41 | 0.01  | 2.70 | 0.07 | 109.32 | 0.16 | 0.30     |

| Database ID    | Pr    | Та    | Au   | Y    | Pb   | Bi   | Ω    | W    | Mo   | PΝ   | Sm   |
|----------------|-------|-------|------|------|------|------|------|------|------|------|------|
| Kandek_1       | 0.07  | 0.01  | 0.02 | 0.40 | 1.42 | 0.02 | 0.12 | 0.03 | 0.02 | 0.31 | 0.11 |
| Kandek_2       | 00.00 | 0.01  | 0.16 | 0.07 | 0.62 | 0.03 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 |
| Kandek_3       | 0.03  | 0.01  | 0.25 | 0.14 | 0.41 | 0.03 | 0.01 | 0.05 | 0.04 | 0.10 | 0.04 |
| Kandek_4       | 0.02  | 0.04  | 1.60 | 90.0 | 0.17 | 0.03 | 2.00 | 1.40 | 0.00 | 0.20 | 0.10 |
| Kandek_5       | 0.02  | 0.02  | 2.23 | 0.02 | 1.31 | 0.11 | 0.03 | 0.03 | 0.04 | 0.02 | 0.03 |
| Kandek_6       | 0.02  | 0.01  | 0.36 | 0.08 | 0.44 | 90.0 | 0.02 | 0.01 | 0.03 | 0.04 | 0.04 |
| Kandek_7       | 0.00  | 0.00  | 0.05 | 0.02 | 0.17 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Kandek_8       | 0.02  | 0.01  | 60.0 | 0.09 | 1.05 | 0.01 | 0.01 | 0.02 | 0.03 | 0.07 | 0.02 |
| Kandek_9       | 0.01  | 0.01  | 0.04 | 0.07 | 0.10 | 0.03 | 0.02 | 0.04 | 0.04 | 0.02 | 0.05 |
| Kandek_10      | 0.01  | 00.00 | 0.04 | 0.14 | 0.24 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 |
| Kandek_11      | 0.02  | 0.01  | 0.10 | 0.04 | 0.36 | 0.01 | 0.00 | 0.03 | 0.01 | 0.07 | 0.02 |
| Kandek_12      | 0.01  | 0.01  | 0.11 | 90.0 | 0.51 | 0.02 | 0.01 | 0.04 | 0.02 | 0.03 | 0.01 |
| Kandek_13      | 0.02  | 0.01  | 60.0 | 0.14 | 0.29 | 0.01 | 0.00 | 0.01 | 0.02 | 60.0 | 0.02 |
| Kandek_14      | 0.02  | 0.03  | 0.43 | 0.04 | 90.0 | 0.03 | 0.03 | 0.10 | 0.13 | 0.16 | 0.10 |
| Kandek_15      | 0.01  | 0.01  | 0.13 | 0.05 | 0.33 | 0.01 | 0.00 | 90.0 | 0.03 | 0.04 | 0.04 |
| MardakBet_1    | 0.04  | 90.0  | 0.13 | 0.10 | 0.51 | 0.03 | 0.03 | 0.11 | 0.03 | 0.15 | 0.17 |
| MardakBet_2    | 80.0  | 0.01  | 90.0 | 0.17 | 0.72 | 0.02 | 0.37 | 0.04 | 0.03 | 0.19 | 90.0 |
| MardakBet_3    | 0.01  | 0.05  | 90.0 | 0.05 | 0.16 | 0.03 | 0.03 | 0.04 | 0.02 | 60.0 | 0.13 |
| MardakBet_4    | 0.01  | 0.04  | 0.08 | 0.03 | 0.35 | 0.01 | 0.11 | 0.26 | 0.03 | 0.05 | 0.14 |
| MardakBet_5    | 0.02  | 0.01  | 0.03 | 0.07 | 0.17 | 0.01 | 0.01 | 0.04 | 0.05 | 0.05 | 0.04 |
| $MardakBet\_6$ | 0.01  | 0.01  | 0.12 | 0.03 | 0.32 | 0.03 | 0.13 | 0.03 | 0.02 | 0.04 | 0.03 |
| MardakBet_7    | 0.03  | 0.02  | 0.17 | 0.02 | 0.24 | 0.04 | 0.20 | 0.14 | 0.01 | 90.0 | 0.12 |
| MardakBet_8    | 0.03  | 0.00  | 0.04 | 0.14 | 0.26 | 0.01 | 0.19 | 0.04 | 90.0 | 90.0 | 0.04 |
| MardakBet_9    | 0.01  | 0.01  | 0.02 | 90.0 | 0.33 | 0.01 | 0.02 | 0.01 | 0.04 | 90.0 | 90.0 |
| MardakBet_10   | 00.00 | 0.00  | 90.0 | 0.03 | 60.0 | 0.01 | 0.01 | 0.01 | 80.0 | 0.03 | 0.02 |
| MardakBet_11   | 0.04  | 0.02  | 0.15 | 0.18 | 1.00 | 0.04 | 0.32 | 0.04 | 0.06 | 0.13 | 0.04 |
| MardakBet_12   | 0.00  | 0.00  | 0.02 | 0.05 | 0.36 | 0.00 | 0.25 | 0.02 | 0.05 | 0.03 | 0.01 |

| Database ID   | Pr   | Ta    | Au   | Y    | Pb   | Bi   | Ω     | M    | Mo   | pN   | Sm   |
|---------------|------|-------|------|------|------|------|-------|------|------|------|------|
| MardakBet_13  | 0.02 | 90.0  | 0.33 | 60.0 | 0.84 | 0.02 | 0.11  | 0.03 | 0.03 | 0.04 | 0.07 |
| MardakBet_14  | 0.01 | 0.01  | 0.07 | 0.04 | 66.0 | 0.04 | 60.0  | 0.04 | 0.02 | 0.03 | 0.04 |
| MardakBet_15  | 0.05 | 0.02  | 1.14 | 0.12 | 2.89 | 1.49 | 0.25  | 90.0 | 90.0 | 0.19 | 0.05 |
| Ratanpur_1    | 0.02 | 0.01  | 0.02 | 0.12 | 0.12 | 0.01 | 0.01  | 0.01 | 0.02 | 0.05 | 0.02 |
| Ratanpur_2    | 0.00 | 00.00 | 0.10 | 0.03 | 0.23 | 0.00 | 0.00  | 0.01 | 0.01 | 0.02 | 0.01 |
| Ratanpur_3    | 0.01 | 0.00  | 90.0 | 0.03 | 0.37 | 0.01 | 0.01  | 0.01 | 0.01 | 0.02 | 0.01 |
| Ratanpur_4    | 0.01 | 00.00 | 0.30 | 0.02 | 0.36 | 0.02 | 0.01  | 0.03 | 0.02 | 0.01 | 0.02 |
| Ratanpur_5    | 0.01 | 0.00  | 60'0 | 0.39 | 0.11 | 0.01 | 0.01  | 0.02 | 0.02 | 0.04 | 0.05 |
| Ratanpur_6    | 0.02 | 0.01  | 0.10 | 0.10 | 0.41 | 0.01 | 0.07  | 0.02 | 0.04 | 0.07 | 0.05 |
| Ratanpur_7    | 0.01 | 0.00  | 0.40 | 0.03 | 0.34 | 0.01 | 0.02  | 0.02 | 0.01 | 0.04 | 0.01 |
| Ratanpur_8    | 0.01 | 0.01  | 0.12 | 0.02 | 0.17 | 0.01 | 0.01  | 0.03 | 0.04 | 0.04 | 0.04 |
| Ratanpur_9    | 0.01 | 0.01  | 0.22 | 0.11 | 0.38 | 0.01 | 0.01  | 0.04 | 80.0 | 90.0 | 0.05 |
| Ratanpur_10   | 0.02 | 0.03  | 0.27 | 90.0 | 0.91 | 0.03 | 0.05  | 0.04 | 0.04 | 90.0 | 0.04 |
| Ratanpur_12   | 0.03 | 0.02  | 0.58 | 0.13 | 3.57 | 0.12 | 0.02  | 0.07 | 0.07 | 0.10 | 0.05 |
| Ratanpur_14   | 0.12 | 0.03  | 98'0 | 0.71 | 3.48 | 0.18 | 0.05  | 0.08 | 90'0 | 0.31 | 0.20 |
| RTPUnheated   | 0.00 | 0.01  | 0.03 | 0.02 | 0.05 | 0.02 | 0.01  | 0.04 | 0.03 | 0.02 | 0.03 |
| RTPHeatedOnce | 0.04 | 0.01  | 0.02 | 0.11 | 0.08 | 0.02 | 0.03  | 0.03 | 0.02 | 0.14 | 0.04 |
| RTPHeated     | 0.01 | 0.02  | 0.03 | 0.16 | 0.21 | 0.02 | 0.02  | 0.02 | 0.03 | 90.0 | 0.03 |
| Mahurjhari_1  | 0.01 | 0.00  | 0.28 | 0.08 | 0.27 | 0.01 | 0.01  | 0.01 | 0.02 | 0.04 | 0.02 |
| Mahurjhari_2  | 0.02 | 0.01  | 98.0 | 0.11 | 05.0 | 0.01 | 0.02  | 0.03 | 6.03 | 90'0 | 0.02 |
| Mahurjhari_3  | 0.00 | 0.00  | 0.10 | 0.02 | 0.14 | 0.00 | 00.00 | 0.01 | 0.01 | 0.01 | 0.00 |
| Mahurjhari_4  | 0.05 | 0.01  | 1.08 | 0.49 | 0.50 | 0.07 | 90.0  | 0.05 | 0.10 | 0.13 | 0.04 |
| Mahurjhari_5  | 0.18 | 0.02  | 1.05 | 0.78 | 3.47 | 90.0 | 0.07  | 90.0 | 0.04 | 0.64 | 0.15 |
| Mahurjhari_6  | 0.02 | 0.02  | 2.14 | 0.07 | 7.24 | 0.22 | 60.0  | 0.02 | 90.0 | 80.0 | 0.03 |
| Mahurjhari_7  | 0.04 | 0.00  | 0.03 | 0.63 | 0.27 | 0.01 | 0.01  | 0.02 | 0.04 | 0.12 | 90.0 |
| Mahurjhari_8  | 0.01 | 0.01  | 0.41 | 0.57 | 0.22 | 0.03 | 0.21  | 0.02 | 0.01 | 0.03 | 0.03 |
| Mahurjhari_9  | 0.02 | 0.01  | 0.75 | 90.0 | 1.48 | 0.04 | 0.01  | 0.03 | 0.03 | 80.0 | 0.04 |

| Au Y Pb        |
|----------------|
| 0.10           |
| 0.13 0.02 0.20 |
| 0.96 0.55 1.98 |
| 0.14 0.64 8.38 |
| 1.01 0.09 1.40 |
| 0.50 0.44 0.57 |
| 0.74 0.07 1.26 |
| 0.10 0.06 0.33 |
| 0.20 0.10 0.87 |
| 0.43 0.08 1.07 |
| 0.56 0.17 0.69 |
| 0.06 0.88      |
| 0.26 0.04 0.35 |
| 0.06 0.06 0.62 |
| 0.80 0.15 0.70 |
| 90.0           |
| 0.16 0.10 0.42 |
| 2.73 0.08 0.58 |
| 0.05 0.09 0.17 |
| 0.21 0.10 0.25 |
| 0.30 0.31 0.63 |
| 0.19 0.09 0.48 |
| 1.10 0.06 1.45 |
| 0.05 0.33 0.67 |
| 0.22 0.06 0.13 |
| 0.04 0.03 0.19 |

| Database ID      | Pr    | Та    | Au   | Ā    | Pb    | Bi   | Ω     | W    | Mo   | PN   | Sm   |
|------------------|-------|-------|------|------|-------|------|-------|------|------|------|------|
| Paithan_12       | 0.01  | 0.01  | 0.14 | 0.12 | 0.11  | 0.01 | 0.04  | 0.04 | 0.02 | 0.02 | 90.0 |
| Paithan_13       | 0.02  | 0.01  | 0.22 | 0.07 | 0.72  | 0.03 | 60.0  | 0.01 | 0.01 | 0.04 | 0.02 |
| Paithan_14       | 0.01  | 00.00 | 0.02 | 0.03 | 60.0  | 0.02 | 0.01  | 0.01 | 0.01 | 0.02 | 0.01 |
| Paithan_15       | 0.04  | 0.05  | 0.23 | 0.11 | 0.45  | 0.05 | 0.05  | 0.11 | 0.14 | 0.13 | 0.16 |
| Undari_1         | 0.03  | 0.02  | 0.03 | 0.17 | 0.24  | 0.01 | 0.35  | 60.0 | 0.03 | 0.07 | 0.03 |
| Undari_2         | 0.04  | 0.03  | 0.10 | 90.0 | 90.0  | 90.0 | 0.03  | 90.0 | 0.14 | 0.10 | 60.0 |
| Undari_3         | 0.01  | 0.01  | 0.19 | 0.05 | 0.59  | 0.02 | 0.01  | 0.02 | 0.03 | 0.04 | 0.02 |
| Undari_4         | 0.00  | 0.01  | 0.02 | 0.05 | 80.0  | 0.02 | 0.05  | 0.04 | 0.01 | 0.02 | 0.02 |
| Undari_5         | 0.02  | 0.01  | 0.10 | 0.05 | 0.16  | 0.01 | 0.02  | 0.01 | 0.02 | 0.04 | 0.02 |
| Undari_6         | 0.01  | 0.01  | 0.50 | 0.02 | 0.70  | 0.03 | 0.01  | 0.01 | 0.02 | 0.02 | 0.02 |
| Undari_7         | 0.02  | 0.04  | 0.18 | 0.12 | 0.07  | 0.23 | 0.03  | 0.09 | 0.15 | 0.12 | 0.13 |
| Undari_8         | 0.04  | 0.02  | 08.0 | 0.15 | 2.33  | 0.10 | 90.0  | 0.07 | 0.04 | 0.07 | 0.03 |
| Undari_9         | 0.01  | 0.01  | 0.19 | 0.07 | 92.0  | 0.03 | 0.02  | 90.0 | 0.03 | 0.03 | 0.02 |
| Undari_10        | 0.00  | 0.01  | 0.01 | 80.0 | 80.0  | 0.01 | 0.14  | 0.03 | 0.01 | 0.02 | 0.01 |
| Undari_11        | 0.01  | 0.01  | 0.31 | 0.07 | 0.56  | 0.02 | 0.02  | 0.02 | 0.04 | 0.02 | 0.01 |
| Undari_12        | 0.03  | 0.02  | 1.21 | 0.14 | 2.76  | 0.10 | 0.05  | 0.04 | 0.03 | 0.07 | 0.03 |
| Undhari_JMK1     | 0.00  | 0.01  | 0.12 | 0.19 | 0.24  | 0.01 | 0.12  | 0.02 | 0.04 | 0.02 | 0.03 |
| Undhari_JMK2     | 0.02  | 00.00 | 0.02 | 0.11 | 98.0  | 0.00 | 0.00  | 0.01 | 0.02 | 0.07 | 0.02 |
| Shahr-i-Sokhta_1 | 00.00 | 0.01  | 0.14 | 0.07 | 0.12  | 0.01 | 89.0  | 0.04 | 0.01 | 0.02 | 0.03 |
| Shahr-i-Sokhta_2 | 0.01  | 0.01  | 0.15 | 0.15 | 1.35  | 0.03 | 34.09 | 0.19 | 80.0 | 90.0 | 0.03 |
| Shahr-i-Sokhta_3 | 0.01  | 0.07  | 0.04 | 0.04 | 0.14  | 0.01 | 0.91  | 0.24 | 0.02 | 20.0 | 0.24 |
| Shahr-i-Sokhta_4 | 0.02  | 0.03  | 0.29 | 61.0 | 1.19  | 0.03 | 98.9  | 0.11 | 20.0 | 0.07 | 0.02 |
| Shahr-i-Sokhta_5 | 0.00  | 0.03  | 0.07 | 60.0 | 1.57  | 0.02 | 5.62  | 0.07 | 0.05 | 0.12 | 80.0 |
| Shahr-i-Sokhta_6 | 0.03  | 0.03  | 0.14 | 0.12 | 5.04  | 0.04 | 18.54 | 0.13 | 0.12 | 0.14 | 0.12 |
| Shahr-i-Sokhta_7 | 0.03  | 0.02  | 0.38 | 0.13 | 12.05 | 0.03 | 3.86  | 0.07 | 0.10 | 0.05 | 0.04 |
| Shahr-i-Sokhta_8 | 0.04  | 0.04  | 0.19 | 0.11 | 3.47  | 90.0 | 14.69 | 0.11 | 0.10 | 80.0 | 0.05 |
| Shahr-i-Sokhta_9 | 90.0  | 0.04  | 0.14 | 0.14 | 1.98  | 0.07 | 2.90  | 0.16 | 0.14 | 0.14 | 0.13 |

| Sm          | 0.23              | 0.10              | 80.0              | 0.12              | 0.11              | 0.12              | 60.0              | 0.21              | 0.16           | 2.24           | 0.55           | 0.20           | 1.11           | 80.0           | 0.13           | 90.0            | 0.07            | 0.17            | 60.0            | 0.03            | 0.12            | 0.07            | 0.16            | 0.04            | 0.13            | 60.0     | 0.02     |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|----------|
|             |                   |                   |                   |                   |                   |                   |                   |                   |                |                |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |          |          |
| Nd          | 0.35              | 0.08              | 0.08              | 0.07              | 0.11              | 0.08              | 90.0              | 0.26              | 0.61           | 9.84           | 2.40           | 0.18           | 3.90           | 0.26           | 0.09           | 0.16            | 90.0            | 0.07            | 0.05            | 0.02            | 0.09            | 0.05            | 0.15            | 0.11            | 0.13            | 0.09     | 0.05     |
| Mo          | 0.03              | 0.03              | 90.0              | 0.05              | 0.02              | 0.21              | 0.02              | 0.13              | 0.16           | 0.15           | 0.39           | 0.03           | 0.21           | 80.0           | 0.03           | 90.0            | 0.02            | 0.02            | 0.04            | 0.01            | 0.03            | 0.03            | 0.05            | 0.01            | 0.02            | 60.0     | 0.01     |
| W           | 0.17              | 0.11              | 0.08              | 0.13              | 90.0              | 0.08              | 60.0              | 0.22              | 1.78           | 0.34           | 0.09           | 1.77           | 0.15           | 1.85           | 0.21           | 0.00            | 0.05            | 80.0            | 0.10            | 0.27            | 0.73            | 0.17            | 90.0            | 0.09            | 0.07            | 90.0     | 0.02     |
| Ω           | 2.25              | 2.48              | 0.05              | 27.63             | 1.39              | 2.62              | 0.26              | 13.58             | 0.45           | 4.35           | 1.09           | 0.05           | 3.59           | 0.26           | 0.07           | 0.04            | 0.04            | 0.15            | 0.16            | 0.46            | 0.22            | 0.05            | 0.15            | 0.07            | 0.11            | 0.02     | 0.04     |
| Bi          | 0.14              | 0.07              | 0.03              | 0.07              | 0.05              | 0.04              | 0.01              | 0.04              | 80.0           | 0.14           | 80.0           | 0.15           | 0.07           | 1.21           | 0.04           | 0.45            | 0.03            | 0.02            | 0.03            | 0.01            | 0.05            | 0.03            | 0.12            | 0.02            | 0.03            | 0.03     | 0.01     |
| Pb          | 0.28              | 0.18              | 0.77              | 0.62              | 0.12              | 0.71              | 0.34              | 96.0              | 1.78           | 1.52           | 3.19           | 0.22           | 2.07           | 0.55           | 0.18           | 0.32            | 0.45            | 0.16            | 0.16            | 0.43            | 0.21            | 0.14            | 0.51            | 29.0            | 0.23            | 0.25     | 0.25     |
| Y           | 60.0              | 0.00              | 0.03              | 0.10              | 0.12              | 0.12              | 0.01              | 0.41              | 2.60           | 17.93          | 9.57           | 0.01           | 50.62          | 0.01           | 0.03           | 0.01            | 0.03            | 0.01            | 0.01            | 0.02            | 0.01            | 0.01            | 90.0            | 0.12            | 0.07            | 0.23     | 0.16     |
| Au          | 0.21              | 0.11              | 0.12              | 0.13              | 0.13              | 0.14              | 0.07              | 0.11              | 1.81           | 0.45           | 2.07           | 69.0           | 0.12           | 2.70           | 0.26           | 0.48            | 0.19            | 0.19            | 0.22            | 0.14            | 0.40            | 0.11            | 0.13            | 0.26            | 0.23            | 90.0     | 0.01     |
| Ta          | 0.04              | 0.02              | 0.02              | 0.04              | 0.04              | 0.04              | 0.01              | 0.03              | 0.12           | 0.14           | 0.13           | 0.16           | 0.13           | 1.65           | 0.04           | 0.29            | 0.02            | 0.05            | 0.03            | 0.10            | 0.10            | 0.01            | 0.03            | 0.04            | 0.01            | 0.02     | 0.02     |
| Pr          | 0.03              | 0.01              | 0.02              | 0.01              | 0.01              | 0.04              | 0.01              | 0.05              | 0.19           | 2.89           | 0.74           | 0.01           | 1.19           | 0.01           | 0.03           | 0.02            | 0.01            | 0.01            | 0.01            | 0.01            | 0.01            | 0.01            | 0.02            | 0.03            | 0.01            | 0.03     | 0.01     |
| Database ID | Shahr-i-Sokhta_10 | Shahr-i-Sokhta_11 | Shahr-i-Sokhta_12 | Shahr-i-Sokhta_13 | Shahr-i-Sokhta_14 | Shahr-i-Sokhta_15 | Shahr-i-Sokhta_16 | Shahr-i-Sokhta_17 | BanKhaoMogul_1 | BanKhaoMogul_2 | BanKhaoMogul_4 | BanKhaoMogul_5 | BanKhaoMogul_6 | BanKhaoMogul_7 | BanKhaoMogul_9 | BanKhaoMogul_10 | BanKhaoMogul_11 | BanKhaoMogul_12 | BanKhaoMogul_13 | BanKhaoMogul_15 | BanKhaoMogul_16 | BanKhaoMogul_17 | BanKhaoMogul_18 | BanKhaoMogul_20 | BanKhaoMogul_21 | KonTum_1 | KonTum_2 |

| Database ID | Pr   | Ta    | Au   | Y    | Pb   | Bi   | n     | W    | Mo   | PΝ   | Sm   |
|-------------|------|-------|------|------|------|------|-------|------|------|------|------|
| KonTum_3    | 0.01 | 0.02  | 0.10 | 0.31 | 0.39 | 0.02 | 0.07  | 0.04 | 0.01 | 0.02 | 0.03 |
| KonTum_4    | 0.01 | 0.02  | 0.43 | 0.25 | 0.12 | 0.01 | 0.05  | 0.03 | 0.02 | 0.01 | 0.02 |
| KonTum_5    | 90.0 | 0.59  | 2.83 | 0.19 | 2.08 | 0.24 | 90.0  | 0.18 | 0.41 | 0.29 | 0.22 |
| KonTum_6    | 0.01 | 0.05  | 0.12 | 0.45 | 0.14 | 0.03 | 0.33  | 0.08 | 0.03 | 0.03 | 0.04 |
| KonTum_7    | 0.01 | 00.00 | 0.10 | 0.28 | 0.12 | 0.02 | 0.02  | 0.05 | 0.52 | 80.0 | 80.0 |
| KonTum_8    | 0.01 | 00.00 | 0.12 | 90.0 | 9.02 | 0.02 | 0.01  | 0.02 | 0.01 | 0.01 | 0.03 |
| KonTum_9    | 0.00 | 0.01  | 0.01 | 0.19 | 0.14 | 0.01 | 0.00  | 0.01 | 0.01 | 0.01 | 0.01 |
| GiaLai_1    | 90.0 | 0.01  | 0.02 | 0.20 | 90.0 | 0.01 | 0.07  | 0.02 | 0.02 | 0.20 | 0.04 |
| GiaLai_2    | 0.02 | 0.01  | 0.02 | 0.13 | 0.03 | 0.01 | 60.0  | 0.04 | 0.01 | 80.0 | 0.02 |
| GiaLai_3    | 0.04 | 00.00 | 0.01 | 0.05 | 0.01 | 0.00 | 0.10  | 0.01 | 0.02 | 0.16 | 0.04 |
| GiaLai_4    | 80.0 | 0.01  | 0.01 | 0.14 | 0.02 | 0.01 | 0.07  | 0.03 | 0.02 | 0.24 | 0.07 |
| DongNai_1   | 0.02 | 0.05  | 08.0 | 0.14 | 0.67 | 0.21 | 0.01  | 0.19 | 0.34 | 0.43 | 0.07 |
| DongNai_2   | 0.01 | 0.05  | 0.11 | 1.11 | 0.12 | 0.02 | 0.01  | 0.05 | 60.0 | 60'0 | 0.10 |
| DongNai_3   | 0.00 | 0.00  | 0.03 | 0.45 | 0.11 | 0.01 | 0.03  | 0.01 | 0.01 | 0.01 | 0.03 |
| DongNai_4   | 0.01 | 0.01  | 0.28 | 0.22 | 0.22 | 0.03 | 0.02  | 0.07 | 0.04 | 0.02 | 0.02 |
| DongNai_5   | 0.01 | 0.01  | 0.31 | 0.39 | 90.0 | 0.01 | 0.02  | 0.02 | 0.02 | 0.01 | 0.01 |
| DongNai_6   | 0.01 | 0.01  | 0.02 | 0.11 | 0.26 | 0.01 | 00.00 | 0.02 | 0.02 | 0.02 | 0.02 |
| Pacitan_1   | 0.01 | 0.01  | 80.0 | 0.04 | 0.42 | 0.04 | 0.59  | 0.03 | 0.02 | 6.03 | 0.02 |
| Pacitan_2   | 0.01 | 0.01  | 20.0 | 0.05 | 0.23 | 0.02 | 90.0  | 0.02 | 0.01 | 0.04 | 0.02 |
| Pacitan_3   | 0.01 | 0.01  | 0.04 | 0.04 | 0.38 | 0.01 | 0.01  | 0.02 | 0.01 | 0.02 | 0.01 |
| Pacitan_4   | 0.01 | 0.02  | 80.0 | 0.39 | 1.04 | 0.03 | 0.12  | 0.03 | 0.03 | 0.05 | 0.03 |
| Pacitan_5   | 0.01 | 0.01  | 0.26 | 0.52 | 0.22 | 0.03 | 0.02  | 0.27 | 0.02 | 0.04 | 0.03 |
| Pacitan_6   | 0.01 | 0.01  | 97.0 | 0.43 | 2.07 | 0.02 | 0.10  | 0.04 | 0.07 | 0.04 | 0.03 |
| Pacitan_7   | 0.02 | 0.05  | 0.47 | 0.54 | 0.91 | 0.05 | 0.15  | 0.14 | 0.16 | 0.13 | 0.04 |
| Pacitan_8   | 0.01 | 0.03  | 50.0 | 80.0 | 0.23 | 0.02 | 0.10  | 0.14 | 0.07 | 50.0 | 0.03 |
| Pacitan_9   | 90.0 | 0.01  | 90.0 | 0.43 | 0.58 | 0.01 | 0.07  | 0.05 | 0.02 | 0.19 | 0.07 |
|             |      |       |      |      |      |      |       |      |      |      |      |

| Eu   | Gd Tb | Dy   | Ho    | Er   | Tm   | AP   | Lu   | Hf   | Th   |
|------|-------|------|-------|------|------|------|------|------|------|
| 60.0 | 0.02  | 60.0 | 0.02  | 0.04 | 0.01 | 0.04 | 0.01 | 0.03 | 0.10 |
| 0.02 | 00.00 | 0.01 | 00.00 | 0.01 | 0.00 | 0.03 | 0.01 | 0.01 | 3.16 |
| 0.04 | 0.01  | 0.03 | 0.01  | 0.03 | 0.01 | 0.03 | 0.01 | 0.03 | 0.54 |
| 0.11 | 0.02  | 0.12 | 0.04  | 0.07 | 0.03 | 0.11 | 0.04 | 1.97 | 9.10 |
| 0.03 | 0.01  | 0.03 | 0.01  | 0.02 | 0.01 | 0.03 | 0.02 | 0.03 | 4.60 |
| 0.02 | 0.01  | 0.03 | 0.02  | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 0.30 |
| 0.02 | 0.00  | 0.01 | 0.00  | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.07 |
| 0.04 | 0.01  | 0.04 | 0.01  | 0.03 | 0.01 | 0.03 | 0.01 | 0.01 | 0.03 |
| 0.02 | 0.00  | 0.04 | 0.01  | 0.04 | 0.00 | 90.0 | 0.01 | 0.02 | 0.02 |
| 0.02 | 0.00  | 0.03 | 0.01  | 0.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.01 |
| 0.04 | 0.01  | 0.03 | 0.01  | 0.01 | 0.01 | 0.04 | 0.00 | 0.02 | 0.02 |
| 0.02 | 0.00  | 0.02 | 00.00 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.03 |
| 0.04 | 0.01  | 90.0 | 0.01  | 0.03 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 |
| 0.00 | 0.02  | 0.10 | 0.02  | 60.0 | 0.07 | 0.10 | 0.03 | 0.27 | 1.05 |
| 0.04 | 0.01  | 0.03 | 0.01  | 0.03 | 0.00 | 90.0 | 00'0 | 0.02 | 0.19 |
| 0.10 | 0.02  | 90.0 | 0.03  | 0.05 | 0.02 | 80.0 | 0.02 | 0.05 | 0.05 |
| 90.0 | 0.01  | 0.04 | 0.01  | 0.03 | 0.01 | 0.03 | 0.01 | 0.02 | 0.05 |
| 0.13 | 0.02  | 0.02 | 0.02  | 0.05 | 0.01 | 0.07 | 0.00 | 0.18 | 0.03 |
| 0.12 | 0.02  | 0.15 | 0.02  | 0.04 | 0.02 | 0.13 | 0.01 | 0.05 | 0.03 |
| 0.05 | 0.01  | 0.04 | 0.01  | 0.03 | 0.01 | 0.03 | 0.01 | 0.05 | 0.02 |
| 0.04 | 0.01  | 0.02 | 0.01  | 0.02 | 0.01 | 0.03 | 0.01 | 0.03 | 0.02 |
| 0.15 | 0.02  | 0.16 | 0.04  | 60.0 | 0.04 | 0.20 | 0.03 | 0.37 | 80.0 |
| 0.05 | 0.01  | 0.03 | 0.01  | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
| 0.02 | 0.01  | 0.04 | 0.01  | 0.02 | 0.01 | 0.04 | 0.01 | 0.03 | 0.05 |
| 0.01 | 00.00 | 0.03 | 00.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.13 |
| 0.05 | 0.01  | 0.04 | 0.01  | 0.03 | 0.01 | 0.04 | 0.01 | 0.03 | 0.04 |
| 0.04 | 0.01  | 0.02 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.19 |

| 0.06<br>0.01<br>0.01<br>0.01<br>0.01 | 0.06<br>0.01<br>0.01<br>0.04<br>0.03<br>0.03<br>0.03<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 1 1 1 2 4 8 1 1 2 3 4 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3    | <del>                                     </del>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.06<br>0.01<br>0.01<br>0.01<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03 | 0.06<br>0.01<br>0.01<br>0.01<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.00<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| 0.00                                 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. |                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.01                                 | 0.00<br>0.004<br>0.003<br>0.004<br>0.004<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01<br>0.03<br>0.04<br>0.08<br>0.08<br>0.03<br>0.03<br>0.03       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.01                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                      | 0.01<br>0.02<br>0.02<br>0.01<br>0.01<br>0.03<br>0.03<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |

| Database ID   | Eu    | РS   | Tb     | Dy   | Ho    | Er   | Tm   | ΛÞ   | Γn   | Hf   | Th   |
|---------------|-------|------|--------|------|-------|------|------|------|------|------|------|
| Mahurjhari_10 | 0.01  | 0.02 | 0.01   | 0.02 | 0.01  | 0.02 | 0.01 | 0.03 | 0.01 | 0.01 | 69.0 |
| Mahurjhari_12 | 0.01  | 0.02 | 0.01   | 0.02 | 0.01  | 0.02 | 0.00 | 0.02 | 0.01 | 0.01 | 0.51 |
| Mahurjhari_13 | 0.01  | 0.01 | 0.00   | 0.01 | 0.00  | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.05 |
| Mahurjhari_14 | 0.02  | 0.05 | 0.01   | 0.05 | 0.03  | 0.04 | 0.01 | 0.04 | 0.01 | 0.02 | 1.98 |
| Mahurjhari_15 | 0.03  | 90.0 | 0.02   | 0.13 | 0.03  | 0.07 | 0.01 | 0.08 | 0.01 | 0.05 | 90.0 |
| Mahurjhari_16 | 0.01  | 90.0 | 0.02   | 90.0 | 0.01  | 0.01 | 0.01 | 0.03 | 0.03 | 0.02 | 2.08 |
| Mahurjhari_17 | 0.02  | 90.0 | 0.01   | 90.0 | 0.02  | 0.04 | 0.01 | 90.0 | 0.01 | 0.03 | 0.12 |
| Mahurjhari_18 | 0.01  | 0.02 | 0.01   | 0.02 | 0.01  | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 1.52 |
| Mahurjhari_19 | 00.00 | 0.01 | 0.00   | 0.01 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 |
| Mahurjhari_20 | 0.01  | 90.0 | li0.01 | 0.02 | 0.01  | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.04 |
| Mahurjhari_21 | 0.01  | 0.02 | 0.01   | 0.03 | 0.02  | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 1.34 |
| Mahurjhari_22 | 0.01  | 0.03 | 0.01   | 0.02 | 0.01  | 0.02 | 0.00 | 0.02 | 0.01 | 0.01 | 1.43 |
| Mahurjhari_23 | 0.01  | 0.03 | 0.01   | 0.02 | 0.01  | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.62 |
| Mahurjhari_24 | 00.00 | 0.01 | 0.00   | 0.01 | 00.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 1.79 |
| Mahurjhari_25 | 0.01  | 0.01 | 0.00   | 0.01 | 0.01  | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.13 |
| Mahurjhari_26 | 0.01  | 0.03 | 0.01   | 0.03 | 0.01  | 0.02 | 0.01 | 0.02 | 0.00 | 0.03 | 2.06 |
| Paithan_1     | 90.0  | 0.31 | 0.04   | 1.64 | 0.04  | 0.13 | 0.04 | 0.18 | 0.05 | 0.17 | 1.23 |
| Paithan_2     | 0.04  | 0.28 | 0.05   | 0.22 | 0.21  | 60.0 | 0.22 | 1.26 | 0.03 | 1.27 | 99.0 |
| Paithan_3     | 60'0  | 0.17 | 0.04   | 0.46 | 0.33  | 0.15 | 0.23 | 0.22 | 0.10 | 09.0 | 5.22 |
| Paithan_4     | 0.01  | 0.01 | 0.00   | 0.02 | 0.00  | 0.02 | 0.00 | 0.02 | 0.00 | 0.02 | 0.04 |
| Paithan_5     | 00.00 | 0.02 | 0.00   | 0.01 | 0.01  | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.14 |
| Paithan_6     | 0.01  | 0.04 | 0.01   | 0.03 | 0.02  | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 0.10 |
| Paithan_7     | 0.01  | 0.02 | 0.00   | 0.02 | 0.01  | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.39 |
| Paithan_8     | 0.23  | 0.05 | 0.01   | 0.05 | 0.01  | 0.03 | 0.01 | 0.04 | 0.01 | 90.0 | 3.51 |
| Paithan_9     | 0.02  | 0.07 | 0.01   | 90.0 | 0.02  | 0.03 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 |
| Paithan_10    | 0.03  | 0.11 | 0.02   | 60.0 | 0.02  | 80.0 | 0.02 | 0.10 | 0.03 | 0.11 | 0.33 |
| Paithan_11    | 0.01  | 0.02 | 0.00   | 0.01 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 80.0 |

| Database ID      | Eu    | Cd   | Tb   | Dy   | Ho    | Er   | Tm   | ΛÞ   | пŢ   | JH   | Th   |
|------------------|-------|------|------|------|-------|------|------|------|------|------|------|
| Paithan_12       | 00.00 | 0.01 | 0.00 | 0.02 | 0.00  | 0.02 | 0.00 | 0.03 | 0.01 | 0.01 | 0.01 |
| Paithan_13       | 0.01  | 0.02 | 0.01 | 0.01 | 0.01  | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 | 1.26 |
| Paithan_14       | 0.00  | 0.01 | 0.00 | 0.01 | 00.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
| Paithan_15       | 0.05  | 0.13 | 0.03 | 0.14 | 0.03  | 60.0 | 0.03 | 0.14 | 0.05 | 1.19 | 90.0 |
| Undari_1         | 0.02  | 0.04 | 0.01 | 0.03 | 0.01  | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 1.65 |
| Undari_2         | 0.03  | 0.12 | 0.02 | 1.17 | 0.02  | 80.0 | 0.02 | 1.70 | 0.03 | 00.0 | 0.17 |
| Undari_3         | 0.01  | 0.02 | 0.00 | 0.02 | 0.01  | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.30 |
| Undari_4         | 00.00 | 0.01 | 0.00 | 0.01 | 0.00  | 0.01 | 0.01 | 0.02 | 0.00 | 0.02 | 0.03 |
| Undari_5         | 0.01  | 0.01 | 0.01 | 0.01 | 0.00  | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 1.39 |
| Undari_6         | 0.01  | 0.01 | 0.00 | 0.01 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.27 |
| Undari_7         | 0.03  | 0.14 | 0.02 | 0.16 | 0.03  | 80.0 | 0.03 | 0.15 | 0.04 | 3.35 | 86.0 |
| Undari_8         | 0.01  | 0.04 | 0.02 | 0.04 | 0.03  | 0.03 | 0.01 | 0.03 | 0.01 | 0.04 | 1.50 |
| Undari_9         | 0.01  | 0.02 | 0.01 | 0.02 | 0.00  | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.23 |
| Undari_10        | 0.01  | 0.01 | 0.00 | 0.01 | 0.00  | 0.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.02 |
| Undari_11        | 00.00 | 0.01 | 0.00 | 0.01 | 0.01  | 0.01 | 0.01 | 0.01 | 00.0 | 0.01 | 1.00 |
| Undari_12        | 0.02  | 0.05 | 0.01 | 0.03 | 0.02  | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 1.29 |
| Undhari_JMK1     | 0.01  | 0.02 | 0.00 | 0.02 | 0.01  | 0.02 | 0.00 | 0.07 | 0.01 | 0.02 | 0.34 |
| Undhari_JMK2     | 0.00  | 0.02 | 0.00 | 0.02 | 0.01  | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.04 |
| Shahr-i-Sokhta_1 | 0.01  | 0.03 | 0.00 | 0.01 | 0.01  | 0.02 | 0.01 | 0.05 | 0.01 | 0.02 | 90.0 |
| Shahr-i-Sokhta_2 | 0.01  | 0.26 | 0.05 | 0.02 | 0.03  | 0.03 | 0.01 | 0.34 | 60.0 | 0.18 | 0.04 |
| Shahr-i-Sokhta_3 | 90.0  | 0.22 | 0.05 | 0.07 | 0.01  | 80.0 | 0.02 | 0.12 | 0.01 | 0.12 | 0.05 |
| Shahr-i-Sokhta_4 | 0.01  | 90.0 | 0.01 | 0.07 | 0.02  | 0.05 | 0.01 | 0.11 | 0.02 | 80.0 | 0.07 |
| Shahr-i-Sokhta_5 | 0.04  | 0.13 | 0.02 | 90.0 | 0.02  | 90.0 | 0.01 | 0.12 | 0.03 | 0.10 | 0.04 |
| Shahr-i-Sokhta_6 | 0.05  | 0.12 | 0.03 | 0.07 | 0.02  | 90.0 | 0.02 | 0.12 | 0.02 | 60'0 | 0.05 |
| Shahr-i-Sokhta_7 | 0.04  | 0.05 | 0.02 | 90.0 | 0.02  | 0.03 | 0.01 | 60.0 | 0.02 | 60'0 | 0.05 |
| Shahr-i-Sokhta_8 | 0.04  | 0.06 | 0.03 | 60.0 | 0.04  | 80.0 | 0.04 | 0.12 | 50.0 | 0.05 | 90.0 |
| Shahr-i-Sokhta_9 | 0.03  | 0.16 | 0.03 | 0.07 | 0.03  | 90.0 | 0.03 | 0.12 | 0.03 | 0.23 | 0.11 |

| Database ID       | Eu   | РS   | Tb   | Dy   | Ho   | Er   | Tm   | AV   | Lu   | Hf   | Th   |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| Shahr-i-Sokhta_10 | 0.15 | 0.45 | 0.04 | 90.0 | 0.01 | 90.0 | 0.01 | 60.0 | 0.02 | 0.26 | 0.04 |
| Shahr-i-Sokhta_11 | 0.03 | 90.0 | 0.02 | 0.10 | 0.02 | 0.04 | 0.02 | 0.24 | 0.01 | 0.61 | 0.03 |
| Shahr-i-Sokhta_12 | 0.03 | 60.0 | 0.01 | 90.0 | 0.02 | 0.04 | 0.01 | 0.05 | 0.01 | 0.03 | 60.0 |
| Shahr-i-Sokhta_13 | 0.03 | 80.0 | 0.02 | 0.04 | 0.01 | 0.03 | 0.01 | 0.11 | 0.02 | 90.0 | 0.04 |
| Shahr-i-Sokhta_14 | 0.05 | 0.19 | 0.02 | 0.10 | 0.02 | 0.03 | 0.01 | 0.12 | 0.02 | 0.25 | 0.04 |
| Shahr-i-Sokhta_15 | 0.05 | 60.0 | 0.04 | 0.08 | 0.07 | 60.0 | 0.04 | 0.08 | 0.03 | 0.15 | 60.0 |
| Shahr-i-Sokhta_16 | 80.0 | 0.07 | 0.02 | 0.03 | 0.01 | 0.04 | 0.01 | 0.07 | 0.01 | 0.13 | 0.03 |
| Shahr-i-Sokhta_17 | 90.0 | 0.31 | 0.07 | 0.41 | 0.04 | 0.10 | 0.03 | 0.59 | 0.07 | 0.14 | 0.05 |
| BanKhaoMogul_1    | 0.05 | 0.19 | 0.05 | 0.36 | 0.10 | 0.61 | 0.05 | 0.37 | 90.0 | 0.56 | 89.0 |
| BanKhaoMogul_2    | 0.44 | 2.28 | 0.35 | 2.23 | 0.49 | 1.56 | 0.24 | 1.89 | 0.32 | 99.0 | 1.26 |
| BanKhaoMogul_4    | 0.12 | 92.0 | 0.16 | 1.14 | 0.29 | 0.72 | 0.15 | 1.03 | 0.11 | 0.42 | 1.36 |
| BanKhaoMogul_5    | 0.03 | 0.28 | 0.03 | 0.10 | 0.02 | 80.0 | 80.0 | 0.65 | 0.22 | 0.19 | 0.05 |
| BanKhaoMogul_6    | 0.25 | 1.62 | 0.47 | 3.59 | 1.40 | 4.78 | 0.79 | 6.23 | 1.03 | 0.58 | 0.93 |
| BanKhaoMogul_7    | 90.0 | 0.72 | 60.0 | 0.21 | 0.03 | 0.23 | 0.04 | 0.20 | 0.23 | 0.37 | 0.10 |
| BanKhaoMogul_9    | 0.02 | 0.16 | 0.02 | 0.12 | 0.04 | 90.0 | 0.04 | 0.14 | 0.03 | 0.04 | 0.03 |
| BanKhaoMogul_10   | 0.02 | 0.29 | 0.10 | 0.04 | 0.11 | 0.00 | 0.11 | 0.18 | 0.11 | 0.47 | 2.53 |
| BanKhaoMogul_11   | 0.01 | 90.0 | 0.01 | 0.03 | 0.01 | 0.07 | 0.02 | 0.04 | 0.03 | 0.03 | 0.02 |
| BanKhaoMogul_12   | 0.02 | 0.07 | 0.03 | 0.21 | 0.02 | 0.05 | 0.03 | 0.18 | 0.03 | 0.05 | 0.40 |
| BanKhaoMogul_13   | 0.03 | 90.0 | 0.01 | 60.0 | 0.02 | 80.0 | 0.03 | 0.07 | 0.05 | 80.0 | 90.0 |
| BanKhaoMogul_15   | 0.01 | 0.13 | 0.01 | 0.03 | 0.01 | 0.04 | 0.03 | 0.08 | 0.02 | 0.04 | 0.02 |
| BanKhaoMogul_16   | 60.0 | 0.24 | 0.05 | 0.18 | 90.0 | 0.31 | 60.0 | 0.12 | 90.0 | 0.41 | 60.0 |
| BanKhaoMogul_17   | 0.02 | 90.0 | 0.01 | 60.0 | 0.01 | 0.03 | 0.02 | 0.04 | 0.02 | 0.07 | 0.04 |
| BanKhaoMogul_18   | 0.02 | 0.05 | 0.02 | 90.0 | 0.02 | 0.11 | 0.05 | 0.04 | 0.03 | 90.0 | 0.03 |
| BanKhaoMogul_20   | 0.02 | 0.05 | 0.01 | 0.04 | 6.03 | 0.03 | 0.01 | 0.15 | 0.02 | 0.04 | 80.0 |
| BanKhaoMogul_21   | 0.05 | 0.14 | 0.01 | 90.0 | 0.04 | 0.03 | 0.01 | 90.0 | 0.02 | 0.05 | 0.03 |
| KonTum_1          | 0.04 | 0.11 | 0.01 | 0.10 | 0.02 | 0.07 | 0.02 | 0.10 | 0.02 | 60.0 | 0.03 |
| KonTum_2          | 0.01 | 0.01 | 0.00 | 0.03 | 0.00 | 0.02 | 0.00 | 0.02 | 0.02 | 0.04 | 0.10 |

| Database ID | Eu   | рS   | Tb   | Dy   | Ho    | Er   | Tm   | AV   | Lu   | Hf   | Th   |
|-------------|------|------|------|------|-------|------|------|------|------|------|------|
| KonTum_3    | 0.00 | 0.02 | 0.00 | 0.03 | 0.01  | 0.02 | 0.00 | 0.02 | 0.00 | 0.02 | 0.03 |
| KonTum_4    | 0.01 | 0.01 | 0.01 | 0.02 | 0.01  | 0.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.04 |
| KonTum_5    | 0.08 | 0.39 | 0.05 | 0.20 | 0.10  | 0.21 | 90.0 | 0.26 | 90.0 | 1.10 | 8.11 |
| KonTum_6    | 0.01 | 0.02 | 0.01 | 0.04 | 0.01  | 0.04 | 0.01 | 90.0 | 0.02 | 0.02 | 0.30 |
| KonTum_7    | 0.03 | 80.0 | 0.01 | 80.0 | 0.02  | 0.07 | 0.02 | 0.10 | 0.02 | 00.0 | 0.02 |
| KonTum_8    | 0.00 | 0.02 | 0.00 | 0.01 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.85 |
| KonTum_9    | 0.00 | 0.01 | 0.00 | 0.02 | 0.01  | 0.01 | 0.00 | 0.03 | 0.00 | 0.01 | 0.00 |
| GiaLai_1    | 0.02 | 0.05 | 0.01 | 0.05 | 0.01  | 0.02 | 0.01 | 0.02 | 0.00 | 0.15 | 0.01 |
| GiaLai_2    | 0.01 | 0.02 | 0.00 | 0.04 | 0.01  | 0.02 | 0.01 | 0.04 | 0.01 | 0.16 | 0.02 |
| GiaLai_3    | 0.01 | 0.03 | 0.00 | 0.01 | 00.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
| GiaLai_4    | 0.02 | 90.0 | 0.01 | 0.04 | 0.01  | 0.01 | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 |
| DongNai_1   | 0.05 | 0.15 | 0.08 | 0.17 | 0.07  | 0.04 | 0.05 | 0.20 | 90.0 | 0.15 | 1.12 |
| DongNai_2   | 0.04 | 0.15 | 0.03 | 0.11 | 0.03  | 0.14 | 0.01 | 60.0 | 0.02 | 0.05 | 0.35 |
| DongNai_3   | 0.00 | 0.02 | 0.00 | 90.0 | 0.01  | 90.0 | 0.01 | 0.11 | 0.02 | 0.01 | 0.01 |
| DongNai_4   | 0.02 | 6.03 | 0.00 | 0.03 | 0.01  | 0.02 | 0.01 | 0.05 | 0.01 | 0.01 | 0.07 |
| DongNai_5   | 0.00 | 0.02 | 0.00 | 0.04 | 0.01  | 0.05 | 0.01 | 0.09 | 0.01 | 0.01 | 88.0 |
| DongNai_6   | 0.01 | 0.02 | 0.01 | 0.03 | 0.00  | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01 |
| Pacitan_1   | 0.01 | 0.02 | 0.00 | 0.02 | 0.01  | 0.01 | 0.01 | 0.04 | 0.01 | 0.03 | 2.91 |
| Pacitan_2   | 0.00 | 0.02 | 0.01 | 0.02 | 0.01  | 0.01 | 0.00 | 0.02 | 0.00 | 0.02 | 0.40 |
| Pacitan_3   | 0.00 | 0.01 | 0.00 | 0.01 | 00.0  | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 62.0 |
| Pacitan_4   | 0.01 | 0.03 | 0.01 | 0.03 | 0.01  | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 3.57 |
| Pacitan_5   | 0.00 | 0.02 | 0.01 | 0.04 | 0.01  | 00.0 | 0.00 | 0.02 | 0.01 | 00.0 | 0.85 |
| Pacitan_6   | 0.02 | 0.04 | 0.01 | 0.03 | 0.01  | 0.02 | 0.01 | 0.04 | 0.03 | 0.03 | 3.10 |
| Pacitan_7   | 90.0 | 60'0 | 0.02 | 90'0 | 0.02  | 90.0 | 0.01 | 0.11 | 0.03 | 0.17 | 7.35 |
| Pacitan_8   | 0.01 | 90.0 | 0.01 | 0.02 | 0.01  | 0.03 | 0.03 | 0.04 | 0.02 | 0.11 | 0.10 |
| Pacitan_9   | 0.03 | 0.07 | 0.01 | 60.0 | 0.02  | 90.0 | 0.01 | 0.03 | 0.01 | 0.04 | 90.0 |

## Appendix 6.3:Standardized Canonical Discriminant Function Coefficients for Scatterplots in Chapter 6 generated using Canonical Discriminant Analysis

| Figure 6.19 | Function 1 | Function 2 | Function 3 |
|-------------|------------|------------|------------|
| Ag          | -0.718     | 0.145      | -1.303     |
| Al          | -0.103     | -1.058     | -0.29      |
| Ba          | 0.343      | -0.145     | -0.077     |
| Be          | -0.189     | 0.075      | 0.235      |
| Bi          | -0.641     | 0.161      | 0.364      |
| Ce          | 0.7        | -0.797     | -0.675     |
| Cs          | -0.024     | 0.111      | 0.154      |
| Cu          | -0.142     | -0.062     | -0.851     |
| La          | -0.575     | 0.592      | 1.195      |
| Li          | 0.197      | 0.106      | 0.652      |
| Lu          | 0.229      | -0.714     | -0.599     |
| Mg          | -0.14      | 1.555      | 1.154      |
| Na          | -0.083     | 0.815      | 0.17       |
| Ni          | 0.006      | -1.077     | 1.577      |
| Sb          | 0.006      | -0.158     | 0.172      |
| Sc          | 0.095      | 1.021      | -0.799     |
| Si          | 0.114      | 0.652      | 0.506      |
| Sm          | -0.086     | 0.327      | -0.256     |
| Sn          | 1.756      | 0.033      | 0.065      |
| Ta          | 0.22       | -0.472     | 0.999      |
| Tb          | -0.249     | 0.524      | -0.187     |
| Ti          | -0.216     | -0.623     | -0.679     |
| U           | -0.232     | 0.386      | 0.351      |
| V           | 0.139      | -0.181     | -0.162     |
| W           | 0.23       | -0.035     | 0.042      |
| Yb          | 0.221      | 0.012      | -0.234     |
| Zr          | -0.418     | 0.257      | -0.274     |

| Figure 6.20 | Function 1 | Function 2 |
|-------------|------------|------------|
| Log Ag      | 0.37       | 0.585      |
| Log Al      | 0.387      | -0.561     |
| Log Au      | 0.033      | -0.393     |
| Log B       | 0.055      | 0.132      |
| Log Ba      | -0.212     | 0.094      |
| Log Bi      | 0.108      | 0.16       |
| Log Co      | 0.065      | 0.858      |
| Log Cs      | 0.032      | -0.32      |
| Log Dy      | 0.043      | -0.205     |
| Log Eu      | -0.176     | 0.249      |
| Log In      | 0.155      | 0.04       |
| Log Li      | -0.027     | 0.136      |
| Log La      | 0.163      | 0.082      |
| Log Mg      | -0.239     | 0.614      |
| Log Na      | -0.145     | 0.748      |
| Log Nd      | 0.033      | -0.177     |
| Log Ni      | 0.155      | 0.794      |
| Log Pb      | 0.273      | -0.416     |
| Log Sb      | 0.049      | -0.768     |
| Log Sc      | -0.181     | -0.244     |
| Log Si      | 0.017      | 0.597      |
| Log Sn      | -1.596     | -0.086     |
| Log Sr      | -0.024     | -0.503     |
| Log Tb      | -0.081     | -0.204     |
| Log Th      | 0.189      | 0.054      |
| Log Ti      | -0.062     | 0.196      |
| Log Y       | 0.227      | 0.345      |
| Log Zn      | 0.182      | -0.18      |
| Log Zr      | 0.221      | -0.887     |

| <b>Figures 6.21 and 6.22</b> | Function 1 | Function 2 |
|------------------------------|------------|------------|
| Log Ag                       | 0.454      | 0.711      |
| Log Al                       | 0.328      | -0.529     |
| Log Au                       | -0.047     | -0.334     |
| Log B                        | 0.044      | 0.148      |
| Log Ba                       | -0.2       | 0.124      |
| Log Bi                       | 0.145      | 0.118      |
| Log Co                       | 0.031      | 0.863      |
| Log Cs                       | -0.006     | -0.405     |
| Log Dy                       | 0.083      | -0.181     |
| Log Eu                       | -0.072     | 0.282      |
| Log In                       | 0.153      | -0.003     |
| Log Li                       | -0.004     | 0.236      |
| Log La                       | 0.152      | 0.119      |
| Log Mg                       | -0.101     | 0.387      |
| Log Na                       | -0.098     | 0.658      |
| Log Nd                       | -0.024     | -0.173     |
| Log Ni                       | 0.004      | 0.845      |
| Log Pb                       | 0.285      | -0.371     |
| Log Sb                       | 0.053      | -0.813     |
| Log Sc                       | -0.075     | -0.248     |
| Log Si                       | 0.029      | 0.507      |
| Log Sn                       | -1.557     | -0.094     |
| Log Sr                       | -0.016     | -0.421     |
| Log Tb                       | -0.131     | -0.233     |
| Log Th                       | 0.189      | 0.01       |
| Log Ti                       | -0.041     | 0.216      |
| Log Y                        | 0.163      | 0.36       |
| Log Zn                       | 0.116      | -0.191     |
| Log Zr                       | 0.2        | -0.903     |

| Figure 6.23 | Function 1 | Function 2 |
|-------------|------------|------------|
| Log Ag      | -0.669     | -0.113     |
| Log Al      | -0.578     | -0.99      |
| Log Au      | -0.258     | -0.814     |
| Log B       | -0.26      | -0.016     |
| Log Ba      | 0.365      | 0.034      |
| Log Bi      | -0.265     | 0.146      |
| Log Ca      | 0.179      | 0.088      |
| Log Co      | 0.246      | -0.55      |
| Log Cu      | -0.104     | 0.135      |
| Log Eu      | 0.152      | 0.318      |
| Log In      | 0.046      | 0.55       |
| Log La      | 0.025      | -0.308     |
| Log Li      | 0.482      | -0.067     |
| Log Mg      | 0.2        | 1.511      |
| Log Na      | 0.101      | 1.098      |
| Log Nd      | -0.087     | -0.095     |
| Log Ni      | -0.029     | -0.788     |
| Log Sc      | 0.17       | 0.592      |
| Log Si      | 0.288      | 0.588      |
| Log Sn      | 1.714      | 0.044      |
| Log Sr      | -0.127     | -0.199     |
| Log Th      | -0.152     | 0.017      |
| Log Tm      | -0.178     | 0.099      |

| Figure 6.26-6.28 | Function 1 | Function 2 | Function 3 |
|------------------|------------|------------|------------|
| Log Ag           | 1.075      | -0.648     | 0.149      |
| Log Au           | -0.03      | 0.178      | -0.569     |
| Log B            | 0.89       | 0.261      | 0.208      |
| Log Ba           | -1.386     | -0.654     | -2.06      |
| Log Bi           | -0.492     | 0.104      | -0.594     |
| Log Co           | -0.239     | -0.753     | 0.297      |
| Log Mn           | 1.222      | -0.441     | -0.325     |
| Log Mg           | -1.953     | -2.473     | 0.008      |
| Log Pr           | 0.663      | 1.183      | 1.79       |
| Log Rb           | 0.582      | 0.125      | 0.902      |
| Log Si           | 0.678      | 0.076      | 1.329      |
| Log Sr           | 1.336      | 2.476      | 1.522      |
| Log Ti           | -0.407     | 0.993      | 0.989      |
| Log Tm           | -0.458     | 0.178      | -0.345     |
| Log Y            | 1.156      | -0.186     | -1.335     |

## Appendix 6.4: Determining elements to use in data analysis

As discussed in Chapter 4, each individual agate/carnelian sample was ablated at 10 different points on the sample and the results from these ablations were then averaged together to produce a single result. However, I discovered that many of the 55 elements were heterogeneously dispersed within the sample. This resulted in a high relative standard deviation (RSD) for the average of the ten ablations. Scholars have noted that the heterogeneous objects may be difficult to characterize using LA-ICP-MS (e.g. Roll et al. 2005:60). One way I hoped to overcome some of this difficulty was by analyzing numerous samples from a single source. This would allow for a better understanding of the variation within a single geological source.

Fortunately, it did not appear that the heterogeneity of agate and carnelian prevented me from obtaining meaningful results. Nevertheless, I did want a way to identify the elements that were less variable and which were more variable. For this reason, I selected four to five samples from each source, for a total of 62 samples, and looked more closely at the relative standard deviation produced during the ten point ablations. For each element I counted how many of the selected samples had an RSD between 0-10.99%, 11-20.99%, 21-30.99%, 31-40.99%, 41-50.99%, and over 50% (Table 6.4.1). Four elements B, Ca, Sc, and Ni, were the most homogeneously distributed, as at least 60% of the 62 geologic samples had an RSD of 10.5% or less for these elements. The elements Na, Sr, and Sb were also relatively homogeneous with over 60% of the geologic samples having an RSD of 20.5% or less. Lastly, I also included Be, Mg, K, Mn, Rb, Y, and Sn in the group of less variable elements, as over 60% of the geologic samples had an RSD of 30.5% or less. Other samples were more heterogeneously distributed, with the most variable elements being Au, Ta, Th, and W, which had over half of the geologic

samples with an RSD of 50.5% or more. Other elements that were commonly omitted due to a lack of data include Cl, As, Se, and P. These data is summarized in Table 6.4.2. While doing exploratory data analysis, I first focused on those elements I classified as being less variable. However, other more variable elements were also found to be important in distinguishing between sources and these were included in the statistical analyses discussed in Chapter 6 as well.

|    | 0% or |         | 10.5- | 20.5- | 30.5- | 40.5- | Over |       |
|----|-------|---------|-------|-------|-------|-------|------|-------|
|    | NA    | 0-10.5% | 20.5% | 30.5% | 40.5% | 50.5% | 50.5 | Total |
| Ag | 0     | 0       | 5     | 6     | 14    | 10    | 27   | 62    |
| Al | 0     | 9       | 11    | 10    | 14    | 6     | 12   | 62    |
| As | 20    | 1       | 4     | 3     | 5     | 8     | 21   | 62    |
| Au | 0     | 0       | 2     | 2     | 9     | 8     | 41   | 62    |
| В  | 0     | 39      | 11    | 12    | 0     | 0     | 0    | 62    |
| Ba | 0     | 7       | 16    | 10    | 13    | 5     | 11   | 62    |
| Be | 0     | 10      | 24    | 18    | 8     | 1     | 1    | 62    |
| Bi | 0     | 0       | 5     | 17    | 11    | 8     | 21   | 62    |
| Ca | 0     | 38      | 17    | 5     | 2     | 0     | 0    | 62    |
| Ce | 0     | 7       | 10    | 15    | 3     | 13    | 14   | 62    |
| Со | 0     | 3       | 11    | 9     | 12    | 7     | 20   | 62    |
| Cr | 7     | 4       | 9     | 14    | 7     | 5     | 16   | 62    |
| Cs | 0     | 5       | 16    | 12    | 8     | 8     | 13   | 62    |
| Cu | 0     | 3       | 8     | 11    | 11    | 8     | 21   | 62    |
| Dy | 0     | 2       | 14    | 12    | 12    | 8     | 14   | 62    |
| Er | 2     | 3       | 11    | 16    | 11    | 7     | 12   | 62    |
| Eu | 0     | 0       | 9     | 12    | 11    | 9     | 21   | 62    |
| Fe | 6     | 9       | 12    | 10    | 5     | 5     | 15   | 62    |
| Gd | 0     | 0       | 8     | 14    | 17    | 6     | 17   | 62    |
| Hf | 0     | 0       | 7     | 8     | 12    | 6     | 29   | 62    |
| Но | 0     | 2       | 12    | 12    | 9     | 10    | 17   | 62    |
| In | 0     | 0       | 1     | 9     | 14    | 9     | 29   | 62    |
| K  | 0     | 14      | 19    | 8     | 9     | 5     | 7    | 62    |
| La | 0     | 5       | 12    | 13    | 10    | 11    | 11   | 62    |
| Li | 0     | 7       | 6     | 12    | 14    | 9     | 14   | 62    |
| Lu | 0     | 1       | 10    | 9     | 9     | 10    | 23   | 62    |
| Mg | 0     | 15      | 20    | 14    | 8     | 1     | 4    | 62    |
| Mn | 1     | 18      | 18    | 5     | 6     | 2     | 12   | 62    |
| Mo | 1     | 4       | 6     | 15    | 11    | 10    | 15   | 62    |
| Na | 0     | 26      | 22    | 7     | 2     | 4     | 1    | 62    |
| Nb | 3     | 5       | 10    | 12    | 9     | 5     | 18   | 62    |

|              | 0% or |         | 10.5- | 20.5- | 30.5- | 40.5- | Over |       |
|--------------|-------|---------|-------|-------|-------|-------|------|-------|
|              | NA    | 0-10.5% | 20.5% | 30.5% | 40.5% | 50.5% | 50.5 | Total |
| Nd           | 0     | 4       | 12    | 13    | 12    | 9     | 12   | 62    |
| Ni           | 0     | 41      | 14    | 4     | 3     | 0     | 0    | 62    |
| P            | 18    | 3       | 5     | 8     | 6     | 1     | 21   | 62    |
| Pb           | 0     | 1       | 6     | 14    | 15    | 11    | 15   | 62    |
| Pr           | 0     | 3       | 8     | 15    | 14    | 8     | 14   | 62    |
| Rb           | 0     | 13      | 17    | 15    | 6     | 4     | 7    | 62    |
| Sb           | 0     | 21      | 18    | 14    | 5     | 2     | 2    | 62    |
| Sc           | 0     | 53      | 5     | 3     | 1     | 0     | 0    | 62    |
| Sm           | 0     | 1       | 10    | 13    | 11    | 9     | 18   | 62    |
| Sn           | 0     | 11      | 24    | 13    | 8     | 3     | 3    | 62    |
| Sr           | 0     | 18      | 20    | 11    | 5     | 2     | 6    | 62    |
| Ta           | 2     | 2       | 0     | 4     | 10    | 5     | 39   | 62    |
| Tb           | 0     | 0       | 12    | 16    | 6     | 10    | 18   | 62    |
| Th           | 1     | 0       | 0     | 1     | 2     | 7     | 51   | 62    |
| Ti           | 0     | 2       | 6     | 9     | 19    | 4     | 22   | 62    |
| Tm           | 3     | 4       | 7     | 10    | 10    | 7     | 21   | 62    |
| U            | 1     | 5       | 11    | 12    | 7     | 4     | 22   | 62    |
| V            | 1     | 5       | 13    | 14    | 11    | 6     | 12   | 62    |
| $\mathbf{W}$ | 3     | 3       | 4     | 3     | 6     | 11    | 32   | 62    |
| Y            | 0     | 11      | 19    | 11    | 8     | 1     | 12   | 62    |
| Yb           | 0     | 4       | 11    | 15    | 10    | 5     | 17   | 62    |
| Zn           | 0     | 4       | 9     | 17    | 10    | 9     | 13   | 62    |
| Zr           | 0     | 4       | 10    | 14    | 11    | 8     | 15   | 62    |

Table 6.4.1: Number of geologic samples for which the RSD of each element was 0-10.99%, 11-20.99%, 21-30.99%, 31-40.99%, 41-50.99%, and over 50%.

| Les           | s Variable Elei | nents          | Variable Elements           | Most         |
|---------------|-----------------|----------------|-----------------------------|--------------|
|               |                 |                |                             | Variable     |
|               |                 |                |                             | Elements     |
| 60% of        | 60% of          | 60% of samples | Samples with RSD            | 50% of       |
| samples with  | samples with    | with an RSD    | between 30.5% and 50.5%     | samples with |
| an RSD under  | an RSD          | under 30.5%    |                             | an RSD over  |
| 10.5%         | under 20.5%     |                |                             | 50.5%        |
| B, Ca, Ni, Sc | Na, Sb, Sr      | Be, K, Mg, Mn, | Ag, Al, Ba, Bi, Ce, Co,     | Au, Ta, Th,  |
|               |                 | Rb, Sn, Y      | Cr, Cs, Cu, Dy, Er, Eu, Fe, | W            |
|               |                 |                | Gd, Hf, Ho, In, La,         |              |
|               |                 |                | Li, Lu, Mo, Nb, Nd, Pb,     |              |
|               |                 |                | Pr, Sm, Tb, Ti, Tm, U, V,   |              |
|               |                 |                | Yb, Zn, Zr                  |              |
|               |                 |                |                             |              |

Table 6.4.2: A list of the less variable, variable, and most variable elements identified during LA-ICP-MS of agate and carnelian geologic samples. Based on the data in Table 6.4.1 above.

## Appendix 6.5: Distinguishing between Agate and Carnelian Geologic Sources

Following LA-ICP-MS analysis, a series of bivariate plots and Canonical Discriminant Analyses (CDA) were used to identify elements that assisted in distinguishing between the various agate and carnelian geologic sources. Some sources were clearly distinct from the Deccan Trap agates and other geologic sources. For example, the Mahurjhari source samples were easily identifiable by the high levels of Sn (300-3400 ppm) (Figure 6.5.1). The Gia Lai samples were also notable for their high levels of Mg (approx 800-1200 ppm) and Ni (18-24ppm) (Figure 6.5.2). The Shahr-i-Sokhta samples had generally higher levels of U (0.2-34ppm) and B (21-118 ppm) but low Ni (0.38-1.37ppm) (Figure 6.5.3). Ban Khao Mogul is distinct from the other groups with slightly lower levels of B (.96-12ppm) and higher levels of Sb (0.5-15ppm) (Figure 6.5.4).

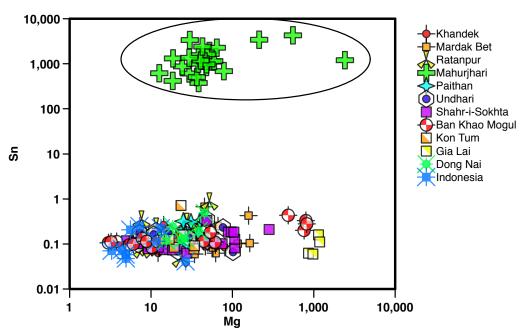



Figure 6.5.1: Bivariate scatterplot of Mg vs. Sn, showing the high levels of Sn in the Mahurjhari samples. Values in both axes have been log<sub>10</sub> transformed.

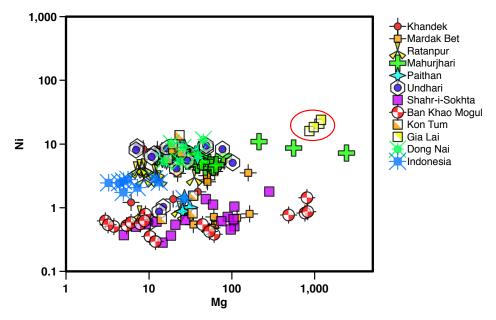



Figure 6.5.2:Bivariate scatterplot of Mg vs. Ni showing the high levels of both elements in the Gia Lai samples. Values in both axes have been  $\log_{10}$  transformed.

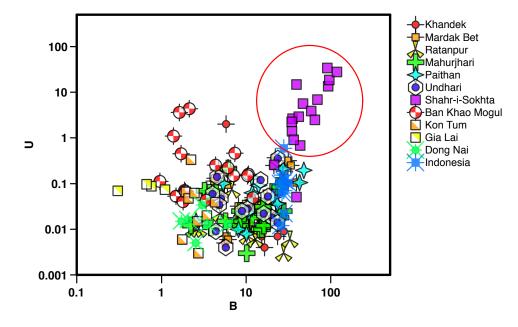



Figure 6.5.3:Bivariate scatterplot of B vs. U showing the high levels of both elements in the Shahr-i-Sokhta samples. Values in both axes have been  $\log_{10}$  transformed.

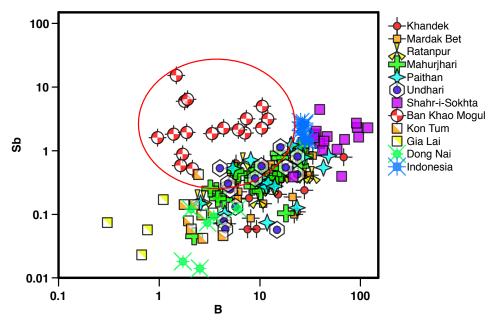



Figure 6.5.4: Bivariate scatterplot of B vs. Sb showing the high levels Sb and slightly lower levels of B in the Ban Khao Mogul samples. Values in both axes have been log<sub>10</sub> transformed.

Although bivariate plotting was able to discriminate between some of the different geologic sources, there was also considerable overlap between the compositions of the different sources, especially those from the Deccan Traps. In order to better distinguish between these sources, a CDA was performed including all 12 of the geologic sources and using the elements: B, Be, Ca, Co, Cu, K, Mg, Mn, Na, Rb, Sb, Sc, Si, Sn, Sr, U, and Y. Figure 6.5.5 shows these sources plotted by their first and second discriminant function. Table 6.5.1 lists the standardized canonical discriminant function coefficients. The cross-validation rate for this analysis was 77.1%, a moderately good result as several of the Deccan Trap sources were misclassified with one another while the Kon Tum and Dong Nai sources were also misclassified with one another. However, the Gia Lai, Ban Khao Mogul, Shahr-i-Sokhta, Mahurjhari, and Indonesian sources appear to be compositionally distinct.

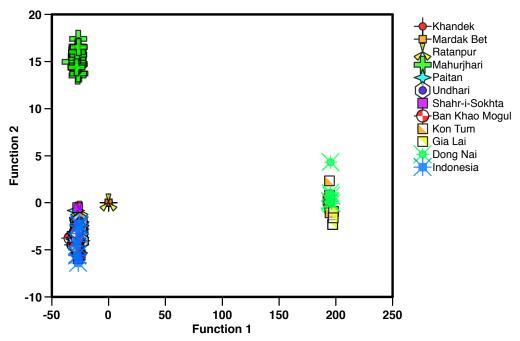



Figure 6.5.5: Geologic sources from South and Southeast Asia plotted by their first and second discriminant functions.

|        | Function 1 | <b>Function 2</b> |        | Function 1 | <b>Function 2</b> |
|--------|------------|-------------------|--------|------------|-------------------|
| Log B  | -0.108     | -0.032            | Log Rb | 0.277      | -0.261            |
| Log Be | -0.102     | -0.01             | Log Sb | -0.218     | -0.278            |
| Log Ca | 0.256      | 0.027             | Log Sc | 0.057      | -0.178            |
| Log Co | 0.293      | -0.269            | Log Si | 1.812      | 0.024             |
| Log Cu | 0.024      | -0.139            | Log Sn | -0.12      | 1.208             |
| Log K  | 0.167      | 0.141             | Log Sr | -0.268     | -0.014            |
| Log Mg | 0.497      | -0.026            | Log U  | 0.005      | -0.263            |
| Log Mn | 0.027      | 0.232             | Log Y  | 0.525      | 0.018             |
| Log Na | 0.14       | -0.163            |        |            |                   |

Table 6.5.1: Standardized canonical discriminant function coefficients generated using canonical discriminant analysis for Figure 6.5.5.

Due to the overlap between the Deccan Traps sources, a second CDA was performed in which all of the Deccan Trap agate sources with the exception of Mahurjhari were treated as a single source group. An excellent cross-validation rate of 96.2% was achieved (Figure 6.5.6 Table 6.5.2), confirming that the low cross-validation rate in the previous analysis was largely

due to overlap between the Deccan Trap sources. One Deccan Trap sample was classified as belonging to the Dong Nai source, four samples from Kon Tum were also misclassified as belonging to the Dong Nai sources as well as one additional sample that was classified with the Deccan Trap sources.

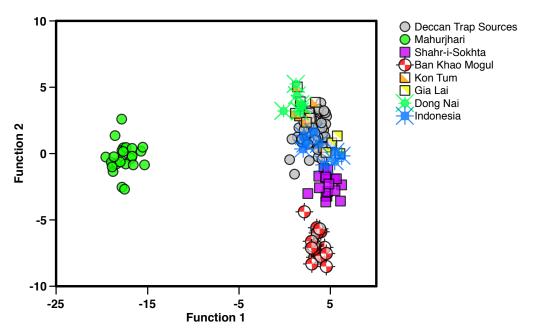



Figure 6.5.6: Results from a second CDA in which the Deccan Trap agate sources were treated as a single source. Sources are plotted by their first and second discriminant functions.

|        | Function 1 | Function 2 |        | Function 1 | Function 2 |
|--------|------------|------------|--------|------------|------------|
| Log Al | 0.217      | -0.094     | Log Na | 0.051      | 0.556      |
| Log B  | 0.054      | 0.268      | Log Rb | 0.343      | -0.061     |
| Log Be | 0.11       | -0.156     | Log Sb | 0.233      | -0.816     |
| Log Ca | 0.204      | 0.725      | Log Sc | -0.014     | -0.383     |
| Log Co | 0.254      | 0.374      | Log Si | 0.119      | 0.723      |
| Log Cu | 0.246      | 0.254      | Log Sn | -1.317     | -0.13      |
| Log K  | -0.242     | -0.476     | Log Sr | -0.139     | -0.605     |
| Log Mg | 0.091      | 0.043      | Log U  | 0.332      | -0.421     |
| Log Mn | -0.257     | 0.193      | Log Y  | 0.034      | 0.67       |

Table 6.5.2: Standardized canonical discriminant function coefficients generated using canonical discriminant analysis for Figure 6.5.6

As noted above, the Dong Nai samples were purchased via an online gemstone dealer and I was told that the raw materials came from Dong Nai in southern Vietnam, but that they were worked in the city of Da Nang in central Vietnam. Although this may be true, the continued overlap between the Kon Tum and Dong Nai sources may indicate another story. Kon Tum province is geographically closer to Da Nang than Dong Nai and without further verification we must consider that the Dong Nai samples are not actually from this location and may in fact be from a source located in central Vietnam. However, this can only be demonstrated with further fieldwork, therefore I will continue to treat these two geologic sources as distinct from one another, despite their overlap.

It is not surprising that the agate and carnelian source samples from the Deccan Traps appear to be compositionally similar to one another. As noted in Chapter 6, the Deccan Traps are a massive geological formation and the sources sampled may belong to secondary deposits. Nevertheless, I was interested in determining if I could better differentiate between these sources and therefore focused my next phase of analysis on these samples alone. Three samples, Khandek 11, Khandek 14, and Mardak Bek12 were removed due to missing values. CDA of the remaining source samples required a greater number of elements in order to achieve reasonable separation between the sources. The elements used in CDA were: Ag, Al, Au, B, Ba, Be, Bi, Ce, Co, Cu, Eu, Gd, In, La, Li, Lu, Mg, Mn, Na, Nb, Nd, Ni, Rb, Sc, Si, Sm, Sn, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. Despite this, the cross-validation rate between the sources was fairly low at 66.7% (Figure 6.5.7 and Table 6.5.3). With the exception of the Mahurjhari samples, all of the Deccan Trap agates overlapped (misclassified) with one another.

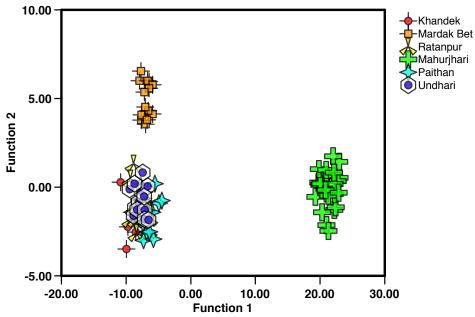



Figure 6.5.7: The Deccan Trap agate sources plotted by their first and second discriminant functions.

|        | Function 1 | <b>Function 2</b> |        | Function 1 | Function 2 |
|--------|------------|-------------------|--------|------------|------------|
| Log Ag | -0.625     | 0.672             | Log Nb | -0.127     | -0.516     |
| Log Al | -0.641     | -0.903            | Log Nd | 0.167      | -0.29      |
| Log Au | -0.233     | -0.893            | Log Ni | -0.025     | -0.998     |
| Log B  | 0.009      | -0.187            | Log Rb | 0.276      | 0.128      |
| Log Ba | 0.296      | 0.207             | Log Sc | 0.275      | 1.102      |
| Log Be | -0.177     | -0.196            | Log Si | 0.335      | 0.333      |
| Log Bi | -0.307     | 0.453             | Log Sm | -0.028     | 0.618      |
| Log Ce | 0.393      | -0.04             | Log Sn | 1.954      | 0.021      |
| Log Co | 0.03       | 0.08              | Log Sr | -0.221     | -0.756     |
| Log Cu | -0.291     | 0.322             | Log Ta | 0.218      | -0.378     |
| Log Eu | 0.507      | 0.466             | Log Tb | -0.457     | -0.032     |
| Log Gd | -0.185     | 0.033             | Log Th | -0.31      | -0.022     |
| Log In | -0.035     | 0.371             | Log Ti | -0.368     | 0.167      |
| Log La | -0.323     | -0.351            | Log U  | -0.137     | 0.597      |
| Log Li | 0.584      | -0.027            | Log V  | -0.034     | -0.336     |
| Log Lu | 0.154      | -0.473            | Log W  | 0.339      | -0.145     |
| Log Mg | 0.315      | 1.547             | Log Yb | -0.021     | 0.053      |
| Log Mn | 0.435      | 0.169             | Log Zr | -0.465     | 0.054      |
| Log Na | 0.092      | 1.071             | Log Zn | -0.325     | -0.694     |

Table 6.5.3 Standardized canonical discriminant function coefficients generated using canonical discriminant analysis for Figure 6.5.7

I believe that overlap and misclassification of the Deccan Traps sources is not a limitation of LA-ICP-MS, but instead reflects the difficulty of distinguishing between the geochemically analogous Deccan Traps agate sources. I had hoped that the different sources would be compositionally distinct from one another, allowing for a more fine-grained analysis of agate exploitation over time and space. It is possible that analyses of additional samples from individual sources may increase the ability to distinguish between these sources. However for the remainder of this study I can only confidently determine if artifacts belonged or not to the broader Deccan Traps source group, and not the individual sources within this group.

## Appendix 7.1:Glass bead data recorded as a part of this study

Glass beads were recorded in a FileMaker Pro database and are presented in table form here. Each site is reported in a separate table in order to accommodate the different context recording systems. In some cases, groups of glass beads were recorded individually. However, as the study progressed I found this was inefficient and began experimenting with the most efficient way to record groups of beads. I was prevented from recording the different glass bead types individually at Promtin Tai, due to time constraints. Therefore, some of the beads from this site within a single catalog number were recorded as a group, with measurements taken on certain beads as time allowed. The Ban Non Wat and Noen U-Loke beads make up several tables. One table incudes beads from Noen U-Loke that are currently held in the Phimai museum, some of which no longer have contextual information. Beads from Ban Non Wat that are currently in storage with Dr. Rachanie Thosarat were also recorded quickly within a single afternoon. For this reason, only bead color, quantity, context, and shape were recorded and presented in a table here. Beads from Ban Non Wat and Noen U-Loke that were analyzed using LA-ICP-MS were recorded more carefully into a FileMaker Pro database and this information is presented in a separate table.

The glass bead recording system was recently updated in order to quickly and easily record glass beads from Angkor Borei. With the assistance from Juliana Johnson, a volunteer high-school student from Shabazz High School, Madison WI, beads were entered into the database by sorting them into general color and size categories. Roundness was not recorded, as this line of evidence did not appear to be significant, except when discussing beads that had unrounded edges (see Chapter 7). In the course of recording glass beads for this study, I

found that most Indo-Pacific beads had approximately the same length as width measurements, making them roughly spherical or oblate, or had a smaller (thinner) length than width. Beads that were longer, or barrel or tubular shaped were more unusual. For this reason size categories for the beads were were determined by comparing the bead widths to a bead size chart that contained circles of different sizes (Figure 7.1.1). Measurements for tubular or barrel shaped beads were taken separately and noted in the "Notes" section of the FileMaker Pro database. This method has provided the quickest and most efficient way to record large groups of glass beads thus far, and will likely be used in future studies of glass beads. All measurements in the following tables are in millimeters.

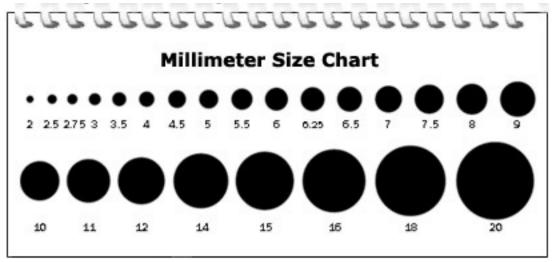



Figure 7.1.1: Millimeter size chart used to record Indo-Pacific beads of different sizes. Taken from http://www.kmversteeg.com/edtec541/final/size.htm

Appendix 7.1a: Glass Beads from Angkor Borei

| Notes                              | With red stripes. Also found with stone bead (AKC03044) |                  |                  |                  |                  | 6.46 mm long     | 4.16mm long, with dark stripes |                      |                         |                         |
|------------------------------------|---------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|--------------------------------|----------------------|-------------------------|-------------------------|
| Glass<br>Width<br>Category<br>(mm) | m                                                       | 3                | 4.5              | 2.5              | 3.5              | 2.5              | 2.5                            | S                    | 6.5                     | 5.5                     |
| Glass                              | Opaque<br>Orange                                        | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red                  | Opaque<br>Light Blue | Opaque<br>Dark<br>Green | Opaque<br>Dark<br>Green |
| Glass                              | 1                                                       | 1                | 1                | 1                | 1                | 1                | -                              | 1                    | 1                       | 1                       |
| Burial #                           |                                                         |                  |                  |                  |                  |                  |                                |                      |                         |                         |
| Level                              | 11                                                      | 11               | 11               | 11               | 11               | 11               | =                              | 11                   | 11                      | 11                      |
| Layer                              | v                                                       | 5                | 5                | 5                | 5                | 5                | 5                              | 5                    | S                       | 5                       |
| Block                              | 2                                                       | 2                | 2                | 2                | 2                | 2                | 2                              | 2                    | 2                       | 2                       |
| Unit                               | AB7                                                     | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                            | AB7                  | AB7                     | AB7                     |
| Quantity                           | Ξ                                                       | 11               | 11               | 11               | 11               | 11               | 11                             | 11                   | 11                      | 11                      |
| Bead                               | Indo-<br>Pacific                                        | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific               | Indo-<br>Pacific     | Indo-<br>Pacific        | Indo-<br>Pacific        |
| Catalogue<br>Number                | 1278                                                    | 1278             | 1278             | 1278             | 1278             | 1278             | 1278                           | 1278                 | 1278                    | 1278                    |
| Site Name                          | Angkor<br>Borei                                         | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                | Angkor<br>Borei      | Angkor<br>Borei         | Angkor<br>Borei         |
| Database<br>ID                     | AKC02501                                                | AKC02501         | AKC02501         | AKC02501         | AKC02501         | AKC02501         | AKC02501                       | AKC02501             | AKC02501                | AKC02501                |

| Notes                              |                          |                  |                  |                  |                  | 2.93 mm long     | see also: AKC03043 and AKC03042 |                     |                  |                  |                  |
|------------------------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|---------------------------------|---------------------|------------------|------------------|------------------|
| Glass<br>Width<br>Category<br>(mm) | 4.5                      | 4                | 4                | 3.5              | ς,               | 2.5              | 5.5                             | 5.5                 | 5.5              | 4.5              | 2                |
| Glass                              | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Dark Blue             | Opaque<br>Dark Blue | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Red    |
| Glass<br>Quantity                  | 1                        | 1                | 1                | 1                | 5                | 1                | 1                               | 1                   | 1                | 1                | 1                |
| Burial #                           |                          |                  |                  |                  |                  |                  |                                 |                     |                  |                  |                  |
| Level                              | 11                       | 22               | 22               | 22               | 22               | 22               | 23                              | 23                  | 20               | 20               | 20               |
| Layer                              | 2                        | 7                | 7                | 7                | 7                | 7                | 7                               | 7                   | 7                | 7                | 7                |
| Block                              | 2                        | 2S               | 2S               | 2S               | 2S               | 2S               | 2S                              | 2S                  | 2N               | 2N               | 2N               |
| Unit                               | AB7                      | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                             | AB7                 | AB7              | AB7              | AB7              |
| Quantity                           | 111                      | 6                | 6                | 6                | 6                | 6                | 2                               | 2                   | 4                | 4                | 4                |
| Bead<br>Shape                      | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                | Indo-<br>Pacific    | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Catalogue<br>Number                | 1278                     | 2481             | 2481             | 2481             | 2481             | 2481             | 2575                            | 2575                | 1675             | 1675             | 1675             |
| Site Name                          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                 | Angkor<br>Borei     | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                     | AKC02501                 | AKC02502         | AKC02502         | AKC02502         | AKC02502         | AKC02502         | AKC02504                        | AKC02504            | AKC02505         | AKC02505         | AKC02505         |

| _  | $^{\sim}$ | _ |
|----|-----------|---|
| ٠. | u         | • |
| ,  | -,        | - |
|    |           |   |

|                                    |                         |                     |                  |                  |                  |                  |                  |                          |                      |                  | 1                | (                |
|------------------------------------|-------------------------|---------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|----------------------|------------------|------------------|------------------|
| Notes                              |                         |                     |                  |                  |                  |                  |                  |                          |                      |                  |                  |                  |
| Glass<br>Width<br>Category<br>(mm) | æ                       | 4.5                 | 7                | 3                | 2.5              | 4                | 3.5              | 2                        | 3.5                  | 3.5              | 7                | 2.5              |
| Glass                              | Opaque<br>Dark<br>Green | Opaque<br>Dark Blue | Opaque<br>Black  | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Light Blue | Opaque<br>Yellow | Opaque<br>Red    | Opaque<br>Yellow |
| Glass<br>Quantity                  | 1                       | 1                   | 1                | 1                | 1                | 1                | 1                | 1                        | 1                    | 1                | 1                | 1                |
| Burial<br>#                        |                         |                     |                  |                  |                  |                  |                  |                          |                      |                  |                  |                  |
| Level                              | 20                      | 20                  | 20               | 20               | 20               | 20               | 20               | 19                       | 19                   | 19               | 19               | 19               |
| Layer                              | 7                       | 7                   | 7                | 7                | 7                | 7                | 7                | 7                        | 7                    | 7                | 7                | 7                |
| Block                              | 2N                      | 2S                  | 2S               | 2S               | 2S               | 2S               | 2S               | 2S                       | 2S                   | 2S               | 2S               | 2S               |
| Unit                               | AB7                     | Ab7                 | Ab7              | Ab7              | Ab7              | Ab7              | Ab7              | AB7                      | AB7                  | AB7              | AB7              | AB7              |
| Quantity                           | 4                       | 10                  | 10               | 10               | 10               | 10               | 10               | 8                        | 8                    | 8                | 8                | 8                |
| Bead<br>Shape                      | Indo-<br>Pacific        | Indo-<br>Pacific    | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Catalogue<br>Number                | 1675                    | 1649                | 1649             | 1649             | 1649             | 1649             | 1649             | 1574                     | 1574                 | 1574             | 1574             | 1574             |
| Site Name                          | Angkor<br>Borei         | Angkor<br>Borei     | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                     | AKC02505                | AKC02506            | AKC02506         | AKC02506         | AKC02506         | AKC02506         | AKC02506         | AKC02507                 | AKC02507             | AKC02507         | AKC02507         | AKC02507         |

|                                    |                  |                  |                  |                  |                   |                   | Ø                 |                          |                   |                   |                  |                          | 598 |
|------------------------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|------------------|--------------------------|-----|
| Notes                              |                  | 3.38 mm long     | 3.38 mm long     |                  |                   |                   | Segmented beads   |                          |                   |                   | Fragments        | Fragments                |     |
| Glass<br>Width<br>Category<br>(mm) | c,               | 3.5              | 3.5              | 3.5              | < 2               | < 2               | < 2               | < 2                      | < 2               | < 2               |                  |                          |     |
| Glass<br>Color                     | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Black   | Purple            | Purple            | Opaque<br>Light<br>Green | Opaque<br>Orange  | Opaque<br>Black   | Opaque<br>Yellow | Opaque<br>Light<br>Green |     |
| Glass<br>Quantity                  | -                | -                | -                | -                | 6                 | _                 | 3                 | 21                       | 115               | 6                 | -                | -                        |     |
| Burial<br>#                        |                  |                  |                  |                  | F36               | F36               | F36               | F36                      | F36               | F36               |                  |                          |     |
| Level                              | 19               | 19               | 19               | 19               | 23                | 23                | 23                | 23                       | 23                | 23                | 10               | 10                       |     |
| Layer                              | 7                | 7                | 7                | 7                | 7                 | 7                 | 7                 | 7                        | 7                 | 7                 | S                | 5                        |     |
| Block                              | 2S               | 2S               | 2S               | 2S               | 2N/3N             | 2N/3N             | 2N/3N             | 2N/3N                    | 2N/3N             | 2N/3N             | 7                | 2                        |     |
| Unit                               | AB7              | AB7              | AB7              | AB7              | AB7               | AB7               | AB7               | AB7                      | AB7               | AB7               | AB7              | AB7                      |     |
| Quantity                           | ∞                | ∞                | ∞                | ∞                | 186               | 186               | 186               | 186                      | 186               | 186               | 10               | 10                       |     |
| Bead<br>Shape                      | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific? | Indo-<br>Pacific? | Indo-<br>Pacific? | Indo-<br>Pacific?        | Indo-<br>Pacific? | Indo-<br>Pacific? | Indo-<br>Pacific | Indo-<br>Pacific         |     |
| Catalogue<br>Number                | 1574             | 1574             | 1574             | 1574             | 2791              | 2791              | 2791              | 2791                     | 2791              | 2791              | 1242             | 1242                     |     |
| Site Name                          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei   | Angkor<br>Borei   | Angkor<br>Borei   | Angkor<br>Borei          | Angkor<br>Borei   | Angkor<br>Borei   | Angkor<br>Borei  | Angkor<br>Borei          |     |
| Database<br>ID                     | AKC02507         | AKC02507         | AKC02507         | AKC02507         | AKC02510          | AKC02510          | AKC02510          | AKC02510                 | AKC02510          | AKC02510          | AKC02511         | AKC02511                 |     |

| Notes                              |                          |                         |                          | Dark streaks in<br>glass |                                    |                              |                  |                      |                         | 4.44 mm long                       |
|------------------------------------|--------------------------|-------------------------|--------------------------|--------------------------|------------------------------------|------------------------------|------------------|----------------------|-------------------------|------------------------------------|
| Glass<br>Width<br>Category<br>(mm) | 4.5                      | S.                      | 3                        | 6.5                      | 2                                  | 3                            | 3                | 4                    | 4.5                     | 3                                  |
| Glass                              | Opaque<br>Light<br>Green | Opaque<br>Dark<br>Green | Opaque<br>Light<br>Green | Opaque<br>Dark<br>Green  | Trans/Sem<br>i-Trans<br>Light Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Red    | Opaque<br>Light Blue | Opaque<br>Dark<br>Green | Trans/Sem<br>i-Trans<br>Light Blue |
| Glass                              | 1                        | 1                       | 1                        | 1                        | 1                                  | 1                            | 1                | 1                    | 1                       | 1                                  |
| Burial<br>#                        |                          |                         |                          |                          |                                    |                              |                  |                      |                         |                                    |
| Level                              | 10                       | 10                      | 10                       | 10                       | 10                                 | 10                           | 10               | 11                   | 11                      | 17                                 |
| Block Layer                        | S                        | S                       | S                        | 5                        | 5                                  | S                            | 5                | 5                    | S                       | 7                                  |
| Block                              | 2                        | 2                       | 2                        | 2                        | 2                                  | 2                            | 2                | 2                    | 2                       | 2S                                 |
| Unit                               | AB7                      | AB7                     | AB7                      | AB7                      | AB7                                | AB7                          | AB7              | AB7                  | AB7                     | AB7                                |
| Quantity                           | 10                       | 10                      | 10                       | 10                       | 10                                 | 10                           | 10               | 2                    | 2                       | 2                                  |
| Bead<br>Shape                      | Indo-<br>Pacific         | Indo-<br>Pacific        | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific                   | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific     | Indo-<br>Pacific        | Indo-<br>Pacific                   |
| Catalogue<br>Number                | 1242                     | 1242                    | 1242                     | 1242                     | 1242                               | 1242                         | 1242             | 1277                 | 1277                    | 1468                               |
| Site Name                          | Angkor<br>Borei          | Angkor<br>Borei         | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei                    | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei      | Angkor<br>Borei         | Angkor<br>Borei                    |
| Database<br>ID                     | AKC02511                 | AKC02511                | AKC02511                 | AKC02511                 | AKC02511                           | AKC02511                     | AKC02511         | AKC02513             | AKC02513                | AKC02514                           |

| Notes                              |                  | 2 additional pieces<br>of stone/unknown<br>material? not<br>measured. |                  |                                    |                          | 6.90 mm long     | Also included 3 tooth pendants |                  | Dark streaks in orange bead |                  |                  |
|------------------------------------|------------------|-----------------------------------------------------------------------|------------------|------------------------------------|--------------------------|------------------|--------------------------------|------------------|-----------------------------|------------------|------------------|
| Glass<br>Width<br>Category<br>(mm) | 3.5              | 4                                                                     | 2                | 2                                  | 3.5                      | 5                | 2                              | 2                | 3                           | 7                | 2                |
| Glass                              | Opaque<br>Yellow | Transluce<br>nt Dark<br>Blue                                          | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Light<br>Green       | Opaque<br>Black  | Opaque<br>Orange            | Opaque<br>Red    | Opaque<br>Orange |
| Glass<br>Quantity                  | 1                | 1                                                                     | 1                | 1                                  | 1                        | 1                | 10                             | 2                | 1                           | 3                | 6                |
| Burial #                           |                  |                                                                       |                  |                                    |                          |                  | F36                            | F36              | F36                         | F36              | F36              |
| Level                              | 17               | 14                                                                    | 14               | 14                                 | 14                       | 14               | 23                             | 23               | 23                          | 23               | 23               |
| Layer                              | 7                | 9                                                                     | 9                | 9                                  | 9                        | 9                | 7                              | 7                | 7                           | 7                | 7                |
| Block Layer                        | 2S               | 2                                                                     | 2                | 2                                  | 2                        | 2                | 2N/3N                          | 2N/3N            | 2N/3N                       | 2N/3N            | 2N/3N            |
| Unit                               | AB7              | AB7                                                                   | AB7              | AB7                                | AB7                      | AB7              | AB7                            | AB7              | AB7                         | AB7              | AB7              |
| Quantity                           | 2                | 5                                                                     | 5                | 5                                  | 5                        | 5                | 23                             | 23               | 23                          | 23               | 23               |
| Bead<br>Shape                      | Indo-<br>Pacific | Indo-<br>Pacific                                                      | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific               | Indo-<br>Pacific | Indo-<br>Pacific            | Indo-<br>Pacific | Indo-<br>Pacific |
| Catalogue<br>Number                | 1468             | 1375                                                                  | 1375             | 1375                               | 1375                     | 1375             | 2794                           | 2794             | 2794                        | 2794             | 2794             |
| Site Name                          | Angkor<br>Borei  | Angkor<br>Borei                                                       | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei                | Angkor<br>Borei  | Angkor<br>Borei             | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                     | AKC02514         | AKC02515                                                              | AKC02515         | AKC02515                           | AKC02515                 | AKC02515         | AKC02516                       | AKC02516         | AKC02516                    | AKC02516         | AKC02516         |

| Notes                              |                  |                  | Also found with one copper bead |                     | Fragments                |                  |                  |                      | Has both red and green stripes (Indo-Pacific bead). One copper bead not recorded |                        |
|------------------------------------|------------------|------------------|---------------------------------|---------------------|--------------------------|------------------|------------------|----------------------|----------------------------------------------------------------------------------|------------------------|
| Glass<br>Width<br>Category<br>(mm) | 2                | 3                | 4                               | 3.5                 |                          | 2.5              | 3.5              | 3.5                  | 5.5                                                                              | 7                      |
| Glass                              | White/Cre<br>am  | Opaque<br>Yellow | Opaque<br>Yellow                | Opaque<br>Dark Blue | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Light Blue | Black w/<br>multipule<br>stripes                                                 | Transluce<br>nt Yellow |
| Glass                              | 1                | 1                | 1                               | 1                   | 1                        | 1                | 1                | 1                    | -                                                                                | 1                      |
| Burial<br>#                        | F36              |                  |                                 |                     |                          |                  |                  |                      |                                                                                  |                        |
| Level                              | 23               | 17               | ∞                               | $\infty$            | ∞                        | ∞                | ∞                | ∞                    | ∞                                                                                | 10                     |
|                                    | 7                | 7                | S                               | S                   | S                        | 5                | 5                | S                    | v                                                                                | 5                      |
| Block Layer                        | 2N/3N            | 2                | 2                               | 2                   | 2                        | 2                | 2                | 2                    | 2                                                                                | 3                      |
| Unit                               | AB7              | AB7              | AB7                             | AB7                 | AB7                      | AB7              | AB7              | AB7                  | AB7                                                                              | AB7                    |
| Quantity                           | 23               | 1                | 7                               | 7                   | 7                        | 7                | 7                | 7                    | 7                                                                                | 1                      |
| Bead<br>Shape                      | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                | Indo-<br>Pacific    | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific     | Indo-<br>Pacific                                                                 | Indo-<br>Pacific?      |
| Catalogue<br>Number                | 2794             | 1507             | 1181                            | 1181                | 1181                     | 1181             | 1181             | 1181                 | 1181                                                                             | 1255                   |
| Site Name                          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                 | Angkor<br>Borei     | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei      | Angkor<br>Borei                                                                  | Angkor<br>Borei        |
| Database<br>ID                     | AKC02516         | AKC02517         | AKC02518                        | AKC02518            | AKC02518                 | AKC02518         | AKC02518         | AKC02518             | AKC02518                                                                         | AKC02519               |

| Notes                              |                         |                  |                  | 3.41 mm long     | Brighter yellow color than other bead |                  |                  |                  |                          |
|------------------------------------|-------------------------|------------------|------------------|------------------|---------------------------------------|------------------|------------------|------------------|--------------------------|
| Glass<br>Width<br>Category<br>(mm) | 2.5                     | 3.5              | 3                | 3                | < 2                                   | 3.5              | 3.5              | 3                | 3                        |
| Glass                              | Opaque<br>Dark<br>Green | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow                      | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Red    | Opaque<br>Light<br>Green |
| Glass                              | 1                       | 2                | 1                | 1                | 9                                     | 1                | 1                | 1                | 1                        |
| Burial<br>#                        |                         |                  |                  |                  |                                       |                  |                  |                  |                          |
| Level                              | 21                      | 21               | 21               | 21               | 22                                    | 22               | 13               | 13               | 13                       |
|                                    | 7                       | 7                | 7                | 7                | 7                                     | 7                | S                | 5                | S                        |
| Block Layer                        | 2S                      | 2S               | 2S               | 2S               | 2N                                    | 2N               | 7                | 2                | 2                        |
| Unit                               | AB7                     | AB7              | AB7              | AB7              | AB7                                   | AB7              | AB7              | AB7              | AB7                      |
| Quantity                           | 5                       | 5                | 5                | 5                | 7                                     | 7                | 3                | 3                | 3                        |
| Bead<br>Shape                      | Indo-<br>Pacific        | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                      | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         |
| Catalogue<br>Number                | 1768                    | 1768             | 1768             | 1768             | 2494                                  | 2494             | 1346             | 1346             | 1346                     |
| Site Name                          | Angkor<br>Borei         | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                       | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          |
| Database<br>ID                     | AKC02520                | AKC02520         | AKC02520         | AKC02520         | AKC02521                              | AKC02521         | AKC02522         | AKC02522         | AKC02522                 |

| Notes                               |                  |                  |                  |                  |                  |                                                                                             |                  |                          | 4.66 mm long     |                  |                          |                 |
|-------------------------------------|------------------|------------------|------------------|------------------|------------------|---------------------------------------------------------------------------------------------|------------------|--------------------------|------------------|------------------|--------------------------|-----------------|
| Glass<br>Width<br>Categor<br>y (mm) | < 2              | < 2              | < 2              | 3                | 2.5              | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 2                | 2                        | 3                | 4                | 4.5                      | < 2             |
| Glass                               | White/Cre<br>am  | Opaque<br>Red    | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Red                                                                               | Opaque<br>Orange | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Red   |
| Glass<br>Quantity                   | 43               | 1                | 1                | 5                | 3                | 5                                                                                           | 1                | 1                        | 1                | 1                |                          | 1               |
| Burial #                            | F5               | F5               | F5               |                  |                  |                                                                                             |                  |                          |                  |                  |                          | F36             |
| Level                               | 19               | 19               | 19               | 23               | 23               | 23                                                                                          | 23               | 23                       | 23               | 18               | 4                        | 23              |
|                                     | 7                | 7                | 7                | 7                | 7                | 7                                                                                           | 7                | 7                        | 7                | 7                | 2                        | 7               |
| Block Layer                         | 2N               | 2N               | 2N               | 2S               | 2S               | 2S                                                                                          | 2S               | 2S                       | 2S               | 2N               | 2                        | 2n/3n           |
| Unit                                | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                                                                                         | AB7              | AB7                      | AB7              | AB7              | AB7                      | AB7             |
| Quantity                            | 45               | 45               | 45               | 16               | 16               | 16                                                                                          | 16               | 16                       | 16               | -                | -                        | 2               |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                                                                            | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         |                 |
| Catalogue<br>Number                 | 1635             | 1635             | 1635             | 2563             | 2563             | 2563                                                                                        | 2563             | 2563                     | 2563             | 1541             | 1049                     | 2782            |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                                                                             | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei |
| Database<br>ID                      | AKC02523         | AKC02523         | AKC02523         | AKC02524         | AKC02524         | AKC02524                                                                                    | AKC02524         | AKC02524                 | AKC02524         | AKC02525         | AKC02526                 | AKC02527        |

| Notes                               |                          |                  |                  | 3.55 mm long     | 4.12 mm long     | 4.18 mm long    |                  |                                    | Dark streaks in glass | Dark streaks in glass |                              |
|-------------------------------------|--------------------------|------------------|------------------|------------------|------------------|-----------------|------------------|------------------------------------|-----------------------|-----------------------|------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2                        | S                | 8                | 3.5              | 3.5              | 3               | 2                | £                                  | S                     | 9                     | 4                            |
| Glass                               | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Red   | Opaque<br>Orange | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Orange      | Opaque<br>Orange      | Transluce<br>nt Dark<br>Blue |
| Glass<br>Quantity                   | 1                        |                  |                  | -                | 1                | 1               | 5                | -                                  |                       | -                     | 3                            |
| Burial<br>#                         | F36                      |                  |                  |                  |                  | F22             | F22              |                                    |                       |                       |                              |
| Level                               | 23                       | 21               | 21               | 21               | 21               | 23              | 23               | 6                                  | 7                     | 7                     | 12                           |
| Layer                               | 7                        | 7                | 7                | 7                | 7                | 7               | 7                | 5                                  | S                     | 5                     | S                            |
| Block                               | 2n/3n                    | 2S               | 2S               | 2S               | 2S               | 2N              | 2N               | 2                                  | 2                     | 2                     | 2                            |
| Uni                                 | AB7                      | AB7              | AB7              | AB7              | AB7              | AB7             | AB7              | AB7                                | AB7                   | AB7                   | AB7                          |
| Quantity                            | 2                        | 4                | 4                | 4                | 4                | 9               | 9                | -                                  | 2                     | 2                     | 49                           |
| Bead<br>Shape                       |                          | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |                 |                  | Indo-<br>Pacific                   | Indo-<br>Pacific      | Indo-<br>Pacific      | Indo-<br>Pacific             |
| Catalogue<br>Number                 | 2782                     | 1770             | 1770             | 1770             | 1770             | 2634            | 2634             | 1205                               | 1152                  | 1152                  | 1314                         |
| Site Name                           | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei       | Angkor<br>Borei       | Angkor<br>Borei              |
| Database<br>ID                      | AKC02527                 | AKC02528         | AKC02528         | AKC02528         | AKC02528         | AKC02529        | AKC02529         | AKC02530                           | AKC02531              | AKC02531              | AKC02533<br>AKC02534         |

|                                     | ı                            | 1                                  |                              |                      |                      |                      | l                    |                      | l                    |                      |                          |
|-------------------------------------|------------------------------|------------------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|
| Notes                               |                              |                                    |                              |                      |                      |                      |                      |                      |                      |                      |                          |
| Glass<br>Width<br>Categor<br>y (mm) | 3.5                          | 3                                  | 4                            | 5                    | 4                    | 3.5                  | 5                    | 4.5                  | 3.5                  | < > 2                | 3.5                      |
| Glass                               | Transluce<br>nt Dark<br>Blue | Trans/Sem<br>i-Trans<br>Light Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow     | Opaque<br>Yellow     | Opaque<br>Red        | Opaque<br>Red        | Opaque<br>Red        | Opaque<br>Red        | Opaque<br>Red        | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | 2                            | 1                                  | 5                            | 1                    | 3                    | 14                   | 1                    | 3                    | 2                    | -                    | 2                        |
| Burial #                            |                              |                                    |                              |                      |                      |                      |                      |                      |                      |                      |                          |
| Level                               | 12                           | 12                                 | 12                           | 12                   | 12                   | 12                   | 12                   | 12                   | 12                   | 12                   | 12                       |
| Layer                               | 5                            | 5                                  | 5                            | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    | 5                        |
| Block                               | 2                            | 2                                  | 2                            | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    | 2                        |
| Unit                                | AB7                          | AB7                                | AB7                          | AB7                  | AB7                  | AB7                  | AB7                  | AB7                  | AB7                  | AB7                  | AB7                      |
| Quantity                            | 49                           | 49                                 | 49                           | 49                   | 49                   | 49                   | 49                   | 49                   | 49                   | 49                   | 49                       |
| Bead<br>Shape                       | Indo-<br>Pacific             | Indo-<br>Pacific                   | Indo-<br>Pacific             | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific         |
| Cat<br>Number                       | 1314                         | 1314                               | 1314                         | 1314                 | 1314                 | 1314                 | 1314                 | 1314                 | 1314                 | 1314                 | 1314                     |
| Site Name                           | Angkor<br>Borei              | Angkor<br>Borei                    | Angkor<br>Borei              | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei          |
| Database<br>ID                      | AKC02533<br>AKC02534         | AKC02533<br>AKC02534               | AKC02533<br>AKC02534         | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534     |

|   | Λ | -  |
|---|---|----|
| h |   | r  |
| v | v | ٧. |

| Notes                               |                                    | 6.88 mm long                       |                                    |                                    |                              | 10.09                |                      |                              |                  |                  |
|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------|----------------------|----------------------|------------------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4                                  | S                                  | 3                                  | ς.                                 | 2                            | 2                    | 3.5                  | 4.5                          | 3                | 2                |
| Glass                               | Trans/Sem<br>i-Trans<br>Light Blue | Trans/Sem<br>i-Trans<br>Light Blue | Trans/Sem<br>i-Trans<br>Light Blue | Trans/Sem<br>i-Trans<br>Light Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Red        | Opaque<br>Red        | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow | Opaque<br>Red    |
| Glass<br>Quantit<br>y               | 3                                  | 1                                  | 1                                  | -                                  | 1                            |                      | 2                    | 1                            | 1                | 1                |
| Level Burial#                       |                                    |                                    |                                    |                                    |                              |                      |                      |                              | F1               | F1               |
| Level                               | 12                                 | 12                                 | 12                                 | 12                                 | 12                           | 12                   | 12                   | 12                           | 20               | 17               |
| Layer                               | 2                                  | S                                  | S                                  | 5                                  | S                            | S                    | S                    | S                            | 7                | 7                |
| Block                               | 2                                  | 2                                  | 2                                  | 2                                  | 2                            | 2                    | 2                    | 2                            | 2S               | 2n               |
| Unit                                | AB7                                | AB7                                | AB7                                | AB7                                | AB7                          | AB7                  | AB7                  | AB7                          | AB7              | AB7              |
| Quantity                            | 49                                 | 49                                 | 49                                 | 49                                 | 49                           | 49                   | 49                   | 49                           | 1                | -1               |
| Bead<br>Shape                       | Indo-<br>Pacific                   | Indo-<br>Pacific                   | Indo-<br>Pacific                   | Indo-<br>Pacific                   | Indo-<br>Pacific             | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 1314                               | 1314                               | 1314                               | 1314                               | 1314                         | 1314                 | 1314                 | 1314                         | 1710             | 1491             |
| Site Name                           | Angkor<br>Borei                    | Angkor<br>Borei                    | Angkor<br>Borei                    | Angkor<br>Borei                    | Angkor<br>Borei              | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02533<br>AKC02534               | AKC02533<br>AKC02534               | AKC02533<br>AKC02534               | AKC02533<br>AKC02534               | AKC02533<br>AKC02534         | AKC02533<br>AKC02534 | AKC02533<br>AKC02534 | AKC02533<br>AKC02534         | AKC02535         | AKC02536         |

| Notes                               | half fragment    |                  |                          |                  | fragments        |                  | 1 small piece of clay also found with these beads. |                  |                  | Fragments       | Slag? L: 7.47 W:5.06<br>AB106N | AB107J           |
|-------------------------------------|------------------|------------------|--------------------------|------------------|------------------|------------------|----------------------------------------------------|------------------|------------------|-----------------|--------------------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) |                  | 3.5              | 3                        | 4                |                  | 4                | 4                                                  | 3                | < 2              | N/A             | S                              | 2                |
| Glass                               | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Red    | Opaque<br>Yellow                                   | Opaque<br>Yellow | Opaque<br>Orange | N/A             | Opaque<br>Black                | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | 1                | 1                | 1                        | 1                | 1                | 1                | 1                                                  |                  | -                | N/A             | -                              | 1                |
| Burial#                             |                  |                  |                          |                  |                  |                  | F1                                                 | F1               | F1               | F37             | F37                            | F37              |
| Level                               | 18               | 13               | 5                        | 5                | 19               | 19               | 17                                                 | 17               | 17               | 28              | 23                             | 23               |
| Layer                               | 7                | 5                | 3                        | 3                | 7                | 7                | 7                                                  | 7                | 7                | 7               | 7                              | 7                |
| Block                               | 2S               | 2                | 1                        | 1                | 2N               | 2N               | 2n                                                 | 2n               | 2n               | 2/3S            | 2S                             | 2S               |
| Unit                                | AB7              | AB7              | AB7                      | AB7              | AB7              | AB7              | AB7                                                | AB7              | AB7              | AB7             | AB7                            | AB7              |
| Quantity                            | _                | -                | 2                        | 2                | 2                | 2                | 3                                                  | 3                | 3                | 0               | 8                              | ∞                |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                                   | Indo-<br>Pacific | Indo-<br>Pacific | Fragments       | Indo-<br>Pacific               | Indo-<br>Pacific |
| Cat<br>Number                       | 1545             | 1345             | 1080                     | 1080             | 1569             | 1569             | 1523                                               | 1523             | 1523             | 2819            | 2766                           | 2766             |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                                    | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei | Angkor<br>Borei                | Angkor<br>Borei  |
| Database<br>ID                      | AKC02537         | AKC02538         | AKC02539                 | AKC02539         | AKC02540         | AKC02540         | AKC02541                                           | AKC02541         | AKC02541         | AKC02542        | AKC02543                       | AKC02543         |

| Notes                               | AB108V                     | AB109R           |                  |                  | Found with bone tooth pendant |                          |                  |                  | Large hole               | a few are slightly less than 2mm | Also found with 10 gold beads (approx 2mm) |
|-------------------------------------|----------------------------|------------------|------------------|------------------|-------------------------------|--------------------------|------------------|------------------|--------------------------|----------------------------------|--------------------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 3                          | < > 2            | 2                | 2                | 3                             | c                        |                  | 2                | 4                        | 2                                | < > 2                                      |
| Glass                               | Opaque<br>Green-<br>Yellow | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Black               | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Black                  | Opaque<br>Orange                           |
| Glass<br>Quantit<br>y               | -                          | 1                | 2                | 2                | 1                             | 1                        | 1                | 1                | 1                        | 35                               | 46                                         |
| Burial #                            | F37                        | F37              | F37              | F37              | F31                           | F43b                     | F39              | F39              | F26                      | F44                              | F44                                        |
| Level                               | 23                         | 23               | 23               | 23               |                               |                          | 24               | 24               | 21                       | 28                               | 28                                         |
| Layer                               | 7                          | 7                | 7                | 7                |                               |                          | 7                | 7                | 7                        | ∞                                | ∞                                          |
| Block                               | 2S                         | 2S               | 2S               | 2S               | Z                             | 3/4                      | 38               | 38               | 38                       | 5S/4S                            | 5S/4S                                      |
| Unit                                | AB7                        | AB7              | AB7              | AB7              | AB7                           | AB7                      | AB7              | AB7              | AB7                      | AB7                              | AB7                                        |
| Quantity                            | ∞                          | ∞                | ∞                | 8                | 1                             | 1                        | 2                | 2                | 1                        | 81                               | 81                                         |
| Bead<br>Shape                       | Indo-<br>Pacific           | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific              | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Spherical                        | Spherical                                  |
| Cat<br>Number                       | 2766                       | 2766             | 2766             | 2766             | 2451                          | 3151                     | 2880             | 2880             | 2385                     | 3199                             | 3199                                       |
| Site Name                           | Angkor<br>Borei            | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei               | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei                  | Angkor<br>Borei                            |
| Database<br>ID                      | AKC02543                   | AKC02543         | AKC02543         | AKC02543         | AKC02545                      | AKC02546                 | AKC02547         | AKC02547         | AKC02548                 | AKC02549                         | AKC02549                                   |

| Notes                               |                                    |                          | AB099J           | Fragments                |                  | Unrounded edges  |                     | weathered, minty green   |                  |                  |                  |
|-------------------------------------|------------------------------------|--------------------------|------------------|--------------------------|------------------|------------------|---------------------|--------------------------|------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4                                  | 2                        | 3                |                          | 2.5              | 2                | 7                   | 2.5                      | 2                | 2                | 2                |
| Glass                               | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Orange | Opaque<br>Dark Blue | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Orange |
| Glass<br>Quantit<br>y               | -                                  | -                        | -                | 1                        | -                | -                | -                   | -                        | -                | 1                | 1                |
| Burial#                             | F39                                | F39                      | F30              | F52                      | F20              | F25              | F17                 | F3                       | F3               | F8               | F8               |
| Level                               | 24                                 | 24                       | 23               | 26                       |                  |                  | 19                  | 19                       | 19               | 20               | 20               |
| Layer                               | 7                                  | 7                        | 5                | 5                        |                  |                  | 7                   | 7                        | 7                | 7                | 7                |
| Block                               | 38                                 | 38                       | 5S               | SN                       | 3N               | N4               | П                   | Z                        | N                | 3N               | 3N               |
| Unit                                | AB7                                | AB7                      | AB7              | AB7                      | AB7              | AB7              | AB7                 | AB7                      | AB7              | AB7              | AB7              |
| Quantity                            | 7                                  | 2                        | 1                | 1                        | 1                | 1                | 1                   | 2                        | 2                | 8                | 3                |
| Bead<br>Shape                       | Indo-<br>Pacific                   | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific    | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 2913                               | 2913                     | 2731             | 3391                     | 2753             | 2414             | 1863                | 1797                     | 1797             | 1701             | 1701             |
| Site Name                           | Angkor<br>Borei                    | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei     | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02550                           | AKC02550                 | AKC02551         | AKC02552                 | AKC02553         | AKC02554         | AKC02555            | AKC02556                 | AKC02556         | AKC02557         | AKC02557         |

| Notes                               |                  | L: 8.11 (opaque) | L: 6.95 W:9.35<br>AB118V | AB079R           |                  |                  |                  | L:8.22           |                                         | See also other beads<br>from F10 in Tag<br>2373 | 2                        |
|-------------------------------------|------------------|------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|-----------------------------------------|-------------------------------------------------|--------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 7                | 2                | 6                        | 3                | 2                | 7                | 2                | 2                | < × × × × × × × × × × × × × × × × × × × | 2                                               | Opaque<br>Light<br>Green |
| Glass                               | Opaque<br>Black  | Blue-<br>Green   | Opaque<br>Dark<br>Green  | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Orange | Opaque<br>Orange | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue      | Opaque<br>Yellow                                | 2                        |
| Glass<br>Quantit<br>y               | 1                | 1                | 1                        | 1                | 1                | -                | П                | 1                | 1                                       | 2                                               | 2                        |
| Burial#                             | F8               | F39              | F44                      | F11              | F2               | F4               | F43a             | F42              | F8                                      | F10                                             | F10                      |
| Level                               | 20               |                  | 24                       | 17               | 19               | 18               | 25               | 26               | 20                                      | 22                                              | 22                       |
| Layer                               | 7                |                  | 5                        | 7                | 7                | 7                | 7                | 5                | 7                                       | 5                                               | 5                        |
| Block Layer                         | 3N               | 38               | 5S/4S                    | 18               | Z                | 18               | 3/4S             | 4<br>N           | 3N                                      | 4S                                              | 4S                       |
| Unit                                | AB7              | AB7              | AB7                      | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                                     | AB7                                             | AB7                      |
| Quantity                            | 3                | 1                | 1                        | -                | 1                | 1                | 1                | 1                | 1                                       | 4                                               | 4                        |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Short<br>Barrel          | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                        | Indo-<br>Pacific                                | Indo-<br>Pacific         |
| Cat<br>Number                       | 1701             | 2910             | 3138                     | 1552             | 1807             | 1606             | 3092             | 3065             | 1677                                    | 2363                                            | 2363                     |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                         | Angkor<br>Borei                                 | Angkor<br>Borei          |
| Database<br>ID                      | AKC02557         | AKC02558         | AKC02559                 | AKC02560         | AKC02561         | AKC02562         | AKC02563         | AKC02564         | AKC02565                                | AKC02566                                        | AKC02566                 |

| Notes                               | Other beads from<br>F10 in Tag 2363 |                  |                          |                          |                          | slag? Opaque     | One bead broken  |                  |                          | Alsou found with 2 gold beads (<2mm) | plus numerous<br>broken frags |
|-------------------------------------|-------------------------------------|------------------|--------------------------|--------------------------|--------------------------|------------------|------------------|------------------|--------------------------|--------------------------------------|-------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | < 2                                 | 2.5              | 2                        | < 2                      | 2                        |                  | 2.5              | < > 2            | < 2                      | 2                                    | 2                             |
| Glass<br>Color                      | Red/Oran<br>ge                      | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | White/Cre<br>am  | Opaque<br>Yellow | Red/Oran<br>ge   | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green             | Opaque<br>Light<br>Green      |
| Glass<br>Quantit<br>y               | 3                                   | 2                | 4                        | 1                        | 1                        | 1                | 4                | 7                | 4                        | Т                                    | 24                            |
| Burial#                             | F10                                 | F10              | F4                       | F4                       | F4                       | F4               | F20              | F39              | F39                      | F39                                  | F27                           |
| Level                               |                                     |                  | 19                       | 19                       | 19                       | 19               | 23               | 24               | 24                       | 24                                   | 23                            |
| Block Layer                         |                                     |                  | 7                        | 7                        | 7                        | 7                | 7                | 7                | 7                        | 7                                    | 5                             |
|                                     |                                     |                  | 18                       | 18                       | 18                       | 18               | 3N               | 3S               | 3S                       | 3S                                   | 4S                            |
| Unit                                | AB7                                 | AB7              | AB7                      | AB7                      | AB7                      | AB7              | AB7              | AB7              | AB7                      | AB7                                  | AB7                           |
| Quantity                            | 5                                   | 5                | 5                        | 5                        | 2                        | 2                | 4                | 6                | 6                        | 6                                    | 32                            |
| Bead<br>Shape                       | Indo-<br>Pacific                    | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific                     | Indo-<br>Pacific              |
| Cat<br>Number                       | 2373                                | 2373             | 1872                     | 1872                     | 1875                     | 1875             | 1828             | 2920             | 2920                     | 2920                                 | 2511                          |
| Site Name                           | Angkor<br>Borei                     | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei                      | Angkor<br>Borei               |
| Database<br>ID                      | AKC02567                            | AKC02567         | AKC02568                 | AKC02568                 | AKC02569                 | AKC02569         | AKC02570         | AKC02571         | AKC02571                 | AKC02571                             | AKC02572                      |

| Notes                               | L:3.33           |                  | L:3.41 AB087J    | L: 4.07 AB088J   | L: 4.71 AB089O   |                  |                  | plus numerous<br>broken frags |                  |                          |                          |
|-------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------------------|------------------|--------------------------|--------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 5.5              | 3                | 9                | 5                | 4.5              | 5                | 9                | 2                             | 2                | 2                        | < 2                      |
| Glass                               | Opaque<br>Yellow | Opaque<br>Black  | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Orange | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Light<br>Green      | Opaque<br>Black  | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | 1                | -                | -                | П                | П                | П                | П                | 1                             | 1                | 2                        | 4                        |
| Burial#                             | F27                           | F8               | F8                       | F8                       |
| Level                               | 23               | 23               | 23               | 23               | 23               | 23               | 23               | 23                            | 20               | 20                       | 20                       |
| Layer                               | S                | S                | S                | 5                | S                | 5                | 5                | S                             | 7                | 7                        | 7                        |
| Block                               | 4S                            | 3N               | 3N                       | 3N                       |
| Unit                                | AB7                           | AB7              | AB7                      | AB7                      |
| Quantity                            | 32               | 32               | 32               | 32               | 32               | 32               | 32               | 32                            | 25               | 25                       | 25                       |
| Bead<br>Shape                       | Indo-<br>Pacific              | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         |
| Cat<br>Number                       | 2511             | 2511             | 2511             | 2511             | 2511             | 2511             | 2511             | 2511                          | 1700             | 1700                     | 1700                     |
| Site Name                           | Angkor<br>Borei               | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          |
| Database<br>ID                      | AKC02572                      | AKC02573         | AKC02573                 | AKC02573                 |

| Notes                               |                  |                  | L: 4.42 AB103R       | AB101V                   | AB100V                   | AB102O               | broken               | broken                   |                      |                      |                      |
|-------------------------------------|------------------|------------------|----------------------|--------------------------|--------------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|
| Glass<br>Width<br>Categor<br>y (mm) | < 2              | < 2              | 5                    | 2                        | 2                        | 4                    |                      |                          | 4.5                  | 4                    | 3                    |
| Glass                               | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red        | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Orange     | Opaque<br>Red        | Opaque<br>Light<br>Green | Opaque<br>Yellow     | Opaque<br>Yellow     | Opaque<br>Orange     |
| Glass<br>Quantit<br>y               | 12               | 9                | 1                    | 1                        | 1                        |                      | -                    | 1                        | 2                    | -                    | 16                   |
| Burial #                            | F8               | F8               | F35                  | F35                      | F35                      | F35                  | F35                  | F35                      | F35                  | F35                  | F35                  |
| Level                               | 20               | 20               | 24                   | 24                       | 24                       | 24                   | 24                   | 24                       | 24                   | 24                   | 24                   |
| Layer                               | 7                | 7                | 5                    | S                        | S                        | S                    | S                    | S                        | S                    | S                    | S                    |
| Block                               | 3N               | 3N               | 4S                   | 4S                       | 4S                       | 4S                   | 48                   | 4S                       | 4S                   | 4S                   | 4S                   |
| Unit                                | AB7              | AB7              | AB7                  | AB7                      | AB7                      | AB7                  | AB7                  | AB7                      | AB7                  | AB7                  | AB7                  |
| Quantity                            | 25               | 25               | 213                  | 213                      | 213                      | 213                  | 213                  | 213                      | 213                  | 213                  | 213                  |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific     | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     |
| Cat<br>Number                       | 1700             | 1700             | 2732                 | 2732                     | 2732                     | 2732                 | 2732                 | 2732                     | 2732                 | 2732                 | 2732                 |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei      | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      |
| Database<br>ID                      | AKC02573         | AKC02573         | AKC02574<br>AKC02575 | AKC02574<br>AKC02575     | AKC02574<br>AKC02575     | AKC02574<br>AKC02575 | AKC02574<br>AKC02575 | AKC02574<br>AKC02575     | AKC02574<br>AKC02575 | AKC02574<br>AKC02575 | AKC02574<br>AKC02575 |

| 6 | 1 | 4 |
|---|---|---|
|---|---|---|

|                                     |                      | I                    |                      | 1                        | 1                    | 1                    |                            |                                             |                  |                                           |                  | 1                |
|-------------------------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------------|---------------------------------------------|------------------|-------------------------------------------|------------------|------------------|
| Notes                               |                      | L: 3.21              |                      | Many broken frags        |                      |                      |                            | L:3.23. Also found with 4 gold beads (<2mm) |                  | off-white, dirty with<br>black on surface |                  |                  |
| Glass<br>Width<br>Categor<br>y (mm) | 3.5                  | 5.5                  | 4.5                  | 2                        | 2                    | < > 2                | \<br>\<br>\<br>\<br>\<br>\ | \<br>\<br>2                                 | 2                | 2                                         | 2                | 2                |
| Glass                               | Opaque<br>Red        | Opaque<br>Red        | Opaque<br>Red        | Opaque<br>Light<br>Green | Opaque<br>Black      | Opaque<br>Yellow     | Opaque<br>Orange           | Opaque<br>Orange                            | Opaque<br>Black  | Opaque<br>Orange                          | Opaque<br>Black  | White/Cre<br>am  |
| Glass<br>Quantit<br>y               | 5                    |                      | 7                    | 129                      | 42                   | 2                    | -                          | 1                                           | 14               | 42                                        | 2                | 1                |
| Burial #                            | F35                  | F35                  | F35                  | F35                      | F35                  | F35                  | F35                        | F35                                         | F48              | F48                                       | F48              | F48              |
| Level                               | 24                   | 24                   | 24                   | 24                       | 24                   | 24                   | 24                         | 24                                          | 25               | 25                                        | 25               | 25               |
| Layer                               | 5                    | 5                    | S                    | S                        | 5                    | S                    | 5                          | S                                           | 5                | 5                                         | S                | S                |
| Block                               | 48                   | 4S                   | 4S                   | 4S                       | 4S                   | 4S                   | 4S                         | 4S                                          | NS               | SN                                        | SN               | SN               |
| Unit                                | AB7                  | AB7                  | AB7                  | AB7                      | AB7                  | AB7                  | AB7                        | AB7                                         | AB7              | AB7                                       | AB7              | AB7              |
| Quantity                            | 213                  | 213                  | 213                  | 213                      | 213                  | 213                  | 213                        | 213                                         | 99               | 56                                        | 4                | 4                |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific           | Indo-<br>Pacific                            | Indo-<br>Pacific | Indo-<br>Pacific                          | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 2732                 | 2732                 | 2732                 | 2732                     | 2732                 | 2732                 | 2732                       | 2732                                        | 3284             | 3284                                      | 3278             | 3278             |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei            | Angkor<br>Borei                             | Angkor<br>Borei  | Angkor<br>Borei                           | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02574<br>AKC02575 | AKC02574<br>AKC02575 | AKC02574<br>AKC02575 | AKC02574<br>AKC02575     | AKC02574<br>AKC02575 | AKC02574<br>AKC02575 | AKC02574<br>AKC02575       | AKC02574<br>AKC02575                        | AKC02576         | AKC02576                                  | AKC02577         | AKC02577         |

| Notes                               |                  |                  |                  |                  |                          | AB1140           | AB116V                   | AB115V                   | AB1170           | Heavily weathered glass (?) hexagonal short barrel bead. L: 12.08 W: 13.12 IPA: 2:05 IPB: 2.43 |
|-------------------------------------|------------------|------------------|------------------|------------------|--------------------------|------------------|--------------------------|--------------------------|------------------|------------------------------------------------------------------------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | < 2              | 7                | 2                | < 2              | 2                        | 2                | < > 2                    | 2                        | 2                |                                                                                                |
| Glass                               | Opaque<br>Orange | Opaque<br>Black  | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Orange | White/Cre<br>am                                                                                |
| Glass<br>Quantit<br>y               | _                | 7                | 6                | 2                | 13                       | 1                | 1                        | 1                        | 1                | _                                                                                              |
| Burial #                            | F48              | F26              | F26              | F26              | F26                      | F26              | F26                      | F26                      | F26              |                                                                                                |
| Level                               | 25               | 23               | 23               | 23               | 23                       | 23               | 23                       | 23                       | 23               | 16                                                                                             |
| Layer                               | 5                | 7                | 7                | 7                | 7                        | 7                | 7                        | 7                        | 7                | 7                                                                                              |
| Block Layer                         | SN               | 2N/3N            | 2N/3N            | 2N/3N            | 2N/3N                    | AB7 2N/3N        | 2N/3N                    | 2N/3N                    | 2N/3N            | 2                                                                                              |
| Unit                                | AB7              | AB7              | AB7              | AB7              | AB7                      | AB7              | AB7                      | AB7                      | AB7              | AB7                                                                                            |
| Quantity                            | 4                | 35               | 35               | 35               | 35                       | 35               | 35                       | 35                       | 35               | 1                                                                                              |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Hexagonal short barrel                                                                         |
| Cat<br>Number                       | 3278             | 2792             | 2792             | 2792             | 2792                     | 2792             | 2792                     | 2792                     | 2792             | 1432                                                                                           |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei                                                                                |
| Database<br>ID                      | AKC02577         | AKC02578         | AKC02578         | AKC02578         | AKC02578                 | AKC02578         | AKC02578                 | AKC02578                 | AKC02578         | AKC02580                                                                                       |

| tes                                 |                          |                  |                  | arks on ce?             |                  |                  |                  |                                    |                  | eathered,<br>ical               | elieved to<br>but was                             | elieved to<br>but was<br>ss                       |
|-------------------------------------|--------------------------|------------------|------------------|-------------------------|------------------|------------------|------------------|------------------------------------|------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|
| Notes                               |                          |                  |                  | Black marks on surface? |                  |                  |                  |                                    |                  | broken, weathered,<br>spherical | Broken. Believed to<br>be garnet but was<br>glass | Broken. Believed to<br>be garnet but was<br>glass |
| Glass<br>Width<br>Categor<br>y (mm) | 2                        | < 2              | 2                | 2                       | 7                | 4                | 5                | 5                                  | 4                | 10                              |                                                   |                                                   |
| Glass<br>Color                      | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Yellow | White/Cre<br>am         | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Yellow | Opaque<br>Dark<br>Green         | Purple<br>Transluce<br>nt                         | Purple<br>Transluce<br>nt                         |
| Glass<br>Quantit<br>y               | 1                        | 1                | 6                | 1                       | 1                | 1                | 2                | 1                                  | _                | -                               | 1                                                 | 1                                                 |
| Burial #                            | F31                      | F31              | F31              |                         |                  |                  |                  |                                    |                  |                                 |                                                   |                                                   |
| Level                               | 20                       | 20               | 20               | 21                      | 12               | 12               | 12               | 12                                 | 12               | 12                              |                                                   |                                                   |
| Block Layer                         | 7                        | L                | 7                | 7                       | 5                | 5                | 5                | 5                                  | S                | 5                               |                                                   |                                                   |
|                                     | IN                       | NI               | IN<br>N          | 3N                      | 7                | 7                | 2                | 2                                  | 2                | 2                               |                                                   |                                                   |
| Unit                                | AB7                      | AB7              | AB7              | AB7                     | AB7              | AB7              | AB7              | AB7                                | AB7              | AB7                             |                                                   |                                                   |
| Quantity                            | 11                       | 11               | 11               | 1                       | L                | L                | <i>L</i>         | L                                  | 7                | 7                               | 1                                                 | 1                                                 |
| Bead<br>Shape                       | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific        | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific                | Indo-<br>Pacific?                                 | Indo-<br>Pacific?                                 |
| Cat<br>Number                       | 2448                     | 2448             | 2448             | 1827                    | 1313             | 1313             | 1313             | 1313                               | 1313             | 1313                            | 1386                                              | 1314                                              |
| Site Name                           | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei         | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei                 | Angkor<br>Borei                                   | Angkor<br>Borei                                   |
| Database<br>ID                      | AKC02581                 | AKC02581         | AKC02581         | AKC02582                | AKC02583         | AKC02583         | AKC02583         | AKC02583                           | AKC02583         | AKC02583                        | AKC02584                                          | AKC02585                                          |

|                                     |                              |                  |                              |                              |                              |                  |                  |                              | υ                                                                              |                  |                  |
|-------------------------------------|------------------------------|------------------|------------------------------|------------------------------|------------------------------|------------------|------------------|------------------------------|--------------------------------------------------------------------------------|------------------|------------------|
| Notes                               | L: 6.74                      |                  |                              |                              | L: 3.02                      | L: 5.55          | L: 4.76          | L: 5.37                      | L: 8.36 W:8.45.<br>Spherical shape, one<br>end is slightly<br>pointed. Not IP? |                  |                  |
| Glass<br>Width<br>Categor<br>y (mm) | S                            | 3.5              | 5.5                          | 6.5                          | 6.5                          | 2.5              | 3                | 6.5                          | 8.5                                                                            | 4.5              | 3.5              |
| Glass                               | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow | Transluce<br>nt Dark<br>Blue | Transluce<br>nt Dark<br>Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Red    | Opaque<br>Orange | Transluce<br>nt Dark<br>Blue | Transluce<br>nt Dark<br>Blue                                                   | Opaque<br>Yellow | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | 1                            | 1                | 3                            | 3                            | 1                            | 1                | 1                | 1                            | 1                                                                              | 1                | 1                |
| Burial#                             | F16                          | F16              | F16                          | F16                          |                              |                  |                  |                              |                                                                                |                  |                  |
| Level                               | 20                           | 20               | 20                           | 20                           | <b>«</b>                     | ∞                | ∞                | 4                            | 12                                                                             | 12               | 12               |
| Layer                               | 7                            | 7                | 7                            | 7                            | S                            | 5                | 5                | 2                            | S                                                                              | 5                | S                |
| Block                               | 2N                           | 2N               | 2N                           | 2N                           | 8                            | 3                | 8                | 5                            | 8                                                                              | 8                | 3                |
| Unit                                | AB7                          | AB7              | AB7                          | AB7                          | AB7                          | AB7              | AB7              | AB7                          | AB7                                                                            | AB7              | AB7              |
| Quantity                            | ∞                            | 8                | ∞                            | &                            | 3                            | 3                | 3                |                              | 13                                                                             | 13               | 13               |
| Bead<br>Shape                       | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific             | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific                                                               | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 1767                         | 1767             | 1767                         | 1767                         | 1191                         | 1191             | 1191             | 2066                         | 1326                                                                           | 1326             | 1326             |
| Site Name                           | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei              | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei                                                                | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02586                     | AKC02586         | AKC02586                     | AKC02586                     | AKC02587                     | AKC02587         | AKC02587         | AKC02588                     | AKC02589                                                                       | AKC02589         | AKC02589         |

| Notes                               |                          |                  |                  |                  |                  |                  |                                    |                                    | L: 2.6. Believed to<br>be garnet but found<br>was glass |                  |                                    |
|-------------------------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------------------------|------------------------------------|---------------------------------------------------------|------------------|------------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2.5                      | 2.5              | 2.5              | 3.5              | 5                | 5.5              | 4.5                                | 6.5                                | 5.5                                                     | 4                | 8                                  |
| Glass                               | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Trans/Sem<br>i-Trans<br>Light Blue | Purple                                                  | Blue-<br>Green   | Trans/Sem<br>i-Trans<br>Light Blue |
| Glass<br>Quantit<br>y               | 1                        | 1                | 3                | 1                | 1                | 1                | 1                                  | -                                  | 1                                                       | 1                | _                                  |
| Burial#                             |                          |                  |                  |                  |                  |                  |                                    |                                    |                                                         |                  |                                    |
| Level                               | 12                       | 12               | 12               | 12               | 12               | 12               | 12                                 | 12                                 | 7                                                       | 7                | 7                                  |
| Layer                               | 5                        | 5                | 5                | 5                | 5                | 5                | 5                                  | S                                  | 33                                                      | 3                | 3                                  |
| Block Layer                         | 3                        | 3                | 3                | 3                | 3                | 3                | 3                                  | S.                                 | S                                                       | 5                | S                                  |
| Unit                                | AB7                      | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                                | AB7                                | AB7                                                     | AB7              | AB7                                |
| Quantity                            | 13                       | 13               | 13               | 13               | 13               | 13               | 13                                 | 13                                 | С                                                       | 3                | 3                                  |
| Bead<br>Shape                       | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific                   | Indo-<br>Pacific                                        | Indo-<br>Pacific | Indo-<br>Pacific                   |
| Cat<br>Number                       | 1326                     | 1326             | 1326             | 1326             | 1326             | 1326             | 1326                               | 1326                               | 2111                                                    | 2111             | 2111                               |
| Site Name                           | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei                    | Angkor<br>Borei                                         | Angkor<br>Borei  | Angkor<br>Borei                    |
| Database<br>ID                      | AKC02589                 | AKC02589         | AKC02589         | AKC02589         | AKC02589         | AKC02589         | AKC02589                           | AKC02589                           | AKC02590                                                | AKC02590         | AKC02590                           |

| Notes                               | L: 2.93. Believed to<br>be garnet but found<br>was glass | Broken.<br>Measurements- L:<br>11.81 W:6.4<br>Thickness: 4.46 IP: |                                    | Broken square barrel         | Measurements: L: 10.83 W: 14.29 IPA: 3.86 IPB: 4.02 | fragments                          | L: 5.10                 | L: 5.46                      | L: 6.23          |
|-------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|------------------------------|-----------------------------------------------------|------------------------------------|-------------------------|------------------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4                                                        |                                                                   | S                                  |                              |                                                     |                                    | 7                       | 6.5                          | 7.5              |
| Glass                               | Purple                                                   | Opaque<br>Yellow                                                  | Trans/Sem<br>i-Trans<br>Light Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow                                    | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Dark<br>Green | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | -                                                        |                                                                   | -                                  | 1                            | 1                                                   | -                                  | 1                       | 1                            | 1                |
| Burial #                            |                                                          |                                                                   |                                    |                              |                                                     |                                    |                         |                              |                  |
| Level                               | 17                                                       | 15                                                                | 15                                 | 15                           | ∞                                                   | 9                                  | 9                       | 9                            | 9                |
| Layer                               | 7                                                        | 9                                                                 | 9                                  | 9                            | 8                                                   | 3                                  | 8                       | 8                            | 3                |
| Block Layer                         | 2N                                                       | 2                                                                 | 2                                  | 2                            | 2                                                   | 2                                  | 2                       | 2                            | 2                |
| Unit                                | AB7                                                      | AB7                                                               | AB7                                | AB7                          | AB7                                                 | AB7                                | AB7                     | AB7                          | AB7              |
| Quantity                            | -                                                        | 8                                                                 | ε                                  | 3                            | 1                                                   | 4                                  | 4                       | 4                            | 4                |
| Bead<br>Shape                       | Indo-<br>Pacific                                         | Indo-<br>Pacific?                                                 | Indo-<br>Pacific?                  | Indo-<br>Pacific?            | Wound<br>faience?                                   | Indo-<br>Pacific                   | Indo-<br>Pacific        | Indo-<br>Pacific             | Indo-<br>Pacific |
| Cat<br>Number                       | 1467                                                     | 1402                                                              | 1402                               | 1402                         | 2126                                                | 1120                               | 1120                    | 1120                         | 1120             |
| Site Name                           | Angkor<br>Borei                                          | Angkor<br>Borei                                                   | Angkor<br>Borei                    | Angkor<br>Borei              | Angkor<br>Borei                                     | Angkor<br>Borei                    | Angkor<br>Borei         | Angkor<br>Borei              | Angkor<br>Borei  |
| Database<br>ID                      | AKC02591                                                 | AKC02592                                                          | AKC02592                           | AKC02592                     | AKC02593                                            | AKC02594                           | AKC02594                | AKC02594                     | AKC02594         |

| Notes                               | L: 5.42                      | broken fragments                   |                   |                   |                   | L: 20.07 W: 24.69        |                          | Weathered        |                  |                          |
|-------------------------------------|------------------------------|------------------------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|------------------|------------------|--------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 6.5                          | N/A                                | 2.5               | 6.5               | 4.5               |                          | 4                        | 3.5              | 5.5              | 2                        |
| Glass                               | Transluce<br>nt Dark<br>Blue | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Black   | Opaque<br>Yellow  | Opaque<br>Yellow  | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | -                            | -                                  |                   | -                 | _                 | -                        | 1                        |                  | -                | -                        |
| Burial #                            |                              |                                    |                   |                   |                   |                          |                          |                  |                  |                          |
| Level                               | 7                            | 13                                 | 13                | 13                | 13                | 13                       | 13                       | 11               | 11               | 11                       |
| Layer                               | 5                            | 9                                  | 9                 | 9                 | 9                 | 9                        | 9                        | S                | 5                | 5                        |
| Block                               | 33                           | 3                                  | 3                 | 3                 | 3                 | E.                       | 3                        | 3                | 3                | 3                        |
| Unit                                | AB7                          | AB7                                | AB7               | AB7               | AB7               | AB7                      | AB7                      | AB7              | AB7              | AB7                      |
| Quantity                            | 1                            | 9                                  | 9                 | 9                 | 9                 | 9                        | 9                        | 1                | 7                | 7                        |
| Bead<br>Shape                       | Indo-<br>Pacific             | Indo-<br>Pacific?                  | Indo-<br>Pacific? | Indo-<br>Pacific? | Indo-<br>Pacific? | Indo-<br>Pacific?        | Indo-<br>Pacific?        | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         |
| Cat<br>Number                       | 1163                         | 1358                               | 1358              | 1358              | 1358              | 1358                     | 1358                     | 1289             | 1292             | 1292                     |
| Site Name                           | Angkor<br>Borei              | Angkor<br>Borei                    | Angkor<br>Borei   | Angkor<br>Borei   | Angkor<br>Borei   | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          |
| Database<br>ID                      | AKC02595                     | AKC02596                           | AKC02596          | AKC02596          | AKC02596          | AKC02596                 | AKC02596                 | AKC02597         | AKC02598         | AKC02598                 |

|                                     |                              |                  |                  |                  |                  |                  |                  |                          |                          |                          |                  |                  | ,                |
|-------------------------------------|------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|--------------------------|--------------------------|------------------|------------------|------------------|
| Notes                               |                              |                  |                  |                  |                  |                  |                  |                          |                          |                          |                  | dark stripes     |                  |
| Glass<br>Width<br>Categor<br>y (mm) | 4                            | 4.5              | 3.5              | 3                | 2                | 3.5              | 4                | 9                        | 3.5                      | 3                        | 3                | 4                | 4                |
| Glass                               | Transluce<br>nt Dark<br>Blue | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | 1                            | 1                | 1                | 1                | 1                | 1                | 1                | 1                        | 1                        | 1                        | 1                | 1                | 1                |
| Burial#                             |                              |                  |                  |                  |                  |                  |                  |                          |                          |                          |                  |                  |                  |
| Level                               | 11                           | 11               | 11               | 11               | 11               | 12               | 13               | 11                       | 11                       | 11                       | 11               | 11               | 11               |
| Layer                               | 5                            | 5                | 5                | 5                | 5                | 5                | 9                | 9                        | 9                        | 9                        | 9                | 9                | 9                |
| Unit Block Layer                    | 3                            | 3                | 3                | 3                | 3                | 3                | 8                | 3                        | 3                        | 3                        | 8                | 3                | 3                |
| Unit                                | AB7                          | AB7              | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                      | AB7                      | AB7                      | AB7              | AB7              | AB7              |
| Quantity                            | 7                            | 7                | 7                | 7                | 7                | 1                | -                | 8                        | 8                        | 8                        | ∞                | 8                | ∞                |
| Bead<br>Shape                       | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat                                 | 1292                         | 1292             | 1292             | 1292             | 1292             | 1325             | 1357             | 1386                     | 1386                     | 1386                     | 1386             | 1386             | 1386             |
| Site Name                           | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02598                     | AKC02598         | AKC02598         | AKC02598         | AKC02598         | AKC02599         | AKC02600         | AKC02601                 | AKC02601                 | AKC02601                 | AKC02601         | AKC02601         | AKC02601         |

|                                     |                  | I                                     |                          |                         | 1                |                  |                  |                  |                  | 1                |                                       |
|-------------------------------------|------------------|---------------------------------------|--------------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------------------------|
| Notes                               | 6.27             |                                       |                          | 5.67 mm                 |                  |                  |                  |                  |                  |                  |                                       |
| Glass<br>Width<br>Categor<br>y (mm) | 3                | 4                                     | < 2                      | 4                       | 5                | 3                | 2                | 3.5              | 4                | 3                | 4.5                                   |
| Glass                               | Opaque<br>Orange | Trans/Se<br>mi-Trans<br>Light<br>Blue | Opaque<br>Light<br>Green | Opaque<br>Light<br>Blue | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Red    | Trans/Se<br>mi-Trans<br>Light<br>Blue |
| Glass<br>Quantit<br>y               | -                | -                                     | 1                        | 1                       | 1                |                  |                  | 1                | 1                | 1                |                                       |
| Burial #                            |                  |                                       |                          |                         |                  |                  |                  |                  |                  |                  |                                       |
| Level                               | 11               | 11                                    | 15                       | 16                      | 16               | 16               | 17               | 17               | 18               | 19               | 20                                    |
| Layer                               | 9                | 9                                     | 9                        | 7                       | 7                | 7                | 7                | 7                | 7                | 7                | 7                                     |
| Unit Block Layer                    | 3                | ĸ                                     | П                        | 3                       | 3                | 3                | 3                | 3                | 3                | 3n               | 35                                    |
| Unit                                | AB7              | AB7                                   | AB7                      | AB7                     | AB7              | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                                   |
| Quantity                            | ∞                | ∞                                     | 1                        | 1                       | 2                | 2                | 2                | 2                | 1                | -                | 3                                     |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific                      | Indo-<br>Pacific         | Indo-<br>Pacific        | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                      |
| Cat<br>Number                       | 1386             | 1386                                  | 1397                     | 1429                    | 1428             | 1428             | 1451             | 1451             | 1478             | 1506             | 1613                                  |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei                       | Angkor<br>Borei          | Angkor<br>Borei         | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                       |
| Database<br>ID                      | AKC02601         | AKC02601                              | AKC02602                 | AKC02604                | AKC02605         | AKC02605         | AKC02607         | AKC02607         | AKC02609         | AKC02610         | AKC02611                              |

| r                                   | ı                | ı — —            |                              | 1                            |                          |                          | 1                |                  |                  |                  |                  |                  |
|-------------------------------------|------------------|------------------|------------------------------|------------------------------|--------------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Notes                               |                  |                  |                              |                              |                          |                          |                  |                  |                  |                  |                  |                  |
| Glass<br>Width<br>Categor<br>y (mm) | 2                | 3.5              | 4.5                          | \$                           | 2                        | 2.5                      | < 2              | 3                | 2                | 3                | 3                | 3                |
| Glass                               | Opaque<br>Yellow | Opaque<br>Yellow | Transluce<br>nt Dark<br>Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | White/Cr<br>eam  | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    |
| Glass<br>Quantit<br>y               | 1                | 1                | 1                            | 1                            | 1                        | 1                        | 1                | 1                | 1                | 1                | 1                | 1                |
| Burial #                            |                  |                  |                              |                              |                          |                          |                  |                  |                  | 10               | 10               | 10               |
| Level                               | 20               | 20               | 22                           | 22                           | 22                       | 22                       | 22               | 22               | 22               | 9                | 9                | 9                |
| Layer                               | 7                | 7                | 7                            | 7                            | 7                        | 7                        | 7                | 7                | 7                | S                | S                | 5                |
| Unit Block Layer                    | 35               | 35               | 35                           | 35                           | 35                       | 35                       | 35               | 35               | 35               | 3                | 3                | 3                |
| Unit                                | AB7              | AB7              | AB7                          | AB7                          | AB7                      | AB7                      | AB7              | AB7              | AB7              | AB7              | AB7              | AB7              |
| Quantity                            | 3                | 3                | 7                            | 7                            | 7                        | 7                        | 7                | 7                | 7                | 5                | 5                | 5                |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific             | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 1613             | 1613             | 2487                         | 2487                         | 2487                     | 2487                     | 2487             | 2487             | 2487             | 1255             | 1255             | 1255             |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei              | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02611         | AKC02611         | AKC02612                     | AKC02612                     | AKC02612                 | AKC02612                 | AKC02612         | AKC02612         | AKC02612         | AKC02613         | AKC02613         | AKC02613         |

| Notes                               |                                       |                          |                          |                  |                     |                          |                     |                  |                  | 8.22 mm long     |
|-------------------------------------|---------------------------------------|--------------------------|--------------------------|------------------|---------------------|--------------------------|---------------------|------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 3                                     | 2.5                      | 2.5                      | 2                | S                   | ς,                       | S                   | 4                | 3.5              | 2.5              |
| Glass                               | Trans/Se<br>mi-Trans<br>Light<br>Blue | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Dark Blue | Opaque<br>Light<br>Green | Opaque<br>Dark Blue | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | -                                     | -                        |                          |                  |                     | -                        |                     | -                |                  |                  |
| Burial#                             | 10                                    | 10                       |                          |                  |                     |                          |                     |                  |                  |                  |
| Level                               | 9                                     | 9                        | 21                       | 23               | 6                   | 6                        | 6                   | 6                | 6                | 6                |
| Layer                               | \$                                    | 5                        | 7                        | 7                | 5                   | 5                        | 5                   | S                | 5                | 5                |
| Block                               | E                                     | 3                        | 35                       | 35               | 3                   | 3                        | 3                   | 3                | 3                | 3                |
| Unit                                | AB7                                   | AB7                      | AB7                      | AB7              | AB7                 | AB7                      | AB7                 | AB7              | AB7              | AB7              |
| Quantity                            | S                                     | 5                        | 1                        | П                | 9                   | 9                        | 9                   | 9                | 9                | 9                |
| Bead<br>Shape                       | Indo-<br>Pacific                      | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific    | Indo-<br>Pacific         | Indo-<br>Pacific    | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 1255                                  | 1255                     | 1732                     | 2635             | 1223                | 1223                     | 1223                | 1223             | 1223             | 1223             |
| Site Name                           | Angkor<br>Borei                       | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei     | Angkor<br>Borei          | Angkor<br>Borei     | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02613                              | AKC02613                 | AKC02614                 | AKC02615         | AKC02616            | AKC02616                 | AKC02616            | AKC02616         | AKC02616         | AKC02616         |

| Notes                               |                                    |                     |                  | 8.01 mm long        |                  |                  |                  |                  |                      |                      |                  |                  |
|-------------------------------------|------------------------------------|---------------------|------------------|---------------------|------------------|------------------|------------------|------------------|----------------------|----------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 3.5                                | 4                   | 4.5              | 2                   | 2.5              | 2                | 7                | 3                | 4.5                  | 33                   | 3.5              | 4                |
| Glass                               | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>dark blue | Opaque<br>Yellow | Opaque<br>Dark Blue | Opaque<br>Red    | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Light Blue | Opaque<br>Light Blue | Opaque<br>Red    | Opaque<br>Orange |
| Glass<br>Quantit<br>y               | -                                  | -                   | -                |                     | 1                | 1                | 3                | 2                | 2                    | 2                    | 7                | 1                |
| Burial#                             |                                    |                     |                  |                     |                  |                  |                  |                  |                      |                      |                  |                  |
| Level                               | 6                                  | S                   | 9                | 9                   | 4                | 4                | 16               | 16               | 16                   | 16                   | 16               | 16               |
|                                     | S                                  | 4                   | 4                | 4                   | 2                | 2                | 4                | 4                | 4                    | 4                    | 4                | 4                |
| Unit Block Layer                    | E                                  | 3                   | 3                | Е                   | 3                | 3                | 9                | 9                | 9                    | 9                    | 9                | 9                |
| Unit                                | AB7                                | AB7                 | AB7              | AB7                 | AB7              | AB7              | AB7              | AB7              | AB7                  | AB7                  | AB7              | AB7              |
| Quantity                            | _                                  | 1                   | 2                | 2                   | 7                | 2                | 18               | 18               | 18                   | 18                   | 18               | 18               |
| Bead<br>Shape                       | Indo-<br>Pacific                   | Indo-<br>Pacific    | Indo-<br>Pacific | Indo-<br>Pacific    | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 1222                               | 1101                | 1135             | 1135                | 1066             | 1066             | 2208             | 2208             | 2208                 | 2208                 | 2208             | 2208             |
| Site Name                           | Angkor<br>Borei                    | Angkor<br>Borei     | Angkor<br>Borei  | Angkor<br>Borei     | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02618                           | AKC02619            | AKC02620         | AKC02620            | AKC02621         | AKC02621         | AKC02622         | AKC02622         | AKC02622             | AKC02622             | AKC02622         | AKC02622         |

| Notes                               |                  |                  | 6.75 mm long     |                               | 5.23 mm long         |                  | orange stripes   |                                                                                             |                  |                          |                  |
|-------------------------------------|------------------|------------------|------------------|-------------------------------|----------------------|------------------|------------------|---------------------------------------------------------------------------------------------|------------------|--------------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4.5              | 3.5              | 3.5              | 3.5                           | κ                    | 3                | 4                | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | С                | 2.5                      | 2.5              |
| Glass                               | Opaque<br>Red    | Opaque<br>Black  | Opaque<br>Orange | blue w/<br>pinkish<br>stripes | Opaque<br>Light Blue | Opaque<br>Yellow | Opaque<br>Yellow | Opaque<br>Orange                                                                            | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | -                | 1                |                  | -                             | -                    | -                |                  |                                                                                             |                  | -                        | 1                |
| Burial #                            |                  |                  |                  |                               |                      |                  |                  |                                                                                             |                  |                          |                  |
| Level                               | 16               | 16               | 16               | 16                            | 16                   | 16               | 25               | 23                                                                                          | 20               | 20                       | 20               |
| Layer                               | 4                | 4                | 4                | 4                             | 4                    | 4                | 5                | 5                                                                                           | 5                | 5                        | 5                |
| Unit Block Layer                    | 9                | 9                | 9                | 9                             | 9                    | 9                | SN               | 5S                                                                                          | 5                | S                        | 5                |
| Unit                                | AB7              | AB7              | AB7              | AB7                           | AB7                  | AB7              | AB7              | AB7                                                                                         | AB7              | AB7                      | AB7              |
| Quantity                            | 18               | 18               | 18               | 18                            | 18                   | 18               | -                | -                                                                                           | 4                | 4                        | 4                |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific              | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                                                                            | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific |
| Cat<br>Number                       | 2208             | 2208             | 2208             | 2208                          | 2208                 | 2208             | 3216             | 2446                                                                                        | 2326             | 2326                     | 2326             |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei               | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                                                                             | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  |
| Database<br>ID                      | AKC02622         | AKC02622         | AKC02622         | AKC02622                      | AKC02622             | AKC02622         | AKC02623         | AKC02624                                                                                    | AKC02625         | AKC02625                 | AKC02625         |

| Notes                               | Weathered        |                  |                          |                  |                          |                          |                  |                          | Also found with a slag piece |                  |                  |                              |
|-------------------------------------|------------------|------------------|--------------------------|------------------|--------------------------|--------------------------|------------------|--------------------------|------------------------------|------------------|------------------|------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2                | 3                | 2                        | 2                | 3.5                      | < 2                      | 4                | E                        | 4                            | 3                | 4                | 4                            |
| Glass                               | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Black  | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Red                | Opaque<br>Red    | Opaque<br>Yellow | Transluce<br>nt Dark<br>Blue |
| Glass<br>Quantit<br>y               | 1                | 1                | 1                        | 1                | 1                        | 1                        | 1                | 1                        | 1                            | 3                | 2                | 2                            |
| Burial #                            |                  |                  |                          |                  |                          |                          |                  |                          |                              |                  |                  |                              |
| Level                               | 20               | 19               | 18                       | 18               | 18                       | 18                       | 18               | 18                       | 18                           | 16               | 16               | 16                           |
| Layer                               | v                | S                | 4                        | 4                | 4                        | 4                        | 4                | 4                        | 4                            | 4                | 4                | 4                            |
| Unit Block Layer                    | 5                | S                | 5                        | 5                | 2                        | 5                        | 5                | 2                        | 5                            | 5                | 5                | S                            |
| Unit                                | AB7              | AB7              | AB7                      | AB7              | AB7                      | AB7                      | AB7              | AB7                      | AB7                          | AB7              | AB7              | AB7                          |
| Quantity                            | 4                | -                | 7                        | 7                | 7                        | 7                        | 7                | 7                        | 7                            | 14               | 14               | 14                           |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             |
| Cat<br>Number                       | 2326             | 2306             | 2292                     | 2292             | 2292                     | 2292                     | 2292             | 2292                     | 2292                         | 2251             | 2251             | 2251                         |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              |
| Database<br>ID                      | AKC02625         | AKC02626         | AKC02627                 | AKC02627         | AKC02627                 | AKC02627                 | AKC02627         | AKC02627                 | AKC02627                     | AKC02628         | AKC02628         | AKC02628                     |

| Notes                               |                      |                      |                  | 5.50 mm long     |                              |                          |                  |                  |                                    |                  |                  | 7.57 mm long     |
|-------------------------------------|----------------------|----------------------|------------------|------------------|------------------------------|--------------------------|------------------|------------------|------------------------------------|------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2                    | 4.5                  | 3.5              | 4                | 3                            | 3.5                      | 3                | 3.5              | 3                                  | 3                | 4                | 4                |
| Glass                               | Opaque<br>Light Blue | Opaque<br>Light Blue | Opaque<br>Red    | Opaque<br>Red    | Transluce<br>nt Dark<br>Blue | Opaque<br>Light<br>Green | Opaque<br>Yellow | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Orange |
| Glass<br>Quantit<br>y               | 1                    | 1                    | 1                | 1                | 1                            | 1                        | 1                | 2                | 3                                  | 2                | 2                | 1                |
| Burial#                             |                      |                      |                  |                  |                              |                          |                  |                  |                                    |                  |                  |                  |
| Level                               | 16                   | 16                   | 16               | 16               | 16                           | 16                       | 16               | 15               | 15                                 | 15               | 15               | 15               |
|                                     | 4                    | 4                    | 4                | 4                | 4                            | 4                        | 4                | 4                | 4                                  | 4                | 4                | 4                |
| Unit Block Layer                    | S                    | S                    | S                | 5                | 5                            | 5                        | 5                | S                | 5                                  | S                | S                | 5                |
| Unit                                | AB7                  | AB7                  | AB7              | AB7              | AB7                          | AB7                      | AB7              | AB7              | AB7                                | AB7              | AB7              | AB7              |
| Quantity                            | 14                   | 14                   | 14               | 14               | 14                           | 14                       | 14               | 17               | 17                                 | 17               | 17               | 17               |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 2251                 | 2251                 | 2251             | 2251             | 2251                         | 2251                     | 2251             | 2237             | 2237                               | 2237             | 2237             | 2237             |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02628             | AKC02628             | AKC02628         | AKC02628         | AKC02628                     | AKC02628                 | AKC02628         | AKC02629         | AKC02629                           | AKC02629         | AKC02629         | AKC02629         |

|                                     | ı                                  | 1                | 1                | 1                |                  | ı                |                          | 1                                  | ı                | 1                |                  | _                |
|-------------------------------------|------------------------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|------------------------------------|------------------|------------------|------------------|------------------|
| Notes                               |                                    |                  |                  | L: 5.02          |                  |                  |                          | broken                             |                  |                  |                  |                  |
| Glass<br>Width<br>Categor<br>y (mm) | 2.5                                | 8                | 2.5              | 4                | 3.5              | 8                | 4.5                      | 9                                  | 8                | 2.5              | < 2              | 3.5              |
| Glass                               | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Red    | Opaque<br>Light<br>Green | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Red    | Purple           |
| Glass<br>Quantit<br>y               | 1                                  | 1                | 1                | 1                | 1                | 1                | 1                        | 1                                  | 1                | 1                | 1                | 1                |
| Burial#                             |                                    |                  |                  |                  |                  |                  |                          |                                    |                  |                  |                  |                  |
| Level                               | 15                                 | 15               | 15               | 15               | 15               | 15               | 15                       | 41                                 | 14               | 14               | 13               | 13               |
| Layer                               | 4                                  | 4                | 4                | 4                | 4                | 4                | 4                        | 4                                  | 4                | 4                | 4                | 4                |
| Unit Block Layer                    | \$                                 | S                | S                | 5                | 5                | 5                | 5                        | v                                  | 5                | S                | S                | 5                |
| Unit                                | AB7                                | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                      | AB7                                | AB7              | AB7              | AB7              | AB7              |
| Quantity                            | 17                                 | 17               | 17               | 17               | 17               | 17               | 17                       | 3                                  | 3                | 3                | 6                | 6                |
| Bead<br>Shape                       | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 2237                               | 2237             | 2237             | 2237             | 2237             | 2237             | 2237                     | 2222                               | 2222             | 2222             | 2190             | 2190             |
| Site Name                           | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02629                           | AKC02629         | AKC02629         | AKC02629         | AKC02629         | AKC02629         | AKC02629                 | AKC02630                           | AKC02630         | AKC02630         | AKC02631         | AKC02631         |

| Notes                               |                  |                  |                  |                  |                                    |                  |                          |                  |                  |                          |                          |
|-------------------------------------|------------------|------------------|------------------|------------------|------------------------------------|------------------|--------------------------|------------------|------------------|--------------------------|--------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4                | 4.5              | 3.5              | 2.5              | 4                                  | 2                | 2.5                      | 3                | 4                | 4                        | 3                        |
| Glass                               | Opaque<br>Orange | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | -                | 1                | 1                | 1                | 1                                  | 1                | 1                        | 1                | 1                | 1                        | 1                        |
| Burial #                            |                  |                  |                  |                  |                                    |                  |                          |                  |                  |                          |                          |
| Level                               | 13               | 13               | 13               | 13               | 13                                 | 13               | 13                       | 5                | 11               | 11                       | 11                       |
| Layer                               | 4                | 4                | 4                | 4                | 4                                  | 4                | 4                        | 3                | 4                | 4                        | 4                        |
| Unit Block Layer                    | 5                | 5                | S                | 5                | 5                                  | S                | 5                        | 5                | S                | S                        | 5                        |
| Unit                                | AB7              | AB7              | AB7              | AB7              | AB7                                | AB7              | AB7                      | AB7              | AB7              | AB7                      | AB7                      |
| Quantity                            | 6                | 6                | 6                | 6                | 6                                  | 6                | 6                        | 1                | 3                | 3                        | 3                        |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         |
| Cat<br>Number                       | 2190             | 2190             | 2190             | 2190             | 2190                               | 2190             | 2190                     | 2088             | 2159             | 2159                     | 2159                     |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          |
| Database<br>ID                      | AKC02631         | AKC02631         | AKC02631         | AKC02631         | AKC02631                           | AKC02631         | AKC02631                 | AKC02632         | AKC02633         | AKC02633                 | AKC02633                 |

|                                     | 1                    |                      |                      |                      |                      |                      |                       |                      |                      |                          |                          |
|-------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|--------------------------|--------------------------|
| Notes                               |                      |                      |                      |                      |                      |                      | Dark streaks in glass |                      |                      |                          |                          |
| Glass<br>Width<br>Categor<br>y (mm) | 4.5                  | 4.5                  | 4                    | 2.5                  | 2.5                  | 3                    | 3.5                   | 2.5                  | 3                    | 3.5                      | 3                        |
| Glass                               | Opaque<br>Yellow     | Opaque<br>Orange     | Opaque<br>Red        | Opaque<br>Light Blue | Opaque<br>Red        | Opaque<br>Yellow     | Opaque<br>Red         | Opaque<br>Yellow     | Opaque<br>Red        | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | 4                    | 3                    | П                    | 3                    | 6                    | 3                    | 3                     | 1                    | 1                    | -                        | 1                        |
| Burial#                             |                      |                      |                      |                      |                      |                      |                       |                      |                      |                          |                          |
| Level                               | 4                    | 4                    | 4                    | 4                    | 4                    | 4                    | 4                     | 4                    | 4                    | 4                        | 4                        |
| Layer                               | 10                   | 10                   | 10                   | 10                   | 10                   | 10                   | 10                    | 10                   | 10                   | 10                       | 10                       |
| Unit Block Layer                    | S                    | S                    | S                    | S                    | S                    | S                    | S                     | S                    | S                    | S                        | S                        |
| Unit                                | AB7                   | AB7                  | AB7                  | AB7                      | AB7                      |
| Quantity                            | 36                   | 36                   | 36                   | 36                   | 36                   | 36                   | 36                    | 36                   | 36                   | 36                       | 36                       |
| Bead<br>Shape                       | Indo-<br>Pacific      | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific         | Indo-<br>Pacific         |
| Cat<br>Number                       | 2210                 | 2210                 | 2210                 | 2210                 | 2210                 | 2210                 | 2210                  | 2210                 | 2210                 | 2210                     | 2210                     |
| Site Name                           | Angkor<br>Borei       | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei          | Angkor<br>Borei          |
| Database<br>ID                      | AKC02636<br>AKC02637  | AKC02636<br>AKC02637 | AKC02636<br>AKC02637 | AKC02636<br>AKC02637     | AKC02636<br>AKC02637     |

| _ | 1 | $\sim$ |
|---|---|--------|
| O | 3 | Z      |

| Notes                               |                      |                              |                      |                  |                  |                              |                      |                  |                  |                  |                  |                                    |
|-------------------------------------|----------------------|------------------------------|----------------------|------------------|------------------|------------------------------|----------------------|------------------|------------------|------------------|------------------|------------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4.5                  | 3                            | 3.5                  | < 2              |                  | 3                            | 2                    | 2.5              |                  | < 2              | 3                | 2                                  |
| Glass                               | Opaque<br>Dark Blue  | Transluce<br>nt Dark<br>Blue | Opaque<br>Light Blue | Opaque<br>Orange |                  | Transluce<br>nt Dark<br>Blue | Opaque<br>Light Blue | Opaque<br>Yellow |                  | Opaque<br>Red    | Opaque<br>Yellow | Trans/Sem<br>i-Trans<br>Light Blue |
| Glass<br>Quantit<br>y               | -                    | 1                            | 1                    | 1                |                  | 1                            |                      |                  |                  | 1                | -                | -                                  |
| Burial #                            |                      |                              |                      |                  |                  |                              |                      |                  |                  |                  |                  |                                    |
| Level                               | 4                    | 4                            | 4                    | 27               | 20               | 20                           | 20                   | 33               | 6                | 19               | 19               | 21                                 |
| Layer                               | 10                   | 10                           | 10                   | 5                | 4                | 4                            | 4                    | 9                | 3                | 4                | 4                | S                                  |
| Block                               | 5                    | 5                            | 5                    | 48               | 4                | 4                            | 4                    | 4S               | 4                | 4                | 4                | 4                                  |
| Unit                                | AB7                  | AB7                          | AB7                  | AB7              | AB7              | AB7                          | AB7                  | AB7              | AB7              | AB7              | AB7              | AB7                                |
| Quantity                            | 36                   | 36                           | 36                   | 1                | 7                | 2                            | 7                    | 1                |                  | 2                | 2                | 8                                  |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific             | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific                   |
| Cat<br>Number                       | 2210                 | 2210                         | 2210                 | 2984             | 2291             | 2291                         | 2291                 | 3402             | 2123             | 2265             | 2265             | 2342                               |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei              | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei                    |
| Database<br>ID                      | AKC02636<br>AKC02637 | AKC02636<br>AKC02637         | AKC02636<br>AKC02637 | AKC02638         | AKC02639         | AKC02640                     | AKC02640             | AKC02641         | AKC02642         | AKC02643         | AKC02643         | AKC02644                           |

| Notes                               |                                |                          |                          |                  |                  |                              |                  |                     |                     |                  |                          |
|-------------------------------------|--------------------------------|--------------------------|--------------------------|------------------|------------------|------------------------------|------------------|---------------------|---------------------|------------------|--------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2                              | 2                        | 5.5                      | 2                | < 2              | 9                            | 3                | e.                  | 4.5                 | ε                | 3                        |
| Glass                               | Transluce<br>nt Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Orange | Transluce<br>nt Dark<br>Blue | Opaque<br>Orange | Opaque<br>Dark Blue | Opaque<br>Dark Blue | Opaque<br>Red    | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | 1                              | 1                        | 1                        | 1                | 1                | 1                            | 1                | П                   |                     | 1                | 1                        |
| Burial #                            |                                |                          |                          |                  |                  |                              |                  |                     |                     |                  |                          |
| Level                               | 21                             | 21                       | 14                       | 14               | 24               | 13                           | 15               | 15                  | 17                  | 17               | 17                       |
| Layer                               | v                              | S                        | 4                        | 4                | S                | 4                            | 4                | 4                   | 4                   | 4                | 4                        |
| Unit Block Layer                    | 4                              | 4                        | 4                        | 4                | 4S               | 4                            | 4                | 4                   | 4                   | 4                | 4                        |
| Unit                                | AB7                            | AB7                      | AB7                      | AB7              | AB7              | AB7                          | AB7              | AB7                 | AB7                 | AB7              | AB7                      |
| Quantity                            | 3                              | 3                        | 2                        | 2                | 1                | 1                            | 2                | 7                   | 4                   | 4                | 4                        |
| Bead<br>Shape                       | Indo-<br>Pacific               | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific    | Indo-<br>Pacific    | Indo-<br>Pacific | Indo-<br>Pacific         |
| Cat<br>Number                       | 2342                           | 2342                     | 2169                     | 2169             | 2500             | 2163                         | 2191             | 2191                | 2231                | 2231             | 2231                     |
| Site Name                           | Angkor<br>Borei                | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei     | Angkor<br>Borei     | Angkor<br>Borei  | Angkor<br>Borei          |
| Database<br>ID                      | AKC02644                       | AKC02644                 | AKC02646                 | AKC02646         | AKC02647         | AKC02648                     | AKC02649         | AKC02649            | AKC02650            | AKC02650         | AKC02650                 |

| Notes                               |                      |                          | 4.96 mm long         | Dark streaks in glass |                  |                          |                          |                              |                                    |                  |                          |
|-------------------------------------|----------------------|--------------------------|----------------------|-----------------------|------------------|--------------------------|--------------------------|------------------------------|------------------------------------|------------------|--------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 3                    | 3                        | 3                    | 4.5                   | 2                | 4.5                      | 2                        | 4                            | 3                                  | 3                | 3                        |
| Glass                               | Opaque<br>Light Blue | Opaque<br>Light<br>Green | Opaque<br>Light Blue | Opaque<br>Red         | Opaque<br>Orange | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Transluce<br>nt Dark<br>Blue | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Red    | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | 1                    | 1                        | 1                    | 1                     | 1                | 1                        | 1                        | 1                            | 1                                  | 2                | 2                        |
| Burial #                            |                      |                          |                      |                       |                  |                          |                          |                              |                                    |                  |                          |
| Level                               | 17                   | 21                       | 21                   | 22                    | 22               | 4                        | 4                        | 16                           | 16                                 | 15               | 15                       |
| Layer                               | 4                    | 5                        | 5                    | 5                     | 5                | 17                       | 18                       | 4                            | 4                                  | 4                | 4                        |
| Unit Block Layer                    | 4                    | 4                        | 4                    | N4                    | 74<br>N          | 4                        | 4                        | 4                            | 4                                  | 4                | 4                        |
| Unit                                | AB7                  | AB7                      | AB7                  | AB7                   | AB7              | AB7                      | AB7                      | AB7                          | AB7                                | AB7              | AB7                      |
| Quantity                            | 4                    | 2                        | 2                    | 7                     | 2                | П                        |                          | 2                            | 2                                  | 10               | 10                       |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific      | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific             | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific         |
| Cat<br>Number                       | 2231                 | 2302                     | 2302                 | 2380                  | 2380             | 2232                     | 2252                     | 2217                         | 2217                               | 2198             | 2198                     |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei       | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei              | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei          |
| Database<br>ID                      | AKC02650             | AKC02652                 | AKC02652             | AKC02653              | AKC02653         | AKC02654                 | AKC02655                 | AKC02656                     | AKC02656                           | AKC02657         | AKC02657                 |

| Notes                               |                      |                      |                          |                              |                  |                  | 3.56 mm long     |                  |                  |                          |                  |                  |
|-------------------------------------|----------------------|----------------------|--------------------------|------------------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 3.5                  | 5.5                  | 4                        | 3.5                          | 4                | 3                | 2.5              | 2.5              | 3                | 2                        | 3                | 2.5              |
| Glass                               | Opaque<br>Light Blue | Opaque<br>Light Blue | Opaque<br>Light<br>Green | Transluce<br>nt Dark<br>Blue | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Black  |
| Glass<br>Quantit<br>y               | 2                    | 1                    | 1                        | 1                            | 1                | 1                | 1                | 1                | 1                | 1                        | 1                | 5                |
| Burial #                            |                      |                      |                          |                              |                  |                  |                  |                  |                  |                          |                  |                  |
| Level                               | 15                   | 15                   | 15                       | 15                           | 15               | 15               | 15               | 15               | 15               | 25                       | 40               | 23               |
| Layer                               | 4                    | 4                    | 4                        | 4                            | 4                | 4                | 4                | 4                | 4                | ∞                        | 6                | 7                |
| Unit Block Layer                    | 4                    | 4                    | 4                        | 4                            | 4                | 4                | 4                | 4                | 4                | 11S                      | 18               | N                |
| Unit                                | AB7                  | AB7                  | AB7                      | AB7                          | AB7              | AB7              | AB7              | AB7              | AB7              | AB7                      | AB7              | AB7              |
| Quantity                            | 10                   | 10                   | 10                       | 10                           | 10               | 10               | 10               | 10               | 10               | 1                        | 1                | 16               |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific     | Indo-<br>Pacific         | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 2198                 | 2198                 | 2198                     | 2198                         | 2198             | 2198             | 2198             | 2198             | 2198             | 2549                     | 3041             | 2452             |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei      | Angkor<br>Borei          | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02657             | AKC02657             | AKC02657                 | AKC02657                     | AKC02657         | AKC02657         | AKC02657         | AKC02657         | AKC02657         | AKC02659                 | AKC02660         | AKC02661         |

| Notes                               |                  |                          |                  |                  |                  |                          |                  |                  |                          |                  |                  |
|-------------------------------------|------------------|--------------------------|------------------|------------------|------------------|--------------------------|------------------|------------------|--------------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2                | 3.5                      | < 2              | < 2              | 2.5              | 2.5                      | 2                | < 2              | 2                        | < > 2            | 3                |
| Glass                               | Opaque<br>Orange | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Yellow |
| Glass<br>Quantit<br>y               | 11               | 1                        | 1                | -                | 1                | 1                        | -                | 1                | 1                        | П                | 1                |
| Burial #                            |                  |                          |                  |                  |                  |                          |                  |                  |                          |                  |                  |
| Level                               | 23               | 22                       | 22               | 22               | 22               | 21                       | 21               | 21               | 19                       | 18               | 17               |
| Layer                               | 7                | 7                        | 7                | 7                | 7                | 7                        | 7                | 7                | 7                        | 7                | 7                |
| Unit Block Layer                    | Z                | 18                       | Z                | Z                | IN               | 18                       | 18               | Z                | Z                        | Z                | 18               |
| Unit                                | AB7              | AB7                      | AB7              | AB7              | AB7              | AB7                      | AB7              | AB7              | AB7                      | AB7              | AB7              |
| Quantity                            | 16               | 1                        | 3                | 3                | 3                | 2                        | 2                | 1                | 1                        | -                | 1                |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 2452             | 2439                     | 2427             | 2427             | 2427             | 2414                     | 2414             | 5396             | 1687                     | 1559             | 1524             |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02661         | AKC02662                 | AKC02663         | AKC02663         | AKC02663         | AKC02664                 | AKC02664         | AKC02666         | AKC02667                 | AKC02668         | AKC02669         |

| Notes                               |                                    |                  |                  |                         |                  |                              |                  |                                    |                  |                         |                  |
|-------------------------------------|------------------------------------|------------------|------------------|-------------------------|------------------|------------------------------|------------------|------------------------------------|------------------|-------------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 2.5                                | 3.5              | 2                | 3.5                     | 4.5              | 3                            | 2.5              | 2.5                                | 3.5              | 8                       | 3                |
| Glass                               | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Dark<br>Green | Opaque<br>Orange | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Orange | Opaque<br>Dark<br>Green | Opaque<br>Red    |
| Glass<br>Quantit<br>y               | 1                                  | 7                | 2                | 1                       | -                | 1                            | 2                | -                                  | 1                | 8                       | 2                |
| Burial #                            |                                    |                  |                  |                         |                  |                              |                  |                                    |                  |                         |                  |
| Level                               | 16                                 | 16               | 16               | 16                      | 16               | 16                           | 16               | 16                                 | 16               | 16                      | 13               |
| Layer                               | 7                                  | 7                | 7                | 7                       | 7                | 7                            | 7                | 7                                  | 7                | 7                       | 5                |
| Unit Block Layer                    | 11S                                | 18               | 18               | 18                      | 18               | 18                           | 18               | 11S                                | 18               | -                       | 1                |
| Unit                                | AB7                                | AB7              | AB7              | AB7                     | AB7              | AB7                          | AB7              | AB7                                | AB7              | AB7                     | AB7              |
| Quantity                            | 13                                 | 13               | 13               | 13                      | 13               | 13                           | 13               | 13                                 | 13               | 3                       | 2                |
| Bead                                | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific        | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific        | Indo-<br>Pacific |
| Cat<br>Number                       | 1459                               | 1459             | 1459             | 1459                    | 1459             | 1459                         | 1459             | 1459                               | 1459             | 1456                    | 1337             |
| Site Name                           | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei         | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei         | Angkor<br>Borei  |
| Database<br>ID                      | AKC02670                           | AKC02670         | AKC02670         | AKC02670                | AKC02670         | AKC02670                     | AKC02670         | AKC02670                           | AKC02670         | AKC02671                | AKC02672         |

| Notes                               |                      |                  | AB011BT                      | AB010BT              |                  |                  |                              |                  | 4.32 mm long                       |                  | AB006P                           |
|-------------------------------------|----------------------|------------------|------------------------------|----------------------|------------------|------------------|------------------------------|------------------|------------------------------------|------------------|----------------------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 7                    | 5.5              | 4                            | 4                    | 2.5              | 3                | 2                            | 3                | 3                                  | 2                | 3                                |
| Glass                               | Opaque<br>Light Blue | Opaque<br>Red    | Transluce<br>nt Dark<br>Blue | Opaque<br>Light Blue | Opaque<br>Red    | Opaque<br>Yellow | Transluce<br>nt Dark<br>Blue | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Yellow | Black w/<br>multipule<br>stripes |
| Glass<br>Quantit<br>y               | 1                    | 1                | 1                            | 1                    | 1                | 2                | 1                            | 1                | 1                                  | 1                | 1                                |
| Burial#                             |                      |                  |                              |                      |                  |                  |                              |                  |                                    |                  |                                  |
| Level                               |                      | 3                | 7                            | 7                    | 9                | 4                | 4                            | 4                | 4                                  | 4                | 6                                |
| Unit Block Layer                    |                      | 2                | 3                            | 3                    | 3                | 2                | 2                            | 2                | 2                                  | 2                | ς.                               |
| Block                               |                      | 1                | 1                            | 1                    | 1                | 1                | -                            | 1                | 1                                  | 1                | 1                                |
| Unit                                |                      | AB7              | AB7                          | AB7                  | AB7              | AB7              | AB7                          | AB7              | AB7                                | AB7              | AB7                              |
| Quantity                            |                      | -                | 2                            | 2                    | 1                | 9                | 9                            | 9                | 9                                  | 9                | ∞                                |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific                 |
| Cat<br>Number                       | 1203                 | 1020             | 1145                         | 1145                 | 1114             | 1031             | 1031                         | 1031             | 1031                               | 1031             | 1120                             |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei                  |
| Database<br>ID                      | AKC02673             | AKC02674         | AKC02675                     | AKC02675             | AKC02676         | AKC02679         | AKC02679                     | AKC02679         | AKC02679                           | AKC02679         | AKC02680                         |

|                                     | ı                            | 1                |                                    | 1                                  |                  |                          | 1                            | ı                                  | 1                        | ,                   |
|-------------------------------------|------------------------------|------------------|------------------------------------|------------------------------------|------------------|--------------------------|------------------------------|------------------------------------|--------------------------|---------------------|
| Notes                               | AB002BT                      | AB007R           | AB009BC                            | AB003BT                            | AB004J           | AB008V                   | AB005BC                      | AB056BT                            | 3.96 mm long;<br>AB057BT | AB055BT             |
| Glass<br>Width<br>Categor<br>y (mm) | 4.5                          | 3.5              | 2.5                                | 2.5                                | 2                | 4                        | 4                            | 2.5                                | 3                        | 4                   |
| Glass                               | Transluce<br>nt Dark<br>Blue | Opaque<br>Red    | Trans/Sem<br>i-Trans<br>Light Blue | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Yellow | Opaque<br>Light<br>Green | Transluce<br>nt Dark<br>Blue | Trans/Sem<br>i-Trans<br>Light Blue | Blue-<br>Green           | Opaque<br>Dark Blue |
| Glass<br>Quantit<br>y               | 1                            | 1                | 1                                  | 1                                  | П                | 1                        | 1                            | 1                                  | 1                        | 1                   |
| Burial #                            |                              |                  |                                    |                                    |                  |                          |                              |                                    |                          |                     |
| Level                               | 6                            | 6                | 6                                  | 6                                  | 6                | 6                        | 6                            | 12                                 | 12                       | 12                  |
| Layer                               | S                            | S                | 5                                  | S                                  | S                | S                        | S                            | 5                                  | S                        | S                   |
| Unit Block Layer                    | -                            | -                | 1                                  |                                    | -                | -                        | -                            |                                    | -                        | 1                   |
| Unit                                | AB7                          | AB7              | AB7                                | AB7                                | AB7              | AB7                      | AB7                          | AB7                                | AB7                      | AB7                 |
| Quantity                            | 8                            | ∞                | 8                                  | ∞                                  | ∞                | ∞                        | &                            | 4                                  | 4                        | 4                   |
| Bead<br>Shape                       | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific                   | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific             | Indo-<br>Pacific                   | Indo-<br>Pacific         | Indo-<br>Pacific    |
| Cat                                 | 1120                         | 1120             | 1120                               | 1120                               | 1120             | 1120                     | 1120                         | 1302                               | 1302                     | 1302                |
| Site Name                           | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei                    | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei              | Angkor<br>Borei                    | Angkor<br>Borei          | Angkor<br>Borei     |
| Database<br>ID                      | AKC02680                     | AKC02680         | AKC02680                           | AKC02680                           | AKC02680         | AKC02680                 | AKC02680                     | AKC02681                           | AKC02681                 | AKC02681            |

|                                     |                  |                          |                  |                  |                          |                      |                  |                  |                  |                          |                          |                         | 640 |
|-------------------------------------|------------------|--------------------------|------------------|------------------|--------------------------|----------------------|------------------|------------------|------------------|--------------------------|--------------------------|-------------------------|-----|
| Notes                               | AB058J           | AB085V                   | AB084R           | AB086J           | AB09TV                   | AB0963               | AB098J           | AB095N           | AB082R           |                          | AB083V                   | AB068B                  |     |
| Glass<br>Width<br>Categor<br>y (mm) | 4                | \<br>\<br>\              | 7                | 2                | 2                        | 4                    | 8                | 8                | 3.5              | < 2                      |                          | 4                       |     |
| Glass                               | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Light Blue | Opaque<br>Yellow | Purple           | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Dark<br>Green |     |
| Glass<br>Quantit<br>y               | -                | -                        | -                |                  | -                        | -                    | -                | -                | 1                | 1                        |                          |                         |     |
| Burial #                            |                  |                          |                  |                  |                          |                      |                  |                  |                  |                          |                          |                         |     |
| Level                               | 12               | 23                       | 23               | 23               | 24                       | 24                   | 24               | 24               | 18               | 18                       | 18                       | 13                      |     |
| Layer                               | S                | 7                        | 7                | 7                | ∞                        | ∞                    | ∞                | ∞                | 7                | 7                        | 7                        | S                       |     |
| Block Layer                         | -                | 18                       | 18               | 18               | 18                       | 18                   | 18               | 18               | 18               | 18                       | 18                       | -                       |     |
| Unit                                | AB7              | AB7                      | AB7              | AB7              | AB7                      | AB7                  | AB7              | AB7              | AB7              | AB7                      | AB7                      | AB7                     |     |
| Quantity                            | 4                | 3                        | 3                | 3                | 4                        | 4                    | 4                | 4                | 3                | 3                        | 3                        | 6                       |     |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific        |     |
| Cat<br>Number                       | 1302             | 2471                     | 2471             | 2471             | 2534                     | 2534                 | 2534             | 2534             | 1571             | 1571                     | 1571                     | 1335                    |     |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei         |     |
| Database<br>ID                      | AKC02681         | AKC02684                 | AKC02684         | AKC02684         | AKC02685                 | AKC02685             | AKC02685         | AKC02685         | AKC02686         | AKC02686                 | AKC02686                 | AKC02687                |     |

| Notes                               | AB065BT              | AB06UBT                      | AB066J           |                      | AB060R           | AB061R           | AB062V                   | AB063J           | 7.27 mm long<br>AB0270 | AB026BT          | AB028R           | AB029R           |
|-------------------------------------|----------------------|------------------------------|------------------|----------------------|------------------|------------------|--------------------------|------------------|------------------------|------------------|------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 4                    | 4                            | 3                | 2.5                  | 4                | 3                | 3.5                      | N/A              | 3.5                    | 4                | 4                | 3                |
| Glass                               | Opaque<br>Light Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Yellow | Opaque<br>Light Blue | Opaque<br>Red    | Opaque<br>Red    | Opaque<br>Light<br>Green | Unknown          | Opaque<br>Orange       | Blue-<br>Green   | Opaque<br>Red    | Opaque<br>Red    |
| Glass<br>Quantit<br>y               | -                    | 1                            | 1                |                      | П                | 1                | 1                        | 1                | _                      | 1                | 1                | 1                |
| Burial#                             |                      |                              |                  |                      |                  |                  |                          |                  |                        |                  |                  |                  |
| Level                               | 13                   | 13                           | 13               | 13                   | 13               | 13               | 13                       | 13               | 10                     | 10               | 10               | 10               |
|                                     | S                    | 5                            | 5                | S                    | v                | 5                | 5                        | S                | 5                      | v                | S                | 5                |
| Unit Block Layer                    | -                    | 1                            | 1                | -                    | -                | 1                |                          |                  | -                      | -                | 1                | 1                |
| Unit                                | AB7                  | AB7                          | AB7              | AB7                  | AB7              | AB7              | AB7                      | AB7              | AB7                    | AB7              | AB7              | AB7              |
| Quantity                            | 6                    | 6                            | 6                | 6                    | 6                | 6                | 6                        | 6                | 4                      | 4                | 4                | 4                |
| Bead<br>Shape                       | Indo-<br>Pacific     | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific     | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific |
| Cat<br>Number                       | 1335                 | 1335                         | 1335             | 1335                 | 1335             | 1335             | 1335                     | 1335             | 1232                   | 1232             | 1232             | 1232             |
| Site Name                           | Angkor<br>Borei      | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei      | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei        | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  |
| Database<br>ID                      | AKC02687             | AKC02687                     | AKC02687         | AKC02687             | AKC02687         | AKC02687         | AKC02687                 | AKC02687         | AKC02688               | AKC02688         | AKC02688         | AKC02688         |

| Notes                               | AB018BT                            | AB020J           | AB017V                   | AB021V                   | AB012BC          | AB013B               | AB025BC                      | AB024R           | AB0152BC            | 7.34 mm long;<br>AB014O | AB019O           |
|-------------------------------------|------------------------------------|------------------|--------------------------|--------------------------|------------------|----------------------|------------------------------|------------------|---------------------|-------------------------|------------------|
| Glass<br>Width<br>Categor<br>y (mm) | 3.5                                | 3.5              | 3.5                      | 4                        | 6.5              | 5.5                  | ε                            | 2                | 4                   | 3                       | 2.5              |
| Glass                               | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Black  | Opaque<br>Light Blue | Transluce<br>nt Dark<br>Blue | Opaque<br>Orange | Opaque<br>Dark Blue | Opaque<br>Orange        | Opaque<br>Orange |
| Glass<br>Quantit<br>y               | 1                                  | 1                | 1                        | 1                        | 1                | 1                    | 1                            | 1                | 1                   | 1                       | 1                |
| Burial #                            |                                    |                  |                          |                          |                  |                      |                              |                  |                     |                         |                  |
| Level                               | ∞                                  | ∞                | ∞                        | ∞                        | ∞                | ∞                    | ∞                            | ∞                | ∞                   | ∞                       | ~                |
| Layer                               | S                                  | 5                | 5                        | 5                        | 5                | 5                    | 5                            | 5                | 5                   | 5                       | 5                |
| Unit Block Layer                    | -                                  | -                | -                        | -                        |                  | -                    | -                            | 1                | -                   | -                       | 1                |
| Unit                                | AB7                                | AB7              | AB7                      | AB7                      | AB7              | AB7                  | AB7                          | AB7              | AB7                 | AB7                     | AB7              |
| Quantity                            | 14                                 | 14               | 14                       | 14                       | 14               | 14                   | 14                           | 14               | 14                  | 14                      | 14               |
| Bead<br>Shape                       | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific     | Indo-<br>Pacific             | Indo-<br>Pacific | Indo-<br>Pacific    | Indo-<br>Pacific        | Indo-<br>Pacific |
| Cat<br>Number                       | 1169                               | 1169             | 1169                     | 1169                     | 1169             | 1169                 | 1169                         | 1169             | 1169                | 1169                    | 1169             |
| Site Name                           | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei      | Angkor<br>Borei              | Angkor<br>Borei  | Angkor<br>Borei     | Angkor<br>Borei         | Angkor<br>Borei  |
| Database<br>ID                      | AKC02689                           | AKC02689         | AKC02689                 | AKC02689                 | AKC02689         | AKC02689             | AKC02689                     | AKC02689         | AKC02689            | AKC02689                | AKC02689         |

|                                     |                  |                  |                  |                         |                      |                                         |                          |                  |                  |                          |                      | 1                        |
|-------------------------------------|------------------|------------------|------------------|-------------------------|----------------------|-----------------------------------------|--------------------------|------------------|------------------|--------------------------|----------------------|--------------------------|
| Notes                               | AB022R           | AB016R           | AB023BC          | 7.30 mm long;<br>AB069R | AB073BT              | AB07UR                                  | AB075V                   | AB071O           | AB076J           | AB072V                   | AB070BT              | AB078V                   |
| Glass<br>Width<br>Categor<br>y (mm) | 2.5              | 4.5              | 7                | 3                       | 4                    | 4                                       | 4                        | 4                | 4                | 4                        | 4                    | 3                        |
| Glass                               | Opaque<br>Red    | Opaque<br>Red    | unknown          | Opaque<br>Red           | Opaque<br>Light Blue | Opaque<br>Red                           | Opaque<br>Light<br>Green | Opaque<br>Orange | Opaque<br>Yellow | Opaque<br>Light<br>Green | Opaque<br>Light Blue | Opaque<br>Light<br>Green |
| Glass<br>Quantit<br>y               | -                | -                | -                | 1                       | -                    | _                                       |                          | -                | -                | -                        | -                    | 1                        |
| Burial#                             |                  |                  |                  |                         |                      |                                         |                          |                  |                  |                          |                      |                          |
| Level                               | 8                | ∞                | ∞                | 14                      | 14                   | 14                                      | 14                       | 41               | 14               | 14                       | 14                   | 14                       |
| Layer                               | S                | S                | 5                | 9                       | 9                    | 9                                       | 9                        | 9                | 9                | 9                        | 9                    | 9                        |
| Unit Block Layer                    | -                | -                | П                | 1                       | 1                    | -                                       | -                        | -                | -                | -                        | 1                    | -                        |
| Unit                                | AB7              | AB7              | AB7              | AB7                     | AB7                  | AB7                                     | AB7                      | AB7              | AB7              | AB7                      | AB7                  | AB7                      |
| Quantity                            | 14               | 14               | 14               | 11                      | 11                   | ======================================= | 11                       | 11               | 11               | 11                       | 11                   | 11                       |
| Bead<br>Shape                       | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific        | Indo-<br>Pacific     | Indo-<br>Pacific                        | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific     | Indo-<br>Pacific         |
| Cat<br>Number                       | 1169             | 1169             | 1169             | 99£1                    | 1366                 | 1366                                    | 1366                     | 1366             | 1366             | 1366                     | 1366                 | 1366                     |
| Site Name                           | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei         | Angkor<br>Borei      | Angkor<br>Borei                         | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei      | Angkor<br>Borei          |
| Database<br>ID                      | AKC02689         | AKC02689         | AKC02689         | AKC02691                | AKC02691             | AKC02691                                | AKC02691                 | AKC02691         | AKC02691         | AKC02691                 | AKC02691             | AKC02691                 |

|                                     | ts                       |                                    |                  |                  |                          |                  |                          |                          | (s)                      |                  |
|-------------------------------------|--------------------------|------------------------------------|------------------|------------------|--------------------------|------------------|--------------------------|--------------------------|--------------------------|------------------|
| Notes                               | AB077V; Fragments        | ABOUUBT                            | AB050O           | AB0USN           | AB0U9V                   | AB051R           | AB046V                   | AB048V (broken)          | AB047V (fragments)       |                  |
| Glass<br>Width<br>Categor<br>y (mm) | N/A                      | 5                                  | 3.5              | 3                | 2.5                      | 2.5              | 3.5                      | 4.5                      | N/A                      | 3                |
| Glass                               | Opaque<br>Light<br>Green | Trans/Sem<br>i-Trans<br>Light Blue | Opaque<br>Orange | Opaque<br>Black  | Opaque<br>Light<br>Green | Opaque<br>Red    | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Light<br>Green | Opaque<br>Orange |
| Glass<br>Quantit<br>y               | 1                        | 1                                  | 1                | 1                | 1                        | 1                | 1                        | 1                        | 1                        | 1                |
| Burial#                             |                          |                                    |                  |                  |                          |                  |                          |                          |                          |                  |
| Level                               | 14                       | 12                                 | 12               | 12               | 12                       | 12               | 12                       | 12                       | 12                       | 12               |
| Layer                               | 9                        | S                                  | S                | S                | S                        | 5                | S                        | 5                        | S                        | 5                |
| Block                               | -                        | 1                                  | -                |                  |                          | -                |                          | 1                        |                          | -1               |
| Unit                                | AB7                      | AB7                                | AB7              | AB7              | AB7                      | AB7              | AB7                      | AB7                      | AB7                      | AB7              |
| Quantity                            | 11                       | 10                                 | 10               | 10               | 10                       | 10               | 10                       | 10                       | 10                       | 10               |
| Bead<br>Shape                       | Indo-<br>Pacific         | Indo-<br>Pacific                   | Indo-<br>Pacific | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific         | Indo-<br>Pacific |
| Cat<br>Number                       | 1366                     | 1301                               | 1301             | 1301             | 1301                     | 1301             | 1301                     | 1301                     | 1301                     | 1301             |
| Site Name                           | Angkor<br>Borei          | Angkor<br>Borei                    | Angkor<br>Borei  | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei  | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei          | Angkor<br>Borei  |
| Database<br>ID                      | AKC02691                 | AKC02692                           | AKC02692         | AKC02692         | AKC02692                 | AKC02692         | AKC02692                 | AKC02692                 | AKC02692                 | AKC02692         |

| Notes                                                 |                                    | One clay piece and one gold bead also found. |
|-------------------------------------------------------|------------------------------------|----------------------------------------------|
| ) r                                                   |                                    | One                                          |
| Glass<br>Width<br>Categor<br>y (mm)                   | 3.5                                | 4                                            |
| Glass<br>Color                                        | Trans/Sem<br>i-Trans<br>Light Blue | Trans/Sem<br>i-Trans<br>Light Blue           |
| Glass<br>Quantit<br>y                                 |                                    | 1                                            |
| Burial #                                              |                                    |                                              |
| Level                                                 | 12                                 | 12                                           |
| Layer                                                 | S                                  | 5                                            |
| Block                                                 | 1                                  | 1                                            |
| Unit                                                  | AB7                                | AB7                                          |
| Quantity Unit Block Layer Level Burial# Glass Quantit | 10                                 | 10                                           |
| Bead<br>Shape                                         | Indo-<br>Pacific                   | Indo-<br>Pacific                             |
| Cat<br>Number                                         | 1301                               | 1301                                         |
| Database Site Name<br>ID                              | Angkor<br>Borei                    | Angkor<br>Borei                              |
| Database<br>ID                                        | AKC02692 Angkor<br>Borei           | AKC02692                                     |

Appendix 7.1b: Glass beads from Phnom Borei

| Database ID | Site Name   | Catalogue<br>Number | Bead Shape                 | Total # of<br>beads | Glass Color | Glass Color<br>Notes                | Opacity              |
|-------------|-------------|---------------------|----------------------------|---------------------|-------------|-------------------------------------|----------------------|
| AKC01901    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Red         | Reddish-<br>Brown                   | Opaque               |
| AKC01902    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Red         | Reddish-<br>Brown                   | Opaque               |
| AKC01903    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Red         | Reddish-<br>Brown                   | Opaque               |
| AKC01904    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Red         | Reddish-<br>Brown                   | Opaque               |
| AKC01905    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Red         | Reddish-<br>Brown                   | Opaque               |
| AKC01906    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Red         | Reddish-<br>Brown                   | Opaque               |
| AKC01907    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Yellow      |                                     | Opaque               |
| AKC01908    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Yellow      |                                     | Opaque               |
| AKC01909    | Phnom Borei | N/A                 | Indo-Pacific Bead          | 11                  | Dark Blue   | Dark<br>Turquoise                   | Semi-<br>Translucent |
| AKC01910    | Phnom Borei | N/A                 | Indo-Pacific Bead          | Ξ                   | Black/blue? | Corroded?<br>Has a white<br>coating | Opaque               |
| AKC01912    | Phnom Borei | N/A                 | Large Indo Pacific<br>Bead | 1                   | Dark Blue   | Intense blue<br>color               | Translucent          |

| Opacity              | Translucent       | Opaque            | Opaque            | Opaque            | Transparent        | Opaque                     | Opaque            | Opaque            | Opaque            | Opaque            | Opaque            | Opaque            | Opaque            | Semi-<br>Translucent | Opaque            | Opaque            | Opaque            | Opaque            | Opaque            |
|----------------------|-------------------|-------------------|-------------------|-------------------|--------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Glass Color<br>Notes | Dark<br>Turquoise |                   |                   |                   | Light<br>turquoise |                            |                   |                   |                   |                   |                   |                   | Shiny<br>surface  | Dark<br>Turquoise    |                   |                   |                   |                   |                   |
| Glass Color          | Dark Blue         | Red               | Red               | Red               | Light Blue         | Light Green                | Orange            | Yellow            | Red               | Red               | Red               | Red               | Red               | Dark Blue            | Yellow            | Yellow            | Red               | Red               | Red               |
| Total # of beads     | 1                 | 1                 | 1                 | 1                 | 1                  | 1                          | 7                 | 7                 | 7                 | 7                 | 7                 | 7                 | 7                 | 6                    | 6                 | 6                 | 6                 | 6                 | 6                 |
| Bead Shape           | Indo-Pacific Bead  | Indo-Pacific Micro<br>Bead | Indo-Pacific Bead    | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead |
| Catalogue<br>Number  | N/A               | N/A               | N/A               | N/A               | N/A                | N/A                        | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A                  | N/A               | N/A               | N/A               | N/A               | N/A               |
| Site Name            | Phnom Borei        | Phnom Borei                | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei          | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       |
| Database ID          | AKC01913          | AKC01914          | AKC01915          | AKC01916          | AKC01917           | AKC01918                   | AKC01919          | AKC01920          | AKC01921          | AKC01922          | AKC01923          | AKC01924          | AKC01925          | AKC01926             | AKC01927          | AKC01928          | AKC01929          | AKC01930          | AKC01931          |

| Opacity              | Opaque            | Opaque            | Opaque<br>Translucent                                   | Opaque            | Opaque            | Semi-<br>Translucent | Opaque            |
|----------------------|-------------------|-------------------|---------------------------------------------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Glass Color<br>Notes |                   |                   | Opaque in<br>the middle<br>with<br>translucent<br>edges |                   |                   | Dark<br>Turquoise    |                   |                   |                   |                   |                   |                   |                   |                   |                   | Shiny<br>surface  | Shiny<br>surface  |
| Glass Color          | Red               | Red               | White                                                   | Black             | Black             | Dark Blue            | Light Green       | Orange            | Red               |
| Total # of beads     | 6                 | 6                 | 6                                                       | 15                | 15                | 15                   | 15                | 15                | 15                | 15                | 15                | 15                | 15                | 15                | 15                | 15                | 15                |
| Bead Shape           | Indo-Pacific Bead | Indo-Pacific Bead | Unknown                                                 | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead    | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead |
| Catalogue<br>Number  | N/A               | N/A               | N/A                                                     | N/A               | N/A               | N/A                  | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               |
| Site Name            | Phnom Borei       | Phnom Borei       | Phnom Borei                                             | Phnom Borei       | Phnom Borei       | Phnom Borei          | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       | Phnom Borei       |
| Database ID          | AKC01932          | AKC01933          | AKC01934                                                | AKC01935          | AKC01936          | AKC01937             | AKC01938          | AKC01939          | AKC01940          | AKC01941          | AKC01942          | AKC01943          | AKC01944          | AKC01945          | AKC01946          | AKC01947          | AKC01948          |

| <br>}                | ne                |
|----------------------|-------------------|
| Opacity              | Opaque            |
| Glass Color<br>Notes | Shiny<br>surface  |
| Glass Color          | Red               |
| Total # of<br>beads  | 51                |
| Bead Shape           | Indo-Pacific Bead |
| Catalogue<br>Number  | N/A               |
| Site Name            | Phnom Borei       |
| Database ID          | AKC01949          |

| Notes                         | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) |
|-------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Max.<br>Width                 | 2.73                                                                                   | 2.54                                                                                   | 2.89                                                                                   | 2.68                                                                                   | 5.06                                                                                   | 3.93                                                                                   | 4.85                                                                                   | 4.96                                                                                   |
| Max.<br>Length                | 2.13                                                                                   | 1.84                                                                                   | 1.92                                                                                   | 2.02                                                                                   | 2.33                                                                                   | 2.04                                                                                   | 3.48                                                                                   | 2.51                                                                                   |
| Interior<br>Perforati<br>on B |                                                                                        |                                                                                        |                                                                                        |                                                                                        |                                                                                        |                                                                                        |                                                                                        |                                                                                        |
| Interior<br>Perforatio<br>n A | 1.05                                                                                   | 0.73                                                                                   | 1.21                                                                                   | 1.06                                                                                   | 1.67                                                                                   | 1.27                                                                                   | 1.54                                                                                   | 1.53                                                                                   |
| Roundne<br>ss Factor          | R1                                                                                     | R1                                                                                     | R1                                                                                     | R1                                                                                     | R2                                                                                     | R2                                                                                     | R2                                                                                     | R2                                                                                     |
| Depth                         | 30/40                                                                                  | 30/40                                                                                  | 30/40                                                                                  | 30/40                                                                                  | 30/40                                                                                  | 30/40                                                                                  | 30/40                                                                                  | 30/40                                                                                  |
| Level                         | 150-160                                                                                | 150-160                                                                                | 150-160                                                                                | 150-160                                                                                | 150-160                                                                                | 150-160                                                                                | 150-160                                                                                | 150-160                                                                                |
| Excavation<br>Unit            | II (Speed 3)                                                                           |
| Database<br>ID                | AKC01901                                                                               | AKC01902                                                                               | AKC01903                                                                               | AKC01904                                                                               | AKC01905                                                                               | AKC01906                                                                               | AKC01907                                                                               | AKC01908                                                                               |

| Notes                         | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | Group of 10 glass bead. Also found with these was one stone pebble (burnishing stone?) | In report called a "dark brown bead" |                  |          |                       |          |          |             | Group of 7 glass beads |
|-------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|------------------|----------|-----------------------|----------|----------|-------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Max.<br>Width                 | 3.83                                                                                   | 4.47                                                                                   | 6.26                                 | 3.78             | 2.85     | 3.53                  | 3.13     | 3        | 1.53        | 3.92                   | 4.67                   | 5                      | 4.38                   | 3.4                    | 2.43                   | 2.47                   |
| Max.<br>Length                | 3.65                                                                                   | 2                                                                                      | 6.03                                 | 3.3              | 2.21     | 1.59                  | 2.74     | 1.1      | 1.48        | 4.79                   | 3.6                    | 2.74                   | 2.63                   | 2.54                   | 1.91                   | 1.14                   |
| Interior<br>Perforati<br>on B |                                                                                        |                                                                                        |                                      |                  |          |                       |          |          |             |                        |                        |                        |                        |                        |                        |                        |
| Interior<br>Perforatio<br>n A | 1.03                                                                                   | 1.81                                                                                   | 1.8                                  | 96.0             | 0.87     | 1.17                  | 1.05     | 98.0     | 0           | 1.32                   | 1.46                   | 1.74                   | 1.21                   | 1.42                   | 0                      | 0.77                   |
| Roundne<br>ss Factor          | R2                                                                                     | R2                                                                                     | R2                                   | R2               | R1       | R2                    | R2       | R1       | R1          | R2                     | R2                     | R2                     | R2                     | R2                     | R2                     | R1                     |
| Depth                         | 30/40                                                                                  | 30/40                                                                                  |                                      | 40-50<br>cm      | 30-40    |                       | 02-09    | 90-100   | 70-80<br>cm |                        |                        |                        |                        |                        |                        |                        |
| Level                         | 150-160                                                                                | 150-160                                                                                | 192                                  | 169.5 (-<br>120) | 150-160  |                       | 180-190  |          |             | 140-150                | 140-150                | 140-150                | 140-150                | 140-150                | 140-150                | 140-150                |
| Excavation<br>Unit            | II (Speed 3)                                                                           | II (Speed 3)                                                                           | II                                   | II               | I        | Surface<br>Collection | Ι        | Test Pit | Test Pit    | II                     |
| Database<br>ID                | AKC01909                                                                               | AKC01910                                                                               | AKC01912                             | AKC01913         | AKC01914 | AKC01915              | AKC01916 | AKC01917 | AKC01918    | AKC01919               | AKC01920               | AKC01921               | AKC01922               | AKC01923               | AKC01924               | AKC01925               |

| Notes                         | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze |
|-------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Max.<br>Width                 | 3.4                                         | 2.27                                        | 3.62                                        | 3.53                                        | 3.61                                        | 3.13                                        |
| Max.<br>Length                | 2.29                                        | 2.23                                        | 3.08                                        | 2.49                                        | 2.93                                        | 2.15                                        |
| Interior<br>Perforati<br>on B |                                             |                                             |                                             |                                             |                                             |                                             |
| Interior<br>Perforatio<br>n A | 0.65                                        | 0                                           | 1.25                                        | 1.34                                        | 1.2                                         | 1.09                                        |
| Roundne<br>ss Factor          | R                                           | RI                                          | R2                                          | RI                                          | R2                                          | RI                                          |
| Depth                         | 10-20<br>cm                                 | 10-20<br>cm                                 | 10-20<br>cm                                 | 10-20<br>cm                                 | 10-20<br>cm                                 | 10-20<br>cm                                 |
| Level                         |                                             |                                             |                                             |                                             |                                             |                                             |
| Excavation<br>Unit            |                                             |                                             |                                             |                                             |                                             |                                             |
| Database<br>ID                | AKC01926                                    | AKC01927                                    | AKC01928                                    | AKC01929                                    | AKC01930                                    | AKC01931                                    |

| Notes                         | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze | 9 glass beads, found with a piece of bronze | 15 glass beads, found with a possible piece of charcoal and broken bone. | 15 glass beads, found with a possible piece of charcoal and broken bone. | 15 glass beads, found with a possible piece of charcoal and broken bone. | 15 glass beads, found with a possible piece of charcoal and broken bone. | 15 glass beads, found with a possible piece of charcoal and broken bone. | 15 glass beads, found with a possible piece of charcoal and broken bone. Two beads stuck together? | 653 |
|-------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----|
| Max.<br>Width                 | 2.42                                        | 2.82                                        | 3.27                                        | 4.06                                                                     | 4.5                                                                      | 3.82                                                                     | 5.3                                                                      | 4.24                                                                     | 3.48                                                                                               |     |
| Max.<br>Length                | 2.58                                        | 2.51                                        | 2.81                                        | 4.55                                                                     | 2.71                                                                     | 1.9                                                                      | 3.07                                                                     | 3.26                                                                     | 4.86                                                                                               |     |
| Interior<br>Perforati<br>on B |                                             |                                             |                                             |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          | 0.93                                                                                               |     |
| Interior<br>Perforatio<br>n A | 0.94                                        | 0.68                                        |                                             | 1.48                                                                     | 1.36                                                                     | 1.31                                                                     | 1.67                                                                     | 1.71                                                                     | 1.05                                                                                               |     |
| Roundne<br>ss Factor          | R                                           | R2                                          | AN<br>A                                     | R2                                                                       | R2                                                                       | R1                                                                       | R1                                                                       | R1                                                                       | R2                                                                                                 |     |
| Depth                         | 10-20<br>cm                                 | 10-20<br>cm                                 | 10-20<br>cm                                 | 20-30                                                                    | 20-30                                                                    | 20-30                                                                    | 20-30                                                                    | 20-30                                                                    | 20-30                                                                                              |     |
| Level                         |                                             |                                             |                                             |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                                                                    |     |
| Excavation<br>Unit            | Ι                                           | Ι                                           | Ι                                           | I                                                                        | Ι                                                                        | Ι                                                                        | Ι                                                                        | Ι                                                                        | Ι                                                                                                  |     |
| Database<br>ID                | AKC01932                                    | AKC01933                                    | AKC01934                                    | AKC01935                                                                 | AKC01936                                                                 | AKC01937                                                                 | AKC01938                                                                 | AKC01939                                                                 | AKC01940                                                                                           |     |

| Database<br>ID | Excavation<br>Unit | Level | Depth | Roundne<br>ss Factor | Interior<br>Perforatio | Interior<br>Perforati | Max.<br>Length | Max.<br>Width | Notes                                                                    |
|----------------|--------------------|-------|-------|----------------------|------------------------|-----------------------|----------------|---------------|--------------------------------------------------------------------------|
|                |                    |       |       |                      | H H                    | g uo                  |                |               |                                                                          |
| AKC01941       | Г                  |       | 20-30 | R1                   | 1.8                    |                       | 4.38           | 4.11          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01942       | П                  |       | 20-30 | R1                   | 8.0                    |                       | 3.36           | 3.15          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01943       | П                  |       | 20-30 | R1                   | 1.23                   |                       | 2.48           | 3.08          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01944       | П                  |       | 20-30 | R2                   | 1.12                   |                       | 2.76           | 2.93          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01945       | П                  |       | 20-30 | R1                   | 1.01                   |                       | 1.85           | 3.04          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01946       | П                  |       | 20-30 | R1                   | 86.0                   |                       | 3.18           | 3.04          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01947       | П                  |       | 20-30 | R1                   | 1.06                   |                       | 2.52           | 3.96          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01948       | П                  |       | 20-30 | R1                   | 0.74                   |                       | 2.1            | 2.78          | 15 glass beads, found with a possible piece of charcoal and broken bone. |
| AKC01949       | _                  |       | 20-30 | R1                   | 0.64                   |                       | 2.42           | 2.51          | 15 glass beads, found with a possible piece of charcoal and broken bone. |

655

## Appendix 7.1c: Glass Beads from Prei Khmeng

| Site Name | Bead Shape              | Total # of beads | Context Notes | Glass<br>Colors | Glass Color<br>Notes | Opacity                    |
|-----------|-------------------------|------------------|---------------|-----------------|----------------------|----------------------------|
| Inc       | Indo-Pacific Seed Bead  | 1                | PKB4-100      | Yellow          | shiny                | Transparent                |
| Inc       | Indo-Pacific Seed Bead  | 1                | PKB4-101      | Dark Blue       | matte                | Translucent                |
| Inde      | Indo-Pacific Micro Bead | 1                | PKB4-102      | Orange          | Light orange color   | Opaque                     |
| Inde      | Indo-Pacific Seed Bead  | 1                | PKB4-103      | Dark Blue       |                      | Translucent<br>Transparent |
| Inde      | Indo-Pacific Seed Bead  | 1                | PKB4-104      | Black           | shiny                | Opaque                     |
| Indo      | Indo-Pacific Seed Bead  | 1                | PKB4-105      | Yellow          |                      | Transparent                |
| Indo-     | Indo-Pacific Micro Bead | 1                | PKB4-106      | Orange          |                      | Opaque                     |
| [-opu]    | Indo-Pacific Micro Bead | 1                | PKB4-107      | Black           |                      | Opaque                     |
| -opuI     | Indo-Pacific Seed Bead  | 1                | PKB4-108      | Dark Blue       | matte                | Translucent<br>Transparent |
| Indo-     | Indo-Pacific Micro Bead | 1                | PKB4-109      | Orange          |                      | Opaque                     |
| [-opu]    | Indo-Pacific Micro Bead | 1                | PKB4-110      | Orange          |                      | Opaque                     |
| I-opuI    | Indo-Pacific Micro Bead | 1                | PKB4-111      | Black           | shiny                | Opaque                     |
| -opuI     | Indo-Pacific Seed Bead  | 1                | PKB4-112      | Yellow          |                      | Transparent                |
| I-opuI    | Indo-Pacific Micro Bead | 1                | PKB4-113      | Black           | shiny                | Opaque                     |
| [-opu]    | Indo-Pacific Micro Bead | 1                | PKB4-114      | Black           | shiny                | Opaque                     |
| I-opuI    | Indo-Pacific Micro Bead | 1                | PKB4-115      | Orange          |                      | Opaque                     |
| -opuI     | Indo-Pacific Seed Bead  | 1                | PKB2BD01      | Dark Blue       |                      | Translucent                |
| Indo      | Indo-Pacific Seed Bead  | 1                | PKB2BD02      | Dark Blue       |                      | Translucent                |
|           |                         |                  |               |                 |                      | Transparent                |
| Indc      | Indo-Pacific Seed Bead  |                  | PKB2BD03      | Dark Blue       |                      | Translucent<br>Transparent |
| Inde      | Indo-Pacific Seed Bead  | 1                | PKB2BD05      | Dark Blue       |                      | Translucent                |
|           |                         |                  |               |                 |                      | Iransparent                |

| Database ID | Site Name   | Bead Shape               | Total # of beads | Context Notes           | Glass<br>Colors | Glass Color<br>Notes | Opacity                    |
|-------------|-------------|--------------------------|------------------|-------------------------|-----------------|----------------------|----------------------------|
| AKC01521    | Prei Khmenø | Indo-Pacific Seed Bead   | -                | PKB2BD06                | Dark Blue       |                      | Translucent                |
|             |             |                          | ,                |                         |                 |                      | Transparent                |
| AKC01522    | Prei Khmeng | Indo-Pacific Seed Bead   | 1                | PKB2BD07                | Dark Blue       |                      | Translucent<br>Transparent |
| AKC01523    | Prei Khmeng | Indo-Pacific Seed Bead   | 1                | PKB2BD07                | Dark Blue       |                      | Translucent                |
| AKC01524    | Prei Khmeng | Indo-Pacific Seed Bead?  | -                | PKB2BD07                | Yellow          |                      | Unknown                    |
| AKC01643    | Prei Khmeng | Larger Indo-Pacific Bead | 4                | PKM 03 24030 Perle PV 1 | Orange          | matte                | Opaque                     |
| AKC01644    | Prei Khmeng | Indo-Pacific Micro Bead  | 4                | PKM 03 24030 Perle PV 1 | Orange          | matte                | Opaque                     |
| AKC01645    | Prei Khmeng | Indo-Pacific Seed Bead   | 4                | PKM 03 24030 Perle PV 1 | Yellow          |                      | Opaque                     |
| AKC01646    | Prei Khmeng | Indo-Pacific Seed Bead   | 4                | PKM 03 24030 Perle PV 1 | Light Blue      | Turquoise            | Transparent                |
| AKC01647    | Prei Khmeng | Indo-Pacific Micro Bead  | 4                | PKM 03 24013 Perle PV1  | Orange          | matte                | Opaque                     |
| AKC01648    | Prei Khmeng | Indo-Pacific Seed Bead   | 4                | PKM 03 24013 Perle PV1  | Red             |                      | Opaque                     |
| AKC01649    | Prei Khmeng | Indo-Pacific Seed Bead   | 4                | PKM 03 24013 Perle PV1  | Dark Blue       |                      | Translucent                |
| AKC01650    | Prei Khmeng | Indo-Pacific Micro Bead  | 4                | PKM 03 24013 Perle PV1  | Light Green     |                      | Opaque                     |
| AKC01651    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Dark Blue       | Navy, shiny          | Opaque                     |
| AKC01652    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Yellow          |                      | Opaque                     |
| AKC01653    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Yellow          |                      | Opaque                     |
| AKC01654    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Yellow          |                      | Opaque                     |
| AKC01655    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Yellow          |                      | Opaque                     |
| AKC01656    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Yellow          |                      | Opaque                     |
| AKC01657    | Prei Khmeng | Indo-Pacific Seed Bead   | 20               | PKM 03 21025 object 2   | Yellow          |                      | Opaque                     |
| AKC01658    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Dark blue       |                      | Semi-Translucent           |
| AKC01659    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Dark blue       |                      | Semi-Translucent           |
| AKC01660    | Prei Khmeng | Indo-Pacific Seed Bead   | 20               | PKM 03 21025 object 2   | Dark blue       |                      | Semi-Translucent           |
| AKC01661    | Prei Khmeng | Indo-Pacific Seed Bead   | 20               | PKM 03 21025 object 2   | Dark blue       |                      | Semi-Translucent           |
| AKC01662    | Prei Khmeng | Indo-Pacific Seed Bead   | 50               | PKM 03 21025 object 2   | Dark blue       |                      | Semi-Translucent           |

| AKC01663 | Site Name   | Bead Shape              | Total # of beads | Context Notes         | Glass<br>Colors | Glass Color<br>Notes | Opacity                    |
|----------|-------------|-------------------------|------------------|-----------------------|-----------------|----------------------|----------------------------|
|          | Prei Khmeng | Indo-Pacific Seed Bead  | 50               | PKM 03 21025 object 2 | Dark blue       |                      | Semi-Translucent           |
| AKC01664 | Prei Khmeng | Indo-Pacific Seed Bead  | 50               | PKM 03 21025 object 2 | Dark blue       |                      | Semi-Translucent           |
| AKC01665 | Prei Khmeng | Indo-Pacific Long Tube  | 1                | PKM 03 22009 (2)      | Red             | Dark red             | Opaque                     |
| AKC01666 | Prei Khmeng | Indo-Pacific Micro Bead | П                | PKM03 22026 (2) bead  | Light Blue      | Light Turquoise      | Translucent<br>Transparent |
| AKC01667 | Prei Khmeng | Indo-Pacific Micro Bead | _                | PKM03 22022 Bead 7    | Dark Blue       | Navy blue            | Translucent<br>Transparent |
| AKC01668 | Prei Khmeng | Indo-Pacific Seed Bead  | 2                | PKM 03 22018 (9)      | Dark Green      | shiny                | Opaque                     |
| AKC01669 | Prei Khmeng | Indo-Pacific Seed Bead  | 2                | PKM 03 22018 (9)      | Dark Blue       | Dark Turquoise       | Translucent<br>Transparent |
| AKC01670 | Prei Khmeng | Indo-Pacific Seed Bead  | 1                | PKM 03 21010          | Dark Blue       | Navy blue            | Transparent                |
| AKC01671 | Prei Khmeng | Indo-Pacific Seed Bead  | 1                | PKM 03 21062          | Orange          | shiny                | Opaque                     |
| AKC01672 | Prei Khmeng | Indo-Pacific Seed Bead  | 2                | PKM 03 21031 PV3      | Yellow          |                      | Opaque                     |
| AKC01673 | Prei Khmeng | Indo-Pacific Micro Bead | 2                | PKM 03 21031 PV3      | Orange          | shiny                | Opaque                     |
| AKC01674 | Prei Khmeng | Indo-Pacific Seed Bead  | 1                | PKM 03 21039          | Red             |                      | Opaque                     |
| AKC01675 | Prei Khmeng | Indo-Pacific Micro Bead | 1                | PKM 0321060           | Orange          |                      | Opaque                     |
| AKC01676 | Prei Khmeng | Indo-Pacific Micro Bead | 1                | PKM 03 21030 PV 3     | Light Blue      | light turquoise      | Transparent                |
| AKC01677 | Prei Khmeng | Indo-Pacific Long Tube  | 1                | PKM 03 21044 PV1      | Light Green     |                      | Opaque                     |
| AKC01678 | Prei Khmeng | Indo-Pacific Seed Bead  | 1                | PKM 03 21024 TAMIS    | Orange          |                      | Opaque                     |
| AKC01679 | Prei Khmeng | Indo-Pacific Bead       | 4                | PKM 03 21052          | Orange          | matte                | Opaque                     |
| AKC01680 | Prei Khmeng | Indo-Pacific Micro Bead | 4                | PKM 03 21052          | Orange          | matte                | Opaque                     |
| AKC01681 | Prei Khmeng | Indo-Pacific Micro Bead | 4                | PKM 03 21052          | Orange          | matte                | Opaque                     |
| AKC01682 | Prei Khmeng | Indo-Pacific Micro Bead | 4                | PKM 03 21052          | Orange          | shiny                | Opaque                     |
| AKC01683 | Prei Khmeng | Indo-Pacific Bead       | 2                | PKM 03 21038 PV. 1    | Dark Blue       |                      | Transparent                |
| AKC01684 | Prei Khmeng | Indo-Pacific Seed Bead  | 2                | PKM 03 21038 PV. 1    | Dark Blue       |                      | Transparent                |
| AKC01685 | Prei Khmeng | Indo-Pacific Bead       | 1                | PKM 03 21038          | Orange          | matte                | Opaque                     |
| AKC01686 | Prei Khmeng | Indo-Pacific Long Tube  | 1                | PKM 03 21052          | Red             |                      | Opaque                     |

| Opacity              | Opaque                   | Opaque            | Opaque             | Opaque             | Opaque                 | Opaque                                    | Opaque            | Transparent       | Translucent                  | Opaque                                     | Opaque                              | Opaque                              | Opaque<br>Semi-Translucent          | Opaque                              | Opaque                                  |
|----------------------|--------------------------|-------------------|--------------------|--------------------|------------------------|-------------------------------------------|-------------------|-------------------|------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|
| Glass Color<br>Notes |                          |                   |                    |                    |                        |                                           |                   |                   | Difficult to determine color | shiny                                      |                                     |                                     |                                     | with red trim                       |                                         |
| Glass<br>Colors      | Orange                   | Light Green       | Vellow             | Unknown            | Red                    | Red                                       | Orange            | Dark Blue         | Dark Blue                    | Red                                        | Yellow                              | Yellow                              | Dark Blue                           | Black/Red                           | Yellow                                  |
| Context Notes        | PKM 03 21065             | PKM 01 12102      | PKM 01 16016       | PKM 01 16016       | PKM 01 15006           | PKM 01 12087<br>mislabled as "cornaline?" | PKM 01 15062      | PKM 01 12096      | PKM 01 12067                 | PKM 01 12085<br>mislabeled as "cornaline?" | PKM 01 15021<br>beads on right hand | PKM01 16016<br>23.601<br>bead in burial |
| Total # of beads     | 1                        | 1                 | 1                  | 1                  | 1                      | 1                                         | 1                 | 1                 | 1                            | 1                                          | 4                                   | 4                                   | 4                                   | 4                                   | -                                       |
| Bead Shape           | Larger Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead? | Indo-Pacific Bead? | Indo-Pacific Seed Bead | Larger Indo-Pacific Bead                  | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead?           | Larger Indo-Pacific Bead                   | Indo-Pacific Bead                   | Indo-Pacific Bead                   | Indo-Pacific Long Tube              | JMK06- Short Bicone                 | Indo-Pacific Long Tube                  |
| Site Name            | Prei Khmeng              | Prei Khmeng       | Prei Khmeng        | Prei Khmeng        | Prei Khmeng            | Prei Khmeng                               | Prei Khmeng       | Prei Khmeng       | Prei Khmeng                  | Prei Khmeng                                | Prei Khmeng                         | Prei Khmeng                         | Prei Khmeng                         | Prei Khmeng                         | Prei Khmeng                             |
| Database ID          | AKC01687                 | AKC01688          | AKC01689           | AKC01690           | AKC01691               | AKC01692                                  | AKC01693          | AKC01694          | AKC01695                     | AKC01696                                   | AKC01697                            | AKC01698                            | AKC01699                            | AKC01700                            | AKC01701                                |

|                      |                                                          |                                                          |                                                          |                              |                                |                                |                              |                        |                |                |                        |                        |                          |                        |                        | 659 |
|----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------|----------------|----------------|------------------------|------------------------|--------------------------|------------------------|------------------------|-----|
| Opacity              | Transparent                                              | Transparent                                              | Transparent                                              | Opaque                       | Opaque                         | Opaque                         | Opaque                       | Opaque                 | Opaque         | Opaque         | Opaque                 | Opaque                 | Opaque                   | Transparent            | Transparent            |     |
| Glass Color<br>Notes | Navy blue                                                | Navy blue                                                | Navy blue                                                |                              |                                |                                | matte                        |                        | green-yellow   | green-yellow   |                        |                        |                          |                        | Light Turquoise        |     |
| Glass<br>Colors      | Dark Blue                                                | Dark Blue                                                | Dark Blue                                                | Light Green                  | Yellow                         | Orange                         | Red                          | Orange                 | Light Green    | Light Green    | Red                    | Orange                 | Red                      | Dark Blue              | Light Blue             |     |
| Context Notes        | PKM 01 16016<br>beads from shoulder of small<br>skeleton | PKM 01 16016<br>beads from shoulder of small<br>skeleton | PKM 01 16016<br>beads from shoulder of small<br>skeleton | PKM 03<br>23097/98 -3- perde | PKM 03 23039/ 40-1<br>24102/03 | PKM 03 23039/ 40-1<br>24102/03 | PKM 03 23031 - 1<br>Tamigant | PKM 03 22030           | PKM 03 23025-1 | PKM 03 23025-1 | PKM 2003 23037         | PKM 03 23037 -3        | PKM 03 23037 -3          | PKM 03 23037           | PKM 03 23037           |     |
| Total # of beads     | 11                                                       | 11                                                       | 11                                                       | -                            | 7                              | 7                              | -                            | 1                      | 2              | 2              | 1                      | 4                      | 4                        | 4                      | 4                      |     |
| Bead Shape           | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead       | Indo-Pacific Seed Bead         | Indo-Pacific Micro Bead        | Indo-Pacific Seed Bead       | Indo-Pacific Long Tube | Unknown        | Unknown        | Indo-Pacific Seed Bead | Indo-Pacific Long Tube | Larger Indo-Pacific Bead | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead |     |
| Site Name            | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                  | Prei Khmeng                    | Prei Khmeng                    | Prei Khmeng                  | Prei Khmeng            | Prei Khmeng    | Prei Khmeng    | Prei Khmeng            | Prei Khmeng            | Prei Khmeng              | Prei Khmeng            | Prei Khmeng            |     |
| Database ID          | AKC01702                                                 | AKC01703                                                 | AKC01704                                                 | AKC01705                     | AKC01706                       | AKC01707                       | AKC01708                     | AKC01709               | AKC01710       | AKC01711       | AKC01712               | AKC01713               | AKC01714                 | AKC01717               | AKC01718               |     |

| r Opacity            | se, Opaque                | Opaque                  | Translucent<br>Semi-Translucent | Translucent<br>Semi-Translucent | ise Semi-Translucent   | Semi-Translucent Opaque                       | Opaque                 | Semi-Translucent       | Semi-Translucent       | Opaque                    | Opaque                    | Opaque                                                   | Opaque                                                   | Opaque                                                   | Semi-Translucent<br>Translucent |
|----------------------|---------------------------|-------------------------|---------------------------------|---------------------------------|------------------------|-----------------------------------------------|------------------------|------------------------|------------------------|---------------------------|---------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|
| Glass Color<br>Notes | Light Turquoise,<br>shiny |                         | Navy blue                       | Navy blue                       | Light Turquoise        | Dark Blue-<br>Green?                          |                        |                        |                        |                           |                           | shiny                                                    | shiny                                                    | shiny                                                    |                                 |
| Glass<br>Colors      | Light Blue                | Red                     | Dark Blue                       | Dark Blue                       | Light Blue             | Dark Blue?                                    | Red                    | Dark Blue              | Dark Blue              | Red                       | Red                       | Black                                                    | Black                                                    | Black                                                    | Brown                           |
| Context Notes        | PKM 03 23037              | PKM 03 23037            | PKM 03 21040                    | PKM 03 21040                    | PKM 03 21040           | PKM 03 21040 Associated with burial of BONY 3 | PKM 03 21040 PV7       | PKM 03 21040 PV7       | PKM 03 21040 PV7       | PKM03 21040 PV3 petit tas | PKM03 21040 PV3 petit tas | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Associated with Burial of       |
| Total # of beads     | 4                         | 4                       | 4                               | 4                               | 4                      | 4                                             | 3                      | 3                      | 3                      | 2                         | 2                         | 135                                                      | 135                                                      | 135                                                      | 135                             |
| Bead Shape           | Indo-Pacific Bead         | Indo-Pacific Micro Bead | Indo-Pacific Seed Bead          | Indo-Pacific Seed Bead          | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead                        | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead | Indo-Pacific Micro Bead   | Indo-Pacific Micro Bead   | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead          |
| Site Name            | Prei Khmeng               | Prei Khmeng             | Prei Khmeng                     | Prei Khmeng                     | Prei Khmeng            | Prei Khmeng                                   | Prei Khmeng            | Prei Khmeng            | Prei Khmeng            | Prei Khmeng               | Prei Khmeng               | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                     |
| Database ID          | AKC01719                  | AKC01720                | AKC01722                        | AKC01723                        | AKC01724               | AKC01725                                      | AKC01726               | AKC01727               | AKC01728               | AKC01729                  | AKC01730                  | AKC01731                                                 | AKC01732                                                 | AKC01733                                                 | AKC01734                        |

| Database ID | Site Name   | Bead Shape             | Total # of | Context Notes                                            | Glass  | Glass Color | Opacity          |
|-------------|-------------|------------------------|------------|----------------------------------------------------------|--------|-------------|------------------|
|             |             |                        | Deads      |                                                          | Colors | Notes       |                  |
| AKC01735    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Brown  |             | Semi-Translucent |
|             |             |                        |            | Associated with Burial of BONY 3                         |        |             | Translucent      |
| AKC01736    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Brown  |             | Semi-Translucent |
|             |             |                        |            | Associated with Burial of BONY 3                         |        |             | Translucent      |
| AKC01737    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Brown  |             | Semi-Translucent |
|             |             |                        |            | Associated with Burial of                                |        |             | Translucent      |
| AKC01738    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Yellow |             | Opague           |
|             | 0           |                        | 1          | Associated with Burial of                                |        |             |                  |
|             |             |                        |            | BONY 3                                                   |        |             |                  |
| AKC01739    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Yellow |             | Opaque           |
|             |             |                        |            | Associated with Burial of                                |        |             |                  |
|             |             |                        |            | BONY 3                                                   |        |             |                  |
| AKC01740    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Yellow |             | Opaque           |
|             |             |                        |            | Associated with Burial of                                |        |             |                  |
|             |             |                        |            | BONY 3                                                   |        |             |                  |
| AKC01741    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Yellow |             | Opaque           |
|             |             |                        |            | Associated with Burial of                                |        |             |                  |
|             |             |                        |            | BONY 3                                                   |        |             |                  |
| AKC01742    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Yellow |             | Translucent      |
|             |             |                        |            | Associated with Burial of BONY 3                         |        |             |                  |
| AKC01743    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Yellow |             | Translucent      |
|             |             |                        |            | Associated with Burial of                                |        |             |                  |
|             |             |                        |            | BONY 3                                                   |        |             |                  |
| AKC01744    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9                                  | Red    |             | Opaque           |
|             |             |                        |            | Associated with Burial of                                |        |             |                  |
|             |             |                        |            | BOINT 3                                                  |        |             | (                |
| AKC01745    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Red    |             | Opaque           |
|             |             |                        |            | DOINT 3                                                  |        |             |                  |

| Opacity              | Opaque                                                         | Opaque                                                         | Semi-Translucent                                         | Semi-Translucent                                         |                                                          | Semi-Translucent                                         | Semi-Translucent                                               | Translucent<br>Transparent                                     | Translucent<br>Transparent                                     | Translucent<br>Transparent                               | Translucent<br>Transparent                               |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Glass Color<br>Notes |                                                                |                                                                | Light Turquoise                                          | Light Turquoise                                          |                                                          | light blue-green<br>turquoise                            | light blue-green<br>turquoise                                  | Intense blue<br>color                                          | Intense blue<br>color                                          |                                                          |                                                          |
| Glass<br>Colors      | Dark Green                                                     | Dark Green                                                     | Light Blue                                               | Light Blue                                               |                                                          | Light Blue                                               | Light Blue                                                     | Dark Blue                                                      | Dark Blue                                                      | Dark Blue                                                | Dark Blue                                                |
| Context Notes        | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 |
| Total # of beads     | 135                                                            | 135                                                            | 135                                                      | 135                                                      | 135                                                      | 135                                                      | 135                                                            | 135                                                            | 135                                                            | 135                                                      | 135                                                      |
| Bead Shape           | Indo-Pacific Seed Bead                                         | Indo-Pacific Seed Bead                                         | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                   | Indo-Pacific Bead                                        | Indo-Pacific Bead                                        | Larger Indo-Pacific Bead<br>(JMK 04-Short Barrel)              | Indo-Pacific Seed Bead                                         | Indo-Pacific Seed Bead                                         | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                   |
| Site Name            | Prei Khmeng                                                    | Prei Khmeng                                                    | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                                              | Prei Khmeng                                                    | Prei Khmeng                                                    | Prei Khmeng                                                    | Prei Khmeng                                              | Prei Khmeng                                              |
| Database ID          | AKC01746                                                       | AKC01747                                                       | AKC01748                                                 | AKC01749                                                 | AKC01750                                                 | AKC01751                                                 | AKC01752                                                       | AKC01753                                                       | AKC01754                                                       | AKC01755                                                 | AKC01756                                                 |

| Database ID | Site Name   | Bead Shape             | Total # of | Context Notes                                            | Glass     | Glass Color | Opacity                    |
|-------------|-------------|------------------------|------------|----------------------------------------------------------|-----------|-------------|----------------------------|
|             |             |                        | beads      |                                                          | Colors    | Notes       |                            |
| AKC01757    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01758    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01759    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01760    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01761    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01762    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01763    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Dark Blue | Navy blue   | Translucent                |
| AKC01764    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Black     |             | Transparent<br>Translucent |
| AKC01765    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Black     |             | Transparent<br>Translucent |
| AKC01766    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Black     |             | Transparent<br>Translucent |
| AKC01767    | Prei Khmeng | Indo-Pacific Seed Bead | 135        | PKM03 21040 object No 9 Associated with Burial of BONY 3 | Grey      |             | Opaque                     |

|                      |                                                                | ıt                                                       | ıt                                                             |                                                          |                        |                        | ıt                              |                        |                        |                        |                        |                         |                         |                         |                         |                         |                         |                         |                         |                         | 664 |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------|------------------------|---------------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----|
| Opacity              | Translucent<br>Transparent                                     | Translucent<br>Semi-Translucent                          | Translucent<br>Semi-Translucent                                | Translucent                                              | Translucent            | Opaque                 | Translucent<br>Semi-Translucent | Translucent            | Translucent            | Translucent            | Translucent            | Opaque                  |     |
| Glass Color<br>Notes |                                                                |                                                          |                                                                |                                                          | violet/brown?          |                        |                                 |                        |                        |                        |                        |                         |                         |                         | Dark orange             | Dark orange             |                         |                         |                         |                         |     |
| Glass<br>Colors      | Black                                                          | Black                                                    | Black                                                          | Black                                                    | Brown                  | Black                  | Dark Blue                       | Yellow                 | Yellow                 | Yellow                 | Yellow                 | Yellow                  | Orange                  |     |
| Context Notes        | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM03 21040 object No 9<br>Associated with Burial of<br>BONY 3 | PKM03 21040 object No 9 Associated with Burial of BONY 3 | PKM 03 21045           | PKM 03 21045           | PKM 03 21045                    | PKM 03 21045           | PKM 03 21045           | PKM 03 21045           | PKM 03 21045           | PKM 03 21045 Object 1   |     |
| Total # of beads     | 135                                                            | 135                                                      | 135                                                            | 135                                                      | 23                     | 23                     | 23                              | 23                     | 23                     | 23                     | 23                     | 1078                    | 1078                    | 1078                    | 1078                    | 1078                    | 1078                    | 1078                    | 1078                    | 1078                    |     |
| Bead Shape           | Indo-Pacific Seed Bead                                         | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead                                         | Indo-Pacific Seed Bead                                   | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead          | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead | Indo-Pacific Seed Bead | Indo-Pacific Micro Bead |     |
| Site Name            | Prei Khmeng                                                    | Prei Khmeng                                              | Prei Khmeng                                                    | Prei Khmeng                                              | Prei Khmeng            | Prei Khmeng            | Prei Khmeng                     | Prei Khmeng            | Prei Khmeng            | Prei Khmeng            | Prei Khmeng            | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             | Prei Khmeng             |     |
| Database ID          | AKC01768                                                       | AKC01769                                                 | AKC01770                                                       | AKC01771                                                 | AKC01772               | AKC01773               | AKC01774                        | AKC01775               | AKC01776               | AKC01777               | AKC01778               | AKC01779                | AKC01780                | AKC01781                | AKC01782                | AKC01783                | AKC01784                | AKC01785                | AKC01786                | AKC01787                |     |

| Database ID | Site Name   | Bead Shape              | Total # of | Context Notes         | Glass     | Glass Color                   | Opacity                    |
|-------------|-------------|-------------------------|------------|-----------------------|-----------|-------------------------------|----------------------------|
|             |             |                         | peads      |                       | Colors    | Notes                         |                            |
| AKC01788    | Prei Khmeng | Indo-Pacific Micro Bead | 1078       | PKM 03 21045 Object 1 | Orange    |                               | Opaque                     |
| AKC01789    | Prei Khmeng | Indo-Pacific Micro Bead | 1078       | PKM 03 21045 Object 1 | Orange    |                               | Opaque                     |
| AKC01790    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01791    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01792    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01793    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01794    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01795    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01796    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01797    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01798    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01799    | Prei Khmeng | Indo-Pacific Micro Bead | 649        | PKM 03 21045          | Black     |                               | Opaque                     |
| AKC01807    | Prei Khmeng | Indo-Pacific Bead?      | 6          | PKM Bony 2 burial     | Multiple  | Yellow, green,<br>black, blue |                            |
| AKC01808    | Prei Khmeng | Indo-Pacific Seed Bead  | 7          | PKM Bony 2 burial     | Dark Blue |                               | Translucent<br>Transparent |
| AKC01809    | Prei Khmeng | Indo-Pacific Seed Bead  | 7          | PKM Bony 2 burial     | Dark Blue |                               | Translucent                |
|             |             |                         |            |                       |           |                               | Hansparent                 |

|   | _ | 1 |
|---|---|---|
| h | n | r |
| v | v | L |

| 1 | 1 | - |
|---|---|---|
| O | n | 1 |

|                     |          |          |                               |          |          |          | (;<br>So<br>(;                                                                                                                                       | ls,                                                                            |          |          |          |          |          |          | ()<br>()<br>()                                                                                                                                       | ls,                                                                            |          |          |          |          |          | (        |
|---------------------|----------|----------|-------------------------------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Notes               |          |          | Hole is too small to measure. |          |          |          | Beads are associated with some sort of metal (?) object and several beads are embedded in it. Also present are few bronze pieces (ring or bracelet?) | Measured 1 dark blue bead, 6 of 23 yellow beads, and 7 of 26 light blue beads. |          |          |          |          |          |          | Beads are associated with some sort of metal (?) object and several beads are embedded in it. Also present are few bronze pieces (ring or bracelet?) | Measured 1 dark blue bead, 6 of 23 yellow beads, and 7 of 26 light blue beads. |          |          |          |          |          |          |
| Thickness           |          |          |                               |          |          |          |                                                                                                                                                      |                                                                                |          |          |          |          |          |          |                                                                                                                                                      |                                                                                |          |          |          |          |          |          |
| Max. Width          | 3.16     | 3.23     | 1.42                          | 2.67     | 2.89     | 2.34     | 3.66                                                                                                                                                 |                                                                                | 2.58     | 3.07     | 2.73     | 3.3      | 2.57     | 2.76     | 2.79                                                                                                                                                 |                                                                                | 2.71     | 3.64     | 2.86     | 3.08     | 3.05     | 3.02     |
| Max. Length         | 2.06     | 2.01     | 1.65                          | 1.59     | 1.78     | 1.3      | 2.23                                                                                                                                                 |                                                                                | 2.72     | 2.06     | 2.04     | 1.59     | 2.18     | 2.15     | 2.1                                                                                                                                                  |                                                                                | 1.72     | 1.82     | 1.37     | 1.58     | 1.99     | 1.62     |
| Interior Perf.      | 6.0      | 1.11     | 0                             | 0.78     | 0.88     | 29.0     | 1.17                                                                                                                                                 |                                                                                | 0        | 0.91     | 69.0     | 1.09     | 0        | 9.0      | 0.81                                                                                                                                                 |                                                                                | 96.0     | 1.2      | 6.0      | 0.92     | 8.0      | 0.91     |
| Roundness<br>Factor | R2       | R2       | R2                            | R2       | R2       | R2       | R2                                                                                                                                                   |                                                                                | R2       | R2       | R2       | R2       | R3       | R3       | R2                                                                                                                                                   |                                                                                | R2       | R2       | R2       | R2       | R2       | R2       |
| Database ID         | AKC01645 | AKC01646 | AKC01647                      | AKC01648 | AKC01649 | AKC01650 | AKC01651                                                                                                                                             |                                                                                | AKC01652 | AKC01653 | AKC01654 | AKC01655 | AKC01656 | AKC01657 | AKC01658                                                                                                                                             |                                                                                | AKC01659 | AKC01660 | AKC01661 | AKC01662 | AKC01663 | AKC01664 |

| Notes               |          | Fragment, unable to measure |          |          |          | In layer associated with abandonment of domestic activities and accumulation of mound. Ceramics also found. | Posthole/pit | Large layer in which burials were found | Large layer in which burials were found | Posthole context | Hole is too small to measure | context: posthole | Posthole context |          | Posthole context | "La Fosse" part of group of stratigraphic units associated with one another: 21052-21044-21038 |          |          |          |          |          |          |          | Posthole context |          |
|---------------------|----------|-----------------------------|----------|----------|----------|-------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------------------------------|------------------|------------------------------|-------------------|------------------|----------|------------------|------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|------------------|----------|
| Thickness           |          |                             |          |          |          |                                                                                                             |              |                                         |                                         |                  |                              |                   |                  |          |                  |                                                                                                |          |          |          |          |          |          |          |                  |          |
| Max. Width          | 2.89     | N/A                         | 2.25     | 2.7      | 3.18     | 2.83                                                                                                        | 2.38         | 3.56                                    | 2.13                                    | 4.38             | 1.58                         |                   | 2.19             | 2.98     | 2.26             | 3.36                                                                                           | 2.24     | 1.84     | 1.82     | 4.61     | 0        | 3.94     | 2.65     | 6.65             | 4.74     |
| Max. Length         | 5.61     | N/A                         | 1.18     | 1.95     | 1.65     | 1.77                                                                                                        | 1.1          | 2.54                                    | 1.29                                    | 2.15             | 1.85                         |                   | 0.88             | 4.56     | 2.03             | 2.41                                                                                           | 1.07     | 1        | 2.26     | 2.81     | 0        | 2.78     | 5.42     | 4.16             | 2.73     |
| Interior Perf.      | 0.97     | N/A                         | 99.0     | 0.71     | 1.07     | 0.93                                                                                                        | 0.58         | 0.71                                    | 0.57                                    | 1.45             | N/A                          |                   | 0.81             | 66.0     | 0.79             | 1.1                                                                                            | 92.0     | N/A      | N/A      | 1.16     | 0        | 1.17     | 0        | 1.85             | 0        |
| Roundness<br>Factor | R2       | N/A                         | R1       | R3       | R2       | R1                                                                                                          | R1           | R3                                      | R1                                      | R1               | R1                           |                   | R1               | R2       | R1               | R1                                                                                             | R1       | R1       | R1       | R1       | N/A      | R2       | R1       | R2               | R1       |
| Database ID         | AKC01665 | AKC01666                    | AKC01667 | AKC01668 | AKC01669 | AKC01670                                                                                                    | AKC01671     | AKC01672                                | AKC01673                                | AKC01674         | AKC01675                     |                   | AKC01676         | AKC01677 | AKC01678         | AKC01679                                                                                       | AKC01680 | AKC01681 | AKC01682 | AKC01683 | AKC01684 | AKC01685 | AKC01686 | AKC01687         | AKC01688 |

| (() |  |
|-----|--|
| 664 |  |
| 007 |  |

| N/A  Fragmented bead  Fragmented bead  Fragmented bead  Fragmented bead  Area with 2 complete pots in a layer above a burial?  Occupation phase, found with charcoal (?)  A.14  Posthole context  Posthole context  May be associated with a brick hearth? |                                                                                                            | X   X     4   6   6   X   4   6   6   6   6   6   6   1                                | N/A<br>N/A<br>0.89<br>1.29<br>1.01<br>0.97<br>N/A<br>1.39<br>0.83<br>0.65<br>0.65<br>1.18<br>N/A |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                            | N/A 2.6 6.29 4.14 4.14 8.39 8.39 8.39 8.31 8.31 8.31 8.31 8.31                                             | //A<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31      |                                                                                                  |
|                                                                                                                                                                                                                                                            | 2.6<br>6.29<br>4.14<br>4.14<br>N/A<br>N/A<br>6.32<br>6.32<br>4.35<br>2.25<br>2.25<br>5.95<br>5.95<br>3.13  | 31<br>.53<br>.45<br>.44<br>.44<br>.84<br>.84<br>.84<br>.84<br>.84<br>.84<br>.32<br>.33 |                                                                                                  |
| 6.29<br>4.14<br>3.95<br>N/A<br>6.32                                                                                                                                                                                                                        | 6.29<br>3.95<br>3.95<br>3.95<br>6.32<br>6.32<br>4.31<br>4.31<br>5.95<br>5.95<br>5.95<br>5.95<br>5.95       | 53<br>45<br>145<br>145<br>144<br>144<br>184<br>184<br>184<br>184<br>184<br>184         |                                                                                                  |
| 4.14<br>3.95<br>N/A<br>6.32                                                                                                                                                                                                                                | 3.95<br>3.95<br>N/A<br>N/A<br>6.32<br>4.31<br>4.35<br>2.25<br>2.25<br>6.46<br>6.46<br>6.46<br>6.59<br>3.13 | .5. 7A / A / A / A / A / A / A / A / A / A                                             |                                                                                                  |
| 3.95<br>N/A<br>6.32                                                                                                                                                                                                                                        | 3.95<br>N/A<br>N/A<br>6.32<br>4.35<br>2.25<br>2.25<br>5.95<br>3.13                                         | 7/A<br>1/A<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4       |                                                                                                  |
| N/A<br>6.32                                                                                                                                                                                                                                                | N/A<br>6.32<br>6.32<br>4.31<br>2.25<br>2.25<br>6.46<br>6.46<br>5.95<br>3.13                                | 7/A<br>64<br>64<br>84<br>84<br>87<br>39<br>34                                          |                                                                                                  |
| 6.32                                                                                                                                                                                                                                                       | 6.32<br>4.31<br>2.25<br>2.25<br>6.46<br>6.46<br>5.95<br>3.13                                               | 64<br>444<br>84<br>82<br>52<br>53<br>59<br>747<br>34                                   |                                                                                                  |
|                                                                                                                                                                                                                                                            | 4.35<br>4.35<br>2.25<br>2.25<br>6.46<br>5.95<br>3.13                                                       | 84<br>84<br>84<br>52<br>59<br>59<br>47<br>34                                           |                                                                                                  |
| 4.31                                                                                                                                                                                                                                                       | 4.35<br>2.25<br>2.26<br>6.46<br>5.95<br>3.13<br>2.45                                                       |                                                                                        |                                                                                                  |
| 4.35                                                                                                                                                                                                                                                       | 2.25<br>6.46<br>6.95<br>3.13<br>3.13                                                                       | .12<br>.52<br>.59<br>.47<br>.34                                                        |                                                                                                  |
| 2.25                                                                                                                                                                                                                                                       | 6.46<br>5.95<br>3.13<br>2.45                                                                               | .59<br>.34<br>.12                                                                      |                                                                                                  |
| 6.46                                                                                                                                                                                                                                                       | 3.13                                                                                                       | .12                                                                                    |                                                                                                  |
| 5.95                                                                                                                                                                                                                                                       | 3.13                                                                                                       | .34                                                                                    |                                                                                                  |
| 3.13                                                                                                                                                                                                                                                       | 2.45                                                                                                       | .12                                                                                    |                                                                                                  |
| 2.45                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                        | 0.75 1.12                                                                                        |
| 2.71                                                                                                                                                                                                                                                       | 2.71                                                                                                       | ∞.                                                                                     | 0.88 1.8                                                                                         |
| 4.16                                                                                                                                                                                                                                                       | 4.16                                                                                                       | .84                                                                                    | 1.01                                                                                             |
| 4.43                                                                                                                                                                                                                                                       | 4.43                                                                                                       | .65                                                                                    | 1.08 2.65                                                                                        |
| 2.34                                                                                                                                                                                                                                                       | 2.34                                                                                                       | .21                                                                                    | 0.83 1.21                                                                                        |
| 2.96                                                                                                                                                                                                                                                       | 2.96                                                                                                       | 99:                                                                                    | 1.04                                                                                             |
| 3.52                                                                                                                                                                                                                                                       | 3.52                                                                                                       | .18                                                                                    | 1.34 7.18                                                                                        |
| 4.86 2.18                                                                                                                                                                                                                                                  | 4.86                                                                                                       | .56                                                                                    | N/A 5.56                                                                                         |
| 3.81 4.41                                                                                                                                                                                                                                                  | 3.81                                                                                                       | .87                                                                                    | 8.87                                                                                             |
| 2.91                                                                                                                                                                                                                                                       | 2.91                                                                                                       | .56                                                                                    | 1.02                                                                                             |
| 3.32                                                                                                                                                                                                                                                       | 3.32                                                                                                       | .55                                                                                    | 1.04 6.55                                                                                        |

| 6 | 7   | $\sim$ |
|---|-----|--------|
| O | / ' | u      |

| Notes               |          |          |          |          |          | Burial context | Burial context | Burial context | Burial context | Note on inventory says: 3 nerles en verre dans le sediment proche du | squelette | From a burial context. |          |          |          |          | From a group of 135 beads. Measuered 3 of 9 black beads, 4 of 16 brown/violet beads, 5 of 16 opaque yellow beads, 2 translucent yellow beads, 2 of 5 | opaque red beads, 2 of 7 light blue beads, 2 larger light bluebeads, 2 of 5 dark green beads, 2 of 6 blue- | green beads, 2 of 5 dark blue beads, 7 of 28 dark | were fragments of blue glass beads. |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------------|----------------|----------------|----------------|----------------------------------------------------------------------|-----------|------------------------|----------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|----------|----------|----------|----------|----------|
| Thickness           |          |          |          |          |          |                |                |                |                | 3                                                                    | 2d 0      |                        |          |          |          |          | From a beads, yellow                                                                                                                                 | opaque<br>light blu                                                                                        | green                                             | (1147))                             |          |          |          |          |          |
| Max. Width          | 6.9      | 2.61     | 2.67     | 4.11     | 1.67     | 3.04           | 2.99           | 2.26           | 0              | 2.22                                                                 |           |                        | 2.49     | 0        | 1.48     | 1.6      | 2.15                                                                                                                                                 |                                                                                                            |                                                   |                                     | 2.14     | 1.91     | 2.65     | 3.06     | 3.23     |
| Max. Length         | 7.78     | 1.13     | 1.2      | 2.86     | 1.15     | 1.81           | 1.83           | 1.13           | 1.45           | 1.26                                                                 |           |                        | 1.53     | 1.49     | 1.19     | 1.24     | 1.19                                                                                                                                                 |                                                                                                            |                                                   |                                     | 2.65     | 1.19     | 2.01     | 2.19     | 2.15     |
| Interior Perf.      | 1.27     | 8.0      | 0.78     | 1.15     | 0        | 1.05           | 1.01           | 8.0            | 0              | 0.82                                                                 |           |                        | 0.78     | N/A      | N/A      | N/A      | 0.91                                                                                                                                                 |                                                                                                            |                                                   |                                     | 9.0      | 0.64     | 0.75     | 0.75     | 0.94     |
| Roundness<br>Factor | R2       | R1       | R1       | R1       | R1       | R2             | R1             | R1             | R1             | R1                                                                   |           |                        | R1       | R1       | R1       | R1       | R1                                                                                                                                                   |                                                                                                            |                                                   |                                     | R2       | R1       | R1       | R2       | R1       |
| Database ID         | AKC01714 | AKC01717 | AKC01718 | AKC01719 | AKC01720 | AKC01722       | AKC01723       | AKC01724       | AKC01725       | AKC01726                                                             |           |                        | AKC01727 | AKC01728 | AKC01729 | AKC01730 | AKC01731                                                                                                                                             |                                                                                                            |                                                   |                                     | AKC01732 | AKC01733 | AKC01734 | AKC01735 | AKC01736 |

| AKC01737         R1         121         1.89         3.62           AKC01738         R2         1.06         1.89         3.12           AKC01739         R2         0.93         1.64         2.64           AKC01740         R2         0.83         1.64         2.64           AKC01741         R2         0.81         1.91         2.98           AKC01743         R1         0.88         1.96         2.72           AKC01744         R2         0.85         1.75         3           AKC01745         R2         0.9         2.43         1.99         From a group of 135 beads. Measured 3 of 9 black beads. Accordance and accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Database ID | Roundness<br>Factor | Interior Perf. | Max. Length | Max. Width | Thickness | Notes                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|----------------|-------------|------------|-----------|----------------------------------------------------------------------------------------------------|
| R2         106         189         312           R2         0.97         2.85         3.21           R2         0.83         1.64         2.64           R1         0.88         1.96         2.72           R2         0.85         1.96         2.72           R2         0.85         1.75         3.3           R2         0.99         2.41         3.11         From a group of 135 beads. Measuered 3 of 9 blue beads, 2 of 16 pague yellow beads, 2 of 6 blue beads, 2 o                                                                                                                                                                                                                                                                                                                                                                                        | AKC01737    | R1                  | 1.21           | 1.89        | 3.62       |           |                                                                                                    |
| R2         0.97         2.85         3.21           R2         0.83         1.64         2.64           R1         0.88         1.91         2.98           R1         0.88         1.90         2.72           R2         0.85         1.75         3.9           R2         0.9         2.41         3.11         From a group of 135 beads. Measured 3 of 9 blac           R2         0.9         2.41         3.11         From a group of 135 beads. Measured 3 of 9 blac           R2         0.9         2.41         3.11         From a group of 135 beads. Measured 3 of 9 blac           R2         0.9         2.41         3.11         From a group of 135 beads. Measured 3 of 9 blac           R2         0.9         2.43         1.99         Preads, 2 of 16 propare           R3         0.9         2.43         1.99         Preads, 2 of 5 dark blue beads, 3 of 9 blac           R4         0.77         1.21         2.56         2.78           R1         0.77         1.21         2.56         2.52           R1         0.81         1.51         3.06         2.52           R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AKC01738    | R2                  | 1.06           | 1.89        | 3.12       |           |                                                                                                    |
| R2         0.83         1.64         2.64           R1         0.88         1.91         2.98           R2         0.81         1.91         2.98           R2         0.85         1.75         3.39           R2         0.85         1.75         3.3           R2         0.9         2.41         3.11           R2         0.9         2.43         1.99         From a group of 135 beads. Measuered 3 of 9 blace beads. 2 of 1 blace beads. 2 of 1 blace beads. 2 of 1 blace beads. 2 of 2 blace beads. 2 of 5 blace beads. 2 of 6 blace beads. 2 of 8 blace                                                                                                                                                                                                                                                                                                                                                                                         | AKC01739    | R2                  | 0.97           | 2.85        | 3.21       |           |                                                                                                    |
| R2         0.81         1.91         2.98           R1         0.88         1.96         2.72           R2         1.15         2.59         3.39           R2         0.98         2.41         3.11         From a group of 135 beads. Measuered 3 of 9 blac beads, 2 of 16 brown/violet beads, 2 of 7 dark green beads, 2 of 5 dark green beads, 2                                                                                                                                                                                                                         | AKC01740    | R2                  | 0.83           | 1.64        | 2.64       |           |                                                                                                    |
| R1         0.88         1.96         2.72           R2         1.15         2.59         3.39           R2         0.85         1.75         3           R2         0.9         2.41         3.11         From a group of 135 beads. Measuered 3 of 9 blac beads, 2 of 16 brown/voich beads, 2 of 5 of 9 opaque yellow beads, 2 of 7 light blue beads, 2 of 8 dark green beads, 2 of 7 light blue beads, 2 of 8 dark green beads, 2 of 8 dark green beads, 2 of 6 dark blue beads, 2 of 8 dark green beads, 2 of 8 dark green beads, 2 of 6 dark blue beads, 2 of 8 dark green beads, 2 of 8 dark                                                                                                                                                                                                                          | AKC01741    | R2                  | 0.81           | 1.91        | 2.98       |           |                                                                                                    |
| R2         1.15         2.59         3.39           R2         0.85         1.75         3           R2         0.85         1.75         3           R2         0.9         2.41         3.11         From a group of 135 beads. Measurerd 3 of 9 blac beads, 2 of 16 opaque yellow beads, 2 of 5 of 16 opaque yellow beads, 2 of 5 dark blacks. Sof 16 opaque yellow beads, 2 of 5 dark blue beads, 2 of 5 dark blue beads, 2 of 5 dark blue beads, 2 of 6 dark blue blue blue blue blue blue blue blue                                                                                                                                                                                                                                            | AKC01742    | R1                  | 0.88           | 1.96        | 2.72       |           |                                                                                                    |
| R2         0.85         1.75         3           R2         0.9         2.41         3.11         From a group of 135 beads. Measurered 3 of 9 blac beads, 2 of 16 brown/violet beads, 2 of 16 brown/violet beads, 2 of 16 brown/violet beads, 2 of 1 light blue beads, 2 of 7 light blue beads, 2 of 7 light blue beads, 2 of 7 blac beads, 2 of 8 blac beads, 2 of 7 light blue beads, 2 of 7 blac beads, 2 of 8 blac blac beads, 3 of 8 blac blac blac beads, 3 of 8 blac blac beads, 3 of 8 blac blac blac beads, 3 of 8 blac blac blac beads, 3 of 8 blac blac blac blac blac blac blac blac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AKC01743    | R2                  | 1.15           | 2.59        | 3.39       |           |                                                                                                    |
| R2         0.9         2.41         3.11         From a group of 135 beads. Measuered 3 of 9 blac beads, 2 of 15 brown/violet beads, 2 of 16 brown/violet beads, 2 of 16 brown/violet beads, 2 of 16 brown/violet beads, 2 of 3 brown/violet beads, 2 of 3 brown/violet beads, 2 of 5 dank green beads, 2 of 6 blur beads, 2 of 8 dank green beads, 2 of 6 blur beads, 2 of 8 dank green beads, 2 of 6 blur beads, 3 of 3 dank green beads, 2 of 8 dank green beads, 3 of 8 dank green beads, 2 of 8 da                                                          | AKC01744    | R2                  | 0.85           | 1.75        | 3          |           |                                                                                                    |
| R2   0   2.43   1.99   From a group of 135 beads. Measuered 3 of 9 blac beads, 2 of 1 blac beads, 2 of 1 blac beads, 2 of 5 opaque yellow beads, 2 tanslucent yellow beads, 2 tanslucent yellow beads, 2 tanslucent yellow beads, 2 of 6 blug green beads, 2 of 7 light blue beads, 2 of 6 blug green beads, 2 of 7 light blue beads, 2 of 6 blug green  | AKC01745    | R2                  | 6.0            | 2.41        | 3.11       |           |                                                                                                    |
| Peads, 4 of 16 brown/violet beads, 5 of 16 opaque beads, 2 of 16 opaque and beads, 2 of 16 opaque and beads, 2 of 3 opaque red beads, 2 of 7 light blue beads, 2 largen light blue beads, 2 of 6 blue green beads, 2 of 7 light blue beads, 2 of 6 blue green beads, 2 of 7 light blue beads, 2 of 6 blue green beads, 3 of 6 blue green beads, 2 of 6 blue green beads, 3 of 7 light blue beads, 3 of 6 blue green beads, 3 of 7 light blue beads, 3 of 7 light blue beads, 3 of 6 blue green beads, 2 of 6 blue green beads, 3 of 7 light blue beads, 8 of 33 grey beads, Not measure and a second se | AKC01746    | R2                  | 0              | 2.43        | 1.99       |           | From a group of 135 beads. Measuered 3 of 9 black                                                  |
| R1   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                     |                |             |            |           | beads, 4 of 16 brown/violet beads, 5 of 16 opaque vellow heads, 2 translucent vellow heads, 2 of 5 |
| Hight bluebeads, 2 of 5 dark green beads, 2 of 6 blue green beads, 2 of 5 dark green beads, 2 of 5 dark blue beads, 3 of 28 dark (navy) blue beads, 8 of 33 grey beads. Not measure were fragments of blue glass beads.    RI   0.77   1.21   2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                     |                |             |            |           | opaque red beads, 2 of 7 light blue beads, 2 larger                                                |
| R1         0         1.78         2.78         green beads, 7 of 5 dark blue beads, 7 of 28 dark low assure were fragments of blue glass beads.           R1         0.77         1.21         2.36         were fragments of blue glass beads.           R1         0.77         1.21         2.36         were fragments of blue glass beads.           R1         0.72         1.71         2.56         measure were fragments of blue glass beads.           R1         1.25         3.6         4.24         measure were fragments of blue glass beads.           R1         1.17         2.5         4.24         measure were fragments of blue glass beads.           R1         0.91         1.51         2.56         measure were fragments of blue glass beads.           R1         0.92         1.51         3.06         measure were fragments of blue glass beads.           R1         0.8         1.22         2.5         4.24         measure were fragments of blue glass beads.           R1         0.9         1.21         2.55         4.24         measure fragments of blue glass beads.           R1         0.79         1.23         2.55         measure fragments of blue glass beads.           R2         0         2.37         2.232.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |                |             |            |           | light bluebeads, 2 of 5 dark green beads, 2 of 6 blue-                                             |
| R1         0         1.78         2.78         were fragments of blue glass beads.           R1         0.77         1.21         2.36         Avere fragments of blue glass beads.           R1         0.72         1.71         2.56         Avere fragments of blue glass beads.           R1         1.25         3.6         3.23         Avere fragments of blue glass beads.           R1         1.17         2.5         4.24         Avere fragments of blue glass beads.           R2         1.12         2.5         4.24         Avere fragments of blue glass beads.           R3         1.17         2.5         4.24         Avere fragments of blue glass beads.           R4         0.91         1.51         2.56         Avere fragments of blue glass beads.           R4         0.8         1.51         3.06         Avere fragments of blue glass beads.           R5         0.9         1.23         2.55         Avere fragments of blue glass beads.           R6         0.9         1.84         2.89         Avere fragments of blue glass beads.           R7         0         2.37         2.22         Avere fragments of blue glass beads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                     |                |             |            |           | green beads, 2 of 5 dark blue beads, 7 of 28 dark                                                  |
| R1         0         1.78         2.78           R1         0.77         1.21         2.36           R1         0.72         1.71         2.56           R1         1.25         3.23         3.23           R1         1.17         2.5         4.24           R2         1.12         6.35         6.72           R1         0.91         1.51         3.06           R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                     |                |             |            |           | (navy) blue beads, 8 of 33 grey beads. Not measured were fragments of blue glass heads             |
| RI         0.77         1.21         2.36           RI         0.72         1.71         2.56           RI         1.25         3.23         6.32           RI         1.17         2.5         4.24           RI         0.91         1.51         3.06           RI         0.91         1.51         2.6           RI         0.79         1.22         2.6           RI         0.82         1.69         2.55           RI         0.91         1.84         2.89           RI         0.91         1.84         2.89           RI         0.91         1.84         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AKC01747    | R1                  | 0              | 1.78        | 2.78       |           | D                                                                                                  |
| R1         0.72         1.71         2.56           R1         1.25         3.6         3.23           R1         1.17         2.5         4.24           R2         1.12         6.35         6.72           R1         0.91         1.51         3.06           R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AKC01748    | R1                  | 0.77           | 1.21        | 2.36       |           |                                                                                                    |
| R1         1.25         3.6         3.23           R2         1.12         6.35         6.72           R1         0.91         1.51         3.06           R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AKC01749    | R1                  | 0.72           | 1.71        | 2.56       |           |                                                                                                    |
| RI         1.17         2.5         4.24           R2         1.12         6.35         6.72           R1         0.91         1.51         3.06           R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AKC01750    |                     | 1.25           | 3.6         | 3.23       |           |                                                                                                    |
| R2         1.12         6.35         6.72           R1         0.91         1.51         3.06           R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AKC01751    | R1                  | 1.17           | 2.5         | 4.24       |           |                                                                                                    |
| R1         0.91         1.51         3.06           R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AKC01752    | R2                  | 1.12           | 6.35        | 6.72       |           |                                                                                                    |
| R1         0.8         1.22         2.6           R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AKC01753    | R1                  | 0.91           | 1.51        | 3.06       |           |                                                                                                    |
| R1         0.79         1.23         2.55           R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AKC01754    | R1                  | 8.0            | 1.22        | 2.6        |           |                                                                                                    |
| R1         0.82         1.69         2.53           R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AKC01755    | R1                  | 0.79           | 1.23        | 2.55       |           |                                                                                                    |
| R1         0.91         1.84         2.89           R2         0         2.37         2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AKC01756    | R1                  | 0.82           | 1.69        | 2.53       |           |                                                                                                    |
| R2 0 2.37 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AKC01757    | R1                  | 0.91           | 1.84        | 2.89       |           |                                                                                                    |
| 671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AKC01758    | R2                  | 0              | 2.37        | 2.22       |           |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |                |             |            |           | 671                                                                                                |

| 1 | 7 |   |
|---|---|---|
| O | 1 | 7 |

| Notes               |          |          |          | From a group of 135 beads. Measuered 3 of 9 black beads, 4 of 16 brown/violet beads, 5 of 16 opaque yellow beads, 2 translucent yellow beads, 2 of 5 opaque red beads, 2 of 7 light blue beads, 2 of 5 dark green beads, 2 of 6 bluegreen beads, 2 of 5 dark blue beads, 7 of 28 dark (navy) blue beads, 8 of 33 grey beads. Not measured were fragments of blue glass beads. |          |          |          |          |          |          |          |          |          | Group of 23 beads. Measured 1 of 3 black beads, 1 brown bead, 1 of 3 dark blue beads, 4 of 16 translucent yellow beads.  Associated with burial context |          |          |          |          |          |          |
|---------------------|----------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Thickness           |          |          |          | From a g beads, 4 yellow opaque light blue green b (navy) bl                                                                                                                                                                                                                                                                                                                  |          |          |          |          |          |          |          |          |          | Group o                                                                                                                                                 |          |          |          |          |          |          |
| Max. Width          | 2.74     | 2.73     | 3.04     | 2.89                                                                                                                                                                                                                                                                                                                                                                          | 2.64     | 2.92     | 2.58     | 2.93     | 3.47     | 2.28     | 2.53     | 2.54     | 2.95     | 2.93                                                                                                                                                    | 3.26     | 3.92     | 2.84     | 2.9      | 2.41     | 3.27     |
| Max. Length         | 1.61     | 1.63     | 1.83     | 1.68                                                                                                                                                                                                                                                                                                                                                                          | 1.81     | 2.01     | 1.76     | 1.88     | 1.94     | 1.06     | 1.99     | 1.86     | 1.74     | 1.57                                                                                                                                                    | 2.16     | 1.84     | 2.06     | 2.21     | 1.95     | 1.87     |
| Interior Perf.      | 0.84     | 0.78     | 0.83     | 0.92                                                                                                                                                                                                                                                                                                                                                                          | 0.78     | 0.94     | 0.73     | 8.0      | 1.11     | 0.82     | 86.0     | 0.72     | 1.16     | 7.0                                                                                                                                                     | 1.2      | 1.41     | 8.0      | 0        | 0        | 1.14     |
| Roundness<br>Factor | R1       |          | R1       | RI                                                                                                                                                                                                                                                                                                                                                                            | R1                                                                                                                                                      | R1       | R1       | R1       | R2       | R1       | R1       |
| Database ID         | AKC01759 | AKC01760 | AKC01761 | AKC01762                                                                                                                                                                                                                                                                                                                                                                      | AKC01763 | AKC01764 | AKC01765 | AKC01766 | AKC01767 | AKC01768 | AKC01769 | AKC01770 | AKC01771 | AKC01772                                                                                                                                                | AKC01773 | AKC01774 | AKC01775 | AKC01776 | AKC01777 | AKC01778 |

| Notes               | From a group of 1078 orange beads<br>Burial Context |          |          |          |          |          |          |          |          |          |          | Measured 10 of 649 black beads. Burial context |          |          |          |          |          |          |          |          |          |
|---------------------|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Thickness           |                                                     |          |          |          |          |          |          |          |          |          |          |                                                |          |          |          |          |          |          |          |          |          |
| Max. Width          | 2.03                                                | 2.22     | 2.07     | 2.7      | 2.16     | 2.4      | 1.87     | 2.56     | 1.89     | 1.96     | 1.81     | 1.83                                           | 2.83     | 1.86     | 2.06     | 1.94     | 1.77     | 1.28     | 1.7      | 1.51     | 1.5      |
| Max. Length         | 1.09                                                | 1.84     | 1.37     | 1.66     | 1.67     | 1.96     | 2.07     | 1.41     | 1.85     | 1.11     | 1.21     | 1.44                                           | 1.3      | 1.91     | 1.75     | 2.64     | 1.13     | 1.11     | 1.77     | 1.79     | 1.26     |
| Interior Perf.      | 0                                                   | 0.72     | 0.62     | 1.04     | 1.12     | 0.83     | 0.73     | 96.0     | 0.72     | 89.0     | 0        | 0.73                                           | 0.93     | 0        | 0.71     | 29.0     | 0.84     | N/A      | N/A      | N/A      | N/A      |
| Roundness<br>Factor | R1                                                  | R1       | R1       | R1       | R1       | R1       | R1       | R1       | R1       | R1       | R1       | R0                                             | R1       |
| Database ID         | AKC01779                                            | AKC01780 | AKC01781 | AKC01782 | AKC01783 | AKC01784 | AKC01785 | AKC01786 | AKC01787 | AKC01788 | AKC01789 | AKC01790                                       | AKC01791 | AKC01792 | AKC01793 | AKC01794 | AKC01795 | AKC01796 | AKC01797 | AKC01798 | AKC01799 |

| Database ID Roundness Interior Perf. Factor | Roundness<br>Factor | Interior Perf. | Max. Length | Max. Width | Thickness | Notes                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|---------------------|----------------|-------------|------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AKC01807                                    | N/A                 | N/A            | N/A         | N/A        |           | Group of disintegrated beads from Bony 2 burial at Prei Khmeng. Beads were from child skeleton that was analyzed in Singapore. All beads are destroyed and fragmented.  Christophe Pottier said they were round IP beads 6 bags of yellow opaque bead fragments  I bag with just a few black opaque bead fragments  2 bags of a blue or green bead fragments. |
| AKC01808                                    | R1                  | 68.0           | 1.39        | 2.86       |           | Measured 2 of 7 blue beads from Bony 2 burial that were analyzed in Singapore. Not measured- a group of blue bead fragments.                                                                                                                                                                                                                                  |
| AKC01809                                    | R1                  | 0.95           | 1.67        | 2.86       |           | Measured 2 of 7 blue beads from Bony 2 burial that were analyzed in Singapore. Not measured- a group of blue bead fragments.                                                                                                                                                                                                                                  |

Appendix 7.1d: Glass beads from Prohear and Bit Meas

|          | Site Name | Catalogue<br>Number | Unit | Square      | Bead Shape                        | Total # of beads |
|----------|-----------|---------------------|------|-------------|-----------------------------------|------------------|
| AKC00441 | Prohear   | N/A                 |      |             | Ring                              | 1                |
| AKC00442 | Prohear   | 9                   | Α    | I-K/116-117 | Ring                              | 1                |
| AKC00443 | Prohear   | 20                  | Α    | I-K/116-117 | Indo-Pacific bead (tubular shape) | 6                |
| AKC00444 | Prohear   | 20                  | А    | I-K/116-117 | Indo-Pacific bead (tubular shape) | 6                |
| AKC00445 | Prohear   | 20                  | A    | I-K/116-117 | Indo-Pacific bead (tubular shape) | 6                |
| AKC00446 | Prohear   | 20                  | A    | I-K/116-117 | Indo Pacific Bead                 | 6                |
| AKC00447 | Prohear   | 20                  | A    | I-K/116-117 | Indo-Pacific bead (tubular shape) | 6                |
| AKC00448 | Prohear   | 20                  | A    | I-K/116-117 | Indo-Pacific bead (tubular shape) | 6                |
| AKC00449 | Prohear   | 20                  | А    | I-K/116-117 | Indo-Pacific bead (tubular shape) | 6                |
| AKC00450 | Prohear   | 20                  | A    | I-K/116-117 | Indo Pacific Bead                 | 6                |
| AKC00451 | Prohear   | 20                  | А    | I-K/116-117 | Indo Pacific Bead                 | 6                |
| AKC00452 | Prohear   | 2                   | A    | L-M/114-115 | Indo-Pacific bead (tubular shape) | 1                |
| AKC00453 | Prohear   | 5                   | Α    | I-K/112-113 | Indo-Pacific bead (tubular shape) | 3                |
| AKC00454 | Prohear   | 5                   | Α    | I-K/112-115 | Indo-Pacific bead (tubular shape) | 3                |
| AKC00455 | Prohear   | 5                   | A    | I-K/112-115 | Indo-Pacific bead (tubular shape) | 3                |
| AKC00456 | Prohear   | 10                  | Α    | I-K/112-113 | Indo-Pacific bead (tubular shape) | 1                |
| AKC00457 | Prohear   | 9                   | Α    | L/114-115   | Indo-Pacific bead (tubular shape) | 5                |
| AKC00458 | Prohear   | 9                   | Α    | L/114-115   | Indo-Pacific bead (tubular shape) | 5                |
| AKC00459 | Prohear   | 9                   | Α    | L/114-115   | Indo-Pacific bead (tubular shape) | 5                |
| AKC00460 | Prohear   | 9                   | Α    | L/114-115   | Indo-Pacific bead (tubular shape) | 5                |
| AKC00461 | Prohear   | 9                   | Α    | L/114-115   | Indo-Pacific bead (tubular shape) | 5                |
| AKC00462 | Prohear   | 11                  | A    | K/114       | Indo-Pacific bead (tubular shape) | 1                |
| AKC00463 | Prohear   | 10                  | A    | L-M/116-117 | Indo Pacific Bead                 |                  |
| AKC00464 | Prohear   | 9                   | Α    | I-K/114-115 | Ring/Earring                      | 2                |

| Bead Shape Ring/Earring                                                |
|------------------------------------------------------------------------|
| 12 13                                                                  |
| Indo-Pacific bead (tubular shape)<br>Indo-Pacific bead (tubular shape) |
| Indo-Pacific bead (tubular shape)                                      |
| Indo-Pacific bead (tubular shape)                                      |
| Indo-Pacific bead (tubular shape)                                      |
| Indo-Pacific bead (tubular shape)                                      |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |

| Total # of beads    | 44                | 1                 | 1                                 | 1                                 | 1            | 1                                 | 5                                 | 5                                 | 5                                 | 5                                 | 5                                 | 1                                 | 1                 | 1                                 | 3                                 | 3                                 | 3                                 | 1                                 | 1                  | 2                                 | 2                                 | 1                                 | 34                                | 34                                | 34                                | 34                                | 34                                |
|---------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|--------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Bead Shape          | Indo-Pacific bead | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Ring/Earring | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead? | Indo-Pacific bead (tubular shape) |
| Square              | IK/112-113        | L/ 110-1111       | K/111                             | I/ 110                            | K109         | K/109                             | L/110-111                         | L/110-111                         | L/110-111                         | L/110-111                         | L/110-111                         | L/110-111                         | K/108             | L/108-109                         | I-K/108-109                       | I-K/108-109                       | I-K/108-109                       | L/107                             | LM/112-113         | M/143                             | M/143                             | LM/ 143-144                       | L7/ 143-144                       |
| Unit                | А                 | A                 | A                                 | A                                 | A            | А                                 | A                                 | Α                                 | А                                 | A                                 | Α                                 | А                                 | А                 | А                                 | A                                 | А                                 | А                                 | A                                 | A                  | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 |
| Catalogue<br>Number | 54                | 22                | 9                                 | 7                                 | 10           | 4                                 | 5                                 | 5                                 | 5                                 | 5                                 | 5                                 | 6                                 | 16                | 11                                | 20                                | 20                                | 20                                | 12                                | 30                 | 63                                | 63                                | 17                                | 50                                | 50                                | 50                                | 50                                | 50                                |
| Site Name           | Prohear           | Prohear           | Prohear                           | Prohear                           | Prohear      | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear            | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           | Prohear                           |
| Database ID         | AKC00492          | AKC00493          | AKC00494                          | AKC00495                          | AKC00496     | AKC00497                          | AKC00498                          | AKC00499                          | AKC00500                          | AKC00501                          | AKC00502                          | AKC00503                          | AKC00504          | AKC00505                          | AKC00506                          | AKC00507                          | AKC00508                          | AKC00510                          | AKC00511           | AKC00512                          | AKC00513                          | AKC00514                          | AKC00515                          | AKC00516                          | AKC00517                          | AKC00518                          | AKC00519                          |

| Total # of beads    | 3                                 | 3                                 | 3                                 | -                                 | -                                 | 5                                 | 5                                 | 5                                 | 5                                 | 5                                 | П                                 | П                                 | 1                                 | -                                 | 1                                 | 2                                 | 2                                 | -                                 | П                                 | -                                 | 1                                 | 1                                 | П                                 | П                 | 1                 | 1                                 | 1                                 |
|---------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|
| Bead Shape          | Indo-Pacific bead (tubular shape) | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) |
| Square              | LM/ 143-144                       | LM/ 143-144                       | LM/ 143-144                       | LM/143-144                        | LM/143-144                        | LM/ 143-144                       | L-M/143-144                       | LM/143-144                        | L-M/143-144                       | LM/143-144                        | LM/143-144                        | LM/143-144                        | M/144                             | LM/143-144                        | LM/143-144                        | M/44                              | LM/143-144                        | LM/143-144        | LM/143-144        | M/144                             | L/144                             |
| Unit                | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                                 | В                 | В                 | В                                 | В                                 |
| Catalogue<br>Number | 43                                | 43                                | 43                                | 49                                | 35                                | 46                                | 46                                | 46                                | 46                                | 46                                | 41                                | 39                                | 34                                | 40                                | 42                                | 44                                | 44                                | 33                                | 3                                 | 32                                | 7                                 | 16                                | 37                                | 38                | 20                | 15                                | 4                                 |
| Site Name           | Prohear                           | Prohear           | Prohear           | Prohear                           | Prohear                           |
| Database ID         | AKC00520                          | AKC00521                          | AKC00522                          | AKC00523                          | AKC00524                          | AKC00525                          | AKC00526                          | AKC00527                          | AKC00528                          | AKC00529                          | AKC00530                          | AKC00531                          | AKC00532                          | AKC00533                          | AKC00534                          | AKC00535                          | AKC00536                          | AKC00537                          | AKC00538                          | AKC00539                          | AKC00540                          | AKC00541                          | AKC00542                          | AKC00543          | AKC00544          | AKC00545                          | AKC00546                          |

| Database ID | Site Name | Catalogue<br>Number | Unit | Square      | Bead Shape                        | Total # of beads |
|-------------|-----------|---------------------|------|-------------|-----------------------------------|------------------|
| AKC00547    | Prohear   | 18                  | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 1                |
| AKC00548    | Prohear   | 5                   | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 1                |
| AKC00549    | Prohear   | 23                  | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 1                |
| AKC00550    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | ∞                |
| AKC00551    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00552    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00553    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00554    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00555    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00556    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00557    | Prohear   | 28                  | В    | LM/143-144  | Indo Pacific Bead                 | 8                |
| AKC00558    | Prohear   | 62                  | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 6                |
| AKC00559    | Prohear   | 62                  | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 6                |
| AKC00560    | Prohear   | 62                  | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 6                |
| AKC00561    | Prohear   | 62                  | В    | LM/143-144  | Indo Pacific Bead                 | 6                |
| AKC00562    | Prohear   | 62                  | В    | LM/143-144  | Indo Pacific Bead                 | 6                |
| AKC00563    | Prohear   | 62                  | В    | LM/143-144  | Indo Pacific Bead                 | 6                |
| AKC00564    | Prohear   | 12                  | В    | LM/143-144  | Ring/Earring                      | 1                |
| AKC00565    | Prohear   | 36                  | В    | LM/143-144  | Indo-Pacific bead                 | 1                |
| AKC00566    | Prohear   | 19                  | В    | LM/143-144  | Indo Pacific Bead                 | 1                |
| AKC00567    | Prohear   | 45                  | В    | L7/143-144  | Indo-Pacific bead (tubular shape) | 1                |
| AKC00568    | Prohear   | 11                  | В    | LM/143-144  | Indo-Pacific bead (tubular shape) | 1                |
| AKC00569    | Prohear   | 5                   | A    | I-K/114-115 | Indo-Pacific bead (tubular shape) | 1                |
| AKC00570    | Prohear   | 3                   | A    | L/108-109   | Indo-Pacific bead (tubular shape) | 1                |
| AKC00571    | Prohear   | 3                   | A    | L/108-109   | Indo-Pacific bead                 | 1                |
| AKC00572    | Prohear   | 13                  | Y    | IK/ 108-109 | Indo Pacific Bead                 | 5                |
| AKC00573    | Prohear   | 13                  | A    | IK/ 108-109 | Indo-Pacific bead (tubular shape) | 5                |

| fof s               |                   |                   |                   |                                   |                                   |              |                                   |                                   |                                   |                   |                   |                   |              |                                   |                   |                   |                                   |                                   |                   |                                   |                                   |                                   |            |                                   |                      |                                   |                                   | 68 |
|---------------------|-------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|--------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|-------------------|-------------------|--------------|-----------------------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------|-----------------------------------|----------------------|-----------------------------------|-----------------------------------|----|
| Total # of beads    | 5                 | S                 | S                 | 1                                 | 1                                 | 1            | 1                                 | 1                                 | 1                                 | 1                 | 1                 | 2                 | 2            | 1                                 | 1                 | 1                 | 26                                | 26                                | 26                | 26                                | 26                                | 26                                | 26         | 1                                 | 1                    | 17                                | 17                                |    |
| Bead Shape          | Indo Pacific Bead | Indo Pacific Bead | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Ring/Earring | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead | Indo Pacific Bead | Indo Pacific Bead | Short Barrel | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) |            | Indo-Pacific bead (tubular shape) | Short Barrel (rough) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) |    |
| Square              | IK/ 108-109       | IK/ 108-109       | IK/ 108-109       | L/108-109                         | L/110-111                         | K/109        | K/109                             | L/110-111                         | IK/110-111                        | 1/110             | IK/110-111        | I-110             | 1-110        | LM/112-113                        | IK/104-105        | IK/110-111        | IK/136-137                        | IK/136-137                        | IK/136-137        | IK/136-137                        | IK/136-137                        | IK/136-137                        | IK/136-137 | IK/136-137                        | LM/136-137           | LM/138-139                        | LM/138-139                        |    |
| Unit                | A                 | A                 | A                 | Α                                 | A                                 | A            | A                                 | A                                 | A                                 | A                 | A                 | A                 | A            | A                                 | A                 | A                 | C                                 | C                                 | C                 | C                                 | C                                 | C                                 | C          | C                                 | C                    | C                                 | C                                 |    |
| Catalogue<br>Number | 13                | 13                | 13                | 1                                 | 15                                | 5            | 6                                 | 2                                 | 28                                | 8                 | 48                | 13                | 13           | 22                                | 14                | 50                | 12                                | 12                                | 12                | 12                                | 12                                | 12                                | 12         | 6                                 | 4                    | 3                                 | 3                                 |    |
| Site Name           | Prohear           | Prohear           | Prohear           | Prohear                           | Prohear                           | Prohear      | Prohear                           | Prohear                           | Prohear                           | Prohear           | Prohear           | Prohear           | Prohear      | Prohear                           | Prohear           | Prohear           | Prohear                           | Prohear                           | Prohear           | Prohear                           | Prohear                           | Prohear                           | Prohear    | Prohear                           | Prohear              | Prohear                           | Prohear                           |    |
| Database ID         | AKC00574          | AKC00575          | AKC00576          | AKC00577                          | AKC00578                          | AKC00579     | AKC00580                          | AKC00581                          | AKC00582                          | AKC00583          | AKC00584          | AKC00585          | AKC00586     | AKC00587                          | AKC00588          | AKC00589          | AKC00591                          | AKC00592                          | AKC00593          | AKC00594                          | AKC00595                          | AKC00596                          | AKC00597   | AKC00598                          | AKC00599             | AKC00600                          | AKC00601                          |    |

| Total # of beads    | 17                                | 17                                | 17                                | 1            | 1                                 | 1                 | 2                                 | 2                                 | 1                 | 1                 | 1                                 | 1                                 | -                 | 1                    | 1                                 | 2                                 | 2                                 | 33                | 33                | 33                | 33                | 33                                | 1                                 | 1            | 1          | 1            | 1             |
|---------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------|-----------------------------------|-------------------|-----------------------------------|-----------------------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|-------------------|----------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|--------------|------------|--------------|---------------|
| Bead Shape          | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Short Barrel | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Short Barrel (rough) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo Pacific Bead | Indo Pacific Bead | Indo Pacific Bead | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Ring/Earring | NA         | Ring/Earring | Ring/Earring? |
| Square              | LM/138-139                        | LM/138-139                        | LM/138-139                        | IK/136-137   | IK/112-113                        | LM/112-113        | LM/112-113                        | LM/112-113                        | IK/112-113        | LM/112-113        | LM/112-113                        | LM/112-113                        | LM/112-113        | IK/112-113           | LM/112-113                        | IK/112-113                        | IK/112-113                        | L/110-111         | L/110-111         | L/110-111         | L/110-111         | L/110-111                         | L/104-105                         | L/105        | LM/104-105 | LM/104-105   | LM/104-105    |
| Unit                | C                                 | C                                 | C                                 | C            | A                                 | А                 | A                                 | А                                 | A                 | Α                 | Α                                 | A                                 | A                 | A                    | A                                 | Α                                 | A                                 | A                 | А                 | A                 | A                 | Α                                 | Α                                 |              | Α          | A            | А             |
| Catalogue<br>Number | 3                                 | 3                                 | 3                                 | ∞            | 12                                | 28                | 7                                 | 7                                 | 3                 | 11                | 3                                 | 19                                | 18                | 13                   | 2                                 | 7                                 | 7                                 | 18                | 18                | 18                | 18                | 18                                | 39                                | 38           | 12         | 29           | 6             |
| Site Name           | Prohear                           | Prohear                           | Prohear                           | Prohear      | Prohear                           | Prohear           | Prohear                           | Prohear                           | Prohear           | Prohear           | Prohear                           | Prohear                           | Prohear           | Prohear              | Prohear                           | Prohear                           | Prohear                           | Prohear           | Prohear           | Prohear           | Prohear           | Prohear                           | Prohear                           | Prohear      | Prohear    | Prohear      | Prohear       |
| Database ID         | AKC00602                          | AKC00603                          | AKC00604                          | AKC00605     | AKC00607                          | AKC00608          | AKC00609                          | AKC00610                          | AKC00611          | AKC00612          | AKC00613                          | AKC00614                          | AKC00615          | AKC00616             | AKC00617                          | AKC00618                          | AKC00619                          | AKC00620          | AKC00621          | AKC00622          | AKC00623          | AKC00624                          | AKC00625                          | AKC00626     | AKC00627   | AKC00628     | AKC00629      |

| Site Name Catalogue<br>Number | ıe Unit<br>r | Square      | Bead Shape                        | Total # of beads |
|-------------------------------|--------------|-------------|-----------------------------------|------------------|
| 3                             | A            | IK/104-105  | Indo-Pacific bead (tubular shape) | 1                |
| 12                            | A            | IK/104-105  | Indo-Pacific bead (tubular shape) | 1                |
| 17/18                         | A            | IK/104-105  | Indo-Pacific bead (tubular shape) | 1                |
| 77                            | A            |             | Indo-Pacific bead (tubular shape) | П                |
| 26                            | A            | 1/107       | Ring/Earring                      | 1                |
| 13                            | A            | IK/106-107  | Ring/Earring                      | -                |
| 14                            | В            | LM/145-156  | Short Barrel                      | -                |
| 17                            | В            | LM/ 145-146 | Indo-Pacific bead (tubular shape) | П                |
| 11                            | В            | LM/145-146  | Indo-Pacific bead                 | 1                |
| 10                            | В            | LM/145-146  | Indo-Pacific bead (tubular shape) | П                |
| 9                             | В            | LM/145-146  | Indo-Pacific bead (tubular shape) | П                |
| 26                            | В            | LM/145-146  | Glass fragment                    | 1                |
| 71                            | III          | K/83        | Indo-Pacific bead (tubular shape) | 1                |
| 75                            | III          | J/84        | Indo Pacific Bead                 | 1                |
|                               |              |             | Indo-Pacific bead (tubular shape) | 5                |
| 11                            | A            | IK/106-107  | Indo Pacific Bead                 | 1                |
| 51                            | A            | IK/ 106-107 | Indo Pacific Bead                 | 2                |
| 15                            | A            | IK/ 106-107 | Indo Pacific Bead                 | 2                |
| 12                            | A            | IK/106/107  | Indo-Pacific bead (tubular shape) | 1                |
| 14                            | A            | IK/106-107  | Indo-Pacific bead (tubular shape) | 1                |
| 32                            | A            | 1/102       | Indo-Pacific bead (tubular shape) | 1                |
| 103                           | A            | K/107       | Indo Pacific Bead                 | 2                |
| 103                           | A            | K/107       | Indo Pacific Bead                 | 2                |
| 25                            | A            | 1/107       | Indo-Pacific bead (tubular shape) | 1                |
| 29                            | A            | K/107       | Indo-Pacific bead (tubular shape) | 1                |
| 30                            | A            | K/107       | Indo-Pacific bead (tubular shape) | 1                |
| 23                            | A            | 1/107       | Indo-Pacific bead (tubular shape) | 1                |

| 1 Otal # 01<br>beads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lape) 1                           | 1                                          | iape) 1                           | lape) 1                           |                   | 5            | S S               |                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------|-------------------|--------------|-------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indo-Pacific bead (tubular shape) | Indo Pacific Bead                          | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo Pacific Bead |              | Indo Pacific Bead | Indo Pacific Bead<br>Indo-Pacific bead (tubular shape) | Indo Pacific Bead<br>Indo-Pacific bead (tubular shape)<br>Indo-Pacific bead (tubular shape) | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead Indo Pacific Bead Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead Indo Pacific Bead Indo Pacific Bead Indo Pacific Bead                                                 | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead Indo Pacific Bead Indo Pacific Bead acific bead (tubular shape) Indo Pacific Bead Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indo Pacific Bead acific bead (tubular shape) acific bead (tubular shape) acific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indo-Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indo Pacific Bead Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo-Pacific bead (tubular shape) Indo Pacific Bead Indo-Pacific bead (tubular shape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Indo-Pacific bead (the Indo-Pacific Indo-Pacific bead (the Indo-Paci | Indo-Pacific bead (t              | Indo-Pacific bead (to Indo-Pacific bead (t | Indo-Pacific bead (t              | `                                 | Indo Pacific      | Indo Pacific |                   | Indo-Pacific bead (t                                   | Indo-Pacific bead (the Indo-Pacific bead (t                                                 | Indo-Pacific bead (to | Indo-Pacific bead (the Indo-Pacific Indo-Pa | Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo Pacific Indo Indo Indo Indo Indo Indo Indo Indo | Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo Pacific Indo | Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo Pacific | Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo Pacific Indo Pacific Indo-Pacific bead (the Indo-Pacific bead ( | Indo-Pacific bead (the | Indo-Pacific bead (the | Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific bead (the Indo-Pacific Indo-Pacific bead (the Indo-Pacific | Indo-Pacific bead (the | Indo-Pacific bead (the Indo-Pacific bead beacific be | Indo-Pacific bead (the | Indo-Pacific bead (the | Indo-Pacific bead (the | Indo-Pacific bead (the | Indo-Pacific bead (the | Indo-Pacific bead (the | Indo-Pacific bead (the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                            |                                   |                                   |                   |              |                   |                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/107                             |                                            | K/107                             | 1/107                             | IK/107            | IK/107       |                   | IK/107                                                 | IK/107<br>IK/107                                                                            | IK/107<br>IK/107<br>IK/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IK/107<br>IK/107<br>IK/107<br>K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IK/107<br>IK/107<br>IK/107<br>K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IK/107<br>IK/107<br>IK/107<br>K/107<br>K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107                                                                                                                                                                                  | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IK/107<br>IK/107<br>IK/107<br>K/107<br>K/107<br>K/107<br>K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107 K/107 K/106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/106 IK/106 IL/106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/107 K/106 IL/106 IK/111-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IK/107   IK/107   IK/107   K/107   K/107   K/107   K/107   K/107   K/106   L/106   L/106   IK/111-110   IK/136-137   IK/   | IK/107 IK/107 IK/107 K/107 K/107 K/107 K/107 K/106 IK/106 IK/111-110 IK/136-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                 | A                                          | A                                 | A                                 | A                 | A            |                   | А                                                      | A A                                                                                         | A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A         A         A         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 4 4 4 4 4                                                                                                                                                                                                                   | < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34                                | 24                                         | 28                                | 35                                | 48                | 48           | 40                | 84                                                     | 48                                                                                          | 48<br>48<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48<br>48<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48<br>48<br>48<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                        | 85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>85<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104<br>104<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104<br>104<br>104<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104<br>104<br>104<br>104<br>104<br>1104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48<br>48<br>48<br>85<br>85<br>85<br>85<br>85<br>104<br>104<br>104<br>104<br>104<br>104<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                           | Prohear                                    | Prohear                           | Prohear                           | Prohear           | Prohear      | Prohear           |                                                        | Prohear                                                                                     | Prohear<br>Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prohear<br>Prohear<br>Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prohear Prohear Prohear Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prohear Prohear Prohear Prohear Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prohear Prohear Prohear Prohear Prohear                                                                                                                                                                                       | Prohear Prohear Prohear Prohear Prohear Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear Prohear Prohear Prohear Prohear Prohear Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prohear Prohear Prohear Prohear Prohear Prohear Prohear Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear Prohear Prohear Prohear Prohear Prohear Prohear Prohear Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prohear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                            |                                   |                                   |                   |              |                   |                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AKC00668                          | AKC00669                                   | AKC00670                          | AKC00671                          | AKC00672          | AKC00673     | AKC00674          |                                                        | AKC00675                                                                                    | AKC00675<br>AKC00676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AKC00675<br>AKC00676<br>AKC00677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AKC00675<br>AKC00676<br>AKC00677<br>AKC00677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AKC00675 AKC00676 AKC00677 AKC00678 AKC00678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AKC00675<br>AKC00677<br>AKC00677<br>AKC00678<br>AKC00679                                                                                                                                                                      | AKC00675 AKC00677 AKC00677 AKC00678 AKC00688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AKC00675 AKC00670 AKC00673 AKC00679 AKC00680 AKC00680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AKC00675 AKC00676 AKC00678 AKC00678 AKC00681 AKC00681 AKC00683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AKC00675 AKC00676 AKC00678 AKC00679 AKC00680 AKC00681 AKC00683 AKC00684 AKC00684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AKC00675 AKC00676 AKC00678 AKC00680 AKC00681 AKC00681 AKC00683 AKC00683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AKC00675 AKC00676 AKC00678 AKC00689 AKC00681 AKC00684 AKC00684 AKC006884 AKC006884 AKC006884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AKC00675 AKC00677 AKC00678 AKC00689 AKC00681 AKC00683 AKC00684 AKC00685 AKC00685 AKC00686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AKC00675 AKC00676 AKC00678 AKC00689 AKC00681 AKC00684 AKC00688 AKC00688 AKC00688 AKC00688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AKC00675 AKC00677 AKC00678 AKC00680 AKC00681 AKC00683 AKC00683 AKC00684 AKC00685 AKC006868 AKC00688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AKC00675 AKC00676 AKC00678 AKC00681 AKC00681 AKC00684 AKC00688 AKC00688 AKC00688 AKC00688 AKC00688 AKC00688 AKC00688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AKC00675 AKC00677 AKC00678 AKC00680 AKC00681 AKC00683 AKC00685 AKC00685 AKC00686 AKC00688 AKC00688 AKC00688 AKC00688 AKC00688 AKC00688 AKC00688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AKC00675 AKC00676 AKC00678 AKC00681 AKC00681 AKC00684 AKC00688 AKC00717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AKC00676  AKC00677  AKC00678  AKC00681  AKC00682  AKC00682  AKC00686  AKC00686  AKC00686  AKC00686  AKC00687  AKC00687  AKC00687  AKC00687  AKC00711  AKC00712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Total # of beads    | 25                                | 25                                | 25                                | 1                 | 1                 | 1                 | 1                 | 1                | 1                | 1                 | 1                  | 1                  | 1                | 1                  | 1                  | 1                  | 1                  | 1                 | 1               | 1                 | 1                 | 1                 | 1               | 1                 | 1                  | 1                 | 1                  |
|---------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-----------------|-------------------|--------------------|-------------------|--------------------|
| Bead Shape          | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo-Pacific bead (tubular shape) | Indo Pacific Bead | Indo Pacific Bead | Indo Pacific Bead | Indo Pacific Bead | Earring fragment | Earring fragment | Indo Pacific Bead | Indo Pacific Bead? | Indo-Pacific Bead? | Earring fragment | Indo-Pacific Bead? | Indo-Pacific Bead? | Indo-Pacific Bead? | Indo-Pacific Bead? | Indo Pacific Bead | Bangle fragment | Indo Pacific Bead | Indo Pacific Bead | Indo Pacific Bead | Bangle fragment | Earring fragment? | Indo Pacific Bead? | Indo Pacific Bead | Indo Pacific Bead? |
| Square              | IK/136-137                        | IK/136-137                        | IK/136-137                        |                   | L-M/106-107       | I-K/106-107       | I-K/106-107       | L-M/104-105      | I-K/108-109      | L-M/110-111       | L-M/112-113        | I-K/112-113        | L-M/114-115      | I-K/116-117        | I-K/136-137        | I-K/136-137        | I-K/136-137        | L-M/140-141       | L-M/140-141     | L-M/143-144       | L-M/143-144       | L-M/114-115       | L-M/120-121     | L-M/122-123       | L-M/126-127        | L-M/126-127       | L-M/126-127        |
| Unit                | C                                 | C                                 | C                                 | A                 | A                 | A                 | A                 | A                | A                | A                 | A                  | A                  | A                | A                  | C                  | C                  | C                  | C                 | C               | В                 | В                 | A                 | D               | D                 | D                  | D                 | D                  |
| Catalogue<br>Number | 12                                | 12                                | 12                                | 104               | 13                | 80                | 85                | 38               | 10               | 18                | 30                 | 41                 | 27               | 20                 | 12                 | 12                 | 6                  | 18                | 3               | 45                | 62                | 11                | 7               | 16                | 65                 | 40                | 40                 |
| Site Name           | Prohear                           | Prohear                           | Prohear                           | Prohear           | Prohear           | Prohear           | Prohear           | Prohear          | Prohear          | Prohear           | Prohear            | Prohear            | Prohear          | Prohear            | Prohear            | Prohear            | Prohear            | Prohear           | Prohear         | Prohear           | Prohear           | Prohear           | Prohear         | Prohear           | Prohear            | Prohear           | Prohear            |
| Database ID         | AKC00723                          | AKC00724                          | AKC00725                          | AKC00726          | AKC00733          | AKC00734          | AKC00735          | AKC00736         | AKC00737         | AKC00738          | AKC00739           | AKC00740           | AKC00741         | AKC00742           | AKC00743           | AKC00744           | AKC00745           | AKC00746          | AKC00747        | AKC00748          | AKC00749          | AKC00750          | AKC00751        | AKC00752          | AKC00753           | AKC00754          | AKC00755           |

| Database ID | Site Name | Catalogue<br>Number | Unit | Square      | Bead Shape                        | Total # of beads |
|-------------|-----------|---------------------|------|-------------|-----------------------------------|------------------|
| AKC00756    | Prohear   | 56                  | D    | L-M/132-133 | Indo Pacific Bead?                | 1                |
| AKC00757    | Prohear   | 39                  | D    | L-M/132-133 | Indo Pacific Bead                 | 1                |
| AKC00727    | Bit Meas  | N/A                 |      |             | Indo Pacific Bead                 | 1                |
| AKC00728    | Bit Meas  | N/A                 |      |             | Indo-Pacific bead (tubular shape) | 1                |
| AKC00729    | Bit Meas  | N/A                 |      |             | Large Indo Pacific Bead           | 1                |

| Notes                | Ring is broken so<br>measurements are<br>incomplete | Ring is broken so<br>measurements are<br>incomplete | •            |              |              |              |              |              |                                                      |              |              |          |          |                  |                                 |                                 |
|----------------------|-----------------------------------------------------|-----------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------------------------------------|--------------|--------------|----------|----------|------------------|---------------------------------|---------------------------------|
| Max.Width            |                                                     |                                                     | 5.85         | 5.59         | 4.33         | 3.76         | 3.83         | 3.8          | 3.92                                                 | 2.75         | 2.95         | 5.06     | 5.39     | 6.23             | 6.37                            | 5.02                            |
| Max.<br>Length       |                                                     |                                                     | 4.46         | 4.98         | 2.56         | 3.09         | 2.05         | 2.53         | 3.17                                                 | 2.49         | 1.8          | 4.76     | 4        | 60.9             | 8                               | 3.47                            |
| Interior<br>Perf. B  |                                                     |                                                     |              |              |              |              |              |              |                                                      |              |              |          |          |                  |                                 |                                 |
| Interior<br>Perf. A  |                                                     |                                                     | 1.3          | 1.32         | 1.54         | 0            | 1.48         | 1.39         | 1.37                                                 | 0            | 0            | 1.19     | 1.97     | 1.36             | 1.9                             | 1.23                            |
| Roundness<br>Factor  | NA                                                  | NA                                                  | R3           | R3           | R1           | R2           | R1           | R2           | R2                                                   | R1           | R1           | R2       | R2       | R3               | R1                              | R2                              |
| Opacity              | Transparent                                         | Opaque                                              | Translucent                                          | Translucent  | Translucent  | Opaque   | Opaque   | Semi-Translucent | Semi-Translucent<br>Translucent | Translucent<br>Semi-Translucent |
| Glass Color<br>Notes | Light blue-green color                              |                                                     |              |              |              |              |              |              | Slightly darker<br>than other beads<br>in this group |              |              |          |          |                  | Dark cobalt                     | Dark cobalt                     |
| Glass<br>Color       | Light<br>Green                                      | Black                                               | Dark<br>Blue                                         | Dark<br>Blue | Dark<br>Blue | Yellow   | Black    | Light<br>Blue    | Cobalt                          | Cobalt                          |
| Database ID          | AKC00441                                            | AKC00442                                            | AKC00443     | AKC00444     | AKC00445     | AKC00446     | AKC00447     | AKC00448     | AKC00449                                             | AKC00450     | AKC00451     | AKC00452 | AKC00453 | AKC00454         | AKC00455                        | AKC00456                        |

| Notes       |         |                                 |                              |                    |               |          |                    | Hole is clogged making interior | perforation and | color determination difficult | Piece is broken, no | measurements | Piece is broken, no | measurements |                                  |                                  |                                  |                  |                  |                 |                                  |                                  |
|-------------|---------|---------------------------------|------------------------------|--------------------|---------------|----------|--------------------|---------------------------------|-----------------|-------------------------------|---------------------|--------------|---------------------|--------------|----------------------------------|----------------------------------|----------------------------------|------------------|------------------|-----------------|----------------------------------|----------------------------------|
| Max.Width   |         | 5.52                            | 98.9                         | 4.63               | 5.35          | 4.74     | 5.37               | 3.15                            |                 |                               |                     |              |                     |              | 2.73                             | 3.63                             | 3.01                             | 3.42             | 3.28             |                 | 3.21                             | 3.43                             |
| Max.        | Length  | 6.3                             | 3.16                         | 3.33               | 3.85          | 4.11     | 4.22               | 2.36                            |                 |                               |                     |              |                     |              | 2.18                             | 2.88                             | 2.15                             | 2.45             | 2.22             |                 | 8                                | 3.53                             |
| Interior    | Perf. B |                                 |                              |                    |               |          |                    |                                 |                 |                               |                     |              |                     |              |                                  |                                  |                                  |                  |                  |                 |                                  |                                  |
| Interior    | Perf. A | 1.64                            | 1.7                          | 1.46               | 1.65          | 1.6      | 1.89               | 0                               |                 |                               |                     |              |                     |              | N/A                              | 1.07                             | 1.04                             | 1.31             | 1.03             |                 | 1.3                              | N/A                              |
| Roundness   | Factor  | R2                              | R1                           | R2                 | R2            | R1       | R1                 | R1                              |                 |                               | NA                  |              | NA                  |              | R0                               | R0                               | R0                               | R0               | R0               |                 | R0                               | RO                               |
| Opacity     |         | Translucent<br>Semi-Translucent | Semi-Translucent             |                    | Translucent   | Opaque   | Translucent        | Semi-Translucent<br>Opaque      |                 |                               | Semi-Translucent    | Opaque       | Semi-Translucent    | Opaque       | Semi-Translucent                 | Semi-Translucent                 | Semi-Translucent                 | Semi-Translucent | Semi-Translucent |                 | Semi-Translucent                 | Semi-Translucent                 |
| Glass Color | Notes   |                                 | Dark cobalt-<br>almost black | Intense blue color |               |          | Intense blue color | Dark cobalt                     |                 |                               |                     |              |                     |              | Not as dark blue as cobalt beads | Not as dark blue as cobalt heads | Not as dark blue as cobalt beads | Not as dark blue | Not as dark blue | as cobalt beads | Not as dark blue as cobalt beads | Not as dark blue as cobalt beads |
| Glass       | Color   | Light<br>Blue                   | Cobalt                       | Cobalt             | Light<br>Blue | Black    | Cobalt             | Cobalt                          |                 |                               | Deep                | Purple       | Deep                | Purple       | Dark<br>Blue                     | Dark<br>Blue                     | Dark<br>Blue                     | Dark             | Dark             | Blue            | Dark<br>Blue                     | Dark<br>Blue                     |
| Database ID |         | AKC00457                        | AKC00458                     | AKC00459           | AKC00460      | AKC00461 | AKC00462           | AKC00463                        |                 |                               | AKC00464            |              | AKC00465            |              | AKC00466                         | AKC00467                         | AKC00468                         | AKC00469         | AKC00470         |                 | AKC00471                         | AKC00472                         |

| 000 | 6 | 8 | 8 |
|-----|---|---|---|
|-----|---|---|---|

|                      | om<br>2                                              |                                   |                                   |                                   |                                   |                                   |                                   |                  |                                   |                                   |                  |                    | ds oof oof aads oalt f                                                                                                                                            |
|----------------------|------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------|-----------------------------------|-----------------------------------|------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes                | Measured 10<br>random beads from<br>this group of 92 |                                   |                                   |                                   |                                   |                                   |                                   |                  |                                   |                                   |                  |                    | Measured 8 beads from this grou of 44. All but 3 beads were a matte cobalt blue color, 5 of these were measured. The three lighter blue beads were also measured. |
| Max.Width            | 5.45                                                 | 5.68                              | 6.04                              | 5.93                              | 6.23                              | 6.22                              | 5.8                               | 6.33             | 5.42                              | 5.85                              | 3.05             | 2.66               | 5.01                                                                                                                                                              |
| Max.<br>Length       | 3.43                                                 | 2.78                              | 2.97                              | 4.24                              | 3.55                              | 3.36                              | 3.08                              | 2.75             | 3.42                              | 2.59                              | 1.54             | 1.85               | 4.01                                                                                                                                                              |
| Interior<br>Perf. B  |                                                      |                                   |                                   |                                   |                                   |                                   |                                   |                  |                                   |                                   |                  |                    |                                                                                                                                                                   |
| Interior<br>Perf. A  | 1.14                                                 | 1.73                              | 1.44                              | 1.02                              | 1.57                              | 1.37                              | 1.73                              | 1.6              | 1.26                              | 1.75                              | 6.0              | 62.0               | 129                                                                                                                                                               |
| Roundness<br>Factor  | R2                                                   | R1                                | R1                                | R2                                | R1                                | R1                                | R1                                | R1               | R1                                | R1                                | R1               | R1                 | R2                                                                                                                                                                |
| Opacity              | Semi-Translucent                                     | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent | Semi-Translucent   | Semi-Translucent                                                                                                                                                  |
| Glass Color<br>Notes | Dark blue cobalt/<br>matte finish                    | Dark blue cobalt/<br>matte finish | Dark blue cobalt/<br>matte finish | Dark blue cobalt/<br>matte finish | Dark blue cobalt/<br>matte finish | Dark blue cobalt/<br>matte finish | Dark blue cobalt/<br>matte finish | alt/             | Dark blue cobalt/<br>matte finish | Dark blue cobalt/<br>matte finish |                  | Intense blue color |                                                                                                                                                                   |
| Glass<br>Color       | Cobalt                                               | Cobalt                            | Cobalt                            | Cobalt                            | Cobalt                            | Cobalt                            | Cobalt                            | Cobalt           | Cobalt                            | Cobalt                            | Cobalt           | Cobalt             | Light<br>Blue                                                                                                                                                     |
| Database ID          | AKC00473                                             | AKC00474                          | AKC00475                          | AKC00476                          | AKC00477                          | AKC00478                          | AKC00479                          | AKC00480         | AKC00481                          | AKC00482                          | AKC00483         | AKC00484           | AKC00485                                                                                                                                                          |

|                      |                  |                  |                                   |                  |                  |                                   |                  |             | solor               |                    |          |                  |                                       |                    |                    | þ                                   | pç                 | pun                                   |                                  |                    |                                   |
|----------------------|------------------|------------------|-----------------------------------|------------------|------------------|-----------------------------------|------------------|-------------|---------------------|--------------------|----------|------------------|---------------------------------------|--------------------|--------------------|-------------------------------------|--------------------|---------------------------------------|----------------------------------|--------------------|-----------------------------------|
| Notes                |                  |                  |                                   |                  |                  |                                   |                  |             | Brighter blue color |                    |          |                  |                                       |                    |                    | barrel shaped                       | barrel shaped      | Large size round bead                 |                                  |                    |                                   |
| Max.Width            | 5.34             | 4.9              | 99'9                              | 6.88             | 4.79             | 5.76                              | 6.38             | 3.84        | 4.68                | 2.62               |          | 6.27             | 4.92                                  | 4.8                | 5.2                | 5.14                                | 4.55               | 6.83                                  | 3.74                             | 4.8                | 3.56                              |
| Max.<br>Length       | 2.84             | 4.65             | 2.6                               | 3.7              | 4.35             | 3.95                              | 2.92             | 1.46        | 4.25                | 2.6                |          | 3.23             | 4.45                                  | 5.01               | 4.32               | 6.24                                | 5.61               | 5.18                                  | 1.89                             | 3.95               | 3.73                              |
| Interior<br>Perf. B  |                  |                  |                                   |                  |                  |                                   |                  |             |                     |                    |          |                  |                                       |                    |                    |                                     |                    |                                       |                                  |                    |                                   |
| Interior<br>Perf. A  | 1.6              | 1.7              | 2.4                               | 2.1              | 1.56             | 1.22                              | 2.31             | 1.14        | 96.0                | 1.48               |          | 1.82             | 1.32                                  | 1.57               | 1.23               | 1.28                                | 1.26               | 2.02                                  | 1.63                             | 1.43               | 0.7                               |
| Roundness<br>Factor  | R2               | R1               | R1                                | R1               | R2               | R2                                | R1               | R1          | R2                  | R1                 | NA       | R1               | R2                                    | R2                 | R2                 | R2                                  | R2                 | R1                                    | R1                               | R2                 | R2                                |
| Opacity              | Semi-Translucent | Semi-Translucent | Semi-Translucent                  | Semi-Translucent | Semi-Translucent | Semi-Translucent                  | Semi-Translucent |             | Semi-Translucent    | Semi-Translucent   | Opaque   | Semi-Translucent | Semi-Translucent                      | Semi-Translucent   | Semi-Translucent   | Semi-Translucent                    | Semi-Translucent   | Semi-Translucent                      | Semi-Translucent                 | Semi-Translucent   | Semi-Translucent                  |
| Glass Color<br>Notes |                  |                  | Dark blue cobalt/<br>matte finish | ılt/             | alt/             | Dark blue cobalt/<br>matte finish | ılt/             | Dark cobalt | Intense blue color  | Intense blue color |          | Dark cobalt      | Intense blue color   Semi-Translucent | Intense blue color | Intense blue color | Intense blue color Semi-Translucent | Intense blue color | Intense blue color   Semi-Translucent | Not as dark blue as cobalt beads | Intense blue color | Intense blue color, shiny surface |
| Glass<br>Color       | Light<br>Blue    | Cobalt           | Cobalt                            | Cobalt           | Cobalt           | Cobalt                            | Cobalt           | Cobalt      | Cobalt              | Cobalt             | Black    | Cobalt           | Cobalt                                | Cobalt             | Cobalt             | Cobalt                              | Cobalt             | Cobalt                                | Dark<br>Blue                     | Cobalt             | Cobalt                            |
| Database ID          | AKC00486         | AKC00487         | AKC00488                          | AKC00489         | AKC00490         | AKC00491                          | AKC00492         | AKC00493    | AKC00494            | AKC00495           | AKC00496 | AKC00497         | AKC00498                              | AKC00499           | AKC00500           | AKC00501                            | AKC00502           | AKC00503                              | AKC00504                         | AKC00505           | AKC00506                          |

| ı | 6 | a | n |
|---|---|---|---|
| ı | v | , | v |

|                     |                    |                                     | d d                                                                                         | ure                                       |                                   |                                   |                    | olly the the the the the e                                                                           |                    |                                       |                    |                                   | 6                                       |
|---------------------|--------------------|-------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|--------------------|-----------------------------------|-----------------------------------------|
| Notes               |                    |                                     | Not disc shaped<br>like others in this<br>color range and<br>also more shiny<br>than matte. | Bead is fragmentary, difficult to measure |                                   |                                   |                    | Measured the only dark cobalt blue bead as well as the 4/33 of the group of more intense blue beads. |                    |                                       |                    |                                   |                                         |
| Max.Width           | 4.36               | 4.13                                | 5.17                                                                                        |                                           | 66'9                              | 6.78                              | 6.11               | 5.76                                                                                                 | 4.66               | 6.58                                  | 5.74               | 4.75                              | 5.97                                    |
| Max.<br>Length      | 3.35               | 3.05                                | 5.67                                                                                        |                                           | 4.88                              | 4.86                              | 4.99               | 4.6                                                                                                  | 4.39               | 6.52                                  | 4.39               | 4.91                              | 4.56                                    |
| Interior<br>Perf. B |                    |                                     |                                                                                             |                                           |                                   |                                   |                    |                                                                                                      |                    |                                       |                    |                                   |                                         |
| Interior<br>Perf. A | 1.39               | 1.05                                | 1.33                                                                                        |                                           | 1.95                              | 1.14                              | 2.05               | 2.1                                                                                                  | 1.79               | 2.38                                  | 06                 | 0.93                              | 1.9                                     |
| Koundness<br>Factor | R2                 | R2                                  | R1                                                                                          | NA                                        | R1                                | R1                                | R2                 | R1                                                                                                   | R1                 | R1                                    | R1                 | R2                                | R2                                      |
| Opacity             | Semi-Translucent   | Semi-Translucent                    | Semi-Translucent                                                                            |                                           | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent   | Semi-Translucent                                                                                     | Semi-Translucent   | Semi-Translucent                      | Semi-Translucent   | Semi-Translucent                  | Semi-Translucent                        |
| Notes               | Intense blue color | Intense blue color Semi-Translucent | Shiny surface                                                                               | NA                                        | Intense blue color, shiny surface | Intense blue color, shiny surface | Intense blue color | Dark blue cobalt/<br>matte finish                                                                    | Intense blue color | Intense blue color   Semi-Translucent | Intense blue color | Intense blue color, shiny surface | Intense blue<br>color, shiny<br>surface |
| Color               | Cobalt             | Cobalt                              | Cobalt                                                                                      | Red                                       | Cobalt                            | Cobalt                            | Cobalt             | Cobalt                                                                                               | Cobalt             | Cobalt                                | Cobalt             | Cobalt                            | Cobalt                                  |
| Database ID         | AKC00507           | AKC00508                            | AKC00510                                                                                    | AKC00511                                  | AKC00512                          | AKC00513                          | AKC00514           | AKC00515                                                                                             | AKC00516           | AKC00517                              | AKC00518           | AKC00519                          | AKC00520                                |

|                      |                                   |                    |                  |                  |                                   |                  |                                   |                    |                    |                           |                    | oed.               |          |                                   |                                   |                    |                  |                                   |                    |
|----------------------|-----------------------------------|--------------------|------------------|------------------|-----------------------------------|------------------|-----------------------------------|--------------------|--------------------|---------------------------|--------------------|--------------------|----------|-----------------------------------|-----------------------------------|--------------------|------------------|-----------------------------------|--------------------|
| Notes                |                                   |                    |                  |                  |                                   |                  |                                   |                    |                    |                           |                    | Bead is chipped    |          |                                   |                                   |                    |                  |                                   |                    |
| Max.Width            | 5.78                              | 5.01               | 5.63             | 5.35             | 5.27                              | 5.35             | 5.39                              | 5.91               | 5.14               | 4.9                       | 6.37               | 5.14               | 4.63     | 5.89                              | 5.32                              | 5.39               | 5.63             | 5.05                              | 5.7                |
| Max.<br>Length       | 4                                 | 4.07               | 5.78             | 5.05             | 4.18                              | 5.85             | 5.78                              | 5.2                | 3.97               | 5.46                      | 5.18               | 3.36               | 4.89     | 4.82                              | 3.75                              | 5.13               | 4.83             | 4.68                              | 5.96               |
| Interior<br>Perf. B  |                                   |                    | 1.49             |                  |                                   |                  |                                   |                    |                    |                           |                    |                    |          |                                   |                                   |                    |                  |                                   |                    |
| Interior<br>Perf. A  | 2.06                              | 1.19               |                  | 1.49             | 1.07                              | 1.49             | 1.96                              | 0.97               | 1.73               | 1.9                       | 1.58               | 1.27               | 1.15     | 2.02                              | 1.3                               | 1.21               | 1.22             | 1.42                              | 0.88               |
| Roundness<br>Factor  | R1                                | R2                 | R2               | R2               | R2                                | R2               | R2                                | R2                 | R1                 | R1                        | R2                 | R1                 | R2       | R2                                | R2                                | R3                 | R2               | R2                                | R2                 |
| Opacity              | Semi-Translucent                  | Semi-Translucent   | Semi-Translucent | Semi-Translucent | Semi-Translucent                  | Semi-Translucent | Semi-Translucent                  | Semi-Translucent   | Semi-Translucent   | Semi-Translucent          | Semi-Translucent   | Semi-Translucent   | Opaque   | Semi-Translucent                  | Semi-Translucent                  | Semi-Translucent   | Semi-Translucent | Semi-Translucent                  | Semi-Translucent   |
| Glass Color<br>Notes | Intense blue color, shiny surface | Intense blue color |                  | Matte surface    | Intense blue color, shiny surface | color            | Intense blue color, shiny surface | Intense blue color | Intense blue color | Intense blue color Semi-T | Intense blue color | Intense blue color |          | Intense blue color, shiny surface | Intense blue color, shiny surface | Intense blue color | Shiny surface    | Intense blue color, shiny surface | Intense blue color |
| Glass<br>Color       | Cobalt                            | Cobalt             | Cobalt           | Cobalt           | Cobalt                            | Cobalt           | Cobalt                            | Cobalt             | Cobalt             | Cobalt                    | Cobalt             | Cobalt             | Black    | Cobalt                            | Cobalt                            | Cobalt             | Cobalt           | Cobalt                            | Cobalt             |
| Database ID          | AKC00521                          | AKC00522           | AKC00523         | AKC00524         | AKC00525                          | AKC00526         | AKC00527                          | AKC00528           | AKC00529           | AKC00530                  | AKC00531           | AKC00532           | AKC00533 | AKC00534                          | AKC00535                          | AKC00536           | AKC00537         | AKC00538                          | AKC00539           |

| 6 | a | 2 |
|---|---|---|
| v | フ | 4 |

| Glass<br>Color |                                   |                  | Roundness<br>Factor | Interior<br>Perf. A | Interior<br>Perf. B | Max.<br>Length | Max.Width | Notes                                                                                |
|----------------|-----------------------------------|------------------|---------------------|---------------------|---------------------|----------------|-----------|--------------------------------------------------------------------------------------|
| Cobalt         | Intense blue color                | Semi-Translucent | N/A                 | N/A                 | N/A                 | N/A            | N/A       |                                                                                      |
| Cobalt         | Intense blue color                | Semi-Translucent | R2                  | 1.39                |                     | 5.05           | 5.72      |                                                                                      |
| Cobalt         | Intense blue color, shiny surface | Semi-Translucent | R2                  | 1.38                |                     | 5.7            | 5.34      |                                                                                      |
| Cobalt         | Intense blue color                | Semi-Translucent | R1                  | 1.85                |                     | 2.72           | 5.69      |                                                                                      |
| Cobalt         | Intense blue color                | Semi-Translucent | R2                  | 1.37                |                     | 4.51           | 5.62      |                                                                                      |
| Cobalt         | Matte surface                     | Semi-Translucent | R2                  | 1.31                |                     | 5.92           | 6.29      |                                                                                      |
| Cobalt         | Intense blue color                | Semi-Translucent | R1                  | 1.91                |                     | 4.77           | 5         |                                                                                      |
| Cobalt         | Intense blue color Semi           | Semi-Translucent | NA                  | 1.71                |                     | 0              | 0         | Bead broken,<br>measurements<br>difficult                                            |
| Cobalt         | Intense blue color, shiny surface | Semi-Translucent | R1                  | 1.77                |                     | 4.72           | 5.47      |                                                                                      |
| Cobalt         | Intense blue color                | Semi-Translucent | R2                  | 1.74                |                     | 60.9           | 0         |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 1.21                |                     | 2.46           | 3.69      |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 1.36                |                     | 2.15           | 3.81      |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 1.38                |                     | 2.8            | 3.66      |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 1.51                |                     | 1.85           | 3.8       |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 1.31                |                     | 1.95           | 3.81      |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 0                   |                     | 2.67           | 0         |                                                                                      |
| Red            | Reddish-brown                     | Opaque           |                     | 1.41                |                     | 2.22           | 3.24      |                                                                                      |
| Red            | Reddish-brown                     | Opaque           | R1                  | 1.41                |                     | 1.98           | 3.89      |                                                                                      |
| Cobalt         | Intense blue color                | Semi-Translucent | R1                  | 1.71                |                     | 3.33           | 5.65      | Measured and recorded all three of the blue beads and 3 of the red beads (n=6 total) |
| Cobalt         | Intense blue color Semi           | Semi-Translucent | R2                  | 1.07                |                     | 4.84           | 5.79      |                                                                                      |
|                | _                                 | -                |                     |                     |                     |                |           | •                                                                                    |

| Notes                |                    |               |               |               |          |                  | Bead hole clogged,<br>unable to measure |          |                                  |                |                  |                  |          |                    |          |          |          |                                 |                    |          |                    |                    |                    |                  |
|----------------------|--------------------|---------------|---------------|---------------|----------|------------------|-----------------------------------------|----------|----------------------------------|----------------|------------------|------------------|----------|--------------------|----------|----------|----------|---------------------------------|--------------------|----------|--------------------|--------------------|--------------------|------------------|
| Max.Width            | 4.87               | 3.77          | 4.25          | 3.43          | 0        | 7.71             | 2.6                                     | 0        | 4.55                             | 5.03           | 5.27             | 6.45             | 2.71     | 89.9               | 3.57     | 2.52     | 2.39     | 5.58                            | 5.72               | 0        | 4.69               | 6.93               | 6.03               | 7.05             |
| Max.<br>Length       | 3.81               | 2.41          | 2.47          | 3.49          | 0        | 3.38             | 1.68                                    | 3.84     | 4.4                              | 4.71           | 4.31             | 3.02             | 1.41     | 5.72               | 2.65     | 1.16     | 1.77     | 4.94                            | 5.12               | 0        | 4.61               | 6.12               | 5.69               | 2.98             |
| Interior<br>Perf. B  |                    |               |               |               |          |                  |                                         |          |                                  |                |                  |                  |          |                    |          |          |          |                                 |                    |          |                    |                    |                    |                  |
| Interior<br>Perf. A  | 1.25               | 0             | 1.63          | 89.0          |          | 2.27             | 0                                       | 0        | 1.15                             | 1.28           | 1.52             | 2.23             | 96.0     | 1.63               | 1.13     | 6.0      | 8.0      | 1.42                            | 1.11               |          | 86.0               | 9.02               | 2.12               | 1.7              |
| Roundness<br>Factor  | R1                 | R1            | R1            | R2            | NA       | R1               | R1                                      | R1       | R1                               | R1             | R1               | R1               | R1       | R2                 | R1       | R1       | R1       | R2                              | R2                 | NA       | R2                 | R2                 | R1                 | R1               |
| Opacity              | Semi-Translucent   | Opaque        | Opaque        | Opaque        | Opaque   | Semi-Translucent | Semi-Translucent                        | Opaque   | Semi-Translucent                 | Translucent    | Semi-Translucent | Semi-Translucent | Opaque   | Semi-Translucent   | Opaque   | Opaque   | Opaque   | Semi-Translucent<br>Translucent | Semi-Translucent   | Opaque   | Semi-Translucent   | Semi-Translucent   | Semi-Translucent   | Semi-Translucent |
| Glass Color<br>Notes | Intense blue color | Reddish-brown | Reddish-brown | Reddish-brown |          | Dark cobalt      | Not as dark blue as cobalt beads        |          | Not as dark blue as cobalt beads | yellow-green   |                  | Dark cobalt      |          | Intense blue color |          |          |          |                                 | Intense blue color |          | Intense blue color | Intense blue color | Intense blue color | Dark cobalt      |
| Glass<br>Color       | Cobalt             | Red           | Red           | Red           | Black    | Cobalt           | Dark<br>Blue                            | Black    | Dark<br>Blue                     | Light<br>Green | Deep<br>Purple   | Cobalt           | Black    | Cobalt             | Black    | Black    | Black    | Light<br>Green                  | Cobalt             | Black    | Cobalt             | Cobalt             | Cobalt             | Cobalt           |
| Database ID          | AKC00560           | AKC00561      | AKC00562      | AKC00563      | AKC00564 | AKC00565         | AKC00566                                | AKC00567 | AKC00568                         | AKC00569       | AKC00570         | AKC00571         | AKC00572 | AKC00573           | AKC00574 | AKC00575 | AKC00576 | AKC00577                        | AKC00578           | AKC00579 | AKC00580           | AKC00581           | AKC00582           | AKC00583         |

| Notes                | Perforation not<br>measured as hole | was clogged | Broken bead,     | perforation |                  | Broken bead,<br>unable to measure |                                  |                  | 26 total beads, | measured 5 of 22 | opaque cobalt | beads, 1 light blue | bead, and 1 of 3 | sem-translucent dark blue beads. |             |                  |             |             |             |                                  | Bead is broken so |                  | Measured one dark<br>blue bead and 4 of<br>16 cobalt blue<br>beads. | 694 |
|----------------------|-------------------------------------|-------------|------------------|-------------|------------------|-----------------------------------|----------------------------------|------------------|-----------------|------------------|---------------|---------------------|------------------|----------------------------------|-------------|------------------|-------------|-------------|-------------|----------------------------------|-------------------|------------------|---------------------------------------------------------------------|-----|
| Max.Width            | 2.4                                 |             | 3.55             |             | 62.7             | 0                                 | 2.84                             | 3.65             | 5.62            |                  |               |                     |                  |                                  | 5.75        | 4.68             | 4.33        | 4.85        | 5.7         | 5.52                             | N/A               | 6.53             | 7.17                                                                |     |
| Max.<br>Length       | 2.56                                |             | 1.41             |             | 5                | 0                                 | 1.23                             | 1.83             | 5.37            |                  |               |                     |                  |                                  | 4.42        | 2.13             | 4.2         | 3.72        | 6.22        | 4.71                             | N/A               | 5.01             | 3.76                                                                |     |
| Interior<br>Perf. B  |                                     |             |                  |             |                  |                                   |                                  |                  |                 |                  |               |                     |                  |                                  |             |                  |             |             |             |                                  |                   |                  |                                                                     |     |
| Interior<br>Perf. A  | N/A                                 |             | N/A              |             | 1.3              | 0                                 | 0.84                             | 1.03             | 1.24            |                  |               |                     |                  |                                  | 1.63        | 1.21             | 0           | 1.48        | 1.57        | 1.89                             | N/A               | 1.71             | 1.78                                                                |     |
| Roundness<br>Factor  | R1                                  |             | R1               |             | R2               | NA                                | R1                               | R1               | R2              |                  |               |                     |                  |                                  | R2          | R1               | R2          | R1          | R2          | R2                               | R2                | R2               | R1                                                                  |     |
| Opacity              | Semi-Translucent                    |             | Semi-Translucent |             | Semi-Translucent | Semi-Translucent                  | Translucent                      | Semi-Translucent | Opaque          |                  |               |                     |                  |                                  | Opaque      | Semi-Translucent | Opaque      | Opaque      | Opaque      | Translucent<br>Transparent       | Opaque            | Semi-Translucent | Translucent<br>Transparent                                          |     |
| Glass Color<br>Notes |                                     |             |                  |             | Dark cobalt      | Dark cobalt                       | Not as dark blue as cobalt beads |                  | Dark cobalt     |                  |               |                     |                  |                                  | Dark cobalt | Dark cobalt      | Dark cobalt | Dark cobalt | Dark cobalt | Not as dark blue as cobalt beads | Dark cobalt       | Dark cobalt      | sky blue                                                            |     |
| Glass<br>Color       | Dark<br>Blue                        |             | Cobalt           |             | Cobalt           | Cobalt                            | Dark<br>Blue                     | Cobalt           | Cobalt          |                  |               |                     |                  |                                  | Cobalt      | Cobalt           | Cobalt      | Cobalt      | Cobalt      | Dark<br>Blue                     | Cobalt            | Cobalt           | Light<br>Blue                                                       |     |
| Database ID          | AKC00584                            |             | AKC00585         |             | AKC00586         | AKC00587                          | AKC00588                         | AKC00589         | AKC00591        |                  |               |                     |                  |                                  | AKC00592    | AKC00593         | AKC00594    | AKC00595    | AKC00596    | AKC00597                         | AKC00598          | AKC00599         | AKC00600                                                            |     |

| Notes                |                            |                            |                            |                            |                  |                  |          |                  |                    |                                  |                    | Bead is broken,<br>unable to measure | Bead is in poor condition, difficult | to measure and determine color. |                                  | Slightly teardrop shaped?  |                    |                                 | Bead is broken,<br>unable to measure |
|----------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------|------------------|----------|------------------|--------------------|----------------------------------|--------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------------------|----------------------------|--------------------|---------------------------------|--------------------------------------|
| Max.Width            | 5.59                       | 5.55                       | 4.53                       | 5.46                       | 7.82             | 5.45             | 3.29     | 4.36             | 4.61               | 3.54                             | 3.43               | N/A                                  | N/A                                  |                                 | 3.16                             | 7.82                       | 4.17               | 5.33                            | N/A                                  |
| Max.<br>Length       | 5.02                       | 4.04                       | 4                          | 4.62                       | 8.55             | 5.31             | 2.18     | 2.54             | 4.11               | 2.44                             | 1.5                | N/A                                  | 3.53                                 |                                 | 2.55                             | 6.2                        | 3.57               | 3.88                            | N/A                                  |
| Interior<br>Perf. B  |                            |                            |                            |                            |                  |                  |          |                  |                    |                                  |                    |                                      |                                      |                                 |                                  |                            |                    |                                 |                                      |
| Interior<br>Perf. A  | 2.02                       | 1.97                       | 1.13                       | 1.4                        | 1.79             | 1.5              | 0.72     | 1.36             | 1.31               | 76.0                             | 1.03               | N/A                                  | N/A                                  |                                 | 1.14                             | 1.25                       | 0.7                | 1.71                            | N/A                                  |
| Roundness<br>Factor  | R2                         | R2                         | R1                         | R2                         | R2               | R2               | R1       | R1               | R2                 | R1                               | R1                 | NA                                   | R1                                   |                                 | R1                               | R2                         | R2                 | R2                              | NA                                   |
| Opacity              | Semi-Translucent<br>Opaque | Semi-Translucent<br>Opaque | Semi-Translucent<br>Opaque | Semi-Translucent<br>Opaque | Semi-Translucent | Semi-Translucent | Opaque   | Semi-Translucent | Semi-Translucent   | Semi-Translucent<br>Translucent  | Semi-Translucent   | Opaque<br>Semi-Translucent           | Opaque<br>Semi-Translucent           |                                 | Semi-Translucent                 | Opaque<br>Semi-Translucent | Semi-Translucent   | Semi-Translucent<br>Translucent | Semi-Translucent<br>Translucent      |
| Glass Color<br>Notes | Dark cobalt                | Dark cobalt                | Dark cobalt                | Dark cobalt                | Dark cobalt      | Dark cobalt      |          | Dark cobalt      | Intense blue color | Not as dark blue as cobalt beads | Intense blue color | Dark cobalt                          | Intense blue color                   |                                 | Not as dark blue as cobalt beads | Intense blue color         | Intense blue color |                                 | Intense blue color                   |
| Glass<br>Color       | Cobalt                     | Cobalt                     | Cobalt                     | Cobalt                     | Cobalt           | Cobalt           | Black    | Cobalt           | Cobalt             | Dark<br>Blue                     | Cobalt             | Cobalt                               | Cobalt                               |                                 | Dark<br>Blue                     | Cobalt                     | Cobalt             | Light<br>Blue                   | Cobalt                               |
| Database ID          | AKC00601                   | AKC00602                   | AKC00603                   | AKC00604                   | AKC00605         | AKC00607         | AKC00608 | AKC00609         | AKC00610           | AKC00611                         | AKC00612           | AKC00613                             | AKC00614                             |                                 | AKC00615                         | AKC00616                   | AKC00617           | AKC00618                        | AKC00619                             |

| Notes                | 32 of the beads are smaller in size and one is larger.  Measured larger bead and 4 of the 32 smaller sized beads. |                                 |                                 |                                 |                                 |                                 |                  | Bead is fragmented. |                | Material?     |                                  |                                                |                                 | Bead is broken,<br>unable to take<br>measurements |
|----------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------|---------------------|----------------|---------------|----------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------------|
| Max.Width            | 3.52                                                                                                              | 3.42                            | 3.24                            | 3.73                            | 5.3                             | 5.11                            |                  |                     |                |               | 7.19                             | 6.49                                           | 4.62                            | N/A                                               |
| Max.<br>Length       | 1.51                                                                                                              | 1.37                            | 1.48                            | 1.46                            | 3.64                            | 3.8                             |                  | 0                   |                |               | 88.9                             | 5                                              | 4.22                            | N/A                                               |
| Interior<br>Perf. B  |                                                                                                                   |                                 |                                 |                                 |                                 |                                 |                  |                     |                |               |                                  |                                                |                                 |                                                   |
| Interior<br>Perf. A  | 1.35                                                                                                              | 1.04                            | 1.08                            | 1.07                            | 1.4                             | 1.88                            |                  |                     |                |               | 2.57                             | 1.95                                           | 1.12                            | V/N                                               |
| Roundness<br>Factor  | RI                                                                                                                |                                 | R1                              | R1                              | R2                              | R2                              | NA               | NA                  | NA             | NA            | R2                               | R2                                             | R1                              | R2                                                |
| Opacity              | Semi-Translucent<br>Translucent                                                                                   | Semi-Translucent<br>Translucent | Semi-Translucent<br>Translucent | Semi-Translucent<br>Translucent | Semi-Translucent<br>Translucent | Semi-Translucent<br>Translucent | Translucent      |                     | Translucent    | Opaque        | Semi-Translucent<br>Opaque       | Translucent                                    | Translucent<br>Semi-Translucent | Opaque                                            |
| Glass Color<br>Notes | Intense blue color                                                                                                | Intense blue color              | Intense blue color              | Intense blue color              | Intense blue color              | Dark cobalt                     | with some yellow | Blue?               |                |               | Not as dark blue as cobalt beads | Similar to<br>Turq/Med Blue<br>from Phum Snay? |                                 | Difficult to determine color                      |
| Glass<br>Color       | Cobalt                                                                                                            | Cobalt                          | Cobalt                          | Cobalt                          | Cobalt                          | Cobalt                          | Blue-<br>Green   | Unknown             | Blue-<br>Green | Turquois<br>e | Dark<br>Blue?                    | Turquois<br>e                                  | Deep<br>Purple                  | Black/Pu<br>rple                                  |
| Database ID          | AKC00620                                                                                                          | AKC00621                        | AKC00622                        | AKC00623                        | AKC00624                        | AKC00625                        | AKC00626         | AKC00627            | AKC00628       | AKC00629      | AKC00630                         | AKC00631                                       | AKC00632                        | AKC00633                                          |

| _ | $\sim$ | $\overline{}$ |
|---|--------|---------------|
| h | ч      | - /           |
|   |        |               |

| Notes                |                  |                  |          |                    |                    |                  |                    | Bracelet fragment? |               |                  |          |                            |               | Bead is broken,<br>unable to take<br>measurements. | Bead is broken,<br>unable to take<br>measurements. |               |               |                  |                  |
|----------------------|------------------|------------------|----------|--------------------|--------------------|------------------|--------------------|--------------------|---------------|------------------|----------|----------------------------|---------------|----------------------------------------------------|----------------------------------------------------|---------------|---------------|------------------|------------------|
| Max.Width            | N/A              | N/A              | 7.13     | 5.37               | 5.4                | 3.76             | 6.3                | 10.59              |               |                  | 3.95     | 3                          | 3.76          | N/A                                                | N/A                                                | N/A           | 3.93          | 2.25             | 2.57             |
| Max.<br>Length       | N/A              | N/A              | 7.62     | 3.92               | 2.44               | 4.4              | 4.44               | 12.66              |               |                  | 3.48     | 1.08                       | 2.58          | N/A                                                | 3.27                                               | 3.18          | 2.42          | 1.2              | 1.59             |
| Interior<br>Perf. B  |                  |                  |          |                    |                    |                  |                    |                    |               |                  |          |                            |               |                                                    |                                                    |               |               |                  |                  |
| Interior<br>Perf. A  | N/A              | N/A              | 1.91     | 1.69               | 1.8                | 0.77             | 1.92               |                    |               |                  | 1.64     | 1.08                       | 0.78          | N/A                                                | N/A                                                | N/A           | 1.3           | 6.0              | 1.08             |
| Roundness<br>Factor  | NA               | NA               | R2       | R2                 | R1                 | R2               | R1                 | NA                 | R2            | NA               | R1       | R0                         | R1            | R1                                                 | R1                                                 | R1            | R1            | R0               | R0               |
| Opacity              | Semi-Translucent | Semi-Translucent | Opaque   | Semi-Translucent   | Semi-Translucent   | Opaque           | Semi-Translucent   | Semi-Translucent   | Opaque        | Semi-Translucent | Opaque   | Opaque<br>Semi-Translucent | Opaque        | Opaque                                             | Opaque                                             | Opaque        | Opaque        | Semi-Translucent | Semi-Translucent |
| Glass Color<br>Notes |                  |                  |          | Intense blue color | Intense blue color |                  | Intense blue color | Turquoise          | Purple/Black? |                  |          | Purple/Black?              | Purple/Black? | Purple/Black?                                      | Purple/Black?                                      | Purple/Black? | Purple/Black? |                  |                  |
| Glass<br>Color       | Dark<br>Blue     | Dark<br>Blue     | Black    | Cobalt             | Cobalt             | Black/Pu<br>rple | Cobalt             | Light<br>Blue      | Black         | Light<br>Blue    | Black    | Violet?                    | Black         | Black                                              | Black                                              | Black         | Black         | Dark<br>Blue     | Dark<br>Blue     |
| Database ID          | AKC00634         | AKC00635         | AKC00636 | AKC00637           | AKC00638           | AKC00639         | AKC00640           | AKC00641           | AKC00649      | AKC00650         | AKC00655 | AKC00656                   | AKC00657      | AKC00658                                           | AKC00659                                           | AKC00660      | AKC00661      | AKC00662         | AKC00663         |

| Notes                |               |          | Bead is broken,<br>unable to take<br>measurements. |               |               |                  |               | Bead is broken,<br>unable to take | measurements. | 2 broken black   | beads in this group | were not | measured/recorded. |               |               |               |               | Beads all the same | color but there | were more longer | tubes. Measured 1 | of 3 tubular beads | and 4 of 12 | disc/oblate shaped | Ocado.           |      |                  |
|----------------------|---------------|----------|----------------------------------------------------|---------------|---------------|------------------|---------------|-----------------------------------|---------------|------------------|---------------------|----------|--------------------|---------------|---------------|---------------|---------------|--------------------|-----------------|------------------|-------------------|--------------------|-------------|--------------------|------------------|------|------------------|
| Max.Width            | 3.89          | 4.13     | A/X                                                | 4.3           | 3.34          | 2.6              | 3.79          | N/A                               |               | 2.71             | - Pc                |          | m                  | 2.5           | 3.19          | 4.26          | 3.58          | 2.62 B             |                 | *                | tu                | 0                  |             | lp                 | 2.57             |      | 2.18             |
| Max.<br>Length       | 2.56          | 2.47     | N/A                                                | 3.35          | 3.05          | 1.09             | 2.77          | 2.54                              |               | 1.24             |                     |          |                    | 1.38          | 3.64          | 2.68          | 2.48          | 1.14               |                 |                  |                   |                    |             |                    | 1.23             |      | 1.18             |
| Interior<br>Perf. B  |               |          |                                                    |               |               |                  |               |                                   |               |                  |                     |          |                    |               |               |               |               |                    |                 |                  |                   |                    |             |                    |                  |      |                  |
| Interior<br>Perf. A  | 0.95          | 1.51     | N/A                                                | 1.47          | 0.95          | 0.95             | 1.23          | N/A                               |               | 0.94             |                     |          |                    | 0.63          | 1.09          | 1.16          | 0             | 0.97               |                 |                  |                   |                    |             |                    | 1.04             |      | 0.82             |
| Roundness<br>Factor  | R2            | R1       | NA                                                 | R2            | R2            | R0               | R1            | R1                                |               | R0               |                     |          |                    | R0            | R1            | R2            |               | R0                 |                 |                  |                   |                    |             |                    | R0               | ,    | R0               |
| Opacity              | Opaque        | Opaque   | Opaque                                             | Opaque        | Opaque        | Semi-Translucent | Opaque        | Opaque                            |               | Semi-Translucent |                     |          |                    | Opaque        | Opaque        | Opaque        | Opaque        | Semi-Translucent   |                 |                  |                   |                    |             |                    | Semi-Translucent |      | Semi-Translucent |
| Glass Color<br>Notes | Purple/Black? |          | Purple/Black?                                      | Purple/Black? | Purple/Black? | Purple/Black?    | Purple/Black? | Purple/Black?                     |               |                  |                     |          |                    | Purple/Black? | Purple/Black? | Purple/Black? | Purple/Black? |                    |                 |                  |                   |                    |             |                    |                  |      |                  |
| Glass<br>Color       | Black         | Black    | Black                                              | Black         | Black         | Violet?          | Black         | Black                             |               | Violet?          |                     |          |                    | Black         | Black         | Black         | Black         | Dark               | Blue            |                  |                   |                    |             |                    | Dark             | Bine | Dark<br>Blue     |
| Database ID          | AKC00664      | AKC00665 | AKC00666                                           | AKC00667      | AKC00668      | AKC00669         | AKC00670      | AKC00671                          |               | AKC00672         |                     |          |                    | AKC00673      | AKC00674      | AKC00675      | AKC00676      | AKC00677           |                 |                  |                   |                    |             |                    | AKC00678         |      | AKC00679         |

| Notes                |                  |                  | Measured 3 of 23 dark blue beads, 2 of 14 Violet disc shaped beads, 2 of 12 violet tubular beads. |                  |                  |                  |                  |                  |                  |                            |                  |                    | Measured 1 dark<br>belue bead and 5 of<br>24 cobalt blue<br>beads. |                            |                            |
|----------------------|------------------|------------------|---------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------------|------------------|--------------------|--------------------------------------------------------------------|----------------------------|----------------------------|
| Max.Width            | 2.4              | 3.25             | 2.31                                                                                              | 2.27             | 2.22             | 2.6              | 2.77             | 3.84             | 4.27             | 5.63                       | 62.7             | 5.86               | 5.52                                                               | 5.27                       | 5.65                       |
| Max.<br>Length       | 1.54             | 2.03             | 1.76                                                                                              | 1.47             | 1.26             | 1.41             | 1.25             | 2.13             | 2.09             | 3.64                       | 7.16             | 7.71               | 4.71                                                               | 3.38                       | 4.32                       |
| Interior<br>Perf. B  |                  |                  |                                                                                                   |                  |                  |                  |                  |                  |                  |                            |                  |                    |                                                                    |                            |                            |
| Interior<br>Perf. A  | 1.05             | 1.23             | 0.75                                                                                              | 0.86             | 0.85             | 88.0             | 8.0              | 1.29             | 1.3              | 1.63                       | 1.9              | 1.09               | 1.95                                                               | 1.75                       | N/A                        |
| Roundness<br>Factor  | R0               | R0               | R0                                                                                                | R0               | R0               | R0               | RO               | R1               | R1               | R1                         | R1               | R3                 | R2                                                                 | R2                         | R2                         |
| Opacity              | Semi-Translucent | Semi-Translucent | Semi-Translucent                                                                                  | Semi-Translucent | Semi-Translucent | Semi-Translucent | Semi-Translucent | Semi-Translucent | Semi-Translucent | Semi-Translucent<br>Opaque | Semi-Translucent | Semi-Translucent   | Translucent                                                        | Semi-Translucent<br>Opaque | Opaque<br>Semi-Translucent |
| Glass Color<br>Notes |                  |                  |                                                                                                   |                  |                  |                  |                  |                  |                  | Dark cobalt                | Dark cobalt      | Intense blue color | Not as dark blue<br>as cobalt beads                                | Dark cobalt                | Dark cobalt                |
| Glass<br>Color       | Dark<br>Blue     | Dark<br>Blue     | Dark<br>Blue                                                                                      | Dark<br>Blue     | Dark<br>Blue     | Violet           | Violet           | Violet           | Violet           | Cobalt                     | Cobalt           | Cobalt             | Dark<br>Blue                                                       | Cobalt                     | Cobalt                     |
| Database ID          | AKC00680         | AKC00681         | AKC00683                                                                                          | AKC00684         | AKC00685         | AKC00686         | AKC00687         | AKC00688         | AKC00689         | AKC00717                   | AKC00718         | AKC00719           | AKC00720                                                           | AKC00721                   | AKC00722                   |

| 7 | Λ | Λ |
|---|---|---|
| / | v | v |

| Notes                |                            |                            |                            | Could be modern?                  |                  |              |              |                |               |                  |             |                  | Heavily weathered |                  |                  |                  |                  |                  |             |
|----------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|------------------|--------------|--------------|----------------|---------------|------------------|-------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------|
| Max.Width            | 4.73                       | 4.98                       | 5.82                       | 2.37                              | 3.32             | 3.73         | 2.57         |                |               | 3.25             |             |                  |                   |                  |                  |                  |                  | 3.69             |             |
| Max.<br>Length       | 3.72                       | 3.85                       | 4.42                       | 1.76                              | 1.98             | 2.15         | 1.44         |                |               | 1.63             |             |                  |                   |                  | 3.47             |                  |                  | 1.8              |             |
| Interior<br>Perf. B  |                            |                            |                            |                                   |                  |              |              |                |               |                  |             |                  |                   |                  |                  |                  |                  |                  |             |
| Interior<br>Perf. A  | 1.38                       | 0                          | 1.82                       | 0.81                              | 1.11             | 1.45         | 0.85         |                |               |                  |             |                  |                   |                  |                  |                  |                  | 1.5              |             |
| Roundness<br>Factor  | R1                         | R2                         | R2                         | R1                                | R2               | R1           | R1           | NA             |               |                  |             |                  |                   |                  |                  |                  |                  | R2               |             |
| Opacity              | Opaque<br>Semi-Translucent | Semi-Translucent<br>Opaque | Semi-Translucent<br>Opaque | Opaque                            | Semi-Translucent | Opaque       | Opaque       | Translucent    | Translucent   | Semi-Translucent | Translucent | Semi-Translucent | Opaque            | Semi-Translucent | Semi-Translucent | Semi-Translucent | Semi-Translucent | Semi-Translucent | Translucent |
| Glass Color<br>Notes | Dark cobalt                | Dark cobalt                | Dark cobalt                | With a rainbow coating on suface? |                  |              |              |                | Purple/Black? |                  | Brown-Black |                  | light green       |                  |                  |                  |                  |                  |             |
| Glass                | Cobalt                     | Cobalt                     | Cobalt                     | White                             | Dark<br>Blue     | Dark<br>Blue | Dark<br>Blue | Blue-<br>green | Black         | Dark<br>Blue     | Black       | Dark<br>Blue     | Green             | Cobalt           | Dark<br>Blue     | Dark<br>Blue     | Dark<br>Blue     | Dark<br>Blue     | Brown       |
| Database ID          | AKC00723                   | AKC00724                   | AKC00725                   | AKC00726                          | AKC00733         | AKC00734     | AKC00735     | AKC00736       | AKC00737      | AKC00738         | AKC00739    | AKC00740         | AKC00741          | AKC00742         | AKC00743         | AKC00744         | AKC00745         | AKC00746         | AKC00747    |

| Notes       |          |            |          |               |               |                    |          |                  |                  |          |                                  |                |                  |
|-------------|----------|------------|----------|---------------|---------------|--------------------|----------|------------------|------------------|----------|----------------------------------|----------------|------------------|
| Max.Width   |          |            | 2.73     |               |               | 5.96               | 3.62     |                  |                  | 3.31     | 3.26                             | 3.86           | 8.9              |
| Max.        | 3.82     | 2.03       | 1.51     |               |               | 4.49               | 1.8      | 2.89             | 5.19             | 2.25     | 1.91                             | 3.23           | 5.75             |
| Interior    | 1 (11. D |            |          |               |               |                    |          |                  |                  |          |                                  |                |                  |
| Interior    | 1011.4   |            | 0.94     |               |               | 0                  | 86.0     |                  |                  | 6.0      | 1.09                             | 1.44           | 1.57             |
| Roundness   | R2       |            | R3       |               |               |                    | R1       | R2               |                  | R3       | R2                               |                | R1               |
| Opacity     | Opaque   | Opaque     | Opaque   | Transparent   | Transparent   | Opaque             | Opaque   | Semi-Translucent | Semi-Translucent | Opaque   | Opaque                           | Translucent    | Semi-Translucent |
| Glass Color | SOLONI   | orange-red |          |               |               |                    |          |                  |                  |          | Not as dark blue as cobalt beads |                |                  |
| Glass       | Black    | Red        | Red      | Light<br>Blue | Light<br>Blue | Turquois<br>e Blue | Black    | Dark<br>Blue     | Dark<br>Blue     | Black    | Dark<br>Blue                     | Blue-<br>Green | Dark<br>Blue     |
| Database ID | AKC00748 | AKC00749   | AKC00750 | AKC00751      | AKC00752      | AKC00753           | AKC00754 | AKC00755         | AKC00756         | AKC00757 | AKC00727                         | AKC00728       | AKC00729         |

## Appendix 7.1e: Glass beads from Phum Snay

| Database | Site Name | Catalogue | Bead Shape               | Context                                    | Total #  | Glass      | Glass Color        | Opacity     |
|----------|-----------|-----------|--------------------------|--------------------------------------------|----------|------------|--------------------|-------------|
| ID       |           | Number    |                          |                                            | of beads | Colors     | Notes              |             |
| AKC00041 | Phum Snay | 359(p)    | Indo-Pacific Bead        | Burial 9                                   | 1        | Light Blue |                    | Semi-       |
|          |           |           |                          | Bag 37<br>beads at waist                   |          |            |                    | Translucent |
| AKC00057 | Phum Snay | 326       | Ring fragment (earring?) | Unit A West                                | 1        | Light Blue | Turquoise          | Opaque      |
|          | •         |           |                          | 3:2                                        |          | 1          | blue/green with    | ı           |
|          |           |           |                          | Bag 15<br>Cat 326                          |          |            | streaks of yellow. |             |
| AKC00058 | Phum Snay | 327       | Glass bangle/earring     | Unit A/West                                | 1        | Light Blue | Turquoise          | Opaque      |
|          |           |           | fragment                 | 3:2                                        |          |            | blue/green with    |             |
|          |           |           |                          | Bag 15<br>Cat 327                          |          |            | streaks of yellow. |             |
| AKC00059 | Phum Snay | 380       | Earring/ring             | Unit A/W 3:4 Feature 2<br>Burial 13 Bag 42 | 1        | Dark Blue  |                    | Translucent |
| AKC00060 | Phum Snay | 232       | Indo-Pacific Microbead   | Unit A/E                                   | 1        | Orange     |                    | Opaque      |
|          |           |           |                          | 1:1<br>Bag 1<br>Cot 222                    |          |            |                    |             |
| AKC00061 | Phum Snay | 243       | Indo-Pacific Bead        | Unit C/E                                   | 1        | Yellow     |                    | Opaque      |
|          |           |           |                          | 1:1<br>Bag 1<br>Cat 243                    |          |            |                    |             |
| AKC00062 | Phum Snay | 236       | Indo-Pacific Bead        | Unit C/E                                   | 1        | Yellow     |                    | Opaque      |
|          |           |           |                          | 1.1<br>Bag 1<br>Cat 236                    |          |            |                    |             |
| AKC00063 | Phum Snay | 253       | Indo-Pacific Bead        | Unit C/E                                   | 1        | Yellow     |                    | Opaque      |
|          |           |           |                          | 2:2<br>Bag 5                               |          |            |                    |             |
|          |           |           |                          | Cat 253                                    |          |            |                    |             |

| Opacity              | Opaque                        | Opaque                             | Opaque                             | Opaque                                       | Opaque                             | Opaque                                     | Opaque                              | Opaque                           | Opaque                       |
|----------------------|-------------------------------|------------------------------------|------------------------------------|----------------------------------------------|------------------------------------|--------------------------------------------|-------------------------------------|----------------------------------|------------------------------|
| Glass Color<br>Notes |                               |                                    |                                    |                                              |                                    |                                            |                                     |                                  |                              |
| Glass<br>Colors      | Yellow                        | Orange                             | Red                                | Orange                                       | Red                                | Orange                                     | Orange                              | Red                              | Red                          |
| Total # of beads     | -                             | П                                  | 1                                  | П                                            | -                                  | Г                                          | П                                   | П                                | -                            |
| Context              | Unit B<br>2:2 Bag 5<br>Cat 24 | Unit B<br>3:5<br>Cat 148<br>Bag 26 | Unit B<br>3:5<br>Bag 26<br>Cat 122 | Unit A<br>3:2 Feature 1<br>Bag 18<br>Cat 102 | Unit B<br>3:5<br>Bag 26<br>Cat 135 | Unit C<br>3:2 Bag 17<br>Burial 1<br>Cat 73 | Unit B 3:3 Feature 1 Bag 20 Cat 151 | Unit B<br>1:3<br>Bag 3<br>Cat 13 | Unit A West<br>3:2<br>Bag 15 |
| Bead Shape           | Indo-Pacific Bead             | Indo-Pacific Microbead             | Indo-Pacific Microbead             | Indo-Pacific Microbead                       | Indo-Pacific Microbead             | Indo-Pacific Microbead                     | Indo-Pacific Microbead              | Indo-Pacific Bead                | Indo-Pacific Bead            |
| Catalogue<br>Number  | 24                            | 148                                | 122                                | 102                                          | 135                                | 73                                         | 151                                 | 13                               | 302                          |
| Site Name            | Phum Snay                     | Phum Snay                          | Phum Snay                          | Phum Snay                                    | Phum Snay                          | Phum Snay                                  | Phum Snay                           | Phum Snay                        | Phum Snay                    |
| Database<br>ID       | AKC00064                      | AKC00065                           | AKC00066                           | AKC00067                                     | AKC00068                           | AKC00069                                   | AKC00070                            | AKC00071                         | AKC00072                     |

| Opacity              | Opaque                                | Opaque                           | Opaque                           | Opaque                                         | Opaque                             | Opaque                           | Opaque                           | Transparent<br>Opaque                                        | Translucent<br>Opaque               |
|----------------------|---------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------|-------------------------------------|
| Glass Color<br>Notes |                                       |                                  |                                  |                                                |                                    |                                  |                                  | green color similar<br>to cat 234 but 234<br>has more yellow |                                     |
| Glass<br>Colors      | Orange                                | Orange                           | Red                              | Orange                                         | Red                                | Orange                           | Orange                           | Light Green                                                  | Yellow-<br>Green                    |
| Total # of beads     | -                                     | 1                                | -                                | 1                                              | 1                                  | -                                | 1                                | 1                                                            | 1                                   |
| Context              | Unit C/E 2:2 Feature 1 Bag 37 Cat 250 | Unit B<br>2:1<br>Bag 4<br>Cat 18 | Unit A/E<br>2:3 Bag 6<br>Cat 761 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 255 | Unit A 3:1 Feature 1 Bag 12 Cat 50 | Unit B<br>2:2<br>Bag 5<br>Cat 26 | Unit A<br>2:3<br>Bag 6<br>Cat 33 | Unit A<br>2:2<br>Bag 5<br>Cat 25                             | Unit A/W<br>1:1<br>Bag 1<br>Cat 234 |
| Bead Shape           | Indo-Pacific Bead                     | Indo-Pacific Bead                | Indo-Pacific Bead                | Indo-Pacific Bead                              | Indo-Pacific Bead                  | Indo-Pacific Bead                | Indo-Pacific Bead                | Indo-Pacific Bead                                            | Indo-Pacific Bead                   |
| Catalogue<br>Number  | 250                                   | 18                               | 761                              | 255                                            | 50                                 | 26                               | 33                               | 25                                                           | 234                                 |
| Site Name            | Phum Snay                             | Phum Snay                        | Phum Snay                        | Phum Snay                                      | Phum Snay                          | Phum Snay                        | Phum Snay                        | Phum Snay                                                    | Phum Snay                           |
| Database<br>ID       | AKC00073                              | AKC00074                         | AKC00075                         | AKC00076                                       | AKC00077                           | AKC00078                         | AKC00079                         | AKC00080                                                     | AKC00081                            |

| Opacity              | Semi-<br>Translucent                | Semi-<br>Translucent                     | Semi-<br>Translucent                           | Semi-<br>Translucent                | Semi-<br>Translucent          | Opaque                           | Semi-<br>Translucent                | Semi-<br>Translucent                           | Semi-<br>Translucent   |
|----------------------|-------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------|-------------------------------|----------------------------------|-------------------------------------|------------------------------------------------|------------------------|
| Glass Color<br>Notes | Turquoise                           | Turquoise                                | Turquoise                                      | Turquoise                           | Turquoise                     |                                  |                                     |                                                |                        |
| Glass<br>Colors      | Light Blue                          | Light Blue                               | Light Blue                                     | Light Blue                          | Light Blue                    | Dark Green                       | Dark Blue                           | Dark Blue                                      | Dark Blue              |
| Total # of beads     | 1                                   | 1                                        | -                                              | 1                                   | -                             | 1                                | 1                                   | 1                                              | -                      |
| Context              | Unit C/E<br>2:1<br>Bag 4<br>Cat 248 | Unit C/E Burial 9 at neck Bag 37 Cat 349 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 256 | Unit C/E<br>2:4<br>Bag 7<br>Cat 303 | Unit A/West 2:2 Bag 5 Cat 252 | Unit C/E<br>2:2 Bag 5<br>Cat 640 | Unit C/E<br>2:1<br>Bag 4<br>cat 246 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 763 | Unit B<br>2:3<br>Bag 6 |
| Bead Shape           | Indo-Pacific Bead                   | Indo-Pacific Bead                        | Indo-Pacific Bead                              | Indo-Pacific Bead                   | Indo-Pacific Bead             | Indo-Pacific Bead                | Indo-Pacific Bead                   | Indo-Pacific Bead                              | Indo-Pacific Bead      |
| Catalogue<br>Number  | 248                                 | 349                                      | 256                                            | 303                                 | 252                           | 640                              | 246                                 | 763                                            | 29                     |
| Site Name            | Phum Snay                           | Phum Snay                                | Phum Snay                                      | Phum Snay                           | Phum Snay                     | Phum Snay                        | Phum Snay                           | Phum Snay                                      | Phum Snay              |
| Database<br>ID       | AKC00082                            | AKC00083                                 | AKC00084                                       | AKC00085                            | AKC00086                      | AKC00087                         | AKC00088                            | AKC00089                                       | AKC00090               |

| Opacity              | Translucent<br>Semi-<br>Translucent | Translucent                      | Translucent                            | Translucent                            | Translucent               | Opaque                            | Opaque                            | Opaque                            | Opaque                            |
|----------------------|-------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|---------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Glass Color<br>Notes |                                     |                                  |                                        |                                        |                           |                                   |                                   |                                   |                                   |
| Glass<br>Colors      | Dark Blue                           | Dark Blue                        | Dark Blue                              | Dark Blue                              | Cobalt                    | Orange                            | Orange                            | Orange                            | Orange                            |
| Total # of beads     | -                                   | -                                | -                                      | -                                      | 1                         | 4                                 | 4                                 | 4                                 | 4                                 |
| Context              | Unit C<br>1:3<br>Bag 3<br>Cat 12    | Unit B<br>2:3<br>Bag 6<br>Cat 42 | Unit A/West<br>1:1<br>Bag 1<br>Cat 271 | Unit C<br>Bag 9<br>Level 2:5<br>Cat 45 | Burial 9 (at head) Bag 37 | Unit B<br>3:3<br>Bag 16<br>cat 65 |
| Bead Shape           | Indo-Pacific Bead                   | Indo-Pacific Bead                | Indo-Pacific Bead                      | Indo-Pacific Bead                      | Indo-Pacific Bead         | Indo-Pacific Microbead            | Indo-Pacific Microbead            | Indo-Pacific Microbead            | Indo-Pacific Microbead            |
| Catalogue<br>Number  | 12                                  | 42                               | 271                                    | 45                                     | 348                       | 65(a)                             | (q) <b>5</b> 9                    | 65(c)                             | (p)59                             |
| Site Name            | Phum Snay                           | Phum Snay                        | Phum Snay                              | Phum Snay                              | Phum Snay                 | Phum Snay                         | Phum Snay                         | Phum Snay                         | Phum Snay                         |
| Database<br>ID       | AKC00091                            | AKC00092                         | AKC00093                               | AKC00094                               | AKC00095                  | AKC00096                          | AKC00097                          | AKC00098                          | AKC00099                          |

| Glass Color Opacity Notes | Opaque                                 | Opaque                                 | Opaque                                 | Transparent             | Transparent             | Opaque                  | Turquoise Semi-<br>Translucent | Turquoise Semi-<br>Translucent | Turquoise Semi-<br>Translucent | Translucent                      | Translucent       | Translucent       | Translucent       | Translucent       | Translucent            |
|---------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------|-------------------------|-------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|------------------------|
| Glass Gla                 | Orange                                 | Orange                                 | Orange                                 | Dark Blue               | Dark Blue               | Red                     | Light Blue Tu                  | Light Blue Tu                  | Light Blue Tu                  | Dark Blue                        | Dark Blue         | rk Blue           | rk Blue           | rk Blue           | rk Blue                |
| Total # Of beads          |                                        | 3                                      | 3                                      | 2 Da                    | 2 Da                    | 4                       | 4 Lig                          | 4 Lig                          | 4 Lig                          | 3 Da                             | 3 Da              |                   |                   |                   |                        |
| Context                   | Unit A/B 3: 2 Feature 2 Bag 19 Cat 100 | Unit A/B 3: 2 Feature 2 Bag 19 Cat 100 | Unit A/B 3: 2 Feature 2 Bag 19 Cat 100 | Burial 7 Bag 21 Cat 402 | Burial 7 Bag 21 Cat 402 | Burial 9 Bag 37 Cat 352 | Burial 9 Bag 37 Cat 352        | Burial 9 Bag 37 Cat 352        | Burial 9 Bag 37 Cat 352        | Unit C<br>2:3<br>bag 6<br>cat 28 | Unit C            | Unit C<br>2·3     | Unit C<br>2:3     | Unit C<br>2:3     | Unit C<br>2:3<br>bag 6 |
| Bead Shape                | Indo-Pacific Microbead                 | Indo-Pacific Microbead                 | Indo-Pacific Microbead                 | Indo-Pacific Bead       | Indo-Pacific Bead       | Indo-Pacific Bead       | Indo-Pacific Bead              | Indo-Pacific Bead              | Indo-Pacific Bead              | Indo-Pacific Bead                | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead      |
| Catalogue<br>Number       | 100(a)                                 | 100(b)                                 | 100(c)                                 | 402(a)                  | 402(b)                  | 352(a)                  | 352(b)                         | 352(c)                         | 352(d)                         | 28(a)                            | 28(b)             | 28(b)             | 28(b)             | 28(b)             | 28(b)                  |
| Site Name                 | Phum Snay                              | Phum Snay                              | Phum Snay                              | Phum Snay               | Phum Snay               | Phum Snay               | Phum Snay                      | Phum Snay                      | Phum Snay                      | Phum Snay                        | Phum Snay         | Phum Snay         | Phum Snay         | Phum Snay         | Phum Snay              |
| Database<br>ID            | AKC00100                               | AKC00101                               | AKC00102                               | AKC00103                | AKC00104                | AKC00105                | AKC00106                       | AKC00107                       | AKC00108                       | AKC00109                         | AKC00110          | AKC00110          | AKC00110          | AKC00110          | AKC00110               |

| Opacity             | Translucent                      | Translucent                               | Translucent                                  | Translucent                                  | Semi-<br>Translucent                           | Translucent                                    | Translucent                      | Translucent                      | Translucent                                    |
|---------------------|----------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|
| Glass Color         |                                  |                                           |                                              |                                              | Turquoise                                      |                                                | Navy blue?                       |                                  |                                                |
| Glass               | Dark Blue                        | Dark Blue                                 | Dark Blue                                    | Dark Blue                                    | Light Blue                                     | Blue-Green                                     | Dark Blue                        | Dark Blue                        | Dark Blue                                      |
| Total #             | 3                                | 3                                         | 3                                            | 3                                            | 2                                              | 2                                              | 2                                | 2                                | 49                                             |
| Context             | Unit C<br>2:3<br>bag 6<br>cat 28 | Burial 7 (beads at skull and neck) Bag 35 | Burial 7 (beads at skull<br>and neck) Bag 35 | Burial 7 (beads at skull<br>and neck) Bag 35 | Unit C/E<br>2:1 Feature 1<br>Bag 37<br>Cat 292 | Unit C/E<br>2:1 Feature 1<br>Bag 37<br>Cat 292 | Unit A<br>2:4<br>Bag 8<br>cat 40 | Unit A<br>2:4<br>Bag 8<br>cat 40 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 |
| Bead Shape          | Indo-Pacific Bead                | Indo-Pacific Bead                         | Indo-Pacific Bead                            | Indo-Pacific Bead                            | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                | Indo-Pacific Bead                | Indo-Pacific Bead                              |
| Catalogue<br>Number | 28(c)                            | 229(a)                                    | 229(b)                                       | 229(c)                                       | 292(a)                                         | 292(b)                                         | 40(a)                            | 40(b)                            | 258(a)                                         |
| Site Name           | Phum Snay                        | Phum Snay                                 | Phum Snay                                    | Phum Snay                                    | Phum Snay                                      | Phum Snay                                      | Phum Snay                        | Phum Snay                        | Phum Snay                                      |
| Database            | AKC00111                         | AKC00112                                  | AKC00113                                     | AKC00114                                     | AKC00115                                       | AKC00116                                       | AKC00117                         | AKC00118                         | AKC00119                                       |

| or Opacity           | Translucent                                    | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                              |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------|
| Glass Color<br>Notes |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                     |
| Glass<br>Colors      | Dark Blue                                      | Orange                                         | Red                                            | Yellow                                         | Yellow                                         | Yellow                                         | Yellow                                         | Yellow                              |
| Total # of beads     | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                  |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | Unit C/E<br>2:2 Feature 1<br>Bag 37 |
| Bead Shape           | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Microbead                         | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                   |
| Catalogue<br>Number  | 258(b)                                         | 258(c)                                         | 258(d)                                         | 258(e1)                                        | 258(e2)                                        | 258(e3)                                        | 258(e4)                                        | 258(e5)                             |
| Site Name            | Phum Snay                                      | Phum Snay                           |
| Database<br>ID       | AKC00120                                       | AKC00121                                       | AKC00122                                       | AKC00123                                       | AKC00124                                       | AKC00125                                       | AKC00126                                       | AKC00127                            |

| Opacity              | Opadue                                         | Opadue                                         | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |
| Glass<br>Colors      | Yellow                                         |
| Total # of beads     | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 |
| Bead Shape           | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 258(e6)                                        | 258(e7)                                        | 258(e8)                                        | 258(e9)                                        | 258(e10)                                       | 258(e11)                                       | 258(e12)                                       | 258(e13)                                       |
| Site Name            | Phum Snay                                      |
| Database<br>ID       | AKC00128                                       | AKC00129                                       | AKC00130                                       | AKC00131                                       | AKC00132                                       | AKC00133                                       | AKC00134                                       | AKC00135                                       |

| Opacity              | Opaque                                         |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |
| Glass<br>Colors      | Yellow                                         |
| Total # of beads     | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 |
| Bead Shape           | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 258(e14)                                       | 258(e15)                                       | 258(e16)                                       | 258(e17)                                       | 258(e18)                                       | 258(e19)                                       | 258(e20)                                       | 258(e21)                                       |
| Site Name            | Phum Snay                                      |
| Database<br>ID       | AKC00136                                       | AKC00137                                       | AKC00138                                       | AKC00139                                       | AKC00140                                       | AKC00141                                       | AKC00142                                       | AKC00143                                       |

| Opacity              | Opaque                                         |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |
| Glass<br>Colors      | Yellow                                         |
| Total#               | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 |
| Bead Shape           | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 258(e22)                                       | 258(e23)                                       | 258(e24)                                       | 258(e25)                                       | 258(e26)                                       | 258(e27)                                       | 258(e28)                                       | 258(e29)                                       |
| Site Name            | Phum Snay                                      |
| Database<br>ID       | AKC00144                                       | AKC00145                                       | AKC00146                                       | AKC00147                                       | AKC00148                                       | AKC00149                                       | AKC00150                                       | AKC00151                                       |

| Site Name | Catalogue<br>Number | Bead Shape        | Context                                        | Total #<br>of beads | Glass<br>Colors | Glass Color<br>Notes | Opacity |
|-----------|---------------------|-------------------|------------------------------------------------|---------------------|-----------------|----------------------|---------|
| -         | 258(e30)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
|           | 258(e31)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
| Phum Snay | 258(e32)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
| Phum Snay | 258(e33)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
| Phum Snay | 258(e34)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
| Phum Snay | 258(e35)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
| Phum Snay | 258(e36)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |
| Phum Snay | 258(e37)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 | 49                  | Yellow          |                      | Opaque  |

| Opacity              | Opaque                                         |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |
| Glass<br>Colors      | Yellow                                         |
| Total#               | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             | 49                                             |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 258 |
| Bead Shape           | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 258(e38)                                       | 258(e39)                                       | 258(e40)                                       | 258(e41)                                       | 258(e42)                                       | 258(e43)                                       | 258(e44)                                       | 258(e45)                                       |
| Site Name            | Phum Snay                                      |
| Database<br>ID       | AKC00160                                       | AKC00161                                       | AKC00162                                       | AKC00163                                       | AKC00164                                       | AKC00165                                       | AKC00166                                       | AKC00167                                       |

| Opacity              | Opadue                           | Opaque                           | Opaque                           | Opaque                           | Translucent                      | Translucent                      | Semi-<br>Translucent                           | Semi-<br>Translucent                           |
|----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes |                                  |                                  |                                  |                                  |                                  |                                  | Turquoise                                      | Turquoise                                      |
| Glass<br>Colors      | Yellow                           | Yellow                           | Yellow                           | Red                              | Dark Blue                        | Dark Blue                        | Light Blue                                     | Light Blue                                     |
| Total # of beads     | 9                                | 9                                | 9                                | 9                                | 9                                | 9                                | 46                                             | 46                                             |
| Context              | Unit C<br>2:2<br>Bag 5<br>Cat 22 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 |
| Bead Shape           | Indo-Pacific Bead                              | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 22(a)                            | 22(b)                            | 22(c)                            | 22(d)                            | 22(e)                            | 22(f)                            | 263(a1)                                        | 263(a2)                                        |
| Site Name            | Phum Snay                                      | Phum Snay                                      |
| Database<br>ID       | AKC00168                         | AKC00169                         | AKC00170                         | AKC00171                         | AKC00172                         | AKC00173                         | AKC00174                                       | AKC00175                                       |

| Opacity              | Semi-<br>Translucent                           |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes | Turquoise                                      |
| Glass<br>Colors      | Light Blue                                     |
| Total # of beads     | 46                                             | 46                                             | 46                                             | 46                                             | 46                                             | 46                                             | 46                                             | 46                                             |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 |
| Bead Shape           | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 263(a3)                                        | 263(a4)                                        | 263(a5)                                        | 263(a6)                                        | 263(a7)                                        | 263(a8)                                        | 263(a9)                                        | 263(a10)                                       |
| Site Name            | Phum Snay                                      |
| Database<br>ID       | AKC00176                                       | AKC00177                                       | AKC00178                                       | AKC00179                                       | AKC00180                                       | AKC00181                                       | AKC00182                                       | AKC00183                                       |

| Opacity              | Semi-<br>Translucent                | Semi-<br>Translucent                          | Semi-<br>Translucent                           | Semi-<br>Translucent                           | Semi-<br>Translucent                           | Semi-<br>Translucent                           | Semi-<br>Translucent                           | Semi-<br>Translucent                           |
|----------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Glass Color<br>Notes | Turquoise                           | Turquoise                                     | Turquoise                                      | Turquoise                                      | Turquoise                                      | Turquoise                                      | Turquoise                                      | Turquoise                                      |
| Glass                | Light Blue                          | Light Blue                                    | Light Blue                                     | Light Blue                                     | Light Blue                                     | Light Blue                                     | Light Blue                                     | Light Blue                                     |
| Total #              | 46                                  | 46                                            | 46                                             | 46                                             | 46                                             | 46                                             | 46                                             | 46                                             |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37 | Cat 263 Unit C/E 2:2 Feature 1 Bag 37 Cat 263 | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 |
| Bead Shape           | Indo-Pacific Bead                   | Indo-Pacific Bead                             | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                              | Indo-Pacific Bead                              |
| Catalogue<br>Number  | 263(a11)                            | 263(a12)                                      | 263(a13)                                       | 263(a14)                                       | 263(a15)                                       | 263(a16)                                       | 263(a17)                                       | 263(a18)                                       |
| Site Name            | Phum Snay                           | Phum Snay                                     | Phum Snay                                      | Phum Snay                                      | Phum Snay                                      | Phum Snay                                      | Phum Snay                                      | Phum Snay                                      |
| Database<br>ID       | AKC00184                            | AKC00185                                      | AKC00186                                       | AKC00187                                       | AKC00188                                       | AKC00189                                       | AKC00190                                       | AKC00191                                       |

| Opacity              | Semi-<br>Translucent                |         | Semi-             | Translucent   |                   | Semi-             | Translucent   |        |         | Semi-             | Translucent   |        |         | Semi-             | Translucent   |        |         | Semi-             | Translucent   |        |         | Semi-             | Translucent   |        |         | Semi-             | Translucent   |        |         |
|----------------------|-------------------------------------|---------|-------------------|---------------|-------------------|-------------------|---------------|--------|---------|-------------------|---------------|--------|---------|-------------------|---------------|--------|---------|-------------------|---------------|--------|---------|-------------------|---------------|--------|---------|-------------------|---------------|--------|---------|
| Glass Color<br>Notes | Turquoise                           |         | Turquoise         |               |                   | Turquoise         | •             |        |         | Turquoise         |               |        |         |
| Glass<br>Colors      | Light Blue                          |         | Light Blue        |               |                   | Light Blue        | )             |        |         | Light Blue        |               |        |         |
| Total #              | 46                                  |         | 46                |               |                   | 46                |               |        | ,       | 46                |               |        |         | 46                |               |        |         | 46                |               |        |         | 46                |               |        |         | 46                |               |        |         |
| Context              | Unit C/E<br>2:2 Feature 1<br>Rao 37 | Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37<br>Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37 | Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37 | Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37 | Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37 | Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37 | Cat 263 | Unit C/E          | 2:2 Feature 1 | Bag 37 | Cat 263 |
| Bead Shape           | Indo-Pacific Bead                   |         | Indo-Pacific Bead |               |                   | Indo-Pacific Bead |               |        |         | Indo-Pacific Bead |               |        |         | Indo-Pacific Bead |               |        |         | Indo-Pacific Bead |               |        |         | Indo-Pacific Bead |               |        |         | Indo-Pacific Bead |               |        |         |
| Catalogue<br>Number  | 263(a19)                            |         | 263(a20)          |               |                   | 263(a21)          | ,             |        |         | 263(a22)          |               |        |         | 263(a23)          |               |        |         | 263(a24)          |               |        |         | 263(a25)          |               |        |         | 263(a26)          |               |        |         |
| Site Name            | Phum Snay                           |         | Phum Snay         |               |                   | Phum Snay         | •             |        |         | Phum Snay         |               |        |         |
| Database<br>ID       | AKC00192                            |         | AKC00193          |               |                   | AKC00194          |               |        |         | AKC00195          |               |        |         | AKC00196          |               |        |         | AKC00197          |               |        |         | AKC00198          |               |        |         | AKC00199          |               |        |         |

| Site Name | Catalogue<br>Number | Bead Shape        | Context                                        | Total #<br>of beads | Glass<br>Colors | Glass Color<br>Notes | Opacity              |
|-----------|---------------------|-------------------|------------------------------------------------|---------------------|-----------------|----------------------|----------------------|
|           | 263(a27)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
| (1        | 263(a28)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
| (1        | 263(a29)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
|           | 263(a30)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
| 7         | 263(a31)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
| 2         | 263(a32)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
| (4        | 263(a33)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |
|           | 263(a34)            | Indo-Pacific Bead | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | 46                  | Light Blue      | Turquoise            | Semi-<br>Translucent |

| Database | Site Name | Catalogue | Bead Shape        | Context       | Total #  | Glass      | Glass Color | Opacity     |
|----------|-----------|-----------|-------------------|---------------|----------|------------|-------------|-------------|
| ID       |           | Number    |                   |               | of beads | Colors     | Notes       |             |
| AKC00208 | Phum Snay | 263(a35)  | Indo-Pacific Bead | Unit C/E      | 46       | Light Blue | Turquoise   | Semi-       |
|          |           |           |                   | 2:2 Feature 1 |          |            |             | Translucent |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |
| AKC00209 | Phum Snay | 263(a36)  | Indo-Pacific Bead | Unit C/E      | 46       | Light Blue | Turquoise   | Semi-       |
|          |           |           |                   | 2:2 Feature 1 |          |            |             | Translucent |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |
| AKC00210 | Phum Snay | 263(a37)  | Indo-Pacific Bead | Unit C/E      | 46       | Light Blue | Turquoise   | Semi-       |
|          |           |           |                   | 2:2 Feature 1 |          |            |             | Translucent |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |
| AKC00211 | Phum Snay | 263(a38)  | Indo-Pacific Bead | Unit C/E      | 46       | Light Blue | Turquoise   | Semi-       |
|          |           |           |                   | 2:2 Feature 1 |          |            |             | Translucent |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |
| AKC00212 | Phum Snay | 263(a39)  | Indo-Pacific Bead | Unit C/E      | 46       | Light Blue | Turquoise   | Semi-       |
|          |           |           |                   | 2:2 Feature 1 |          |            |             | Translucent |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |
| AKC00213 | Phum Snay | 263(a40)  | Indo-Pacific Bead | Unit C/E      | 46       | Light Blue | Turquoise   | Semi-       |
|          |           |           |                   | 2:2 Feature 1 |          |            |             | Translucent |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           | :         |                   | Cat 263       |          | ,          |             |             |
| AKC00214 | Phum Snay | 263(b1)   | Indo-Pacific Bead | Unit C/E      | 46       | Red        |             | Opaque      |
|          |           |           |                   | 2:2 Feature 1 |          |            |             |             |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |
| AKC00215 | Phum Snay | 263(b2)   | Indo-Pacific Bead | Unit C/E      | 46       | Red        |             | Opaque      |
|          |           |           |                   | 2:2 Feature 1 |          |            |             |             |
|          |           |           |                   | Bag 37        |          |            |             |             |
|          |           |           |                   | Cat 263       |          |            |             |             |

| Opacity              | Opaque                                         | Opaque                                         | Opaque                                         | Opaque                                         | Transparent                                         | Transparent                                            | Opaque<br>Semi-<br>Translucent | Semi-<br>Translucent                                    |
|----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------------------------------|
| Glass Color<br>Notes |                                                |                                                |                                                |                                                |                                                     | Matte finish                                           |                                |                                                         |
| Glass<br>Colors      | Red                                            | Red                                            | Red                                            | Red                                            | Dark Blue                                           | Dark Blue                                              | Dark Blue                      | Dark Blue                                               |
| Total #<br>of beads  | 46                                             | 46                                             | 46                                             | 46                                             | _                                                   | _                                                      | -                              | -                                                       |
| Context              | Unit C/E<br>2:2 Feature 1<br>Bag 37<br>Cat 263 | Phum Snay 2001<br>S3E1<br>L3:1<br>Cat 243<br>Bag 19 | Phum Snay 2001<br>S3E1<br>Layer 1:4<br>Bag 7<br>Cat 35 |                                | Phum Snay 2001<br>S2E1<br>Layer 2:3<br>Bag 7<br>Cat 119 |
| Bead Shape           | Indo-Pacific Bead                                   | Indo-Pacific Bead                                      | Indo-Pacific Bead              | Indo-Pacific Bead                                       |
| Catalogue<br>Number  | 263(b3)                                        | 263(b4)                                        | 263(b5)                                        | 263(b6)                                        | 243                                                 | 35                                                     | 22                             | 119                                                     |
| Site Name            | Phum Snay                                           | Phum Snay                                              | Phum Snay                      | Phum Snay                                               |
| Database<br>ID       | AKC00216                                       | AKC00217                                       | AKC00218                                       | AKC00219                                       | AKC00220                                            | AKC00221                                               | AKC00222                       | AKC00223                                                |

| Opacity              | Opaque                                                 | Opaque                                                  | Opaque                                 | Opaque                                                             | Opaque                                                   | Opaque                                                  | Opaque                                                   |
|----------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Glass Color<br>Notes |                                                        |                                                         |                                        |                                                                    |                                                          |                                                         |                                                          |
| Glass<br>Colors      | Black                                                  | Yellow                                                  | Yellow                                 | Yellow                                                             | Yellow                                                   | Yellow                                                  | Yellow                                                   |
| Total # of beads     | -                                                      | -                                                       | 1                                      | -                                                                  | 1                                                        | 1                                                       | -                                                        |
| Context              | Phum Snay 2001<br>S1E1<br>Level 1:4<br>Bag 5<br>Cat 41 | Phum Snay 2001<br>S1E1<br>Layer 2:1<br>Bag 13<br>Cat 46 | S1E1<br>Layer 2:3<br>Bag 23<br>Cat 126 | Phum Snay 2001<br>S1E1<br>Layer 3:2 Feature 3<br>Bag 36<br>Cat 259 | Phum Snay 2001<br>S1E1<br>Layer 2:3<br>Bag 23<br>Cat 130 | Phum Snay 2001<br>S3E1<br>Bag 3<br>Test Probe<br>Cat 17 | Phum Snay 2001<br>S2E1<br>Layer 3:2<br>Bag 16<br>Cat 278 |
| Bead Shape           | Indo-Pacific Bead                                      | Indo-Pacific Bead                                       | Indo-Pacific Bead                      | Indo-Pacific Bead                                                  | Indo-Pacific Bead                                        | Indo-Pacific Bead                                       | Indo-Pacific Bead                                        |
| Catalogue<br>Number  | 41                                                     | 46                                                      | 126                                    | 259                                                                | 130                                                      | 17                                                      | 278                                                      |
| Site Name            | PHum Snay                                              | Phum Snay                                               | Phum Snay                              | Phum Snay                                                          | PHum Snay                                                | Phum Snay                                               | Phum Snay                                                |
| Database<br>ID       | AKC00224                                               | AKC00226                                                | AKC00227                               | AKC00228                                                           | AKC00229                                                 | AKC00230                                                | AKC00231                                                 |

| Opacity     | Opaque                                    | Opaque                                               | Opaque                                                       | Opaque                                           | Opaque                                             | Opaque                             | Opaque                             | Opaque                                                            |
|-------------|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------------------------|
| Glass Color | Turquoise                                 | Reddish-brown                                        | Reddish-brown                                                | Reddish-brown                                    | Reddish-brown                                      | Reddish-brown                      | Reddish-brown                      | Reddish-brown                                                     |
| Glass       | Light Blue                                | Red                                                  | Red                                                          | Red                                              | Red                                                | Red                                | Red                                | Red                                                               |
| Total #     | or Deaus                                  | -                                                    | _                                                            | -                                                | _                                                  | -                                  | -                                  | _                                                                 |
| Context     | S3E1 Layer 3:5/Natural<br>Bag 35 Burial 6 | Phum Snay 2001<br>S3E1<br>L 2:4<br>Bag 15<br>Cat 193 | Phum Snay 2001<br>Layer 2:3<br>Bag 23<br>Cat 113<br>SQUARE?? | S 1/2 E1<br>L 3:3 Feature 1<br>Bag 38<br>Cat 293 | Phum Snay 2001<br>S2E1<br>L 2:2<br>Cat 85<br>Bag 6 | SIE1<br>L 2:3<br>Bag 23<br>Cat 131 | S1E1<br>L 2:3<br>Bag 23<br>Cat 107 | Phum Snay 2001<br>L 3:1 Feature 1<br>Bag 33<br>Cat 262<br>SQUARE? |
| Bead Shape  | Bangle/earring fragment                   | Indo-Pacific Bead                                    | Indo-Pacific Bead                                            | Indo-Pacific Bead                                | Indo-Pacific bead (tubular)                        | Indo-Pacific bead (tubular)        | Indo-Pacific bead (tubular)        | Indo-Pacific bead (tubular)                                       |
| Catalogue   | 311                                       | 193                                                  | 113                                                          | 293                                              | 85                                                 | 131                                | 107                                | 262                                                               |
| Site Name   | Phum Snay                                 | Phum Snay                                            | Phum Snay                                                    | Phum Snay                                        | Phum Snay                                          | Phum Snay                          | Phum Snay                          | Phum Snay                                                         |
| Database    | AKC00232                                  | AKC00233                                             | AKC00234                                                     | AKC00235                                         | AKC00236                                           | AKC00237                           | AKC00238                           | AKC00239                                                          |

| ite       | Site Name | Catalogue<br>Number | Bead Shape        | Context                                                            | Total # of beads | Glass<br>Colors | Glass Color<br>Notes | Opacity |
|-----------|-----------|---------------------|-------------------|--------------------------------------------------------------------|------------------|-----------------|----------------------|---------|
| Phum Snay | Snay      | 186                 | Indo-Pacific Bead | Phum Snay 2001<br>S1E1<br>Layer 2:5 Feature 3<br>Bag 31<br>Cat 186 | 1                | Red             | Reddish-brown        | Opaque  |
| mny       | Phum Snay | 157                 | Indo-Pacific Bead | Phum Snay 2001<br>S1E1<br>L 2:4<br>Bag 27<br>Cat 157               | -                | Red             | Reddish-brown        | Opaque  |
| hum       | Phum Snay | 177                 | Indo-Pacific Bead | Phum Snay 2001<br>S1E1<br>L 2:5<br>Bag 30<br>Cat 177               | 1                | Red             | Reddish-brown        | Opaque  |
| hun       | Phum Snay | 192                 | Indo-Pacific Bead | Phum Snay 2001<br>S3E1<br>L 2:5<br>Bag 17<br>Cat 192               | -                | Red             | Reddish-brown        | Opaque  |
| hun       | Phum Snay | 232                 | Indo-Pacific Bead | Phum Snay 2001<br>S2 E1<br>L 2:5 Feature 1<br>Bag 13<br>Cat 232    | -                | Red             | Reddish-brown        | Opaque  |
| hun       | Phum Snay | 245                 | Indo-Pacific Bead | Phum Snay 2001<br>S1E1<br>3:1 Feature 1<br>Bag 33<br>Cat 245       | 1                | Red             | Reddish-brown        | Opaque  |
| hun<br> - | Phum Snay | 64                  | Indo-Pacific Bead | Phum Snay 2001<br>S2E1<br>Layer 2:2<br>Bag 6<br>Cat 64             | -                | Red             | Reddish-brown        | Opaque  |

| Opacity              | Opaque                                                   | Opaque                                                   | Opaque                                                   | Opaque                                                   | Opaque                                                   | Opaque                                                 |
|----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| Glass Color<br>Notes | Red-orange mix                                           |                                                          |                                                          | Shiny                                                    | Shiny and darker orange color                            | Dark orange                                            |
| Glass<br>Colors      | Orange                                                   | Orange                                                   | Orange                                                   | Orange                                                   | Orange                                                   | Orange                                                 |
| Total # of beads     | 1                                                        | 2                                                        | 2                                                        | 1                                                        | 1                                                        | 1                                                      |
| Context              | Phum Snay 2001<br>S2E1<br>Layer 3:1<br>Bag 14<br>Cat 231 | Phum Snay 2001<br>S1E1<br>Layer 2:3<br>Bag 23<br>Cat 107 | Phum Snay 2001<br>S1E1<br>Layer 2:3<br>Bag 23<br>Cat 107 | Phum Snay 2001<br>S1E1<br>Layer 2:4<br>Bag 27<br>Cat 143 | Phum Snay 2001<br>S1E1<br>Layer 2:4<br>Bag 27<br>Cat 197 | Phum Snay 2001<br>S2E1<br>Layer 2:2<br>Bag 6<br>Cat 62 |
| Bead Shape           | Indo-Pacific bead (tubular)                              | Indo-Pacific Bead                                        | Indo-Pacific bead (tubular)                              | Indo-Pacific Bead                                        | Indo-Pacific Bead                                        | Indo-Pacific Bead                                      |
| Catalogue<br>Number  | 231                                                      | 107a                                                     | 107b                                                     | 143                                                      | 197                                                      | 62                                                     |
| Site Name            | Phum Snay                                                | Phum Snay                                              |
| Database<br>ID       | AKC00254                                                 | AKC00255                                                 | AKC00256                                                 | AKC00257                                                 | AKC00258                                                 | AKC00259                                               |

| Database Site Name ID | Catalogue<br>Number | Bead Shape                  | Context                                                            | Total #<br>of beads | Glass<br>Colors | Glass Color<br>Notes             | Opacity |
|-----------------------|---------------------|-----------------------------|--------------------------------------------------------------------|---------------------|-----------------|----------------------------------|---------|
| Phum Snay             | 188                 | Indo-Pacific bead (tubular) | Phum Snay 2001<br>S1E1<br>Layer 2:5<br>Bag 30<br>Cat 188           | -                   | Orange          | Shiny and darker<br>orange color | Opaque  |
| Phum Snay             | 307                 | Indo-Pacific Bead           | Phum Snay 2001<br>S3E1<br>Layer 3:4<br>Bag 33<br>Cat 307           | _                   | Orange          | Shiny and darker orange color    | Opaque  |
| Phum Snay             | 99                  | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1<br>Layer 2:1<br>Bag 13<br>Cat 66            | _                   | Orange          | Light orange color               | Opaque  |
| Phum Snay             | 65                  | Indo-Pacific Bead           | Phum Snay 2001<br>S2E1<br>Layer 2:2<br>Bag 6<br>Cat 59             | 1                   | Orange          | Light orange color               | Opaque  |
| Phum Snay             | 42                  | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1<br>Layer 2:1<br>Bag 13<br>Cat 42            | 1                   | Orange          | Light orange color               | Opaque  |
| Phum Snay             | 263                 | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1 Layer 3:2<br>Feature 2<br>Bag 35<br>Cat 263 | 1                   | Orange          | Light orange color               | Opaque  |
| Phum Snay             | 61                  | Indo-Pacific Bead           | Phum Snay 2001<br>S2E1<br>Layer 2:2<br>Bag 6<br>Cat 61             | П                   | Orange          | Light orange color               | Opaque  |

| Opacity              | Opaque                                                 | Opaque                                                 | Opaque                                                   | Opaque                                                  | Opaque                                                 | Opaque                                                   | Opaque                                                   |
|----------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Glass Color<br>Notes | Light orange color                                     | Light orange color                                     | Light orange color                                       | Light orange color                                      | Light orange color                                     | Area around bead<br>hole is black                        | Dark orange                                              |
| Glass<br>Colors      | Orange                                                 | Orange                                                 | Orange                                                   | Orange                                                  | Orange                                                 | Orange                                                   | Orange                                                   |
| Total # of beads     | 1                                                      | 1                                                      | -                                                        | 1                                                       | 1                                                      | 1                                                        | -                                                        |
| Context              | Phum Snay 2001<br>S1E1<br>Layer 1:2<br>Bag 2<br>Cat 10 | Phum Snay 2001<br>S2E1<br>Layer 2:2<br>Bag 6<br>Cat 84 | Phum Snay 2001<br>S1E1<br>Layer 2:3<br>Bag 23<br>Cat 129 | Phum Snay 2001<br>S1E1<br>Layer 2:2<br>Bag 21<br>Cat 73 | Phum Snay 2001<br>S1E1<br>Layer 1:2<br>Bag 2<br>Cat 15 | Phum Snay 2001<br>S2E1<br>Layer 3:1<br>Bag 14<br>Cat 179 | Phum Snay 2001<br>S1E1<br>Layer 2:4<br>Bag 27<br>Cat 154 |
| Bead Shape           | Indo-Pacific bead (tubular)                            | Indo-Pacific Bead                                      | Indo-Pacific Bead                                        | Indo-Pacific Bead                                       | Indo-Pacific Bead                                      | Indo-Pacific Bead                                        | Indo-Pacific Bead                                        |
| Catalogue<br>Number  | 10                                                     | 84                                                     | 129                                                      | 73                                                      | 15                                                     | 179                                                      | 154                                                      |
| Site Name            | Phum Snay                                              | Phum Snay                                              | Phum Snay                                                | Phum Snay                                               | Phum Snay                                              | Phum Snay                                                | Phum Snay                                                |
| Database<br>ID       | AKC00267                                               | AKC00268                                               | AKC00269                                                 | AKC00270                                                | AKC00271                                               | AKC00272                                                 | AKC00273                                                 |

| Database<br>ID | Site Name | Catalogue<br>Number | Bead Shape                  | Context                                                               | Total # of beads | Glass<br>Colors | Glass Color<br>Notes  | Opacity |
|----------------|-----------|---------------------|-----------------------------|-----------------------------------------------------------------------|------------------|-----------------|-----------------------|---------|
| AKC00274       | Phum Snay | 25                  | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1<br>Layer 1:3<br>Bag 3<br>Cat 25                | 1                | Orange          | Dark orange           | Opaque  |
| AKC00275       | Phum Snay | 270                 | Indo-Pacific bead (tubular) | Phum Snay 2001<br>S1/2 E1<br>Layer 3:3 Feature 1<br>Bag 28<br>Cat 270 | _                | Orange          | Dark orange           | Opaque  |
| AKC00276       | Phum Snay | 214                 | Indo-Pacific Bead           | Phum Snay 2001<br>S2E1<br>Layer 2:5<br>Bag 12<br>Cat 214              | _                | Orange          | Orange-red            | Opaque  |
| AKC00277       | Phum Snay | 273                 | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1<br>Layer 3:2<br>Bag 34<br>Cat 273              | -                | Orange          | Orange-red            | Opaque  |
| AKC00278       | Phum Snay | 93                  | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1<br>Layer 2:3<br>Bag 21<br>Cat 93               | -                | Orange          | Dark orange           | Opaque  |
| AKC00279       | Phum Snay | 86                  | Indo-Pacific Bead           | Phum Snay 2001<br>S1E1<br>Layer 2:2<br>Bag 21<br>Cat 98               | _                | Orange          | Dark orange           | Opaque  |
| AKC00280       | Phum Snay | 147                 | Indo-Pacific Bead           | Phum Snay 2001<br>S2E1<br>Layer 2:4<br>Bag 8<br>Cat 147               | -                | Orange          | Dark orange,<br>shiny | Opaque  |

| Opacity              | Opaque                                                             | Opaque                                                   | Opaque                                                   | Opaque                                                                | Opaque                                                                | Opaque                                                                |
|----------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Glass Color<br>Notes | Dark orange                                                        | Dark orange                                              | Dark orange                                              | Shiny                                                                 | Shiny                                                                 | Shiny                                                                 |
| Glass<br>Colors      | Orange                                                             | Orange                                                   | Orange                                                   | Orange                                                                | Orange                                                                | Orange                                                                |
| Total # of beads     | 1                                                                  | 1                                                        | 1                                                        | 28                                                                    | 28                                                                    | 58                                                                    |
| Context              | Phum Snay 2001<br>S1E1<br>Layer 3:2 Feature 2<br>Bag 35<br>Cat 258 | Phum Snay 2001<br>S1E1<br>Layer 2:4<br>Bag 27<br>Cat 142 | Phum Snay 2001<br>S3E1<br>Layer 3:1<br>Bag 19<br>Cat 176 | Phum Snay 2001<br>S2E1<br>Burial 1<br>Bag 12<br>Cat 214<br>Layer 2:3? | Phum Snay 2001<br>S2E1<br>Burial 1<br>Bag 12<br>Cat 214<br>Layer 2:3? | Phum Snay 2001<br>S2E1<br>Burial 1<br>Bag 12<br>Cat 214<br>Layer 2:3? |
| Bead Shape           | Indo-Pacific Bead                                                  | Indo-Pacific Bead                                        | Indo-Pacific Microbead                                   | Indo-Pacific Microbead                                                | Indo-Pacific Microbead                                                | Indo-Pacific Microbead                                                |
| Catalogue<br>Number  | 258                                                                | 142                                                      | 176                                                      | 214a                                                                  | 214b                                                                  | 214c                                                                  |
| Site Name            | Phum Snay                                                          | Phum Snay                                                | Phum Snay                                                | Phum Snay                                                             | Phum Snay                                                             | Phum Snay                                                             |
| Database<br>ID       | AKC00281                                                           | AKC00282                                                 | AKC00283                                                 | AKC00284                                                              | AKC00285                                                              | AKC00286                                                              |

| Notes               | Associated with 15 carnelian beads |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Thickness           |                                    | 5.04     | 3.5      | 4.12     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Min.<br>Width       |                                    |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 2.56     |          |          |          |
| Max.Width           | 4                                  | N/A      | N/A      | N/A      | 1.5      | 3.25     | 5.04     | 3.82     | 2.91     | 1.2      | 1.63     | 1.27     | 1.05     | 1.41     | 1.26     | 3.51     | 4.24     | 2.44     | 3.72     | 4.01     | 4.53     | 3.23     | 4.51     | 2.82     | 3.56     | 4.12     | 4.49     |
| Max. Length         | 2.56                               | 34.23    | N/A      | 22.45    | 1.43     | 2.3      | 4.43     | 2        | 2.1      | 0.74     | 1.34     | 0.93     |          | 0.95     | 0.49     | 3.14     | 2.8      | 2.26     | 2.9      | 3.01     | 2.2      | 2.61     | 2.47     | 5.27     | 2.71     | 2.32     | 2.67     |
| Interior<br>Perf. B |                                    |          |          |          |          |          | 1.3      |          |          |          |          |          |          |          |          |          | 1.7      |          |          |          |          |          |          | 0.29     |          |          |          |
| Interior<br>Perf. A | 6.0                                |          |          |          |          | 1.28     | 1.23     | 1.29     | 0.7      |          |          |          |          |          |          | 1.17     | 1.87     | 6.0      | 1.33     | 1.71     | 1.75     | 1.43     | 1.65     | 0.73     | 62.0     | 1.21     | 1.22     |
| Roundness<br>Factor | R1                                 | N/A      | N/A      | N/A      | R1       | R1       | R2       | R1       | R2       | R1       |
| Database<br>ID      | AKC00041                           | AKC00057 | AKC00058 | AKC00059 | AKC00060 | AKC00061 | AKC00062 | AKC00063 | AKC00064 | AKC00065 | AKC00066 | AKC00067 | AKC00068 | AKC00069 | AKC00070 | AKC00071 | AKC00072 | AKC00073 | AKC00074 | AKC00075 | AKC00076 | AKC00077 | AKC00078 | AKC00079 | AKC00080 | AKC00081 | AKC00082 |

| Roundness<br>Factor | Interior<br>Perf. A | Interior<br>Perf. B | Max. Length | Max.Width | Min.<br>Width | Thickness | Notes                          |
|---------------------|---------------------|---------------------|-------------|-----------|---------------|-----------|--------------------------------|
| R1                  | 1.01                | 1.08                | 2.17        | 3.52      |               |           |                                |
| R1                  | 1.25                | 1.06                | 2.34        | 4.03      |               |           |                                |
| R1                  | 1.21                | 1.3                 | 2.58        | 4.08      |               |           |                                |
| R1                  | 1.24                | 1.1                 | 2.4         | 5         |               |           |                                |
| R1                  | 1.1                 | 1.02                | 2.53        | 3.8       |               |           |                                |
| R2                  | 1.47                |                     | 4           | 5.09      |               |           |                                |
| R1                  | 1.78                |                     | 2.64        | 5.59      |               |           |                                |
| R1                  | 1.83                |                     | 3.57        | 5.56      |               |           |                                |
| R2                  | 0.95                |                     | 3.4         | 3.46      |               |           |                                |
| R2                  | 8.0                 |                     | 3.17        | 3.8       |               |           |                                |
| R1                  | 1.3                 |                     | 2.44        | 4.98      |               |           |                                |
| R1                  | N/A                 | N/A                 | 1.85        | 3.04      |               |           | Broken bead, unable to measure |
| R1                  | 0.63                | 0.73                | 1.36        | 2.66      |               |           |                                |
| R1                  |                     |                     | 0.71        | 1.1       |               |           |                                |
| R1                  |                     |                     | 8.0         | 1.07      |               |           |                                |
| R1                  |                     |                     | 88.0        | 1.24      |               |           |                                |
| R1                  |                     |                     | 0.72        | 1.11      |               |           |                                |
| R1                  |                     |                     | 0.56        | 1.3       |               |           |                                |
| R1                  |                     |                     | 7.0         | 1.21      |               |           |                                |
|                     |                     |                     | N/A         | N/A       |               |           | Broken bead, unable to measure |
| R1                  | 1.01                |                     | 3.43        | 4.13      |               |           |                                |
| R2                  | 1.56                |                     | 2.93        | 4.29      |               |           |                                |
| R1                  |                     |                     | 86.0        | 2.28      |               |           |                                |
| R1                  | 86.0                |                     | 1.52        | 3.3       |               |           |                                |
| R1                  | 1.23                |                     | 2.84        | 4.9       |               |           |                                |
| R1                  | 0.93                |                     | 2.3         | 4.11      |               |           |                                |
| R1                  | 1.19                |                     | 3.03        | 4.65      |               |           |                                |

| Notes               |          |          |          |          |          |          |          |          |          | Broken bead, unable to measure |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Thickness           |          |          |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Min.<br>Width       |          |          |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Max.Width           | 4.65     | 4.2      | 4.99     | 3.93     | 5        | 3.77     | 4.55     | 5.41     | 3.96     | N/A                            | 5        | 3.72     | 2.34     | 0        | 3.72     | 5.45     | 4.6      | 4.29     | 4.09     | 6.12     | 4.24     | 5.1      | 6.15     | 5        | 5.17     | 5.07     | 4.68     |
| Max. Length         | 3.45     | 4.82     | 2.56     | 2.09     | 2.02     | 3.29     | 2.87     | 3.61     | 2.53     | N/A                            | 3.38     | 3.3      | 1.36     | 0        | 1.73     | 4.14     | 3.49     | 3.36     | 3.64     | 3.14     | 3.4      | 4.31     | 2.59     | 3.4      | 3.4      | 3.6      | 3.17     |
| Interior<br>Perf. B |          |          | 1.7      |          |          |          | 1.11     |          |          |                                |          | 1.77     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Interior<br>Perf. A | 1.33     | 1.33     | 1.8      | 6.0      | 1.67     | 1.19     | 1.32     | 1.21     | 0.82     | N/A                            | 1.15     | 1.66     | 0.77     | 0        | 1.04     | 1.53     | 1.17     | 1.01     | 1.05     | 1.47     | 1.08     | 1.44     | 1.41     | 1.26     | 1.26     | 1.3      | 1.21     |
| Roundness<br>Factor | R1       | R2       | R1       | R1       | R1       | R1       | R1       | R2       | R1       |                                | R1       | R1       | R1       |          | R1       | R1       | R2       | R2       | R1       |
| Database<br>ID      | AKC00110 | AKC00111 | AKC00112 | AKC00113 | AKC00114 | AKC00115 | AKC00116 | AKC00117 | AKC00118 | AKC00119                       | AKC00120 | AKC00121 | AKC00122 | AKC00123 | AKC00124 | AKC00125 | AKC00126 | AKC00127 | AKC00128 | AKC00129 | AKC00130 | AKC00131 | AKC00132 | AKC00133 | AKC00134 | AKC00135 | AKC00136 |

| tes                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Notes               |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Thickness           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Min.<br>Width       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Max.Width           | 4.41     | 4.9      | 5.87     | 5.88     | 5.47     | 5        | 5.72     | 5.36     | 5.36     | 9        | 5.63     | 5.85     | 5.67     | 4.82     | 4.82     | 5.11     | 5.09     | 5.28     | 5.03     | 4.89     | 5.79     | 4.83     | 5.27     | 5.69     | 5.18     | 5.61     | 5.61     |
| Max. Length         | 3.95     | 3.88     | 3.74     | 4.27     | 3.1      | 3.62     | 2.81     | 2.53     | 2.47     | 3.53     | 2.95     | 3.32     | 3.28     | 3.42     | 3.16     | 3.62     | 3.2      | 3.63     | 3.17     | 3.86     | 3.62     | 3.89     | 3.24     | 3.54     | 3        | 3.67     | 3.67     |
| Interior<br>Perf. B |          |          |          |          |          |          |          |          |          | 1.54     |          |          |          |          |          |          |          | 1.3      |          |          |          |          |          |          |          |          |          |
| Interior<br>Perf. A | 1.19     | 1.42     | 1.82     | 1.14     | 1.18     | 1.29     | 1.82     | 1.72     | 1.72     | 1.71     | 1.52     | 1.54     | 2        | 1.16     | 1.32     | 1.19     | 1.62     | 1.2      | 1.47     | 1.01     | 1.6      | 1.07     | 1.3      | 1.39     | 2        | 1.4      | J.4      |
| Roundness<br>Factor | R1       | R0       | R1       | R1       | R1       | R0       | R1       | R1       | R1       | R1       | R1       | R1       | K!       |
| Database<br>ID      | AKC00137 | AKC00138 | AKC00139 | AKC00140 | AKC00141 | AKC00142 | AKC00143 | AKC00144 | AKC00145 | AKC00146 | AKC00147 | AKC00148 | AKC00149 | AKC00150 | AKC00151 | AKC00152 | AKC00153 | AKC00154 | AKC00155 | AKC00156 | AKC00157 | AKC00158 | AKC00159 | AKC00160 | AKC00161 | AKC00162 | AKC00162 |

| Thickness Notes     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |            |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|
| Width               |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |            |
| Max.Width           | 4.53     | 4.95     | 4.6      | 5.55     | 4.83     | 3.15     | 3.64     | 3.66     | 3.14     | 4.7      | 0        | 4.27     | 4.34     | 4.7      | 4.71     | 5.02     | 4.5      | 3.74     | 4.43     | 4.13     | 4.31     | 4.12     | 3.86     | 3.62     | 4.18     | 14         |
| Max. Length         | 3.68     | 3.12     | 2.83     | 2.95     | 2.8      | 2.06     | 1.87     | 3.2      | 2.04     | 2.72     | 0        | 2.86     | 2.18     | 2.96     | 2.48     | 2.78     | 2.97     | 2.28     | 2.71     | 2.37     | 2.05     | 2.9      | 2.52     | 2.22     | 2.36     |            |
| Interior<br>Perf. B |          |          |          |          |          |          | 1.15     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |            |
| Interior<br>Perf. A | 1.22     | 1.26     | 1.2      | 1.34     | 1.48     | 1.05     | 0.88     | 88.0     | 86.0     | 0.85     | 0        | 1.15     | 1.28     | 1.5      | 1.66     | 1.22     | 1.26     | 1.13     | 1.45     | 1.11     | 1.31     | 1.07     | 76.0     | 98.0     | 1.29     | *          |
| Roundness<br>Factor | R1       | R2       | R1       | R1       |          | R1       | ,          |
| Database<br>ID      | AKC00164 | AKC00165 | AKC00166 | AKC00167 | AKC00168 | AKC00169 | AKC00170 | AKC00171 | AKC00172 | AKC00173 | AKC00174 | AKC00175 | AKC00176 | AKC00177 | AKC00178 | AKC00179 | AKC00180 | AKC00181 | AKC00182 | AKC00183 | AKC00184 | AKC00185 | AKC00186 | AKC00187 | AKC00188 | 00,000 21, |

|                     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 737 |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|
| Notes               |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |     |
| Thickness           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |     |
| Min.<br>Width       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |     |
| Max.Width           | 4.37     | 4.1      | 4.24     | 4.33     | 4.36     | 3.92     | 4.45     | 4.34     | 3.77     | 3.66     | 3.88     | 4.09     | 4.17     | 4.28     | 4.09     | 0        | 3.67     | 4.18     | 3.2      | 3.53     | 4.03     | 3.67     | 3.77     | 2.38     | 2.51     | 2.08     | 3.27     |     |
| Max. Length         | 2.4      | 2.14     | 2.8      | 2.21     | 2.61     | 2.54     | 2.15     | 2.21     | 2.62     | 2.22     | 2.39     | 2.54     | 2.02     | 2.24     | 2.12     | 0        | 2.27     | 2.78     | 2.19     | 1.61     | 2.09     | 2.3      | 2.31     | 1.58     | 1.15     | 1.11     | 1.52     |     |
| Interior<br>Perf. B |          |          |          |          |          |          |          |          |          |          | 1.11     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 1.08     |     |
| Interior<br>Perf. A | 1.08     | 1.08     | 1.2      | 1.19     | 1.06     | 1.28     | 1.62     | 1.22     | 1.2      | 1.1      | 1        | 1.5      | 1.11     | 96.0     | 1.11     | 0        | 1.15     | 1.33     | 0.84     | 1.11     | 1.3      | 1.14     | 1.21     | 0.73     | 0.49     | 9.0      | 86.0     |     |
| Roundness<br>Factor | R1       | R1       | R2       | R1       | R1       | R1       | R1       | R1       | R2       | R1       |     |
| Database<br>ID      | AKC00191 | AKC00192 | AKC00193 | AKC00194 | AKC00195 | AKC00196 | AKC00197 | AKC00198 | AKC00199 | AKC00200 | AKC00201 | AKC00202 | AKC00203 | AKC00204 | AKC00205 | AKC00206 | AKC00207 | AKC00208 | AKC00209 | AKC00210 | AKC00211 | AKC00212 | AKC00213 | AKC00214 | AKC00215 | AKC00216 | AKC00217 |     |

| Notes               |          |          |          |          |          |          |          |          |          |          |          |          |          | Broken bead, unable to measure |          |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Thickness           |          |          |          |          |          |          |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Min.<br>Width       |          |          |          |          |          |          |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Max.Width           | 2.72     | 1.96     | 4.24     | 3.51     | 3.9      | 3.55     | 3.8      | 3.46     | 3.25     | 3.88     | 3.42     | 4.67     | 3.89     | N/A                            | 3.49     | 4.58     | 4.55     | 2.5      | 3.07     | 2.97     | 2.77     | 3.66     | 2.89     | 3.35     | 2.94     | 3.46     | 5.25     |
| Max. Length         | 1.26     | 1.66     | 2.26     | 2.64     | 243      | 1.97     | 2.78     | 2.66     | 2.47     | 2.3      | 2.4      | 2.78     | 2.62     | N/A                            | 2.7      | 3.51     | 2.73     | 5.25     | 3.34     | 5.75     | 6.28     | 1.91     | 1.72     | 2.22     | 1.64     | 1.97     | 5.06     |
| Interior<br>Perf. B |          |          |          |          |          |          |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Interior<br>Perf. A | 1        | 0.58     | 1.11     |          | 86.0     | 88.0     | 1.08     | 88.0     | 1.11     | 1.26     | 1.13     | 1.56     | 1.12     | N/A                            | 0.91     | 1.18     | 1.48     | 96.0     | 0.85     | 29.0     | 6.0      | 1.03     | 0.83     | 0.78     | 8.0      | 1.08     | 1.12     |
| Roundness<br>Factor | R1       | R1       | R1       | R2       | R1       | R1       | R2       | R1       | R1       | R1       | R1       | R1       | R1       |                                | R2       | R2       | R1       | R1       | R1       | R2       | R1       | R1       | R1       | R1       | R1       | R1       | R2       |
| Database<br>ID      | AKC00218 | AKC00219 | AKC00220 | AKC00221 | AKC00222 | AKC00223 | AKC00224 | AKC00226 | AKC00227 | AKC00228 | AKC00229 | AKC00230 | AKC00231 | AKC00232                       | AKC00233 | AKC00234 | AKC00235 | AKC00236 | AKC00237 | AKC00238 | AKC00239 | AKC00240 | AKC00241 | AKC00242 | AKC00243 | AKC00244 | AKC00245 |

| Notes Notes         |          |          |          |          |          |          |          | Too small to measure bead hole |          |          |          |          |          |          | Too small to measure bead hole | Large orange bead |          |          |          |          |          |          |          |          |          |          | _ |
|---------------------|----------|----------|----------|----------|----------|----------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|--------------------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|
| 1. Thickness        |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |                                |                   |          |          |          |          |          |          |          |          |          |          |   |
| Min.<br>Width       |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |                                |                   |          |          |          |          |          |          |          |          |          |          |   |
| Max.Width           | 4.95     | 4.17     | 6.78     | 8.05     | 4.06     | 5.58     | 4.06     | 1.78                           | 2.49     | 2.74     | 2.03     | 3.33     | 4.45     | 3.87     | 1.95                           | 5.25              | 3.38     | 3.88     | 3.78     | 3.81     | 3.31     | 2.18     | 3.32     | 3.01     | 2.86     | 2.81     |   |
| Max. Length         | 2.71     | 4.37     | 5.27     | 5.35     | 2.72     | 2.51     | 2.09     | 1.61                           | 5.63     | 3.25     | 3.78     | 2.25     | 3        | 3.43     | 6.41                           | 3.25              | 2.4      | 2.16     | 2.82     | 2.83     | 2.8      | 5.19     | 2.46     | 2.79     | 1.67     | 1.67     |   |
| Interior<br>Perf. B |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |                                |                   |          |          |          |          |          |          |          |          |          |          |   |
| Interior<br>Perf. A | 1.17     | 1.29     | 1.28     | 1.64     | 1.95     | 1.06     | 1.18     | N/A                            | 1        | 1.14     | 0.72     | 1.22     | 1.25     | 1        | 0                              | 2                 | 86.0     | 1.02     | 1.03     | 1.25     | 0.95     | 0.78     | 1.21     | 98.0     | 0.83     | 1        |   |
| Roundness<br>Factor | R1       | R1       | R2       | R1       | R1       | R1       | R1       | R1                             | R1       | R1       | R1       | R2       | R1       | R1       | R1                             | R1                | R1       | R1       | R3       | R2       | R1       | R1       | R1       | R2       | R1       | R1       | • |
| Database<br>ID      | AKC00246 | AKC00247 | AKC00248 | AKC00249 | AKC00250 | AKC00251 | AKC00252 | AKC00253                       | AKC00254 | AKC00255 | AKC00256 | AKC00257 | AKC00258 | AKC00259 | AKC00260                       | AKC00261          | AKC00262 | AKC00263 | AKC00264 | AKC00265 | AKC00266 | AKC00267 | AKC00268 | AKC00269 | AKC00270 | AKC00271 |   |

| Database | Roundness | Interior | Interior | Max. Length | Max.Width | Min.  | Thickness | Notes                                |
|----------|-----------|----------|----------|-------------|-----------|-------|-----------|--------------------------------------|
| П        | Factor    | Perf. A  | Perf. B  |             |           | Width |           |                                      |
| AKC00273 | R1        | 1.13     |          | 2.33        | 4.02      |       |           |                                      |
| AKC00274 | R1        | 1.17     |          | 2.64        | 4.36      |       |           |                                      |
| AKC00275 | R1        | 0.79     |          | 5.5         | 2.46      |       |           |                                      |
| AKC00276 | R1        | 1.51     |          | 2.93        | 4.11      |       |           |                                      |
| AKC00277 | R1        | N/A      |          | 1.33        | 1.99      |       |           | Too small to measure bead hole       |
| AKC00278 | R1        | N/A      |          | 1.53        | 2.01      |       |           | Too small to measure bead hole       |
| AKC00279 | R1        | N/A      |          | 1.11        | 1.78      |       |           | Too small to measure bead hole       |
| AKC00280 | R1        | N/A      |          | 1.54        | 2.23      |       |           | Too small to measure bead hole       |
| AKC00281 | R1        | N/A      |          | 1.06        | 1.64      |       |           | Too small to measure bead hole       |
| AKC00282 | R1        | N/A      |          | 1.42        | 1.75      |       |           | Too small to measure bead hole       |
| AKC00283 |           | N/A      |          | 0           | 0         |       |           | Broken bead, unable to measure       |
| AKC00284 | R1        | N/A      |          | 1.76        | 1.39      |       |           | Choose 6 of 58 beads to measure,     |
|          |           |          |          |             |           |       |           | microbeads were too small to measure |
| AKC00285 | R1        | N/A      |          | 2.12        | 1.37      |       |           |                                      |
| AKC00286 | R1        | N/A      |          | 66.0        | 1.36      |       |           |                                      |
| AKC00287 | R1        | N/A      |          | 0.82        | 1.53      |       |           |                                      |
| AKC00288 | R1        | N/A      |          | 1.38        | 1.5       |       |           |                                      |
| AKC00289 | R1        | N/A      |          | 1.08        | 1.47      |       |           |                                      |

741

Appendix 7.1f: Glass beads from Village 10.8

| AKC00318 AKC00319 AKC00320 AKC00321 AKC00322 AKC00324 AKC00325 AKC00325 | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8 | EXXXXIII                                 | AF-84      |    | A/N               |   |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|------------|----|-------------------|---|
| AKC00319 AKC00321 AKC00322 AKC00323 AKC00324 AKC00325 AKC00326          | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8              | 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1 |            | 4  | T 7 / L T         | 1 |
| AKC00320 AKC00321 AKC00322 AKC00323 AKC00324 AKC00326                   | Village 10.8 Village 10.8 Village 10.8 Village 10.8                           | VIXXXX                                   | AG-84      | 2  | NA                | П |
| AKC00321 AKC00322 AKC00323 AKC00324 AKC00325 AKC00326                   | Village 10.8 Village 10.8 Village 10.8                                        | EXVIII                                   | N/85       | 47 | Earring           | - |
| AKC00322 AKC00323 AKC00324 AKC00325 AKC00326                            | Village 10.8 Village 10.8                                                     | EXVIII                                   | N/85       | 48 | Earring           | П |
| AKC00323 AKC00324 AKC00325 AKC00326                                     | Village 10.8                                                                  | EXXXVI                                   | 98/H       |    | Earring           | - |
| AKC00324<br>AKC00325<br>AKC00326                                        | 000                                                                           | EXVIII                                   | N/85       | 18 | Ring              | - |
| AKC00325<br>AKC00326                                                    | Village 10.8                                                                  | EXVIII                                   | N/85       | 43 | Ring              | - |
| AKC00326                                                                | Village 10.8                                                                  | EXVIII                                   | N/85       | 42 | Ring              | - |
|                                                                         | Village 10.8                                                                  | EXVIII                                   | N/85       | 19 | Ring              |   |
| AKC00327                                                                | Village 10.8                                                                  | E/I                                      | U/91       | 9  | Ring              |   |
| AKC00328                                                                | Village 10.8                                                                  | 田                                        | 22/94      | 3  | Indo-Pacific bead | - |
| AKC00329                                                                | Village 10.8                                                                  | 田                                        | 21/94      | 19 | Indo-Pacific bead | - |
| AKC00330                                                                | Village 10.8                                                                  | E/O                                      | S/92, S/91 | 26 | Indo-Pacific Bead | 3 |
| AKC00331                                                                | Village 10.8                                                                  | E/O                                      | S/92, 2/91 | 26 | Indo-Pacific Bead | 3 |
| AKC00332                                                                | Village 10.8                                                                  | E/O                                      | S/92, 2/91 | 26 | Indo-Pacific Bead | 3 |
| AKC00369                                                                | Village 10.8                                                                  | EIX                                      | 06,98 Q    | 39 | Indo-Pacific bead | П |
| AKC00370                                                                | Village 10.8                                                                  | EVIII                                    | R/89       | 45 | Indo-Pacific bead | П |
| AKC00371                                                                | Village 10.8                                                                  | EVIII                                    | 06/S       | 46 | Indo-Pacific bead | 1 |
| AKC00372                                                                | Village 10.8                                                                  | EIX                                      | 06/Ò       | 14 | Indo-Pacific bead | П |
| AKC00373                                                                | Village 10.8                                                                  | EXVI                                     | R/86       | 13 | Indo-Pacific bead | П |
| AKC00374                                                                | Village 10.8                                                                  | EIX                                      | 68/Ò       | 38 | Indo-Pacific bead |   |
| AKC00375                                                                | Village 10.8                                                                  | EIX                                      | 06/Ò       | 25 | Indo-Pacific bead | 1 |
| AKC00376                                                                | Village 10.8                                                                  | EXII                                     | L/87       | 23 | Indo-Pacific bead | 1 |
| AKC00377                                                                | Village 10.8                                                                  | EIX                                      | 06/Ò       | 17 | Indo-Pacific bead | 1 |
| AKC00378                                                                | Village 10.8                                                                  | EXII                                     | L/87       | 43 | Indo-Pacific bead | 1 |

| q                                                   | Indo-Pacific bead 26                    | Pacific bead 26             |                            | -Pacific bead      |                  |                   |                                        |                                                       |                                                                         |                                                                                           |                                                                                                             |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|-----------------------------------------|-----------------------------|----------------------------|--------------------|------------------|-------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indo-Pacific head                                   | mao i aciiico cara                      | Indo-Pacific bead           | Indo-Pacific bead          | Indo-Pacific bead  |                  | Indo-Pacific bead | Indo-Pacific bead<br>Indo-Pacific bead | Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead | Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead | Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead | Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead                                                                                                                                                         | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indo-Pacific bead                                | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed  | Indo-Pacific bez                        | Indo-Pacific ber            |                            | Indo-Pacific bea   | Indo-Pacific bea |                   | Indo-Pacific bea                       | Indo-Pacific bed Indo-Pacific bed                     | Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed                      | Indo-Pacific bez Indo-Pacific bez Indo-Pacific bez Indo-Pacific bez                       | Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed       | Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed Indo-Pacific bed                                           | Indo-Pacific bed                           | Indo-Pacific bed           | Indo-Pacific bed                              | Indo-Pacific bed              | Indo-Pacific bed                                                  | Indo-Pacific bed                                    | Indo-Pacific bed | Indo-Pacific bed Indo-P | Indo-Pacific bed | Indo-Pacific bed Indo-P | Indo-Pacific bed Indo-P | Indo-Pacific bed Indo-P | Indo-Pacific bed Indo-P | Indo-Pacific bed Indo-P | Indo-Pacific bed Indo-P |
|                                                     |                                         |                             |                            |                    |                  |                   |                                        |                                                       |                                                                         |                                                                                           |                                                                                                             |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39<br>34<br>34<br>30<br>30                          | 34 34 34 30 30                          | 34 34 30                    | 34 34 30                   | 34                 | 30               |                   | 20                                     |                                                       | 07                                                                      | 20                                                                                        | 20 34                                                                                                       | 20<br>20<br>34<br>34                                                                                                                            | 20<br>20<br>34<br>34<br>12                                                                                                                                        | 20<br>20<br>34<br>34<br>12                                                                                                                                                          | 20<br>20<br>34<br>34<br>12<br>12<br>34                                                                                                                                                                                  | 20<br>20<br>34<br>34<br>12<br>12<br>34<br>34                                                                                                                                                                                              | 20<br>20<br>34<br>34<br>12<br>12<br>34<br>34<br>34                                                                                                                                                                                                                            | 20<br>20<br>34<br>34<br>12<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                  | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                   | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39<br>34<br>34<br>34<br>36<br>30                    | 34 34 34 34 34 34 30                    | 34 34 30 30                 | 34 34 30                   | 34                 | 30               | ,                 | 20                                     | 20                                                    |                                                                         | 20                                                                                        | 34                                                                                                          | 20 34 34                                                                                                                                        | 20 34 34 12                                                                                                                                                       | 20<br>34<br>34<br>12<br>12                                                                                                                                                          | 20<br>34<br>34<br>12<br>12<br>34<br>34                                                                                                                                                                                  | 20<br>34<br>34<br>112<br>112<br>34<br>34<br>34                                                                                                                                                                                            | 20<br>34<br>34<br>12<br>12<br>34<br>34<br>34                                                                                                                                                                                                                                  | 20<br>34<br>34<br>12<br>12<br>12<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                      | 20<br>34<br>34<br>12<br>12<br>12<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                              | 20<br>34<br>34<br>11<br>12<br>12<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                       | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T/92<br>T/92<br>T/87<br>T/87                        | T/92<br>T/87<br>T/87                    | T/87<br>T/87<br>T/87        | T/87<br>T/87               | T/87               |                  | Z/87              | 68/Ò                                   | 68/Ò                                                  |                                                                         | 68/Ò                                                                                      | Q/89<br>T/87                                                                                                | Q/89<br>T/87<br>T/87                                                                                                                            | Q/89<br>T/87<br>T/87<br>Q/89                                                                                                                                      | Q/89<br>T/87<br>T/87<br>Q/89                                                                                                                                                        | Q/89<br>T/87<br>T/87<br>Q/89<br>Q/89                                                                                                                                                                                    | Q/89<br>T/87<br>T/87<br>Q/89<br>Q/89<br>T/87                                                                                                                                                                                              | Q/89<br>T/87<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87                                                                                                                                                                                                                          | Q/89<br>T/87<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87                                                                                                                                                                                                                                                                                | Q/89<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q/89<br>T/87<br>T/89<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q/89<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87                                                                                                                                                                                                                                                                                                                                   | Q/89<br>T/87<br>Q/89<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q/89<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q/89<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>Q/90<br>Q/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q/89<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>(Q/90<br>Q/90<br>Q/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q/89  T/87  Q/89  Q/89  Q/89  T/87  T/87  T/87  T/87  Q/90  Q/90  Q/90  Q/90  Q/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q/89<br>T/87<br>Q/89<br>Q/89<br>T/87<br>T/87<br>T/87<br>T/87<br>T/87<br>Q/90<br>Q/90<br>Q/90<br>Q/90<br>Q/90<br>Q/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     |                                         |                             |                            |                    |                  |                   |                                        |                                                       |                                                                         |                                                                                           |                                                                                                             |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EI EXII EXII EXII EXII EXII EXII EXII E             | EXII EXII EXII EXII EXII EXII EXII EXII | EXII<br>EXII<br>EXII<br>EXI | EXII<br>EXII<br>EXI<br>EXI | EXII<br>EXI<br>EIX | EXI              | EIX               |                                        | EIX                                                   | EIX                                                                     |                                                                                           | EXII                                                                                                        | EXII                                                                                                                                            | EXII<br>EXII<br>EIX                                                                                                                                               | EXII<br>EXII<br>EIX<br>EIX                                                                                                                                                          | EXII<br>EXII<br>EXII<br>EXII                                                                                                                                                                                            | EXII<br>EXII<br>EIX<br>EIX<br>EXII                                                                                                                                                                                                        | EXII<br>EXII<br>EXII<br>EXII<br>EXII                                                                                                                                                                                                                                          | EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII                                                                                                                                                                                                                                                                                        | EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII<br>EXII                                                                                                                                                                                                                                                                                                                                           | EXII EXII EXII EXII EXII EXII EXII EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXII EXII EXII EXII EXII EXII EXII EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXII EXII EXII EXII EXII EXII EXII EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXII EXII EXII EXII EXII EXII EXII EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXII EXII EXII EXII EXII EXII EXII EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXII EXII EXII EXII EXII EXII EXII EXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Village 10.8 Village 10.8 Village 10.8 Village 10.8 | Village 10.8 Village 10.8 Village 10.8  | illage 10.8                 | illage 10.8                | 0                  | Village 10.8     | Village 10.8      | Village 10.8                           | Village 10.8                                          | 000                                                                     | llage 10.8                                                                                | illage 10.8<br>illage 10.8                                                                                  | 7illage 10.8<br>7illage 10.8<br>7illage 10.8                                                                                                    | /illage 10.8 /illage 10.8 /illage 10.8 /illage 10.8                                                                                                               | /illage 10.8 /illage 10.8 /illage 10.8 /illage 10.8 /illage 10.8                                                                                                                    | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8                                                                                                                                                        | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8                                                                                                                                                             | Village 10.8                                                                                                                                                                                    | Village 10.8                                                                                                                                                                                                                             | Village 10.8                                                                                                                                                                                                                                                                                                                                                                        | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Village 10.8                                                                                                          | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | N N                                     | 1.                          |                            | illa               | 111              | :=                |                                        | , T                                                   |                                                                         |                                                                                           |                                                                                                             | 7                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     |                                         | ><br>                       | Λ                          | Villa              | Vill             | Vil               | <b>&gt;</b>                            | 1                                                     | <u> </u>                                                                |                                                                                           |                                                                                                             |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ido-Pacif                    | ido-Pacific bead<br>ido-Pacific bead<br>ido-Pacific beac | Indo-Pacific bead | Indo-Pacific bead | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Indo-Pacific bead | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indo-Pacific bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indo-Pacific bead                           | Indo-Pacific bead                                                                                   | Indo-Pacific bead                                                                                                               | Indo-Pacific bead                                                                                                               | Indo-Pacific bead                                                                                                                    |
|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 Indo-Paci<br>18 Indo-Paci |                                                          |                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q/89 18                      |                                                          |                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 68/O                         | Q/89<br>Q/89<br>Q/89                                     | 68/O<br>68/O<br>68/O<br>68/O                                                                                                  | 68/Ò<br>68/Ò<br>68/Ò<br>68/Ò                                                                                                                                      | 68/O<br>68/O<br>68/O<br>68/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O                                                                                                                                                    | 68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O<br>68/O | 68/O 68/O 68/O 68/O 68/O 68/O 68/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q/89<br>Q/89<br>Q/89<br>Q/89<br>Q/89<br>Q/89<br>Q/89<br>Q/89                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EIA                          | EIX<br>EIX<br>EIX                                        | EIX<br>EIX<br>EIX<br>EIX<br>EIX                                                                                               | EIX<br>EIX<br>EIX<br>EIX<br>EIX                                                                                                                                   | EIX EIX EIX EIX EIX EIX EIX EIX EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX                                                                                                                                                                    | EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX<br>EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EIX                                                                                                                                                                                                                                                                                                                                                                             | EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                                                          |                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | Village 10.8 Village 10.8 Village 10.8                   | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8                                                              | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8                                                                                     | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Village 10.8                                                                          | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Village 10.8                                                                                                                                                                                        | Village 10.8                                                                                                                                                                                                                                                          | Village 10.8                                                                                                                                                                                                                                                                 | Village 10.8                                                                                                                                                                                                                          | Village 10.8                                                                                                                                                                                                                                    |
| 17:110.00 10 6               | Village 10.6 Village 10.8                                | Village 10.8 Village 10.8 Village 10.8 Village 10.8 Village 10.8                                                              | Village 10.8  Village 10.8  Village 10.8  Village 10.8  Village 10.8                                                                                              | Village 10.8   Vill | Village 10.8                                                                                                    | Village 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Village 10.8     Vill | Village 10.8     Village 10.8 | Village 10.8           Village 10.8 | Village 10.8           Village 10.8 | Village 10.8           Village 10.8 | Village 10.8           Village 10.8 |
| 1                            |                                                          |                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Database ID | Glass Color | Glass Color<br>Notes                   | Opacity              | Roundness<br>Factor | Interior<br>Perf. A | Interior<br>Perf. B | Max. Length | Max.Width | Notes                                                     |
|-------------|-------------|----------------------------------------|----------------------|---------------------|---------------------|---------------------|-------------|-----------|-----------------------------------------------------------|
| AKC00318    | Dark Green  |                                        |                      | NA                  | N/A                 | N/A                 | N/A         | N/A       | Weathering made bead fragile, unable to measure           |
| AKC00319    | Dark Green  |                                        |                      | NA                  | N/A                 | N/A                 | N/A         | N/A       | Fragmented beads due to weathering                        |
| AKC00320    | Purple      |                                        |                      | NA                  | N/A                 | N/A                 | N/A         | N/A       | Fragmented beads due to weathering                        |
| AKC00321    | Purple      |                                        |                      | NA                  | N/A                 | N/A                 | N/A         | N/A       | Fragmented beads due to weathering                        |
| AKC00322    | Purple      |                                        | Translucent          | NA                  |                     |                     | N/A         | N/A       | Broken Earring<br>fragment                                |
| AKC00323    | Purple      |                                        | Transparent          | NA                  | 19.76               |                     | 24.46       |           | Interior hole in ring is recorded as inside perforation A |
| AKC00324    | Purple      |                                        | Transparent          | NA                  | 19.6                |                     | 24.63       |           | Interior hole in ring is recorded as inside perforation A |
| AKC00325    | Purple      |                                        | Transparent          | NA                  | 19.74               |                     | 24.96       |           | Interior hole in ring is recorded as inside perforation A |
| AKC00326    | Purple      |                                        | Transparent          | NA                  | 20.33               |                     | 25.32       |           | Interior hole in ring is recorded as inside perforation A |
| AKC00327    | Black       |                                        | Opaque               | NA                  | NA                  |                     | NA          | NA        | Broken, unable to measure                                 |
| AKC00328    | Dark Blue   | Navy blue                              | Translucent          | R2                  | 1.14                |                     | 5.28        | 5.07      |                                                           |
| AKC00329    | Medium Blue |                                        | Transparent          | NA                  | NA                  |                     | NA          | NA        | Broken, unable to measure                                 |
| AKC00330    | Ivory       |                                        | Opaque               | R0                  | 1.28                |                     | 1.71        | 3.57      | glass?                                                    |
| AKC00331    | Ivory       | Darker ivory<br>color than<br>AKC00330 | Opaque               | R0                  | 1.44                |                     | 1.56        | 3.62      |                                                           |
| AKC00332    | Ivory       |                                        | Semi-<br>Translucent | R0                  | 1.52                |                     | 0.76        | 3.45      |                                                           |

| Notes                |             | Unable to measure hole | Shape of bead is uneven |             |             |               |             |                                        |          | Fragmented beads due to weathering | 2 of 26 similar beads selected for measurement | 2 of 26 similar beads<br>selected for<br>measurement | Beads are heavily weathered. Measured 3 of 11 similar beads. |             |             | Beads were fragile due to weathering |             |             | Broken bead, difficult to<br>measure |
|----------------------|-------------|------------------------|-------------------------|-------------|-------------|---------------|-------------|----------------------------------------|----------|------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------|-------------|--------------------------------------|-------------|-------------|--------------------------------------|
| Max.Width            | 5.22        | 5.04                   | 6.24                    | 5.62        | 4.69        | 4.92          | 5.05        | 4.09                                   | 4.79     |                                    | 4.08                                           | 4.16                                                 | 3.95                                                         | 3.65        | 3.9         | 3.68                                 | 5           | 4.64        | 0                                    |
| Max. Length          | 4.21        | 5.35                   | 4.5                     | 3.01        | 4.03        | 3.88          | 3.21        | 2.88                                   | 4.04     |                                    | 3.77                                           | 2.72                                                 | 2.61                                                         | 2.04        | 2.61        | 1.93                                 | 3.72        | 3.66        | 2.9                                  |
| Interior<br>Perf. B  |             |                        |                         |             |             |               |             |                                        |          |                                    |                                                |                                                      |                                                              |             |             |                                      |             |             |                                      |
| Interior<br>Perf. A  | 1.78        |                        | 96'0                    | 1.29        | 1.28        | 1.71          | 1.5         | 1.26                                   | 1.15     |                                    | 0                                              | 1.35                                                 | 1.5                                                          | 1.43        | 1.25        |                                      | 1.05        | 0.87        | 0                                    |
| Roundness<br>Factor  | R2          | R2                     | R2                      | R1          | R1          | R1            | R1          | R1                                     | R2       | NA                                 | R2                                             | R1                                                   | RI                                                           | R1          | R1          | R1                                   | R2          | R2          | R1                                   |
| Opacity              | Translucent | Translucent            | Translucent             | Translucent | Translucent | Opaque        | Translucent | Translucent                            | Opaque   |                                    | Translucent                                    | Translucent                                          | Translucent                                                  | Translucent | Translucent | Translucent                          | Translucent | Translucent | Translucent<br>Semi-<br>Translucent  |
| Glass Color<br>Notes | Dark cobalt | Dark cobalt            | Dark cobalt             | Dark cobalt | Dark cobalt | Or dark blue? |             | Not as dark<br>blue as cobalt<br>beads |          |                                    | Intense blue<br>color                          | Intense blue<br>color                                |                                                              |             |             |                                      | Dark cobalt |             | Dark cobalt                          |
| Glass Color          | Cobalt      | Cobalt                 | Cobalt                  | Cobalt      | Cobalt      | Black         | Cobalt      | Dark Blue                              | Black    | Dark Green                         | Cobalt                                         | Cobalt                                               | Dark Green                                                   | Dark Green  | Dark Green  | Dark Green                           | Cobalt      | Blue-Green  | Cobalt                               |
| Database ID          | AKC00369    | AKC00370               | AKC00371                | AKC00372    | AKC00373    | AKC00374      | AKC00375    | AKC00376                               | AKC00377 | AKC00378                           | AKC00379                                       | AKC00380                                             | AKC00381                                                     | AKC00382    | AKC00383    | AKC00384                             | AKC00385    | AKC00386    | AKC00387                             |

| Notes                | Bead is too fragile to<br>measure interior<br>perforation |             | 2 of 26 similar beads were measured |                    | Only 7 complete beads in a group of fragmented and weathered samples. | ,          | T          |            |            |            |            | 11 of 43 similar beads were measured. All of the beads in this sample are a blue color however this is some variation in the intensity of the blue color and the transparency/translucency y of the beads. |             |             |             |             |             |
|----------------------|-----------------------------------------------------------|-------------|-------------------------------------|--------------------|-----------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
| Max.Width            | 3.83                                                      | 4.27        | 3.75                                | 4.47               | 3.98                                                                  | 3.73       | 3.84       | 3.88       | 3.68       | 3.6        | 4.07       | 4.84                                                                                                                                                                                                       | 5.45        | 4.34        | 4.93        | 4.91        | 5.14        |
| Max. Length          | 2.88                                                      | 3.18        | 4.59                                | 4.24               | 3.02                                                                  | 2.53       | 2.77       | 2.68       | 2.79       | 1.51       | 1.96       | 4.53                                                                                                                                                                                                       | 4.88        | 3.71        | 3.85        | 3.71        | 5.2         |
| Interior<br>Perf. B  |                                                           |             |                                     |                    |                                                                       |            |            |            |            |            |            |                                                                                                                                                                                                            |             |             |             |             |             |
| Interior<br>Perf. A  | 0                                                         | 0           | 1.44                                | 0.75               | 0                                                                     | 0          | 0          | 0          | 0          | 0          | 0          | 1.3                                                                                                                                                                                                        | 1.57        | 1.42        | 1.35        | 1.12        | 1.55        |
| Roundness<br>Factor  | R2                                                        | R2          | R1                                  | R2                 | R2                                                                    | R2         | R2         | R2         | R2         | R0         | R1         | R2                                                                                                                                                                                                         | R3          | R1          | R1          | R1          | R2          |
| Opacity              | Translucent                                               | Translucent | Transparent                         | Translucent        |                                                                       |            |            |            |            |            |            | Translucent                                                                                                                                                                                                | Translucent | Translucent | Translucent | Translucent | Translucent |
| Glass Color<br>Notes | Weathering                                                | Weathering  | Intense blue<br>color               | Intense blue color | Weathering                                                            | Weathering | Weathering | Weathering | Weathering | Weathering | Weathering |                                                                                                                                                                                                            |             |             |             |             |             |
| Glass Color          | Blue/Green                                                | Blue/Green  | Cobalt                              | Cobalt             | Dark Green                                                            | Dark Green | Dark Green | Dark Green | Dark Green | Dark Green | Dark Green | Cobalt                                                                                                                                                                                                     | Cobalt      | Cobalt      | Cobalt      | Cobalt      | Cobalt      |
| Database ID          | AKC00388                                                  | AKC00389    | AKC00390                            | AKC00391           | AKC00392                                                              | AKC00393   | AKC00394   | AKC00395   | AKC00396   | AKC00397   | AKC00398   | AKC00399                                                                                                                                                                                                   | AKC00400    | AKC00401    | AKC00402    | AKC00403    | AKC00404    |

| Notes                |             |             | 11 of 43 similar beads were measured. All of the beads in this sample are a blue color however this is some variation in the intensity of the blue color and the transparency/translucenc | y of the beads. |             | Measured 3 of 3 black<br>beads, 1 dark blue bead,<br>two larger cobalt beads,<br>and 6 of 63 smaller<br>sized cobalt beads. |              |                                        |          |          |          |              |              |              |              |
|----------------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|----------|----------|----------|--------------|--------------|--------------|--------------|
| Max.Width            | 6.13        | 5.05        | 4.82                                                                                                                                                                                      | 3.98            | 5.52        | 7.89                                                                                                                        | 7.78         | 4.91                                   | 4.55     | 4.85     | 4.13     | 5.62         | 5.4          | 4.45         | 5.4          |
| Max. Length          | 2.96        | 4.75        | 4.33                                                                                                                                                                                      | 4.03            | 4.16        | 7.19                                                                                                                        | 6.01         | 3.38                                   | 4.57     | 4.77     | 2.87     | 4.91         | 5.3          | 2.96         | 4.57         |
| Interior<br>Perf. B  |             |             |                                                                                                                                                                                           |                 |             |                                                                                                                             |              |                                        |          |          |          |              |              |              |              |
| Interior<br>Perf. A  | 2.12        | 1.35        | 1.18                                                                                                                                                                                      | 1.2             | 1.08        | 2.49                                                                                                                        | 2.06         | 1.65                                   | 1.37     | 6.0      | 96.0     | 96.0         | 1.19         | 1.1          | 1.3          |
| Roundness<br>Factor  | R2          | R2          | R2                                                                                                                                                                                        | R2              | R2          | R2                                                                                                                          | R2           | R2                                     | R1       | R2       | R1       | R2           | R3           | R1           | R2           |
| Opacity              | Translucent | Translucent | Translucent                                                                                                                                                                               | Translucent     | Translucent | Translucent                                                                                                                 | Translucent  | Translucent                            | Opaque   | Opaque   | Opaque   | Translucent  | Translucent  | Translucent  | Translucent  |
| Glass Color<br>Notes |             |             |                                                                                                                                                                                           |                 |             |                                                                                                                             | Matte finish | Not as dark<br>blue as cobalt<br>beads |          |          |          | Matte finish | Matte finish | Matte finish | Matte finish |
| Glass Color          | Cobalt      | Cobalt      | Cobalt                                                                                                                                                                                    | Cobalt          | Cobalt      | Cobalt                                                                                                                      | Cobalt       | Dark Blue                              | Black    | Black    | Black    | Cobalt       | Cobalt       | Cobalt       | Cobalt       |
| Database ID          | AKC00405    | AKC00406    | AKC00407                                                                                                                                                                                  | AKC00408        | AKC00409    | AKC00410                                                                                                                    | AKC00411     | AKC00412                               | AKC00413 | AKC00414 | AKC00415 | AKC00416     | AKC00417     | AKC00418     | AKC00419     |

| Database ID | Glass Color | Glass Color<br>Notes         | Opacity                             | Roundness<br>Factor | Interior<br>Perf. A | Interior<br>Perf. B | Max. Length | Max.Width | Notes                                                                                                                |
|-------------|-------------|------------------------------|-------------------------------------|---------------------|---------------------|---------------------|-------------|-----------|----------------------------------------------------------------------------------------------------------------------|
| AKC00420    | Cobalt      | Matte finish                 | Translucent                         | R1                  | 2.38                |                     | 4.53        | 5.06      |                                                                                                                      |
| AKC00421    | Cobalt      | Matte finish                 | Translucent                         | R1                  | 1.76                |                     | 3.76        | 5.45      |                                                                                                                      |
| AKC00422    | Cobalt      |                              | Translucent                         | R3                  | 0.83                |                     | 5.04        | 5.06      | Measured 2 of 8 similar beads                                                                                        |
| AKC00423    | Cobalt      | Matte finish                 | Translucent                         | R1                  | 1.44                |                     | 3.83        | 5.75      |                                                                                                                      |
| AKC00424    | Light Blue  | Turquoise with white stripes | Semi-<br>Translucent                | R2                  | 1.64                |                     | 5.76        | 5.5       |                                                                                                                      |
| AKC00425    | Cobalt      | Matte finish                 | Translucent                         | R2                  | 1.02                |                     | 4.52        | 5.71      | Measured 6 of 24 similar beads in this group. This sample also includes a large number of unrecorded bead fragments. |
| AKC00426    | Cobalt      | Matte finish                 | Translucent                         | R1                  | 1.41                |                     | 4.87        | 4.78      | ò                                                                                                                    |
| AKC00427    | Cobalt      | Matte finish                 | Translucent                         | R2                  | 0                   |                     | 5.81        | 6.7       |                                                                                                                      |
| AKC00428    | Cobalt      | Matte finish                 | Translucent<br>Semi-<br>Translucent | R2                  | 1.94                |                     | 6.14        | 8.2       |                                                                                                                      |
| AKC00429    | Cobalt      | Matte finish                 | Translucent                         | R2                  | 0                   |                     | 5.63        | 8.78      |                                                                                                                      |
| AKC00430    | Cobalt      | Matte finish                 | Translucent                         | R2                  | 1.08                |                     | 4.19        | 4.94      |                                                                                                                      |

749

## Appendix 7.1g: Glass Beads from Promtin Tai

| Database ID | Site Name   | Trench                | Layer                                    | Bead Shape                | Catalogue<br>Number | Total # of beads |
|-------------|-------------|-----------------------|------------------------------------------|---------------------------|---------------------|------------------|
| AKC00901    | Promtin Tai | PTT S3/2 West Section | 240-250 cm below datum (bd). (Burial #7) | Ring/Earring Fragment     |                     | 1                |
| AKC00903    | Promtin Tai | PTT S3/2 West Section | 250-260 cm bd. (Burial 18)               | Indo-Pacific Bead         |                     | 2                |
| AKC00904    | Promtin Tai | PTT S3/2 West Section | 250-260 cm bd. (Burial 18)               | Indo-Pacific Bead         |                     | 2                |
| AKC00906    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial #20)               | Indo-Pacific Bead         |                     | 2                |
| AKC00907    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial #20)               | Indo-Pacific Bead         |                     | 2                |
| AKC00908    | Promtin Tai | PTT- S3 East Section  | 230-240 cm bd                            | Indo-Pacific Bead         |                     | 1                |
| AKC00909    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Short Barrel |                     | 49               |
| AKC00910    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Short Barrel |                     | 49               |
| AKC00911    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00912    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00913    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00914    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00915    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00916    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00917    | Promtin Tai | PTT S3/2 West Section | 240-250 cm bd (Burial 20)                | Indo-Pacific Bead         |                     | 49               |
| AKC00938    | Promtin Tai | PTT West Section      | Burial 32                                | Unknown                   |                     | 33               |
| AKC00939    | Promtin Tai | PTT West Section      | Burial 32                                | Indo-Pacific Bead         |                     | 33               |
| AKC00940    | Promtin Tai | PTT West Section      | Burial 32                                | Indo-Pacific Bead         |                     | 33               |
| AKC00941    | Promtin Tai | PTT West Section      | Burial 32                                | Indo-Pacific Bead         |                     | 33               |
| AKC00942    | Promtin Tai | PTT West Section      | Burial 32                                | Indo-Pacific Bead         |                     | 33               |
| AKC00943    | Promtin Tai | PTT West Section      | Burial 32                                | Indo-Pacific Bead         |                     | 33               |
| AKC00944    | Promtin Tai | PTT S3/2 East Section | 160-170 cm bd (S2L9)                     | Indo-Pacific Bead         | 040                 | 3                |
| AKC00945    | Promtin Tai | PTT S3/2 East Section | 160-170 cm bd (S2L9)                     | Indo-Pacific Bead         | 040                 | 3                |
|             |             |                       |                                          |                           | ,                   |                  |

| Jo                  |                       |                       |                       |                       |                       |                       |                       |                       |                       |                         |                         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 750 |
|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----|
| Total # of beads    | 3                     | 18                    | 18                    | 18                    | 18                    | 18                    | 18                    | 18                    | 18                    | 18                      | 18                      | 18                    | 18                    | 14                    | 14                    | 14                    | 14                    | 14                    | 14                    | 14                    | 14                    | 14                    | 18                    | 18                    | 8                     | 8                     | 8                     |     |
| Catalogue<br>Number | 040                   | 041                   | 041                   | 041                   | 041                   | 041                   | 041                   | 041                   | 041                   | 041                     | 041                     | 041                   | 041                   | 042                   | 042                   | 042                   | 042                   | 042                   | 042                   | 042                   | 042                   | 042                   | 043                   | 043                   | 044                   | 044                   | 044                   |     |
| Bead Shape          | Indo-Pacific Bead     | Indo-Pacific Micro Bead | Indo-Pacific Micro Bead | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     | Indo-Pacific Bead     |     |
| Layer               | 160-170 cm bd (S2L9)  | 170-180 cm bd (S3L2)    | 170-180 cm bd (S3L2)    | 170-180 cm bd (S3L2)  | 170-180 cm bd (S3L2)  | 180-190 cm bd (S3L3)  | 190-200 cm bd (S3L4)  | 190-200 cm bd (S3L4)  | 200-210 cm bd (S3L3)  | 200-210 cm bd (S3L3)  | 200-210 cm bd (S3L3)  |     |
| Trench              | PTT S3/2 East Section   | PTT S3/2 East Section   | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section | PTT S3/2 East Section |     |
| Site Name           | Promtin Tai             | Promtin Tai             | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           | Promtin Tai           |     |
| Database ID         | AKC00946              | AKC00947              | AKC00948              | AKC00949              | AKC00950              | AKC00951              | AKC00952              | AKC00953              | AKC00954              | AKC00955                | AKC00956                | AKC00957              | AKC00958              | AKC00959              | AKC00960              | AKC00961              | AKC00962              | AKC00963              | AKC00964              | AKC00965              | AKC00966              | AKC00967              | AKC00968              | AKC00969              | AKC00971              | AKC00972              | AKC00973              |     |

| 7 | 5 | 1 |
|---|---|---|
| 1 | J | 1 |

| AKC00074         Promiti Tai         PTT 53.2 East Section         200-210 em bd (58.1.)         Indo-Pacific Baad         044         B           AKC00077         Promiti Tai         PTT 53.2 East Section         210-220 em bd (54.1.)         Indo-Pacific Baad         045         11           AKC00077         Promiti Tai         PTT 53.2 East Section         210-220 em bd (54.1.)         Indo-Pacific Baad         045         15           AKC00078         Promiti Tai         PTT 53.2 East Section         210-220 em bd (54.1.)         Indo-Pacific Baad         045         15           AKC00984         Promiti Tai         PTT 53.2 East Section         220-230 em bd (54.1.)         Indo-Pacific Baad         047         3           AKC00986         Promiti Tai         PTT 53.2 East Section         220-230 em bd (54.1.3)         Indo-Pacific Baad         047         3           AKC01098         Promiti Tai         PTT 53.2 East Section         220-230 em bd (54.1.3)         Indo-Pacific Bead         047         3           AKC01098         Promiti Tai         S72 West Section         220-230 em bd (54.1.3)         Indo-Pacific Bead         071         3           AKC01059         Promiti Tai         S73 West Section Burial         220-230 em bd (54.1.3)         Indo-Pacific Bead         074         41 </th <th>Database ID</th> <th>Site Name</th> <th>Trench</th> <th>Layer</th> <th>Bead Shape</th> <th>Catalogue<br/>Number</th> <th>Total # of beads</th>            | Database ID | Site Name   | Trench                      | Layer                          | Bead Shape               | Catalogue<br>Number | Total # of beads |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------|--------------------------------|--------------------------|---------------------|------------------|
| Promitin Tai         PTT 83.2 East Section         210-220 cm bd (54.1.)         Indo-Pacific Bead         045           Promitin Tai         PTT 83.2 East Section         210-220 cm bd (54.1.)         Indo-Pacific Bead         045           Promitin Tai         PTT 83.2 East Section         220-230 cm bd (54.1.)         Indo-Pacific Bead         046           Promitin Tai         PTT 83.2 East Section         220-230 cm bd (54.1.2.)         Indo-Pacific Bead         046           Promitin Tai         PTT 83.2 East Section         220-230 cm bd (54.1.2.)         Indo-Pacific Bead         047           Promitin Tai         PTT 83.2 East Section         230-240 cm bd (54.1.2.)         Indo-Pacific Bead         047           Promitin Tai         PTT 83.2 East Section         230-240 cm bd (54.1.2.)         Indo-Pacific Bead         071           Promitin Tai         S3.2 West Section Burial         230-240 cm bd (541.3.)         Long Cylindrical         064           Promitin Tai         S3.2 West Section Burial         230-240 cm bd (541.3.)         Long Cylindrical         064           Promitin Tai         S3.2 West Section Burial         230-240 cm bd (541.3.)         Long Cylindrical         064           Promitin Tai         S3.2 West Section Burial         230-240 cm bd (541.3.)         Long Cylindrical         064                                                                                                                                             | AKC00974    | Promtin Tai | PTT S3/2 East Section       | 200-210 cm bd (S3L3)           | Indo-Pacific Bead        | 044                 | 8                |
| Promitin Tai         PTT S3/2 East Section         210-220 cm bd (S4L1)         Indo-Pacific Bead         045           Promitin Tai         PTT S3/2 East Section         210-220 cm bd (S4L1)         Indo-Pacific Bead         045           Promitin Tai         PTT S3/2 East Section         220-230 cm bd (S4L2)         Indo-Pacific Bead         046           Promitin Tai         PTT S3/2 East Section         220-230 cm bd (S4L2)         Indo-Pacific Bead         047           Promitin Tai         PTT S3/2 East Section         230-240 cm bd (S4L3)         Indo-Pacific Bead         047           Promitin Tai         PTT S3/2 East Section         230-240 cm bd (S4L3)         Unknown object         047           Promitin Tai         PTT S3/2 West Section         220-230 cm bd Burial #19         Indo-Pacific Bead         074           Promitin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promitin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promitin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promitin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promitin Tai                                                                                                                                            | AKC00975    | Promtin Tai | PTT S3/2 East Section       | 210-220 cm bd (S4L1)           | Indo-Pacific Bead        | 045                 | 11               |
| Promtin Tai         PTT \$3.2 East Section         210-220 cm bd (\$41.1)         Indo-Pacific Bead         045           Promtin Tai         PTT \$3.2 East Section         210-220 cm bd (\$41.2)         Indo-Pacific Bead         045           Promtin Tai         PTT \$3.2 East Section         220-230 cm bd (\$41.2)         Indo-Pacific Bead         046           Promtin Tai         PTT \$3.2 East Section         220-230 cm bd (\$41.3)         Indo-Pacific Bead         047           Promtin Tai         PTT \$3.2 East Section         220-230 cm bd (\$41.3)         Indo-Pacific Bead         047           Promtin Tai         S/2 West Section         220-230 cm bd (\$41.3)         Indo-Pacific Bead         071           Promtin Tai         S/3 West Section Burial         230-240 cm bd (\$41.3)         Indo-Pacific Bead         074           Promtin Tai         S/3 West Section Burial         230-240 cm bd (\$41.3)         Long Cylindrical         064           Promtin Tai         S/3 West Section Burial         230-240 cm bd (\$41.3)         Long Cylindrical         064           Promtin Tai         S/3 West Section Burial         230-240 cm bd (\$41.3)         Long Cylindrical         064           Promtin Tai         S/3 West Section         150-160 cm bd         Short Bicone         002           Promtin Tai         S/3 East S                                                                                                                                      | AKC00976    | Promtin Tai | PTT S3/2 East Section       | 210-220 cm bd (S4L1)           | Indo-Pacific Bead        | 045                 | 11               |
| Promtin Tai         PTT S3/2 East Section         210-220 cm bd (S4L1)         Indo-Pacific Bead         045           Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L2)         Indo-Pacific Bead         046           Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L3)         Indo-Pacific Bead         047           Promtin Tai         PTT S3/2 East Section         230-240 cm bd (S4L3)         Indo-Pacific Bead         071           Promtin Tai         S3/2 West Section         220-230 cm bd Burial #19         Indo-Pacific Bead         074           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L2)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented bead?         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented bead?         064           Promtin Tai         S3/2 West Section         150-160 cm bd         Short Bicone         009           Promtin Tai         S3/2 Bast S                                                                                                                                                     | AKC00977    | Promtin Tai | PTT S3/2 East Section       | 210-220 cm bd (S4L1)           | Indo-Pacific Bead        | 045                 | 15               |
| Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L2)         Indo-Pacific Bead         046           Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L3)         Indo-Pacific Bead         047           Promtin Tai         PTT S3/2 East Section         230-240 cm bd (S4L3)         Indo-Pacific Bead         047           Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L3)         Unknown object         047           Promtin Tai         PTT S3/2 West Section         220-230 cm bd (S4L3)         Indo-Pacific Bead         074           Promtin Tai         PTT S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section         150-160 cm bd         Short Bicone         009           Promtin Tai         S3/2 East Section         160-170 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3/2 East Section <td>AKC00978</td> <td>Promtin Tai</td> <td>PTT S3/2 East Section</td> <td>210-220 cm bd (S4L1)</td> <td>Indo-Pacific Bead</td> <td>045</td> <td>15</td> | AKC00978    | Promtin Tai | PTT S3/2 East Section       | 210-220 cm bd (S4L1)           | Indo-Pacific Bead        | 045                 | 15               |
| Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L3)         Indo-Pacific Bead         046           Promtin Tai         PTT S3/2 East Section         230-240 cm bd (S4L3)         Indo-Pacific Bead         047           Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L3)         Unknown object         047           Promtin Tai         S3/2 West Section         220-230 cm bd (S4L3)         Long Cylindrical         071           Promtin Tai         PTT S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section         150-160 cm bd         Indo-Pacific Bead         010           Promtin Tai         S3 East Section         160-170 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section                                                                                                                                                           | AKC00983    | Promtin Tai |                             | 220-230 cm bd (S4L2)           | Indo-Pacific Bead        | 046                 | 2                |
| Promtin Tai         PTT S3/2 East Section         230-240 cm bd (S4L3)         Indo-Pacific Bead         047           Promtin Tai         PTT S3/2 East Section         220-230 cm bd (S4L2)         Unknown object         047           Promtin Tai         S3/2 West Section         220-230 cm bd (S4L2)         Long Cylindrical         074           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section Burial         150-160 cm bd         Short Bicone         024           Promtin Tai         S3/2 East Section         160-170 cm bd         Short Bicone         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Short Birdin Gads         014           Promtin Tai         S3 East Section         180-190 cm bd                                                                                                                                                                      | AKC00984    | Promtin Tai |                             | 220-230 cm bd (S4L2)           | Indo-Pacific Bead        | 046                 | 2                |
| Promtin Tai         PTT S3/2 East Section         230-240 cm bd (S4L2) Burial         Unknown object         047           Promtin Tai         S3/2 West Section         220-230 cm bd (S4L2) Burial         Collar Bead         071           Promtin Tai         PTT S3/2 West Section Burial         220-230 cm bd (S4L3)         Indo-Pacific Bead         074           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section         150-160 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 East Section         150-160 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         160-170 cm bd         Indo-Pacific Bead         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         180-190 cm bd         Short Barrel         028           Promtin Tai         S3 West Section         200-210 cm bd                                                                                                                                                                      | AKC00985    | Promtin Tai | PTT S3/2 East Section       | 230-240 cm bd (S4L3)           | Indo-Pacific Bead        | 047                 | 3                |
| Promtin Tai         S3/2 West Section         220-230 cm bd (S4L2) Burial         Collar Bead         071           Promtin Tai         PTT S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section         150-160 cm bd         Short Bicone         002           Promtin Tai         S3 East Section         160-170 cm bd         Short Bicone         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Short Barrel         029           Promtin Tai         S3 East Section         200-210 cm bd         Short Barrel         029           Promtin Tai         S3 West Section         210-220 cm bd         Indo-Pacifi                                                                                                                                                                       | AKC00986    | Promtin Tai | PTT S3/2 East Section       | 230-240 cm bd (S4L3)           | Unknown object           | 047                 | 3                |
| Promtin Tai         PTT S3/2 West Section Burial         220-230 cm bd Burial #19         Indo-Pacific Bead         074           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section         150-160 cm bd         Short Bicone         024           Promtin Tai         S3 East Section         160-170 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         200-210 cm bd         Short Barrel         029           Promtin Tai         S3 West Section         220-230 cm bd         Indo-Pacific Bead         029                                                                                                                                                                                                                                                                              | AKC01093    | Promtin Tai | S3/2 West Section           | 220-230 cm bd (S4L2) Burial 18 | Collar Bead              | 071                 | 3                |
| Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         S3/2 West Section         150-160 cm bd         Short Bicone         024           Promtin Tai         ST East Section         160-170 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         170-180 cm bd         Indo-Pacific Bead         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Short Barrel         012           Promtin Tai         S3 East Section         180-190 cm bd         Short Barrel         012           Promtin Tai         S3 East Section         200-210 cm bd         Short Barrel         029           Promtin Tai         S3 West Section         210-220 cm bd         Indo-Pacific Bead         029           Promtin Tai         S3 West Section         220-230- cm bd         Indo-Pacific Bead         030 <td>AKC01122</td> <td>Promtin Tai</td> <td></td> <td>220-230 cm bd Burial #19</td> <td>Indo-Pacific Bead</td> <td>074</td> <td>28</td>                                                              | AKC01122    | Promtin Tai |                             | 220-230 cm bd Burial #19       | Indo-Pacific Bead        | 074                 | 28               |
| Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Long Cylindrical         064           Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         Promtin Tai         Promtin Tai         S3 East Section         150-160 cm bd         Short Bicone         024           Promtin Tai         S3 East Section         160-170 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         170-180 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 West Section         200-210 cm bd         Short cylindrical beads?         014           Promtin Tai         S3 West Section         210-220 cm bd         Indo-Pacific Bead         029           Promtin Tai         S3 West Section         220-230-cm bd         Indo-Pacific Bead         030                                                                                                                                                                                                                                                                   | AKC01058    | Promtin Tai |                             | 230-240 cm bd (S4L3)           | Long Cylindrical         | 064                 | 41               |
| Promtin Tai         S3/2 West Section Burial         230-240 cm bd (S4L3)         Segmented beads?         064           Promtin Tai         PTT S3 West Section         150-160 cm bd         Short Bicone         024           Promtin Tai         S3 East Section         160-170 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         170-180 cm bd         Indo-Pacific Bead         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         200-210 cm bd         Short cylindrical beads?         014           Promtin Tai         S3 West Section         200-210 cm bd         Indo-Pacific Bead         028           Promtin Tai         S3 West Section         210-220 cm bd         Indo-Pacific Bead         029           Promtin Tai         S3 West Section         220-230-cm bd         Indo-Pacific Bead         030                                                                                                                                                                                                                                                                                                                                                                                                                                | AKC01059    | Promtin Tai |                             | 230-240 cm bd (S4L3)           | Long Cylindrical         | 064                 | 41               |
| Promtin Tai         PTT S3 West Section         150-160 cm bd         Short Bicone         024           Promtin Tai         S3 East Section         160-170 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         170-180 cm bd         Indo-Pacific Bead         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         BU#6 Grave Good         Short cylindrical beads?         014           Promtin Tai         S3 West Section         210-220 cm bd         Indo-Pacific Bead         029           Promtin Tai         S3 West Section         220-230-cm bd         Indo-Pacific Bead         030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AKC01057    | Promtin Tai | S3/2 West Section Burial 20 | 230-240 cm bd (S4L3)           | Segmented beads?         | 064                 | 41               |
| Promtin Tai         S3 East Section         160-170 cm bd         Short Bicone         009           Promtin Tai         S3 East Section         170-180 cm bd         Indo-Pacific Bead         010           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         011           Promtin Tai         S3 East Section         180-190 cm bd         Indo-Pacific Bead         012           Promtin Tai         S3 East Section         200-210 cm bd         Short cylindrical beads?         014           Promtin Tai         S3 West Section         210-220 cm bd         Indo-Pacific Bead         029           Promtin Tai         S3 West Section         220-230-cm bd         Indo-Pacific Bead         030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AKC01043    | Promtin Tai |                             | 150-160 cm bd                  | Short Bicone             | 024                 | 14               |
| Promtin TaiS3 East Section160-170 cm bdShort Bicone009Promtin TaiS3 East Section170-180 cm bdIndo-Pacific Bead011Promtin TaiS3 East Section180-190 cm bdIndo-Pacific Bead012Promtin TaiS3 East Section180-190 cm bdShort cylindrical beads?014Promtin TaiS3 West Section200-210 cm bdShort Barrel028Promtin TaiS3 West Section210-220 cm bdIndo-Pacific Bead029Promtin TaiS3 West Section220-230- cm bdIndo-Pacific Bead030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AKC01015    | Promtin Tai |                             |                                | Indo-Pacific Bead        | 800                 | -                |
| Promtin TaiS3 East Section170-180 cm bdIndo-Pacific Bead010Promtin TaiS3 East Section180-190 cm bdIndo-Pacific Bead011Promtin TaiS3 East Section180-190 cm bdIndo-Pacific Bead012Promtin TaiS3 East SectionBU#6 Grave GoodShort cylindrical beads?014Promtin TaiS3 West Section200-210 cm bdShort Barrel028Promtin TaiS3 West Section210-220 cm bdIndo-Pacific Bead029Promtin TaiS3 West Section220-230- cm bdIndo-Pacific Bead030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AKC01018    | Promtin Tai | S3 East Section             | 160-170 cm bd                  | Short Bicone             | 600                 | 4                |
| Promtin TaiS3 East Section180-190 cm bdIndo-Pacific Bead011Promtin TaiS3 East Section180-190 cm bdIndo-Pacific Bead012Promtin TaiS3 East SectionBU#6 Grave GoodShort cylindrical beads?014Promtin TaiS3 West Section200-210 cm bdShort Barrel028Promtin TaiS3 West Section210-220 cm bdIndo-Pacific Bead029Promtin TaiS3 West Section220-230- cm bdIndo-Pacific Bead030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AKC01019    | Promtin Tai | S3 East Section             | 170-180 cm bd                  | Indo-Pacific Bead        | 010                 | 1                |
| Promtin TaiS3 East Section180-190 cm bdIndo-Pacific Bead012Promtin TaiS3 East SectionBU#6 Grave GoodShort cylindrical beads?014Promtin TaiS3 West Section200-210 cm bdShort Barrel028Promtin TaiS3 West Section210-220 cm bdIndo-Pacific Bead029Promtin TaiS3 West Section220-230- cm bdIndo-Pacific Bead030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AKC01020    | Promtin Tai | S3 East Section             | 180-190 cm bd                  | Indo-Pacific Bead        | 0111                | 1                |
| Promtin TaiS3 East SectionBU#6 Grave GoodShort cylindrical beads?014Promtin TaiS3 West Section200-210 cm bdShort Barrel028Promtin TaiS3 West Section210-220 cm bdIndo-Pacific Bead029Promtin TaiS3 West Section220-230- cm bdIndo-Pacific Bead030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AKC01021    | Promtin Tai | S3 East Section             | 180-190 cm bd                  | Indo-Pacific Bead        | 012                 | 5                |
| Promtin TaiS3 West Section200-210 cm bdShort BarrelPromtin TaiS3 West Section210-220 cm bdIndo-Pacific BeadPromtin TaiS3 West Section220-230 cm bdIndo-Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AKC01022    | Promtin Tai | S3 East Section             | BU#6 Grave Good                | Short cylindrical beads? | 014                 | 13               |
| Promtin TaiS3 West Section210-220 cm bdIndo-Pacific BeadPromtin TaiS3 West Section220-230- cm bdIndo-Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AKC01023    | Promtin Tai | S3 West Section             | 200-210 cm bd                  | Short Barrel             | 028                 | 1                |
| Promtin Tai S3 West Section 220-230- cm bd Indo-Pacific Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AKC01024    | Promtin Tai | S3 West Section             | 210-220 cm bd                  | Indo-Pacific Bead        | 029                 | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AKC01025    | Promtin Tai | S3 West Section             | 220-230- cm bd                 | Indo-Pacific Bead        | 030                 | 1                |

| Database ID | Site Name   | Trench            | Layer                           | Bead Shape        | Catalogue<br>Number | Total # of beads |
|-------------|-------------|-------------------|---------------------------------|-------------------|---------------------|------------------|
| AKC01026    | Promtin Tai | S3 West Section   | 220-230 cm bd                   | Indo-Pacific Bead | 031                 | 1                |
| AKC01083    | Promtin Tai | S3/2 West Section | 220-230 cm bd (S4L2) Burial #19 | Indo-Pacific Bead | 072                 | 1                |

| Notes                |                  |                  |                  |                            |                            |                            | Group of 35 glass beads. Measured 2 of 6 orange beads, 1 large clear bead, 1 large blue bead, and 5 of 27 dark blue beads. Associated with carnelian/agate/green stone beads. |                                 |             |               |               |               |            |          |          | Unknown glass<br>object. Associated | Greenstone/carnelian and glass beads. |
|----------------------|------------------|------------------|------------------|----------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|---------------|---------------|---------------|------------|----------|----------|-------------------------------------|---------------------------------------|
| Max.<br>Width        | 4.61             | 5.92             | 6.35             | 4.66                       | 4.44                       | 5.62                       | 7.16                                                                                                                                                                          | 8.6                             | 4.06        | 5.24          | 5.27          | 5.21          | 5.24       | 2.78     | 2.84     |                                     |                                       |
| Max.<br>Length       | 10.12            | 5.13             | 5.76             | 4.55                       | 4.67                       | 4.46                       | 6.86                                                                                                                                                                          | 89.7                            | 2.82        | 3.18          | 4.38          | 3.66          | 3.63       | 1.36     | 1.32     | 8.14                                |                                       |
| Interior<br>Perf.B   | 0                | 1.8              | 1.43             |                            |                            |                            |                                                                                                                                                                               |                                 |             |               |               |               |            |          |          |                                     |                                       |
| Interior<br>Perf. A  | 0                | 1.67             | 1.4              | 1.48                       | 1.29                       | 1.72                       | 2.25                                                                                                                                                                          | 1.9                             | 1.46        | 1.72          | 1.81          | 1.89          | 2.08       | 0.63     | 0.91     |                                     |                                       |
| Roundness<br>Factor  | NA               | R3               |                  | R1                         | R1                         | R2                         | R2                                                                                                                                                                            | R2                              | R1          | R1            | R2            | R1            | R1         | R1       | R1       | NA                                  |                                       |
| Opacity              | Semi-Translucent | Semi-Translucent | Semi-Translucent | Translucent<br>Transparent | Translucent<br>Transparent | Translucent<br>Transparent | Transparent                                                                                                                                                                   | Translucent<br>Semi-Translucent | Translucent | Translucent   |               |               |            | Opaque   | Opaque   | Opaque                              |                                       |
| Glass Color<br>Notes | Turquoise        | blue-green       | Blue-green       | Shiny surface              | Shiny surface              | Shiny surface              | Blue-greenish tint                                                                                                                                                            |                                 |             | Shiny surface | Shiny surface | Shiny surface |            |          |          |                                     |                                       |
| Glass Colors         | Light Blue       | Dark Green       | Dark Green       | Dark Blue                  | Dark Blue                  | Dark Blue                  | Clear                                                                                                                                                                         | Dark Blue                       | Light Blue  | Dark Blue     | Dark Blue     | Dark Blue     | Light Blue | Orange   | Orange   | Blue or Black?                      |                                       |
| Database<br>ID       | AKC00901         | AKC00903         | AKC00904         | AKC00906                   | AKC00907                   | AKC00908                   | AKC00909                                                                                                                                                                      | AKC00910                        | AKC00911    | AKC00912      | AKC00913      | AKC00914      | AKC00915   | AKC00916 | AKC00917 | AKC00938                            |                                       |

|                      | lue                   |              | _               | an                             |               |               |             |               |                            |               |          | al.<br>ark<br>ht<br>red<br>red<br>''w                                                                                                                     |             | al.<br>ark<br>ht<br>red<br>red                                                                                                                                      |             |
|----------------------|-----------------------|--------------|-----------------|--------------------------------|---------------|---------------|-------------|---------------|----------------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Notes                | Measured 5 of 26 blue | glass beads. | Associated with | greenstone/carnelian<br>beads. |               |               |             |               |                            |               |          | 18 glass beads total. Measured 3 of 7 dark blue beads, 3 light beads, 2 large red beads, 1 red microbead, 2 green beads, and 1 yellow beads, and 1 yellow |             | 18 glass beads total. Measured 3 of 7 dark blue beads, 3 light blue beads, 2 large red beads, 1 red microbead, 2 green beads, and 1 yellow beads, and 1 below bead. |             |
| Max.<br>Width        | 5.37                  |              |                 |                                | 4.78          | 4.69          | 4.74        | 4.6           | 5.17                       | 2.41          | 2.92     | 5.44                                                                                                                                                      | 5.46        | 4.93                                                                                                                                                                | 4.2         |
| Max.<br>Length       | 3.79                  |              |                 |                                | 2.99          | 4.44          | 3.04        | 3.14          | 5.31                       | 1.12          | 2.03     | 4.04                                                                                                                                                      | 6.13        | 4.12                                                                                                                                                                | 2.25        |
| Interior<br>Perf.B   |                       |              |                 |                                |               |               |             |               |                            |               |          |                                                                                                                                                           |             |                                                                                                                                                                     |             |
| Interior<br>Perf. A  | 2.21                  |              |                 |                                | 1.63          | 2.07          | 1.43        | 1.51          | 1.6                        | 89'0          | 0.87     | 1.3                                                                                                                                                       | 1.76        | 1.73                                                                                                                                                                | 1.48        |
| Roundness<br>Factor  | R2                    |              |                 |                                | R1            | R2            | R1          | R2            | R2                         | R1            | R1       | R2                                                                                                                                                        | R2          | RI                                                                                                                                                                  | R1          |
| Opacity              | Semi-Translucent      | Opaque       |                 |                                | Translucent   | Translucent   | Translucent | Translucent   | Translucent<br>Transparent | Opaque        | Opaque   | Translucent                                                                                                                                               | Translucent | Translucent                                                                                                                                                         | Translucent |
| Glass Color<br>Notes | Shiny surface         | ,            |                 |                                | Shiny surface | Shiny surface |             | Shiny surface |                            | Shiny surface |          |                                                                                                                                                           |             |                                                                                                                                                                     |             |
| Glass Colors         | Dark Blue             |              |                 |                                | Dark Blue     | Dark Blue     | Dark Blue   | Dark Blue     | Dark Blue                  | Red           | Orange   | Dark Blue                                                                                                                                                 | Dark Blue   | Dark Blue                                                                                                                                                           | Light Blue  |
| Database<br>ID       | AKC00939              |              |                 |                                | AKC00940      | AKC00941      | AKC00942    | AKC00943      | AKC00944                   | AKC00945      | AKC00946 | AKC00947                                                                                                                                                  | AKC00948    | AKC00949                                                                                                                                                            | AKC00950    |

| Notes                |             |                   |                        |                        |               |          |                  |             | Group of 14 complete beads. Measured 3 red beads, 2 of 5 light blue beads, 1 light green bead, 1 yellow bead, 1 orange bead, and 1 of 3 dark blue beads. Not recorded: fragments of blue glass beads.  Group of 14 complete beads. Measured 3 red beads. Measured 3 red beads. A of 5 light blue beads, 2 of 5 light blue beads, 1 light green bead, 1 yellow bead, 1 orange bead, and 1 of 3 dark blue beads. Not recorded: fragments of blue beads. |                   |
|----------------------|-------------|-------------------|------------------------|------------------------|---------------|----------|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Max.<br>Width        | 4.51        | 3.37              | 4.62                   | 3.77                   | 1.69          | 1.5      | 1.71             | 2.53        | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.99              |
| Max.<br>Length       | 3.5         | 2.46              | 8.35                   | 2.23                   | 1.43          | 1.55     | 1.06             | 2.16        | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.36              |
| Interior<br>Perf.B   |             |                   |                        |                        |               |          |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| Interior<br>Perf. A  | 1.8         | 1.1               | 1.38                   | 1.17                   | 0             | 0        | 0                | 0           | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69:0              |
| Roundness<br>Factor  | R1          | R1                | R1                     | R1                     | R3            | R1       | R1               | R0          | R0<br>R1                                                                                                                                                                                                                                                                                                                                                                                                                                              | R1                |
| Opacity              | Translucent | Translucent       | Opaque                 | Opaque                 | Opaque        | Opaque   | Semi-Translucent | Opaque      | Opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                | Opaque            |
| Glass Color<br>Notes | Turquoise   | Reddish-<br>brown | Brick Red (mutisalah?) | Brick Red (mutisalah?) | bright yellow | Shiny    |                  |             | Reddish-<br>brown<br>Reddish-<br>brown                                                                                                                                                                                                                                                                                                                                                                                                                | Reddish-<br>brown |
| Glass Colors         | Light Blue  | Light Blue        | Red                    | Red                    | Yellow        | Orange   | Light Green      | Light Green | Red                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Red               |
| Database<br>ID       | AKC00951    | AKC00952          | AKC00953               | AKC00954               | AKC00955      | AKC00956 | AKC00957         | AKC00958    | AKC00959                                                                                                                                                                                                                                                                                                                                                                                                                                              | AKC00961          |

| Glass Colors | ors Glass Color<br>Notes | Opacity                         | Roundness<br>Factor | Interior<br>Perf. A | Interior<br>Perf.B | Max.<br>Length | Max.<br>Width | Notes                                                                                                                                                                                                 |
|--------------|--------------------------|---------------------------------|---------------------|---------------------|--------------------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dark Blue    |                          | Translucent                     | R1                  | 1.67                |                    | 2.95           | 5.25          |                                                                                                                                                                                                       |
| Light Blue   | le Turquoise             | Translucent                     | R1                  | 0.84                |                    | 2.01           | 3.81          |                                                                                                                                                                                                       |
| Light Blue   | le Turquoise             | Translucent                     | R1                  | 1.45                |                    | 2.9            | 4.55          |                                                                                                                                                                                                       |
| Light Green  | en                       | Semi-Translucent<br>Translucent | R1                  | 0                   |                    | 4.96           | 2.65          |                                                                                                                                                                                                       |
| Orange       |                          | Opaque                          | R2                  | 1.64                |                    | 4.29           | 3.72          |                                                                                                                                                                                                       |
| Yellow       |                          |                                 | R2                  | 1.92                |                    | 4.37           | £. 4          | Group of 14 complete beads. Measured 3 red beads, 2 of 5 light blue beads, 1 light green bead, 1 yellow bead, 1 orange bead, and 1 of 3 dark blue beads. Not recorded: fragments of blue glass beads. |
| Turquoise    | 95                       | Translucent                     | R2                  | 1.12                |                    | 3.25           | 4.13          | Measured 1 of 7 dark<br>blue beads and 1 of 11<br>light blue beads. Also<br>associated with a<br>broken green stone<br>bead.                                                                          |
| Dark Blue    | ie ie                    | Translucent                     | R2                  | 1.46                |                    | 3.73           | 4.93          |                                                                                                                                                                                                       |
| Dark Blue    | 91                       | Translucent                     | R1                  | 1.2                 |                    | 4.29           | 4.18          | 8 glass beads: measured 1 red, 1 green, 1 of 2 light blue beads and 1 of 4 dark blue beads.                                                                                                           |
| Light Blue   | ae Turquoise             | Translucent<br>Semi-Translucent | R2                  | 1.9                 |                    | 3.01           | 4.57          |                                                                                                                                                                                                       |
| Red          | Reddish-<br>brown        | Translucent<br>Semi-Translucent | R1                  | 1.02                |                    | 5.76           | 3.16          |                                                                                                                                                                                                       |

| 7 | $\boldsymbol{\mathcal{L}}$ | 7 |
|---|----------------------------|---|
| / | Э                          | / |

| Notes                |                  | 11 glass beads. Measured 1 of 2 small orange beads, 1 larger orange bead, 1 of 3 dark blue beads, and 1 of 3 light blue beads. Also associated with agate, carnelian, jade, shell, and fragments of light blue beads. |          |                                 | 11 glass beads. Measured 1 of 2 small orange beads, 1 larger orange bead, 1 of 3 dark blue beads, and 1 of 3 light blue beads. Also associated with agate, carnelian, jade, shell, and fragments of light blue beads. |             |          |                  | Unknown blue fragment associated with AKC00985. | Found with an agate and greenstone bead. |
|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|------------------|-------------------------------------------------|------------------------------------------|
| Max.<br>Width        | 2.42             | 2.73                                                                                                                                                                                                                  | 3.59     | 3.8                             | 4.95                                                                                                                                                                                                                  | 5.09        | 3        | 4.3              | 2.31                                            | 4.94                                     |
| Max.<br>Length       | 1.98             | 1.74                                                                                                                                                                                                                  | 2.58     | 2.34                            | 5.09                                                                                                                                                                                                                  | 4.97        | 2.6      | 2.77             | 6.95                                            | 11.58                                    |
| Interior<br>Perf.B   |                  |                                                                                                                                                                                                                       |          |                                 |                                                                                                                                                                                                                       |             |          |                  |                                                 | 1.12                                     |
| Interior<br>Perf. A  | 0.84             | 29.0                                                                                                                                                                                                                  | 1.24     | 1.63                            | 0                                                                                                                                                                                                                     | 2.11        | 1.18     | 1.31             |                                                 | 1.4                                      |
| Roundness<br>Factor  | R1               | R1                                                                                                                                                                                                                    | R1       | R1                              | R2                                                                                                                                                                                                                    | R2          | R1       | R1               | N/A                                             | N/A                                      |
| Opacity              | Semi-Translucent | Opaque                                                                                                                                                                                                                | Opaque   | Semi-Translucent<br>Translucent | Semi-Translucent Translucent                                                                                                                                                                                          | Translucent | Opaque   | Semi-Translucent | Opaque                                          | Opaque                                   |
| Glass Color<br>Notes |                  |                                                                                                                                                                                                                       |          | Turquoise                       |                                                                                                                                                                                                                       |             |          | Turquoise        | Turquoise                                       | Faience                                  |
| Glass Colors         | Dark Green       | Orange                                                                                                                                                                                                                | Orange   | Light Blue                      | Dark Blue                                                                                                                                                                                                             | Dark Blue   | Orange   | Light Blue       | Light Blue                                      | White                                    |
| Database<br>ID       | AKC00974         | AKC00975                                                                                                                                                                                                              | AKC00976 | AKC00977                        | AKC00978                                                                                                                                                                                                              | AKC00983    | AKC00984 | AKC00985         | AKC00986                                        | AKC01093                                 |

| Notes                |             | Imitation agate glass<br>bead                        | Imitation agate glass<br>bead (broken)               | Measurements of three beads: | L 3.97<br>W 3.62<br>IP 0.87 | L 2.98<br>W 2.96<br>IP 0.95 | L 2.69<br>W 2.95<br>IP 0.96 |                                          |             |                            |             |
|----------------------|-------------|------------------------------------------------------|------------------------------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-------------|----------------------------|-------------|
| Max.<br>Width        | 5.28        | 4.9                                                  | 3.97                                                 |                              |                             |                             |                             | 6.73                                     | 3.6         | 86.9                       | 4.81        |
| Max.<br>Length       | 3.17        | 14.68                                                | N/A                                                  |                              |                             |                             |                             | 7.16                                     | 1.83        | 6.17                       | 4.41        |
| Interior<br>Perf.B   |             |                                                      |                                                      |                              |                             |                             |                             | 2.41                                     |             |                            |             |
| Interior<br>Perf. A  | 2.11        | 1.6                                                  | N/A                                                  | See notes                    |                             |                             |                             | 2.25                                     | 1.3         | 2                          | 1.45        |
| Roundness<br>Factor  | R2          | N/A                                                  | N/A                                                  | N/A                          |                             |                             |                             | NA                                       | R1          | N/A                        | R2          |
| Opacity              | Translucent | Opaque                                               | Opaque                                               | Semi-Translucent             |                             |                             |                             | Opaque                                   | Opaque      | Opaque<br>Semi-Translucent | Transparent |
| Glass Color<br>Notes |             | Black opaque<br>base with<br>white opaque<br>stripes | Black opaque<br>base with<br>white opaque<br>stripes | Gold foil                    |                             |                             |                             | Black glass<br>base with<br>single white |             | With a rainbow coating?    | )           |
| Glass Colors         | Dark Blue   | Black and<br>White                                   | Black and<br>White                                   | White/Clear                  |                             |                             |                             | Black and white                          | Light Green | White                      | Light Blue  |
| Database<br>ID       | AKC01122    | AKC01058                                             | AKC01059                                             | AKC01057                     |                             |                             |                             | AKC01043                                 | AKC01015    | AKC01018                   | AKC01019    |

| Database | Glass Colors            | Glass Color   | Opacity          | Roundness | Interior | Interior | Max.   | Max.  | Notes                 |
|----------|-------------------------|---------------|------------------|-----------|----------|----------|--------|-------|-----------------------|
| B        |                         | Notes         |                  | Factor    | Perf. A  | Perf.B   | Length | Width |                       |
| AKC01020 | AKC01020 Dark Turquoise |               | Translucent      | R1        | N/A      |          | 3.19   | 3.61  |                       |
|          |                         |               | Transparent      |           |          |          |        |       |                       |
| AKC01021 | Dark Blue               | Shiny surface | Semi-Translucent |           | 1.49     |          | 4.31   | 5.15  | Measured 1 of 5 dark  |
|          |                         |               |                  |           |          |          |        |       | blue beads            |
| AKC01022 | Grey                    | Faience       | Opaque           |           | 0        |          | 4.05   | 5.09  | 13 small black opaque |
|          |                         |               |                  |           |          |          |        |       | tubular beads with    |
|          |                         |               |                  |           |          |          |        |       | weathered/corroded    |
|          |                         |               |                  |           |          |          |        |       | surface. Faience?     |
| AKC01023 | Light green             |               | Opaque           |           | 1.04     |          | 4.71   | 3.33  |                       |
| AKC01024 | Red                     |               | Opaque           |           | 1.82     |          | 4.23   | 4.85  |                       |
| AKC01025 | Yellow                  |               | Opaque           |           | 1.58     |          | 4.16   | 2.52  |                       |
| AKC01026 | Dark Green              |               | Opaque           | R1        |          |          | 4.16   | 6.49  |                       |
| AKC01083 | Dark Blue               | Shiny surface | Semi-Translucent | N/A       | 1.28     |          | 4.81   | 6.4   |                       |
|          |                         |               |                  |           |          |          |        |       |                       |

| Database ID | Site Name   | Cat<br>Number | Total # of beads | Trench                 | Layer         | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes (cont)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-------------|---------------|------------------|------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AKC00989    | Promtin Tai | 003           | 39               | PTT S3 East Section    | 90-100 cm bd  | Group of 39 glass beads divided into 4 groups.  Group 1- Indo-Pacific beads approx 2-4 mm 1 dark blue cobalt- transparent 5 light blue semi-translucent 1 dark blue semi-translucent (slightly darker than dark blue turquoise) 1 Light blue semi-translucent (L1.56 W2.68) 1 light blue opaque 1 light green opaque shiny Group 2 - Indo-Pacific beads approx 1.5-3 mm 1 orange opaque 1 yellow opaque 1 dark blue 1 cobalt 3 dark blue translucent 1 light green opaque shiny 1 light green opaque shiny 1 light green opaque 1 light green opaque 1 light green opaque | Group 3 - Small IP seed beads approx 2mm 1 orange opaque shiny 1 yellow opaque/semi trans? - shiny 1 red opaque shiny 2 light green opaque shiny 2 light yellow-green opaque shiny 2 light yellow-green opaque shiny 2 light yellow-green opaque shiny Group 4 - Larger Indo-Pacific beads 1 large orange opaque (L.5.24 W.5.96) 1 orange opaque tubular ead 1 long red tubular bead 1 long red tubular bead 1 lark blue cobalt matte 1 blue-black matte 1 light blue 2 light green-yellow opaque 2 light green opaque 1 dark blue cobalt translucent |
| AKC00991    | Promtin Tai | 004           | 24               | PTT S3 East<br>Section | 100-110 cm bd | 24 complete glass beads in two groups Group 1- Smaller Indo-Pacific Beads 3 orange opaque shiny (1 measured:L:1.55 W:2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Group 2- Larger Indo-Pacific<br>beads (tubular shaped)<br>1 orange opaque shiny<br>1 yellow opaque shiny<br>1 red opaque shiny<br>2 light green (1 measured:L:3.58<br>W:4.66 IP:1.7)                                                                                                                                                                                                                                                                                                                                                                  |

| 2 dark blue translucent 2 light blue beads, semi translucent. (1 measured: L: 3.37 W:2.75 IP:0.68) 3 dark blue beads (1 measured: L: 2.18 W:3.84 IP:1.15) 1 dark green opaque Fragments of red, orange, blue beads         | Group 2- Indo-Pacific Beads<br>2 light green-yellow opaque<br>shiny: (1 measured: L:2.39<br>W:3.67 IP:1.09)<br>1 red opauqe: L:3.39 W:4.26<br>IP:1.43<br>1 light-green: L:2.60 W:4.00<br>IP:1.32<br>6 yellow opaque (1 measured:L:<br>2.30 W:4.03 IP:1.41)<br>1 dark blue-green transparent<br>1 black opaque |                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP:0.83) 3 small red opaque beads beads (1 measured: L:1.21 W:2.20 IP:too small) 2 larger red opaque beads (1 measured:L:2.82 W:2.9) 1 yellow opaque bead: L:2.20 W:2.72 IP:1.29 1 dark blue translucent 1 red/orange bead | groups  Group 1 - Small Indo-pacific Beads 3 orange opaque (1 measured: L:1.42 W:1.30 IP: too small) 3 red opaque beads (1 measured: L:1.88 W:3.83 IP:1.18) 1 dark blue semi-trans 1 light blue semi-trans: L:1.38 W:3.45 IP:1.14                                                                             | 120-130 cm bd 12 compete Indo-Pacific Beads 6 red opaque beads, 3 are more tubular shaped. 1 tubular shaped bead measured (L:10.01 W:4.48 IP:1.31) 4 Blue-Green semi trans, (1 measured: L:3.99 W:4.29 IP:1.73) 1 dark blue::L: 4.15 W5.22 |
|                                                                                                                                                                                                                            | 110-120 cm bd                                                                                                                                                                                                                                                                                                 | 120-130 cm bd                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                            | PTT S3 East Section                                                                                                                                                                                                                                                                                           | PTT S3 East Section                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                            | 005                                                                                                                                                                                                                                                                                                           | 900                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                            | Promtin Tai                                                                                                                                                                                                                                                                                                   | Promtin Tai                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                            | AKC00992                                                                                                                                                                                                                                                                                                      | AKC00993                                                                                                                                                                                                                                   |

|                              | rps Group 3- IP Irregular Tubes etc 1 dark blue transparent |                             | 4 red opaque beads | 7 red opaque tubular beads (1 | lack measured: L:7.92 W:2.72 |                             | 1 light blue short barrel L:10.05 |                              |                        | beads (1 measured: L:2.09 | 71 W:4.18 iP:1.32).     | 5 light blue opaque beads | 2 dark blue matte bicones | Darker blue: L:3.80 W:5.14 |                             | Lighter blue: L:4.00 W:5.58 | ed: IP:1.24               | 4 yellow opaque (1 measured: | crobead   L3.83 W:4.88 IP:1.99 |                 | W:2.73 plus small fragments of red, | yellow, dark blue, and green | beads. Some yellow beads are | melted together? | vo Group 2                  | 1 large yellow opaque shiny: | <br>                            | 1 dark turquoise translucent |                       |                       | ıne                        |                         |
|------------------------------|-------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------------|------------------------------|------------------------|---------------------------|-------------------------|---------------------------|---------------------------|----------------------------|-----------------------------|-----------------------------|---------------------------|------------------------------|--------------------------------|-----------------|-------------------------------------|------------------------------|------------------------------|------------------|-----------------------------|------------------------------|---------------------------------|------------------------------|-----------------------|-----------------------|----------------------------|-------------------------|
| IP:1.60<br>1 dark blue matte | bd 54 glass beads in 3 groups                               | Group 1- Small Indo-Pacific | beads              | 1 yellow opaque               | 1 broken polychrome black    | with white and red stripes: | L:2.36 W3.26 IP: N/A              | 6 orange opaque (1 measured: | L:2.46 W:3.39 IP:1.14) | 2 red opaque shiny (1     | measured: L:1.28 W:2.71 | IP:0.62)                  |                           |                            | Group 2 -Small Indo-Pacific | beads                       | 7 red opaque (1 measured: | L:1.51 W:1.92 IP:0.74)       | 1 light green opaque microbead | 1 yellow opaque | 1 black opaque: L:3.58 W:2.73       | IP:0.93                      |                              |                  | bd 11 complete beads in two | groups                       | <br>Group 1- Indo-Pacific beads | approx 2.5-3mm               | 2 yellow opaque shiny | 1 orange opaque shiny | 1 light green opaque matte | 2 light blue semi-trans |
|                              | 130-140 cm bd                                               |                             |                    |                               |                              |                             |                                   |                              |                        |                           |                         |                           |                           |                            |                             |                             |                           |                              |                                |                 |                                     |                              |                              |                  | 80-90 cm bd                 | (S2L1)                       |                                 |                              |                       |                       |                            |                         |
|                              | PTT S3 East<br>Section                                      |                             |                    |                               |                              |                             |                                   |                              |                        |                           |                         |                           |                           |                            |                             |                             |                           |                              |                                |                 |                                     |                              |                              |                  | PTT S3/2 West               | Section                      |                                 |                              |                       |                       |                            |                         |
|                              | 54                                                          |                             |                    |                               |                              |                             |                                   |                              |                        |                           |                         |                           |                           |                            |                             |                             |                           |                              |                                |                 |                                     |                              |                              |                  | 11                          |                              |                                 |                              |                       |                       |                            |                         |
|                              | 200                                                         |                             |                    |                               |                              |                             |                                   |                              |                        |                           |                         |                           |                           |                            |                             |                             |                           |                              |                                |                 |                                     |                              |                              |                  | 050                         |                              |                                 |                              |                       |                       |                            |                         |
|                              | Promtin Tai                                                 |                             |                    |                               |                              |                             |                                   |                              |                        |                           |                         |                           |                           |                            |                             |                             |                           |                              |                                |                 |                                     |                              |                              |                  | Promtin Tai                 |                              |                                 |                              |                       |                       |                            |                         |
|                              | AKC00994                                                    |                             |                    |                               |                              |                             |                                   |                              |                        |                           |                         |                           |                           |                            |                             |                             |                           |                              |                                |                 |                                     |                              |                              |                  | AKC01001                    |                              |                                 |                              |                       |                       |                            |                         |

| Group 2-Indo-Pacific Beads 2 red opaque tubular beads (1 measured: L:6.26 W:4.50 IP:1.45) 1 dark blue transparent tube 1 dark blue turquoise opaque 1 blue-green opaqu 1 dark blue bead with white coating- weathered 1 dark blue bead with white | Group 3-Indo-Pacific beads 4 red opaque beads 4 opaque yellow (1 measured: L:2.84 W:5.56 IP:1.57) 2 opaque light blue 1 semi-trans dark blue-black 2 opaque orange                                                                                                                                                                                       | Group 2-Indo-Pacific beads<br>2 red opaque                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 14 complete beads in two groups Group 1- Small Indo-Pacific Beads 2 orange opaque 2 red opaque 2 light green opaque shiny 1 dark turquoise transparent                                                                                            | 29 beads in 3 groups plus fragments of green, yellow, blue beads Group 1-Small Indo-Pacific beads 2 red opaque bead 4 orange opaque bead 1 light green opaque shiny: L.1.09 W.1.71 I dark turquoise Group 2- Small Indo-Pacific beads 4 orange opaque beads (1 measured: L.4.28 W.2.16 IP:N/A) 2 light green opaque shiny 1 light blue-green transparent | 22 glass beads in 2 groups plus yellow, green, blue fragments |
| 90-100 cm bd<br>(S2L2)                                                                                                                                                                                                                            | (S2L3) (S2L3)                                                                                                                                                                                                                                                                                                                                            | 110-120 cm bd<br>(S2L4)                                       |
| PTT S3/2 West<br>Section                                                                                                                                                                                                                          | PTT S 3/2 West Section                                                                                                                                                                                                                                                                                                                                   | PTT S3/2 West<br>Section                                      |
| 14                                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                                                                                                       | 22                                                            |
| 051                                                                                                                                                                                                                                               | 052                                                                                                                                                                                                                                                                                                                                                      | 053                                                           |
| Promtin Tai                                                                                                                                                                                                                                       | Promtin Tai                                                                                                                                                                                                                                                                                                                                              | Promtin Tai                                                   |
| AKC01002                                                                                                                                                                                                                                          | AKC01003                                                                                                                                                                                                                                                                                                                                                 | AKC01004                                                      |

| 1 dark blue cobalt semitranslucent (large) 2 dark blue translucent shiny 2 dark blue-green shiny 1 yellow opaque 2 orange opaque 1 White translucent bicone shaped bead    | Group 2- Indo-Pacific Beads 1 yellow opaque 4 orange opaque 2 red opaque large (1 measured: L 4.80 W6.76) 1 light blue long tube transparent 1 dark blue with white corrosion 2 dark blue cobalt semi-trans 1 light green-yellow opaque matte | Group 2- Indo-Pacific Beads 4 opaque orange beads 4 opaque red shiny 6 dark blue semi-trans 1 light green opaque shiny 1 light blue opaque shiny 1 dark turquoise semi-trans matte | Group 2: Small Indo-Pacific beads 3 orange opaque shiny    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Group 1- Small Indo-Pacific<br>Beads<br>1 yellow opaque<br>1 orange opaque<br>2 red opaque<br>2 dark blue semi-transc<br>1 light blue opaque<br>2 light green opaque shiny | 18 glass beads in 2 groups<br>Group 1- Small Indo-Pacific<br>beads<br>1 yellow opaque<br>1 red opaque<br>1 orange opaque<br>1 dark blue-green transparent<br>2 light green opaque shiny                                                       | 26 glass beads in 2 groups Group 1- Indo-Pacific Beads 4 orange opaque beads 2 red opaque beads 1 light green opaque shiny 1 light blue sem-trans 1 black opaque shiny             | 14 glass beads in 2 groups<br>Group 1 - Small Indo-Pacific |
|                                                                                                                                                                            | 120-130 cm bd<br>(S2L5)                                                                                                                                                                                                                       | 130-140 cm bd<br>(S2L6)                                                                                                                                                            | 140-150 cm bd<br>(S2L7)                                    |
|                                                                                                                                                                            | S3/2 West<br>Section                                                                                                                                                                                                                          | PTT S3/2 West<br>Section                                                                                                                                                           | PTT S3/2 West 140-150 cm bd<br>Section (S2L7)              |
|                                                                                                                                                                            | 18                                                                                                                                                                                                                                            | 26                                                                                                                                                                                 | 14                                                         |
|                                                                                                                                                                            | 054                                                                                                                                                                                                                                           | 055                                                                                                                                                                                | 950                                                        |
|                                                                                                                                                                            | Promtin Tai                                                                                                                                                                                                                                   | Promtin Tai                                                                                                                                                                        | Promtin Tai                                                |
|                                                                                                                                                                            | AKC01005                                                                                                                                                                                                                                      | AKC01006                                                                                                                                                                           | AKC01007                                                   |

|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 red opaque beads                                |
|----------|-------------|-----|----|---------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|          |             |     |    |               |                               | 2 orange opaque (1 measureu.<br>L2.20 W2.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 light blue opaque                               |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 light green opaque shiny<br>1 dark blue bicone- |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 dark blue seed bead                             |
| AKC01008 | Promtin Tai | 057 | 12 | PTT S3/2 West | 150-160 cm bd                 | 12 glass beads in 2 groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Group 2- Indo-Pacific Beads                       |
|          |             |     |    | Section       | (S2L8)                        | Group 1- Small Indo-Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 dark blue translucent                           |
|          |             |     |    |               |                               | Beads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 dark blue semi-trans opaque                     |
|          |             |     |    |               |                               | 2 orange opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | long tube/barrel with white                       |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | corrosion                                         |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 light blue opaque                               |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 dark turquoise opaque                           |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 dark blue-grey ceylon shiny                     |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | opaque                                            |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 red opaque (                                    |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 green-yellow opaque matte                       |
| AKC01009 | Promtin Tai | 058 | 12 | PTT S3/2 West | pq ı                          | 12 glass beads in 2 groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Group 2 - Indo-Pacific Beads                      |
|          |             |     |    | Section       | (S3L2)                        | Group 1-Small Indo-Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 dark blue-green transparent                     |
|          |             |     |    |               |                               | beads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 red opaque matte                                |
|          |             |     |    |               |                               | 2 red opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 orange opaque                                   |
|          |             |     |    |               |                               | 1 orange opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 yellow opaqe                                    |
|          |             |     |    |               |                               | 1 yellow opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 cobalt translucent                              |
|          |             |     |    |               |                               | 1 light blue transparent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 dark blue translucent                           |
|          |             |     |    |               |                               | I light blue opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
|          |             |     |    |               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| AKC01011 | Promtin Tai | 650 | 9  | PTT S3/2 West | PTT S3/2 West   180-190 cm bd | 2 orange opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|          |             |     |    | Section       | (S3L3)                        | 1 green transparent-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|          |             |     |    |               |                               | 2 dark blue cobalt translucent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|          |             |     |    |               |                               | 1 dark blue translucent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| AKC01012 | Promtin Tai | 001 | 4  | PTT S3 East   | 30-40 cm bd                   | 1 light green opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|          |             |     |    | Section       |                               | 2 light blue opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
|          |             |     |    |               |                               | The last of the la |                                                   |
|          |             |     |    |               |                               | (broken) semi-translucent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |

| Notes (cont)     | Group 2 IP Irregular Tubes etc 1 dark blue transparent 1 dark blue-grey tube (L:6.18 W:1.95 IP: 0.6) 3 light blue opaque shiny 3 red opaque (1 measured: 3 yellow opaque (1 L:2.96 W:4.02) 2 orange opaque |                                                                                                                                             |                                                                                                                                                                                                                                                                                                              | Group 2: Indo-Pacific beads 3 red opaque 2 orange opaque 1 orange opaque tubular bead 1 red opaque |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Notes            | 20 glass beads plus fragments of blue and yellow beads Group 1: Small Indo-Pacific beads I yellow opaque: L:1.49 W:3.11 IP:0.83 3 red opaque microbeads 2 orange opaque microbeads                         | 1 yellow opaque: L3.82 W4.09<br>IP:1.23<br>1 red-roange opaque: L1.74<br>W:3.15 IP:1.26<br>1 orange opaque bead: L: 1.30<br>W:2.14 IP: 0.60 | 9 glass beads plus fragments of yellow and blue beads 1 yellow opaque: L:3.59 W:5.04 IP:1.52 I reddish-orange opaque: L:2.20 W:4.82 IP:2.00 1 dark blue cobalt semi-trans: L:7.85 W:7.24 IP:1.80 3 dark blue trans shiny 1 dark blue green translucent 1 red opaque microbead 1 light green opaque microbead | 11 glass beads in two groups<br>and fragments of blue glass<br>beads<br>Group 1-Small Indo-Pacific |
| Layer            | (S2L4)                                                                                                                                                                                                     | 120-130 cm bd<br>(S2L5)                                                                                                                     | 130-140 cm bd<br>(S2L6)                                                                                                                                                                                                                                                                                      | 140-150 cm bd<br>(S2L7)                                                                            |
| Trench           | PTT S3/2 East<br>Section                                                                                                                                                                                   | PTT S3/2 East Section                                                                                                                       | PTT S3/2 East Section                                                                                                                                                                                                                                                                                        | PTT S3/2 East<br>Section                                                                           |
| Total # of beads | 21                                                                                                                                                                                                         | 8                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                            | 11                                                                                                 |
| Cat<br>Number    | 035                                                                                                                                                                                                        | 036                                                                                                                                         | 037                                                                                                                                                                                                                                                                                                          | 038                                                                                                |
| Site Name        | Promtin Tai                                                                                                                                                                                                | Promtin Tai                                                                                                                                 | Promtin Tai                                                                                                                                                                                                                                                                                                  | Promtin Tai                                                                                        |
| Database ID      | AKC01031                                                                                                                                                                                                   | AKC01032                                                                                                                                    | AKC01033                                                                                                                                                                                                                                                                                                     | AKC01034                                                                                           |

|                                                                                                      | Group 2- IP Irregular Beads 3 red opaquetubular beads (1 measured: L:8.07 W:3.88 IP:0.72) 2 orange opaque 3 dark blue translucent (1 measured: L:4.15 W:5.45 0.99) 1 blue-green bicone: L:4.38 W:5.62 IP:1.88 I dark green translucent 1 dark green translucent 3 light blue opaque shiny 1 yellow opaque shiny | Group 4- Small Indo-Pacific beads 2 orange opaque 3 light green opaque 1 light blue opaque 1 dark blue-green transparent Group 5-Larger Indo-Pacific beads, approx 3-4mm 1 greenish-yellow opaque 1 dark green opaque 1 green-yellow opaque                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| beads 1 red opaque microbead 1 orange opaque microbead 1 orange opaque 1 Light blue semi-translucent | 25 glass beads in two groups with fragments of orange and blue beads Group 1: Small Indo-Pacific beads 1 dark blue bead 4 orange opaque microbeads (1 measured:L:1.20 W:2.07 IP:0.83) 2 red opaque microbeads 2 light green opaque beasd (1 measured: L:1.80 W:2.95 IP:0.92)                                    | 70 glass beads in 5 groups pluas green, and orange beads green, and orange beads 2 orange opaque 3 light green opaque microbe Group 1- Indo-Pacific Beads, 1 light blue opaque beads 4 light blue opaque beads 4 light blue opaque beads 1 dark blue translucent bead 1 dark blue translucent bead 2 droup 5-Larger Indo-Pacific beads, approx 3-4mm 1 dark blue translucent bead 1 greenish-yellow opaque approximately 2-3mm 1 green-yellow opaque 1 green-yellow opaque |
|                                                                                                      | 150-160 cm bd (S2L8)                                                                                                                                                                                                                                                                                            | 120-130 cm bd                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                      | PTT S3/2 East Section                                                                                                                                                                                                                                                                                           | Section Section                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                      | 25                                                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                      | 039                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                      | Promtin Tai                                                                                                                                                                                                                                                                                                     | Promtin Tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                      | AKC01035                                                                                                                                                                                                                                                                                                        | AKC01036                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 1 light green opaque matte 2 light blue opaque bead 1 light blue/white opaque 1 dark blue translucent ific                                                                                                                                  | yplete Group 2- IP Irregular Beads 3 red opaque beads shiny (2 long tube/barrel, 1 is broken) 2 dark turquoise semi-trans 2 orange opaque 1 dark blue broken 1 transparent violent/amber- took image cro, Plus one broken tip of a ring/earring light green - took image sro, 1 image                | Group 2- larger irregular IP bead 2 yellow opaque beads, both measured: Bead 1: L: 1.82 W: 4.20 IP:1.66 Bead 2: L: 2.93 W: 4.37 IP:1.10 1 red opaque bead: L: 2.43 2.95 W: 3.43 IP:1.48 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 red opaque shiny 1 yellow opaque 1 light green opaque microbead 1 light green opaque 1 light yellow transparent Group 2 - sSmall Indo-Pacific beads 1 yellow opaque 1 orange opaque microbead 1 light blue opaque 1 dark blue transparent | 140-150 cm bd 20 complete or mostly complete glass and many fragments (green, yellow, orange, red, blue)  Group 1- IP seed beads 3 orange opaque (2 smaller micro, 1 seed) 3 red opaque (2 smaller micro, 1 seed) 1 yellow opaque 1 light blue opaque (micro) 2 light green opaque (1 micro, 1 seed) | 150-160 cm bd 14 complete beads Group 1-Small Indo-Pacific beads 2 yellow opaque both measured: Large Yellow: L :2.22 W: 2.95                                                           |
|                                                                                                                                                                                                                                             | Section Section                                                                                                                                                                                                                                                                                      | PTT S3 West Section                                                                                                                                                                     |
|                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                      |
|                                                                                                                                                                                                                                             | 023                                                                                                                                                                                                                                                                                                  | 024                                                                                                                                                                                     |
|                                                                                                                                                                                                                                             | Promtin Tai                                                                                                                                                                                                                                                                                          | Promtin Tai                                                                                                                                                                             |
|                                                                                                                                                                                                                                             | AKC01040                                                                                                                                                                                                                                                                                             | AKC01041                                                                                                                                                                                |

| 1 blue-green transparent: L: 2.14 W:4.03 IP:1.02 1 dark blue translucent shiny: L: 4.04 W:4.46 IP: 1.08                                                                                                                                                               |                                                                                                                                    |                                                                              |                        | Group 2: Larger Indo-Pacific<br>beads<br>3 dark blue cobalt translucent<br>1 Large dark blue cobalt: L:12.71<br>W:8.71- segemented? | 771 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| IP: 0.99 Small Yellow: L: 1.54 W:1.76 IP: 0.65 I dark blue opaque: L:1.83 W:3.15 IP:0.80 I light blue opaque: L:2.22 W:3.08 IP:0.84 I orange opaque: L:2.49 W:2.91 IP:1.04 I red opaque shiny: L:2.19 W:2.29 IP:0.87 I dark blue translucent: L: 3.78 W: 2.43 IP:0.86 | 1 large orange opaque :L:3.36<br>W:4.82 IP:1.32<br>2 dark blue semi-translucent<br>1 blue-green seed bead:L:2.15<br>W:3.53 IP:1.18 | 1 yellow opaque heavily corroded 1 dark turquoise opaque 1 light blue opaque |                        |                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                       | 160-170 cm bd                                                                                                                      | 170-180 cm bd                                                                | 170-180 cm bd          | 190-200 cm bd<br>(S3L4)                                                                                                             |     |
|                                                                                                                                                                                                                                                                       | Section Section                                                                                                                    | S3 West<br>Section                                                           | PTT S3 West<br>Section | PTT S3/2 West<br>Section                                                                                                            |     |
|                                                                                                                                                                                                                                                                       | 5                                                                                                                                  | 3                                                                            | 4                      | 13                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                       | 025                                                                                                                                | 026                                                                          | 027                    | 090                                                                                                                                 |     |
|                                                                                                                                                                                                                                                                       | Promtin Tai                                                                                                                        | Promtin Tai                                                                  | Promtin Tai            | Promtin Tai                                                                                                                         |     |
|                                                                                                                                                                                                                                                                       | AKC01044                                                                                                                           | AKC01046                                                                     | AKC01047               | AKC01050                                                                                                                            |     |

| 1 black opaque short barre:1<br>L:5.66 W:3.40<br>1 orange opaque matte<br>1 light blue opaque |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               | 13 glass beads 2 orange opaque tubular beads 2 red opaque 1 yellow opaque 7 dark blue semi-translucent (1 measured: L:4.70 W:4.92) 1 blue-green translucent: L:2.89 W: 3.02 | 8 glass beads 1 broken light blue bead 1 dark blue bead 1 broken black bead 1 yellow opaque: L: 1.71 W:2.96 IP:0.78 1 light blue opaque: L:2.45 W:3.45 IP:0.91 1 red opaque: L1.28 W:2.92 IP:1.07 1 dark blue cobalt translucent: L:3.69 W:5.36 IP:1.73 1 dark blue cobalt matte translucent: L2.47 W4.10 IP: | PTT S3/2 West 230-240 cm bd 1 blue-green translucent Section (S4L3) 2 dark blue cobalt translucent shiny IP beads (1 measured:L:3.24 W:5.00 IP:1.95) 3 dark blue shiny semi-trans (1 measured:L:4,86 W:5.76 IP:1.34) |
|                                                                                               | PTT S3/2 West 200-210 cm bd Section (S3L3)                                                                                                                                  | (S4L2) (S4L2)                                                                                                                                                                                                                                                                                                 | 230-240 cm bd<br>(S4L3)                                                                                                                                                                                              |
|                                                                                               | PTT S3/2 West<br>Section                                                                                                                                                    | PTT S3/2 West Section                                                                                                                                                                                                                                                                                         | PTT S3/2 West<br>Section                                                                                                                                                                                             |
|                                                                                               | 13                                                                                                                                                                          | S                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                    |
|                                                                                               | 061                                                                                                                                                                         | 062                                                                                                                                                                                                                                                                                                           | 063                                                                                                                                                                                                                  |
|                                                                                               | Promtin Tai                                                                                                                                                                 | Promtin Tai                                                                                                                                                                                                                                                                                                   | Promtin Tai                                                                                                                                                                                                          |
|                                                                                               | AKC01052                                                                                                                                                                    | AKC01053                                                                                                                                                                                                                                                                                                      | AKC01054                                                                                                                                                                                                             |

| Notes (cont)     | Group 2: Indo-Pacific beads 3 dark blue semi-trans 21 dark blue cobalt translucent IP beads (1 measured: L.3.68 W.5.28 IP.2.02) 1 red opaque tubular bead 1 large clear glass bead: L8.04 W.7.42 IP1.32 1 blue-green glass bead: L.5.29 W;6.99 IP:1.92 1 dark blue-green sem-trans bead |                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes            | 39 glass beads in two groups Group 1: Small Indo-Pacific beads 8 orange opaque beads matte. 2 beads measured: Bead 1: L:1.40 W:2.63 IP:0.94 Bead 2: L: 1.05 W:2.84 IP:1.27 3 white semi-translucent beads in a spherical shape                                                          | 240-250 cm bd   2 dark blue shiny semi-trans,<br>(S4L4) Burial   Bead 1: L:4.83 W:5.62 IP:1.48<br>  9   Bead 2: L: 5.15 W: 4.63 IP: 161 | 8 glass beads<br>2 dark blue shiny semi-trans (1<br>measured: L:4.64 W:5.32)<br>6 dark blue glass cobalt shiny (1<br>measured: L:2.33 W: 4.69) | 8 pieces 1 small yellow opaque 2 dark blue shiny semi-trans 2 cobalt trans 1 large yellow opaque IP bead matte: L:3.70 W:4.51 IP:1.07 1 orange opaque bead matte: L:3.59 W:3.80 IP:1.21 1 light blue opaque bead matte: L:1.99 W: 4.07 IP: 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Layer            | 230-240 cm bd<br>(S4L3)                                                                                                                                                                                                                                                                 | 240-250 cm bd<br>(S4L4) Burial<br>9                                                                                                     | 250-260 cm bd<br>(S4L5) Burial<br>12                                                                                                           | 170-180 cm bd<br>(S3L2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Trench           | Section Burial 20                                                                                                                                                                                                                                                                       | S3/2 West<br>Section                                                                                                                    | PTT S3/2 West   250-260 cm bd   Section   (S4L5) Burial   12                                                                                   | Section   (S3L2)   1 small   Section   (S3L2)   1 small   S dark b   2 dark b   2 cobalt   1 large y   matte: L   1 orange   L:3.59 V   1 light b   L:1.99 v   L:1.90 v   L:1. |
| Total # of beads | 39                                                                                                                                                                                                                                                                                      | 2                                                                                                                                       | 8                                                                                                                                              | ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cat<br>Number    | 064                                                                                                                                                                                                                                                                                     | 900                                                                                                                                     | 290                                                                                                                                            | 890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Site Name        | Promtin Tai                                                                                                                                                                                                                                                                             | Promtin Tai                                                                                                                             | Promtin Tai                                                                                                                                    | Promtin Tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Database ID      | AKC01056                                                                                                                                                                                                                                                                                | AKC01066                                                                                                                                | AKC01070                                                                                                                                       | AKC01071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Total # of beads |
|------------------|
| 00               |
|                  |
|                  |
|                  |
| 3                |
| 53               |
|                  |
|                  |
|                  |
|                  |

| beads, approx 1-2mm  2 yellow opaque shiny 2 light green opaque shiny 4 red opaque shiny 2 dark blue matte translucent 2 orange opaque matte 1 yellow opaque shiny 3 orange opaque 2 dark green opaque 1 turquoise opaque 1 light green opaque 1 light green opaque 1 polychrome black, red and 2 white: L:3.78 W:3.80 IP:1.30 1 red opaque with heavy white 2 corrosion? 2 light blue translucent | Group 1- Larger IP beads Group 1- Larger IP beads I brown short cylinder: L6.76 W 6.37 IP2.62 3 red opaque 2 dark turquoise transparent 2 orange opaque 3 yellow opaque shiny (1 measured:L:3.01 W:4.36 I light blue opaque I dark turquoise opaque I dark turquoise opaque I dark turquoise opaque I light green opaque | t 110-120 cm bd 26 glass beads plus fragments Group 2- Small Indo-Pacific of red and blue beads beads beads 1 light green opening 1 27 W: 1 07 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                    | 37 S3 West Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26 S3 West<br>Section                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                    | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 018                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                    | Promtin Tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Promtin Tai                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                    | AKC01078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AKC01079                                                                                                                                       |

| 3 light blue opaque 1 dark turquoise semi-trans: 2 dark green opaque 1 L.2.13 W:3.25 IP:0.98 2 crange opaque 1 light green opaque shiny 1 green-yellow opaque 1 orange opaque 3 red opaque large short barrel (1 measured: L.7.72 W:8.46 IP:2.30) 1 light blue semi-trans | omtin Tai         073         30         S3/2 West         230-240 cm bd         30 glass dark cobalt shiny Indo-Bection           Section         (S4L3) Burial         Pacific beads, 6 beads measured           9         Bead 1: L: 2.86 W: 5.46 IP: 1.84?           Bead 2: L: 3.01 W: 4.22 IP: 1.49         Bead 2: L: 3.01 W: 4.22 IP: 1.38           Bead 3: L: 2.52 W: 4.72 IP: 1.38         Bead 4: L: 3.50 W: 6.35 IP: 2.14           Bead 4: L: 3.50 W: 5.57 IP: 1.70         Bead 6: L: 3.39 W: 5.57 IP: 1.70           Bead 6: L: 3.39 W: 5.44 IP: 1.85         Bead 6: L: 3.39 W: 5.44 IP: 1.85 | omtin Tai 009 2 S3 East 160-170 cm bd 1 orange opaque bead Section 1 opaque yellow mircobead |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                           | Promtin Tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Promtin Tai                                                                                  |
|                                                                                                                                                                                                                                                                           | AKC01084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AKC01016                                                                                     |

Appendix 7.1h: Glass beads from Noen U-Loke at the Phimai Museum

| Notes                               |                        |                        |                                  |                    |                           |                   |                   |                   |                         |                   |                   |                   |                   |                   |
|-------------------------------------|------------------------|------------------------|----------------------------------|--------------------|---------------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Number of beads                     | 54                     | 19                     | 11                               | 2                  | 3                         | 2                 | 9                 | 2                 | 7                       | 5                 | 12                | 10                | 82?               | 3                 |
| Bead Shape                          | Indo-Pacific Microbead | Indo-Pacific Microbead | Wrapped glass<br>bead/small tube | Long wrapped beads | Indo-Pacific Bead         | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead       | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead |
| Bead color                          | orange                 | orange                 | orange                           | orange             | milky white<br>semi-trans | red opaque        | red opaque        | weathered?        | dark blue semi<br>trans | dark turq trans   | light turq        | milky yellow      | green opaque      | orange            |
| Burial<br>Number                    |                        |                        |                                  |                    |                           |                   |                   |                   |                         |                   |                   |                   |                   |                   |
| Context Info                        |                        |                        |                                  |                    |                           |                   |                   |                   |                         |                   |                   |                   |                   |                   |
| Cat No                              |                        |                        |                                  |                    |                           |                   |                   |                   |                         |                   |                   |                   |                   |                   |
| Number on<br>Phimai<br>Museum Chart | 140/2547               | 144/2547               | 144/2547                         | 144/2547           | 144/2547                  | 144/2547          | 144/2547          | 144/2547          | 144/2547                | 144/2547          | 144/2547          | 144/2547          | 144/2547          | 136/2547          |

| f Notes                             |                   |                   |                    | plus broken frags         |                   |                    |                   |                          | Some red-orange glass  |                   |                    |                    |                   |                   |                   |                           |
|-------------------------------------|-------------------|-------------------|--------------------|---------------------------|-------------------|--------------------|-------------------|--------------------------|------------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|---------------------------|
| Number of<br>beads                  | 12                | 22                | 43                 | 5                         | 28                | 3                  | _                 | -                        | 151 approx             | 1                 | 2                  | 30                 | 31                | 11                | 7                 | 1                         |
| Bead Shape                          | Indo-Pacific Bead | Indo-Pacific Bead | Wrapped glass bead | Indo-Pacific Bead         | Indo-Pacific Bead | Wrapped glass bead | Indo-Pacific Bead | Indo-Pacific Bead        | Indo-Pacific Microbead | Indo-Pacific Bead | Long wrapped beads | Wrapped glass bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead         |
| Bead color                          | yellow opaque     | yellow opaque     | orange             | bright turq semi<br>trans | green opaque      | orange             | red opaque        | turquoise semi-<br>trans | orange                 | yellow            | orange beads       | orange             | black opaque      | yellow opaque     | red opaque        | milky white<br>semi-trans |
| Burial<br>Number                    |                   |                   |                    |                           |                   |                    |                   |                          |                        |                   |                    |                    |                   |                   |                   |                           |
| Context Info                        |                   |                   |                    |                           |                   |                    |                   |                          |                        |                   |                    |                    |                   |                   |                   |                           |
| Cat No                              |                   |                   |                    |                           |                   |                    |                   |                          |                        |                   |                    |                    |                   |                   |                   |                           |
| Number on<br>Phimai<br>Museum Chart | 136/2547          | 137/2547          | 137/2547           | 137/2547                  | 143/2547          | 143/2547           | 143/2547          | 143/2547                 | 134/2547               | 134/2547          | 581/2547           | 133/2547           | 142/2547          | 142/2547          | 142/2547          | 142/2547                  |

| Notes                               |                          | Unrounded edges   |                              |                    | Some red-orange glass  |                   |                     | Unrounded edges              |                   | Some red-orange glass  |                        |                          |                   | Some red-orange glass |
|-------------------------------------|--------------------------|-------------------|------------------------------|--------------------|------------------------|-------------------|---------------------|------------------------------|-------------------|------------------------|------------------------|--------------------------|-------------------|-----------------------|
| Number of beads                     | 4                        | 2                 | 2                            | 1                  | 27                     | 27                | 86                  | 9                            | 1                 | 116                    | 408                    | 2                        | S.                | 1                     |
| Bead Shape                          | Indo-Pacific Bead        | Indo-Pacific Bead | Indo-Pacific Bead            | Wrapped glass bead | Indo-Pacific Microbead | Indo-Pacific Bead | Wrapped glass beads | Indo-Pacific Bead            | Indo-Pacific Bead | Indo-Pacific Microbead | Indo-Pacific Microbead | Indo-Pacific Bead        | Indo-Pacific Bead | Long wrapped beads    |
| Bead color                          | light turquoise<br>trans | dark blue         | dark blue turq<br>semi trans | orange             | orange                 | green opaque      | orange              | dark blue turq<br>semi trans | green opaque      | orange                 | orange                 | light turquoise<br>trans | black opaque      | orange                |
| Burial<br>Number                    |                          |                   |                              |                    |                        |                   |                     |                              |                   |                        |                        |                          |                   |                       |
| Context Info                        |                          |                   |                              |                    |                        |                   |                     |                              |                   |                        |                        |                          |                   |                       |
| Cat No                              |                          |                   |                              |                    |                        |                   |                     |                              |                   |                        |                        |                          |                   |                       |
| Number on<br>Phimai<br>Museum Chart | 142/2547                 | 142/2547          | 142/2547                     | 142/2547           | 142/2547               | 142/2547          | 132/2547            | 132/2547                     | 132/2547          | 135/2547               | 138/2547               | 138/2547                 | 138/2547          | 138/2547              |

| Notes                               |                        |                    |                   |                   |                   |                   |                   |                               |                   | Unrounded edges   |                   |                           |                   |                   |                   |
|-------------------------------------|------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------|-------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|-------------------|
| Number of<br>beads                  | 35?                    | 9                  | 1                 | 6                 | 18                | 20                | 43                | 13                            | S                 | 9                 | 2                 | -                         | 66                | -                 | 11                |
| Bead Shape                          | Indo-Pacific Microbead | Wrapped glass bead | Indo-Pacific Bead             | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead         | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead |
| Bead color                          | orange                 | orange             | orange            | black opaque      | yellow opaque     | red opaque        | green opaque      | light turquoise<br>semi trans | med blue          | dark blue         | blue              | milky white<br>semi-trans | green opaque      | yellow opaque     | yellow opaque     |
| Burial<br>Number                    |                        |                    |                   |                   |                   |                   |                   |                               |                   |                   |                   |                           |                   |                   |                   |
| Context Info                        |                        |                    |                   |                   |                   |                   |                   |                               |                   |                   |                   |                           |                   |                   |                   |
| Cat No                              |                        |                    |                   |                   |                   |                   |                   |                               |                   |                   |                   |                           |                   |                   |                   |
| Number on<br>Phimai<br>Museum Chart | 145/2547               | 145/2547           | 145/2547          | 145/2547          | 145/2547          | 145/2547          | 145/2547          | 145/2547                      | 145/2547          | 145/2547          | 145/2547          | 145/2547                  | 139/2547          | 139/2547          | 139/2547          |

| Notes                               |                   |                   |                   |                   |                   |                   | Dark turquoise    |                   |                     |                   |                        | sizes vary on most of the green opaque |                   |                   |                   | Unrounded edges   |                                   | Unrounded edges                   |                     |
|-------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|------------------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|---------------------|
| Number of beads                     | 1                 | 19                | 1                 | 24                | 1                 | 3                 | 23                | S                 | 9                   | 5                 | 10                     | 23                                     | 92                | E                 | 31                | 20                | 41                                | 1                                 |                     |
| Bead Shape                          | Indo-Pacific Bead | Wrapped glass beads | Indo-Pacific Bead | Indo-Pacific Microbead | Indo-Pacific Bead                      | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Indo-Pacific Bead | Long wrapped beads                | Indo-Pacific Bead                 | Wrapped glass bead? |
| Bead color                          | yellow opaque     | red opaque        | black opaque      | light turq        | light turq        | dark blue         | dark blue         | orange            | orange              | orange            | orange                 | green opaque                           | black             | yellow opaque     | dark blue         | dark blue         | orange opaque                     | blue semi trans                   | orange              |
| Burial<br>Number                    |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                        |                                        |                   |                   |                   |                   | N/A                               | N/A                               | N/A                 |
| Context Info                        |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                        |                                        |                   |                   |                   |                   | NUL #43? BNB<br>B2 4:12 feature 1 | NUL #43? BNB<br>B2 4:12 feature 1 | BNB B2:12 #412      |
| Cat No                              |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                        |                                        |                   |                   |                   |                   | 730                               | 730                               | 733                 |
| Number on<br>Phimai<br>Museum Chart | 139/2547          | 139/2547          | 139/2547          | 139/2547          | 139/2547          | 139/2547          | 139/2547          | 139/2547          | 139/2547            | 139/2547          | 139/2547               | 141/2547                               | 141/2547          | 141/2547          | 141/2547          | 141/2547          | 61                                | 61                                | 62                  |

| Notes                               |                         |                    |                     |                               |                                  |                               |                                 |                           |                               |                               | with copper fragments         |                                   |                        |                                             |
|-------------------------------------|-------------------------|--------------------|---------------------|-------------------------------|----------------------------------|-------------------------------|---------------------------------|---------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|------------------------|---------------------------------------------|
| Number of beads                     | 1                       | 10                 | 2                   | 1                             | 1                                | 111                           | 1                               | 1 complete,<br>1-2 broken | 3                             | 12 (8<br>complete)            | 2                             | 16                                | 1                      | 20 (1 incomplete)                           |
| Bead Shape                          | Long wrapped beads      | Long wrapped beads | Wrapped glass bead? | Wrapped glass bead?<br>Broken | broken                           | Wrapped glass bead            | Indo-Pacific Bead               | Wrapped glass bead        | Indo-Pacific Microbead        | Indo-Pacific Bead             | Indo-Pacific Bead             | Wrapped glass bead                | Wrapped glass bead     | Long wrapped beads                          |
| Bead color                          | orange                  | orange             | orange              | orange                        | blue semi trans                  | orange                        | orange                          | orange                    | orange                        | turquoise semitrans           | turquoise semitrans           | orange                            | orange                 | orange                                      |
| Burial<br>Number                    | N/A                     | N/A                | N/A                 | N/A                           | N/A                              | N/A                           | N/A                             | N/A                       | N/A                           | N/A                           | N/A                           | N/A                               | N/A                    | Burial 32                                   |
| Context Info                        | NUL #416 B2 4:13<br>BNB | BNB B2 4-11 #410   | BNB B2 4-11 #410    | NUL #405 B2 4:11<br>BNB       | NUL #81 A1 4:s1<br>feature 4 BNB | NUL 252 B2 4:5<br>residue BNB | NUL #50 A2 3:2<br>Feature 2 BNB | NUL BNB A1 3 s5<br>lens   | NUL Cat 1196 B.<br>83 C1 4:s3 | NUL Cat 1196 B.<br>83 C1 4:s3 | NUL Cat 1196 B.<br>83 C1 4:s3 | NUL#286 B2 4:s6<br>feature 10 BNB | NUL #228 A2 4:8<br>BNB | NUL #296 phase 3 B2 4:7 feature 1 "Scatter" |
| Cat No                              | 735                     | 737                | 737                 | 192                           | 773                              | 783                           | 784                             | 791                       | 774                           | 774                           | 774                           | 425                               | 444                    | 466                                         |
| Number on<br>Phimai<br>Museum Chart | 63                      | 64                 | 64                  | 99                            | 99                               | <i>L</i> 9                    | 89                              | 69                        | 70                            | 70                            | 70                            | 51                                | 52                     | 53                                          |

| 783 |
|-----|
| 105 |

| Notes                               |                                                     | plus some broken Wrapped glass<br>bead glass bead fragments and<br>one larger red opaque bead |                                                   |                                  |                        |                        |                        |                    |                    |                                  |                         |
|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|------------------------|------------------------|------------------------|--------------------|--------------------|----------------------------------|-------------------------|
| Number of beads                     | 5 (4 are<br>more<br>tubular than<br>disc<br>shaped) | 55                                                                                            | 4 fragments of an object- ring/earring /bracelet? | 1                                | 4                      | 9                      | 4 (1<br>broken)        | 2                  | 9                  | 4 fragments                      | П                       |
| Bead Shape                          | Wrapped glass bead                                  | Long wrapped beads                                                                            | broken/weathered                                  | Wrapped glass bead               | Wrapped glass bead     | Long wrapped beads     | Wrapped glass bead?    | Wrapped glass bead | Long wrapped beads | broken, weathered                | Indo-Pacific Bead       |
| Bead color                          | orange                                              | orange                                                                                        | bright turquoise<br>blue                          | orange                           | orange                 | orange                 | orange                 | orange             | orange             | light blue<br>turquoise?         | bright red              |
| Burial<br>Number                    | Burial 32                                           | Burial 32                                                                                     | N/A                                               | N/A                              | N/A                    | N/A                    | N/A                    | N/A                | N/A                | N/A                              | N/A                     |
| Context Info                        | NUL #296 phase 3 B2 4:7 feature 1 "Scatter"         | NUL #296 B2 4:s7<br>feature 1                                                                 | NUL 320 A2 4:12<br>glass object                   | NUL 339 B2 4:s7<br>feature 3 BNB | NUL #375 B2 4:8<br>BNB | NUL #375 B2 4:8<br>BNB | NUL #366 B2 4:7<br>BNB | B2 4:10 #405       | B2 4:10 #405       | NUL #370 B1 4:11<br>glass bangle | NUL #177 A2 4:s4<br>BNB |
| Cat No                              | 466                                                 | 466                                                                                           | 496                                               | 531                              | 643                    | 643                    | 644                    | 711                | 711                | 718                              | 316                     |
| Number on<br>Phimai<br>Museum Chart | 53                                                  | 130/47                                                                                        | 54                                                | 55                               | 56                     | 56                     | 57                     | 59                 | 59                 | 09                               | 41                      |

| Notes                               | Unrounded edges                    |                    | Unrounded edges           |                         |                    | Unrounded edges         |                       |                       |                          |                               | Unrounded edges               |                         |                                       |
|-------------------------------------|------------------------------------|--------------------|---------------------------|-------------------------|--------------------|-------------------------|-----------------------|-----------------------|--------------------------|-------------------------------|-------------------------------|-------------------------|---------------------------------------|
| Number of<br>beads                  | -                                  | 11 (1<br>broken)   | 1                         | 1                       | 4                  | 1                       | 8 (1<br>broken)       | -                     | 2                        | 2                             | 1                             | 2                       | 1                                     |
| Bead Shape                          | Indo-Pacific Bead                  | Wrapped glass bead | Indo-Pacific Bead         | Wrapped glass bead      | Wrapped glass bead | Indo-Pacific Bead       | Wrapped glass bead    | Long wrapped beads    | tube, unrounded          | Long wrapped beads            | Indo-Pacific Bead             | long skinny tube        | Indo-Pacific Bead                     |
| Bead color                          | dark blue turq<br>trans            | orange             | dark blue turq<br>trans   | orange                  | orange             | dark blue turq<br>trans | orange                | orange                | dark blue,<br>semi-trans | orange                        | dark blue turq<br>trans       | orange                  | light blue<br>turquoise semi<br>trans |
| Burial<br>Number                    | N/A                                | N/A                | N/A                       | N/A                     | N/A                | N/A                     | N/A                   | N/A                   | N/A                      | N/A                           | N/A                           | N/A                     | N/A                                   |
| Context Info                        | NUL #225 B2 4:s3<br>feature 12 BNB | B2 4:3 BNB         | B2 4:s2 feature 12<br>BNB | NUL #242, B2 4:4<br>BNB | NUL #257 B2 4:5    | NUL #257 B2 4:5         | NUL #25 B2 4:5<br>BNB | NUL #25 B2 4:5<br>BNB | NUL #25 B2 4:5<br>BNB    | NUL #260 B2 4:s6<br>feature 1 | NUL #260 B2 4:s6<br>feature 1 | NUL #288 A2 4:s8<br>BNB | NUL #291 BI 4:s3<br>BNB               |
| Cat No                              | 337                                | 339                | 368                       | 385                     | 392                | 392                     | 414                   | 414                   | 414                      | 415                           | 415                           | 420                     | 421                                   |
| Number on<br>Phimai<br>Museum Chart | 42                                 | 43                 | 44                        | 45                      | 46                 | 46                      | 47                    | 47                    | 47                       | 48                            | 48                            | 49                      | 50                                    |

| Notes                               |                                       |                                       |                                       |                                       |                             |                             |                             |                             |                             |                             |
|-------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Number of beads                     | 24 plus a<br>few tiny<br>fragments    | 4                                     | 9 plus<br>many<br>broken<br>frags     | 1                                     | 3                           | 1                           | 106                         | 14                          | 4                           | 9                           |
| Bead Shape                          | Indo-Pacific Microbead                | Indo-Pacific Microbead                | Indo-Pacific Microbead                | Indo-Pacific Microbead                | Indo-Pacific Bead           | Indo-Pacific Microbead      |
| Bead color                          | orange                                | yellow opaque                         | green opaque                          | red opaque                            | dark blue<br>almost opaque  | dark blue semi<br>trans     | light green<br>opaque       | yellow opaque               | black opaque                | orange                      |
| Burial<br>Number                    | Burial 105                            | Burial 105                            | Burial 105                            | Burial 105                            | Related to<br>burial 105    | Related to<br>burial 105    | Related to<br>burial 105    | Related to<br>burial 105    | Related to<br>burial 105    | Related to<br>burial 105    |
| Context Info                        | NUL #930 B105<br>x/x1 3:s13 feature 2 | XI 3: s13 E of<br>grave 105 | X1 3: s13 E of<br>grave 105 |
| Cat No                              | 1456                                  | 1456                                  | 1456                                  | 1456                                  | 1465                        | 1465                        | 1465                        | 1465                        | 1465                        | 1465                        |
| Number on<br>Phimai<br>Museum Chart | 32                                    | 32                                    | 32                                    | 32                                    | 31                          | 31                          | 31                          | 31                          | 31                          | 31                          |

| Notes                               |                             |                             |                             |                             |                               | Unrounded edges             |                    |                   | Unrounded edges                       |                                       |                        |                        |
|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|--------------------|-------------------|---------------------------------------|---------------------------------------|------------------------|------------------------|
| Number of beads                     | 2                           | 11 with a few broken frags  | 1                           | 22                          | 22                            | a few<br>fragements         | 9                  | 5                 | 4                                     | 2                                     | 11                     | 1                      |
| Bead Shape                          | Indo-Pacific Bead           | Wrapped glass bead          | Long wrapped bead           | Indo-Pacific Bead           | Indo-Pacific Bead             | Indo-Pacific Bead           | Wrapped glass bead | Indo-Pacific Bead | Indo-Pacific Bead                     | Indo-Pacific Bead                     | Indo-Pacific Microbead | Indo-Pacific Microbead |
| Bead color                          | off white semi<br>trans     | orange                      | orange                      | dark red opaque             | light blue turq<br>semi trans | turquoise<br>semitrans      | orange             | orange            | dark blue<br>(cobalt?) semi-<br>trans | dark blue<br>(cobalt?) semi-<br>trans | orange                 | red                    |
| Burial<br>Number                    | Related to<br>burial 105      | Related to<br>burial 105    | Burial 113         | Burial 113        | Burial 113                            | Burial 113                            | Burial 121             | Burial 121             |
| Context Info                        | X1 3: s13 E of<br>grave 105   | X1 3: s13 E of<br>grave 105 | Burial 113         | Burial 113        | Burial 113                            | Burial 113                            |                        |                        |
| Cat No                              | 1465                        | 1465                        | 1465                        | 1465                        | 1465                          | 1465                        | none listed        | none listed       | none listed                           | none listed                           | 1741                   | 1741                   |
| Number on<br>Phimai<br>Museum Chart | 31                          | 31                          | 31                          | 31                          | 31                            | 31                          | 33                 | 33                | 33                                    | 33                                    | 35                     | 35                     |

| Notes                               |                              |                        |                        |                        |                        |                              |                         |                        |                         |                                               |                                               |                              |
|-------------------------------------|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------|-------------------------|------------------------|-------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------|
| Number of beads                     | 18 plus<br>some<br>fragments | 3                      | 3                      | 16                     | 4                      | 1                            | 1                       | 12 plus one broken     | 1                       | 18 plus<br>some<br>fragments                  | 19 plus<br>some<br>fragments                  | 1 broken<br>frag             |
| Bead Shape                          | Indo-Pacific Microbead       | Indo-Pacific Microbead | Indo-Pacific Microbead | Indo-Pacific Microbead | Indo-Pacific Microbead | Indo-Pacific Bead            | Wrapped glass bead      | Wrapped glass bead     | Indo-Pacific Bead       | Long wrapped beads                            | Wrapped glass bead                            | Wrapped glass bead           |
| Bead color                          | green                        | yellow                 | black                  | orange                 | green                  | blue semi-trans<br>turquoise | orange                  | orange                 | dark blue semi<br>trans | orange                                        | orange                                        | orange                       |
| Burial<br>Number                    | Burial 121                   | Burial 121             | Burial 121             | Burial 121             | Burial 121             | N/A                          | N/A                     | N/A                    | N/A                     | Burial 52                                     | Burial 52                                     | Burial 50                    |
| Context Info                        |                              |                        |                        | Burial 121 X1          | Burial 121 X1          | NUL #188 A2 4:s5<br>BNB      | NUL #188 A2 4:s5<br>BNB | NUL #127 B2 4:2<br>BNB | NUL #127 B2 4:2<br>BNB  | NUL Phase 3, B2<br>4:8 #383 Burial 52<br>neck | NUL Phase 3, B2<br>4:8 #383 Burial 52<br>neck | NUL #387 B2 4:8<br>Burial 50 |
| Cat No                              | 1741                         | 1741                   | 1741                   | 1741                   | 1741                   | 286                          | 299                     | 306                    | 306                     | 683                                           | 683                                           | 704                          |
| Number on<br>Phimai<br>Museum Chart | 35                           | 35                     | 35                     | 36                     | 36                     | 38                           | 39                      | 40                     | 40                      | 20                                            | 20                                            | 19                           |

| Notes                               |                              |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    | Unrounded edges                                    |                                                    |                                                    |                                  |
|-------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------|
| Number of beads                     | 7 (1<br>broken)              | 4                                                  | 8                                                  | 2                                                  | 3                                                  | 90 арргох                                          | S                                                  | 2                                                  | 78                                                 | 1                                                  | 2                                |
| Bead Shape                          | Wrapped glass bead           | Indo-Pacific Microbead                             | Wrapped glass bead                                 | Indo-Pacific Bead                                  | Indo-Pacific Bead                                  | Indo-Pacific Bead                                  | Indo-Pacific Bead                                  | Indo-Pacific Bead                                  | Indo-Pacific Bead                                  | Indo-Pacific Bead                                  | Wrapped glass bead               |
| Bead color                          | orange                       | orange                                             | orange                                             | green opaque                                       | yellow opaque                                      | black opaque                                       | light blue turqu                                   | bright turq                                        | orange                                             | dark brown                                         | orange                           |
| Burial<br>Number                    | Burial 49                    | Burial 47                                          | Burial 45                        |
| Context Info                        | NUL Phase 3 4:9<br>Burial 49 | NUL #343 B1 4:s6<br>feature 6 Burial 47<br>residue | B4:7 Burial 45<br>beads by skull |
| Cat No                              | 069                          | 555                                                | 555                                                | 555                                                | 555                                                | 555                                                | 555                                                | 555                                                | 555                                                | 555                                                | 533                              |
| Number on<br>Phimai<br>Museum Chart | 18                           | 17                                                 | 17                                                 | 17                                                 | 17                                                 | 17                                                 | 17                                                 | 17                                                 | 17                                                 | 17                                                 | 16                               |

| Notes                               | Unrounded edges                  |                                        |                                        |                                        |                                     |                                     |                           |                                  |                                  | λ                                                  |                                                    |
|-------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------|
| Number of<br>beads                  | S                                | -                                      | 12                                     | 34 plus<br>some<br>fragments           | 2                                   | 2                                   | 1                         | 9                                | 18                               | 115 plus<br>many many<br>broken<br>fragments       | 2 broken<br>beads                                  |
| Bead Shape                          | Indo-Pacific Bead                | Indo-Pacific Bead                      | Wrapped glass bead                     | Long wrapped beads                     | Wrapped glass bead?                 | Long wrapped beads                  | Wrapped glass bead        | Wrapped glass bead               | Long wrapped beads               | Wrapped glass bead                                 | Indo-Pacific Bead                                  |
| Bead color                          | orange                           | turquoise semitrans                    | orange                                 | orange                                 | orange                              | orange                              | orange                    | orange                           | orange                           | orange                                             | bright blue<br>semi trans                          |
| Burial<br>Number                    | Burial 45                        | Burial 42                              | Burial 42                              | Burial 42                              | Burial 41                           | Burial 41                           | Burial 40                 | Burial 39                        | Burial 39                        | Burial 37                                          | Burial 37                                          |
| Context Info                        | B4:7 Burial 45<br>beads by skull | A2 4:12 phase 2<br>Burial 42 head area | A2 4:12 phase 2<br>Burial 42 head area | A2 4:12 phase 2<br>Burial 42 head area | A2 4:12 burial 41<br>beads at skull | A2 4:12 burial 41<br>beads at skull | Phase 3 Burial 40 at feet | Phase 3 B2 4:9<br>#393 burial 39 | Phase 3 B2 4:9<br>#393 burial 39 | Phase 2 NUL #319<br>A2 4:11 Burial 37<br>neck area | Phase 2 NUL #319<br>A2 4:11 Burial 37<br>neck area |
| Cat No                              | 533                              | 518                                    | 518                                    | 518                                    | 513                                 | 513                                 | 652                       | 029                              | 029                              | 492                                                | 492                                                |
| Number on<br>Phimai<br>Museum Chart | 16                               | 15                                     | 15                                     | 15                                     | 14                                  | 14                                  | 13                        | 12                               | 12                               | =                                                  | Ξ                                                  |

| $\neg$ | Λ | r |
|--------|---|---|
| /      | 9 | l |

|                                     |                                                      | al 29                                                       | al 29                                               |                                                  |                                                  |                                         |                                         |                                    |                                    |                                    |                                    | 79                                 | 90 |
|-------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----|
| Notes                               |                                                      | outer bag says: phase 3 burial 29 residue cat 431           | outer bag says: phase 3 burial 29 residue cat 431   |                                                  |                                                  |                                         |                                         |                                    |                                    |                                    |                                    |                                    |    |
| Number of beads                     | 111                                                  | 32                                                          | 62                                                  | ∞                                                | 9                                                | 16                                      | 29                                      | 9                                  | 1                                  | 1                                  | 3                                  | 7                                  |    |
| Bead Shape                          | Wrapped glass bead                                   | Wrapped glass bead                                          | Wrapped glass bead                                  | Indo-Pacific Bead                                | Indo-Pacific Bead                                | Wrapped glass bead                      | Indo-Pacific Bead                       | Indo-Pacific Bead                  | Wrapped glass bead                 | Indo-Pacific Bead                  | Wrapped glass bead                 | Indo-Pacific Bead                  |    |
| Bead color                          | orange                                               | orange                                                      | orange                                              | yellow opaque                                    | turquoise semi-<br>trans                         | orange                                  | orange-red<br>mixed                     | orange-red<br>mixed                | orange                             | blue turq trans                    | orange                             | orange-red<br>mixed                |    |
| Burial<br>Number                    | Burial 33                                            | Burial 29                                                   | Burial 29                                           | Burial 21                                        | Burial 21                                        | Burial 25                               | Burial 25                               | Burial 25                          | Burial 25                          | Burial 25                          | Burial 25                          | Burial 25                          |    |
| Context Info                        | Nul #307 B2 4:7<br>feature 7 burial 33<br>(necklace) | NUL #294 Phase 3<br>B2 4:s8 feature 10<br>burial 29 residue | NUL #294 Phase 3<br>B2 4:s8 feature 10<br>burial 29 | NUL #213 phase 4<br>A2 4:s4 area of<br>burial 21 | NUL #213 phase 4<br>A2 4:s4 area of<br>burial 21 | NUL #330 Phase 3<br>B1/2 4:s5 Burial 25 | NUL #330 Phase 3<br>B1/2 4:s5 Burial 25 | NUL #330 phase 3<br>B1/2 Burial 25 | NUL #330 phase 3<br>B1/2 Burial 25 | NUL #330 phase 3<br>B1/2 Burial 25 | NUL #330 phase 3<br>B/12 Burial 25 | NUL #330 phase 3<br>B/12 Burial 25 |    |
| Cat No                              | 633                                                  | 294                                                         | 294                                                 | 311                                              | 311                                              | 541                                     | 541                                     | 516                                | 516                                | 516                                | 504                                | 504                                |    |
| Number on<br>Phimai<br>Museum Chart | 10                                                   | 6                                                           | 6                                                   | 3                                                | 3                                                | 7                                       | 7                                       | 9                                  | 9                                  | 9                                  | S                                  | \$                                 |    |

| Number on<br>Phimai<br>Museum Chart | Cat No | Context Info                                                   | Burial<br>Number | Bead color               | Bead Shape             | Number of beads                    | Notes           |
|-------------------------------------|--------|----------------------------------------------------------------|------------------|--------------------------|------------------------|------------------------------------|-----------------|
| ∞                                   | 176    | Phase 3 4:5 B12<br>Bag #? Burial 25                            | Burial 25        | yellow opaque            | Indo-Pacific Bead      | 2                                  |                 |
| ∞                                   | 176    | Phase 3 4:5 B12<br>Bag #? Burial 25                            | Burial 25        | orange                   | Indo-Pacific Microbead | 100                                |                 |
| ∞                                   | 922    | Phase 3 4:5 B12<br>Bag #? Burial 25                            | Burial 25        | orange                   | Wrapped glass bead     | 2                                  |                 |
| ∞                                   | 922    | Phase 3 4:5 B12<br>Bag #? Burial 25                            | Burial 25        | orange                   | Indo-Pacific Bead      | 1                                  |                 |
| ∞                                   | 776    | Phase 3 4:5 B12 Bag #? Burial 25                               | Burial 25        | light turquoise<br>trans | Indo-Pacific Bead      | 36 plus<br>many<br>broken<br>frags |                 |
| ∞                                   | 776    | Phase 3 4:5 B12<br>Bag #? Burial 25                            | Burial 25        | black opaque             | Indo-Pacific Bead      | 24                                 |                 |
| ∞                                   | 176    | Phase 3 4:5 B12<br>Bag #? Burial 25                            | Burial 25        | dark brown<br>trans      | Indo-Pacific Bead      | 1                                  |                 |
| 4                                   | 338?   | NUL phase 3<br>possibly burial 23<br>B2 4:s6 feature 1<br>#260 | Burial 23        | orange                   | Wrapped glass bead?    | 1                                  |                 |
| 4                                   | 338?   | NUL phase 3<br>possibly burial 23<br>B2 4:s6 feature 1<br>#260 | Burial 23        | dark turq trans          | Indo-Pacific Bead      | 8 plus one fragment                | Unrounded edges |

| Notes                               |                                                            |                                                                          |                                                            |                                                            |                                                                      |                                                            |
|-------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|
| Number of beads                     | 9 plus<br>many<br>broken<br>frags                          | 1                                                                        | 30 plus<br>many<br>broken<br>frags                         | 212 plus<br>many<br>broken<br>fragments                    | 136                                                                  | 2 broken<br>beads                                          |
| Bead Shape                          | Indo-Pacific Bead                                          | Wrapped glass bead                                                       | Indo-Pacific Bead                                          | Indo-Pacific Bead                                          | Indo-Pacific Bead                                                    | Indo-Pacific Bead                                          |
| Bead color                          | yellow opaque                                              | orange                                                                   | green opaque                                               | light blue turq<br>semi trans                              | dark turq trans, slightly darker than above or maybe less weathered? | dark blue<br>(cobalt?) semi-<br>trans                      |
| Burial<br>Number                    | Burial 14                                                  | Burial 14                                                                | Burial 14                                                  | Burial 14                                                  | Burial 14                                                            | Burial 14                                                  |
| Context Info                        | NUL phase 4 Burial<br>14 glass beads<br>found at foot area | NUL phase 4 #132<br>A2 4:s1 bead cat no.<br>785 or inside pot cat<br>217 | NUL phase 4 Burial<br>14 glass beads<br>found at foot area | NUL phase 4 Burial<br>14 glass beads<br>found at foot area | NUL phase 4 Burial<br>14 glass beads<br>found at foot area           | NUL phase 4 Burial<br>14 glass beads<br>found at foot area |
| Cat No                              | 178                                                        | 785                                                                      | 178                                                        | 178                                                        | 178                                                                  | 178                                                        |
| Number on<br>Phimai<br>Museum Chart | 2                                                          | 2?                                                                       | 2                                                          | 2                                                          | 2                                                                    | 2                                                          |

| Notes                               |                                                            |                                                            |                                             |                                       |                             |                             |                             |                             |                             |                             |
|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Number of beads                     | 11                                                         | _                                                          | 265+500+7<br>00? So<br>approx<br>1500 beads | 111                                   | 2                           | -                           | 20                          | _                           | -                           | -                           |
| Bead Shape                          | Indo-Pacific Bead                                          | Indo-Pacific Bead                                          | Indo-Pacific Bead                           | Indo-Pacific Bead                     | Wrapped glass bead          | Indo-Pacific Bead           | Indo-Pacific Bead           | Indo-Pacific Bead           | Indo-Pacific Bead           | Indo-Pacific Bead           |
| Bead color                          | dark turq-<br>opaque                                       | light blue turq<br>semi trans                              | blue turq semi-<br>trnas                    | turq opaque                           | orange                      | red opaque                  | green opaque                | yellow opaque               | light yellow<br>opaque      | milky white<br>semi-trans   |
| Burial<br>Number                    | Burial 14                                                  | Burial 14                                                  | Burial 13                                   | Burial 13                             | Burial 95                   |
| Context Info                        | NUL phase 4 Burial<br>14 glass beads<br>found at foot area | NUL phase 4 Burial<br>14 glass beads<br>found at foot area | NUL phase 4#131<br>burial 13, A2 4:s1       | NUL phase 4#131<br>burial 13, A2 4:s1 | NUL #829 C1/K1<br>Burial 95 |
| Cat No                              | 178                                                        | 178                                                        | 236                                         | 236                                   | 1254                        | 1254                        | 1254                        | 1254                        | 1254                        | 1254                        |
| Number on<br>Phimai<br>Museum Chart | 2                                                          | 7                                                          | -                                           |                                       | 28                          | 28                          | 28                          | 28                          | 28                          | 28                          |

| Notes                               |                             | Unrounded edges             |                             |                               |                               | plus a weathered bead or copper<br>bead Wrapped glass bead glass in<br>tinfoil? |                                                     |                               |                    |                   |                           |
|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------|-------------------|---------------------------|
| Number of beads                     | 2                           | 2 plus<br>many<br>fragments | 1                           |                               | several<br>small<br>fragments | l broken<br>frag                                                                | 16                                                  | 1                             | 1                  | 88                | 5 plus<br>broken<br>frags |
| Bead Shape                          | Indo-Pacific Bead           | Indo-Pacific Bead           | Indo-Pacific Bead           | weathered and broken<br>beads | weathered                     | Wrapped glass bead                                                              | Long wrapped beads                                  | small round faceted<br>barrel | Wrapped glass bead | Indo-Pacific Bead | Indo-Pacific Bead         |
| Bead color                          | bright turq semi<br>trans   | bright turq semi<br>trans   | dark blue-<br>cobalt?       | blue?                         | light blue?                   | orange                                                                          | orange                                              | carnelian                     | orange             | orange            | yellow                    |
| Burial<br>Number                    | Burial 95                   | Burial 95                   | Burial 95                   | Burial 95                     | Burial 95                     | Burial 54                                                                       | Burial 53                                           | Burial 53                     | Burial 80          | Burial 80         | Burial 80                 |
| Context Info                        | NUL #829 C1/K1<br>Burial 95   | Burial 95                     | NUL #426 burial 54<br>phase 3 feet area                                         | NUL #415 phase 3<br>410 burial 53 upper<br>arm area | burial 53                     | Burial 80          | Burial 80         | Burial 80                 |
| Cat No                              | 1254                        | 1254                        | 1254                        | 1254                          | 1254                          | 728                                                                             | 675                                                 | 673                           | 1666               | 1666              | 1666                      |
| Number on<br>Phimai<br>Museum Chart | 28                          | 28                          | 28                          | 28                            | 27                            | 23                                                                              | 22                                                  | 21                            | 25                 | 25                | 25                        |

| Cat No  | 0   | Context Info                                  | Burial<br>Number | Bead color                       | Bead Shape             | Number of beads        | Notes           |
|---------|-----|-----------------------------------------------|------------------|----------------------------------|------------------------|------------------------|-----------------|
| 1666    |     | Burial 80                                     | Burial 80        | black opaque                     | Indo-Pacific Bead      | 10                     |                 |
| 1190    |     | burial 94 beads<br>around neck                | Burial 94        | orange                           | Wrapped glass bead     | 37 plus a<br>few frags |                 |
| 1190    |     | burial 94 beads<br>around neck                | Burial 94        | black and<br>white/weathere<br>d | imitation agate beads? | 4                      |                 |
| N 69L   | Z _ | NUL #424 phase 3<br>B2 4:8 Burial 55          | Burial 55        | orange                           | Wrapped glass bead     | -                      |                 |
| 1275    |     | NUL burial 96<br>X1/C1 4:s7                   | Burial 96        | orange                           | Indo-Pacific Microbead | 1                      |                 |
| 1414 fr | fr  | B102 X1 beads<br>from baby skeleton<br>in pot | Burial 102       | orange                           | Wrapped glass bead     | 3                      |                 |
| 1414 fr | fi  | B102 X1 beads<br>from baby skeleton<br>in pot | Burial 102       | green opaque                     | Indo-Pacific Bead      | 13                     |                 |
| 1414 f  | ij  | B102 X1 beads<br>from baby skeleton<br>in pot | Burial 102       | yellow opaque                    | Indo-Pacific Bead      | 1                      |                 |
| 1414    |     | B102 X1 beads<br>from baby skeleton<br>in pot | Burial 102       | black opaque                     | Indo-Pacific Bead      | 4                      |                 |
| 1414    | Į   | B102 X1 beads<br>from baby skeleton<br>in pot | Burial 102       | turq trans                       | Indo-Pacific Bead      | 83                     | Unrounded edges |

| Notes                               | Unrounded edges                                            |                                               |                                               |                                               |                                               | ring/earring?                                     |                               | in bag that says: NUL Cat 1628<br>Burial 116 540-42/47 also written<br>in red: 994 | in bag that says: NUL Cat 1628<br>Burial 116 540-42/47 also written<br>in red: 994 |
|-------------------------------------|------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Number of beads                     | 24? (some<br>Wrapped<br>glass bead<br>glass in<br>tinfoil) | 43?                                           | 2                                             |                                               | 2-Feb                                         | 1 fragment                                        | 25                            | 23                                                                                 | 9                                                                                  |
| Bead Shape                          | Indo-Pacific Bead                                          | Indo-Pacific Bead                             | Indo-Pacific Bead                             | Indo-Pacific Bead                             | Indo-Pacific Bead                             | weathered                                         | Long wrapped beads            | Wrapped glass bead                                                                 | Indo-Pacific Bead                                                                  |
| Bead color                          | dark blue/cobalt semi-trans                                | turq trans                                    | light turq                                    | green opaque                                  | greenish yellow                               | light blue<br>turquoise                           | orange                        | orange                                                                             | blue dark tur to<br>dark blue                                                      |
| Burial<br>Number                    | Burial 102                                                 | Burial 102                                    | Burial 102                                    | Burial 102                                    | Burial 102                                    | N/A                                               | Burial 32                     | Burial 116                                                                         | Burial 116                                                                         |
| Context Info                        | B102 X1 beads<br>from baby skeleton<br>in pot              | B102 X1 beads<br>from baby skeleton<br>in pot | B102 X1 beads<br>from baby skeleton<br>in pot | B102 X1 beads<br>from baby skeleton<br>in pot | B102 X1 beads<br>from baby skeleton<br>in pot | C1 4:6 NUL 836<br>piece of blue glass<br>pendant? | NUL #296 B2 4:s7<br>feature 1 | Layer 3:10                                                                         |                                                                                    |
| Cat No                              | 1414                                                       | 1414                                          | 1414                                          | 1414                                          | 1414                                          | 1204                                              | 466                           | 1628                                                                               | 1628                                                                               |
| Number on<br>Phimai<br>Museum Chart | 30                                                         | 30                                            | 30                                            | 30                                            | 30                                            | 37                                                | 130/47                        | 541/2547                                                                           | 540/2547                                                                           |

| pe Number of heads                  | Bead 84 in bag that says: NUL Cat 1628<br>Burial 116 540-42/47 also written<br>in red: 994 | Bead 8 in bag that says: NUL Cat 1628<br>Burial 116 540-42/47 also written<br>in red: 994 | Bead 26                            | Bead 6                             |
|-------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|
| Bead Shape                          | Indo-Pacific Bead                                                                          | Indo-Pacific Bead                                                                         | Indo-Pacific Bead                  | Indo-Pacific Bead                  |
| Bead color                          | black opaque                                                                               | orange                                                                                    | black opaque                       | orange                             |
| Burial<br>Number                    | Burial 116                                                                                 | Burial 116                                                                                | Burial 116                         | Burial 116                         |
| Context Info                        |                                                                                            |                                                                                           | Burial 116, glass<br>bead necklace | Burial 116, glass<br>bead necklace |
| Cat No                              | 1628                                                                                       | 1628                                                                                      | 1628                               | 1628                               |
| Number on<br>Phimai<br>Museum Chart | 542/2547                                                                                   | 542/2547                                                                                  | 34                                 | 34                                 |

## Appendix 7.1i: Glass beads from Ban Non Wat

| Burial#    | # Cat #         | Beads                                                                | Description on bag                           | Total number         | Broken         | Notes                                                    |
|------------|-----------------|----------------------------------------------------------------------|----------------------------------------------|----------------------|----------------|----------------------------------------------------------|
|            |                 |                                                                      |                                              | of complete<br>beads | fragments      |                                                          |
| Burial 6   | Cat 110         | orange wrapped<br>beads                                              | orange bead belt, 200 complete- 5 broken     | 200                  | 5              |                                                          |
| Burial 36  | Cat 2964        | Orange opaque                                                        | orange glass beads from                      | 85                   |                |                                                          |
|            |                 | microbeads                                                           | within jar burial. 85<br>beads               |                      |                |                                                          |
| Burial 36  | 3548            | orange Indo-Pacific<br>bead                                          | 1 small orange glass bead                    | 1                    |                |                                                          |
| Burial 266 | 15506           | Indo-Pacific glass                                                   | necklace                                     | 112                  | 0              | beads are larger IP                                      |
|            |                 | beads: yellow (55),<br>turquoise (14), dark<br>blue(19), cobalt blue |                                              |                      |                | bead size, some tubes. Mostly rounded excpet cobalt blue |
|            |                 | (7- these are not rounded but cut                                    |                                              |                      |                |                                                          |
|            |                 | straight), red (9), orange (6), white (1)                            |                                              |                      |                |                                                          |
|            |                 | black (1)                                                            |                                              |                      |                |                                                          |
| Burial 266 | 15506           | broken frags of                                                      | necklace                                     | 0                    | several pieces |                                                          |
|            |                 | yellow and light blue glass.                                         |                                              |                      |                |                                                          |
| Burial 203 | 11519           | bright blue glass bead                                               |                                              | 1                    | 0              |                                                          |
| Burial 203 | 11528 and 11527 | 12 orange glass<br>beads, 1 dark blue                                |                                              | 14                   | 1              |                                                          |
|            |                 | cobalt glass bead, 1<br>light blue Indo-<br>Pacific beads            |                                              |                      |                |                                                          |
| Burial 203 | 11527           | wrapped orange glass<br>beads (90)                                   | right wrist                                  | 06                   | 0              |                                                          |
| Burial 203 | 11536           | orange wrapped and<br>light blue bead Indo-<br>Pacific bead          | L wrist area, 10 orange 1/2 blue, 1/2 orange | 10                   | 2              |                                                          |
|            |                 |                                                                      |                                              |                      |                |                                                          |

|                                |                                                                 |                                 |                                  |                                               |                                     |                                     |                                          |                                  |                                                                        |                                         |                                         |                              |                              |                               | 799 |
|--------------------------------|-----------------------------------------------------------------|---------------------------------|----------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|----------------------------------|------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|------------------------------|-------------------------------|-----|
| Notes                          |                                                                 |                                 |                                  |                                               |                                     |                                     |                                          |                                  |                                                                        |                                         |                                         |                              |                              |                               |     |
| Broken<br>fragments            | 0                                                               | 0                               | 0                                | several pieces                                | 1                                   | 1                                   | several pieces                           | 0                                | 0                                                                      | several pieces                          | several pieces                          | 0                            | 0                            | 0                             |     |
| Total number of complete beads | 22                                                              | 4                               | 1                                | 0                                             | 0                                   | 0                                   | 0                                        | 1                                | 5                                                                      | 0                                       | 0                                       | 2                            | 2                            | 1                             |     |
| Description on bag             | neck area                                                       |                                 | glass bangle                     | glass beads? Chin area                        |                                     |                                     |                                          |                                  |                                                                        |                                         |                                         |                              |                              |                               |     |
| Beads                          | 20 orange wrapped<br>and 2 dark turg blue<br>Indo-Pacific beads | 4 wrapped orange<br>glass beads | Light blue Indo-<br>Pacific bead | blue/green glass bead<br>fragments- weathered | broken orange Indo-<br>Pacific bead | broken orange Indo-<br>Pacific bead | broke weathered<br>blue/green bead frags | Light blue Indo-<br>Pacific bead | 3 yellow beads, 1<br>orange bead, 1 light<br>blue Indo-Pacific<br>bead | fragment of<br>weathered glass<br>beads | fragment of<br>weathered glass<br>beads | 2 wrapped orange glass beads | 2 wrapped orange glass beads | 1 orange Indo-Pacific<br>bead |     |
| Cat #                          | 11528                                                           | 11521                           | 8253                             | 17155                                         | cat 5136                            | 5125                                | 18110                                    | 6028                             | 17868                                                                  | 19762                                   | 19773                                   | 3536                         | 3528                         | 4056                          |     |
| Burial #                       | Burial 203                                                      | Burial 203                      | non burial                       | Burial 356                                    | B108                                | B101                                | B385                                     |                                  | B 304                                                                  | B 343                                   | B 357                                   | B 36                         | B 36                         | 38                            |     |
| Level:Layer                    | 3:1                                                             | 3:1                             | 1:5                              | 4:1                                           |                                     |                                     |                                          |                                  | 5:3                                                                    |                                         |                                         |                              |                              |                               |     |

|                                |                                |                                            |                 |                                      |                        |                     |                   |       |                          |                     |                |                     |                     |      |                                                    |                                                |               |                  |              |                                  |                     |                                   | 800 |
|--------------------------------|--------------------------------|--------------------------------------------|-----------------|--------------------------------------|------------------------|---------------------|-------------------|-------|--------------------------|---------------------|----------------|---------------------|---------------------|------|----------------------------------------------------|------------------------------------------------|---------------|------------------|--------------|----------------------------------|---------------------|-----------------------------------|-----|
| Notes                          |                                |                                            |                 |                                      |                        |                     |                   |       |                          |                     |                |                     |                     |      |                                                    |                                                |               |                  |              |                                  |                     |                                   |     |
| Broken<br>fragments            | 0                              | 0                                          | 0               |                                      |                        |                     | 0                 |       | 0                        | 0                   |                | 0                   | 0                   |      | 0                                                  | 0                                              | 1             | 0                |              |                                  |                     | 1                                 |     |
| Total number of complete beads | 4                              | 5                                          | 19              |                                      |                        |                     | 12                |       | 1                        | 1                   |                | 1                   | 1                   |      | 8                                                  | -                                              | 0             | 1                |              | 1                                | 1                   |                                   |     |
| Description on bag             |                                |                                            |                 |                                      |                        |                     |                   |       |                          |                     |                |                     |                     |      |                                                    |                                                |               |                  |              |                                  |                     |                                   |     |
| Beads                          | 4 orange Indo-Pacific<br>beads | 4 orange and 1 black<br>Indo-Pacific beads | 15 orange beads | (wrapped?) and Indo-Pacific beads: 2 | cobalt blue tubes with | sharp edges, 2 dark | 12 orange wrapped | beads | 1 orange wrapped<br>tube | fragment of earring | or bangle blue | orange wrapped bead | Yellow Indo-Pacific | bead | 1 orange and 2 light<br>blue Indo-Pacific<br>beads | large blue-green glass<br>bead with large hole | broken orange | Light blue Indo- | Pacific bead | Light blue Indo-<br>Pacific bead | orange wrapped bead | broken orang<br>wrapped bead tube |     |
| Cat #                          | 4528                           | 17656                                      | 17873           |                                      |                        |                     | 17873             |       | 11524                    | 18                  |                | 24517               | 10024               |      | 7782                                               | 393                                            | 486 or 986    | 2982             |              | 9559                             | 26006               | 4156                              |     |
| Burial #                       | \$6                            | B 235                                      | 202             |                                      |                        |                     | 202               |       | 202                      |                     |                | gen spit            | gen spit            |      |                                                    |                                                |               |                  |              |                                  |                     |                                   |     |
| Level:Layer                    |                                |                                            | 3:1             |                                      |                        |                     | 3:1               |       | 3:1                      | 2:5                 |                | 3:2                 | 3:2                 |      | 1:6                                                | 1:2                                            | 2:9           | 2:8              |              | 2:4/5 Feature 1                  | 2:6                 | 3:1 Feature 3                     |     |

| ı | $\alpha$    | 4 |
|---|-------------|---|
| ı | $\times 11$ |   |
| ı | $\alpha$    |   |

| 2:1<br>3:1<br>2:8<br>2:8  | 17394      |                                                             | ot complete<br>beads | fragments |  |
|---------------------------|------------|-------------------------------------------------------------|----------------------|-----------|--|
| 3:1<br>2:8<br>2:8         | 1001       | Light blue Indo-<br>Pacific bead                            | 1                    |           |  |
| 2:8                       | 17390      | orange Indo-Pacific<br>bead                                 | 1                    |           |  |
| 2:8                       | 17935      | Cobalt Indo-Pacific<br>bead                                 | 1                    |           |  |
|                           | 17389      | Light blue Indo-<br>Pacific bead                            | 1                    |           |  |
| 2 Feature 1               | 4351       | Light blue Indo-<br>Pacific bead                            | 1                    |           |  |
| 2:4/5 Feature 1           | 6557       | Yellow Indo-Pacific<br>bead                                 | 1                    |           |  |
| 2:1                       | Bag # 4711 | Light blue Indo-<br>Pacific bead                            | 0                    | 1         |  |
| 1:8                       | 17861      | Light blue Indo-<br>Pacific bead                            | 1                    |           |  |
|                           | 1          | Large blue glass bead with large hole                       | 1                    |           |  |
| 5:2                       | 115        | weathered and broken bead                                   | 1                    | 0         |  |
| 3:3                       | 17882      | orange wrapped tube<br>and light-blue Indo-<br>Pacific bead | 1                    |           |  |
| 2:5                       | 17883      | Dark blue Indo-<br>Pacific bead with<br>sharp edges         | 1                    |           |  |
| 1:9 gen spit              | 9004       | Broken Light blue<br>Indo-Pacific bead                      | 0                    | 1         |  |
| 2:5/6 Feature 2 Bag 11009 | 24505      | Coiled blue glass beads?                                    | 16                   |           |  |
| 2:3 Feature 3             | 2016       | Cobalt Indo-Pacific bead                                    | 1                    |           |  |
| 3:4                       | 17877      | Dark Blue Indo-<br>Pacific bead                             | 1                    |           |  |

| Notes                          |                     |                     |                         |                                          | unrounded edges     |      |                                         |                                  |                                  |                                  |                   |                                           |                     |                     |                |                      |                    |                      |                            |                                      |                             |
|--------------------------------|---------------------|---------------------|-------------------------|------------------------------------------|---------------------|------|-----------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------|-------------------------------------------|---------------------|---------------------|----------------|----------------------|--------------------|----------------------|----------------------------|--------------------------------------|-----------------------------|
| Broken<br>fragments            |                     |                     |                         |                                          |                     |      |                                         |                                  |                                  |                                  |                   |                                           |                     |                     |                |                      |                    |                      |                            | several pieces                       |                             |
| Total number of complete beads | 1                   | 1                   | 2                       | 3                                        | 1                   |      | 1                                       | 1                                | 1                                | 1                                | 2                 |                                           |                     |                     | 1              | &                    |                    |                      |                            |                                      | 1                           |
| Description on bag             |                     |                     |                         |                                          |                     |      |                                         |                                  |                                  |                                  |                   |                                           |                     |                     |                |                      |                    |                      |                            |                                      |                             |
| Beads                          | orange wrapped bead | orange wrapped bead | 2 orange wrapped beads? | 2 blue coiled beads and one cobalt Indo- | Cobalt Indo-Pacific | Dead | large clear/white<br>bead with big hole | Light blue Indo-<br>Pacific bead | Light blue Indo-<br>Pacific bead | Light blue Indo-<br>Pacific bead | blue glass vessel | frag? Light blue<br>Indo-Pacific head and | cobalt Indo Pacific | bead with unrounded | turq seed bead | Light Blue, 2 yellow | and 1 white opaque | Indo-Pacific bead. 4 | orange wrapped<br>tubes.// | broken weathered<br>blue glass beads | Cobalt Indo-Pacific<br>bead |
| Cat #                          | 2693                | 17876               | 17865                   | 23452                                    | 1784                | -    | 4                                       |                                  | 24512                            | 6559                             | 8015              |                                           |                     |                     | 6039           | 17863                |                    |                      |                            | 515                                  | 2974                        |
| Burial #                       |                     |                     |                         |                                          |                     |      |                                         |                                  |                                  |                                  |                   |                                           |                     |                     |                |                      |                    |                      |                            |                                      | gen spit                    |
| Level:Layer                    | 1:5                 | 2:5                 | 3:2 Feature 2           | 2:3 Feature 1                            | 2:9                 |      | 1:5                                     | topsoil                          | 3:2 Feature 3                    | 2:4/5 Feature 1                  |                   |                                           |                     |                     | 2:5 Feature 6  | 2:6 Feature 5        |                    |                      |                            | 3:4                                  | 1:4                         |

| O | Λ | 1 |
|---|---|---|
| a | u | 1 |

|                                |                                  |                                  |                             |                                         |                            |                            |                                     |                                  |                                  |                                  |                             |                             |                        |                     |                     |                     |                        |                             | 803 |
|--------------------------------|----------------------------------|----------------------------------|-----------------------------|-----------------------------------------|----------------------------|----------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------|-----------------------------|------------------------|---------------------|---------------------|---------------------|------------------------|-----------------------------|-----|
| Notes                          |                                  |                                  |                             |                                         |                            |                            |                                     |                                  |                                  |                                  |                             |                             |                        |                     |                     |                     |                        |                             |     |
| Broken<br>fragments            |                                  |                                  |                             |                                         |                            |                            | 1                                   |                                  |                                  | 1                                |                             |                             |                        |                     |                     |                     |                        |                             |     |
| Total number of complete beads | -                                | -                                | -                           | -                                       | -                          | -                          |                                     | -                                | 1                                |                                  | 1                           | 1                           | 2                      | 1                   | 2                   | 1                   | 2                      | 1                           |     |
| Description on bag             |                                  |                                  |                             |                                         |                            |                            |                                     |                                  |                                  |                                  |                             |                             |                        |                     |                     |                     |                        |                             |     |
| Beads                          | Light blue Indo-<br>Pacific bead | Light blue Indo-<br>Pacific bead | Cobalt Indo-Pacific<br>bead | Green opaque Indo-<br>Pacific microbead | Green Indo-Pacific<br>bead | blue glass earring<br>frag | broken weathered<br>blue glass bead | Light blue Indo-<br>Pacific bead | Light blue Indo-<br>Pacific bead | weathred blue glass<br>bead frag | Cobalt Indo-Pacific<br>bead | Yellow Indo-Pacific<br>bead | 2 orange wrapped beads | orange wrapped bead | Orange wrapped tube | orange wrapped bead | 2 orange wrapped beads | orange Indo-Pacific<br>bead |     |
| Cat #                          | 6558                             | 5140                             | 3351                        | 0696                                    | 4381                       | 22529                      | 24509                               | 17888                            | 17392                            | 3571                             | 22009                       | 7503                        | 17875                  | 5351                | 17881               | 24519               | 260                    | 17878                       |     |
| Burial #                       |                                  | gen spit                         |                             |                                         |                            | gen spit                   | gen spit                            |                                  |                                  |                                  | gen spit                    |                             |                        |                     |                     | gen spit            |                        |                             |     |
| Level:Layer                    | 2:4/5 Feature 1                  | 2:13                             | 2:5                         | 3:2                                     |                            | 3:4                        | 2:6                                 | 2:6                              | 2:8                              | 3:2                              | 2:4/5                       | 1:4/5 Feature 1             | 3:4                    | 2:6                 | 1:5                 | 3:2                 | 2:7                    | 1:10                        |     |

| Notes                          |                     |                                                             |                |                   |                     |                             |                                                             |                     |                     |                             |                            |                         |                |                         |                             |                     |                           |                     |                     |
|--------------------------------|---------------------|-------------------------------------------------------------|----------------|-------------------|---------------------|-----------------------------|-------------------------------------------------------------|---------------------|---------------------|-----------------------------|----------------------------|-------------------------|----------------|-------------------------|-----------------------------|---------------------|---------------------------|---------------------|---------------------|
| Broken<br>fragments            |                     |                                                             |                |                   |                     |                             |                                                             |                     |                     |                             |                            |                         |                |                         |                             |                     | 1                         |                     |                     |
| Total number of complete beads | 1                   | 2                                                           | 1              | 1                 | 1                   | 1                           | 1                                                           | 1                   | 1                   | 3                           | 1                          | 1                       | 1              | 2                       | 1                           | 1                   |                           | 1                   | _                   |
| Description on bag             |                     |                                                             |                |                   |                     |                             |                                                             |                     |                     |                             |                            |                         |                |                         |                             |                     |                           |                     |                     |
| Beads                          | orange wrapped bead | Orange wrapped tube<br>and light blue Indo-<br>Pacific bead | orange wrapped | orange micro bead | orange wrapped bead | orange Indo-Pacific<br>bead | Orange wrapped tube<br>and light blue Indo-<br>Pacific bead | orange wrapped bead | orange wrapped bead | 3 orange wrapped tube beads | 1 orange wrapped tube bead | orange wrapped<br>small | orange wrapped | 2 orange wrapped beads? | orange wrapped tube<br>bead | orange wrapped tube | broken orange<br>wrapped? | orange wrapped bead | orange wrapped bead |
| Cat #                          | 9559                | 4874                                                        | 25513          | 11516             | 210                 | 17884                       | 17880                                                       | 374                 | 6040                | 123                         | 25515                      | 17867                   | 257            | 17885                   | 17872                       | 17870               | 291                       | 23014               | 279                 |
| Burial #                       |                     |                                                             |                |                   |                     |                             |                                                             |                     |                     |                             |                            |                         |                |                         |                             |                     |                           |                     |                     |
| Level:Layer                    | 2:4/5 Feature 1     | 4:3                                                         | 2:3            | 2:7               | 2:9                 | 3:3                         | 3:4                                                         | 3:1                 | 2:5/6 Feature 6     | 2:5                         | 2:6                        | 3:3                     | 2:7            | 3:3                     | 3:2                         | 4:10                | 2:6                       | 3:2                 | 2:7                 |

| Level:Layer     | Burial #   | Cat #           | Beads                                           | Description on bag | Total number         | Broken         | Notes |
|-----------------|------------|-----------------|-------------------------------------------------|--------------------|----------------------|----------------|-------|
|                 |            |                 |                                                 |                    | of complete<br>beads | fragments      |       |
| 2:6             |            | 193             | orange wrapped<br>small                         |                    | 1                    |                |       |
| 3:1 Feature 1   |            | 22923           | orange wrapped<br>small                         |                    | 1                    |                |       |
| 4:2             | residue    | 8033            | orange wrapped<br>small                         |                    | 1                    |                |       |
| 4:1 Feature 1   |            | 1779            | orange wrapped<br>small                         |                    | 1                    |                |       |
| 2:4/5 Feature 1 |            | 6537            | rounded orange tube                             |                    | 1                    |                |       |
| 2:7 Feature 15  |            | 233             | orange wrapped bead                             |                    | 100                  |                |       |
| 2:10            |            | 2090            | Dark blue glass<br>chunk                        |                    | 1                    |                |       |
|                 | burial 211 | 25424           | blue glass bangle<br>frags? Many                |                    | 1                    |                |       |
| 1:4             |            | 1452            | vessel glass- dark<br>brown rainbow<br>coating  |                    | 1                    |                |       |
| 4:6             | gen spit   | 3073            | dark brown/black<br>vessel glass                |                    | 1                    |                |       |
| 2:3             |            | 2509            | turq blue glass<br>earring/ring/bangle<br>frag  |                    | 1                    |                |       |
| 5:2             |            | 4558            | turq blue glass<br>earring/ring/bangle<br>frags |                    | 1                    |                |       |
| 4:1             |            | 5108 or<br>5168 | weathred blue glass<br>frags                    |                    |                      | several pieces |       |
| 3:1             |            | 27              | weathred blue glass<br>frag                     |                    |                      | several pieces |       |

Appendix 7.1j: Glass beads from Ban Non Wat and Noen U-Loke analyzed using LA-ICP-MS

| Opacity              | Translucent                                        | Opaque               | Translucent                      | Translucent                 | Translucent                    | Translucent               | Translucent                  | Translucent                   |
|----------------------|----------------------------------------------------|----------------------|----------------------------------|-----------------------------|--------------------------------|---------------------------|------------------------------|-------------------------------|
| Glass Color<br>Notes |                                                    |                      |                                  |                             |                                |                           |                              |                               |
| Glass Colors         | Dark Brown                                         | Yellow               | Blue                             | Grey                        | Dark Blue                      | Dark Blue                 | Dark Blue                    | Blue                          |
| Bead Shape           | Indo-Pacific<br>Bead                               | Indo-Pacific<br>Bead | Indo-Pacific<br>Bead             | Indo-Pacific<br>Bead        | Indo-Pacific<br>Bead           | Indo-Pacific<br>Bead      | Indo-Pacific<br>Bead         | Indo-Pacific<br>Bead          |
| Total #<br>of beads  | 1                                                  | 1                    | 1                                | 1                           | -                              | П                         | П                            | 1                             |
| Catalogue Number     | 1465/NUL-001                                       | 141/NUL-002          | 1457/NUL-003                     | 1417/NUL-004                | 1414/NUL-005                   | 1414/NUL-006              | 1457/NUL-007                 | 1457/NUL-008                  |
| Context Notes        | NUL Cat 1465<br>X1 3 [13 E. Grave<br>105<br>T10 B8 | 3:6 Feature 1        | NUL #930<br>Cat No #1457<br>T9B3 | NUL 915<br>Cat 1417<br>T9B9 | Burial 102<br>Cat 1414<br>T9B2 | B102<br>Cat #1414<br>T9B1 | NUL 930<br>Cat #1457<br>T9B8 | NUL #930<br>Cat #1457<br>T9B4 |
| Site Name            | Noen U-Loke                                        | Noen U-Loke          | Noen U-Loke                      | Noen U-Loke                 | Noen U-Loke                    | Noen U-Loke               | Noen U-Loke                  | Noen U-Loke                   |
| Database ID          | AKC02001                                           | AKC02002             | AKC02003                         | AKC02004                    | AKC02005                       | AKC02006                  | AKC02007                     | AKC02008                      |

| Opacity              | Semi-Translucent             | Translucent                                            |                                                  | Translucent                                      | Translucent                                      | Translucent                                      | Translucent                                 | Semi-Translucent                            |
|----------------------|------------------------------|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|
| Glass Color<br>Notes |                              |                                                        | Corroded                                         |                                                  |                                                  |                                                  |                                             | Almost purple                               |
| Glass Colors         | Dark Blue                    | Blue                                                   | Dark Blue                                        | White                                            | Blue                                             | Blue-Green                                       | Dark Blue                                   | Dark Blue                                   |
| Bead Shape           | Indo-Pacific<br>Bead         | Indo-Pacific<br>Bead                                   | Indo-Pacific<br>Bead                             | Indo-Pacific<br>Bead                             | Indo-Pacific<br>Bead                             | Indo-Pacific<br>Bead                             | Indo-Pacific<br>Bead                        | Indo-Pacific<br>Bead                        |
| Total # of beads     | 1                            |                                                        |                                                  | -                                                | 2                                                | 2                                                | 2                                           | 2                                           |
| Catalogue Number     | 1457/NUL-009                 | 207/NUL-010                                            | 1417/NUL-011                                     | 1502/NUL-012                                     | 1417/NUL-013                                     | 1417/NUL-014                                     | 1414/NUL-015                                | 1414/NUL-016                                |
| Context Notes        | NUL 930<br>Cat 1457<br>T9 B7 | NUL #96 Cat 207 Burial 8 B2 3:2 Residue Phase 5 T10 B2 | NUL #915<br>Cat #1417 3:9<br>Feature 1<br>T9 B10 | B102<br>Cat # 1414<br>T8B8 Royal Blue<br>TP | B102<br>Cat # 1414<br>T8B8 Royal Blue<br>TP |
| Site Name            | Noen U-Loke                  | Noen U-Loke                                            | Noen U-Loke                                      | Noen U-Loke                                      | Noen U-Loke                                      | Noen U-Loke                                      | Noen U-Loke                                 | Noen U-Loke                                 |
| Database ID          | AKC02009                     | AKC02010                                               | AKC02011                                         | AKC02012                                         | AKC02013                                         | AKC02014                                         | AKC02015                                    | AKC02016                                    |

| Context Notes Catalogue Number  NUL #115 207/NUL-018      |
|-----------------------------------------------------------|
|                                                           |
| NUL #115 207/NUL-019 Phase 5 Residue Burial 8 Cat 207 (A) |
| NUL #115 207/NUL-020 Phase 5 Residue Burial 8 Cat 207 (A) |
| NUL #115 207/NUL-021 Phase 5 Residue Burial 8 Cat 207 (A) |
| NUL #115 207/NUL-022 Phase 5 Residue Burial 8 Cat 207 (A) |
| NUL #115 207/NUL-023 Phase 5 Residue Burial 8 Cat 207 (A) |

| Glass Color Opacity Notes | Red core with Opaque orange exterior          | Opaque                                      | Semi-Translucent                            | Opaque                           |
|---------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------|
| Glass Colors Glass No     | Orange and Red   Red cc ora                   | Orange and Red Red co                         | Orange and Red Red co                         | Orange and Red Red co                         | Orange                                      | Dark Blue                                   | Orange                           |
| Bead Shape                | Indo-Pacific<br>Microbead                     | Indo-Pacific<br>Microbead                     | Indo-Pacific<br>Microbead                     | Indo-Pacific<br>Microbead                     | Wrapped<br>tubular bead                     | Large Indo-<br>Pacific bead                 | Orange<br>wrapped bead           |
| Total # of beads          | 175                                           | 175                                           | 175                                           | 175                                           | 10                                          | 2                                           | 9                                |
| Catalogue Number          | 207/NUL-024                                   | 207/NUL-025                                   | 207/NUL-026                                   | 207/NUL-027                                   | 207/NUL-028                                 | 207/NUL-029                                 | 207/NUL-030                      |
| Context Notes             | NUL #115 Phase 5 Residue Burial 8 Cat 207 (A) | NUL #115 Phase 5 Residue Burial 8 Cat 207 (A) | NUL #115 Phase 5 Residue Burial 8 Cat 207 (A) | NUL #115 Phase 5 Residue Burial 8 Cat 207 (A) | NUL #319<br>A2 4:11<br>Burial 37<br>Phase 2 | NUL #319<br>A2 4:11<br>Burial 37<br>Phase 2 | NUL #319<br>A2 4:11<br>Burial 37 |
| Site Name                 | Noen U-Loke                                   | Noen U-Loke                                   | Noen U-Loke                                   | Noen U-Loke                                   | Noen U-Loke                                 | Noen U-Loke                                 | Noen U-Loke                      |
| Database ID               | AKC02024                                      | AKC02025                                      | AKC02026                                      | AKC02027                                      | AKC02028                                    | AKC02029                                    | AKC02030                         |

| Database ID | Site Name   | Context Notes                                                         | Catalogue Number | Total # of beads | Bead Shape           | Glass Colors | Glass Color<br>Notes | Opacity                    |
|-------------|-------------|-----------------------------------------------------------------------|------------------|------------------|----------------------|--------------|----------------------|----------------------------|
| AKC02031    | Ban Non Wat | BNW 05/06<br>F7 #8903<br>2:1 Feature 12<br>Cat 19501<br>18.12.05      | 19501            | 1                | Coiled bead          | Blue         | Corroded             |                            |
| AKC02032    | Ban Non Wat | BNW 05/06<br>13/12/05<br>G5 2:[2 Feature 6<br>Bag #9104<br>Cat: 20002 | 20002            | 1                | Spherical            | Yellow       | Shiny surface        | Opaque                     |
| AKC02033    | Ban Non Wat | BNW 05/06<br>G5 #9104<br>2:[2 feature 6<br>17.12.05<br>Cat 20009      | 20009            | 1                | Short bicone         | Light Blue   |                      | Opaque                     |
| AKC02034    | Ban Non Wat | G6 2:7 General<br>Spit<br>Cat 20523<br>Bag 9312<br>24/12/05           | 20523            | 1                | Indo-Pacific<br>Bead | Light Blue   |                      | Semi-Translucent           |
| AKC02035    | Ban Non Wat | BNW 05/06<br>G6 2:[5 Feature 5<br>Bag # 9507<br>Cat 20512<br>18.12.05 | 20512            | 1                | Indo-Pacific<br>Bead | Yellow       |                      | Opaque<br>Semi-Translucent |
| AKC02036    | Ban Non Wat | BNW 05/06<br>G6 Bag #9309<br>2:5 Cat 20514<br>2.12.05                 | 20514            | 1                | Wrapped bead         | Orange       |                      | Opaque                     |
| AKC02037    | Ban Non Wat | BNW 05/06<br>G6 2:5<br>Bag 9309<br>Cat 20519                          | 20519            | 1                | Indo-Pacific<br>bead | Orange       |                      | Opaque                     |

| Opacity              | Translucent                                                       | Semi-Translucent                                     |                                                    |                                                       |                                                       |                                                        |
|----------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Glass Color<br>Notes |                                                                   | Corroded                                             | Corroded                                           | Corroded                                              | Corroded                                              | Corroded                                               |
| Glass Colors         | Light Blue                                                        | Light Blue                                           | Blue                                               | Blue                                                  | Blue                                                  | Blue                                                   |
| Bead Shape           | Earring                                                           | Earring fragment                                     | Large Indo-<br>Pacific Bead                        | Earring<br>fragment?                                  | Earring<br>fragment?                                  | Earring<br>fragment?                                   |
| Total # of beads     |                                                                   | 1                                                    | 1                                                  | П                                                     | 1                                                     | 1                                                      |
| Catalogue Number     | 19013                                                             | 17673                                                | 18066                                              | 19773                                                 | 19780                                                 | 17671                                                  |
| Context Notes        | BNW 05/06<br>F6 2:6 Gen Spit<br>Bag 8714<br>Cat 19013<br>22.12.05 | BNW 05/06<br>E6 B. 235 4:[1<br>Cat 17673<br>Bag 8155 | BNW 05/06<br>E7 3:[3 B259<br>Cat 18066<br>Bag 8324 | BNW 05/06<br>F7 4:3<br>B 357<br>Cat 19773<br>Bag 8953 | BNW 05/06<br>F7 6:3<br>B 357<br>Cat 19780<br>Bag 8953 | BNW 05/06<br>E6 4:[1<br>B 235<br>Cat 17671<br>Bag 8155 |
| Site Name            | Ban Non Wat                                                       | Ban Non Wat                                          | Ban Non Wat                                        | Ban Non Wat                                           | Ban Non Wat                                           | Ban Non Wat                                            |
| Database ID          | AKC02038                                                          | AKC02039                                             | AKC02040                                           | AKC02041                                              | AKC02042                                              | AKC02043                                               |

| Opacity              | Translucent                                   | Opaque                                                    | Opaque                                                    | Opaque                                                    | Semi-Translucent                                          |
|----------------------|-----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Glass Color<br>Notes | Corroded, rainbow-coating?                    | Reddish-<br>brown                                         | Light orange                                              |                                                           |                                                           |
| Glass Colors         | Dark Blue-Green                               | Red                                                       | Orange                                                    | Yellow                                                    | Dark Blue                                                 |
| Bead Shape           | Vessel<br>fragment                            | Indo-Pacific<br>Bead                                      | Indo-Pacific<br>Bead                                      | Indo-Pacific<br>Bead                                      | Indo-Pacific<br>Bead                                      |
| Total # of beads     |                                               | 112                                                       | 112                                                       | 112                                                       | 112                                                       |
| Catalogue Number     | 18014                                         | 15506                                                     | 15506                                                     | 15506                                                     | 15506                                                     |
| Context Notes        | BNW 05/06<br>E7 2:7<br>Bag #8316<br>Cat 18014 | BNW 04/05 AA2 2:S2 Bag 7304 Burial 266 Cat 15506 Necklace | BNW 04/05 AA2 2:S2 Bag 7304 Burial 266 Cat 15506 Necklace | BNW 04/05 AA2 2:S2 Bag 7304 Burial 266 Cat 15506 Necklace | BNW 04/05 AA2 2:S2 Bag 7304 Burial 266 Cat 15506 Necklace |
| Site Name            | Ban Non Wat                                   | Ban Non Wat                                               | Ban Non Wat                                               | Ban Non Wat                                               | Ban Non Wat                                               |
| Database ID          | AKC02044                                      | AKC02045                                                  | AKC02046                                                  | AKC02047                                                  | AKC02048                                                  |

| Opacity              | Translucent                                                                 | Translucent                                                                 | Semi-Translucent                                          | Opaque                                                    | Opaque                                                       |
|----------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Glass Color<br>Notes |                                                                             | Turquoise                                                                   | Milky-white                                               |                                                           |                                                              |
| Glass Colors         | Dark Blue                                                                   | Light Blue                                                                  | White                                                     | Black                                                     | Turquoise                                                    |
| Bead Shape           | Indo-Pacific<br>Bead                                                        | Indo-Pacific<br>Bead                                                        | Indo-Pacific<br>Bead                                      | Indo-Pacific<br>Bead                                      | Coiled bead                                                  |
| Total # of beads     | 112                                                                         | 112                                                                         | 112                                                       | 112                                                       | 16                                                           |
| Catalogue Number     | 15506                                                                       | 15506                                                                       | 15506                                                     | 15506                                                     | 24505                                                        |
| Context Notes        | BNW 04/05<br>AA2<br>2:S2<br>Bag 7304<br>Burial 266<br>Cat 15506<br>Necklace | BNW 04/05<br>AA2<br>2:S2<br>Bag 7304<br>Burial 266<br>Cat 15506<br>Necklace | BNW 04/05 AA2 2:S2 Bag 7304 Burial 266 Cat 15506 Necklace | BNW 04/05 AA2 2:S2 Bag 7304 Burial 266 Cat 15506 Necklace | BNW 06/07<br>E4<br>2:5/6 feature 2<br>Bag 11009<br>Cat 24505 |
| Site Name            | Ban Non Wat                                                                 | Ban Non Wat                                                                 | Ban Non Wat                                               | Ban Non Wat                                               | Ban Non Wat                                                  |
| Database ID          | AKC02049                                                                    | AKC02050                                                                    | AKC02051                                                  | AKC02052                                                  | AKC02053                                                     |

| olor Opacity         | ring Semi-Translucent                      | Translucent                                       | ish Transparent                                | Transparent<br>Translucent                                 | Translucent                        | Semi-Translucent                               |
|----------------------|--------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------|------------------------------------------------|
| Glass Color<br>Notes | Weathering<br>on surface                   |                                                   | yellowish                                      |                                                            |                                    |                                                |
| Glass Colors         | Light Blue                                 | Blue-Green                                        | White                                          | Dark Blue                                                  | Turquoise                          | Dark Green                                     |
| Bead Shape           | Bangle<br>fragment?                        | Spherical                                         | Spherical                                      | Glass<br>Fragment                                          | Indo-Pacific<br>Bead               | Bangle<br>fragment?                            |
| Total # of beads     | 1                                          | 1                                                 | 1                                              | 1                                                          | 1                                  | 1                                              |
| Catalogue Number     | 18                                         | 393                                               | 4                                              | 5090                                                       | 8253                               | 3073                                           |
| Context Notes        | BNW 02<br>Y1<br>Bag 34<br>Cat 18<br>4.2.02 | BNW 02<br>A4<br>1:2<br>Bag 2<br>Cat 393<br>4.1.02 | BNW<br>Y1<br>1:S5<br>Bag 18<br>Cat 4<br>1.2.02 | BNW 02/03<br>X1<br>2:10<br>Bag 1979<br>Cat 5090<br>20.2.03 | BNW 03/04<br>A3<br>1:5<br>Cat 8253 | BNW 02/03<br>B3<br>4:6<br>Bag 1166<br>Cat 3073 |
| Site Name            | Ban Non Wat                                | Ban Non Wat                                       | Ban Non Wat                                    | Ban Non Wat                                                | Ban Non Wat                        | Ban Non Wat                                    |
| Database ID          | AKC02054                                   | AKC02055                                          | AKC02056                                       | AKC02057                                                   | AKC02058                           | AKC02059                                       |

|                     |             |             |             |             |             |                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             | 81 |
|---------------------|-------------|-------------|-------------|-------------|-------------|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----|
| Notes               | Broken      | Broken      |             |             |             | other half of<br>AKC02005 |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |    |
| Thickness           |             |             | 0           | 0           |             |                           |             |             |             |             |             | 0           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |    |
| Max. Width          | 0           | 0           |             |             |             |                           |             |             |             |             |             | 0           | 4.11        | 3.48        | 0           |             | 0           | 1.56        | 4.33        | 4.71        | 3.96        | 1.68        | 1.36        | 1.42        | 1.6         | 1.24        |    |
| Max. Length         | 0           | 0           | 1.86        | 3.36        | 3.4         | 3                         | 2.9         | 3.3         | 3.52        |             |             | 0           | 2.32        | 2.41        | 0           | 2.93        | 0           | 8.0         | 2.4         | 2.37        | 1.98        | 1.24        | 1.23        | 76.0        | 0.74        | 1.25        |    |
| Interior<br>Perf. B |             |             |             |             |             |                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |    |
| Interior Perf. A    |             |             |             |             |             |                           |             |             |             |             |             |             | 1.19        | 1.74        |             |             |             | 0           | 1.27        | 1.24        | 86.0        | 0           | 0           | 0           | 0           | 0           |    |
| Roundness Factor    | NA          | NA          | R0          | NA          | R0          | R0                        | R0          | R0          | R1          | NA          | NA          | R3          | R2          | R0          | NA          | R0          | NA          | R2          | R2          | R2          | R1          | R1          | R1          | R1          | R1          | R1          |    |
| Site Name           | Noen U-Loke               | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke | Noen U-Loke |    |
| Database ID         | AKC02001    | AKC02002    | AKC02003    | AKC02004    | AKC02005    | AKC02006                  | AKC02007    | AKC02008    | AKC02009    | AKC02010    | AKC02011    | AKC02012    | AKC02013    | AKC02014    | AKC02015    | AKC02016    | AKC02018    | AKC02019    | AKC02020    | AKC02021    | AKC02022    | AKC02023    | AKC02024    | AKC02025    | AKC02026    | AKC02027    |    |

| Database ID | Site Name   | Roundness Factor | Interior Perf. A | Interior<br>Perf. B | Max. Length | Max. Width | Thickness | Notes                                 |
|-------------|-------------|------------------|------------------|---------------------|-------------|------------|-----------|---------------------------------------|
| AKC02028    | Noen U-Loke | R1               | 1.15             |                     | 4.27        | 2.33       |           |                                       |
| AKC02029    | Noen U-Loke | R3               | 1.82             |                     | 4.82        | 6.21       |           |                                       |
| AKC02030    | Noen U-Loke | RO               | 2.42             |                     | 1.89        | 5.11       |           |                                       |
| AKC02031    | Ban Non Wat | NA               | 1.73             |                     | 5.29        | 5.46       |           |                                       |
| AKC02032    | Ban Non Wat | R3               | 1.05             |                     | 5.91        | 99.9       |           |                                       |
| AKC02033    | Ban Non Wat | NA               | 2.15             |                     | 5           | 10.65      |           |                                       |
| AKC02034    | Ban Non Wat | R2               | 1.17             |                     | 2.46        | 3.71       |           |                                       |
| AKC02035    | Ban Non Wat | R2               | 1.61             |                     | 2.45        | 4.45       |           |                                       |
| AKC02036    | Ban Non Wat | R0               | 0                |                     | 1.02        | 4.5        |           |                                       |
| AKC02037    | Ban Non Wat | R3               | 0.84             |                     | 2.36        | 3.11       |           |                                       |
| AKC02038    | Ban Non Wat | NA               |                  |                     | 15.55       |            | 3.73      |                                       |
| AKC02039    | Ban Non Wat | NA               |                  |                     |             |            | 5.78      |                                       |
| AKC02040    | Ban Non Wat | NA               | 0                |                     | 6.92        | 8.55       |           | Fragile bead,                         |
| 17,000,011  | D M W.      | * 14             |                  |                     |             |            |           | The file of the same                  |
| AKC02041    | Ban Non wat | V.               |                  |                     |             |            |           | Fragile bead,<br>difficult to measure |
| AKC02042    | Ban Non Wat | NA               |                  |                     |             |            |           | Fragile bead, difficult to measure    |
| AKC02043    | Ban Non Wat | NA               |                  |                     |             |            |           | Fragile bead,                         |
| AKC02044    | Ban Non Wat | NA               |                  |                     |             |            | 3.71138   | curved piece of                       |
| AKC02045    | Ban Non Wat | R1               | 1.33             | 1.3                 | 7.04        | 3.55       |           |                                       |
| AKC02046    | Ban Non Wat | R2               | 1.12             | 1.11                | 4.42        | 3.46       |           |                                       |
| AKC02047    | Ban Non Wat | R1               | 1.42             | 1.38                | 4.92        | 5.09       | 4.48      |                                       |
| AKC02048    | Ban Non Wat | R2               | 1.05             | 1.85                | 3.25        | 4.85       |           |                                       |
| AKC02049    | Ban Non Wat | RO               | 1.93             | 1.96                | 4.66        | 4.61       |           |                                       |
| AKC02050    | Ban Non Wat | R1               | 0.92             | 0.95                | 3.45        | 3.72       |           |                                       |
| AKC02051    | Ban Non Wat | R1               | 1.72             |                     | 2.39        | 4.95       |           |                                       |

| Database ID | Site Name            | Roundness Factor | Interior Perf. A Interior Max. Length | Interior | Max. Length | Max. Width | Thickness | Notes |
|-------------|----------------------|------------------|---------------------------------------|----------|-------------|------------|-----------|-------|
|             |                      |                  |                                       | Perf. B  |             |            |           |       |
| AKC02052    | Ban Non Wat          | R1               | 1.82                                  |          | 2.37        | 4.73       |           |       |
| AKC02053    | Ban Non Wat          |                  | 1.72                                  | 1.76     | 5.25        | 5.97       |           |       |
| AKC02054    | Ban Non Wat          |                  |                                       |          | 12.98       | 8.53       | 6.16      |       |
| AKC02055    | AKC02055 Ban Non Wat |                  | 3.63                                  | 3.77     | 7           | 9.8        |           |       |
| AKC02056    | AKC02056 Ban Non Wat |                  | 2.87                                  | 2.87     | 10.11       | 11.7       |           |       |
| AKC02057    | Ban Non Wat          |                  |                                       |          | 19.52       | 16.54      | 6.25      |       |
| AKC02058    | Ban Non Wat          |                  |                                       |          | 22.61       | 8.31       | 5.27      |       |
| AKC02059    | Ban Non Wat          |                  |                                       |          | 23          | 12.93      | 3.65      |       |

## Appendix 7.2:LA-ICP-MS data for glass artifacts

| Database ID | Site Name       | Glass Type            | Bead Description                      | SiO2  | Na2O  | MgO  | A12O3 | P203 | K20  | CaO  |
|-------------|-----------------|-----------------------|---------------------------------------|-------|-------|------|-------|------|------|------|
| AKC02589    | Angkor<br>Borei | m-Na-Al Type 1        | Dark blue-green Indo-<br>Pacific bead | 65.1% | 18.0% | 0.4% | %7.6  | 0.1% | 2.8% | 2.0% |
| AKC02519    | Angkor<br>Borei | m-Na-Al Type 1        | Yellow Indo-Pacific Bead              | 67.3% | 15.2% | 0.3% | 8.4%  | 0.1% | 1.8% | 2.5% |
| AKC02585    | Angkor<br>Borei | Unknown m-Na-<br>Al?  | Dark purple Indo-Pacific<br>Bead      | 74.2% | 13.4% | 0.4% | 5.4%  | 0.1% | 2.5% | 1.4% |
| AKC02584    | Angkor<br>Borei | Unknown m-Na-<br>Al?  | Dark purple Indo-Pacific<br>Bead      | 75.0% | 12.9% | 0.4% | %0.5  | %0.0 | 2.7% | 1.4% |
| AKC02590    | Angkor<br>Borei | Unknown m-Na-<br>Al?  | Dark purple Indo-Pacific<br>Bead      | 73.9% | 15.6% | 0.3% | 5.1%  | %0.0 | 1.4% | 1.3% |
| AKC02591    | Angkor<br>Borei | Unknown m-Na-<br>Al?  | Dark purple Indo-Pacific<br>Bead      | 71.8% | 13.6% | 0.3% | 8.1%  | %0.0 | 1.6% | 1.6% |
| AKC02587    | Angkor<br>Borei | m-Na-Ca-Al            | Dark blue Indo-Pacific bead           | 75.2% | 12.0% | 0.5% | 3.5%  | 0.2% | 1.3% | 4.9% |
| AKC02588    | Angkor<br>Borei | m-Na-Ca-Al            | Dark blue Indo-Pacific bead           | 72.8% | %6.6  | %9.0 | %7'9  | 0.1% | 1.7% | 5.7% |
| AKC02586    | Angkor<br>Borei | m-Na-Ca-Al            | Dark blue Indo-Pacific bead           | 75.2% | 10.0% | %9.0 | 4.5%  | 0.1% | 1.4% | 5.3% |
| AKC02594b   | Angkor<br>Borei | v-Na-Ca               | Dark blue Indo-Pacific bead           | 68.1% | 16.0% | 2.5% | 2.9%  | 0.2% | 2.3% | %0.9 |
| AKC02595    | Angkor<br>Borei | v-Na-Ca               | Dark blue Indo-Pacific bead           | %8′29 | 17.2% | 2.6% | 3.1%  | 0.1% | 1.9% | 5.4% |
| AKC02592    | Angkor<br>Borei | v-Na-Ca               | Dark blue Indo-Pacific bead           | 64.3% | %6.41 | 3.0% | %0.2  | 0.2% | 7.8% | 8.2% |
| AKC02594y   | Angkor<br>Borei | Unknown               | Cream Indo-Pacific bead               | 78.9% | 0.1%  | %8.0 | %8°L  | 2.9% | 1.7% | 4.3% |
| AKC02593    | Angkor<br>Borei | Unknown/Weather<br>ed | Wound yellow faience<br>bead?         | %6.9% | %8.8  | 0.1% | 13.6% | 0.2% | 5.2% | 2.3% |
| AKC02596    | Angkor<br>Borei | Unknown/Weather<br>ed | Weathered large green bead?           | 70.1% | %9.6  | 1.2% | 4.7%  | 0.4% | 1.7% | 2.4% |

| CaO              | 4.2%                | 1.7%                  | 5.4%                  | 3.0%                  | 2.8%                  | 3.2%                     | 1.7%                     | 2.8%                        | 1.8%                        | 1.4%                    | 4.4%                    | 2.7%                     | 1.8%                   | 4.5%                     | 4.4%             | 4.8%                       | 0.2%                     | 819 |
|------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------|--------------------------|-----------------------------|-----------------------------|-------------------------|-------------------------|--------------------------|------------------------|--------------------------|------------------|----------------------------|--------------------------|-----|
| K20 (            | 14.2% 4             | 11.8%                 | 0.8%                  | 13.5% 3               | 2.1% 2                | 1.9% 3                   | 2.3% 1                   | 2.0% 2                      | 2.4% 1                      | 1.7% 1                  | 1.8% 4                  | 1.5% 2                   | 2.2%                   | 2.1% 4                   | 3.6% 4           | 9.6%                       | 0 %9.8                   |     |
| P203             | 0.3%                | 0.2%                  | 0.2%                  | 0.2%                  | 0.1%                  | 0.2%                     | %0.0                     | %0.0                        | %0.0                        | %0.0                    | %0.0                    | %0.0                     | %0.0                   | 0.2%                     | 0.2%             | %0.0                       | %0.0                     |     |
| A12O3            | 1.4%                | 1.6%                  | 1.9%                  | 3.4%                  | 9.3%                  | 12.6%                    | %9.8                     | 9.2%                        | %2.6                        | %8.9                    | %9.6                    | 7.1%                     | 8.4%                   | 13.4%                    | %9.0             | 0.2%                       | %9.0                     |     |
| MgO              | 0.5%                | 0.3%                  | 0.5%                  | 0.3%                  | 0.4%                  | %8.0                     | 0.3%                     | 0.4%                        | 0.3%                        | 0.4%                    | 0.7%                    | 0.3%                     | 0.3%                   | 1.1%                     | 0.1%             | 0.1%                       | 0.1%                     |     |
| Na2O             | 1.4%                | %9.0                  | 0.1%                  | %8.0                  | 13.0%                 | 12.6%                    | 13.9%                    | 14.1%                       | 14.3%                       | 12.0%                   | 14.6%                   | 18.5%                    | 18.1%                  | 14.2%                    | 0.1%             | 1.9%                       | 0.2%                     |     |
| SiO2             | 75.2%               | 82.2%                 | 89.2%                 | 77.2%                 | 67.1%                 | 25.9%                    | 65.3%                    | %9.89                       | %8.29                       | 74.8%                   | 67.1%                   | 63.6%                    | %6.99                  | 56.3%                    | 54.8%            | 45.7%                      | 36.6%                    |     |
| Bead Description | Blue glass fragment | Blue earring fragment | Blue earring fragment | Blue earring fragment | Red Indo-Pacific bead | Orange Indo-Pacific bead | Yellow Indo-Pacific bead | Turquoise Indo-Pacific bead | Dark blue Indo-Pacific bead | Black Indo-Pacific bead | White Indo-Pacific bead | Yellow Indo-Pacific bead | Blue Indo-Pacific bead | Orange Indo-Pacific bead | Blue coiled bead | Blue flattened bicone bead | Yellow Indo-Pacific bead |     |
| Glass Type       | m-K-Ca-Al           | m-K-Ca-Al             | m-K-Ca-Al             | m-K-Ca-Al             | m-Na-Al Type 1        | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1              | m-Na-Al Type 1              | m-Na-Al Type 1          | m-Na-Al Type 1          | m-Na-Al Type 1           | m-Na-Al Type 1         | m-Na-Al Type 1           | lead glass       | lead glass                 | lead glass               |     |
| Site Name        | Ban Non<br>Wat      | Ban Non<br>Wat        | Ban Non<br>Wat        | Ban Non<br>Wat        | Ban Non<br>Wat        | Ban Non<br>Wat           | Ban Non<br>Wat           | Ban Non<br>Wat              | Ban Non<br>Wat              | Ban Non<br>Wat          | Ban Non<br>Wat          | Ban Non<br>Wat           | Ban Non<br>Wat         | Ban Non<br>Wat           | Ban Non<br>Wat   | Ban Non<br>Wat             | Ban Non<br>Wat           |     |
| Database ID      | AKC02057            | AKC02039              | AKC02043              | AKC02038              | AKC02045              | AKC02046                 | AKC02047                 | AKC02050                    | AKC02048                    | AKC02052                | AKC02051                | AKC02032                 | AKC02034               | AKC02037                 | AKC02031         | AKC02033                   | AKC02035                 |     |

| CaO              | 4.2%             | 4.1%                          | 8.4%                  | %8.8                                | 2.9%                | 15.9%                  | 19.1%                  | 3.4%           | 3.6%           | 1.9%                        | %9.0                         | %6.0                   | 0.4%                         | 0.3%                           | 4.3%                                | 3.5%                      | 5.2%              | 2.4%                            | 820 |
|------------------|------------------|-------------------------------|-----------------------|-------------------------------------|---------------------|------------------------|------------------------|----------------|----------------|-----------------------------|------------------------------|------------------------|------------------------------|--------------------------------|-------------------------------------|---------------------------|-------------------|---------------------------------|-----|
| K20              | 7 %8.6           | 1.0%                          | 1.8%                  | 2.8%                                | 8.6%                | 9.7%                   | 6.0% 1                 | 2.3%           | 4.5%           | 16.2%                       | 16.8%                        | 14.9%                  | 16.0%                        | 15.9%                          | 2.0%                                | 1.9%                      | %8.0              | 2.4%                            |     |
| P203             | %0.0             | 0.1%                          | 0.2%                  | 0.4%                                | 1.5%                | 0.1%                   | %0.0                   | %6.0           | 0.3%           | 0.1%                        | 0.2%                         | 0.1%                   | 0.1%                         | 0.1%                           | 0.2%                                | 0.1%                      | 0.1%              | %0.0                            |     |
| A12O3            | 0.2%             | 5.4%                          | 1.4%                  | 2.3%                                | 6.4%                | 5.8%                   | 5.3%                   | 1.1%           | 3.8%           | 2.0%                        | 3.9%                         | 3.4%                   | 4.7%                         | 4.2%                           | %9.6                                | %6.6                      | 3.9%              | 9.5%                            |     |
| $M_{gO}$         | 0.2%             | 0.4%                          | 2.7%                  | 3.5%                                | 1.9%                | 5.3%                   | 5.8%                   | 0.4%           | 0.4%           | 0.4%                        | 0.3%                         | 0.3%                   | 0.1%                         | 0.1%                           | %8.0                                | 0.5%                      | 0.3%              | 0.3%                            |     |
| Na2O             | 2.0%             | 13.2%                         | 16.9%                 | 16.8%                               | 6.5%                | 3.5%                   | 3.9%                   | %0.0           | 0.2%           | %6.0                        | %9.0                         | 0.2%                   | %8.0                         | 1.0%                           | 14.5%                               | 13.5%                     | 14.6%             | 18.2%                           |     |
| SiO2             | 40.0%            | 72.3%                         | %0.79                 | 61.1%                               | %0.99               | 57.7%                  | 58.5%                  | 87.3%          | %0.58          | 72.5%                       | 73.6%                        | %8.9/                  | 76.2%                        | 75.8%                          | %9:59                               | 63.6%                     | 73.1%             | 63.5%                           |     |
| Bead Description | Blue coiled bead | Cobalt blue Indo-Pacific bead | Blue bangle fragment? | Transparent blue-green vessel glass | Orange wrapped bead | Large green glass bead | Large clear glass bead | Bangle?        | Bangle?        | Dark blue Indo-Pacific bead | Blue-Green Info-Pacific bead | Blue Indo-Pacific bead | Light Blue Indo-Pacific bead | Black/Purple Indo-Pacific bead | Brown/Black transparent broken bead | Yellow opaque broken bead | Blue trans broken | Transparent grey broken<br>bead |     |
| Glass Type       | lead glass       | m-Na-Ca-Al                    | v-Na-Ca               | v-Na-Ca                             | mixed alkali        | unknown                | unknown                | Weathered      | Weathered      | m-K-Ca-Al                   | m-K-Al Low C                 | m-K-Al Low C           | m-K-Al Low C                 | m-K-Al Low C                   | m-Na-Al Type 1                      | m-Na-Al Type 1            | m-Na-Ca-Al        | m-Na-Al Type 1                  |     |
| Site Name        | Ban Non<br>Wat   | Ban Non<br>Wat                | Ban Non<br>Wat        | Ban Non<br>Wat                      | Ban Non<br>Wat      | Ban Non<br>Wat         | Ban Non<br>Wat         | Ban Non<br>Wat | Ban Non<br>Wat | Bit Meas                    | Bit Meas                     | Bit Meas               | Bit Meas                     | Bit Meas                       | Noen U-<br>Loke                     | Noen U-<br>Loke           | Noen U-<br>Loke   | Noen U-<br>Loke                 |     |
| Database ID      | AKC02053         | AKC02049                      | AKC02054              | AKC02044                            | AKC02036            | AKC02055               | AKC02056               | AKC02059       | AKC02058       | AKC00727                    | AKC00728                     | AKC00729               | AKC00650                     | AKC00649                       | AKC02001                            | AKC02002                  | AKC02003          | AKC02004                        |     |

| 0                | %                      | %                               | %                      | %                     | %                     | %                               | %                  | %               | %                           | %                      | %                            | %                  | %               | %               | %               | %                                | %                          | 821 |
|------------------|------------------------|---------------------------------|------------------------|-----------------------|-----------------------|---------------------------------|--------------------|-----------------|-----------------------------|------------------------|------------------------------|--------------------|-----------------|-----------------|-----------------|----------------------------------|----------------------------|-----|
| CaO              | 2.3%                   | 1.0%                            | 2.5%                   | 2.1%                  | 2.4%                  | %9.0                            | 2.2%               | 2.7%            | 2.3%                        | 2.9%                   | 2.1%                         | 3.0%               | 1.9%            | 2.5%            | 1.4%            | 3.9%                             | 3.5%                       |     |
| K20              | 1.4%                   | 14.6%                           | 1.9%                   | 1.7%                  | 1.9%                  | 13.3%                           | 2.1%               | 2.4%            | 2.0%                        | 1.3%                   | 13.8%                        | 2.0%               | 3.4%            | 1.7%            | 1.3%            | 1.9%                             | 1.9%                       |     |
| P2O3             | %0.0                   | 0.1%                            | %0.0                   | %0.0                  | 0.1%                  | 0.1%                            | %0.0               | %0.0            | 0.1%                        | 0.1%                   | 0.3%                         | %0.0               | %0.0            | %0.0            | %0.0            | 0.2%                             | 0.1%                       |     |
| A12O3            | 6.5%                   | 4.4%                            | 7.3%                   | %8.9                  | 10.2%                 | 3.3%                            | 8.5%               | 7.2%            | 7.0%                        | 5.0%                   | 1.9%                         | 11.3%              | 10.3%           | 7.1%            | 6.3%            | 12.6%                            | 12.2%                      |     |
| MgO              | 0.3%                   | 0.4%                            | 0.3%                   | 0.3%                  | 0.3%                  | 0.2%                            | %5.0               | 0.4%            | 0.3%                        | %9.0                   | 0.5%                         | 0.5%               | 0.3%            | 0.3%            | 0.3%            | 1.0%                             | %6.0                       |     |
| Na2O             | 15.9%                  | %6.0                            | 18.5%                  | 16.8%                 | 19.8%                 | 0.5%                            | 14.2%              | 16.3%           | 17.3%                       | 11.7%                  | 1.4%                         | 15.0%              | 15.2%           | 18.3%           | 15.3%           | 12.5%                            | 12.8%                      |     |
| SiO2             | %5'99                  | 75.2%                           | 65.7%                  | 68.1%                 | %5'09                 | 79.4%                           | 70.0%              | %6′.29          | %5'99                       | 71.6%                  | 75.4%                        | 60.4%              | 66.3%           | %0′.29          | 72.5%           | 57.3%                            | 64.7%                      |     |
| Bead Description | Dark Blue Trans Broken | Dark blue broken bead           | Dark Blue Trans Broken | Turquoise broken bead | Dark blue broken bead | Dark blue broken bead           | White trans broken | Turquoise bead  | Transparent blue-green bead | Dark Blue Trans Broken | Dark blue-purple broken bead | Opaque yellow bead | Turquoise bead  | Turquoise bead  | Turquoise bead  | red/orange bead: orange<br>glass | red/orange bead: red glass |     |
| Glass Type       | m-Na-Ca-Al             | m-K-Al, low CaO<br>or m-K-Ca-Al | m-Na-Ca-Al             | m-Na-Al Type 1        | m-Na-Al Type 1        | m-K-Al, low CaO<br>or m-K-Ca-Al | m-Na-Al Type 1     | m-Na-Al Type 1  | m-Na-Al Type 1              | m-Na-Ca-Al             | m-K-Ca-Al                    | m-Na-Al Type 1     | m-Na-Al Type 1  | m-Na-Al Type 1  | m-Na-Al Type 1  | m-Na-Al Type 1                   | m-Na-Al Type 1             |     |
| Site Name        | Noen U-<br>Loke        | Noen U-<br>Loke                 | Noen U-<br>Loke        | Noen U-<br>Loke       | Noen U-<br>Loke       | Noen U-<br>Loke                 | Noen U-<br>Loke    | Noen U-<br>Loke | Noen U-<br>Loke             | Noen U-<br>Loke        | Noen U-<br>Loke              | Noen U-<br>Loke    | Noen U-<br>Loke | Noen U-<br>Loke | Noen U-<br>Loke | Noen U-<br>Loke                  | Noen U-<br>Loke            |     |
| Database ID      | AKC02005               | AKC02006                        | AKC02007               | AKC02008              | AKC02009              | AKC02010                        | AKC02012           | AKC02013        | AKC02014                    | AKC02015               | AKC02016                     | AKC02019           | AKC02020        | AKC02021        | AKC02022        | AKC02023oran<br>ge               | AKC02023red                |     |

| CaO              | 4.0%                             | 2.7%                       | 4.0%                             | 3.4%                       | 3.8%                             | 3.9%                       | 4.1%                             | 3.6%                       | 2.5%                      | %8.0                            | 2.8%                    | 2.1%                  | 2.8%                  | 1.4%                     | 0.4%                           | 2.2%                                      | 5.9%                     | 822 |
|------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|---------------------------|---------------------------------|-------------------------|-----------------------|-----------------------|--------------------------|--------------------------------|-------------------------------------------|--------------------------|-----|
| Ca               | 4.0                              | 2.7                        | 4.0                              | 3.4                        | 3.8                              | 3.9                        | 4.1                              | 3.6                        | 2.5                       | 8.0                             | 2.8                     | 2.1                   | 2.8                   | 1.4                      | 0.4                            | 2.2                                       | 5.9                      |     |
| K20              | 1.7%                             | 1.9%                       | 1.9%                             | 2.1%                       | 1.7%                             | 1.8%                       | 2.0%                             | 2.2%                       | 7.7%                      | 13.9%                           | 7.1%                    | 2.7%                  | 1.8%                  | 3.2%                     | 20.3%                          | 16.1%                                     | 3.9%                     |     |
| P203             | 0.2%                             | 0.1%                       | 0.2%                             | 0.1%                       | 0.2%                             | 0.1%                       | 0.2%                             | 0.1%                       | 1.6%                      | 0.1%                            | 1.6%                    | 0.1%                  | 0.1%                  | %0.0                     | 0.2%                           | %8.0                                      | 1.2%                     |     |
| A1203            | 13.0%                            | 9.1%                       | 11.8%                            | 12.3%                      | 12.1%                            | 10.9%                      | 12.1%                            | 12.8%                      | %8.9                      | 2.8%                            | %2.9                    | 9.4%                  | 11.4%                 | 10.8%                    | 4.3%                           | 3.2%                                      | 10.0%                    |     |
| MgO              | 1.0%                             | %8.0                       | 1.0%                             | %6.0                       | %6.0                             | %8.0                       | 1.0%                             | %6.0                       | 2.2%                      | 0.3%                            | 2.0%                    | 1.0%                  | 0.4%                  | 0.1%                     | 0.1%                           | 0.4%                                      | 1.9%                     |     |
| Na20             | 12.9%                            | 11.8%                      | 12.3%                            | 12.3%                      | 12.7%                            | 11.9%                      | 11.9%                            | 12.1%                      | 2.9%                      | %8.0                            | 8.2%                    | 13.8%                 | 14.8%                 | 16.6%                    | 1.0%                           | %6.0                                      | 11.1%                    |     |
| SiO2             | %8'95                            | %0.69                      | 27.6%                            | 64.1%                      | 57.8%                            | 65.7%                      | 57.3%                            | 63.0%                      | 61.7%                     | 78.3%                           | 59.4%                   | 64.8%                 | 62.6%                 | 61.1%                    | %6.07                          | 73.8%                                     | 52.6%                    |     |
| Bead Description | red/orange bead: orange<br>glass | red/orange bead: red glass | red/orange bead: orange<br>glass | red/orange bead: red glass | red/orange bead: orange<br>glass | red/orange bead: red glass | red/orange bead: orange<br>glass | red/orange bead: red glass | opaue orange tubular bead | Dark blue bead                  | opaque orange disc bead | Red Indo-Pacific Bead | Red Indo-Pacific Bead | Yellow Indo-Pacific Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Turquoise Indo-<br>Pacific Bead | Orange Indo-Pacific Bead |     |
| Glass Type       | m-Na-Al Type 1                   | m-Na-Al Type 1             | mixed alkali              | m-K-Al, low CaO<br>or m-K-Ca-Al | mixed alkali            | m-Na-Al Type 1        | m-Na-Al Type 1        | m-Na-Al Type 1           | m-K-Ca Low Al                  | m-K-Ca-Al                                 | m-Na-Al Type 1           |     |
| Site Name        | Noen U-<br>Loke                  | Noen U-<br>Loke            | Noen U-<br>Loke           | Noen U-<br>Loke                 | Noen U-<br>Loke         | Phnom<br>Borei        | Phnom<br>Borei        | Phnom<br>Borei           | Phnom<br>Borei                 | Phnom<br>Borei                            | Phnom<br>Borei           |     |
| Database ID      | AKC020240                        | AKC02024red                | AKC020250                        | AKC02025red                | AKC020260                        | AKC02026red                | AKC020270                        | AKC02027red                | AKC02028                  | AKC02029                        | AKC02030                | AKC01924              | AKC01922              | AKC01920                 | AKC01912                       | AKC01913                                  | AKC01919                 |     |

| CaO              | 3.7%                    | 2.3%                     | 2.9%                  | 2.9%                  | 2.1%                         | 1.8%                           | 1.6%                             | 2.3%                     | 1.7%                           | 3.2%                            | 2.7%                             | 2.6%                            | 2.1%                         | 1.8%                           | 2.2%                           | 3.4%                  | 4.1%                  | 3.6%                            | 3.6%                            | 3.8%                     | 823 |
|------------------|-------------------------|--------------------------|-----------------------|-----------------------|------------------------------|--------------------------------|----------------------------------|--------------------------|--------------------------------|---------------------------------|----------------------------------|---------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------|-----------------------|---------------------------------|---------------------------------|--------------------------|-----|
| K20              | 2.5%                    | 1.9%                     | 1.9%                  | 2.0%                  | 2.2%                         | 2.6%                           | 1.8%                             | 2.5%                     | 2.5%                           | 1.6%                            | 1.7%                             | 2.1%                            | 2.3%                         | 2.8%                           | 1.7%                           | 2.5%                  | 2.5%                  | 2.0%                            | 2.0%                            | 1.9%                     |     |
| P2O3             | 0.1%                    | %0.0                     | 0.1%                  | 0.1%                  | 0.1%                         | 0.1%                           | %0.0                             | 0.1%                     | %0.0                           | 0.1%                            | 0.1%                             | 0.1%                            | 0.1%                         | %0.0                           | 0.1%                           | 0.1%                  | 0.1%                  | 0.2%                            | 0.2%                            | 0.1%                     |     |
| A12O3            | %0.6                    | 8.2%                     | 9.1%                  | 9.1%                  | %6.8                         | 10.1%                          | 7.0%                             | 9.3%                     | 9.3%                           | %6.8                            | 10.5%                            | 9.4%                            | 9.3%                         | 9.4%                           | %6.9                           | 10.2%                 | 10.2%                 | 12.2%                           | 12.4%                           | 11.7%                    |     |
| MgO              | 0.5%                    | 0.3%                     | 0.4%                  | 0.4%                  | 0.4%                         | 0.2%                           | 0.3%                             | 0.4%                     | 0.3%                           | %6.0                            | 0.4%                             | 0.5%                            | 0.4%                         | 0.2%                           | 0.3%                           | 0.5%                  | 0.5%                  | %6.0                            | %6.0                            | %8.0                     |     |
| Na2O             | 12.1%                   | 16.7%                    | 13.1%                 | 13.4%                 | 13.2%                        | 16.4%                          | 15.3%                            | 12.8%                    | 17.0%                          | 16.2%                           | 13.5%                            | 13.4%                           | 12.2%                        | 17.6%                          | 16.8%                          | 18.0%                 | 17.6%                 | 14.8%                           | 13.9%                           | 17.0%                    |     |
| SiO2             | 68.1%                   | 64.0%                    | %0.79                 | %8.99                 | %6.69                        | 65.2%                          | %6:59                            | 28.0%                    | 66.2%                          | 63.7%                           | 66.4%                            | %6.79                           | %0.07                        | 65.1%                          | %6.89                          | 61.0%                 | %5.09                 | %0.99                           | 54.2%                           | 56.4%                    |     |
| Bead Description | Black Indo-Pacific Bead | Yellow Indo-Pacific Bead | Red Indo-Pacific Bead | Red Indo-Pacific Bead | Light Blue Indo-Pacific bead | Dark Blue Indo-Pacific<br>Bead | Light Green Indo-Pacific<br>Bead | Orange Indo-Pacific Bead | Dark Blue Indo-Pacific<br>Bead | Dark Green Indo-Pacific<br>Bead | Light Green Indo-Pacific<br>Bead | Blue-Green Indo-Pacific<br>bead | Light Blue Indo-Pacific bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Red Indo-Pacific Bead | Red Indo-Pacific Bead | Red-orange Indo-Pacific<br>Bead | Red-orange Indo-Pacific<br>Bead | Orange Indo-Pacific Bead |     |
| Glass Type       | m-Na-Al Type 1          | m-Na-Al Type 1           | m-Na-Al Type 1        | m-Na-Al Type 1        | m-Na-Al Type 1               | m-Na-Al Type 1                 | m-Na-Al Type 1                   | m-Na-Al Type 1           | m-Na-Al Type 1                 | m-Na-Al Type 1                  | m-Na-Al Type 1                   | m-Na-Al Type 1                  | m-Na-Al Type 1               | m-Na-Al Type 1                 | m-Na-Al Type 1                 | m-Na-Al Type 1        | m-Na-Al Type 1        | m-Na-Al Type 1                  | m-Na-Al Type 1                  | m-Na-Al Type 1           |     |
| Site Name        | Phum Snay               | Phum Snay                | Phum Snay             | Phum Snay             | Phum Snay                    | Phum Snay                      | Phum Snay                        | Phum Snay                | Phum Snay                      | Phum Snay                       | Phum Snay                        | Phum Snay                       | Phum Snay                    | Phum Snay                      | Phum Snay                      | Phum Snay             | Phum Snay             | Phum Snay                       | Phum Snay                       | Phum Snay                |     |
| Database ID      | AKC00224                | AKC00121                 | AKC00105              | AKC00214              | AKC00214b                    | AKC00090                       | AKC00080                         | AKC00069                 | AKC00291                       | AKC00087                        | AKC00081                         | AKC00116                        | AKC00115                     | AKC00095                       | AKC00118                       | AKC00240              | AKC00245              | AKC00254red                     | AKC00254oran<br>ge              | AKC00284                 |     |

| CaO              | 2.4%                           | 4.1%                           | 2.0%                           | 2.1%                  | 7.9%                     | 8.5%                     | .4%                    | 1.4%                   | 1.3%                   | 7.2%                           | 1.1%                        | 3.2%                     | 3.8%                        | 3.6%                             | 3.4%                     | 3.8%                     | 1.4%                        | 3.9%                  | 1.8%                             | 824 |
|------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|--------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------------|-----------------------------|--------------------------|-----------------------------|----------------------------------|--------------------------|--------------------------|-----------------------------|-----------------------|----------------------------------|-----|
|                  |                                |                                |                                |                       |                          |                          |                        |                        |                        |                                |                             |                          |                             |                                  |                          |                          |                             |                       |                                  |     |
| K20              | 2.4%                           | 2.1%                           | 2.0%                           | 2.7%                  | 2.3%                     | 2.2%                     | 13.3%                  | 13.5%                  | 14.2%                  | 1.8%                           | 1.0%                        | 2.2%                     | 2.0%                        | 1.6%                             | 1.8%                     | 3.0%                     | 1.1%                        | 2.3%                  | 1.6%                             |     |
| P2O3             | 0.1%                           | %0.0                           | 0.1%                           | 0.1%                  | 1.9%                     | 1.8%                     | 0.2%                   | 0.2%                   | 0.2%                   | 0.2%                           | 0.1%                        | 0.1%                     | %0.0                        | 0.1%                             | 0.1%                     | 0.2%                     | 0.1%                        | 0.2%                  | 0.1%                             |     |
| AI203            | 9.3%                           | 8.2%                           | 7.8%                           | 9.2%                  | 7.3%                     | 7.3%                     | 4.0%                   | 4.0%                   | 3.6%                   | 3.9%                           | 5.2%                        | 11.3%                    | 9.4%                        | %9.8                             | 11.4%                    | 14.5%                    | 5.3%                        | 15.5%                 | 7.3%                             |     |
| MgO              | %8.0                           | 0.4%                           | 0.4%                           | 0.5%                  | 2.0%                     | 1.7%                     | 0.2%                   | 0.2%                   | 0.4%                   | 2.4%                           | 0.5%                        | %9.0                     | 0.4%                        | 1.1%                             | %6.0                     | %6.0                     | 0.5%                        | 1.0%                  | 0.3%                             |     |
| Na20             | 14.4%                          | 22.2%                          | 20.6%                          | 15.0%                 | 11.1%                    | 11.3%                    | %9.0                   | %9.0                   | 0.2%                   | 18.4%                          | 17.2%                       | 15.6%                    | 18.0%                       | 14.2%                            | 13.9%                    | 14.8%                    | 20.2%                       | 13.0%                 | 16.0%                            |     |
| SiO2             | %2'99                          | 60.1%                          | 62.2%                          | %2.99                 | 53.0%                    | 52.3%                    | %6.97                  | 76.7%                  | %8.92                  | 62.9%                          | %8.69                       | %2.65                    | 62.7%                       | 63.6%                            | 55.1%                    | 61.9%                    | %6:59                       | 63.4%                 | 72.3%                            |     |
| Bead Description | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Red Indo-Pacific Bead | Orange Indo-Pacific Bead | Orange Indo-Pacific Bead | Turquoise Ring/Earring | Turquoise Ring/Earring | Dark Blue Ring/Earring | Dark Blue Indo-Pacific<br>Bead | Dark blue Indo-Pacific bead | Yellow Indo-Pacific Bead | Dark blue Indo-Pacific bead | Light Green Indo-Pacific<br>Bead | Orange Indo-Pacific Bead | Orange Indo-Pacific Bead | Dark blue Indo-Pacific bead | Red Indo-Pacific Bead | Light Green Indo-Pacific<br>Bead |     |
| Glass Type       | m-Na-Al Type 1                 | m-Na-Al Type 1                 | m-Na-Al Type 1                 | m-Na-Al Type 1        | m-Na-Al Type 1           | m-Na-Al Type 1           | m-K-Ca-Al              | m-K-Ca-Al              | m-K-Ca-Al              | v-Na-Ca                        | m-Na-Al Type 1              | m-Na-Al Type 1           | m-Na-Al Type 1              | m-Na-Al Type 1                   | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1              | m-Na-Al Type 1        | m-Na-Al Type 1                   |     |
| Site Name        | Phum Snay                      | Phum Snay                      | Phum Snay                      | Phum Snay             | Phum Snay                | Phum Snay                | Phum Snay              | Phum Snay              | Phum Snay              | Phum Snay                      | Prei<br>Khmeng              | Prei<br>Khmeng           | Prei<br>Khmeng              | Prei<br>Khmeng                   | Prei<br>Khmeng           | Prei<br>Khmeng           | Prei<br>Khmeng              | Prei<br>Khmeng        | Prei<br>Khmeng                   |     |
| Database ID      | AKC00223                       | AKC00221                       | AKC00220                       | AKC00122              | AKC00278                 | AKC00277                 | AKC00057               | AKC00058               | AKC00059               | AKC00117                       | AKC01651                    | AKC01652                 | AKC01658                    | AKC01677                         | AKC01679                 | AKC01685                 | AKC01683                    | AKC01686              | AKC01688                         |     |

| CaO              | 2.1%                  | 3.0%                  | 2.9%                     | 3.0%                        | 4.6%                        | 4.0%                        | 4.3%                         | 3.5%                  | 2.0%                        | 2.9%                  | 2.9%                    | 1.8%                   | 4.1%                   | 3.2%                   | 4.3%                   | 4.1%                   | 2.9%                    | 825 |
|------------------|-----------------------|-----------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------|-----------------------------|-----------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-----|
| K20              | 2.0%                  | 2.3%                  | 1.3%                     | 2.0%                        | 1.5%                        | 1.7%                        | 2.2%                         | 2.0%                  | 2.2%                        | 1.4%                  | 1.5%                    | 2.8%                   | 7. %6.1                | 2.0%                   | 2.1%                   | 1.9%                   | 1.9%                    |     |
| P2O3             | 0.1%                  | 0.1%                  | 0.1%                     | 0.1%                        | 0.1%                        | 0.1%                        | 0.1%                         | %0.0                  | 0.1%                        | %0.0                  | %0.0                    | 0.1%                   | 0.1%                   | 0.1%                   | 0.1%                   | 0.1%                   | 0.1%                    |     |
| A1203            | 9.2%                  | 10.5%                 | 10.0%                    | 8.8%                        | 7.0%                        | 8.2%                        | 10.1%                        | 12.8%                 | 10.3%                       | 7.2%                  | %8.6                    | 7.0%                   | 8.4%                   | 11.7%                  | 10.2%                  | 8.4%                   | 12.5%                   |     |
| MgO              | %9.0                  | 0.7%                  | 1.0%                     | 0.4%                        | 0.5%                        | 0.4%                        | 0.5%                         | %9.0                  | %9.0                        | 0.4%                  | %8.0                    | 0.4%                   | 0.5%                   | %9.0                   | 0.5%                   | 0.4%                   | 0,9.0                   |     |
| Na2O             | 13.8%                 | 14.7%                 | 17.4%                    | 17.0%                       | 18.3%                       | 21.0%                       | 15.9%                        | 15.3%                 | 14.7%                       | 18.0%                 | 19.1%                   | 12.2%                  | 16.0%                  | 14.9%                  | 16.3%                  | 19.4%                  | 14.8%                   |     |
| SiO2             | %9.79                 | %8.29                 | 59.4%                    | 64.2%                       | 64.7%                       | 61.3%                       | 63.6%                        | 61.6%                 | 63.2%                       | 63.9%                 | 61.8%                   | 71.0%                  | 64.6%                  | %5'99                  | 65.7%                  | 65.2%                  | %9:29                   |     |
| Bead Description | Red Indo-Pacific Bead | Red Indo-Pacific Bead | Yellow Indo-Pacific Bead | Dark blue Indo-Pacific bead | Dark blue Indo-Pacific bead | Dark blue Indo-Pacific bead | Light Blue Indo-Pacific bead | Red Indo-Pacific Bead | Dark blue Indo-Pacific bead | Red Indo-Pacific Bead | Black Indo-Pacific Bead | Blue Indo-Pacific bead | Green Indo-Pacific bead |     |
| Glass Type       | m-Na-Al Type 1        | m-Na-Al Type 1        | m-Na-Al Type 1           | m-Na-Al Type 1              | m-Na-Al Type 1              | m-Na-Al Type 1              | m-Na-Al Type 1               | m-Na-Al Type 1        | m-Na-Al Type 1              | m-Na-Al Type 1        | m-Na-Al Type 1          | m-Na-Al Type 1         | m-Na-Al Type 1         | m-Na-Al Type 1         | m-Na-Al Type 1         | m-Na-Al Type 1         | m-Na-Al Type 1          |     |
| Site Name        | Prei<br>Khmeng        | Prei<br>Khmeng        | Prei<br>Khmeng           | Prei<br>Khmeng              | Prei<br>Khmeng              | Prei<br>Khmeng              | Prei<br>Khmeng               | Prei<br>Khmeng        | Prei<br>Khmeng              | Prei<br>Khmeng        | Prei<br>Khmeng          | Prei<br>Khmeng         | Prei<br>Khmeng         | Prei<br>Khmeng         | Prei<br>Khmeng         | Prei<br>Khmeng         | Prei<br>Khmeng          |     |
| Database ID      | AKC01692              | AKC01696              | AKC01697                 | AKC01699                    | AKC01702                    | AKC01722                    | AKC01724                     | AKC01726              | AKC01727                    | AKC01729              | AKC01731                | AKC01731bla            | AKC01731blb            | AKC01731blc            | AKC01731bld            | AKC01731ble            | AKC01731gree n          |     |

| 0                | %                       | %:                       | %                                      | %:                    | %                                      | %:                      | %                           | %                        | %                        | %                        | %:                       | %                       | %                       | %                           | %                     | %                                    | %                                    | 826 |
|------------------|-------------------------|--------------------------|----------------------------------------|-----------------------|----------------------------------------|-------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-----------------------------|-----------------------|--------------------------------------|--------------------------------------|-----|
| CaO              | 5.1%                    | 2.4%                     | 5.5%                                   | 2.6%                  | 5.0%                                   | 1.4%                    | 2.6%                        | 4.9%                     | 4.0%                     | 3.3%                     | 3.4%                     | 4.0%                    | 2.3%                    | 3.7%                        | 6.5%                  | 8.7%                                 | 9.1%                                 |     |
| K20              | 1.8%                    | 2.1%                     | 2.2%                                   | 2.5%                  | 1.9%                                   | 1.2%                    | 1.5%                        | 2.1%                     | 1.8%                     | 1.7%                     | 1.8%                     | 1.8%                    | 2.4%                    | 2.3%                        | 2.1%                  | 3.2%                                 | 3.1%                                 |     |
| P203             | 0.1%                    | %0.0                     | 0.1%                                   | 0.1%                  | 0.1%                                   | 0.1%                    | 0.1%                        | 0.1%                     | 0.1%                     | 0.1%                     | 0.1%                     | %0.0                    | %0.0                    | 0.1%                        | 0.2%                  | 0.2%                                 | 0.2%                                 |     |
| A1203            | 13.4%                   | 9.4%                     | %8.6                                   | 10.6%                 | 9.2%                                   | 7.2%                    | %0.6                        | 10.1%                    | 10.8%                    | 10.4%                    | 10.8%                    | %6.6                    | 10.2%                   | 8.2%                        | 2.9%                  | 3.8%                                 | 3.9%                                 |     |
| MgO              | 0.7%                    | 0.3%                     | 0.5%                                   | 0.4%                  | %9.0                                   | %9.0                    | 0.5%                        | 0.5%                     | 1.0%                     | 1.1%                     | 1.1%                     | %6.0                    | 0.5%                    | 0.3%                        | 2.7%                  | 4.8%                                 | 4.8%                                 |     |
| Na2O             | 14.3%                   | 15.9%                    | 14.1%                                  | 16.4%                 | 17.0%                                  | 13.6%                   | 18.9%                       | 13.6%                    | 14.4%                    | 14.0%                    | 14.7%                    | 20.8%                   | 14.9%                   | 15.9%                       | 18.4%                 | 16.1%                                | 14.4%                                |     |
| SiO2             | 61.0%                   | 63.7%                    | 62.7%                                  | 62.8%                 | 63.6%                                  | 72.6%                   | 63.7%                       | 63.3%                    | 54.6%                    | 60.3%                    | 28.9%                    | 28.6%                   | 66.4%                   | %6:59                       | 64.3%                 | 61.0%                                | %2.09                                |     |
| Bead Description | Brown Indo-Pacific bead | Yellow Indo-Pacific Bead | Yellow Indo-Pacific Bead (transparent) | Red Indo-Pacific Bead | Light Blue-green Indo-<br>Pacific bead | Black Indo-Pacific Bead | Dark Blue indo-Pacific bead | Yellow Indo-Pacific Bead | Orange Indo-Pacific Bead | Yellow Indo-Pacific Bead | Orange Indo-Pacific Bead | Black Indo-Pacific Bead | Black Indo-Pacific Bead | Dark blue Indo-Pacific bead | Dark blue broken bead | Black flattened bicone with red trim | Black flattened bicone with red trim |     |
| Glass Type       | m-Na-Al Type 1          | m-Na-Al Type 1           | m-Na-Al Type 1                         | m-Na-Al Type 1        | m-Na-Al Type 1                         | m-Na-Al Type 1          | m-Na-Al Type 1              | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1          | m-Na-Al Type 1          | m-Na-Al Type 1              | v-Na-Ca               | v-Na-Ca                              | v-Na-Ca                              |     |
| Site Name        | Prei<br>Khmeng          | Prei<br>Khmeng           | Prei<br>Khmeng                         | Prei<br>Khmeng        | Prei<br>Khmeng                         | Prei<br>Khmeng          | Prei<br>Khmeng              | Prei<br>Khmeng           | Prei<br>Khmeng           | Prei<br>Khmeng           | Prei<br>Khmeng           | Prei<br>Khmeng          | Prei<br>Khmeng          | Prei<br>Khmeng              | Prei<br>Khmeng        | Prei<br>Khmeng                       | Prei<br>Khmeng                       |     |
| Database ID      | AKC01734                | AKC01738                 | AKC01742                               | AKC01744              | AKC01752                               | AKC01773                | AKC01774                    | AKC01775                 | AKC01779                 | AKC01779y                | AKC01780                 | AKC01790                | AKC01791                | AKC01808                    | AKC01695              | AKC01700<br>black                    | AKC01700red trim                     |     |

| CaO              | 3.4%                           | 0.2%                     | %6.0                | 1.9%                           | 1.5%                           | 1.8%                            | 1.5%                           | 0.4%                           | 0.4%                           | 1.9%                           | 9.6%                  | %8.0                | 0.7%                             | 0.7%                    | 0.5%                           | 1.6%               | 1.2%                           | 1.7%                           | 1.8%                           | 827 |
|------------------|--------------------------------|--------------------------|---------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|---------------------|----------------------------------|-------------------------|--------------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|-----|
| ٽ<br>            | 3.                             | 0.7                      | 0.9                 | 1.5                            | 1                              | 1.8                             | 1                              | 0'                             | 7.0                            | 1.5                            | 5.0                   | 0.8                 | 0.                               | 0.                      | 0                              | 1.0                | 1.3                            | 1.                             | 1.8                            |     |
| K20              | 1.6%                           | 10.3%                    | 13.2%               | 1.7%                           | 16.2%                          | 14.2%                           | 16.0%                          | 14.7%                          | 14.7%                          | 15.5%                          | 1.7%                  | 14.1%               | 16.4%                            | 17.5%                   | 15.1%                          | 16.2%              | 13.6%                          | 15.6%                          | 12.7%                          |     |
| P203             | 0.2%                           | 0.1%                     | 0.3%                | 0.2%                           | 0.1%                           | 0.1%                            | 0.1%                           | 0.1%                           | 0.1%                           | 0.2%                           | %8.0                  | 0.2%                | 0.1%                             | 0.2%                    | 0.1%                           | 0.3%               | 0.1%                           | 0.2%                           | 0.2%                           |     |
| A12O3            | 4.8%                           | 1.6%                     | 2.5%                | 2.6%                           | 2.0%                           | 2.2%                            | 2.0%                           | 3.9%                           | 3.9%                           | 3.4%                           | 9.6%                  | 3.2%                | 4.6%                             | 3.2%                    | 2.7%                           | %6.0               | 1.7%                           | 3.0%                           | 2.2%                           |     |
| MgO              | %9.0                           | 0.1%                     | 0.3%                | 0.4%                           | 0.3%                           | 0.3%                            | 0.3%                           | 0.1%                           | 0.1%                           | 0.5%                           | 1.6%                  | 0.3%                | 0.3%                             | 0.2%                    | 0.2%                           | 0.3%               | 0.3%                           | 0.5%                           | 0.3%                           |     |
| Na2O             | 11.9%                          | 0.1%                     | 0.3%                | 14.7%                          | 0.5%                           | %6.0                            | 0.5%                           | 0.2%                           | 0.2%                           | 0.2%                           | 17.6%                 | 0.3%                | 0.7%                             | 0.5%                    | 0.4%                           | 1.1%               | %9.0                           | 0.3%                           | 1.5%                           |     |
| SiO2             | 73.2%                          | 46.8%                    | 77.1%               | 71.4%                          | 72.7%                          | %9.77                           | 73.2%                          | 78.1%                          | 78.0%                          | 74.7%                          | 62.4%                 | 76.2%               | 73.0%                            | 73.3%                   | 77.4%                          | 75.8%              | 77.4%                          | 76.5%                          | 77.7%                          |     |
| Bead Description | Dark Blue Indo-Pacific<br>Bead | Yellow Indo-Pacific Bead | Purple Ring/Earring | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Light Blue Indo-Pacific<br>bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Red Indo-Pacific Bead | Black Ring Fragment | Light Green Indo-Pacific<br>Bead | Black Indo-Pacific Bead | Dark Blue Indo-Pacific<br>Bead | Black Ring/Earring | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead |     |
| Glass Type       | m-Na-Ca- Al                    | Lead Glass               | m-K-Al Low C        | m-Na-Ca- Al                    | m-K-Ca-Al                      | m-K-Ca-Al                       | m-K-Ca-Al                      | m-K-Al Low C                   | m-K-Al Low C                   | m-K-Ca-Al                      | Arika Red             | m-K-Al Low C        | m-K-Al Low C                     | m-K-Al Low C            | m-K-Al Low C                   | m-K-Ca Low Al      | m-K-Ca-Al                      | m-K-Ca-Al                      | m-K-Ca-Al                      |     |
| Site Name        | Prohear                        | Prohear                  | Prohear             | Prohear                        | Prohear                        | Prohear                         | Prohear                        | Prohear                        | Prohear                        | Prohear                        | Prohear               | Prohear             | Prohear                          | Prohear                 | Prohear                        | Prohear            | Prohear                        | Prohear                        | Prohear                        |     |
| Database ID      | AKC00443                       | AKC00452                 | AKC00464            | AKC00466                       | AKC00473                       | AKC00485                        | AKC00487                       | AKC00516                       | AKC00541                       | AKC00545                       | AKC00550              | AKC00564            | AKC00569                         | AKC00572                | AKC00573                       | AKC00579           | AKC00596                       | AKC00597                       | AKC00605                       |     |

| CaO              | 1.7%                           | %8.0                    | 1.6%                           | 0.3%                     | 0.4%                     | 2.3%                   | 3.4%                         | 2.7%                           | 0.5%                     | 2.2%                           | 2.8%                           | 1.0%                     | 0.4%                     | 4.7%               | 1.7%                           | 2.2%                           | 2.7%                           | 0.7%                   | %8.0                  | 1.5%                           | 1.7%                           | 828 |
|------------------|--------------------------------|-------------------------|--------------------------------|--------------------------|--------------------------|------------------------|------------------------------|--------------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|------------------------|-----------------------|--------------------------------|--------------------------------|-----|
| K20 (            | 17.1%                          | 3.2%                    | 15.9%                          | ) %8.51                  | 16.7%                    | 13.7% 2                | 39.6                         | 1.3%                           | ) %8.91                  | 2.0%                           | 1.3%                           | 17.7% 1                  | 17.0%                    | 4.9%               | 1.5%                           | 2.1%                           | 1.5%                           | ) %9.51                | ) %8.91               | 15.6%                          | 0.1%                           | -   |
|                  |                                |                         |                                |                          |                          |                        |                              |                                |                          |                                |                                |                          |                          |                    |                                |                                |                                |                        |                       |                                |                                | _   |
| P203             | 0.1%                           | 0.1%                    | 0.2%                           | 0.1%                     | 0.2%                     | 0.3%                   | 0.3%                         | 0.1%                           | 0.2%                     | 0.3%                           | 0.1%                           | 0.3%                     | 0.1%                     | %0.0               | 0.2%                           | 0.1%                           | 0.1%                           | 0.1%                   | 0.3%                  | 0.1%                           | 0.3%                           |     |
| A12O3            | 1.9%                           | 2.2%                    | 4.2%                           | 4.1%                     | 3.0%                     | 1.5%                   | 3.4%                         | %8.9                           | 2.7%                     | 8.4%                           | 7.3%                           | 3.2%                     | 2.8%                     | %9.8               | 5.7%                           | 7.7%                           | %9.7                           | 2.1%                   | 5.5%                  | 1.8%                           | 2.5%                           |     |
| $_{ m MgO}$      | 0.3%                           | 0.2%                    | %9.0                           | 0.1%                     | 0.2%                     | 0.3%                   | 0.4%                         | 0.5%                           | 0.2%                     | 0.4%                           | 0.5%                           | 0.3%                     | 0.2%                     | %8.0               | 0.3%                           | 0.3%                           | 0.5%                           | 0.1%                   | 0.2%                  | 0.3%                           | %9.0                           |     |
| Na2O             | 0.5%                           | %0.0                    | 0.7%                           | 1.1%                     | %8.0                     | 0.4%                   | %8.0                         | 15.3%                          | %8.0                     | 14.6%                          | 16.2%                          | 0.5%                     | %8.0                     | 17.9%              | 14.6%                          | 16.4%                          | 14.7%                          | 0.1%                   | %8.0                  | 0.3%                           | %0.0                           | •   |
| SiO2             | 72.4%                          | 90.5%                   | 72.3%                          | 75.9%                    | 74.9%                    | 76.4%                  | 79.7%                        | 68.4%                          | 74.9%                    | %0.89                          | %8.99                          | 72.5%                    | 74.1%                    | 60.2%              | 72.3%                          | 67.4%                          | 68.1%                          | 78.4%                  | %2.69                 | 74.1%                          | 89.4%                          | •   |
| Bead Description | Dark Blue Indo-Pacific<br>Bead | Blue-Green Ring/Earring | Dark Blue Indo-Pacific<br>Bead | Purple Indo-Pacific Bead | Purple Indo-Pacific Bead | Dark Blue Ring/Earring | Light Blue bracelet fragment | Dark Blue Indo-Pacific<br>Bead | Purple Indo-Pacific Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Purple Indo-Pacific Bead | Purple Indo-Pacific Bead | White modern bead? | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Green Earring Fragment | Blue Earring Fragment | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead |     |
| Glass Type       | m-K-Ca-Al                      | Weathered               | m-K-Ca-Al                      | m-K-Al Low C             | m-K-Al Low C             | m-K-Ca-Al              | m-K-Ca-Al                    | m-Na-Ca- Al                    | m-K-Al Low C             | m-Na-Ca- Al                    | m-Na-Ca- Al                    | m-K-Ca-Al                | m-K-Al Low C             | Modern?            | m-Na-Ca-Al                     | m-Na-Ca-Al                     | m-Na-Ca-Al                     | m-K-Al Low Ca          | m-K-Al Low Ca         | m-K-Ca-Al                      | Weathered                      |     |
| Site Name        | Prohear                        | Prohear                 | Prohear                        | Prohear                  | Prohear                  | Prohear                | Prohear                      | Prohear                        | Prohear                  | Prohear                        | Prohear                        | Prohear                  | Prohear                  | Prohear            | Prohear                        | Prohear                        | Prohear                        | Prohear                | Prohear               | Prohear                        | Prohear                        |     |
| Database ID      | AKC00624                       | AKC00628                | AKC00630                       | AKC00632                 | AKC00633                 | AKC00634               | AKC00641                     | AKC00662                       | AKC00672                 | AKC00677                       | AKC00683                       | AKC00686                 | AKC00689                 | AKC00726           | AKC0733                        | AKC0734                        | AKC0735                        | AKC0736                | AKC0737               | AKC0738                        | AKC0739                        |     |

| CaO              | 1.3%                           | 1.5%                   | 2.4%                           | 1.4%                           | 1.4%                           | 1.3%                           | 1.4%                           | 2.2%                  | 1.0%                        | 5.3%                  | 5.5%                  | 2.2%                          | 2.2%                   | 0.4%                    | 5.3%                    | 1.2%                           | %9.0                           | %8.0                    | 1.0%                   | 4.7%                        | 4.9%                        | 2.0%                        | 829 |
|------------------|--------------------------------|------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-------------------------------|------------------------|-------------------------|-------------------------|--------------------------------|--------------------------------|-------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|-----|
| K20              | 18.0%                          | 0.2%                   | 18.3%                          | 15.5%                          | 12.0%                          | 17.1%                          | 14.3%                          | 0.4%                  | 15.0%                       | 2.3%                  | 4.7%                  | 9.2%                          | 9.5%                   | 17.4%                   | 8.2%                    | 19.1%                          | 14.4%                          | 16.8%                   | 1.0%                   | %9.0                        | %9.0                        | 0.7%                        |     |
| P203             | 0.1%                           | 0.3%                   | 0.2%                           | 0.1%                           | 0.1%                           | 0.1%                           | 0.1%                           | 0.4%                  | 0.2%                        | %8.0                  | %6.0                  | 0.3%                          | 0.2%                   | 0.1%                    | 1.2%                    | 0.1%                           | 0.3%                           | 0.2%                    | 0.2%                   | 0.1%                        | 0.1%                        | 0.1%                        |     |
| A12O3            | 1.8%                           | 1.5%                   | 1.7%                           | 1.6%                           | 1.8%                           | 1.7%                           | 2.0%                           | %6.0                  | 2.9%                        | 5.3%                  | 3.5%                  | 1.5%                          | 3.3%                   | 5.5%                    | 4.1%                    | 1.5%                           | 2.6%                           | 3.6%                    | 1.4%                   | 3.2%                        | 3.3%                        | 3.3%                        |     |
| MgO              | 0.3%                           | 0.3%                   | 0.5%                           | 0.3%                           | 0.3%                           | 0.3%                           | 0.2%                           | 0.2%                  | 0.3%                        | 1.5%                  | 2.0%                  | 0.4%                          | 0.3%                   | 0.2%                    | 5.1%                    | 0.3%                           | 0.2%                           | 0.3%                    | 0.2%                   | 0.4%                        | 0.4%                        | 0.4%                        |     |
| Na2O             | 0.5%                           | 0.0%                   | 0.4%                           | 0.5%                           | 0.3%                           | 0.5%                           | 1.0%                           | %0.0                  | 0.1%                        | 15.3%                 | 15.0%                 | 1.9%                          | %8.0                   | 0.2%                    | 2.6%                    | 0.7%                           | 0.1%                           | 0.3%                    | 0.0%                   | 12.9%                       | 12.5%                       | 13.3%                       |     |
| SiO2             | 71.4%                          | 93.2%                  | 71.4%                          | 75.5%                          | 78.4%                          | 73.7%                          | 77.8%                          | 91.2%                 | 74.6%                       | 65.2%                 | 64.4%                 | 81.7%                         | 81.9%                  | 72.0%                   | 66.4%                   | 71.4%                          | 77.7%                          | 72.3%                   | 93.0%                  | 74.1%                       | 73.7%                       | 72.3%                       |     |
| Bead Description | Dark Blue Indo-Pacific<br>Bead | Green Earring Fragment | Dark Blue Indo-Pacific<br>Bead | Brown Bangle Fragment | Dark blue Indo-Pacific bead | Red Indo-Pacific Bead | Red Indo-Pacific Bead | Light Blue Bangle<br>Fragment | Green Earring Fragment | Green Indo-Pacific bead | Black Indo-Pacific Bead | Dark Blue Indo-Pacific<br>Bead | Dark Blue Indo-Pacific<br>Bead | Black Indo-Pacific Bead | Green Earring Fragment | Dark blue Indo-Pacific bead | Dark blue Indo-Pacific bead | Dark blue Indo-Pacific bead |     |
| Glass Type       | m-K-Ca-Al                      | Weathered              | m-K-Ca-Al                      | m-K-Ca-Al                      | m-K-Ca-Al                      | m-K-Ca-Al                      | m-K-Ca-Al                      | Weathered             | m-K-Al Low Ca               | Arika Red?            | Arika Red?            | m-K-Ca-Al                     | m-K-Ca-Al              | m-K-Al Low Ca           | Arika Black?            | m-K-Ca-Al                      | m-K-Al Low Ca                  | m-K-Al Low Ca           | Weathered              | m-Na-Ca-Al                  | m-Na-Ca-Al                  | m-Na-Ca-Al                  |     |
| Site Name        | Prohear                        | Prohear                | Prohear                        | Prohear                        | Prohear                        | Prohear                        | Prohear                        | Prohear               | Prohear                     | Prohear               | Prohear               | Prohear                       | Prohear                | Prohear                 | Prohear                 | Prohear                        | Prohear                        | Prohear                 | Prohear                | Promtin Tai                 | Promtin Tai                 | Promtin Tai                 |     |
| Database ID      | AKC0740                        | AKC0741                | AKC0742                        | AKC0743                        | AKC0744                        | AKC0745                        | AKC0746                        | AKC0747               | AKC0748                     | AKC0749               | AKC0750               | AKC0751                       | AKC0752                | AKC0753                 | AKC0754                 | AKC0755                        | AKC0756                        | AKC0757                 | AKC0758                | AKC00939                    | AKC01084                    | AKC00912                    |     |

| CaO              | 0.4%                     | %6.0                   | %8.0                        | %6.0                             | 1.1%                            | 1.1%                        | 3.3%                  | 1.7%                     | 2.3%                         | 2.7%                     | 2.3%                         | 5.7%                     | %2.9                     | 5.3%                     | 2.8%                                    | 5.8%                                         | 2.9%                                       | 5.1%                                       | 830 |
|------------------|--------------------------|------------------------|-----------------------------|----------------------------------|---------------------------------|-----------------------------|-----------------------|--------------------------|------------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|-----|
| K20              | 14.8%                    | 13.9%                  | 14.3%                       | 14.4%                            | 13.5%                           | 15.7%                       | 2.7%                  | 3.7%                     | 1.7%                         | 2.8%                     | 1.8%                         | 4.3%                     | 3.5%                     | 4.2%                     | 3.0%                                    | 1.2%                                         | %6.7                                       | 6.1%                                       |     |
| P203             | %0.0                     | 0.1%                   | 0.1%                        | 0.2%                             | 0.1%                            | 0.2%                        | 0.1%                  | %0.0                     | %0.0                         | 0.4%                     | 0.1%                         | 2.4%                     | 1.6%                     | 2.2%                     | %9.0                                    | 0.7%                                         | 0.5%                                       | 0.5%                                       |     |
| A1203            | 2.2%                     | 3.3%                   | 3.5%                        | 3.1%                             | 2.2%                            | 3.8%                        | 8.7%                  | 11.9%                    | 7.2%                         | 9.2%                     | 11.9%                        | 8.1%                     | 7.8%                     | 6.3%                     | %9.6                                    | 2.4%                                         | 3.9%                                       | 5.0%                                       |     |
| MgO              | 0.2%                     | 0.3%                   | 0.3%                        | 0.4%                             | 0.3%                            | 0.3%                        | 0.5%                  | 0.3%                     | 0.4%                         | 0.5%                     | 0.2%                         | 2.9%                     | 2.5%                     | 2.9%                     | 2.7%                                    | 0.5%                                         | 1.6%                                       | 0.7%                                       |     |
| Na2O             | 0.2%                     | 0.2%                   | 0.3%                        | 0.3%                             | %9.0                            | %6.0                        | 12.7%                 | 14.7%                    | 15.8%                        | 14.5%                    | 17.8%                        | 10.4%                    | 12.6%                    | 9.4%                     | 15.3%                                   | 3.7%                                         | 7.4%                                       | 9.4%                                       |     |
| SiO              | 78.4%                    | 78.3%                  | 77.8%                       | %6.67                            | 79.3%                           | 74.2%                       | %8.79                 | %8.09                    | %6.69                        | 63.8%                    | 63.3%                        | 51.7%                    | 51.5%                    | 57.5%                    | 61.9%                                   | 70.1%                                        | 69.1%                                      | 62.5%                                      |     |
| Bead Description | Purple Indo-Pacific Bead | Blue Indo-Pacific bead | Dark blue Indo-Pacific bead | Large clear Indo-Pacific<br>Bead | Large Blue Indo-Pacific<br>bead | Dark blue Indo-Pacific bead | Red Indo-Pacific Bead | Yellow Indo-Pacific Bead | Light Blue Indo-Pacific bead | Yellow Indo-Pacific Bead | Light Blue Indo-Pacific bead | Orange Indo-Pacific Bead | Orange Indo-Pacific Bead | Orange Indo-Pacific Bead | Black and white glass beadblack section | Black and white glass bead-<br>white section | Broken black and white bead. Black portion | Broken black and white bead. White portion |     |
| Glass 1ype       | m-K-Al Low Ca            | m-K-Al Low Ca          | m-K-Al Low Ca               | m-K-Al Low Ca                    | m-K-Ca-Al                       | m-K-Ca-Al                   | m-Na-Al Type 1        | m-Na-Al Type 1           | m-Na-Al Type 1               | m-Na-Al Type 1           | m-Na-Al Type 1               | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1           | m-Na-Al Type 1?                         | Unknown                                      | Unknown                                    | Unknown                                    |     |
| Site Name        | Promtin Tai              | Promtin Tai            | Promtin Tai                 | Promtin Tai                      | Promtin Tai                     | Promtin Tai                 | Promtin Tai           | Promtin Tai              | Promtin Tai                  | Promtin Tai              | Promtin Tai                  | Promtin Tai              | Promtin Tai              | Promtin Tai              | Promtin Tai                             | Promtin Tai                                  | Promtin Tai                                | Promtin Tai                                |     |
| Datapase ID      | AKC01073<br>violet       | AKC01073<br>blue       | AKC01066                    | AKC00909                         | AKC00910                        | AKC00959_dkb<br>lue         | AKC00959_red          | AKC00959_yell<br>ow      | AKC00959_turq Promtin Tai    | AKC01071yello<br>w       | AKC01071blue                 | AKC00959_ora             | AKC01057oran<br>ge       | AKC01071oran<br>ge       | AKC01043b                               | AKC01043w                                    | AKC01059b                                  | AKC01059w                                  |     |

| Database ID  | Site Name    | Glass Type    | Bead Description                        | SiO2  | Na2O  | $M_{\mathbf{gO}}$ | A12O3 | P203 | K20   | CaO  |
|--------------|--------------|---------------|-----------------------------------------|-------|-------|-------------------|-------|------|-------|------|
| AKC01057gold | Promtin Tai  | Natron glass  | Gold-in-Glass Bead                      | %5'99 | 17.4% | 1.2%              | 2.9%  | %0.0 | %9.0  | 9.3% |
| AKC01093     | Promtin Tai  | Faience?      | Collar Bead                             | 96.1% | 0.1%  | 0.1%              | 1.3%  | 0.1% | 1.2%  | 0.5% |
| AKC00901     | Promtin Tai  | Weathered     | Light Blue ring/earring fragment        | 91.0% | 0.1%  | 0.4%              | 1.7%  | 0.1% | 2.8%  | 2.4% |
| AKC01022     | Promtin Tai  | Weathered     | Black Tubular Bead                      | %0.07 | %2.0  | 2.9%              | 16.6% | 0.3% | 1.6%  | 2.3% |
| AKC00410     | Village 10.8 | m-K-Ca-Al     | Dark blue Indo-Pacific bead             | 76.7% | 0.2%  | 0.3%              | 2.7%  | 0.1% | 15.4% | 1.1% |
| AKC00413     | Village 10.8 | m-K-Ca-Al     | Black Indo-Pacific Bead                 | 76.3% | 0.2%  | 0.3%              | 3.9%  | 0.2% | 14.4% | 1.1% |
| AKC00416     | Village 10.8 | m-K-Ca-Al     | Dark blue Indo-Pacific bead             | 76.1% | 0.1%  | 0.4%              | 4.4%  | 0.2% | 12.6% | 1.4% |
| AKC00327     | Village 10.8 | m-K-Ca-Al     | Black Ring                              | 69.4% | 0.5%  | %8.0              | 3.9%  | 0.5% | 16.3% | 2.3% |
| AKC00322     | Village 10.8 | m-K-Ca-Al     | Purple Ring                             | 79.7% | 0.2%  | 0.3%              | 1.2%  | 0.2% | 11.9% | 2.3% |
| AKC00386     | Village 10.8 | m-K-Al Low Ca | Blue-Green Indo-Pacific<br>bead         | %9'LL | %8.0  | %7.0              | 1.9%  | 0.1% | 15.5% | 0.7% |
| AKC00412     | Village 10.8 | m-K-Al Low Ca | Dark Blue Indo-Pacific<br>bead          | 74.0% | 0.2%  | %€"0              | 3.4%  | 0.2% | 18.1% | %6.0 |
| AKC00425a    | Village 10.8 | m-K-Al Low Ca | Dark Blue Indo-Pacific<br>bead          | 71.2% | 0.4%  | %€"0              | 4.2%  | 0.2% | 18.0% | 1.0% |
| AKC00425b    | Village 10.8 | m-K-Al Low Ca | Dark Blue Indo-Pacific<br>bead          | 75.9% | 0.1%  | 0.2%              | 3.6%  | 0.2% | 17.5% | 0.7% |
| AKC00372     | Village 10.8 | m-K-Al Low Ca | Dark Blue Indo-Pacific<br>bead          | 76.3% | 0.2%  | 0.2%              | 9.6%  | 0.1% | 14.3% | %9.0 |
| AKC00381     | Village 10.8 | Weathered     | Dark Green Indo-Pacific<br>Bead         | 87.2% | %0.0  | 0.2%              | 4.9%  | %8.0 | 0.1%  | 3.8% |
| AKC00389     | Village 10.8 | Weathered     | Blue-Green Indo-Pacific<br>bead         | 90.4% | %0'0  | %7.0              | %9.0  | %8.0 | 1.0%  | 4.0% |
| AKC00376     | Village 10.8 | Weathered     | Dark Blue Indo-Pacific<br>Bead          | 84.6% | %0'0  | %£'0              | 1.1%  | %9.0 | 5.8%  | 3.7% |
| AKC00424g    | Village 10.8 | Weathered     | Green with a White Stripe<br>Bead-Green | %8:58 | 0.1%  | %4.0              | 1.8%  | 0.2% | 7.2%  | 1.4% |
| AKC00424w    | Village 10.8 | Weathered     | White Stripe                            | 88.7% | 0.1%  | 0.4%              | 2.4%  | 0.2% | 3.6%  | 1.4% |

| Fe2O3                           |           |      | CuO  | SnO2 | Pb02 | Li     | Be    | В       | Sc     | Ti       | Λ       | Cr      | i.      | Co      |
|---------------------------------|-----------|------|------|------|------|--------|-------|---------|--------|----------|---------|---------|---------|---------|
| 0.1%   0.6%   1.0%   0.2%   0.2 | 1.0% 0.2% | 0.2% |      | 0.2  | 0.2% | 23.522 | 0.980 | 53.727  | 13.863 | 5136.438 | 60.573  | 89.510  | 43.255  | 17.004  |
| 0.1% 3.9% 0.0% 0.0% 0.0%        | %0.0 %0.0 | 0.0% | %(   | 0.   | 0.1% | 10.374 | 0.980 | 20.149  | 5.494  | 2504.790 | 63.485  | 20.618  | 8.916   | 4.272   |
| 1.3% 0.1% 0.0%                  | 0.1% 0.0% | 0.0% |      | 0.0  | %0.0 | 11.142 | 0.764 | 65.070  | 5.366  | 2686.396 | 49.126  | 47.492  | 10.872  | 5.594   |
| 0.7%   1.3%   0.0%   0.0%   0.0 | %0.0 %0.0 | %0.0 |      | 0.0  | %0.0 | 8.990  | 0.674 | 68.402  | 5.474  | 2696.570 | 49.043  | 54.370  | 10.156  | 5.648   |
| 0.6% 1.1% 0.0% 0.0% 0.          | %0.0 %0.0 | %0.0 |      | 0.   | %0.0 | 12.833 | 908.0 | 82.594  | 5.609  | 2010.565 | 44.695  | 47.188  | 9.187   | 5.398   |
| 0.9% 1.6% 0.0% 0.0% 0           | %0.0 %0.0 | %0.0 |      | 0    | %0.0 | 12.854 | 0.925 | 70.643  | 6.561  | 2572.664 | 999.95  | 44.380  | 11.760  | 7.615   |
|                                 | %0.0 %0.0 | %0.0 |      | 0    | %0.0 | 16.923 | 1.903 | 54.746  | 18.816 | 807.768  | 82.685  | 79.433  | 77.337  | 597.249 |
| 1.4% 0.5% 0.0% 0.0% 0           | %0.0 %0.0 | %0.0 |      | 0    | %0.0 | 16.851 | 1.600 | 60.442  | 16.438 | 1696.621 | 62.332  | 64.702  | 43.366  | 320.871 |
| 1.2% 0.9% 0.0% 0.0% 0.0%        | %0.0 %0.0 | %0.0 |      | 0.   | %0.0 | 14.278 | 1.691 | 48.900  | 20.285 | 1319.558 | 70.030  | 101.621 | 43.848  | 237.725 |
| 0.1% 0.7% 0.1% 0.0% 0           | 0.1% 0.0% | %0.0 |      | 0    | 0.1% | 10.238 | 1.450 | 124.845 | 16.013 | 1657.522 | 36.165  | 116.244 | 45.355  | 404.052 |
| 0.1% 0.5% 0.2% 0.0% 0           | 0.2% 0.0% | %0.0 |      | 0    | 0.1% | 14.882 | 1.508 | 130.763 | 11.326 | 1783.333 | 33.114  | 85.910  | 41.685  | 403.790 |
| 1.0% 0.4% 1.9% 0.1% 0           | 1.9% 0.1% | 0.1% | %1   | 0    | 0.2% | 13.687 | 1.177 | 110.356 | 14.914 | 823.774  | 30.801  | 100.696 | 32.096  | 9.245   |
| 0.2% 2.9% 0.0% 0.0% 0           | %0.0 %0.0 | %0.0 | %(   | 0    | 0.1% | 5.591  | 7.059 | 816.6   | 45.807 | 1925.449 | 59.166  | 394.569 | 69.010  | 61.275  |
| 0.1% 0.5% 0.0% 1.5% 9.2         | 0.0% 1.5% | 1.5% |      | 7.6  | 9.5% | 5.016  | 1.539 | 899'9   | 10.107 | 2168.914 | 58.177  | 45.262  | 13.894  | 6.811   |
| 0.1% 0.7% 0.3% 0.7% 7.          | 0.3% 0.7% | 0.7% |      | 7.   | 7.0% | 9.743  | 1.455 | 182.636 | 16.043 | 3405.624 | 144.054 | 118.389 | 38.545  | 13.400  |
| 0.0% 0.7% 1.6% 0.0% 0           | 1.6% 0.0% | %0.0 |      | 0    | 0.1% | 4.898  | 7.473 | 56.579  | 2.529  | 478.337  | 13.588  | 12.327  | 50.224  | 53.754  |
| 0.0% 0.5% 0.8% 0.0% (0.0%)      | %0.0 %8.0 | 0.0% |      | )    | %0.0 | 3.368  | 0.321 | 78.429  | 1.764  | 447.078  | 10.559  | 6.635   | 53.037  | 66.064  |
| 0.0% 0.5% 1.1% 0.0%             | 1.1%      |      | 0.0% |      | 0.0% | 1.577  | 0.634 | 97.394  | 1.527  | 378.442  | 16.108  | 5.133   | 31.373  | 23.701  |
| 0.0% 0.3% 0.8% 0.0%             | %0.0 %8.0 | 0.0% |      |      | %0.0 | 7.344  | 608.0 | 54.953  | 1.770  | 360.539  | 6.887   | 4.172   | 21.961  | 11.167  |
| 0.1% 1.8% 2.2% 0.2%             | 2.2% 0.2% | 0.2% |      |      | 0.4% | 8.482  | 4.994 | 17.909  | 4.378  | 2709.231 | 69.476  | 24.541  | 62.362  | 18.853  |
| 0.1% 2.7% 7.8% 0.3% 1           | 7.8% 0.3% | 0.3% |      | 1    | 1.7% | 8.864  | 3.412 | 28.480  | 7.346  | 2454.196 | 97.153  | 52.098  | 103.456 | 24.968  |
| 0.0% 1.2% 0.1% 1.2% 4           | 0.1% 1.2% | 1.2% |      | 7    | 4.6% | 12.176 | 5.176 | 26.554  | 3.751  | 2437.772 | 63.486  | 20.889  | 9.651   | 4.636   |
| 0.1% 1.5% 0.6% 0.0% (           | %0.0 %9.0 | %0.0 |      | )    | 0.1% | 7.709  | 5.650 | 20.644  | 4.858  | 2644.167 | 61.189  | 24.759  | 28.675  | 7.660   |
| 0.0% 0.9% 1.6% 0.2% (           | 1.6% 0.2% | 0.2% |      | _    | 0.3% | 8.900  | 4.957 | 20.688  | 3.476  | 2083.178 | 70.180  | 20.380  | 38.242  | 12.277  |
| 0.1% 2.1% 0.0% 0.0%             | %0.0 %0.0 | %0.0 |      |      | %0.0 | 9.491  | 6.705 | 24.883  | 4.859  | 8276.726 | 65.065  | 44.364  | 9.622   | 8.499   |
| 0.1% 1.3% 0.0% 0.0% (           | %0.0 %0.0 | %0.0 |      |      | %0.0 | 7.069  | 800.9 | 27.173  | 4.912  | 2531.752 | 79.106  | 20.837  | 7.698   | 3.754   |
|                                 |           |      |      |      | l    |        |       |         |        |          |         |         |         |         |

| Database ID | MnO  | Fe2O3 | CnO   | SnO2 | Pb02  | Li     | Be     | В       | Sc    | Ti       | Λ       | Cr     | Ņ       | Co      |
|-------------|------|-------|-------|------|-------|--------|--------|---------|-------|----------|---------|--------|---------|---------|
| AKC02032    | 0.1% | 2.6%  | 0.1%  | 0.3% | 2.3%  | 8.545  | 0.643  | 34.873  | 6.755 | 1715.126 | 73.282  | 34.995 | 9.377   | 5.606   |
| AKC02034    | %0.0 | 1.1%  | 0.5%  | %0.0 | 0.1%  | 12.415 | 0.829  | 34.356  | 3.036 | 2022.825 | 84.729  | 27.718 | 15.912  | 6.041   |
| AKC02037    | 0.1% | 3.8%  | 3.7%  | %0.0 | %0.0  | 14.469 | 1.071  | 46.160  | 8.542 | 2504.950 | 145.451 | 63.767 | 56.644  | 30.850  |
| AKC02031    | %0.0 | %9.0  | 1.0%  | 0.1% | 33.9% | 4.463  | 0.310  | 5.330   | 0.849 | 125.972  | 12.799  | 7.481  | 33.612  | 2.043   |
| AKC02033    | %0.0 | 0.2%  | %6.0  | 0.1% | 35.9% | 5.673  | 0.222  | 2.395   | 0.522 | 46.070   | 2.480   | 0.845  | 15.777  | 1.332   |
| AKC02035    | 0.0% | 0.3%  | 0.1%  | 3.5% | 49.5% | 27.189 | 0.488  | 1.767   | 0.420 | 34.295   | 3.897   | 0.545  | 10.105  | 1.399   |
| AKC02053    | %0.0 | 0.2%  | %8.0  | %0.0 | 42.1% | 5.314  | 3.543  | 1.557   | 0.914 | 50.846   | 2.798   | 4.749  | 22.021  | 1.150   |
| AKC02049    | 1.3% | 1.4%  | %0.0  | %0.0 | %0.0  | 13.350 | 12.645 | 74.951  | 6.037 | 1249.514 | 101.626 | 14.368 | 82.296  | 594.804 |
| AKC02054    | 0.2% | 0.5%  | 0.1%  | %0.0 | 0.1%  | 11.673 | 8.034  | 98.993  | 2.815 | 307.895  | 089.6   | 27.700 | 29.477  | 129.308 |
| AKC02044    | 3.0% | %8.0  | %0.0  | %0.0 | %0.0  | 11.919 | 0.672  | 96.334  | 2.990 | 797.163  | 22.645  | 75.219 | 19.776  | 186.103 |
| AKC02036    | 0.4% | 4.7%  | 10.3% | 0.1% | 0.1%  | 24.312 | 1.364  | 37.981  | 5.573 | 1212.907 | 42.592  | 24.878 | 212.756 | 148.795 |
| AKC02055    | %0.0 | %9.0  | %2.0  | 0.1% | 0.1%  | 23.026 | 6.829  | 17.889  | 3.170 | 1139.908 | 17.143  | 16.209 | 15.814  | 7.280   |
| AKC02056    | %0.0 | 0.4%  | %0.0  | %0.0 | %0.0  | 15.160 | 7.281  | 13.578  | 3.133 | 1206.039 | 22.583  | 11.614 | 7.226   | 1.491   |
| AKC02059    | 2.4% | 1.0%  | %6.0  | %0.0 | %0.0  | 2.786  | 5.729  | 39.500  | 3.821 | 704.867  | 55.036  | 10.115 | 63.738  | 107.143 |
| AKC02058    | %0.0 | %9.0  | 1.1%  | %0.0 | %0.0  | 6.648  | 0.000  | 75.931  | 3.669 | 609.635  | 12.963  | 5.334  | 28.159  | 25.821  |
| AKC00727    | 2.4% | 2.4%  | 0.3%  | %0.0 | 0.1%  | 22.308 | 0.877  | 85.626  | 9.194 | 737.218  | 114.600 | 24.264 | 121.188 | 891.083 |
| AKC00728    | 0.1% | %8.0  | 2.2%  | 0.3% | 0.4%  | 27.202 | 1.187  | 113.061 | 3.200 | 603.155  | 28.513  | 15.567 | 22.373  | 13.413  |
| AKC00729    | 1.0% | 1.5%  | 0.1%  | %0.0 | %0.0  | 22.342 | 698.0  | 89.182  | 4.113 | 551.525  | 44.771  | 11.125 | 55.515  | 358.797 |
| AKC00650    | %8.0 | %6.0  | %0.0  | %0.0 | %0.0  | 12.755 | 1.038  | 65.247  | 4.542 | 507.733  | 32.257  | 15.689 | 23.416  | 136.839 |
| AKC00649    | 1.3% | 1.0%  | %0.0  | %0.0 | %0.0  | 12.624 | 1.110  | 60.602  | 4.549 | 520.724  | 36.367  | 12.269 | 27.830  | 191.931 |
| AKC02001    | 0.1% | 1.9%  | 0.1%  | %0.0 | 0.1%  | 8.297  | 1.411  | 30.103  | 4.368 | 3057.818 | 67.422  | 31.146 | 13.399  | 5.969   |
| AKC02002    | 0.1% | 1.6%  | %0.0  | %9.0 | 4.1%  | 11.437 | 1.860  | 16.849  | 3.993 | 3026.789 | 63.043  | 24.354 | 8.209   | 4.732   |
| AKC02003    | 0.4% | 0.5%  | %0.0  | %0.0 | %0.0  | 10.592 | 0.910  | 82.316  | 1.866 | 725.378  | 52.657  | 7.471  | 51.490  | 267.436 |
| AKC02004    | 0.3% | 1.5%  | %2.0  | %0.0 | 0.2%  | 11.168 | 1.268  | 21.808  | 2.865 | 3542.947 | 58.465  | 27.013 | 17.595  | 8.548   |
| AKC02005    | 0.5% | 1.2%  | %6.0  | 0.7% | 3.3%  | 11.945 | 1.317  | 15.582  | 3.182 | 2617.575 | 906.89  | 17.724 | 30.499  | 233.837 |
|             |      |       |       |      |       |        |        |         |       |          |         |        |         |         |

| Database ID | MnO  | Fe2O3 | CnO  | SnO2 | PbO2 | Li     | Be    | В       | Sc    | Ti       | ^       | Cr     | Ņ       | Co      |
|-------------|------|-------|------|------|------|--------|-------|---------|-------|----------|---------|--------|---------|---------|
| AKC02006    | 1.4% | 1.3%  | 0.1% | %0.0 | 0.2% | 24.045 | 1.032 | 95.473  | 4.932 | 1058.621 | 45.121  | 15.114 | 46.920  | 275.250 |
| AKC02007    | 0.7% | 1.2%  | %8.0 | 0.2% | 0.5% | 12.780 | 1.452 | 22.304  | 3.040 | 2603.980 | 68.630  | 17.933 | 24.437  | 157.112 |
| AKC02008    | 0.1% | 1.1%  | 1.9% | 0.2% | 0.5% | 8.508  | 1.085 | 22.605  | 3.078 | 2493.334 | 63.341  | 18.542 | 10.153  | 6.279   |
| AKC02009    | 0.1% | 1.1%  | 1.6% | 0.3% | %9.0 | 18.018 | 1.625 | 51.444  | 2.646 | 2649.856 | 77.311  | 13.085 | 20.892  | 10.518  |
| AKC02010    | 1.1% | 1.3%  | 0.1% | %0.0 | %0.0 | 17.139 | 1.867 | 98.823  | 3.789 | 794.586  | 54.879  | 9.016  | 47.188  | 406.198 |
| AKC02012    | 0.1% | 1.8%  | %0.0 | %0.0 | %0.0 | 9.247  | 1.177 | 20.866  | 3.686 | 6023.706 | 63.661  | 47.440 | 8.887   | 995.9   |
| AKC02013    | 0.2% | 1.4%  | %6.0 | 0.1% | 0.1% | 11.581 | 2.707 | 23.369  | 4.840 | 2627.328 | 66.410  | 26.807 | 17.068  | 7.121   |
| AKC02014    | 0.1% | 1.3%  | 2.1% | 0.3% | 0.5% | 9.153  | 1.930 | 17.613  | 3.745 | 2733.337 | 969.99  | 21.504 | 21.953  | 8.423   |
| AKC02015    | 1.4% | 1.2%  | 0.1% | %0.0 | %0.0 | 25.897 | 2.508 | 75.074  | 5.777 | 1669.527 | 55.276  | 12.434 | 111.795 | 676.828 |
| AKC02016    | 2.6% | 1.6%  | %0.0 | %0.0 | %0.0 | 12.859 | 4.338 | 127.889 | 9.004 | 714.109  | 79.651  | 14.406 | 108.324 | 641.699 |
| AKC02019    | %0.0 | 1.1%  | %0.0 | 1.3% | 4.9% | 10.279 | 0.899 | 24.298  | 4.046 | 1544.013 | 89.727  | 11.520 | 7.800   | 3.270   |
| AKC02020    | %0.0 | %8.0  | %6.0 | 0.1% | 0.1% | 18.701 | 1.619 | 28.483  | 2.201 | 2003.515 | 67.546  | 10.560 | 11.056  | 3.723   |
| AKC02021    | 0.2% | 1.3%  | %6.0 | 0.1% | 0.1% | 10.404 | 1.308 | 23.358  | 3.421 | 2449.403 | 62.329  | 12.809 | 16.291  | 5.827   |
| AKC02022    | 0.3% | 1.0%  | 1.0% | %0.0 | %0.0 | 14.554 | 1.144 | 110.133 | 2.862 | 2482.368 | 45.098  | 24.997 | 10.516  | 4.792   |
| AKC020230   | 0.1% | 2.8%  | 4.6% | 0.5% | 2.3% | 10.622 | 1.316 | 44.483  | 7.156 | 2535.456 | 99.651  | 49.778 | 125.634 | 23.405  |
| AKC02023re  | 0.1% | 2.4%  | %8.0 | %0.0 | 0.2% | 11.916 | 1.217 | 53.736  | 6.741 | 2630.081 | 90.083  | 46.176 | 20.065  | 9.331   |
| AKC02024or  | 0.1% | 2.9%  | 4.4% | 0.7% | 1.9% | 12.501 | 1.280 | 44.632  | 909.7 | 2613.117 | 101.556 | 47.476 | 106.822 | 24.926  |
| AKC02024r   | 0.1% | 2.2%  | 1.3% | 0.1% | 0.4% | 12.529 | 0.943 | 93.760  | 5.305 | 3269.308 | 81.376  | 45.842 | 37.686  | 12.861  |
| AKC020250   | 0.1% | 2.8%  | 2.0% | 0.5% | 2.4% | 12.182 | 1.156 | 43.159  | 7.216 | 2475.323 | 96.134  | 46.097 | 132.342 | 26.890  |
| AKC02025r   | 0.1% | 2.6%  | 1.6% | 0.1% | 0.2% | 12.292 | 1.177 | 51.308  | 6.953 | 2614.377 | 96.610  | 47.928 | 39.317  | 10.968  |
| AKC020260   | 0.1% | 2.7%  | 4.7% | 0.7% | 2.3% | 11.704 | 1.068 | 35.994  | 7.398 | 2701.964 | 102.975 | 48.560 | 98.504  | 30.737  |
| AKC02026r   | 0.1% | 2.5%  | 1.6% | 0.1% | 0.2% | 10.730 | 0.827 | 46.491  | 6.857 | 2830.547 | 120.616 | 51.510 | 36.636  | 11.281  |
| AKC02027or  | 0.1% | 2.7%  | 2.0% | %9.0 | 2.5% | 12.326 | 1.273 | 42.108  | 7.382 | 2546.940 | 97.091  | 47.916 | 132.443 | 26.450  |
| AKC02027re  | 0.1% | 2.8%  | 1.7% | 0.1% | 0.2% | 11.613 | 1.140 | 50.953  | 7.581 | 2794.005 | 101.112 | 50.205 | 40.430  | 11.636  |
| AKC02028    | 0.4% | 3.5%  | 7.2% | 0.2% | 0.1% | 29.350 | 1.892 | 43.700  | 5.772 | 1370.701 | 42.549  | 16.469 | 183.371 | 87.367  |
| AKC02029    | 1.3% | 1.2%  | 0.2% | 0.0% | 0.1% | 19.837 | 1.288 | 85.798  | 3.876 | 741.939  | 51.097  | 1.612  | 969.59  | 409.884 |
|             |      |       |      |      |      |        |       |         |       |          |         |        |         |         |

| Co               | 84.809   | 26.963   | 9.572    | 1.748    | 2.163    | 262.927  | 17.637   | 16.334   | 4.592    | 11.168   | 11.250   | 7.653     | 6.958    | 7.522    | 17.013   | 4.743    | 22.619   | 6.122    | 9.661    | 8.581    | 3.709    | 16.921   | 9.052    | 9.001    | 43.376      | 44.962         |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------------|
| ï                | 157.224  | 54.856   | 28.388   | 3.961    | 18.638   | 49.112   | 89.286   | 55.860   | 7.280    | 36.926   | 40.689   | 35.118    | 20.338   | 24.051   | 142.748  | 13.664   | 48.855   | 15.918   | 23.961   | 45.004   | 6.887    | 36.898   | 15.649   | 13.628   | 434.536     | 446.747        |
| $\mathbf{Cr}$    | 18.066   | 58.563   | 17.909   | 6.182    | 17.378   | 13.065   | 22.685   | 28.630   | 26.849   | 34.517   | 31.515   | 27.376    | 16.704   | 45.942   | 41.109   | 35.753   | 61.480   | 33.631   | 41.613   | 30.968   | 21.969   | 18.367   | 27.796   | 31.805   | 60.532      | 62.028         |
| Λ                | 44.336   | 54.528   | 57.145   | 43.221   | 16.904   | 41.057   | 52.711   | 85.459   | 61.900   | 64.572   | 64.835   | 65.658    | 75.698   | 45.474   | 52.871   | 41.358   | 113.767  | 63.553   | 71.809   | 67.619   | 82.086   | 67.029   | 90.375   | 95.474   | 118.657     | 124.539        |
| Ti               | 1409.911 | 2739.587 | 2028.454 | 1354.887 | 617.102  | 1011.454 | 1828.584 | 2237.539 | 1835.427 | 1880.200 | 1878.430 | 1986.813  | 1395.366 | 1752.610 | 3545.176 | 1121.218 | 1918.292 | 2412.220 | 3406.878 | 2176.762 | 1340.178 | 1526.005 | 1912.703 | 1887.891 | 1784.088    | 1808.942       |
| Sc               | 5.845    | 5.483    | 3.844    | 1.584    | 3.340    | 4.535    | 5.274    | 5.301    | 3.765    | 4.765    | 4.656    | 3.886     | 2.110    | 3.479    | 3.834    | 2.005    | 7.542    | 4.385    | 4.284    | 4.286    | 2.148    | 2.825    | 4.668    | 4.311    | 7.613       | 7.838          |
| В                | 49.938   | 101.063  | 51.757   | 29.158   | 27.031   | 27.824   | 54.457   | 24.863   | 21.855   | 18.282   | 20.196   | 23.166    | 39.551   | 57.437   | 21.573   | 72.008   | 69.151   | 22.382   | 24.101   | 24.033   | 29.737   | 20.921   | 19.928   | 27.184   | 48.409      | 42.286         |
| Be               | 1.510    | 1.160    | 1.585    | 1.477    | 1.467    | 1.261    | 1.786    | 1.043    | 666.0    | 1.198    | 1.252    | 1.075     | 1.602    | 1.034    | 0.923    | 1.262    | 1.363    | 1.195    | 1.019    | 1.389    | 1.389    | 0.800    | 1.143    | 0.971    | 1.035       | 1.317          |
| Li               | 27.480   | 13.881   | 14.539   | 10.194   | 7.062    | 19.929   | 12.879   | 11.069   | 9.243    | 9.160    | 8.808    | 10.758    | 14.450   | 14.274   | 10.690   | 13.518   | 13.788   | 11.227   | 10.103   | 14.269   | 12.901   | 11.045   | 10.751   | 10.990   | 6.677       | 8.078          |
| PbO2             | 0.1%     | 0.1%     | 0.5%     | 2.5%     | 0.3%     | %0.0     | 2.2%     | 0.1%     | 3.3%     | 0.5%     | 0.4%     | 0.1%      | 0.1%     | 4.0%     | 0.7%     | 0.1%     | %8.0     | 1.2%     | 0.2%     | 0.3%     | %0.0     | %0.0     | %0.0     | 0.1%     | 1.5%        | 1.6%           |
| SnO <sub>2</sub> | 0.2%     | 0.1%     | 0.2%     | 0.3%     | 0.1%     | %0.0     | %6.0     | 0.1%     | %9.0     | 0.3%     | 0.3%     | 0.2%      | 0.2%     | 1.1%     | 0.1%     | 0.1%     | 0.2%     | 0.3%     | 0.1%     | 0.2%     | %0.0     | %0.0     | %0.0     | %0.0     | 0.3%        | 0.4%           |
| CnO              | 7.2%     | 1.8%     | 1.6%     | %0.0     | 1.7%     | 0.2%     | 5.7%     | %9.0     | %0.0     | 1.8%     | 1.8%     | 0.7%      | 1.3%     | %6.0     | 11.1%    | %6.0     | 0.7%     | %9.0     | 1.0%     | 0.7%     | 1.0%     | %8.0     | 1.3%     | 1.3%     | 4.4%        | 6.7%           |
| Fe2O3            | 3.7%     | 2.1%     | 1.5%     | %8.0     | 0.5%     | 1.3%     | 2.9%     | 2.2%     | 1.8%     | 2.3%     | 2.2%     | 1.6%      | %6.0     | 1.3%     | 1.9%     | %6.0     | 2.8%     | 1.7%     | 2.0%     | 2.0%     | %6.0     | 1.2%     | 1.9%     | 2.0%     | 3.2%        | 3.3%           |
| MnO              | 0.5%     | 0.2%     | 0.1%     | %0.0     | %0.0     | 0.7%     | 0.2%     | 0.4%     | 0.1%     | 0.1%     | 0.1%     | 0.1%      | %0.0     | 0.1%     | 0.1%     | 0.2%     | 0.1%     | 0.1%     | 0.1%     | 0.1%     | 0.3%     | 0.5%     | 0.1%     | 0.1%     | 0.1%        | 0.1%           |
| Database ID      | AKC02030 | AKC01924 | AKC01922 | AKC01920 | AKC01912 | AKC01913 | AKC01919 | AKC00224 | AKC00121 | AKC00105 | AKC00214 | AKC00214b | AKC00090 | AKC00080 | AKC00069 | AKC00291 | AKC00087 | AKC00081 | AKC00116 | AKC00115 | AKC00095 | AKC00118 | AKC00240 | AKC00245 | AKC00254red | AKC00254orange |

| Database ID | MnO  | Fe2O3 | CnO  | SnO2 | PbO2 | Li     | Be    | В       | Sc     | Ti       | Λ       | Cr     | ïZ      | Co      |
|-------------|------|-------|------|------|------|--------|-------|---------|--------|----------|---------|--------|---------|---------|
| AKC00284    | 0.1% | 3.7%  | 3.6% | %0.0 | %0.0 | 12.828 | 1.246 | 37.871  | 928.9  | 1511.330 | 182.449 | 47.972 | 133.484 | 39.267  |
| AKC00223    | 0.1% | 1.8%  | %6.0 | 0.1% | 0.2% | 13.018 | 0.994 | 106.212 | 4.167  | 2694.654 | 74.344  | 19.078 | 32.038  | 8.040   |
| AKC00221    | 0.1% | 1.2%  | %6.0 | %0.0 | %0.0 | 8.611  | 0.799 | 25.819  | 3.472  | 1772.897 | 103.581 | 26.371 | 9.862   | 3.513   |
| AKC00220    | 0.3% | 1.7%  | 1.7% | 0.1% | 0.1% | 14.139 | 1.050 | 49.448  | 4.079  | 2809.382 | 58.908  | 44.831 | 22.091  | 9.721   |
| AKC00122    | 0.1% | 1.2%  | 1.5% | 0.1% | 0.3% | 10.287 | 1.819 | 38.807  | 3.440  | 1636.425 | 61.671  | 30.032 | 19.239  | 5.107   |
| AKC00278    | 0.3% | 2.2%  | %0.8 | 1.4% | 1.5% | 14.618 | 1.267 | 160.081 | 7.564  | 2125.838 | 64.846  | 65.327 | 134.277 | 33.291  |
| AKC00277    | 0.3% | 3.4%  | 7.2% | 1.3% | 1.9% | 17.045 | 0.962 | 159.074 | 8.152  | 2142.095 | 61.385  | 988.69 | 258.797 | 33.503  |
| AKC00057    | 0.2% | 0.7%  | 2.3% | 0.1% | %0.0 | 9.725  | 0.937 | 60.707  | 1.624  | 215.827  | 12.590  | 6.701  | 12.096  | 6.466   |
| AKC00058    | 0.2% | 0.7%  | 2.2% | 0.1% | %0.0 | 9.349  | 1.114 | 59.900  | 1.468  | 245.501  | 12.426  | 6.053  | 11.373  | 6.227   |
| AKC00059    | 1.3% | 1.4%  | 0.1% | %0.0 | %0.0 | 29.371 | 0.961 | 98.165  | 5.407  | 690.350  | 962:396 | 13.333 | 76.659  | 522.386 |
| AKC00117    | 0.2% | 2.0%  | 0.1% | %0.0 | 0.1% | 19.138 | 0.729 | 100.808 | 3.249  | 987.303  | 32.383  | 54.343 | 62.679  | 399.098 |
| AKC01651    | %9.0 | 2.2%  | 1.1% | %0.0 | 0.1% | 13.000 | 1.000 | 138.000 | 5.000  | 4136.000 | 76.000  | 36.000 | 44.000  | 22.210  |
| AKC01652    | 0.1% | 2.6%  | %0.0 | 0.7% | 3.5% | 11.000 | 2.000 | 56.000  | 7.000  | 3810.000 | 193.000 | 44.000 | 18.000  | 7.940   |
| AKC01658    | 0.1% | 1.6%  | 1.3% | %0.0 | %0.0 | 10.000 | 1.000 | 27.000  | 5.000  | 3182.000 | 000.66  | 30.000 | 16.000  | 8.740   |
| AKC01677    | 0.1% | 3.0%  | %6.0 | 0.5% | 2.0% | 14.000 | 1.000 | 64.000  | 000.6  | 2755.000 | 138.000 | 40.000 | 67.000  | 24.450  |
| AKC01679    | 0.1% | %0.9  | %5.9 | %0.0 | %0.0 | 10.970 | 1.310 | 57.630  | 7.420  | 2931.560 | 87.580  | 58.530 | 530.770 | 483.790 |
| AKC01685    | 0.1% | 0.2%  | %0.0 | %0.0 | %0.0 | 14.000 | 1.000 | 48.000  | 000.6  | 3281.000 | 169.000 | 57.000 | 93.000  | 26.900  |
| AKC01683    | %9.0 | 2.1%  | 1.4% | 0.1% | 0.4% | 16.980 | 0.990 | 149.420 | 5.180  | 3319.320 | 99.160  | 96.390 | 47.610  | 29.830  |
| AKC01686    | 0.1% | 0.1%  | %0.0 | %0.0 | %0'0 | 000.6  | 2.000 | 42.000  | 000.6  | 3479.000 | 108.000 | 70.000 | 501.000 | 25.940  |
| AKC01688    | %0.0 | %0.0  | %0.0 | %0.0 | %0.0 | 11.000 | 2.000 | 72.000  | 4.000  | 3785.000 | 50.000  | 45.000 | 19.000  | 5.460   |
| AKC01692    | 0.1% | 2.4%  | %6.0 | 0.1% | 0.4% | 12.000 | 1.000 | 74.000  | 000'9  | 3207.000 | 79.000  | 57.000 | 113.000 | 35.460  |
| AKC01696    | %0.0 | 0.1%  | %0.0 | %0.0 | %0.0 | 12.000 | 1.000 | 000.09  | 000'9  | 3287.000 | 89.000  | 43.000 | 72.000  | 10.250  |
| AKC01697    | 0.1% | 3.1%  | %0.0 | 0.5% | 3.3% | 14.000 | 1.000 | 62.000  | 10.000 | 3521.000 | 107.000 | 48.000 | 28.000  | 11.540  |
| AKC01699    | %9.0 | 1.8%  | 1.5% | %0.0 | 0.1% | 11.000 | 1.000 | 29.000  | 5.000  | 2718.000 | 80.000  | 30.000 | 19.000  | 11.570  |
| AKC01702    | 0.4% | 1.2%  | 1.3% | %0.0 | %0.0 | 11.950 | 1.270 | 27.900  | 3.630  | 1651.840 | 128.380 | 27.400 | 16.760  | 11.020  |
| AKC01722    | 0.4% | 1.3%  | 1.0% | %0.0 | %0.0 | 8.000  | 1.000 | 26.000  | 4.000  | 2230.000 | 133.000 | 36.000 | 16.000  | 10.590  |
|             |      |       |      |      |      |        |       |         |        |          |         |        |         |         |

| 0.0%         11.000         1.000         3.000         4.000         99,000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000         17.000 |                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 15.000         1.000         33.000         5.000         2155.000         129.000         26.000         18.000           8.290         0.770         53.600         10.920         1967.650         75.860         53.550         161.890           14.000         1.000         55.000         8.000         2836.000         120.000         53.500         10.920         1967.650         75.860         53.500         10.000         25.000         21.000         11.000         11.000         11.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000         12.000                 | 1.9% 0.6% 0.0% 0.0%<br>2.0% 1.2% 0.0% 0.0% |
| 8.290         0.770         53.600         10.920         1967.650         75.860         53.550         161.890           14,000         1.000         55.000         8.000         2836.000         122.000         69.000         21.000           14,000         2.000         53.000         4.000         2596.000         94.000         37.000         21.000           12,000         1.000         27.000         7.000         3344.000         190.000         19.000         19.000           11,000         1.000         27.000         7.000         3344.000         190.000         19.000         19.000           11,000         1.000         27.000         4.000         2292.000         190.000         12.000         12.000           12,000         2.000         27.000         4.000         2292.000         190.00         15.000         15.000           12,000         2.000         2.000         4.000         2920.00         19.000         15.000         15.000           10,000         2.000         4.000         2920.000         85.000         34.000         15.000         15.000           10,000         2.000         4.000         2945.000         19.000         1                                                                                     | %0.0                                       |
| 14.000         1.000         55.000         8.000         2836.000         122.000         69.000         21.000           14.000         2.000         53.000         4.000         4260.000         94.000         37.000         23.000           12.000         1.000         34.000         6.000         2596.000         94.000         37.000         19.000           13.000         1.000         27.000         7.000         3344.000         105.000         12.000         12.000           11.000         1.000         27.000         7.000         3326.000         100.000         23.000           12.000         2.000         27.000         4.000         2292.000         105.000         33.000         15.000           12.000         2.000         27.000         4.000         2889.00         63.000         34.000         15.000           12.000         2.000         4.000         2945.000         105.000         34.000         15.000           10.000         2.000         4.000         2945.00         103.000         20.000         10.000           10.000         1.000         2.000         4.000         2945.00         103.000         10.000           110.00                                                                                             | 2.5% 1.7% 0.4% 0.3%                        |
| 14.000         2.000         53.000         4.000         2596.000         94.000         37.000         23.000           12.000         1.000         34.000         6.000         2596.000         93.000         43.000         19.000           13.000         1.000         27.000         7.000         3344.00         105.000         23.000         12.000           11.000         1.000         27.000         4.000         2292.000         100.000         23.000         15.000           12.000         2.000         27.000         4.000         2292.000         132.000         15.000           12.000         2.000         27.000         4.000         2889.000         10.000         15.000           12.000         1.000         21.000         4.000         2946.000         34.000         15.000           10.000         1.000         23.000         4.000         2945.000         35.000         13.000           10.000         1.000         25.000         4.000         2945.000         36.000         23.000           11.000         1.000         25.000         4.000         2945.000         36.000         36.000           11.000         1.000         25.000 </td <td>2.5% 0.0% 0.0% 0.0%</td>                                                             | 2.5% 0.0% 0.0% 0.0%                        |
| 12.000         1.000         34.000         6.000         2596.000         93.000         43.000         19.000           13.000         1.000         27.000         7.000         3344.000         100.000         23.000           11.000         1.000         27.000         5.000         3326.000         100.000         23.000           11.000         1.000         27.000         4.000         2292.000         132.000         16.000           12.000         2.000         27.000         4.000         2292.000         132.000         16.000           12.000         2.000         27.000         4.000         2292.000         105.000         23.000         16.000           12.000         2.000         20.000         6.000         3444.000         19.000         16.000         16.000           10.000         2.000         20.000         20.000         3417.00         68.000         23.000         13.000           10.000         1.000         25.000         4.000         2945.00         19.00         13.000         13.00         13.00         13.00         13.00         13.00         13.00         13.00         13.00         13.00         13.00         13.00         13.00 </td <td></td>                                                                |                                            |
| 13.000         1.000         27.000         7.000         3344.000         105.000         23.000         23.000           11.000         1.000         25.000         5.000         3326.000         100.000         28.000         12.000           8.000         1.000         27.000         4.000         2292.000         100.000         16.000           12.000         2.000         27.000         4.000         2889.000         63.000         23.000           12.000         2.000         27.000         4.000         2889.000         63.000         24.000         15.000           9.000         1.000         21.000         4.000         2889.000         63.000         24.000         15.000           10.000         1.000         23.000         4.000         2920.000         85.000         36.000         13.000           10.000         1.000         23.000         4.000         2945.000         103.000         23.000         13.000           11.000         1.000         25.000         4.136.000         85.000         34.000         62.000         35.000           11.000         1.000         25.000         4.000         2948.000         85.000         34.000                                                                                              | 2.0% 1.3% 0.0% 0.                          |
| 11.000         1.000         25.000         5.000         3326.000         100.000         28.000         12.000           8.000         1.000         27.000         4.000         2292.000         132.000         30.000         12.000           12.000         2.000         27.000         7.000         3464.000         105.000         30.000         15.000           12.000         2.000         27.000         6.000         3889.000         63.000         24.000         15.000           9.000         1.000         21.000         4.000         2920.000         85.000         24.000         6.000           10.000         1.000         21.000         4.000         2945.000         136.000         9.000           11.000         1.000         26.000         4.000         2945.000         193.000         13.000           11.000         1.000         26.000         4.000         2945.000         197.000         34.000         23.000           11.000         1.000         4.000         2968.000         86.000         24.000         10.000           11.000         1.000         4.000         2968.000         103.000         10.000           11.000         1.000<                                                                                             | 0.1% 0.0% 0.0%                             |
| 8.000         1.000         27.000         4.000         2292.000         132.000         30.000         16.000           12.000         2.000         27.000         7.000         3464.000         105.000         23.000           12.000         2.000         27.000         6.000         3464.000         109.000         34.000         15.000           12.000         2.000         20.000         4.000         2889.000         63.000         24.000         6.000           10.000         1.000         21.000         4.000         2920.000         85.000         9.000           10.000         1.000         26.000         4.000         2945.000         13.000         13.000           10.000         1.000         26.000         4.000         2945.000         197.000         34.000         68.000         29.000           11.000         1.000         26.000         4.136.000         68.000         23.000         10.000           11.000         1.000         23.000         4136.000         197.000         34.00         62.000         9.000           11.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000                                                                                               | 0.1% 0.0% 0.0%                             |
| 12.000         2.000         27.000         7.000         3464.000         105.000         23.000         23.000           12.000         2.000         20.000         6.000         3080.000         109.000         34.000         15.000           9.000         1.000         21.000         4.000         2889.000         63.000         24.000         15.000           10.000         1.000         21.000         4.000         2920.000         85.000         36.000         9.000           13.000         1.000         26.000         4.000         2945.000         193.000         13.000           11.000         1.000         26.000         4.000         2945.000         197.000         88.000         23.000           11.000         1.000         4.000         2945.000         197.000         48.000         23.000           11.000         1.000         4.000         2945.000         197.000         48.000         23.000           11.000         1.000         4.000         2968.000         86.000         24.000         10.000           11.000         1.000         4.000         2988.000         86.000         24.000         10.000           12.440         1.500                                                                                             | 0.1% 0.0% 0.0%                             |
| 12.000         2.000         20.000         4.000         3080.000         199.000         34.000         15.000           9.000         1.000         21.000         4.000         2889.000         63.000         24.000         6.000           10.000         1.000         21.000         4.000         2920.000         85.000         36.000         9.000           13.000         1.000         26.000         4.000         2945.000         103.000         26.000         9.000           11.000         1.000         26.000         4.000         2945.000         103.000         26.000         9.000           11.000         1.000         4.000         2945.000         103.000         26.000         9.000           11.000         1.000         4.000         2945.000         197.000         34.000         62.000           11.000         1.000         4.000         2968.000         86.000         24.000         10.000           12.440         1.500         49.810         7.490         2911.600         57.880         132.500           13.690         1.720         64.490         8.940         3466.480         105.08         65.00         176.79           12.960 <td>0.1% 0.0% 0.0%</td>                                                                         | 0.1% 0.0% 0.0%                             |
| 9.000         1.000         21.000         4.000         2889.000         63.000         24.000         6.000           10.000         1.000         23.000         4.000         2920.000         85.000         36.000         9.000           13.000         1.000         26.000         5.000         3417.000         68.000         25.000         9.000           13.000         1.000         26.000         4.000         2945.000         103.000         26.000         9.000           13.000         1.000         26.000         4.000         2945.000         103.000         23.000         13.000           11.000         1.000         42.000         5.000         1820.000         197.000         23.000         23.000           11.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000           9.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000           12.440         1.500         49.810         7.460         2911.600         124.900         57.80         132.50           13.690         1.720         61.920         8.840         2773.410         113.80<                                                                                     | 2.4% 0.1% 0.0%                             |
| 10.000         1.000         23.000         4.000         2920.000         85.000         36.000         9.000           13.000         1.000         26.000         5.000         3417.000         68.000         35.000         13.000           13.000         1.000         26.000         4.000         2945.000         103.000         26.000         9.000           13.000         1.000         26.000         4.000         2945.000         69.000         68.000         23.000           11.000         1.000         42.000         5.000         197.000         34.000         62.000           9.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000           12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.                                                                                     | 1.3% 0.0% 0.8%                             |
| 13.000         1.000         26.000         3.417.000         68.000         35.000         13.000           10.000         1.000         26.000         4.000         2945.000         103.000         26.000         9.000           13.000         1.000         4.000         4136.000         69.000         68.000         23.000           11.000         1.000         42.000         5.000         1820.000         197.000         34.000         62.000           9.000         1.000         42.000         5.000         1820.000         197.000         34.000         62.000           12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           14.310         0.970         64.490         8.940         3466.480         102.60         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           12.960         1.530         32.180         5.660         6690.240         69.530         51.280         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410                                                                                          | 4.3% 0.0% 0.0%                             |
| 10.000         1.000         26.000         4.000         2945.000         103.000         26.000         9.000           13.000         1.000         113.000         6.000         4136.000         69.000         68.000         23.000           11.000         1.000         42.000         5.000         1820.000         197.000         24.000         10.000           12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           14.310         0.970         64.490         8.940         3466.480         102.600         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522                                                                                         | 2.0% 1.5% 0.0%                             |
| 13.000         1.000         113.000         6.000         4136.000         69.000         68.000         23.000           11.000         1.000         42.000         5.000         1820.000         197.000         34.000         62.000           9.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000           12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           14.310         0.970         64.490         8.940         3466.480         102.600         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522                                                                                          | 1.4% 0.3% 0.0%                             |
| 11.000         1.000         42.000         5.000         1820.000         197.000         34.000         62.000           9.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000           12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           14.310         0.970         64.490         8.940         3466.480         102.600         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         <                                                                                 |                                            |
| 9.000         1.000         23.000         4.000         2968.000         86.000         24.000         10.000           12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           14.310         0.970         64.490         8.940         3466.480         102.600         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                        | 1.7% 1.1% 0.0%                             |
| 12.440         1.500         49.810         7.490         2911.600         124.900         57.880         132.560           14.310         0.970         64.490         8.940         3466.480         102.600         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                 | 4.5% 0.0% 0.0%                             |
| 14.310         0.970         64.490         8.940         3466.480         102.600         76.600         128.700           13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7% 6.8% 0.1%                             |
| 13.690         1.720         61.920         9.280         3308.520         126.780         66.460         176.230           19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8% 3.2% 0.2%                             |
| 19.670         1.670         55.690         8.840         2773.410         113.800         65.610         18.190           12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1% 3.3% 0.1%                             |
| 12.960         1.530         32.180         5.660         6690.240         69.530         51.230         11.100           7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4% 0.0% 0.0%                             |
| 7.510         1.210         24.650         3.850         2553.460         119.840         25.410         21.680           7.515         1.046         145.909         3.791         2025.588         30.406         61.739         38.150           18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3% 0.0% 0.0%                             |
| 7.515     1.046     145.909     3.791     2025.588     30.406     61.739     38.150       18.162     0.709     102.448     2.861     964.522     18.752     160.052     27.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4% 1.3% 0.0%                             |
| 18.162         0.709         102.448         2.861         964.522         18.752         160.052         27.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6% 0.1% 0.0% 0                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0% 0.3% 0.0%                             |

| 17.790<br>16.862<br>10.024<br>31.724<br>14.692<br>20.626 | 0.0% |  | 0.598 | 107.492 | 2.852  | 975.430 | 18.633  | 159.877 | 22.310  | 1            |
|----------------------------------------------------------|------|--|-------|---------|--------|---------|---------|---------|---------|--------------|
| 16.862<br>10.024<br>31.724<br>14.692<br>20.626           |      |  |       | 46 002  |        |         |         |         |         | 4.137        |
| 10.024<br>31.724<br>14.692<br>20.626                     |      |  | _     | 1       | 5.472  | 549.252 | 288.163 | 31.011  | 57.041  | 496.815      |
| 31.724<br>14.692<br>20.626                               |      |  | 0.951 | 46.713  | 1.840  | 223.862 | 17.168  | 8.978   | 12.507  | 6.262        |
| 14.692                                                   |      |  | 0.764 | 77.642  | 2.912  | 360.285 | 24.503  | 12.043  | 31.948  | 91.682       |
| 20.626                                                   | %0.0 |  | 1.246 | 30.018  | 4.605  | 634.496 | 173.525 | 18.572  | 59.349  | 557.221      |
|                                                          | %0.0 |  | 1.314 | 87.057  | 12.683 | 831.437 | 160.157 | 31.714  | 131.929 | 1115.75      |
| 13.572                                                   | %0.0 |  | 0.910 | 70.513  | 4.342  | 358.272 | 81.819  | 15.646  | 74.299  | 547.931      |
| 19.624                                                   | %0.0 |  | 0.579 | 92.004  | 11.336 | 770.688 | 151.567 | 29.387  | 135.968 | 1119.59      |
| 16.852                                                   | %0.0 |  | 1.508 | 68.852  | 3.328  | 494.210 | 49.498  | 9.958   | 65.832  | 426.286      |
| 14.957                                                   | %0.0 |  | 1.235 | 71.148  | 3.287  | 493.868 | 50.283  | 10.722  | 68.261  | 441.695      |
| 33.946                                                   | %0.0 |  | 1.157 | 80.872  | 4.434  | 471.514 | 50.376  | 13.347  | 50.851  | 385.895      |
| 6.237                                                    | %0.0 |  | 0.584 | 46.402  | 3.869  | 684.442 | 151.255 | 31.293  | 31.311  | 36.079       |
| 32.871                                                   | 0.1% |  | 0.865 | 89.874  | 2.614  | 349.230 | 29.303  | 11.628  | 12.467  | 59.525       |
| 24.992                                                   | %0.0 |  | 1.111 | 91.690  | 4.023  | 729.563 | 30.432  | 20.046  | 21.457  | 8.515        |
| 13.466                                                   | 0.1% |  | 1.057 | 82.260  | 2.852  | 415.830 | 24.656  | 15.688  | 9.383   | 30.279       |
| 50.213                                                   | %0.0 |  | 1.142 | 102.446 | 5.633  | 446.767 | 64.463  | 15.737  | 64.081  | 486.775      |
| 19.414                                                   | %0.0 |  | 1.456 | 57.376  | 2.229  | 355.292 | 32.233  | 7.802   | 8.875   | 52.262       |
| 15.820                                                   | %0.0 |  | 1.440 | 83.854  | 7.414  | 463.848 | 117.977 | 19.016  | 126.123 | 970.605      |
| 26.699                                                   | %0.0 |  | 1.031 | 64.927  | 3.377  | 422.672 | 31.413  | 11.852  | 24.644  | 153.718      |
| 12.899                                                   | %0.0 |  | 1.140 | 84.113  | 6.410  | 448.138 | 83.286  | 15.809  | 92.093  | 986.959      |
| 20.529                                                   | %0.0 |  | 1.528 | 87.045  | 899.6  | 577.943 | 128.130 | 21.523  | 150.467 | 1157.72<br>1 |
| 5.968                                                    | %0.0 |  | 0.659 | 88.589  | 1.439  | 186.797 | 9.635   | 6.164   | 4.669   | 2.000        |
| 26.721                                                   | 1.0% |  | 1.294 | 85.491  | 5.776  | 755.729 | 52.784  | 22.319  | 40.146  | 247.921      |
| 15.020                                                   | %0.0 |  | 688.0 | 58.841  | 4.482  | 524.506 | 36.403  | 13.548  | 27.231  | 188.591      |
| 36.657                                                   | %0.0 |  | 0.716 | 121.497 | 2.118  | 361.574 | 20.834  | 9.598   | 7.284   | 24.267       |

| Co               | 990.79   | 29.228   | 543.478  | 25.852   | 478.970  | 536.841  | 29.312   | 26.092   | 0.163        | 542.226  | 500.584  | 525.340  | 0.800   | 141.040  | 1233.58<br>0 | 33.900  | 1082.64   | 11.830  | 858.757  | 1039.30 | 1085.69   | 1074.36   | 440.037  | 162.190  |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|---------|----------|--------------|---------|-----------|---------|----------|---------|-----------|-----------|----------|----------|
| Z.               | 26.737   | 26.299   | 64.506 5 | 5.590 2  | 55.905 4 | 62.378 5 | 10.423   | 5.763 2  | 1.643        | 55.818 5 | 57.515 5 | 64.000 5 | 4.000   | 23.000 1 | 163.000 1    | 19.000  | 142.000 1 | 37.000  | 92.121 8 | 144.794 | 149.410 1 | 146.245 1 | 61.646 4 | 16.134 1 |
| Cr               | 5.296    | 7.486    | 23.492   | 7.428    | 25.406 3 | 25.114   | 13.231   | 8.426    | 3.337        | 18.370   | 15.665 3 | 27.000   | 5.000   | 9.000    | 21.000 1     | 31.000  | 24.000 1  | 000.6   | 15.394   | 19.096  | 20.614 1  | 17.481 1  | 14.595   | 8.234    |
| >                | 13.041   | 14.517   | 138.807  | 19.804   | 157.886  | 144.334  | 24.350   | 21.095   | 2.054        | 169.186  | 153.214  | 138.000  | 7.000   | 25.000   | 130.000      | 21.000  | 141.000   | 19.000  | 86.045   | 117.550 | 124.265   | 117.215   | 72.328   | 26.532   |
| Ti               | 152.349  | 314.160  | 827.126  | 298.412  | 633.755  | 863.559  | 424.569  | 318.517  | 42.104       | 824.228  | 663.633  | 1462.000 | 149.000 | 342.000  | 907.000      | 627.000 | 1172.000  | 486.000 | 750.906  | 715.352 | 875.229   | 771.759   | 539.144  | 487.967  |
| Sc               | 2.671    | 1.697    | 7.599    | 2.004    | 6.503    | 7.795    | 2.765    | 2.140    | 0.496        | 5.186    | 5.860    | 8.000    | 3.000   | 2.000    | 000.6        | 3.000   | 11.000    | 2.000   | 698.9    | 7.100   | 7.937     | 7.638     | 4.910    | 1.475    |
| В                | 31.141   | 68.055   | 28.711   | 111.941  | 26.833   | 30.286   | 81.202   | 115.619  | 5045.07<br>6 | 23.004   | 20.776   | 28.000   | 88.000  | 23.000   | 100.000      | 103.000 | 106.000   | 135.000 | 93.179   | 100.747 | 114.261   | 95.498    | 62.489   | 32.516   |
| Be               | 1.070    | 1.410    | 1.001    | 1.447    | 1.028    | 0.872    | 0.725    | 1.025    | 0.514        | 1.317    | 1.338    | 1.000    | 0.000   | 2.000    | 2.000        | 1.000   | 1.000     | 1.000   | 1.644    | 1.797   | 1.510     | 2.416     | 2.001    | 1.795    |
| Li               | 3.747    | 7.380    | 11.176   | 35.105   | 13.321   | 12.525   | 12.652   | 35.189   | 666.6        | 12.307   | 8.848    | 11.000   | 000.9   | 21.000   | 11.000       | 2.000   | 25.000    | 2.000   | 16.538   | 13.051  | 12.426    | 16.485    | 7.079    | 1.334    |
| PbO2             | %0.0     | %0.0     | %0.0     | 0.0%     | %0.0     | 0.0%     | %0.0     | 0.4%     | %0.0         | 0.0%     | %0.0     | 0.0%     | %0.0    | 0.0%     | %0.0         | %0.0    | %0.0      | %0.0    | %0.0     | %0.0    | %0.0      | %0.0      | %0.0     | %0.0     |
| SnO2             | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | %0.0     | 0.1%     | %0.0         | %0.0     | %0.0     | %0.0     | %0.0    | %0.0     | %0.0         | %0.0    | %0.0      | %0.0    | %0.0     | %0.0    | %0.0      | %0.0      | %0.0     | %0.0     |
| C <sub>u</sub> O | 2.4%     | 1.1%     | %0.0     | %0.0     | 0.1%     | %0.0     | %0.0     | %0.0     | %0.0         | 0.1%     | %0.0     | 0.1%     | 2.4%    | 0.1%     | %0.0         | 0.1%    | 0.1%      | 2.1%    | 0.1%     | %0.0    | %0.0      | %0.0      | %0.0     | %0.0     |
| Fe2O3            | %8.0     | 0.7%     | 2.3%     | %8.0     | 1.7%     | 2.3%     | %8.0     | %8.0     | 0.1%         | 1.5%     | 1.4%     | 2.2%     | 0.3%    | 1.1%     | 2.4%         | %6.0    | 2.3%      | %9.0    | 2.5%     | 1.8%    | 2.2%      | 1.9%      | 1.3%     | 0.4%     |
| MnO              | 1.6%     | 0.1%     | 1.3%     | 2.9%     | 1.2%     | 1.3%     | 3.3%     | 3.0%     | %0.0         | 1.3%     | 1.4%     | 1.5%     | %0.0    | 4.2%     | 3.4%         | 3.9%    | 3.7%      | %0.0    | 2.2%     | 2.8%    | 3.0%      | 3.0%      | 1.6%     | 3.5%     |
| Database ID      | AKC00634 | AKC00641 | AKC00662 | AKC00672 | AKC00677 | AKC00683 | AKC00686 | AKC00689 | AKC00726     | AKC0733  | AKC0734  | AKC0735  | AKC0736 | AKC0737  | AKC0738      | AKC0739 | AKC0740   | AKC0741 | AKC0742  | AKC0743 | AKC0744   | AKC0745   | AKC0746  | AKC0747  |

|               | 1       | 1        |         |         |         |          |          | 1_      | -       |         |         |          |          | 1_       |                    |                  | _        |          | Ι_       | l              |             |                |               |                |
|---------------|---------|----------|---------|---------|---------|----------|----------|---------|---------|---------|---------|----------|----------|----------|--------------------|------------------|----------|----------|----------|----------------|-------------|----------------|---------------|----------------|
| Co            | 38.650  | 34.517   | 81.750  | 14.813  | 11.401  | 10.630   | 32.554   | 1139.29 | 776.980 | 50.960  | 17.019  | 962.644  | 1062.13  | 1198.19  | 30.406             | 372.681          | 426.904  | 6.843    | 304.049  | 2.830          | 8.130       | 3.045          | 7.871         | 7.454          |
| ï             | 12.000  | 32.485   | 99.338  | 30.457  | 20.389  | 17.000   | 34.950   | 145.791 | 106.000 | 11.000  | 48.377  | 181.984  | 200.151  | 224.194  | 692.9              | 53.232           | 63.620   | 6.258    | 34.508   | 11.325         | 28.467      | 5.748          | 18.161        | 20.703         |
| $\mathbf{Cr}$ | 12.000  | 31.546   | 29.375  | 7.510   | 4.341   | 19.000   | 49.790   | 19.049  | 10.000  | 000.6   | 5.556   | 14.774   | 15.004   | 15.366   | 7.528              | 12.247           | 13.365   | 13.480   | 11.201   | 7.096          | 32.012      | 11.053         | 22.016        | 21.251         |
| ^             | 24.000  | 144.543  | 300.241 | 10.266  | 10.461  | 33.000   | 36.368   | 128.116 | 61.000  | 26.000  | 10.548  | 77.524   | 83.743   | 89.501   | 20.085             | 44.055           | 45.359   | 15.650   | 51.494   | 15.617         | 808.89      | 43.049         | 82.085        | 73.479         |
| Ti            | 487.000 | 1153.473 | 615.975 | 420.280 | 257.970 | 1013.000 | 2076.174 | 917.005 | 746.000 | 667.000 | 451.115 | 943.785  | 1001.210 | 1093.682 | 381.572            | 678.530          | 804.650  | 436.298  | 563.262  | 347.903        | 2208.537    | 2695.867       | 2545.570      | 2042.732       |
| Sc            | 2.000   | 3.497    | 2.642   | 0.710   | 2.324   | 4.000    | 4.260    | 8.745   | 4.000   | 2.000   | 196.0   | 4.852    | 5.265    | 5.872    | 1.340              | 3.300            | 3.658    | 1.725    | 6.286    | 1.524          | 4.300       | 1.952          | 4.015         | 3.416          |
| В             | 120.000 | 48.139   | 95.506  | 67.961  | 52.390  | 000.86   | 104.512  | 110.146 | 000.79  | 93.000  | 70.897  | 79.292   | 71.189   | 71.659   | 112.279            | 85.299           | 84.161   | 84.180   | 130.579  | 56.647         | 29.053      | 18.496         | 19.316        | 20.518         |
| Be            | 1.000   | 0.980    | 1.250   | 0.972   | 7.399   | 2.000    | 1.066    | 1.387   | 2.000   | 2.000   | 1.126   | 1.386    | 1.644    | 2.232    | 0.683              | 902.0            | 1.193    | 1.545    | 977.0    | 1.068          | 0.912       | 1.329          | 1.262         | 1.389          |
| Li            | 29.000  | 6.156    | 4.967   | 3.758   | 5.754   | 13.000   | 9.611    | 23.556  | 52.000  | 22.000  | 2.400   | 20.272   | 20.746   | 23.098   | 24.307             | 19.874           | 25.737   | 17.835   | 6.258    | 17.939         | 12.136      | 6.819          | 6.196         | 7.145          |
| PbO2          | %9.0    | 0.1%     | %0.0    | %0.0    | %0.0    | %6.0     | %0.0     | %0.0    | %0.0    | %0.0    | %0.0    | %0.0     | %0.0     | %0.0     | %0.0               | %0.0             | %0.0     | %0.0     | %0.0     | %0.0           | 0.5%        | 4.3%           | 0.1%          | 3.4%           |
| SnO2          | 0.1%    | %0.0     | %0.0    | %0.0    | %0.0    | 0.2%     | %0.0     | %0.0    | %0.0    | %0.0    | %0.0    | %0.0     | %0.0     | %0.0     | %0.0               | %0.0             | %0.0     | %0.0     | %0.0     | 0.1%           | 0.1%        | 1.0%           | 0.1%          | 0.5%           |
| OnO           | 0.1%    | 1.6%     | 1.9%    | 1.0%    | 1.1%    | 1.9%     | 0.1%     | 0.1%    | %0.0    | 0.4%    | 2.1%    | %0.0     | %0.0     | %0.0     | %0.0               | 0.1%             | 0.1%     | 0.2%     | %0.0     | 2.8%           | 1.7%        | %0.0           | 0.7%          | 0.3%           |
| Fe2O3         | %2.0    | 1.4%     | 1.2%    | 0.5%    | 0.4%    | %8.0     | %6.0     | 1.8%    | 1.4%    | %9.0    | 0.3%    | 1.0%     | 1.0%     | 1.1%     | 0.4%               | 1.6%             | 1.1%     | 0.5%     | 1.2%     | %6.0           | 1.8%        | 1.3%           | 1.5%          | 1.8%           |
| MnO           | 4.0%    | 0.3%     | 0.1%    | %0.0    | %0.0    | 0.1%     | %8.0     | 2.7%    | 1.9%    | 4.4%    | 0.3%    | 1.9%     | 2.1%     | 2.4%     | 3.3%               | 1.3%             | 1.4%     | 0.1%     | 1.3%     | %0.0           | 0.2%        | 0.1%           | 0.1%          | 0.1%           |
| Database ID   | AKC0748 | AKC0749  | AKC0750 | AKC0751 | AKC0752 | AKC0753  | AKC0754  | AKC0755 | AKC0756 | AKC0757 | AKC0758 | AKC00939 | AKC01084 | AKC00912 | AKC01073<br>violet | AKC01073<br>blue | AKC01066 | AKC00909 | AKC00910 | AKC00959dkblue | AKC00959red | AKC00959yellow | AKC00959_turq | AKC01071yellow |

| AKCO1071blue         0.0%         0.7%         0.1%         0.2%         1.74         2.13         5.27         6.51         9.21.85         5.46.85         11.502         14.036         5.17.27           AKCO1097blue         0.2%         2.8%         5.8%         0.0%         5.4%         10.190         1.773         8.177         5.607         219.35.2         6.84.63         2.8.86         9.997         9.998         6.91         6.0         6.0         6.4%         7.234         1.078         7.05         9.997         3.998         1.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999         9.999                                                                                                                                                                                                                                             | Database ID   | MnO  | Fe2O3 | OnO  | SnO2 | PbO2 | Li     | Be    | В       | Sc     | Ţ        | Λ       | Cr      | N       | Co      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-------|------|------|------|--------|-------|---------|--------|----------|---------|---------|---------|---------|
| 0.2%         2.8%         0.0%         5.4%         10.190         1.703         88.177         5.607         219.35.         68.463         28.863         86.487           0.2%         5.8%         0.0%         5.4%         10.190         1.703         88.17         5.395         6.641         67.107         6.333         379.184         88.997         29.498         69.11           0.2%         2.2%         0.0%         0.0%         2.8871         1.187         10.736         8.049         12.711         35.093           0.2%         2.2%         0.0%         6.0%         2.8871         1.187         10.736         8.048         1.271         11.202         1.201         1.202           1.2%         1.0%         0.0%         0.0%         1.468         0.778         48.735         8.049         1.2011         1.2017           1.2%         1.0%         0.0%         0.0%         1.468         0.778         48.735         8.048         1.202         1.20         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         1.202         <                                                                                                                                                                                                                                                                               | KC01071blue   | %0.0 | %6.0  | 0.7% |      | 0.2% | 16.744 | 2.113 | 65.277  | 6.511  | 932.185  | 54.685  | 13.502  | 14.036  | 5.122   |
| 0.2%         5.8%         7.0%         0.3%         0.4%         9.955         0.641         67.107         6.373         3791.884         89.997         29.498         639.11           0.2%         2.2%         7.3%         0.8%         1.6%         7.234         1.018         6.7539         3.910         1749.994         54.03         17.314         401.173           0.2%         2.2%         7.3%         0.0%         0.0%         2.0%         4.657         1.475         18.849         1.071         489.239         29.100         15.871         12.021           0.1%         0.0%         0.0%         0.0%         4.422         1.447         18.849         1.074         489.239         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078         1.078 <td>AKC009590</td> <td>0.2%</td> <td>2.8%</td> <td>2.8%</td> <td>%0.0</td> <td>5.4%</td> <td>10.190</td> <td>1.703</td> <td>88.177</td> <td>5.607</td> <td>2139.352</td> <td>68.463</td> <td>28.863</td> <td>86.487</td> <td>10.227</td>                    | AKC009590     | 0.2% | 2.8%  | 2.8% | %0.0 | 5.4% | 10.190 | 1.703 | 88.177  | 5.607  | 2139.352 | 68.463  | 28.863  | 86.487  | 10.227  |
| 0.2%         2.2%         7.3%         0.8%         1.6%         7.234         1.018         67.639         3.910         1.49.944         54.053         17.314         401.173           0.2%         2.2%         0.0%         0.0%         0.0%         2.8871         1.878         107.35         8.004         324.316         58.402         12.011         35.093           0.1%         0.0%         0.0%         0.0%         4.657         1.475         18.849         1.077         488.239         29.109         15.040         32.737           1.2%         1.0%         0.0%         0.0%         2.488         1.487         48.239         29.109         15.640         32.737           1.2%         1.2%         0.0%         0.0%         2.488         0.778         48.899         1.756         1.248         1.077         488.239         1.249         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200         1.200 <td>CO1057orange</td> <td>0.2%</td> <td>5.8%</td> <td>7.0%</td> <td>0.3%</td> <td>0.4%</td> <td>9.955</td> <td>0.641</td> <td>67.107</td> <td>6.373</td> <td>3791.884</td> <td>89.997</td> <td>29.498</td> <td>639.151</td> <td>640.674</td>                         | CO1057orange  | 0.2% | 5.8%  | 7.0% | 0.3% | 0.4% | 9.955  | 0.641 | 67.107  | 6.373  | 3791.884 | 89.997  | 29.498  | 639.151 | 640.674 |
| 0.2%         2.7%         0.0%         0.0%         2.8871         1.878         10.736         8.044         3244.316         58.402         120.711         35.093           0.1%         0.5%         0.0%         6.4%         6.9%         4.657         1.475         158.849         1.077         489.239         29.109         15.871         12.022           1.2%         1.4%         0.0%         0.7%         4.23.20         1.040         80.575         6.58         908.381         61.038         26.400         92.737           1.2%         1.4%         0.0%         0.0%         2.468         0.778         48.795         1.2571         11.16.520         57.70         19.695         96.006           0.0%         0.0%         0.0%         0.0%         1.071         1.398.0         1.266         1.388         1.389         1.389         1.78         1.396         1.430         15.43         1.606         1.899         1.78         1.3196         1.430         1.540         1.540         1.540         1.899         1.899         1.318         1.389         1.389         1.389         1.389         1.389         1.349         1.349         1.349         1.349         1.349         1.34                                                                                                                                                                                                                                                                  | CC01071orange | 0.2% | 2.2%  | 7.3% | %8.0 | 1.6% | 7.234  | 1.018 | 62.639  | 3.910  | 1749.994 | 54.053  | 17.314  | 401.173 | 880.06  |
| 0.1%         0.5%         0.0%         6.4%         6.9%         4.657         1.475         158.849         1.077         489.239         29.109         15.871         1.2022           2.4%         2.1%         1.0%         0.0%         0.7%         4.2320         1.040         80.575         6.528         908.381         61.038         26.400         927.737           1.2%         1.4%         0.0%         0.7%         42.320         1.040         80.575         5.7709         19.695         96.006           0.1%         1.0%         0.0%         0.0%         0.711         0.959         3.382         0.455         83.065         2.386         18.89         9.27.73           0.1%         0.0%         0.0%         0.711         0.959         3.382         0.455         18.90         15.40         15.43           0.1%         0.0%         0.0%         0.711         0.959         3.382         0.455         18.89         1.30         18.89         1.202           0.1%         0.0%         0.0%         0.711         0.959         3.382         1.350         1.340         1.545         1.340         1.545         1.340         1.545         1.340         1.545                                                                                                                                                                                                                                                                                           | AKC01043b     | 0.2% | 2.7%  | %0.0 | %0.0 | %0.0 | 28.871 | 1.878 | 107.536 | 8.004  | 3244.316 | 58.402  | 120.711 | 35.093  | 062.99  |
| 24%         2.1%         1.0%         0.0%         0.7%         4.2320         1.040         80.575         6.528         908.381         61.038         26.400         92.7.73           1.2%         1.4%         0.0%         0.7%         4.252         1.040         80.575         6.528         908.381         6.18         56.00         90.00           0.1%         1.0%         0.0%         0.0%         0.0%         0.0%         0.0%         1.20         1.25         1.25         1.25         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.24         1.                                                                                                                                                                                                                                                                             | AKC01043w     | 0.1% | 0.5%  | %0.0 | 6.4% | %6.9 | 4.657  | 1.475 | 158.849 | 1.077  | 489.239  | 29.109  | 15.871  | 12.022  | 14.943  |
| 12%         14%         0.0%         4.1%         3.8%         24.688         0.778         48.795         2.571         1216.520         57.09         19.695         96.006           0.1%         1.0%         0.0%         0.0%         5.062         0.276         239.820         1.756         731.969         14.340         15.245         8.281           0.0%         0.0%         0.0%         5.062         0.276         239.820         1.756         731.969         14.340         15.245         8.281           0.1%         0.0%         0.0%         0.711         0.959         3.382         0.435         83.065         1.869         5.088           0.1%         0.0%         0.0%         0.710         0.096         1.173         48.959         11.826         375.058         12.897         5.088         3.5747           1.5%         0.1%         0.0%         0.0%         1.201         0.275         11.826         375.058         11.89         5.089         3.5747           1.5%         0.1%         0.0%         0.1%         1.201         1.201         1.201         1.202         0.289         1.138         3.532.80         1.289         1.828         3.50.58                                                                                                                                                                                                                                                                                             | AKC01059b     | 2.4% | 2.1%  | 1.0% | %0.0 | 0.7% | 42.320 | 1.040 | 80.575  | 6.528  | 908.381  | 61.038  | 26.400  | 922.737 | 1663.5  |
| 0.1%         1.0%         0.0%         0.0%         0.0%         5.062         0.276         239.820         1.756         731.969         14.340         15.245         8.281           0.0%         0.0%         0.0%         0.0%         0.711         0.959         3.382         0.435         83.065         2.386         18.69         5.763           0.1%         0.2%         0.0%         0.0%         0.0%         1.200         0.312         65.660         0.855         359.598         12.897         5.038         30.878           0.1%         0.4%         0.0%         0.0%         1.200         0.312         65.660         0.855         359.598         12.897         5.086         3.0878           0.1%         0.0%         0.0%         0.0%         1.200         0.312         65.660         0.856         359.89         12.897         5.088         3.0878           2.0%         0.0%         0.0%         0.0%         1.753         11.809         6.180         11.807         3.180         11.80         359.89         11.897         50.88         11.89         3.50.88         13.747         11.1090         6.180         11.807         3.180         3.50.88         11.89                                                                                                                                                                                                                                                                                 | AKC01059w     | 1.2% | 1.4%  | %0.0 | 4.1% | 3.8% | 24.688 | 0.778 | 48.795  | 2.571  | 1216.520 | 57.709  | 19.695  | 900.96  | 605.927 |
| 0.0%         0.2%         0.3%         0.0%         0.711         0.959         3.382         0.435         83.065         2.386         1.869         5.763           0.1%         0.2%         0.2%         0.0%         0.711         0.959         3.382         35.058         12.897         5.038         3.0878           0.1%         0.4%         1.1%         0.0%         1.200         0.312         65.660         0.583         35.289         12.897         5.038         30.878           1.5%         1.0%         0.0%         0.0%         1.200         1.173         48.959         11.826         376.586         11.826         5.7472           2.0%         1.3%         0.0%         0.0%         21.708         1.731         16.909         6.150         16.179         16.189         5.7472           2.0%         0.0%         0.0%         0.1%         25.497         1.150         149.98         5.372         1027.910         6.358         15.7472           2.0%         0.0%         0.0%         0.1%         25.407         1.516         9.515         1.672         421.575         9.775         6.207         15.79           2.0%         0.0%         0.0%<                                                                                                                                                                                                                                                                                                   | KC01057gold   | 0.1% | 1.0%  | %0.0 | %0.0 | %0.0 | 5.062  | 0.276 | 239.820 | 1.756  | 731.969  | 14.340  | 15.245  | 8.281   | 3.350   |
| 0.1%         0.4%         1.1%         0.0%         0.0%         1.200         0.312         65.660         0.585         359.598         12.897         5.038         30.878           0.1%         5.3%         0.1%         0.0%         1.0268         1.173         48.959         11.826         3750.508         106.544         220.669         6.3517           1.5%         1.6%         0.1%         0.0%         0.0%         21.708         1.171         92.796         4.636         811.596         56.586         11.582         57.472           2.0%         1.3%         0.1%         0.0%         0.0%         1.150         1.49.98         5.372         1021.32         61.179         12.115         81.085           2.0%         1.6%         0.0%         0.1%         23.497         1.150         144.98         5.372         1027.91         6.358         15.18         81.085         81.085         80.089         83.526         80.089         80.089         15.829         80.089         80.089         15.820         80.089         15.820         80.089         15.820         80.089         15.820         80.089         15.820         80.199         80.199         81.191         1020         10.192<                                                                                                                                                                                                                                                         | AKC01093      | %0.0 | 0.2%  | 0.3% | %0.0 | %0.0 | 0.711  | 0.959 | 3.382   | 0.435  | 83.065   | 2.386   | 1.869   | 5.763   | 3.718   |
| 0.1%         5.3%         0.1%         0.0%         0.0%         10.268         1.173         48.959         11.826         3750.508         106.544         220.669         6.3517           1.5%         1.6%         0.1%         0.0%         0.0%         21.708         1.31         92.796         4.636         811.596         56.586         11.82         57.472           2.0%         1.3%         0.1%         0.0%         0.0%         1.150         1.150         1021.33         61.179         12.115         81.085           2.0%         1.6%         0.0%         0.1%         23.497         1.150         134.938         5.372         1027.910         63.530         12.115         81.085           4.4%         1.5%         0.0%         0.1%         23.497         1.150         134.93         5.372         1027.91         63.530         12.115         81.085           3.4%         0.5%         0.0%         0.1%         7.826         1.150         421.575         421.575         9.775         6.175         3.841         1105.033         39.403         16.035         5.263           0.0%         0.0%         0.0%         0.1%         7.826         1.150         421.575<                                                                                                                                                                                                                                                                                  | AKC00901      | 0.1% | 0.4%  | 1.1% | %0.0 | %0.0 | 1.200  | 0.312 | 099:59  | 0.585  | 359.598  | 12.897  | 5.038   | 30.878  | 33.418  |
| 1.5%         1.6%         0.1%         0.0%         0.1708         1.371         92.796         4.636         811.596         56.586         11.582         57.472           2.0%         1.3%         0.1%         0.0%         93.108         1.753         116.909         6.150         1021.33         61.179         12.115         81.085           2.0%         1.6%         0.7%         0.0%         0.1%         23.497         1.150         134.938         5.372         1027.910         63.530         15.829         80.059           4.4%         1.5%         0.0%         0.1%         26.267         1.150         96.752         3.841         1105.033         39.403         16.035         35.263           3.4%         0.5%         0.0%         0.1%         7.826         1.126         69.515         1.672         421.575         9.775         6.207         15.40           0.0%         0.0%         0.1%         1.6159         1.409         94.743         1.575         940.605         1.635         35.263           1.5%         1.1%         0.1%         16.159         1.409         94.743         1.542         251.178         11.617         1.417         1.635         1.635                                                                                                                                                                                                                                                                                  | AKC01022      | 0.1% | 5.3%  | 0.1% | %0.0 | %0.0 | 10.268 | 1.173 | 48.959  | 11.826 | 3750.508 | 106.544 | 220.669 | 63.517  | 24.817  |
| 2.0%         1.3%         0.1%         0.0%         93.108         1.753         116,909         6.150         1021.332         61.179         12.115         81.085           2.0%         1.6%         0.0%         0.0%         0.1%         23.497         1.150         134.938         5.372         1027.910         63.330         15.829         80.059           4.4%         1.5%         0.2%         0.0%         0.1%         26.267         1.150         96.752         3.841         1105.033         39.403         16.359         80.059           0.0%         0.0%         0.1%         26.267         1.150         96.752         3.841         1105.033         39.403         16.035         35.263           0.0%         0.0%         0.1%         7.826         1.126         69.515         1.672         421.575         9.775         6.207         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         15.400         11.340         <                                                                                                                                                                                                                                                     | AKC00410      | 1.5% | 1.6%  | 0.1% | %0.0 | %0.0 | 21.708 | 1.371 | 92.796  | 4.636  | 811.596  | 56.586  | 11.582  | 57.472  | 462.027 |
| 2.0%         1.6%         0.7%         0.0%         0.1%         23.497         1.150         134.938         5.372         1027.910         63.530         15.829         80.059           4.4%         1.5%         0.2%         0.0%         0.1%         26.267         1.516         96.752         3.841         1105.033         39.403         16.035         35.263           3.4%         0.5%         0.0%         0.0%         7.826         1.126         69.515         1.672         421.575         9.775         6.207         15.470           0.0%         0.0%         0.0%         7.826         1.126         69.515         1.672         421.575         9.775         6.207         15.470           0.0%         0.0%         0.0%         1.6159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           1.5%         1.1%         0.0%         0.1%         16.189         1.3092         4.665         940.605         11.942         72.876           0.9%         0.0%         0.1%         21.837         1.143         67.616         3.324         868.197         74.82         11.340         39.875           1.3%                                                                                                                                                                                                                                                                                                 | AKC00413      | 2.0% | 1.3%  | 0.1% | %0.0 | %0.0 | 93.108 | 1.753 | 116.909 | 6.150  | 1021.332 | 61.179  | 12.115  | 81.085  | 566.022 |
| 4.4%         1.5%         0.2%         0.1%         26.267         1.516         96.752         3.841         1105.033         39.403         16.035         35.263           3.4%         0.5%         0.0%         0.0%         7.826         1.126         69.515         1.672         421.575         9.775         6.207         15.470           0.0%         0.8%         2.3%         0.2%         0.1%         16.159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           1.5%         1.1%         0.1%         0.1%         16.159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           1.5%         0.1%         0.1%         16.159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           2.1%         0.1%         0.1%         21.38         1.393         130.092         4.665         940.605         71.720         11.942         72.876           0.9%         0.0%         0.1%         21.837         1.143         67.616         3.324         868.197         34.872         11.34         87.151         87.171                                                                                                                                                                                                                                                                                  | AKC00416      | 2.0% | 1.6%  | 0.7% | %0.0 | 0.1% | 23.497 | 1.150 | 134.938 | 5.372  | 1027.910 | 63.530  | 15.829  | 80.059  | 490.596 |
| 3.4%         0.5%         0.0%         0.0%         7.826         1.126         69.515         1.672         421.575         9.775         6.207         15.470           0.0%         0.8%         2.3%         0.2%         0.1%         16.159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           1.5%         1.1%         0.2%         0.1%         16.159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           1.5%         1.1%         0.1%         0.1%         21.388         1.393         130.092         4.665         940.605         71.720         11.942         72.876           0.9%         0.0%         0.1%         21.837         1.143         67.616         3.324         868.197         34.872         11.340         39.878           1.3%         1.2%         0.0%         0.0%         0.1%         1.340         66.538         6.308         1469.037         68.80         11.340         39.878           1.3%         1.2%         0.0%         0.0%         1.697         1.211         50.610         1.469.358         16.403         8.525         19.157 <td>AKC00327</td> <td>4.4%</td> <td>1.5%</td> <td>0.2%</td> <td>%0.0</td> <td>0.1%</td> <td>26.267</td> <td>1.516</td> <td>96.752</td> <td>3.841</td> <td>1105.033</td> <td>39.403</td> <td>16.035</td> <td>35.263</td> <td>183.772</td>                                            | AKC00327      | 4.4% | 1.5%  | 0.2% | %0.0 | 0.1% | 26.267 | 1.516 | 96.752  | 3.841  | 1105.033 | 39.403  | 16.035  | 35.263  | 183.772 |
| 0.0%         0.8%         2.3%         0.2%         0.1%         16.159         1.409         94.743         1.542         251.178         21.617         7.412         12.050           1.5%         1.1%         0.1%         0.0%         0.1%         21.388         1.393         130.092         4.665         940.605         71.720         11.942         72.876         72.876           2.1%         2.0%         0.0%         0.1%         21.388         1.393         130.092         4.665         940.605         71.720         11.942         72.876         72.876         72.876         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872         72.872 <td< td=""><td>AKC00322</td><td>3.4%</td><td>0.5%</td><td>%0.0</td><td>%0.0</td><td>%0.0</td><td>7.826</td><td>1.126</td><td>69.515</td><td>1.672</td><td>421.575</td><td>9.775</td><td>6.207</td><td>15.470</td><td>44.156</td></td<> | AKC00322      | 3.4% | 0.5%  | %0.0 | %0.0 | %0.0 | 7.826  | 1.126 | 69.515  | 1.672  | 421.575  | 9.775   | 6.207   | 15.470  | 44.156  |
| 1.5%         1.1%         0.1%         0.0%         0.1%         21.388         1.393         130.092         4.665         940.605         71.720         11.942         72.876         72.876           2.1%         2.0%         0.0%         0.1%         33.526         2.002         79.572         6.751         1037.039         78.895         18.070         92.483           0.9%         0.0%         0.1%         21.837         1.143         67.616         3.324         868.197         34.872         11.340         39.878         7           1.3%         1.2%         0.0%         0.0%         1.697         1.340         66.538         6.308         1469.037         60.800         24.151         68.711         68.711         60.80         24.151         68.721         68.721         67.81         1469.037         60.80         24.151         68.725         19.84         469.358         16.403         8.525         19.157           0.7%         0.7%         0.0%         0.0%         1.138         2.733         60.584         1.264         241.142         10.98         9.867         28.768           1.3%         0.5%         1.7%         0.0%         0.0%         0.0%         0                                                                                                                                                                                                                                                                          | AKC00386      | %0.0 | %8.0  | 2.3% | 0.2% | 0.1% | 16.159 | 1.409 | 94.743  | 1.542  | 251.178  | 21.617  | 7.412   | 12.050  | 3.625   |
| 2.1%         2.0%         0.2%         0.0%         0.1%         33.526         2.002         79.572         6.751         1037.039         78.895         18.070         92.483         7.883           0.9%         0.6%         0.0%         0.1%         21.837         1.143         67.616         3.324         868.197         34.872         11.340         39.878         7.883           1.3%         1.2%         0.0%         0.0%         16.697         1.340         66.538         6.308         1469.037         60.800         24.151         68.721         4.883         6.308         1469.037         60.800         24.151         68.725         19.157         9.867         19.157         9.867         19.157         9.867         19.157         9.867         19.157         9.867         28.768         19.157         9.867         28.768         19.111         11.128         65.255         1.693         560.285         12.243         9.867         28.768         19.111           0.1%         0.0%         0.0%         0.0%         10.882         0.837         82.389         1.813         560.285         14.016         9.761         19.111           0.1%         0.1%         0.0%         0.0% <td>AKC00412</td> <td>1.5%</td> <td>1.1%</td> <td>0.1%</td> <td>%0.0</td> <td>0.1%</td> <td>21.388</td> <td>1.393</td> <td>130.092</td> <td>4.665</td> <td>940.605</td> <td>71.720</td> <td>11.942</td> <td>72.876</td> <td>537.533</td>                   | AKC00412      | 1.5% | 1.1%  | 0.1% | %0.0 | 0.1% | 21.388 | 1.393 | 130.092 | 4.665  | 940.605  | 71.720  | 11.942  | 72.876  | 537.533 |
| 0.9%         0.6%         0.0%         0.1%         21.837         1.143         67.616         3.324         868.197         34.872         11.340         39.878         2.878         2.88         2.324         868.197         34.872         11.340         39.878         2.878         2.88         2.324         868.197         34.872         11.340         39.878         2.878         2.88         2.112         20.88         1.469.037         60.800         24.151         68.721         68.721         68.721         68.721         68.721         68.721         68.721         68.721         68.721         68.722         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.157         19.111         19.111         19.111         19.111         19.111         19.111         19.111         19.111                                                                                                                                                                                                                | AKC00425a     | 2.1% | 2.0%  | 0.2% | %0.0 | 0.1% | 33.526 | 2.002 | 79.572  | 6.751  | 1037.039 | 78.895  | 18.070  | 92.483  | 711.995 |
| 1.3%         1.2%         0.0%         0.0%         1.340         66.538         6.308         1469.037         60.800         24.151         68.721         4.69.358         6.308         1469.037         60.800         24.151         68.721         4.69.358         1.244         469.358         16.403         8.525         19.157           0.7%         0.3%         1.7%         0.0%         0.0%         1.138         2.733         60.584         1.264         241.142         10.987         4.549         17.000           1.3%         0.5%         1.7%         0.0%         0.0%         2.111         1.128         65.255         1.693         560.285         12.243         9.867         28.768           0.1%         0.0%         0.0%         0.0%         10.882         0.837         82.389         1.813         568.566         14.016         9.761         12.192           0.1%         0.0%         0.0%         7.232         1.138         83.024         2.602         26.159         24.270         19.111                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AKC00425b     | %6.0 | %9.0  | %0.0 | %0.0 | 0.1% | 21.837 | 1.143 | 67.616  | 3.324  | 868.197  | 34.872  | 11.340  | 39.878  | 283.717 |
| 0.7%       0.3%       1.7%       0.0%       0.0%       31.646       1.211       50.610       1.484       469.358       16.403       8.525       19.157         0.7%       0.3%       1.7%       0.0%       0.0%       1.138       2.733       60.584       1.264       241.142       10.987       4.549       17.000         1.3%       0.5%       1.7%       0.0%       0.0%       2.111       1.128       65.255       1.693       560.285       12.243       9.867       28.768         0.1%       0.5%       2.5%       0.0%       0.0%       10.882       0.837       82.389       1.813       568.566       14.016       9.761       12.192         0.1%       0.8%       2.3%       0.0%       7.232       1.138       83.024       2.602       1532.645       26.159       24.270       19.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AKC00372      | 1.3% | 1.2%  | %0.0 | %0.0 | %0.0 | 16.697 | 1.340 | 66.538  | 6.308  | 1469.037 | 008.09  | 24.151  | 68.721  | 453.623 |
| 0.7%       0.3%       1.9%       0.0%       0.0%       1.138       2.733       60.584       1.264       241.142       10.987       4.549       17.000         1.3%       0.5%       1.7%       0.0%       0.0%       2.111       1.128       65.255       1.693       560.285       12.243       9.867       28.768         0.1%       0.5%       2.5%       0.0%       0.0%       10.882       0.837       82.389       1.813       568.566       14.016       9.761       12.192         0.1%       0.8%       2.3%       0.0%       7.232       1.138       83.024       2.602       1532.645       26.159       24.270       19.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AKC00381      | 0.7% | 0.3%  | 1.7% | %0.0 | %0.0 | 31.646 | 1.211 | 50.610  | 1.484  | 469.358  | 16.403  | 8.525   | 19.157  | 886.76  |
| 1.3%       0.5%       1.7%       0.0%       0.0%       2.111       1.128       65.255       1.693       560.285       12.243       9.867       28.768         0.1%       0.5%       2.5%       0.0%       0.0%       10.882       0.837       82.389       1.813       568.566       14.016       9.761       12.192         0.1%       0.8%       2.3%       0.0%       7.232       1.138       83.024       2.602       1532.645       26.159       24.270       19.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AKC00389      | 0.7% | 0.3%  | 1.9% | %0.0 | %0.0 | 1.138  | 2.733 | 60.584  | 1.264  | 241.142  | 10.987  | 4.549   | 17.000  | 101.302 |
| 0.1%       0.5%       2.5%       0.0%       0.0%       10.882       0.837       82.389       1.813       568.566       14.016       9.761       12.192         0.1%       0.8%       2.3%       0.0%       7.232       1.138       83.024       2.602       1532.645       26.159       24.270       19.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AKC00376      | 1.3% | 0.5%  | 1.7% | %0.0 | %0.0 | 2.111  | 1.128 | 65.255  | 1.693  | 560.285  | 12.243  | 6.867   | 28.768  | 124.170 |
| 0.1% 0.8% 2.3% 0.0% 0.0% 7.232 1.138 83.024 2.602 1532.645 26.159 24.270 19.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AKC00424g     | 0.1% | 0.5%  | 2.5% | %0.0 | %0.0 | 10.882 | 0.837 | 82.389  | 1.813  | 568.566  | 14.016  | 9.761   | 12.192  | 11.739  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AKC00424w     | 0.1% | 0.8%  | 2.3% | 0.0% | %0.0 | 7.232  | 1.138 | 83.024  | 2.602  | 1532.645 | 26.159  | 24.270  | 19.111  | 4.189   |

| Database<br>ID | Zn      | As      | Rb      | Sr      | Zr       | Nb     | Ag     | In    | Sb     | Cs    | Ba       | La     | Ce      | Pr     |
|----------------|---------|---------|---------|---------|----------|--------|--------|-------|--------|-------|----------|--------|---------|--------|
| AKC02589       | 76.772  | 0.000   | 78.825  | 288.377 | 1413.481 | 17.513 | 686.6  | 0.244 | 6.144  | 0.305 | 1162.263 | 90.647 | 143.022 | 14.652 |
| AKC02519       | 18.256  | 1.187   | 49.695  | 246.792 | 456.225  | 7.165  | 0.418  | 0.019 | 0.127  | 0.570 | 629.339  | 24.008 | 40.424  | 5.029  |
| AKC02585       | 29.505  | 2.229   | 65.514  | 183.739 | 716.317  | 10.252 | 0.580  | 800.0 | 0.435  | 0.590 | 671.876  | 30.035 | 48.500  | 5.700  |
| AKC02584       | 21.111  | 1.159   | 76.801  | 175.542 | 770.425  | 10.327 | 0.446  | 0.022 | 0.190  | 0.489 | 640.243  | 28.853 | 48.029  | 5.434  |
| AKC02590       | 16.326  | 1.740   | 41.874  | 170.191 | 684.014  | 9.025  | 0.430  | 0.008 | 0.307  | 0.487 | 593.135  | 26.667 | 42.344  | 5.110  |
| AKC02591       | 24.758  | 3.241   | 47.641  | 245.557 | 482.664  | 13.089 | 0.206  | 0.020 | 0.194  | 0.582 | 711.319  | 40.946 | 64.849  | 7.218  |
| AKC02587       | 69.106  | 0.000   | 30.962  | 344.147 | 139.824  | 1.607  | 0.217  | 0.145 | 0.203  | 0.217 | 1624.025 | 16.668 | 116.386 | 4.022  |
| AKC02588       | 68.777  | 0.000   | 39.071  | 421.758 | 338.442  | 6.091  | 0.293  | 0.077 | 0.324  | 0.293 | 1784.270 | 20.005 | 106.674 | 4.649  |
| AKC02586       | 67.266  | 0.000   | 33.855  | 414.075 | 249.635  | 3.397  | 1.155  | 0.278 | 2.722  | 0.469 | 1880.277 | 14.667 | 99.380  | 3.437  |
| AKC02594b      | 186.69  | 0.000   | 37.790  | 444.652 | 162.546  | 3.416  | 0.216  | 0.399 | 696.0  | 0.250 | 150.288  | 7.560  | 14.819  | 2.069  |
| AKC02595       | 58.732  | 5.005   | 21.749  | 402.481 | 217.790  | 4.990  | 1.070  | 0.495 | 1.418  | 0.263 | 202.190  | 11.239 | 20.749  | 2.968  |
| AKC02592       | 70.734  | 0.000   | 18.238  | 645.492 | 80.205   | 1.372  | 9.870  | 0.208 | 35.348 | 0.332 | 472.172  | 6:639  | 12.845  | 1.529  |
| AKC02594y      | 183.694 | 233.927 | 121.746 | 476.144 | 195.680  | 3.966  | 0.369  | 1.776 | 2.050  | 0.642 | 877.652  | 12.570 | 27.385  | 3.462  |
| AKC02593       | 47.829  | 0.000   | 236.180 | 507.586 | 282.035  | 3.955  | 6.755  | 0.000 | 0.473  | 1.154 | 1195.624 | 11.396 | 31.953  | 2.995  |
| AKC02596       | 76.683  | 5.621   | 50.952  | 315.670 | 712.438  | 9.367  | 6.344  | 0.380 | 1.895  | 0.797 | 264.867  | 31.049 | 43.696  | 6.926  |
| AKC02057       | 25.945  | 97.948  | 117.303 | 155.632 | 72.122   | 2.463  | 1.478  | 0.208 | 1.656  | 0.619 | 255.277  | 9.406  | 19.683  | 2.241  |
| AKC02039       | 15.073  | 171.616 | 130.737 | 34.033  | 102.699  | 2.211  | 0.842  | 0.147 | 1.166  | 869.0 | 140.418  | 9.801  | 18.829  | 2.235  |
| AKC02043       | 19.382  | 47.354  | 19.336  | 98.344  | 67.345   | 1.478  | 0.900  | 0.107 | 1.056  | 0.616 | 104.979  | 10.292 | 20.769  | 2.316  |
| AKC02038       | 14.301  | 35.469  | 120.887 | 88.123  | 71.887   | 1.953  | 0.674  | 0.054 | 0.800  | 1.191 | 226.873  | 699.6  | 17.878  | 2.293  |
| AKC02045       | 57.847  | 52.698  | 46.418  | 329.904 | 414.755  | 6.585  | 16.776 | 0.361 | 14.696 | 0.525 | 604.112  | 20.788 | 38.903  | 4.483  |
| AKC02046       | 160.741 | 190.225 | 46.488  | 425.852 | 287.088  | 6.955  | 58.571 | 889'0 | 666'02 | 0.358 | 512.889  | 23.534 | 48.694  | 5.539  |
| AKC02047       | 16.956  | 22.677  | 39.569  | 298.033 | 565.511  | 8.402  | 3.294  | 0.000 | 1.635  | 0.255 | 1080.149 | 30.343 | 47.809  | 5.436  |
| AKC02050       | 23.424  | 14.329  | 44.218  | 294.387 | 546.755  | 7.334  | 3.024  | 0.458 | 3.173  | 0.481 | 681.447  | 22.300 | 38.022  | 4.626  |
| AKC02048       | 31.394  | 33.342  | 43.203  | 360.169 | 521.143  | 7.038  | 22.051 | 0.242 | 13.514 | 0.279 | 1348.387 | 30.781 | 48.887  | 5.471  |
| AKC02052       | 32.195  | 4.499   | 35.902  | 179.784 | 949.053  | 23.184 | 0.315  | 0.167 | 0.624  | 0.222 | 443.305  | 42.395 | 78.923  | 9.449  |
|                |         |         |         |         |          |        |        |       |        |       |          |        |         |        |

|                      | 5.130           | L                | 583 4.387       |                |             |             |                 |                                  |                                           |                                           |                                                    |                                                    |                                                             |                                                                      |                                                                                  |                                                                                        |                                                                                              |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                             |
|----------------------|-----------------|------------------|-----------------|----------------|-------------|-------------|-----------------|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                    | 22.754   35.794 |                  | 1.154 35.585    |                |             |             |                 |                                  |                                           |                                           |                                                    |                                                    |                                                             |                                                                      |                                                                                  |                                                                                        |                                                                                              |                                                                                                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                                         | <del></del>                                                                                                                                  | <del></del>                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                    | <del></del>                                                                                                                                                 |
| 698 532 27 75        |                 | 378.262   19.154 |                 | 1294.839 30.19 |             |             |                 |                                  |                                           |                                           | _                                                  | _                                                  |                                                             |                                                                      |                                                                                  |                                                                                        |                                                                                              | <del>                                     </del>                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                                         | <del>                                     </del>                                                                                             | <del></del>                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                    | <del></del>                                                                                                                                                 |
| 0.444                |                 | 0.471            | 0.752           |                | 0.959       | 0.959       | 0.959           | 0.959<br>0.459<br>0.151<br>0.237 | 0.959<br>0.459<br>0.151<br>0.237<br>0.146 | 0.959<br>0.459<br>0.151<br>0.237<br>0.239 | 0.959<br>0.459<br>0.151<br>0.237<br>0.146<br>0.239 | 0.959<br>0.459<br>0.151<br>0.237<br>0.239<br>0.202 | 0.959<br>0.459<br>0.151<br>0.237<br>0.239<br>0.202<br>0.247 | 0.959<br>0.459<br>0.151<br>0.237<br>0.239<br>0.202<br>0.247<br>5.894 | 0.959<br>0.151<br>0.137<br>0.146<br>0.239<br>0.247<br>5.894<br>0.218             | 0.959<br>0.459<br>0.151<br>0.137<br>0.239<br>0.239<br>0.247<br>5.894<br>0.218<br>0.218 | 0.959<br>0.459<br>0.151<br>0.146<br>0.239<br>0.247<br>5.894<br>0.218<br>0.238                | 0.959<br>0.459<br>0.151<br>0.237<br>0.239<br>0.202<br>0.247<br>5.894<br>0.218<br>0.218<br>0.238<br>0.238 | 0.959<br>0.459<br>0.151<br>0.237<br>0.239<br>0.202<br>0.247<br>5.894<br>0.218<br>0.218<br>0.238<br>0.238<br>0.124<br>1.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.959<br>0.459<br>0.151<br>0.237<br>0.146<br>0.239<br>0.247<br>5.894<br>0.218<br>0.218<br>0.238<br>0.124<br>1.162<br>0.674<br>2.947 | 0.959<br>0.459<br>0.151<br>0.137<br>0.146<br>0.239<br>0.202<br>0.247<br>5.894<br>0.218<br>0.238<br>0.124<br>1.162<br>0.674<br>2.947<br>2.986 | 0.959<br>0.459<br>0.151<br>0.237<br>0.239<br>0.247<br>5.894<br>0.218<br>0.238<br>0.124<br>1.162<br>0.674<br>2.947<br>2.986<br>2.326 | 0.959<br>0.459<br>0.151<br>0.146<br>0.237<br>0.247<br>5.894<br>0.218<br>0.238<br>0.238<br>0.124<br>1.162<br>0.674<br>2.947<br>2.986<br>2.253<br>0.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.959<br>0.459<br>0.151<br>0.237<br>0.146<br>0.239<br>0.202<br>0.247<br>5.894<br>0.218<br>0.124<br>1.162<br>0.674<br>2.947<br>2.986<br>2.253<br>0.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.959<br>0.459<br>0.151<br>0.137<br>0.146<br>0.239<br>0.238<br>0.247<br>5.894<br>0.218<br>0.238<br>0.124<br>1.162<br>0.674<br>2.947<br>2.986<br>2.326<br>2.253<br>0.555                        | 0.959<br>0.151<br>0.151<br>0.146<br>0.237<br>0.247<br>5.894<br>0.218<br>0.124<br>1.162<br>0.674<br>2.986<br>2.986<br>2.253<br>0.255<br>0.464<br>0.250       |
| 8 0.611<br>3 40.215  |                 |                  | 068.0 9         | 5 6.305        | l           | 8 666.917   |                 |                                  |                                           |                                           |                                                    |                                                    |                                                             |                                                                      |                                                                                  |                                                                                        |                                                                                              |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                             |
| 00 0.108<br>37 0.193 |                 |                  | 24 0.086        | 99 0.605       | 0.108       | _           | 0.035           |                                  |                                           |                                           |                                                    |                                                    |                                                             |                                                                      | <del>                                     </del>                                 |                                                                                        |                                                                                              |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                             |
| 6.582 0.600          |                 | 54 2.337         | 96 5.224        | 114 1.168      | 578 42.003  |             | 0.213 37.055    |                                  |                                           |                                           |                                                    |                                                    |                                                             |                                                                      |                                                                                  |                                                                                        |                                                                                              |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                             |
|                      |                 | 305.136   4.954  | .162 7.196      | 192.736 7.314  | 829.0 908.6 |             | 4.051  0.21     |                                  |                                           | +                                         | + + +                                              | + 10                                               |                                                             |                                                                      |                                                                                  |                                                                                        |                                                                                              | <del></del>                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                             |
| 3.676   229.161      |                 | .830             | 9.355   559.162 | .664           | 924         | 170         | /38             | 524                              |                                           |                                           | 738<br>524<br>528<br>3302 1<br>349                 | 7.58<br>5.24<br>2.58<br>3.02<br>3.49<br>0.79       | 7.58<br>5.24<br>2.58<br>3.02<br>3.49<br>0.079               | 7.38<br>5.24<br>3.02<br>3.49<br>0.79<br>8.33<br>5.56                 | 7.38<br>2.58<br>3.02<br>3.02<br>0.079<br>8.833<br>1.167                          | 524<br>258<br>302<br>302<br>079<br>833<br>556<br>556<br>729                            | 738<br>524<br>258<br>302<br>302<br>079<br>079<br>833<br>556<br>1167<br>729                   | 524<br>258<br>302<br>302<br>349<br>079<br>833<br>556<br>729<br>729<br>533                                | 7.38<br>5.24<br>2.58<br>3.30<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 524<br>258<br>302<br>302<br>349<br>079<br>833<br>556<br>556<br>729<br>729<br>533<br>533                                             | 738<br>524<br>258<br>302<br>079<br>079<br>167<br>729<br>729<br>729<br>729<br>729<br>644                                                      | 524<br>524<br>302<br>302<br>303<br>349<br>079<br>833<br>556<br>167<br>729<br>729<br>729<br>729<br>729<br>729<br>729<br>72           | 7.38<br>5.24<br>3.302<br>3.49<br>0.079<br>8.833<br>5.56<br>1.167<br>7.29<br>7.29<br>1.96<br>6.44<br>8.81<br>8.81<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8.83<br>8. | 7.38       524       3.302       3.49       0.079       8833       5.56       1.167       7.29       1.96       644       1.80       600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 524<br>524<br>302<br>302<br>302<br>303<br>349<br>607<br>607<br>607<br>607<br>600<br>600<br>600                                                                                                 | 7.38<br>3.302<br>3.302<br>3.302<br>3.349<br>0.079<br>8.33<br>5.556<br>1.167<br>7.729<br>1.167<br>5.533<br>1.160<br>6.600<br>6.600<br>6.600<br>8.832<br>3.15 |
| 2                    | 478             | 47.320 280.8     | 55.243   339.3  | 71.271 524.6   | 10.150 34.9 | 6.186 30.7  |                 | 12.                              | 12.                                       | 12.<br>27.<br>319                         | 12.<br>27.<br>319<br>458                           | 12.<br>27.<br>319<br>458<br>568                    | 12. 27. 27. 319 458 458 568 568 1 93.                       | 12<br>27<br>319<br>458<br>568<br>568<br>93<br>318                    | 12<br>27<br>319<br>458<br>568<br>568<br>93<br>318<br>318                         | 2727319<br>319<br>458<br>568<br>568<br>93318<br>109                                    | 27<br>27<br>319<br>458<br>568<br>568<br>93<br>269<br>109                                     | 27.2<br>27.2<br>319<br>458<br>568<br>568<br>93.<br>318<br>269<br>109<br>1106                             | 27<br>27<br>319<br>458<br>568<br>568<br>93<br>109<br>109<br>102<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.2<br>27.2<br>319<br>458<br>568<br>568<br>93.3<br>109<br>109<br>102<br>102<br>22.                                                 | 27<br>27<br>319<br>458<br>568<br>93<br>318<br>109<br>109<br>102<br>22<br>28<br>28<br>28<br>28<br>28<br>107                                   | 27.2<br>27.2<br>319<br>458<br>568<br>93.3<br>318<br>269<br>109<br>102<br>102<br>22.<br>22.<br>28.<br>28.                            | 27<br>27<br>319<br>458<br>568<br>93<br>318<br>109<br>109<br>100<br>102<br>22<br>28<br>28<br>28<br>28<br>28<br>28<br>26<br>27<br>27<br>28<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27<br>27<br>319<br>458<br>568<br>568<br>93<br>318<br>109<br>109<br>102<br>126<br>102<br>126<br>102<br>17<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 27<br>27<br>27<br>319<br>458<br>568<br>568<br>93<br>109<br>109<br>109<br>102<br>22<br>28<br>28<br>28<br>28<br>28<br>473<br>473                                                                 | 27<br>27<br>319<br>458<br>568<br>568<br>93<br>318<br>109<br>109<br>102<br>102<br>22<br>28<br>28<br>28<br>28<br>28<br>28<br>318<br>473<br>146                |
| 12.635 37.387        |                 | 172.402 47.      | 5.382 55.       | 7.521 71.      | 475.625 10. | 305.824 6.1 |                 | 3876.36 19.                      |                                           |                                           |                                                    |                                                    |                                                             |                                                                      | <del>                                     </del>                                 | <del>                                     </del>                                       | <del>                                     </del>                                             | + + + + + + + + + + + + + + + + + + + +                                                                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>                                     </del>                                                                                    | <del>                                     </del>                                                                                             | <del>                                     </del>                                                                                    | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | <del>                                     </del>                                                                                                            |
|                      |                 | 18.019 172.      | 36.352 5.3      | 52.988 7.5     | 87.780 475. | 81.516 305. |                 |                                  |                                           | + +                                       |                                                    |                                                    | <del>                                     </del>            | <del>-                                     </del>                    | <del>                                     </del>                                 | <del>                                     </del>                                       | <del>-                                     </del>                                            | <del>-                                     </del>                                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                                         | <del></del>                                                                                                                                  | <del></del>                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                    | <del></del>                                                                                                                                                 |
|                      |                 |                  |                 |                |             |             | 135 50 090      |                                  |                                           |                                           | <del>-       -   -   -   -   -   -   -   -  </del> | <del>                                     </del>   |                                                             | <del>                                     </del>                     | <del>                                     </del>                                 | <del>                                     </del>                                       | <del>                                     </del>                                             | <del>                                     </del>                                                         | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>                                     </del>                                                                                    | <del>                                     </del>                                                                                             | <del>                                     </del>                                                                                    | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                    | <del></del>                                                                                                                                                 |
|                      | AKC02051        | AKC02032         | AKC02034        | AKC02037       | AKC02031    | AKC02033    | A K C 0 2 0 3 5 | OTO CALL                         | AKC02053                                  | AKC02049<br>AKC02049                      | AKC02053<br>AKC02049<br>AKC02054                   | AKC02049 AKC02049 AKC02054 AKC02064                | AKC02049 AKC02049 AKC02044 AKC02044 AKC02036                | AKC02053 AKC02049 AKC02044 AKC02036 AKC02036 AKC02036                | AKC02035<br>AKC02049<br>AKC02044<br>AKC02036<br>AKC02036<br>AKC02036<br>AKC02055 | AKC02053 AKC02049 AKC02044 AKC02036 AKC02036 AKC02055 AKC02056                         | AKC02053<br>AKC02049<br>AKC02044<br>AKC02036<br>AKC02036<br>AKC02058<br>AKC02059<br>AKC02059 | AKC02053 AKC02049 AKC02044 AKC02036 AKC02055 AKC02056 AKC02056 AKC02058 AKC02058                         | AKC02053 AKC02044 AKC02044 AKC02036 AKC02036 AKC02055 AKC02056 AKC02058 AKC02058 AKC02058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AKC02053 AKC02044 AKC02044 AKC02036 AKC02055 AKC02056 AKC02058 AKC02058 AKC02058 AKC02058                                           | AKC02053 AKC02044 AKC02044 AKC02036 AKC02036 AKC02055 AKC02058 AKC02058 AKC00727 AKC00727 AKC00729 AKC00729                                  | AKC02053 AKC02054 AKC02054 AKC02036 AKC02036 AKC02056 AKC02058 AKC02058 AKC00727 AKC00728 AKC00728 AKC00728 AKC00728 AKC00728       | AKC02053 AKC02044 AKC02044 AKC02036 AKC02055 AKC02056 AKC02056 AKC02057 AKC00727 AKC00727 AKC00727 AKC006728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AKC02053 AKC02054 AKC02054 AKC02036 AKC02036 AKC02058 AKC02058 AKC00727 AKC00728 AKC00728 AKC00728 AKC00728 AKC00728 AKC00650 AKC00650 AKC00650 AKC00650 AKC00650 AKC00650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AKC02053  AKC02054  AKC02054  AKC02036  AKC02055  AKC02056  AKC02057  AKC00727  AKC00729  AKC00729  AKC00729  AKC00729  AKC00729  AKC00729  AKC00729  AKC00729  AKC00729  AKC000630  AKC000630 | AKC02053 AKC02054 AKC02054 AKC02036 AKC02036 AKC02058 AKC02058 AKC00728 AKC00728 AKC00728 AKC00650 AKC00650 AKC00650 AKC00603                               |

| Pr             | 3.717    | 4.693    | 3.450    | 4.476    | 2.982    | 7.182    | 6.065    | 5.909    | 5.069    | 4.272    | 5.339    | 6.187    | 4.414    | 5.577    | 7.142     | 6.200     | 7.988     | 6.638     | 7.075     | 892.9     | 7.626     | 6.379     | 7.535     | 7.413     | 3.630    | 3.702    | 844 |
|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|-----|
| Ce             | 926.99   | 65.954   | 30.322   | 45.137   | 74.865   | 61.249   | 39.041   | 45.878   | 139.859  | 152.400  | 37.100   | 59.070   | 35.215   | 50.581   | 60.412    | 50.656    | 65.241    | 50.114    | 56.943    | 55.410    | 63.853    | 52.351    | 61.441    | 61.134    | 31.312   | 93.217   |     |
| La             | 15.561   | 19.792   | 16.472   | 20.024   | 11.343   | 34.315   | 23.173   | 25.022   | 19.428   | 11.801   | 22.883   | 35.845   | 20.597   | 30.508   | 31.283    | 28.077    | 34.476    | 28.843    | 30.451    | 29.606    | 33.167    | 28.536    | 32.529    | 32.751    | 14.629   | 13.367   |     |
| Ba             | 1840.400 | 1017.858 | 443.089  | 867.403  | 799.228  | 649.771  | 725.891  | 483.296  | 1563.852 | 3313.787 | 1033.491 | 1628.930 | 711.537  | 480.967  | 635.034   | 595.902   | 683.236   | 607.024   | 636.646   | 635.519   | 661.375   | 588.576   | 680.174   | 683.802   | 396.490  | 888.524  |     |
| Cs             | 4.036    | 0.582    | 0.362    | 0.302    | 1.424    | 0.379    | 1.413    | 1.011    | 0.779    | 3.599    | 0.369    | 0.313    | 0.430    | 0.445    | 959.0     | 0.546     | 0.513     | 0.757     | 0.532     | 0.530     | 0.516     | 0.529     | 0.731     | 0.749     | 7.065    | 2.060    |     |
| qs             | 1.121    | 9.319    | 8.849    | 4.576    | 1.775    | 0.291    | 6.202    | 73.339   | 1.925    | 3.751    | 0.237    | 1.256    | 4.854    | 1.049    | 93.645    | 4.966     | 184.487   | 15.266    | 123.717   | 7.753     | 94.420    | 8.139     | 131.166   | 8.324     | 15.819   | 0.824    |     |
| In             | 0.095    | 0.262    | 0.315    | 0.297    | 0.058    | 0.073    | 1.020    | 0.652    | 869.0    | 4.097    | 2.207    | 0.078    | 0.081    | 0.131    | 0.127     | 0.052     | 0.232     | 0.073     | 0.717     | 0.117     | 2.287     | 0.100     | 0.237     | 0.126     | 1.013    | 0.109    |     |
| Ag             | 0.095    | 0.262    | 0.315    | 0.297    | 0.058    | 0.073    | 1.020    | 0.652    | 869.0    | 4.097    | 2.207    | 0.078    | 0.081    | 0.131    | 0.127     | 0.052     | 0.232     | 0.073     | 0.717     | 0.117     | 2.287     | 0.100     | 0.237     | 0.126     | 1.013    | 0.109    |     |
| NP             | 1.025    | 48.976   | 16.246   | 28.215   | 0.826    | 0.365    | 8.491    | 17.638   | 0.800    | 2.842    | 1.590    | 3.999    | 992.6    | 1.567    | 33.331    | 31.281    | 40.605    | 61.032    | 42.778    | 68.469    | 899.69    | 79.902    | 39.378    | 66.085    | 12.935   | 0.509    |     |
| Zr             | 4.771    | 6.113    | 5.844    | 8.219    | 3.569    | 15.297   | 8.518    | 7.517    | 6.574    | 2.790    | 4.190    | 6.353    | 6.476    | 7.491    | 6.777     | 965.9     | 7.198     | 8.476     | 6.622     | 956.9     | 7.017     | 6.784     | 6.811     | 7.429     | 7.225    | 3.447    |     |
| Sr             | 155.045  | 461.675  | 350.189  | 478.078  | 106.825  | 685.429  | 556.381  | 627.224  | 287.410  | 31.453   | 277.525  | 392.411  | 487.822  | 573.916  | 333.405   | 392.283   | 371.208   | 555.239   | 343.353   | 386.915   | 415.536   | 420.575   | 371.368   | 420.354   | 46.367   | 107.822  |     |
| Rb             | 51.314   | 318.020  | 258.405  | 496.556  | 33.807   | 308.157  | 283.500  | 262.798  | 443.158  | 126.897  | 569.198  | 381.951  | 256.852  | 177.549  | 473.341   | 438.256   | 514.604   | 361.186   | 489.118   | 454.700   | 476.879   | 417.698   | 507.511   | 484.108   | 75.505   | 37.914   |     |
| As             | 384.461  | 44.284   | 29.660   | 30.256   | 317.710  | 54.090   | 58.945   | 39.805   | 21.410   | 113.818  | 35.381   | 77.771   | 38.070   | 28.127   | 49.045    | 46.906    | 40.091    | 38.296    | 54.332    | 48.388    | 41.202    | 42.055    | 60.639    | 59.304    | 163.316  | 310.462  |     |
| Zu             | 14.300   | 22.489   | 41.384   | 13.262   | 3.360    | 4.928    | 9.431    | 104.231  | 7.011    | 2.692    | 3.003    | 8.312    | 7.018    | 33.768   | 327.784   | 16.468    | 250.373   | 31.196    | 295.153   | 13.255    | 226.777   | 21.660    | 282.214   | 14.288    | 250.569  | 4.607    |     |
| Database<br>ID | AKC02006 | AKC02007 | AKC02008 | AKC02009 | AKC02010 | AKC02012 | AKC02013 | AKC02014 | AKC02015 | AKC02016 | AKC02019 | AKC02020 | AKC02021 | AKC02022 | AKC020230 | AKC02023r | AKC020240 | AKC02024r | AKC020250 | AKC02025r | AKC020260 | AKC02026r | AKC020270 | AKC02027r | AKC02028 | AKC02029 |     |

| Pr             | 3.963    | 6.022    | 5.240    | 2.467    | 2.018    | 2.429    | 9.642    | 6.546    | 5.504    | 5.140    | 4.759    | 5.108     | 2.618    | 995.9    | 9.409    | 3.433    | 5.848    | 5.382    | 7.053    | 5.098    | 4.938    | 3.319    | 5.538    | 5.865    | 6.848     | 7.554     |
|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| Ce             | 37.794   | 47.832   | 50.914   | 37.338   | 16.955   | 60.879   | 82.468   | 52.024   | 40.902   | 42.311   | 39.805   | 40.724    | 27.720   | 55.499   | 80.428   | 29.153   | 49.098   | 45.636   | 59.199   | 43.730   | 46.997   | 29.398   | 46.299   | 48.428   | 57.535    | 61.031    |
| La             | 16.654   | 28.281   | 24.733   | 10.543   | 8.270    | 8.814    | 45.460   | 30.030   | 24.221   | 24.250   | 22.930   | 23.729    | 12.360   | 33.510   | 44.982   | 18.070   | 25.690   | 25.857   | 33.358   | 23.323   | 29.037   | 15.911   | 26.672   | 27.637   | 30.065    | 32.499    |
| Ba             | 407.728  | 812.586  | 841.265  | 984.405  | 53.565   | 754.453  | 1203.430 | 911.943  | 671.729  | 898.059  | 610.950  | 628.054   | 926.262  | 982.288  | 640.035  | 1488.038 | 526.481  | 660.122  | 686.236  | 650.211  | 1709.173 | 620.379  | 773.110  | 740.542  | 806.708   | 622.557   |
| Cs             | 6.883    | 0.797    | 0.464    | 0.560    | 1.681    | 0.759    | 0.789    | 0.523    | 0.727    | 0.771    | 0.517    | 0.897     | 1.600    | 0.797    | 0.278    | 0.405    | 0.765    | 2.114    | 999.0    | 2.929    | 0.532    | 0.949    | 0.505    | 0.564    | 0.524     | 0.552     |
| Sb             | 11.618   | 4.223    | 8.587    | 0.542    | 20.752   | 1.595    | 72.283   | 0.788    | 1.732    | 7.081    | 6.561    | 1.150     | 5.858    | 4.780    | 78.429   | 7.893    | 1.110    | 1.032    | 1.908    | 1.326    | 0.132    | 2.615    | 0.301    | 2.446    | 284.561   | 344.099   |
| In             | 0.568    | 0.283    | 0.137    | 1.521    | 0.598    | 0.093    | 0.820    | 0.371    | 1.061    | 0.283    | 0.321    | 0.257     | 0.129    | 1.004    | 0.352    | 0.093    | 0.279    | 0.300    | 0.248    | 0.287    | 0.032    | 0.084    | 0.070    | 0.103    | 0.352     | 0.529     |
| Ag             | 0.568    | 18.866   | 8.072    | 16.857   | 12.347   | 1.004    | 63.158   | 3.655    | 7.924    | 19.066   | 18.273   | 7.249     | 3.155    | 22.517   | 141.297  | 4.042    | 3.776    | 6.459    | 9.871    | 6.842    | 0.884    | 6.783    | 2.268    | 4.923    | 25.231    | 31.774    |
| Nb             | 13.042   | 9.818    | 8.522    | 13.546   | 5.407    | 4.285    | 14.076   | 8.607    | 6.742    | 6.805    | 6.580    | 7.356     | 8.398    | 6.097    | 13.463   | 5.448    | 6.442    | 9.499    | 12.484   | 9.137    | 6.204    | 902.9    | 6.700    | 6.617    | 7.011     | 7.284     |
| Zr             | 7.502    | 355.046  | 414.060  | 246.428  | 122.923  | 99.619   | 529.807  | 432.308  | 391.177  | 550.775  | 528.742  | 377.754   | 355.433  | 598.336  | 574.782  | 419.679  | 314.364  | 517.690  | 677.745  | 371.974  | 580.278  | 470.376  | 442.605  | 400.065  | 354.029   | 372.505   |
| Sr             | 58.414   | 277.305  | 357.307  | 248.194  | 9.940    | 140.025  | 409.651  | 331.792  | 288.844  | 305.151  | 291.600  | 300.005   | 360.929  | 234.697  | 267.437  | 377.981  | 301.334  | 373.353  | 329.656  | 294.034  | 379.112  | 277.141  | 404.728  | 377.416  | 459.345   | 473.073   |
| Rb             | 89.540   | 54.420   | 32.833   | 72.029   | 409.478  | 120.091  | 84.980   | 51.517   | 48.988   | 43.367   | 43.187   | 092.09    | 57.991   | 42.541   | 54.002   | 48.191   | 42.433   | 44.250   | 49.191   | 78.613   | 54.014   | 37.949   | 62.773   | 61.061   | 44.198    | 48.461    |
| As             | 157.243  | 36.995   | 5.915    | 0.000    | 127.876  | 17.513   | 79.459   | 6.863    | 3.138    | 15.549   | 18.131   | 1.710     | 9.562    | 12.668   | 264.909  | 33.731   | 6.320    | 1.108    | 3.389    | 3.407    | 3.245    | 5.918    | 0.000    | 1.261    | 1734.23   | 1775.15   |
| Zn             | 237.686  | 62.041   | 73.459   | 34.053   | 15.605   | 42.823   | 369.402  | 82.517   | 37.383   | 118.711  | 106.770  | 82.331    | 57.454   | 55.728   | 84.439   | 25.541   | 55.197   | 191.327  | 156.039  | 130.406  | 23.835   | 89.747   | 24.488   | 22.059   | 145.498   | 152.125   |
| Database<br>ID | AKC02030 | AKC01924 | AKC01922 | AKC01920 | AKC01912 | AKC01913 | AKC01919 | AKC00224 | AKC00121 | AKC00105 | AKC00214 | AKC00214b | AKC00090 | AKC00080 | AKC00069 | AKC00291 | AKC00087 | AKC00081 | AKC00116 | AKC00115 | AKC00095 | AKC00118 | AKC00240 | AKC00245 | AKC00254r | AKC002540 |

| Database<br>ID | Zn      | As      | Rb      | Sr      | Zr       | Nb     | Ag      | In    | Sb     | Cs    | Ba       | La     | Ce      | Pr     |
|----------------|---------|---------|---------|---------|----------|--------|---------|-------|--------|-------|----------|--------|---------|--------|
| AKC00284       | 39.363  | 153.251 | 46.474  | 486.962 | 267.947  | 6.186  | 4.006   | 0.202 | 20.134 | 0.486 | 645.651  | 28.679 | 51.649  | 6.376  |
| AKC00223       | 36.989  | 986.8   | 52.648  | 358.234 | 352.371  | 9.904  | 7.525   | 0.082 | 909.9  | 0.615 | 833.180  | 29.111 | 47.463  | 6.219  |
| AKC00221       | 16.992  | 3.616   | 44.163  | 297.128 | 504.870  | 6.421  | 4.698   | 0.024 | 1.625  | 0.414 | 652.798  | 22.651 | 39.578  | 5.015  |
| AKC00220       | 49.661  | 4.678   | 65.212  | 333.529 | 1111.140 | 13.429 | 7.300   | 0.093 | 3.874  | 0.530 | 916.863  | 26.677 | 86.468  | 8.988  |
| AKC00122       | 39.116  | 20.333  | 60.203  | 338.840 | 551.244  | 7.067  | 6.234   | 0.112 | 3.547  | 0.505 | 1214.765 | 27.522 | 45.055  | 4.968  |
| AKC00278       | 2346.79 | 99.872  | 77.367  | 284.209 | 511.024  | 11.044 | 114.273 | 2.852 | 77.803 | 1.259 | 580.298  | 53.969 | 72.306  | 12.889 |
| AKC00277       | 188.920 | 478.500 | 75.025  | 284.014 | 483.141  | 11.364 | 44.039  | 5.459 | 96.105 | 1.549 | 514.915  | 51.295 | 72.260  | 12.230 |
| AKC00057       | 23.126  | 909.6   | 331.995 | 45.953  | 36.713   | 2.947  | 2.351   | 0.115 | 7.735  | 2.512 | 169.515  | 4.571  | 8.747   | 0.953  |
| AKC00058       | 20.022  | 12.359  | 356.214 | 43.279  | 37.521   | 3.108  | 2.267   | 0.122 | 8.469  | 2.603 | 176.606  | 4.603  | 8.826   | 1.052  |
| AKC00059       | 35.027  | 1.920   | 408.663 | 56.307  | 122.860  | 4.623  | 0.424   | 0.091 | 1.197  | 1.745 | 1042.662 | 16.738 | 111.019 | 4.489  |
| AKC00117       | 56.532  | 0.348   | 23.155  | 500.160 | 209.912  | 5.657  | 0.565   | 0.394 | 12.927 | 0.819 | 259.887  | 11.735 | 21.293  | 2.463  |
| AKC01651       | 000.69  | 11.330  | 34.000  | 164.200 | 468.000  | 10.000 | 4.620   | 0.130 | 1.000  | 086.0 | 748.000  | 26.000 | 44.000  | 5.900  |
| AKC01652       | 34.000  | 008.9   | 45.000  | 527.700 | 406.000  | 8.000  | 5.270   | 1.110 | 1.000  | 0.710 | 811.000  | 33.000 | 58.000  | 7.700  |
| AKC01658       | 20.000  | 5.350   | 47.000  | 335.600 | 675.000  | 7.000  | 1.110   | 0.190 | 1.000  | 0.510 | 820.000  | 28.000 | 50.000  | 000.9  |
| AKC01677       | 54.000  | 22.850  | 43.000  | 374.200 | 222.000  | 7.000  | 5.420   | 1.050 | 1.000  | 0.710 | 517.000  | 26.000 | 44.000  | 000.9  |
| AKC01679       | 53.870  | 78.330  | 44.370  | 426.330 | 395.110  | 7.040  | 14.610  | 0.700 | 0.500  | 0.750 | 617.120  | 31.750 | 53.220  | 6.630  |
| AKC01685       | 50.000  | 41.120  | 73.000  | 537.300 | 227.000  | 8.000  | 3.210   | 0.350 | 22.000 | 0.700 | 713.000  | 35.000 | 000.99  | 7.800  |
| AKC01683       | 75.480  | 20.460  | 37.710  | 189.710 | 813.690  | 9.160  | 6.190   | 0.160 | 1.080  | 0.770 | 988.260  | 26.900 | 40.120  | 5.940  |
| AKC01686       | 128.000 | 39.700  | 53.000  | 546.400 | 369.000  | 8.000  | 17.860  | 0.290 | 13.000 | 0.610 | 742.000  | 35.000 | 000.89  | 7.800  |
| AKC01688       | 26.000  | 19.430  | 47.000  | 227.200 | 881.000  | 13.000 | 5.840   | 0.470 | 3.000  | 1.270 | 853.000  | 41.000 | 64.000  | 7.700  |
| AKC01692       | 62.000  | 30.870  | 51.000  | 339.200 | 471.000  | 8.000  | 3.110   | 0.100 | 5.000  | 1.150 | 000'889  | 26.000 | 45.000  | 5.500  |
| AKC01696       | 63.000  | 79.630  | 72.000  | 425.600 | 361.000  | 8.000  | 17.220  | 0.180 | 10.000 | 1.060 | 805.000  | 29.000 | 51.000  | 6.200  |
| AKC01697       | 39.000  | 7.530   | 41.000  | 330.700 | 245.000  | 7.000  | 6.610   | 0.350 | 0.000  | 0.950 | 489.000  | 31.000 | 000.09  | 7.400  |
| AKC01699       | 28.000  | 6.200   | 51.000  | 340.000 | 532.000  | 7.000  | 0.930   | 0.270 | 1.000  | 0.500 | 916.000  | 24.000 | 44.000  | 5.400  |
| AKC01702       | 19.400  | 6.650   | 31.170  | 383.330 | 341.960  | 3.980  | 0.460   | 0.150 | 3.010  | 0.430 | 662.610  | 21.620 | 37.000  | 4.530  |
| AKC01722       | 29.000  | 3.130   | 39.000  | 361.400 | 409.000  | 5.000  | 096.0   | 0.160 | 3.000  | 069'0 | 1377.000 | 21.000 | 39.000  | 4.500  |

| Pr             | 008.9      | 6.200    | 5.100    | 4.560    | 5.300    | 7.200           | 5.300           | 008.9           | 6.500           | 4.600           | 7.200             | 6.500    | 4.900    | 000.9    | 5.900    | 5.800    | 5.700    | 3.500    | 5.500    | 6.490    | 6.910     | 7.170    | 6.100    | 847 |
|----------------|------------|----------|----------|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|-----|
| Ce             | 52.000 6   | 54.000 6 | 41.000 5 | 36.710 4 | 42.000 5 | 63.000 7        | 43.000 5        | 53.000 6        | 51.000 6        | 39.000 4        | 54.000 7          | 52.000 6 | 40.000 4 | 48.000 6 | 43.000 5 | 45.000 5 | 44.000 5 | 28.000 3 | 44.000 5 | 53.820 6 | 9 005.95  | 57.560 7 | 47.950 6 |     |
| La             | 31.000   5 | 31.000 5 | 24.000 4 | 18.460 3 | 23.000 4 | 36.000 6        | 24.000 4        | 31.000 5        | 30.000 \$       | 22.000 3        | 32.000 5          | 30.000 5 | 23.000 4 | 27.000 4 | 29.000 4 | 27.000 4 | 26.000 4 | 16.000 2 | 26.000 4 | 30.950 5 | 31.330 5  | 32.060 5 | 25.870 4 |     |
| Ва             | 853.000    | 821.000  | 000.986  | 271.700  | 494.000  | 1278.000        | 751.000 2       | 891.000         | 835.000         | 1394.000        | 000.688           | 849.000  | 776.000  | 863.000  | 847.000  | 622.000  | 348.000  | 719.000  | 838.000  | 662.600  | 604.870   | 580.200  | 530.990  |     |
| Cs             | 0.850 8    | 0.420    | 0.590    | 0.390 2  | 0.470 4  | 0.560           | 0.490           | 8 0.850         | 8 099.0         | 0.440           | 8 008.0           | 8 068.0  | 0.450 7  | 0.480    | 0.750    | 0.260    | 1.000    | 0.650 7  | 0.530    | 0.560    | 0.700     | 0.730 \$ | 099.0    |     |
| Sb             | 2.000      | 1.000    | 1.000    | 4.920    | 0.000    | 28.000          | 11.000          | 4.000           | 5.000           | 4.000           | 1.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 1.000    | 0.000    | 1.030    | 20.970    | 16.600   | 0.220    |     |
| In             | 0.070      | 0.200    | 0.160    | 0.280    | 0.030    | 0.100           | 0.250           | 0.130           | 090.0           | 0.150           | 0.170             | 090.0    | 0.240    | 0.040    | 0.110    | 0.050    | 0.030    | 0.200    | 0.030    | 1.190    | 0.280     | 0.580    | 0.080    |     |
| $\mathbf{Ag}$  | 0.560      | 3.440    | 0.770    | 15.190   | 0.940    | 14.090          | 1.540           | 0.620           | 069.0           | 0.800           | 0.540             | 0.590    | 7.300    | 0.490    | 0.880    | 0.280    | 0.310    | 3.610    | 0.470    | 4.240    | 24.520    | 14.820   | 0.270    |     |
| NP             | 8.000      | 8.000    | 5.000    | 5.400    | 000.9    | 12.000          | 000.9           | 8.000           | 8.000           | 5.000           | 8.000             | 000.9    | 000.9    | 7.000    | 8.000    | 000.9    | 10.000   | 4.000    | 7.000    | 7.000    | 7.370     | 7.040    | 00009    |     |
| Zr             | 558.000    | 355.000  | 410.000  | 465.860  | 284.000  | 870.000         | 523.000         | 463.000         | 542.000         | 425.000         | 404.000           | 456.000  | 405.000  | 452.000  | 459.000  | 235.000  | 744.000  | 411.000  | 468.000  | 380.510  | 398.190   | 401.440  | 373.300  |     |
| Sr             | 335.100    | 589.000  | 492.900  | 260.420  | 309.000  | 176.300         | 319.900         | 320.800         | 330.400         | 378.700         | 322.200           | 614.000  | 332.500  | 391.800  | 328.100  | 435.000  | 200.800  | 342.000  | 381.200  | 464.290  | 378.900   | 402.290  | 372.700  |     |
| Rb             | 23.000     | 45.000   | 41.000   | 37.680   | 32.000   | 145.000         | 44.000          | 49.000          | 50.000          | 39.000          | 48.000            | 38.000   | 46.000   | 53.000   | 62.000   | 44.000   | 30.000   | 47.000   | 51.000   | 45.910   | 42.360    | 46.740   | 37.970   |     |
| As             | 8.030      | 2.690    | 7.400    | 20.830   | 5.190    | 26.320          | 10.610          | 4.460           | 10.060          | 3.810           | 14.240            | 6.500    | 4.880    | 3.360    | 9.700    | 4.950    | 8.060    | 25.190   | 4.930    | 31.630   | 104.970   | 118.540  | 13.300   |     |
| uZ             | 27.000     | 39.000   | 31.000   | 99.140   | 30.000   | 37.000          | 29.000          | 39.000          | 23.000          | 26.000          | 34.000            | 41.000   | 21.000   | 27.000   | 27.000   | 22.000   | 30.000   | 100.000  | 25.000   | 56.970   | 71.360    | 47.510   | 23.300   |     |
| Database<br>ID | AKC01724   | AKC01726 | AKC01727 | AKC01729 | AKC01731 | AKC01731<br>bla | AKC01731<br>blb | AKC01731<br>blc | AKC01731<br>bld | AKC01731<br>ble | AKC01731<br>green | AKC01734 | AKC01738 | AKC01742 | AKC01744 | AKC01752 | AKC01773 | AKC01774 | AKC01775 | AKC01779 | AKC01779y | AKC01780 | AKC01790 |     |

| Database<br>ID    | Zn      | As     | Rb      | Sr      | Zr      | Nb     | Ag     | In     | Sb    | Cs    | Ва              | La     | Ce      | Pr    |
|-------------------|---------|--------|---------|---------|---------|--------|--------|--------|-------|-------|-----------------|--------|---------|-------|
| AKC01791          | 38.450  | 4.400  | 54.980  | 259.630 | 579.350 | 16.530 | 0.290  | 090.0  | 0.160 | 0380  | 693.170         | 46.030 | 81.460  | 9.570 |
| AKC01808          | 23.330  | 7.420  | 87.240  | 303.620 | 572.430 | 090'9  | 2.070  | 0.240  | 0.720 | 0.450 | 1065.760        | 25.760 | 44.120  | 5.600 |
| AKC01695          | 35.022  | 4.032  | 13.012  | 444.301 | 183.749 | 5.410  | 0.346  | 0.442  | 0.730 | 0.161 | 147.272         | 8.084  | 16.571  | 2.113 |
| AKC01700<br>black | 36.655  | 4.402  | 22.928  | 660.675 | 84.933  | 3.069  | 0.932  | 0.210  | 0.209 | 0.640 | 263.406         | 5.946  | 11.351  | 1.405 |
| AKC01700          | 43.034  | 2.440  | 31.071  | 679.152 | 82.713  | 3.058  | 2.300  | 0.039  | 0.242 | 0.586 | 267.430         | 6.037  | 12.137  | 1.403 |
| AKC00443          | 36.500  | 11.497 | 31.823  | 306.350 | 139.975 | 2.710  | 0.374  | 0.054  | 0.162 | 0.443 | 2107.270        | 11.991 | 95.690  | 3.124 |
| AKC00452          | 20.290  | 0.000  | 160.479 | 12.063  | 62.859  | 2.720  | 58.842 | 0.272  | 3.678 | 1.405 | 93.996          | 8.248  | 20.326  | 1.939 |
| AKC00464          | 57.261  | 4.337  | 346.065 | 55.756  | 71.824  | 3.609  | 0.451  | 0.070  | 0.739 | 1.763 | 1084.759        | 10.542 | 33.785  | 3.024 |
| AKC00466          | 41.066  | 0.000  | 34.086  | 300.962 | 75.335  | 2.263  | 0.292  | 0.038  | 0.302 | 0.339 | 1706.508        | 12.280 | 83.521  | 2.787 |
| AKC00473          | 41.635  | 0.000  | 224.506 | 89.274  | 29.034  | 2.398  | 0.508  | 0.038  | 0.102 | 0.922 | 3231.791        | 14.560 | 318.584 | 5.512 |
| AKC00485          | 18.723  | 0.000  | 114.523 | 82.732  | 39.099  | 1.986  | 0.350  | 0.046  | 0.125 | 0.532 | 1378.694        | 11.182 | 218.499 | 3.237 |
| AKC00487          | 43.842  | 0.000  | 218.566 | 88.477  | 29.197  | 2.366  | 0.504  | 0.033  | 0.261 | 0.838 | 2853.589        | 15.063 | 320.473 | 5.561 |
| AKC00516          | 24.858  | 0.000  | 288.538 | 25.146  | 123.269 | 4.434  | 0.279  | 0.024  | 0.332 | 1.845 | 653.534         | 12.901 | 91.711  | 3.829 |
| AKC00541          | 27.359  | 0.000  | 284.101 | 25.786  | 124.221 | 4.237  | 0.302  | 0.035  | 0.457 | 1.849 | 683.025         | 13.363 | 94.290  | 3.785 |
| AKC00545          | 34.119  | 0.000  | 320.463 | 67.361  | 111.969 | 3.966  | 0.278  | 0.137  | 1.608 | 3.037 | 1011.107        | 12.203 | 94.070  | 3.263 |
| AKC00550          | 62.395  | 0.000  | 34.335  | 632.926 | 187.344 | 2.779  | 2.473  | 0.077  | 898.8 | 0.425 | 654.255         | 15.261 | 42.251  | 3.189 |
| AKC00564          | 48.247  | 0.000  | 314.536 | 51.362  | 82.311  | 3.772  | 0.180  | 0.059  | 0.540 | 2.415 | 1164.802        | 9.518  | 26.799  | 2.243 |
| AKC00569          | 47.396  | 16.688 | 540.308 | 31.400  | 209.406 | 6.985  | 3.638  | 0.857  | 4.539 | 4.912 | 66 <i>L</i> .77 | 13.455 | 26.165  | 3.021 |
| AKC00572          | 45.701  | 0.000  | 371.688 | 56.344  | 80.648  | 4.092  | 0.302  | 0.084  | 1.025 | 1.508 | 1000.129        | 10.663 | 21.942  | 2.543 |
| AKC00573          | 101.997 | 0.000  | 316.988 | 33.450  | 103.991 | 3.921  | 0.346  | 0.048  | 1.044 | 1.708 | 1304.282        | 15.095 | 151.716 | 4.203 |
| AKC00579          | 27.936  | 0.000  | 207.789 | 44.107  | 13.219  | 0.984  | 0.225  | 680.0  | 1.919 | 0.916 | 2336.463        | 2.995  | 8.634   | 0.891 |
| AKC00596          | 52.748  | 0.000  | 200.386 | 81.146  | 21.609  | 1.907  | 0.762  | 0.036  | 0.438 | 678.0 | 1771.015        | 11.647 | 254.898 | 4.340 |
| AKC00597          | 37.312  | 0.000  | 292.425 | 59.029  | 109.443 | 4.007  | 0.183  | 0.1111 | 0.716 | 3.312 | 653.046         | 9.848  | 51.420  | 2.517 |
| AKC00605          | 27.910  | 0.000  | 117.543 | 87.091  | 42.377  | 2.216  | 0.668  | 0.076  | 0.891 | 955.0 | 1549.172        | 11.585 | 193.952 | 3.755 |
| AKC00624          | 37.671  | 0.000  | 219.486 | 85.680  | 28.898  | 2.096  | 0.443  | 0.035  | 0.161 | 622.0 | 3099.756        | 17.151 | 356.008 | 5.692 |

| AKC00628 22.033<br>AKC00630 46.270<br>AKC00632 25.509 |               |           |         | i       |       | 0       |       | 30    |       | Ба       | Là     | Ce      | ΓĽ    |
|-------------------------------------------------------|---------------|-----------|---------|---------|-------|---------|-------|-------|-------|----------|--------|---------|-------|
|                                                       | 033 0.000     | 269.364   | 21.906  | 51.559  | 2.072 | 0.810   | 0.036 | 0.612 | 2.429 | 20.965   | 7.115  | 15.348  | 1.547 |
|                                                       | 46.270 4.885  | 413.988   | 092.99  | 188.696 | 7.173 | 2.117   | 0.291 | 2.506 | 4.491 | 803.547  | 15.627 | 94.633  | 4.052 |
|                                                       | 25.509 0.000  | 446.842   | 20.820  | 151.765 | 5.109 | 0.309   | 0.041 | 0.345 | 2.224 | 1751.133 | 15.250 | 51.909  | 3.725 |
| AKC00633 47.                                          | 47.730 3.182  | 543.120   | 43.379  | 57.546  | 4.200 | 0.230   | 0.045 | 0.334 | 3.737 | 925.742  | 10.042 | 19.704  | 2.739 |
| AKC00634 34.                                          | 34.496 0.000  | 82.391    | 118.833 | 24.340  | 1.541 | 4.949   | 0.028 | 0.186 | 0.236 | 1824.729 | 6.212  | 20.422  | 1.518 |
| AKC00641 26.2                                         | 26.292 14.065 | 5 147.057 | 112.959 | 82.633  | 2.929 | 996.0   | 0.072 | 0.974 | 2.583 | 286.265  | 11.137 | 23.204  | 2.578 |
| AKC00662 31.7                                         | 31.706 0.000  | 22.700    | 345.953 | 123.965 | 3.838 | 0.813   | 0.144 | 0.308 | 0.134 | 1913.763 | 16.321 | 146.381 | 3.994 |
| AKC00672 44.                                          | 44.112 0.000  | 556.022   | 46.816  | 55.342  | 3.410 | 0.249   | 990.0 | 0.303 | 2.887 | 1013.058 | 9.717  | 19.654  | 2.278 |
| AKC00677 49.8                                         | 49.885 0.000  | 52.426    | 345.332 | 58.378  | 3.244 | 95.578  | 0.061 | 0.404 | 3.150 | 1840.586 | 15.012 | 142.244 | 4.102 |
| AKC00683 35.911                                       | 911 0.000     | 25.411    | 367.175 | 129.042 | 4.220 | 1.108   | 0.041 | 0.200 | 0.121 | 2052.256 | 17.276 | 158.599 | 4.296 |
| AKC00686 73.                                          | 73.733 0.000  | 381.870   | 66.442  | 790.67  | 4.381 | 0.264   | 0.041 | 0.795 | 1.674 | 1083.681 | 12.388 | 24.304  | 2.925 |
| AKC00689 41.2                                         | 41.207 0.000  | 568.068   | 46.595  | 969.89  | 4.226 | 1.031   | 0.381 | 0.410 | 3.244 | 1125.399 | 11.725 | 24.671  | 2.896 |
| AKC00726 9446.67                                      | 6.67 1.293    | 21.094    | 243.662 | 28.050  | 0.568 | 0.114   | 0.046 | 0.431 | 0.444 | 9862.367 | 2.639  | 5.019   | 0.618 |
| AKC0733 39.8                                          | 39.859 4.662  | 26.665    | 286.393 | 64.013  | 2.892 | 408.485 | 0.535 | 1.031 | 0.878 | 1693.070 | 11.052 | 71.266  | 3.045 |
| AKC0734 28.                                           | 28.713 8.629  | 40.842    | 343.064 | 50.122  | 2.729 | 2.099   | 0.168 | 0.449 | 0.427 | 1923.084 | 13.021 | 132.183 | 3.316 |
| AKC0735 43.0                                          | 43.000 4.630  | 28.000    | 337.800 | 125.000 | 4.000 | 6.500   | 0.150 | 1.000 | 0.530 | 2167.000 | 16.000 | 142.000 | 4.100 |
| AKC0736 19.0                                          | 19.000 6.840  | 312.000   | 16.400  | 43.000  | 2.000 | 0.710   | 0.150 | 2.000 | 1.980 | 15.000   | 5.000  | 11.000  | 1.500 |
| AKC0737 51.0                                          | 51.000 3.950  | 200.000   | 83.700  | 17.000  | 2.000 | 0.140   | 0.020 | 0.000 | 2.350 | 1513.000 | 7.000  | 31.000  | 2.000 |
| AKC0738 44.0                                          | 44.000 16.190 | ) 181.000 | 72.900  | 24.000  | 2.000 | 0.470   | 0.030 | 1.000 | 0.560 | 2803.000 | 14.000 | 303.000 | 5.000 |
| AKC0739 72.0                                          | 72.000 6.470  | 93.000    | 74.700  | 73.000  | 3.000 | 0.230   | 0.040 | 1.000 | 1.650 | 1828.000 | 000.9  | 12.000  | 1.600 |
| AKC0740 47.0                                          | 47.000 6.350  | 200.000   | 82.000  | 23.000  | 2.000 | 0.670   | 0.040 | 000'0 | 0.820 | 3191.000 | 12.000 | 293.000 | 4.700 |
| AKC0741 28.0                                          | 28.000 51.220 | ) 26.000  | 88.600  | 82.000  | 2.000 | 3.440   | 0.140 | 2.000 | 1.530 | 109.000  | 11.000 | 24.000  | 2.500 |
| AKC0742 50.7                                          | 50.799 6.183  | 215.417   | 124.198 | 18.716  | 1.321 | 0.437   | 0.026 | 0.185 | 0.711 | 2229.493 | 11.283 | 147.018 | 3.938 |
| AKC0743 42.                                           | 42.428 5.382  | 187.223   | 88.439  | 20.723  | 1.716 | 0.501   | 0.055 | 0.401 | 0.522 | 1877.171 | 12.435 | 266.724 | 5.028 |
| AKC0744 48.                                           | 48.478 4.289  | 220.680   | 90.383  | 22.246  | 1.767 | 0.822   | 0.034 | 0.290 | 0.700 | 2058.634 | 12.296 | 265.150 | 4.912 |
| AKC0745 42.                                           | 42.400 9.855  | 198.399   | 88.033  | 20.078  | 2.297 | 0.712   | 0.041 | 0.320 | 0.754 | 1998.688 | 12.304 | 276.935 | 5.064 |

| Pr                     | 4.123    | 1.729    | 2.500    | 3.044   | 2.305   | 161     | 2.440   | 2.400   | 141     | 5.584    | 5.200    | 3.000    | 2.457   | 5.240    | 5.494    | 6.672    | 2.014     |        | 171               | 3.858    | 1.566    | 2.136    | 680                 | 11               | 3.065               | 850 |
|------------------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|----------|----------|----------|---------|----------|----------|----------|-----------|--------|-------------------|----------|----------|----------|---------------------|------------------|---------------------|-----|
| Ь                      |          | 1.7      | 2.5      | 3.0     | 2.3     | 2.091   | 2.4     | 2.4     | 6.041   |          |          | 3.0      | 2.4     |          |          |          | 2.0       |        | 3.071             | 3.8      |          | 2.1      | 686.0               | 4.111            |                     |     |
| Ce                     | 153.270  | 18.689   | 22.000   | 37.917  | 21.699  | 19.117  | 20.419  | 23.000  | 45.913  | 311.314  | 168.000  | 26.000   | 21.878  | 280.829  | 312.497  | 378.858  | 17.174    |        | 95.136            | 107.621  | 15.606   | 84.901   | 8.609               | 33.605           | 27.457              |     |
| La                     | 13.341   | 5.295    | 10.000   | 14.074  | 11.037  | 9.714   | 10.895  | 11.000  | 25.989  | 13.621   | 16.000   | 12.000   | 10.950  | 17.620   | 19.273   | 21.919   | 8.622     |        | 11.288            | 13.464   | 7.026    | 7.563    | 4.630               | 19.783           | 13.396              |     |
| Ba                     | 1528.023 | 5332.095 | 1386.000 | 709.487 | 436.405 | 142.076 | 173.374 | 139.000 | 946.028 | 2375.314 | 1644.000 | 1462.000 | 104.461 | 2471.604 | 2770.028 | 3138.098 | 1070.397  |        | 998.424           | 987.372  | 686.56   | 1424.050 | 94.065              | 640.992          | 1275.099            |     |
| Cs                     | 0.625    | 0.580    | 3.200    | 0.883   | 0.217   | 0.446   | 0.848   | 2.510   | 0.916   | 0.925    | 2.250    | 3.000    | 0.841   | 0.184    | 0.236    | 0.199    | 2.348     |        | 2.399             | 2.797    | 12.510   | 0.554    | 3.183               | 0.475            | 0.467               |     |
| Sb                     | 0.219    | 0.412    | 1.000    | 13.282  | 0.447   | 1.210   | 1.374   | 16.000  | 1.196   | 0.375    | 1.000    | 1.000    | 2.536   | 0.115    | 0.101    | 0.161    | 0.459     |        | 1.173             | 0.804    | 1.811    | 0.359    | 11.776              | 12.591           | 0.509               |     |
| uĮ                     | 0.018    | 0.017    | 0.240    | 0.072   | 0.026   | 0.094   | 0.139   | 0.470   | 0.215   | 0.030    | 0.050    | 0.040    | 0.113   | 0.029    | 0.024    | 0.029    | 0.013     |        | 0.026             | 0.035    | 0.045    | 0.024    | 0.032               | 0.028            | 0.165               |     |
| $\mathbf{A}\mathbf{g}$ | 0.326    | 0.130    | 0.760    | 2.739   | 1.103   | 0.115   | 1.931   | 15.720  | 0.759   | 0.597    | 0.180    | 0.160    | 3.059   | 0.562    | 0.389    | 0.554    | 0.106     |        | 0.615             | 0.925    | 0.390    | 0.253    | 1.778               | 32.490           | 6.929               |     |
| NP                     | 1.855    | 3.999    | 3.000    | 4.328   | 1.861   | 2.227   | 2.652   | 7.000   | 8.097   | 1.798    | 4.000    | 5.000    | 2.589   | 2.832    | 2.880    | 3.298    | 2.876     |        | 3.913             | 3.793    | 2.391    | 2.015    | 3.925               | 6.111            | 18.585              |     |
| Zr                     | 30.218   | 23.542   | 000.89   | 191.350 | 144.871 | 98.746  | 73.125  | 124.000 | 270.005 | 22.266   | 89.000   | 000.99   | 90.548  | 133.319  | 129.814  | 148.944  | 76.321    |        | 98.036            | 103.349  | 64.832   | 32.091   | 45.747              | 474.343          | 257.279             |     |
| Sr                     | 73.191   | 55.231   | 63.000   | 583.331 | 370.348 | 101.127 | 81.138  | 15.500  | 229.379 | 96.440   | 40.700   | 68.700   | 53.699  | 455.790  | 450.354  | 483.791  | 43.144    |        | 36.282            | 36.543   | 30.348   | 97.746   | 37.403              | 288.557          | 368.924             |     |
| Rb                     | 117.872  | 27.866   | 391.000  | 51.816  | 54.157  | 67.157  | 100.928 | 422.000 | 212.316 | 232.760  | 440.000  | 325.000  | 29.107  | 10.088   | 13.586   | 12.322   | 310.727   |        | 296.115           | 308.282  | 429.649  | 149.948  | 352.539             | 79.474           | 75.001              |     |
| As                     | 2.242    | 6.957    | 096.6    | 8.851   | 25.207  | 10.265  | 5.023   | 159.770 | 18.988  | 0.000    | 0.000    | 0.000    | 37.257  | 10.715   | 0.000    | 0.000    | 0.000     |        | 5.723             | 0.000    | 0.000    | 14.800   | 1.985               | 9.567            | 0.000               |     |
| Zn                     | 26.149   | 73.529   | 58.000   | 72.590  | 111.640 | 20.224  | 12.584  | 24.000  | 366.144 | 46.822   | 44.000   | 70.000   | 22.052  | 39.278   | 47.238   | 40.197   | 39.437    |        | 47.236            | 37.327   | 24.333   | 23.983   | 28.043              | 63.485           | 36.400              |     |
| Database<br>ID         | AKC0746  | AKC0747  | AKC0748  | AKC0749 | AKC0750 | AKC0751 | AKC0752 | AKC0753 | AKC0754 | AKC0755  | AKC0756  | AKC0757  | AKC0758 | AKC00939 | AKC01084 | AKC00912 | AKC01073_ | violet | AKC01073_<br>blue | AKC01066 | AKC00909 | AKC00910 | AKC00959_<br>dkblue | AKC00959_<br>red | AKC00959_<br>yellow |     |

| 8 | 5 |  |
|---|---|--|
|   |   |  |

| Pr             | 4.894             | 5.371              | 4.026            | 6.388     | 5.100     | 4.936     | 7.780     | 1.734        | 5.173     | 3.241    | 2.013            | 0.284    | 2.096    | 2.447    | 3.674    | 4.914    | 4.687    | 3.562    | 1.569    | 0.836    | 3.778    | 5.180     | 3.246     | 851 |
|----------------|-------------------|--------------------|------------------|-----------|-----------|-----------|-----------|--------------|-----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----|
| Ce             | 40.627            | 42.189             | 43.613           | 58.714    | 53.222    | 48.578    | 73.819    | 19.938       | 235.062   | 75.031   | 14.838           | 4.069    | 20.455   | 29.726   | 138.545  | 154.943  | 134.628  | 50.901   | 13.746   | 7.161    | 116.034  | 180.262   | 64.190    |     |
| La             | 21.755            | 24.359             | 17.879           | 29.760    | 23.052    | 23.443    | 32.014    | 6.901        | 20.880    | 13.528   | 7.855            | 1.307    | 9.421    | 12.506   | 12.757   | 16.550   | 16.213   | 14.190   | 6.931    | 4.089    | 13.656   | 16.766    | 12.275    |     |
| Ba             | 662.000           | 959.193            | 641.921          | 1309.493  | 1411.053  | 1183.656  | 375.858   | 331.763      | 3421.918  | 1275.460 | 166.487          | 52.946   | 113.078  | 248.283  | 1320.426 | 1408.841 | 1022.924 | 1711.564 | 550.708  | 46.276   | 1003.080 | 1855.237  | 662.546   |     |
| Cs             | 0.409             | 0.650              | 0.291            | 0.715     | 0.274     | 0.596     | 1.544     | 0.303        | 1.853     | 1.249    | 0.088            | 0.395    | 0.813    | 7.164    | 3.204    | 3.462    | 2.705    | 2.843    | 0.523    | 1.913    | 2.306    | 2.490     | 2.305     |     |
| qs             | 1.443             | 2.305              | 3.970            | 25.512    | 0.687     | 61.838    | 0.430     | 3848.95<br>0 | 61.184    | 2.074    | 5188.48<br>8     | 0.851    | 5.759    | 10.870   | 0.708    | 0.773    | 5.506    | 2.222    | 0.112    | 7.479    | 0.664    | 1.134     | 0.305     |     |
| In             | 0.136             | 0.485              | 0.070            | 0.138     | 0.114     | 0.600     | 0.027     | 0.429        | 0.105     | 0.104    | 800.0            | 0.276    | 090.0    | 0.215    | 0.040    | 0.043    | 0.154    | 0.077    | 0.023    | 0.233    | 0.063    | 0.070     | 090.0     |     |
| Ag             | 11.924            | 4.657              | 13.021           | 124.754   | 3.572     | 41.497    | 0.300     | 1.694        | 88.318    | 0.879    | 782.061          | 1.089    | 0.277    | 0.401    | 0.402    | 0.437    | 0.883    | 0.854    | 0.170    | 3.580    | 0.364    | 0.856     | 0.292     |     |
| Nb             | 7.715             | 6.617              | 7.204            | 8.882     | 12.884    | 6.837     | 12.381    | 2.195        | 4.195     | 5.298    | 4.102            | 0.429    | 2.193    | 4.212    | 3.083    | 4.340    | 4.442    | 5.180    | 1.450    | 2.507    | 3.842    | 4.707     | 3.705     |     |
| Zr             | 301.405           | 310.815            | 252.368          | 342.395   | 443.275   | 203.536   | 294.824   | 75.303       | 53.570    | 276.287  | 104.560          | 4.001    | 71.755   | 61.039   | 209.76   | 96.127   | 115.675  | 105.599  | 23.869   | 21.854   | 99.925   | 94.358    | 98.746    |     |
| Sr             | 238.118           | 382.667            | 444.246          | 563.873   | 729.331   | 633.566   | 256.692   | 415.534      | 274.323   | 469.746  | 632.121          | 24.336   | 79.490   | 307.930  | 37.985   | 57.363   | 889.69   | 112.835  | 122.375  | 26.477   | 42.092   | 40.900    | 28.794    |     |
| Rb             | 39.746            | 74.623             | 30.420           | 116.762   | 70.387    | 114.214   | 55.559    | 28.112       | 200.581   | 140.716  | 5.463            | 44.075   | 131.520  | 148.168  | 392.742  | 315.241  | 447.904  | 350.462  | 112.755  | 343.690  | 395.866  | 408.763   | 256.850   |     |
| As             | 0.000             | 33.434             | 6.797            | 14.660    | 0.000     | 245.536   | 0.000     | 6.268        | 0.000     | 4.340    | 17.418           | 0.000    | 7.201    | 0.000    | 6.568    | 6.817    | 5.928    | 3.031    | 1.271    | 30.728   | 5.133    | 8.317     | 4.746     |     |
| Zn             | 49.604            | 32.292             | 55.702           | 207.838   | 156.370   | 275.902   | 76.415    | 64.850       | 86.186    | 88.921   | 34.034           | 62.301   | 21.828   | 287.580  | 33.748   | 44.237   | 47.656   | 101.893  | 47.158   | 22.886   | 29.581   | 43.138    | 21.394    |     |
| Database<br>ID | AKC00959_<br>turq | AKC01071<br>yellow | AKC01071<br>blue | AKC009590 | AKC010570 | AKC010710 | AKC01043b | AKC0104w     | AKC01059b | AKC0105w | AKC01057<br>gold | AKC01093 | AKC00901 | AKC01022 | AKC00410 | AKC00413 | AKC00416 | AKC00327 | AKC00322 | AKC00386 | AKC00412 | AKC00425a | AKC00425b |     |

| Database<br>ID                                                                       | Zn     | As     | As Rb   | Sr      | Zr      | NP    | Ag    | Ag In |                   | Cs    | Sb Cs Ba La                                | La     | Ce Pr        | Pr    |
|--------------------------------------------------------------------------------------|--------|--------|---------|---------|---------|-------|-------|-------|-------------------|-------|--------------------------------------------|--------|--------------|-------|
| AKC00372   55.415   2.667   281.705   32.953   129.307                               | 55.415 | 2.667  | 281.705 | 32.953  | 129.307 | 5.562 | 0.296 |       |                   | 1.506 | 0.463   1.506   958.145   16.079   115.599 | 16.079 | 115.599      | 4.317 |
| AKC00381 19.012 20.894 29.812 101.021                                                | 19.012 | 20.894 | 29.812  | 101.021 | 22.799  | 1.958 | 0.588 | 0.337 | 0.209             | 0.330 | 0.209 0.330 1216.526                       |        | 6.819 12.408 | 1.081 |
| AKC00389 19.889 11.726 52.887 79.004                                                 | 19.889 | 11.726 | 52.887  | 79.004  | 22.165  | 1.061 | 0.714 | 0.331 |                   | 0.355 | 0.288 0.355 1275.996                       | 3.762  | 9.154        | 0.793 |
| AKC00376 37.981 13.909 77.891 67.887                                                 | 37.981 | 13.909 | 77.891  | 67.887  | 28.449  | 2.633 | 1.549 | 609.0 |                   | 0.406 | 0.169 0.406 2564.300 4.580 13.021          | 4.580  | 13.021       | 1.148 |
| AKC00424g         33.644         4.702         415.899         39.048         28.678 | 33.644 | 4.702  | 415.899 | 39.048  | 28.678  | 2.857 | 4.965 | 880'0 | 0.396             | 6.057 | 58.131                                     | 2.803  | 8.352        | 0.687 |
| AKC0042w         55.147         5.458         394.216         40.255         37.202  | 55.147 | 5.458  | 394.216 | 40.255  | 37.202  | 8.916 | 5.121 |       | 0.058 0.402 6.236 | 6.236 | 46.599                                     | 4.618  | 8.109        | 0.891 |

| 1.134     1.044     16.992     2       0.439     0.009     16.523     0       0.530     0.046     11.743     0       0.542     0.023     11.680     0       0.470     0.019     10.748     0       0.608     0.010     13.395     0       0.246     0.678     12.983     0       0.460     1.335     15.108     1       0.344     1.972     11.281     0       0.362     3.731     8.307     0       2.884     8.628     5.259     1       13 526     83.769     9.564     4       4     13.55     83.769     9.564     4 | 2.998   |        |         |        |        |       |       |       |       | •     |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|---------|--------|--------|-------|-------|-------|-------|-------|-------|
| 16.523<br>11.743<br>11.680<br>10.748<br>13.395<br>12.983<br>15.108<br>11.281<br>8.307<br>8.629<br>5.259                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 6.263  | 0.515   | 1.789  | 46.471 | 7.574 | 1.374 | 5.273 | 0.561 | 2.858 | 0.707 |
| 0.046 11.743<br>0.023 11.680<br>0.019 10.748<br>0.010 13.395<br>0.678 12.983<br>1.335 15.108<br>1.972 11.281<br>3.731 8.307<br>6.832 8.629<br>8.628 5.259                                                                                                                                                                                                                                                                                                                                                                 | 0.048   | 4.735  | 0.267   | 0.949  | 17.014 | 3.101 | 0.794 | 2.692 | 0.413 | 2.602 | 0.591 |
| 0.023 11.680<br>0.019 10.748<br>0.010 13.395<br>0.678 12.983<br>1.335 15.108<br>1.972 11.281<br>3.731 8.307<br>6.832 8.629<br>8.628 5.259                                                                                                                                                                                                                                                                                                                                                                                 | 0.119   | 14.156 | 0.300   | 1.372  | 18.164 | 3.133 | 0.702 | 2.531 | 0.350 | 1.953 | 0.415 |
| 0.019 10.748<br>0.010 13.395<br>0.678 12.983<br>1.335 15.108<br>1.972 11.281<br>3.731 8.307<br>6.832 8.629<br>8.628 5.259                                                                                                                                                                                                                                                                                                                                                                                                 | 0.069   | 16.035 | 0.310   | 1.439  | 17.482 | 3.014 | 0.691 | 2.412 | 0.339 | 1.834 | 0.418 |
| 0.010 13.395<br>0.678 12.983<br>1.335 15.108<br>1.972 11.281<br>3.731 8.307<br>6.832 8.629<br>8.628 5.259                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.090   | 15.730 | 0.290   | 1.323  | 16.299 | 2.895 | 0.659 | 2.300 | 0.324 | 1.740 | 0.401 |
| 0.678 12.983<br>1.335 15.108<br>1.972 11.281<br>3.731 8.307<br>6.832 8.629<br>8.628 5.259                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.093   | 8.102  | 0.265   | 1.075  | 22.470 | 3.757 | 0.880 | 2.946 | 0.419 | 2.104 | 0.489 |
| 1.335 15.108<br>1.972 11.281<br>3.731 8.307<br>6.832 8.629<br>8.628 5.259<br>83.769 9.264                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.881 2 | 22.780 | 0.731   | 4.912  | 14.649 | 3.382 | 0.622 | 3.357 | 0.435 | 2.922 | 0.572 |
| 1.972     11.281       3.731     8.307       6.832     8.629       8.628     5.259       83.769     9.264                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.342   | 11.552 | 0.304   | 2.414  | 17.685 | 3.806 | 0.781 | 2.966 | 0.501 | 3.182 | 0.683 |
| 3.731       8.307         6.832       8.629         8.628       5.259         83.769       9.264                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.576   | 11.522 | 1.156   | 3.332  | 12.462 | 2.682 | 989.0 | 2.402 | 0.511 | 2.170 | 0.536 |
| 6.832 8.629<br>8.628 5.259<br>83.769 9.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.309   | 1.121  | 0.854   | 2.197  | 7.081  | 1.896 | 0.352 | 1.572 | 0.213 | 1.406 | 0.456 |
| 8.628 5.259<br>83.769 9.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.414   | 2.313  | 1.754   | 2.606  | 9.311  | 2.183 | 0.446 | 2.774 | 0.367 | 2.025 | 0.377 |
| 83 769 9 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.346   | 3.185  | 0.467   | 1.231  | 6.122  | 1.263 | 0.291 | 1.620 | 0.178 | 1.029 | 0.246 |
| 01:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.093   | 2.868  | 126.714 | 3.673  | 14.289 | 5.979 | 1.039 | 3.571 | 3.218 | 6.146 | 2.042 |
| 0.361 0.240 11.681 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.299   | 23.189 | 0.819   | 0.430  | 11.652 | 2.407 | 0.770 | 1.967 | 0.259 | 1.721 | 0.497 |
| 0.672 0.710 15.518 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.422   | 11.157 | 0.427   | 0.775  | 23.962 | 4.812 | 668.0 | 3.538 | 0.431 | 3.116 | 0.624 |
| 0.577 5.793 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.324   | 0.743  | 1.180   | 40.130 | 8.199  | 1.741 | 0.286 | 1.395 | 0.282 | 1.532 | 0.249 |
| 0.190 0.092 6.972 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 608.0   | 0.763  | 0.714   | 33.747 | 8.002  | 1.600 | 0.264 | 1.269 | 0.194 | 1.216 | 0.244 |
| 0.222 0.185 6.993 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.240   | 1.052  | 1.204   | 46.678 | 7.904  | 1.670 | 0.275 | 1.435 | 0.193 | 1.246 | 0.268 |
| 0.216 0.072 7.658 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.871   | 0.911  | 1.980   | 73.822 | 7.911  | 1.519 | 0.341 | 1.469 | 0.213 | 1.393 | 0.286 |
| 0.382 0.331 13.408 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.616   | 6.534  | 0.435   | 1.093  | 15.385 | 3.329 | 0.918 | 2.561 | 0.357 | 2.111 | 0.384 |
| 0.488 0.247 10.572 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 701     | 5.193  | 0.314   | 4.746  | 19.213 | 3.294 | 0.950 | 2.464 | 0.360 | 1.823 | 0.351 |
| 0.607 0.000 9.654 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.225   | 4.439  | 0.439   | 1.518  | 18.645 | 2.993 | 0.754 | 2.495 | 0.266 | 1.685 | 0.411 |
| 0.504 0.378 14.908 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55      | 10.557 | 0.773   | 1.446  | 16.689 | 3.347 | 0.912 | 2.356 | 0.412 | 1.997 | 0.524 |
| 0.649 0.616 8.611 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.727   | 5.091  | 0.420   | 0.947  | 17.561 | 2.871 | 0.791 | 2.119 | 0.265 | 1.631 | 0.332 |
| 1.268 0.442 12.035 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 651     | 8.619  | 0.650   | 1.770  | 30.505 | 5.315 | 922.0 | 3.864 | 0.485 | 2.607 | 0.401 |
| 0.361 0.383 17.750 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.149   | 3.452  | 0.810   | 0.832  | 19.179 | 3.485 | 0.921 | 2.460 | 0.455 | 3.313 | 0.632 |

| Но             | 0.538    | 0.292    | 0.541    | 0.088    | 0.059    | 0.030    | 0.103    | 0.432    | 0.201    | 0.244    | 0.481    | 0.386    | 0.382    | 0.469    | 0.294    | 0.939    | 0.341    | 0.543    | 0.491    | 0.421    | 0.707    | 965.0    | 0.426    | 0.319    | 0.582    | 0.528    | 854 |
|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|
| Dy             | 2.712    | 1.484    | 2.850    | 0.464    | 0.305    | 0.119    | 0.395    | 2.657    | 0.681    | 1.145    | 2.384    | 2.215    | 1.287    | 3.351    | 1.872    | 4.590    | 1.700    | 2.812    | 2.463    | 2.289    | 2.953    | 2.499    | 1.851    | 1.498    | 2.303    | 2.406    |     |
| Tb             | 0.409    | 0.268    | 0.487    | 0.071    | 0.044    | 0.028    | 0.057    | 0.451    | 0.227    | 0.188    | 0.411    | 0.353    | 0.195    | 0.432    | 0.281    | 0.815    | 0.263    | 0.471    | 0.343    | 0.383    | 0.505    | 0.453    | 0.282    | 0.283    | 0.380    | 0.428    |     |
| Gd             | 2.889    | 2.113    | 3.628    | 0.433    | 0.258    | 0.158    | 0.417    | 2.573    | 1.407    | 1.262    | 2.364    | 2.267    | 1.669    | 2.106    | 1.693    | 4.416    | 1.729    | 2.462    | 2.217    | 2.407    | 3.202    | 2.859    | 1.564    | 2.110    | 2.164    | 2.437    |     |
| Eu             | 0.843    | 269.0    | 1.265    | 0.093    | 0.042    | 0.029    | 0.092    | 9/1/0    | 0.287    | 0.343    | 0.473    | 0.575    | 0.401    | 0.588    | 0.379    | 1.515    | 0.421    | 0.798    | 0.586    | 0.635    | 966.0    | 1.012    | 0.548    | 0.985    | 0.728    | 0.707    |     |
| Sm             | 3.291    | 2.765    | 4.923    | 0.495    | 0.243    | 0.233    | 0.427    | 3.328    | 1.428    | 1.546    | 2.717    | 2.451    | 1.504    | 2.451    | 2.616    | 5.453    | 1.646    | 3.025    | 2.705    | 3.098    | 3.858    | 3.585    | 2.197    | 3.439    | 2.859    | 3.083    |     |
| PΝ             | 15.892   | 17.283   | 27.256   | 2.276    | 1.211    | 1.064    | 1.071    | 13.190   | 2.706    | 7.067    | 13.301   | 9.982    | 4.175    | 8.899    | 10.213   | 17.935   | 8.991    | 12.471   | 11.644   | 13.032   | 18.109   | 20.230   | 7.865    | 22.405   | 13.896   | 12.189   |     |
| Mo             | 1.038    | 0.921    | 2.083    | 1.077    | 0.167    | 1.431    | 0.791    | 2.980    | 1.813    | 9.764    | 13.147   | 0.667    | 1.297    | 12.181   | 50.072   | 2.477    | 16.635   | 3.600    | 33.282   | 17.957   | 1.175    | 0.375    | 2.273    | 9/1/0    | 0.693    | 3.598    |     |
| W              | 0.326    | 0.219    | 0.337    | 0.198    | 0.109    | 0.446    | 0.250    | 0.701    | 0.773    | 1.082    | 3.983    | 0.615    | 1.171    | 9/9.0    | 1.286    | 0.333    | 0.496    | 0.753    | 0.504    | 0.392    | 0.272    | 0.239    | 0.368    | 0.352    | 0.432    | 0.368    |     |
| U              | 19.203   | 6.816    | 5.056    | 0.366    | 0.130    | 0.102    | 0.151    | 20.697   | 0.785    | 0.952    | 14.042   | 1.179    | 1.955    | 0.347    | 1.145    | 0.964    | 0.743    | 0.615    | 0.758    | 926.0    | 10.870   | 7.781    | 25.152   | 5.555    | 6.875    | 1.298    |     |
| Bi             | 7.191    | 989.0    | 0.263    | 11.854   | 1.601    | 318.964  | 1.957    | 0.558    | 0.242    | 0.082    | 19.861   | 2.630    | 0.452    | 1.061    | 1.704    | 0.262    | 28.412   | 3.236    | 0.028    | 0.043    | 0.135    | 0.077    | 0.092    | 0.951    | 4.326    | 0.200    |     |
| Y              | 15.099   | 8.485    | 14.806   | 2.999    | 2.256    | 0.701    | 1.567    | 11.189   | 4.019    | 6:029    | 12.792   | 10.477   | 5.211    | 10.211   | 8.733    | 15.792   | 9.675    | 12.774   | 10.685   | 10.438   | 17.397   | 14.919   | 7.655    | 8.575    | 12.944   | 11.901   |     |
| Au             | 0.050    | 0.202    | 6/179    | 0.367    | 0.129    | 0.146    | 0.484    | 0.465    | 0.573    | 0.048    | 0.170    | 0.000    | 0.588    | 0.500    | 0.401    | 0.422    | 0.200    | 0.253    | 0.074    | 0.050    | 0.332    | 0.168    | 0.300    | 0.378    | 1.202    | 0.245    |     |
| Ta             | 0.383    | 0.431    | 0.459    | 0.052    | 0.029    | 0.064    | 0.092    | 0.399    | 0.245    | 0.249    | 869.0    | 0.365    | 0.814    | 0.254    | 0.254    | 0.185    | 0.352    | 0.263    | 0.583    | 0.442    | 0.509    | 0.407    | 0.278    | 0.601    | 0.465    | 0.334    |     |
| Database<br>ID | AKC02032 | AKC02034 | AKC02037 | AKC02031 | AKC02033 | AKC02035 | AKC02053 | AKC02049 | AKC02054 | AKC02044 | AKC02036 | AKC02055 | AKC02056 | AKC02059 | AKC02058 | AKC00727 | AKC00728 | AKC00729 | AKC00650 | AKC00649 | AKC02001 | AKC02002 | AKC02003 | AKC02004 | AKC02005 | AKC02006 |     |

| 2.004     11.293     2.0       0.244     10.609     1.2       1.264     9.374     0.       0.380     10.018     0.       0.236     11.170     0.       0.518     17.545     6.       0.483     12.623     14       0.526     10.459     1.       0.149     8.634     0.       0.250     8.782     0.       0.279     15.688     5.       0.251     12.913     16       0.0251     12.93     10       0.271     13.938     10       0.381     14.878     1.       0.199     13.438     0.       0.190     13.438     0.       0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 0.280<br>0.205<br>0.146<br>0.317<br>0.374 | 1 034  |        | 7     |       |       | 0 387  |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|--------|--------|-------|-------|-------|--------|-------|-------|
| 10.609 1.7 9.374 0.0 10.018 0.0 11.170 0.1 17.545 6.1 12.623 14 15.119 0.1 16.459 1.1 15.688 5.0 15.688 5.0 15.688 5.0 15.688 1.0 15.688 0.0 15.688 1.0 17.698 0.0 17.698 0.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0 17.698 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0.205<br>0.146<br>0.317<br>0.374          | - 00:- | 15.772 | 7.924 | 0.871 | 2.814 | , 50.5 | 2.442 | 0.542 |
| 0.599         1.264         9.374         0.           0.238         0.380         10.018         0.           0.802         0.236         11.170         0.           1.596         0.518         17.545         6.           1.199         0.483         12.623         14           1.095         0.120         15.119         0.           1.460         0.526         10.459         1.           0.390         0.250         8.732         0.           0.389         0.279         15.688         5.           0.484         0.279         15.688         5.           0.484         0.251         12.913         16           0.455         0.029         12.698         0.           0.456         0.271         13.938         10           0.555         0.381         14.878         1.           0.359         0.199         13.261         16           0.482         0.190         13.438         0.           0.492         0.241         13.823         20 |               | 0.146<br>0.317<br>0.374                   | 1.343  | 11.737 | 2.323 | 0.654 | 1.817 | 0.303  | 1.834 | 0.373 |
| 0.238         0.380         10.018         0.           0.802         0.236         11.170         0.           1.596         0.518         17.545         6.           1.199         0.483         12.623         14           1.095         0.120         15.119         0.           1.460         0.526         10.459         1.           0.390         0.250         8.782         0.           0.389         0.279         15.688         5.           0.446         0.446         9.790         0.           0.484         0.251         12.698         0.           0.452         0.029         12.698         0.           0.456         0.271         13.938         10           0.525         0.381         14.878         1.           0.359         0.199         13.261         16           0.482         0.190         13.438         0.           0.482         0.190         13.438         0.           0.482         0.190         13.438         0. |               | 0.317                                     | 0.588  | 15.071 | 3.089 | 0.942 | 2.256 | 0.289  | 1.522 | 0.409 |
| 0.802         0.236         11.170         0.           1.596         0.518         17.545         6.           1.199         0.483         12.623         14           1.095         0.120         15.119         0.           1.460         0.526         10.459         1.           0.556         0.149         8.634         0.           0.390         0.250         8.782         0.           0.389         0.279         15.688         5.           0.484         0.251         12.913         16           0.484         0.251         12.913         16           0.456         0.271         13.938         10           0.456         0.271         13.938         10           0.525         0.381         14.878         1.           0.359         0.199         13.261         16           0.482         0.190         13.438         0.           0.492         0.241         13.823         20                                                         |               | 0.374                                     | 0.783  | 10.275 | 2.781 | 0.716 | 2.071 | 0.392  | 2.065 | 0.439 |
| 1.596     0.518     17.545     6.       1.199     0.483     12.623     14       1.095     0.120     15.119     0.       1.460     0.526     10.459     1.       0.390     0.250     8.782     0.       0.389     0.279     15.688     5.       0.446     0.446     9.790     0.       0.484     0.251     12.698     0.       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.482     0.190     13.438     0.                                                                                                                                                                                                                                                                                                                                                                                                     |               | 1 720                                     | 0.492  | 25.649 | 4.629 | 0.940 | 2.787 | 0.402  | 1.989 | 0.409 |
| 1.199     0.483     12.623     14       1.095     0.120     15.119     0.       1.460     0.526     10.459     1.       0.556     0.149     8.634     0.       0.390     0.250     8.782     0.       0.389     0.279     15.688     5.       0.446     0.446     9.790     0.       0.484     0.251     12.913     16       0.456     0.271     13.938     10       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.438     0.       0.482     0.190     13.438     0.       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                              |               | 1.127                                     | 1.907  | 17.872 | 4.886 | 1.894 | 3.643 | 1.623  | 4.133 | 1.926 |
| 1.095     0.120     15.119     0.       1.460     0.526     10.459     1.       0.556     0.149     8.634     0.       0.390     0.250     8.782     0.       0.389     0.279     15.688     5.       0.446     0.446     9.790     0.       0.484     0.251     12.698     0.       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1.121                                     | 2.025  | 17.486 | 3.886 | 1.367 | 3.086 | 1.070  | 2.690 | 1.284 |
| 1.460     0.526     10.459     1.       0.556     0.149     8.634     0.       0.390     0.250     8.782     0.       0.389     0.279     15.688     5.       0.446     0.446     9.790     0.       0.484     0.251     12.913     16       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 0.978                                     | 3.873  | 16.557 | 4.721 | 1.645 | 4.197 | 1.380  | 3.859 | 1.470 |
| 0.556     0.149     8.634     0.       0.390     0.250     8.782     0.       0.389     0.279     15.688     5.       0.446     0.446     9.790     0.       0.484     0.251     12.913     16       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 1.365                                     | 42.558 | 13.343 | 4.663 | 2.045 | 3.471 | 1.659  | 3.529 | 1.816 |
| 0.390     0.250     8.782     0.       0.389     0.279     15.688     5.       0.446     0.446     9.790     0.       0.484     0.251     12.913     16       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0.358                                     | 0.408  | 19.186 | 3.494 | 0.813 | 2.507 | 0.374  | 2.216 | 0.407 |
| 0.389         0.279         15.688         5.           0.446         0.446         9.790         0.           0.484         0.251         12.913         16           0.452         0.029         12.698         0.           0.456         0.271         13.938         10           0.525         0.381         14.878         1.           0.359         0.199         13.261         16           0.482         0.190         13.438         0.           0.492         0.241         13.823         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0.118                                     | 0.847  | 20.128 | 3.270 | 0.733 | 2.241 | 0.271  | 1.535 | 0.265 |
| 0.446     0.446     9.790     0.       0.484     0.251     12.913     16       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 0.298                                     | 0.992  | 15.653 | 3.042 | 089.0 | 2.719 | 0.356  | 2.707 | 0.552 |
| 0.484     0.251     12.913     16       0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ļ             | 0.257                                     | 0.660  | 18.361 | 3.301 | 0.743 | 2.273 | 0.312  | 1.797 | 0.381 |
| 0.452     0.029     12.698     0.       0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .705   6.016  | 0.447                                     | 3.019  | 25.083 | 4.701 | 1.194 | 3.503 | 0.461  | 2.920 | 0.545 |
| 0.456     0.271     13.938     10       0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.166         | 0.279                                     | 1.966  | 22.380 | 4.171 | 1.012 | 2.841 | 0.422  | 2.273 | 0.406 |
| 0.525     0.381     14.878     1.       0.359     0.199     13.261     16       0.482     0.190     13.438     0.       0.492     0.241     13.823     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .934 9.591    | 0.350                                     | 3.957  | 28.360 | 5.130 | 1.319 | 3.701 | 0.531  | 3.181 | 0.636 |
| 0.359         0.199         13.261         16           0.482         0.190         13.438         0.           0.492         0.241         13.823         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.066 5.846   | 0.390                                     | 2.219  | 23.036 | 4.112 | 1.088 | 3.213 | 0.468  | 2.567 | 0.582 |
| 0.482         0.190         13.438         0.3           0.492         0.241         13.823         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .222 6.991    | 0.340                                     | 2.501  | 25.341 | 4.656 | 1.216 | 3.351 | 0.480  | 2.919 | 0.563 |
| 0.241   13.823   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84 6.497      | 0.349                                     | 2.495  | 24.567 | 4.633 | 1.203 | 3.204 | 0.425  | 2.664 | 0.525 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .713 7.466    | 0.363                                     | 3.449  | 26.992 | 5.188 | 1.206 | 3.491 | 0.458  | 3.321 | 0.632 |
| AKC02026r 0.419 0.141 14.128 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.835 6.401   | 0.334                                     | 1.787  | 22.634 | 4.272 | 0.971 | 3.017 | 0.456  | 2.539 | 0.505 |
| AKC020270 0.491 0.537 13.791 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .718 7.375    | 0.442                                     | 2.469  | 26.861 | 4.781 | 1.278 | 3.480 | 0.477  | 2.923 | 0.614 |
| AKC02027r 0.489 0.247 14.525 0.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.507         | 0.408                                     | 2.598  | 26.132 | 5.207 | 1.274 | 3.701 | 0.513  | 3.046 | 0.644 |
| AKC02028 0.818 0.220 12.554 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .013 16.744   | 4.156                                     | 10.415 | 12.934 | 2.517 | 0.424 | 2.190 | 0.348  | 2.187 | 0.431 |
| AKC02029 0.264 0.166 10.821 0.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.955         | 0.482                                     | 1.020  | 14.124 | 3.426 | 0.785 | 3.023 | 0.426  | 2.989 | 0.555 |
| AKC02030 0.823 0.408 14.741 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.333 20.574 | 3.921                                     | 9.944  | 14.662 | 3.227 | 0.557 | 2.994 | 0.410  | 2.973 | 0.551 |

|                                             |                          | , O:     | 2.065         | 2.065      | 2.065       | 2.065<br>2.065<br>1.684<br>1.387<br>1.731 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.678 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733<br>2.733<br>1.201 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.678<br>2.678<br>1.201<br>1.201           | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733<br>2.649<br>1.201<br>1.967 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.678<br>2.733<br>2.733<br>1.201<br>1.967<br>1.976 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.976          | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.678<br>2.733<br>2.733<br>2.733<br>1.201<br>1.907<br>1.140<br>3.044 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.976<br>1.976<br>2.379<br>2.379          | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.907<br>1.907<br>2.339<br>2.339<br>2.339<br>2.3460 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.649<br>1.201<br>1.967<br>1.967<br>1.967<br>1.967<br>2.379<br>2.379<br>2.445<br>2.445 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.140<br>3.044<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445<br>1.798 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.678<br>2.678<br>2.678<br>2.678<br>1.201<br>1.967<br>1.967<br>1.967<br>1.967<br>2.379<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.906<br>1.906<br>1.906<br>1.140<br>3.044<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>3.318<br>3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.649<br>1.201<br>1.967<br>1.967<br>1.976<br>1.976<br>1.976<br>1.976<br>1.388<br>1.798<br>1.798<br>1.798<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2. | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1. |
|---------------------------------------------|--------------------------|----------|---------------|------------|-------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | 2.677                    |          | 2.065         | 2.065      | 2.065       | 2.065<br>1.684<br>1.387<br>1.731          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.733          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733<br>2.649                   | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.733<br>2.733<br>1.201                             | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733<br>2.649<br>1.201<br>1.967          | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.871<br>2.733<br>2.649<br>1.201<br>1.967<br>1.976          | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.871<br>2.733<br>2.649<br>1.201<br>1.967<br>1.967<br>1.140 | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.733<br>2.649<br>1.201<br>1.907<br>1.907<br>1.907<br>1.140                   | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.201<br>1.967<br>1.967<br>1.976<br>1.140<br>2.379 | 2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.976<br>1.140<br>3.044<br>2.379<br>2.379<br>2.445           | 2.065<br>2.065<br>1.684<br>1.387<br>1.387<br>2.678<br>2.678<br>2.649<br>1.201<br>1.967<br>1.967<br>1.140<br>3.044<br>2.379<br>2.445<br>2.445<br>2.445          | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.907<br>1.907<br>1.907<br>1.907<br>2.379<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445 | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.649<br>1.201<br>1.976<br>1.140<br>3.044<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.907<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1.908<br>1. | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.678<br>2.678<br>2.678<br>2.678<br>2.649<br>1.201<br>1.967<br>1.967<br>1.967<br>1.304<br>2.379<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.460<br>1.798<br>1.798<br>1.798<br>1.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.065<br>2.065<br>1.684<br>1.387<br>1.731<br>4.647<br>3.319<br>2.678<br>2.649<br>1.201<br>1.907<br>1.907<br>1.907<br>1.140<br>3.044<br>2.379<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.450<br>1.798<br>1.798<br>1.798<br>1.798<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.446<br>2.445<br>2.445<br>2.445<br>2.445<br>2.445<br>2.456<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2.460<br>2. |
| 323 0.448 2.677                             |                          | 0.355    |               | 0.263      | 0.263       | 0.263                                     | 0.263<br>0.248<br>0.280<br>0.766                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445                            | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.435                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.435<br>0.396                            | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.445<br>0.396                                               | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.445<br>0.435<br>0.396<br>0.396                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.445<br>0.445<br>0.396<br>0.396<br>0.396                            | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.445<br>0.435<br>0.396<br>0.396<br>0.345<br>0.345<br>0.373          | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.425<br>0.445<br>0.445<br>0.396<br>0.396<br>0.396<br>0.373<br>0.373                            | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.445<br>0.445<br>0.396<br>0.396<br>0.373<br>0.373<br>0.373                            | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.425<br>0.445<br>0.396<br>0.396<br>0.396<br>0.373<br>0.373<br>0.374                                               | 0.263<br>0.248<br>0.280<br>0.766<br>0.445<br>0.445<br>0.445<br>0.396<br>0.396<br>0.396<br>0.373<br>0.373<br>0.373<br>0.373<br>0.374<br>0.378                   | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.425<br>0.445<br>0.396<br>0.373<br>0.374<br>0.374<br>0.374<br>0.374                                                       | 0.263<br>0.248<br>0.280<br>0.766<br>0.425<br>0.445<br>0.396<br>0.396<br>0.396<br>0.345<br>0.373<br>0.373<br>0.373<br>0.373<br>0.374<br>0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.345<br>0.373<br>0.374<br>0.374<br>0.374<br>0.374<br>0.378<br>0.378<br>0.378<br>0.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.263<br>0.248<br>0.280<br>0.766<br>0.425<br>0.445<br>0.396<br>0.396<br>0.345<br>0.373<br>0.373<br>0.373<br>0.373<br>0.374<br>0.521<br>0.521<br>0.521<br>0.521<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.263<br>0.248<br>0.280<br>0.766<br>0.535<br>0.425<br>0.445<br>0.345<br>0.373<br>0.374<br>0.374<br>0.374<br>0.378<br>0.378<br>0.378<br>0.378<br>0.440<br>0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.323 0.448<br>2.426 0.355                  |                          |          | 1.414 0.263   |            | 1.299 0.248 |                                           |                                                    |                                                             |                                                                      |                                                                      |                                                                                        |                                                                                        |                                                                                                          |                                                                                                                             |                                                                                                                   |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             |                          |          | 0.785   1.414 | 0.312 1.29 |             | 0.578 1.77:                               |                                                    |                                                             |                                                                      |                                                                      |                                                                                        |                                                                                        |                                                                                                          |                                                                                                                             |                                                                                                                   |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             |                          |          |               | 1.414 0.3  | 1 778 0.5   |                                           |                                                    |                                                             |                                                                      |                                                                      | ++++                                                                                   |                                                                                        |                                                                                                          |                                                                                                                             | <del>                                     </del>                                                                  | ++++++++                                                                                                                            | +++++++++                                                                                                                           | <del>                                     </del>                                                                                                      | ++++++++++++                                                                                                                                          | +++++++++++++++++++++++++++++++++++++++                                                                                                                                  | <del>                                     </del>                                                                                                               | <del>                                     </del>                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                             |                          |          |               | 6.262 1.   | 8.474 1.    |                                           | 34.959 6.                                          |                                                             |                                                                      |                                                                      |                                                                                        |                                                                                        |                                                                                                          |                                                                                                                             |                                                                                                                   | <del>                                     </del>                                                                                    |                                                                                                                                     | <del>                                     </del>                                                                                                      | <del>                                     </del>                                                                                                      | <del>                                     </del>                                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.484 20<br>1.027 18<br>0.633 8             |                          |          |               |            | 9.564 8     | 2.944 3                                   |                                                    | 0.709 23                                                    |                                                                      |                                                                      |                                                                                        |                                                                                        |                                                                                                          |                                                                                                                             |                                                                                                                   |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             |                          |          |               |            | 0.364 9     | 0.456 2                                   | 0 428 0                                            |                                                             |                                                                      |                                                                      |                                                                                        |                                                                                        |                                                                                                          |                                                                                                                             |                                                                                                                   |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7.606 (<br>7.606 (<br>14.913 (<br>0.674 1   |                          |          |               |            |             | 14.129 (                                  | 6.549                                              |                                                             | 0.201                                                                |                                                                      |                                                                                        |                                                                                        |                                                                                                          |                                                                                                                             |                                                                                                                   |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                       | +++++++                                                                                                                                               | +++++++++++                                                                                                                                                              | +++++++++++++++++++++++++++++++++++++++                                                                                                                        | <del></del>                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14.794<br>0.839<br>1.540<br>25.702          | 0.839<br>1.540<br>25.702 | 1.540    | 25.702        |            | 1.296       | 6.872                                     | 0.836                                              | 0 148                                                       | 0.110                                                                | 2.721                                                                | 2.721                                                                                  | 2.721<br>2.587<br>1.081                                                                |                                                                                                          |                                                                                                                             |                                                                                                                   |                                                                                                                                     | <del>                                     </del>                                                                                    | <del>                                     </del>                                                                                                      |                                                                                                                                                       | <del>                                     </del>                                                                                                                         | <del>                                     </del>                                                                                                               | <del>                                     </del>                                                                                                                                 | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14.878<br>11.905<br>9.621<br>9.090<br>7.919 |                          |          |               | 7.919      |             | 25.757                                    | 18.430                                             | 15.443                                                      |                                                                      | 16.778                                                               | 16.778                                                                                 | 16.778<br>16.077<br>15.265                                                             | 16.778<br>16.077<br>15.265<br>6.940                                                                      | 16.778<br>16.077<br>15.265<br>6.940                                                                                         |                                                                                                                   |                                                                                                                                     | <del>                                     </del>                                                                                    | <del>                                     </del>                                                                                                      |                                                                                                                                                       | <del>-                                     </del>                                                                                                                        | <del>-                                     </del>                                                                                                              | <del>                                     </del>                                                                                                                                 | <del>-                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.362<br>0.129<br>0.389<br>0.258            | 0.129<br>0.389<br>0.258  | 0.389    | 0.258         |            | 0.448       | 4.645                                     | 0.557                                              | 0.093                                                       | 0.10                                                                 | 0.212                                                                | 0.340                                                                                  | 0.212<br>0.340<br>0.378                                                                | 0.212<br>0.340<br>0.378<br>0.226                                                                         | 0.212<br>0.340<br>0.378<br>0.226<br>0.216                                                                                   | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312                                                                | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150                                                                         | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150                                                                         | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150<br>0.172                                                                                  | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150<br>0.172<br>0.266                                                                         | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150<br>0.172<br>0.266<br>0.315                                                                                   | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150<br>0.172<br>0.266<br>0.315                                                                         | 0.212<br>0.340<br>0.378<br>0.226<br>0.312<br>0.150<br>0.150<br>0.266<br>0.315<br>0.201<br>0.155                                                                                  | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150<br>0.172<br>0.266<br>0.315<br>0.267<br>0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.212<br>0.340<br>0.378<br>0.226<br>0.312<br>0.150<br>0.172<br>0.266<br>0.315<br>0.201<br>0.175<br>0.175<br>0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.212<br>0.340<br>0.378<br>0.226<br>0.216<br>0.312<br>0.150<br>0.172<br>0.266<br>0.315<br>0.201<br>0.355<br>0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.212<br>0.340<br>0.378<br>0.226<br>0.312<br>0.150<br>0.150<br>0.266<br>0.315<br>0.201<br>0.155<br>0.201<br>0.206<br>0.327<br>0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.552<br>0.497<br>0.859                     | 0.497                    | 0.859    |               | 0.476      | 0.265       | 0.761                                     | 695.0                                              | 0.471                                                       |                                                                      | 0.415                                                                | 0.415                                                                                  | 0.415<br>0.371<br>0.550                                                                | 0.415<br>0.371<br>0.550<br>0.453                                                                         | 0.415<br>0.371<br>0.550<br>0.453<br>0.527                                                                                   | 0.415<br>0.371<br>0.550<br>0.453<br>0.527                                                                         | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766                                                                                  | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291                                                                         | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484                                                                                  | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547                                                                         | 0.415<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547<br>0.673                                                                                            | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547<br>0.673                                                                         | 0.415<br>0.550<br>0.550<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547<br>0.673<br>0.603                                                                                           | 0.415<br>0.550<br>0.550<br>0.453<br>0.291<br>0.673<br>0.673<br>0.603<br>0.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547<br>0.673<br>0.603<br>0.439<br>0.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547<br>0.673<br>0.603<br>0.603<br>0.439<br>0.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.415<br>0.371<br>0.550<br>0.453<br>0.527<br>0.766<br>0.291<br>0.484<br>0.547<br>0.673<br>0.603<br>0.603<br>0.439<br>0.439<br>0.439<br>0.437<br>0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AKC01924                                    | CCC                      | ANC01922 | AKC01920      | AKC01912   | AKC01913    | AKC01919                                  | AKC00224                                           | AKC00121                                                    |                                                                      | C00105                                                               | CC00105<br>CC00214                                                                     | C00214<br>C00214<br>C00214b                                                            | \$C00105<br>\$C00214<br>\$C00214b<br>\$C00090                                                            | \$\times \text{C00105} \\ \text{C00214} \\ \text{C000214b} \\ \text{C00090} \\ \text{C000080} \\ \text{C000080} \end{array} | AKC00105 AKC00214 AKC00214b AKC00090 AKC00080                                                                     | AKC00105  AKC00214  AKC00090  AKC00080  AKC00069  AKC00069                                                                          | CC00105<br>CC00214b<br>CC000214b<br>CC00090<br>CC00080<br>CC00069<br>CC000291                                                       | CC00105<br>CC00214<br>CC00214b<br>CC00090<br>CC00080<br>CC00081<br>CC00087                                                                            | AKC00105 AKC00214 AKC000214b AKC00080 AKC00069 AKC00069 AKC00081 AKC00081                                                                             | CC00105<br>CC00214b<br>CC00030<br>CC00080<br>CC00080<br>CC00081<br>CC00081<br>CC00081<br>CC000116                                                                        | CC00105<br>CC00214b<br>CC00030<br>CC00080<br>CC00080<br>CC00081<br>CC00081<br>CC000115<br>CC00115                                                              | CC00105<br>CC00214b<br>CC00030<br>CC00080<br>CC00080<br>CC00081<br>CC00081<br>CC00116<br>CC00116<br>CC00116                                                                      | \$\( \cdot \cd | CC00105<br>CC00214b<br>CC00030<br>CC00080<br>CC00080<br>CC00081<br>CC00081<br>CC00116<br>CC00118<br>CC00118<br>CC00118<br>CC001240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CC00105<br>CC00214b<br>CC000214b<br>CC00080<br>CC00080<br>CC00081<br>CC00081<br>CC00116<br>CC00116<br>CC00118<br>CC00118<br>CC000240<br>CC00240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AKC00105 AKC00214b AKC002090 AKC00080 AKC00081 AKC00081 AKC00081 AKC00116 AKC00118 AKC00118 AKC00240 AKC00240 AKC00246 AKC00254r AKC002540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                |          | l.       | ~        |          |          |          |          |          |          |          |          | ٥,       | ~        |          |          |          |          | 16       | 16       |          | 16       | l_       |          |          | 6,       | ٥.       |
|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Ho             | 0.526    | 0.594    | 0.418    | 0.290    | 1.253    | 1.257    | 0.230    | 0.303    | 0.619    | 0.329    | 0.570    | 0.492    | 0.848    | 0.629    | 0.590    | 0.639    | 0.580    | 0.625    | 0.415    | 0.411    | 0.615    | 0.994    | 0.641    | 0.460    | 0.512    | 0 908    |
| Dy             | 2.401    | 2.950    | 1.923    | 1.409    | 6.238    | 9:039    | 1.252    | 1.233    | 2.953    | 1.507    | 3.046    | 2.579    | 3.902    | 3.621    | 3.100    | 3.102    | 3.060    | 2.852    | 2.203    | 2.520    | 2.712    | 5.004    | 3.233    | 2.340    | 2.573    | 4 287    |
| Tb             | 0.360    | 0.450    | 0.373    | 0.243    | 0.980    | 1.067    | 0.181    | 0.170    | 0.534    | 0.237    | 0.440    | 0.510    | 0.573    | 0.620    | 0.490    | 0.502    | 0.450    | 0.494    | 0.394    | 0.347    | 0.530    | 0.783    | 0.528    | 0.370    | 0.411    | 0.659    |
| P5             | 2.456    | 3.012    | 2.829    | 1.823    | 890.8    | 8.076    | 0.939    | 0.959    | 3.145    | 1.471    | 3.122    | 4.388    | 3.480    | 3.449    | 3.540    | 4.023    | 3.300    | 3.990    | 2.828    | 1.907    | 4.174    | 5.988    | 3.311    | 2.430    | 2.466    | 4.178    |
| Eu             | 0.952    | 668.0    | 1.089    | 0.625    | 2.030    | 2.084    | 0.200    | 0.214    | 1.020    | 0.471    | 692.0    | 1.158    | 1.105    | 0.971    | 1.060    | 1.322    | 0.830    | 1.231    | 1.066    | 0.856    | 1.144    | 1.228    | 906.0    | 0.740    | 0.897    | 1.178    |
| Sm             | 3.381    | 3.309    | 4.087    | 2.648    | 10.112   | 8.501    | 0.839    | 0.812    | 3.790    | 1.876    | 3.551    | 4.881    | 3.714    | 4.170    | 4.420    | 5.288    | 3.860    | 4.931    | 4.100    | 3.042    | 3.645    | 862.9    | 3.809    | 3.250    | 3.035    | 4.584    |
| PN             | 21.491   | 17.524   | 28.334   | 16.244   | 47.945   | 46.444   | 3.567    | 3.613    | 16.341   | 9.405    | 20.143   | 25.129   | 21.520   | 23.063   | 23.390   | 27.883   | 20.330   | 27.697   | 26.282   | 19.570   | 22.235   | 28.651   | 19.483   | 16.620   | 15.166   | 23.334   |
| Mo             | 0.321    | 0.874    | 1.259    | 1.003    | 5.388    | 5.407    | 0.538    | 0.642    | 0.833    | 5.704    | 1.000    | 1.000    | 1.000    | 2.000    | 7.710    | 2.000    | 1.390    | 4.000    | 2.000    | 2.000    | 2.000    | 1.000    | 1.000    | 0.680    | 1.000    | 1.000    |
| W              | 0.243    | 0.255    | 0.572    | 0.202    | 0.846    | 0.752    | 0.494    | 0.538    | 0.386    | 0.423    | 0.000    | 0.000    | 0.000    | 0.000    | 1.150    | 0.000    | 0.390    | 0.000    | 1.000    | 0.000    | 2.000    | 0.000    | 0.000    | 1.120    | 0.000    | 0.000    |
| Ω              | 4.175    | 9.975    | 6.547    | 5.498    | 18.162   | 17.513   | 1.629    | 1.520    | 0.793    | 2.321    | 7.098    | 4.784    | 7.048    | 9.161    | 099.6    | 8.467    | 9.930    | 5.447    | 10.541   | 5.291    | 7.459    | 22.459   | 11.370   | 4.190    | 6.261    | 7.108    |
| Bi             | 2.032    | 2.822    | 1.478    | 929.0    | 10.236   | 87.708   | 3.945    | 4.359    | 0.178    | 0.188    | 1.000    | 1.000    | 0.000    | 0.000    | 0.300    | 1.000    | 0.640    | 1.000    | 2.000    | 1.000    | 2.000    | 0.000    | 0.000    | 0.120    | 0.000    | 0.000    |
| Y              | 13.599   | 17.743   | 12.035   | 8.735    | 38.050   | 35.979   | 8.135    | 8.429    | 13.173   | 9.021    | 15.600   | 12.900   | 22.600   | 19.400   | 15.810   | 15.400   | 15.920   | 15.200   | 10.900   | 13.400   | 12.900   | 24.000   | 18.100   | 11.530   | 14.000   | 24.100   |
| Au             | 0.241    | 4.000    | 0.358    | 0.120    | 0.289    | 0.181    | 0.184    | 0.199    | 0.105    | 0.093    | 0.308    | 0.214    | 0.135    | 0.247    | 2.470    | 0.693    | 0.290    | 0.467    | 1.302    | 0.042    | 7.923    | 0.915    | 0.228    | 0.770    | 0.147    | 0.269    |
| Та             | 0.497    | 0.431    | 0.749    | 0.373    | 089.0    | 0.787    | 0.527    | 0.583    | 0.301    | 0.290    | 0.650    | 0.658    | 0.493    | 0.450    | 0.510    | 0.480    | 0.540    | 0.529    | 0.837    | 968.0    | 0.800    | 0.739    | 0.493    | 0.260    | 0.318    | 995.0    |
| Database<br>ID | AKC00223 | AKC00221 | AKC00220 | AKC00122 | AKC00278 | AKC00277 | AKC00057 | AKC00058 | AKC00059 | AKC00117 | AKC01651 | AKC01652 | AKC01658 | AKC01677 | AKC01679 | AKC01685 | AKC01683 | AKC01686 | AKC01688 | AKC01692 | AKC01696 | AKC01697 | AKC01699 | AKC01702 | AKC01722 | AKC01724 |

| Но             | 0.514    | 0.500    | 0.750    | 0.747    | 0.444           | 0.773           | 0.911           | 0.948           | 0.521           | 0.973             | 0.509    | 0.549    | 0.807    | 0.748    | 0.620    | 0.593    | 0.434    | 0.720    | 099.0    | 0.880     | 0.870    | 098.0    | 0.730    | 858 |
|----------------|----------|----------|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|-----|
| Dy             | 2.222    | 2.604    | 3.970    | 3.657    | 2.325           | 3.701           | 4.618           | 4.433           | 2.938           | 4.999             | 2.680    | 2.660    | 3.614    | 3.382    | 2.931    | 2.827    | 2.061    | 3.183    | 2.880    | 4.050     | 4.150    | 4.290    | 3.470    |     |
| Tb             | 0.424    | 0.407    | 0.540    | 0.556    | 0.421           | 0.551           | 0.692           | 0.659           | 0.486           | 0.728             | 0.449    | 0.481    | 0.570    | 0.565    | 0.478    | 0.530    | 0.351    | 0.536    | 0.550    | 0.650     | 0.680    | 098.0    | 0.630    |     |
| Сd             | 3.292    | 3.139    | 3.430    | 3.957    | 3.554           | 3.946           | 4.899           | 4.808           | 2.842           | 4.604             | 3.220    | 3.169    | 4.273    | 3.713    | 3.530    | 3.325    | 2.128    | 3.631    | 3.520    | 4.740     | 4.410    | 4.900    | 4.750    |     |
| Eu             | 866.0    | 1.043    | 096.0    | 0.892    | 0.929           | 0.981           | 1.232           | 1.214           | 0.888           | 1.341             | 1.373    | 0.981    | 1.167    | 1.041    | 1.095    | 0.848    | 0.727    | 0.981    | 1.170    | 1.120     | 1.210    | 1.000    | 1.320    |     |
| Sm             | 3.326    | 3.652    | 3.870    | 3.930    | 4.534           | 3.877           | 4.863           | 4.633           | 3.022           | 4.971             | 4.173    | 3.357    | 4.105    | 3.656    | 3.991    | 3.653    | 2.509    | 3.791    | 4.440    | 5.280     | 5.510    | 5.310    | 6.120    |     |
| ΡN             | 20.895   | 18.691   | 16.850   | 19.136   | 24.513          | 18.913          | 24.433          | 23.707          | 16.542          | 25.092            | 22.820   | 17.747   | 22.008   | 20.872   | 20.791   | 20.016   | 12.089   | 19.233   | 23.690   | 26.930    | 25.570   | 23.060   | 34.810   |     |
| Mo             | 0.000    | 1.000    | 1.520    | 1.000    | 2.000           | 1.000           | 0.000           | 1.000           | 1.000           | 0.000             | 0.000    | 1.000    | 1.000    | 1.000    | 0.000    | 2.000    | 1.000    | 1.000    | 5.800    | 3.880     | 15.060   | 1.920    | 0.780    |     |
| M              | 0.000    | 0.000    | 0.480    | 0.000    | 1.000           | 0.000           | 0.000           | 0.000           | 2.000           | 1.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 1.000    | 0.000    | 0.000    | 0.240    | 0.380     | 0.280    | 0.540    | 0.960    |     |
| n              | 7.358    | 5.896    | 34.160   | 22.369   | 9.419           | 10.532          | 10.594          | 7.345           | 6.445           | 10.252            | 4.335    | 8.672    | 8.679    | 12.163   | 5.394    | 5.170    | 11.516   | 7.697    | 13.050   | 21.400    | 24.100   | 24.460   | 14.410   |     |
| Bi             | 0.000    | 0.000    | 2.360    | 0.000    | 0.000           | 1.000           | 0.000           | 0.000           | 0.000           | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 4.110    | 22.230    | 9.790    | 0.160    | 0.130    |     |
| Y              | 12.600   | 14.600   | 20.650   | 20.200   | 12.800          | 19.500          | 26.100          | 24.800          | 14.800          | 26.400            | 13.800   | 14.100   | 21.400   | 20.200   | 17.500   | 16.000   | 10.700   | 20.100   | 15.970   | 22.170    | 22.410   | 20.990   | 16.990   |     |
| Au             | 0.884    | 0.563    | 0.550    | 2.072    | 0.801           | 0.415           | 0.241           | 0.328           | 629.0           | 0.645             | 0.495    | 1.001    | 0.287    | 0.210    | 0.281    | 0.390    | 0.362    | 0.303    | 0.640    | 0.099     | 0.550    | 2.610    | 0.460    |     |
| Та             | 0.441    | 0.281    | 0.450    | 0.523    | 0.900           | 0.452           | 0.530           | 0.440           | 0.376           | 0.442             | 0.397    | 0.499    | 0.464    | 0.555    | 0.429    | 0.533    | 0.270    | 0.385    | 0.510    | 099.0     | 0.620    | 0.530    | 1.070    |     |
| Database<br>ID | AKC01726 | AKC01727 | AKC01729 | AKC01731 | AKC01731<br>bla | AKC01731<br>blb | AKC01731<br>blc | AKC01731<br>bld | AKC01731<br>ble | AKC01731<br>green | AKC01734 | AKC01738 | AKC01742 | AKC01744 | AKC01752 | AKC01773 | AKC01774 | AKC01775 | AKC01779 | AKC01779y | AKC01780 | AKC01790 | AKC01791 |     |

| 0                      | 20       | 96       | 31                | 14                   | 28       | 35       | 28       | 49       | 09       | 29       | 67       | 54       | 63       | 84       | 92       | 37       | 9/       | 92       | 64       | 33       | 25       | 97       | 49       | 62       | 98       | 859 |
|------------------------|----------|----------|-------------------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|
| Ho                     | 0.820    | 0.396    | 0.231             | 0.214                | 0.458    | 0.235    | 0.358    | 0.349    | 096.0    | 0.467    | 1.029    | 0.554    | 0.563    | 0.484    | 0.265    | 0.337    | 0.576    | 0.492    | 0.564    | 0.233    | 0.825    | 0.326    | 0.649    | 0.962    | 0.186    |     |
| ρλ                     | 3.740    | 1.363    | 2.287             | 696'0                | 2.036    | 1.119    | 2.012    | 1.387    | 5.505    | 2.545    | 5.533    | 2.851    | 3.102    | 2.238    | 1.061    | 1.715    | 2.347    | 1.951    | 3.059    | 1.030    | 4.497    | 1.482    | 3.202    | 5.414    | 9/90     |     |
| $\mathbf{T}\mathbf{b}$ | 0.580    | 0.352    | 0.308             | 0.164                | 0.384    | 0.231    | 0.326    | 0.343    | 0.795    | 0.457    | 0.894    | 0.457    | 0.521    | 0.387    | 0.204    | 0.336    | 0.363    | 0.438    | 0.570    | 0.258    | 0.724    | 0.271    | 0.569    | 0.938    | 0.168    |     |
| рЭ                     | 3.510    | 1.272    | 1.197             | 1.009                | 2.599    | 1.286    | 2.222    | 2.174    | 2.667    | 2.583    | 5.320    | 2.966    | 3.280    | 2.348    | 1.595    | 2.173    | 1.798    | 2.562    | 3.289    | 1.463    | 3.753    | 1.728    | 3.235    | 5.169    | 0.745    |     |
| Eu                     | 1.060    | 0.429    | 0.493             | 0.329                | 0.824    | 0.266    | 0.521    | 0.757    | 1.634    | 968.0    | 1.936    | 0.936    | 1.068    | 0.792    | 0.644    | 0.477    | 0.504    | 609.0    | 1.023    | 0.412    | 1.421    | 0.451    | 1.144    | 1.819    | 0.260    |     |
| Sm                     | 4.080    | 1.542    | 966.0             | 1.028                | 2.866    | 1.588    | 2.343    | 2.244    | 6.485    | 3.426    | 886.9    | 3.377    | 4.216    | 2.869    | 1.952    | 2.159    | 2.491    | 2.679    | 3.849    | 1.694    | 5.081    | 2.217    | 4.540    | 6.199    | 1.079    |     |
| PΝ                     | 19.940   | 8.100    | 6.404             | 5.227                | 11.892   | 7.451    | 9.838    | 10.131   | 21.203   | 12.139   | 21.873   | 13.856   | 14.298   | 12.025   | 11.800   | 8.914    | 10.666   | 9.555    | 15.764   | 3.517    | 16.763   | 9.403    | 14.378   | 22.155   | 5.176    |     |
| Mo                     | 0.890    | 1.984    | 0.423             | 0.433                | 5.746    | 1.072    | 1.318    | 1.915    | 1.903    | 12.066   | 1.711    | 0.863    | 0.994    | 1.308    | 1.913    | 066.0    | 15.578   | 8.864    | 1.367    | 3.082    | 3.217    | 5.135    | 29.588   | 13.302   | 0.731    |     |
| W                      | 0.520    | 0.750    | 0.164             | 0.130                | 0.703    | 0.421    | 0.434    | 0.791    | 0.166    | 0.651    | 0.556    | 0.400    | 0.461    | 0.388    | 0.364    | 0.253    | 0.474    | 1.383    | 0.427    | 0.926    | 0.190    | 0.302    | 0.394    | 0.149    | 0.369    |     |
| Ω                      | 10.870   | 1.773    | 0.827             | 0.827                | 61.230   | 1.050    | 1.101    | 32.868   | 0.463    | 1.226    | 0.474    | 0.729    | 0.915    | 0.819    | 16.105   | 1.032    | 1.306    | 1.308    | 1.591    | 0.227    | 0.368    | 0.750    | 1.103    | 0.632    | 0.437    |     |
| Bi                     | 0.190    | 0.322    | 0.188             | 0.101                | 0.036    | 0.691    | 0.142    | 060.0    | 0.020    | 0.117    | 0.022    | 0.113    | 0.049    | 0.321    | 0.224    | 0.030    | 19.855   | 0.239    | 0.024    | 0.443    | 0.166    | 0.196    | 0.012    | 0.045    | 0.094    |     |
| Y                      | 21.210   | 9.171    | 5.788             | 5.658                | 8.227    | 4.197    | 8.348    | 5.215    | 15.932   | 7.654    | 16.283   | 11.031   | 11.165   | 9.836    | 6.257    | 8.201    | 12.058   | 668.6    | 11.817   | 4.974    | 13.935   | 7.819    | 12.312   | 15.907   | 4.271    |     |
| Au                     | 3.470    | 0.734    | 0.857             | 0.199                | 0.042    | 0.127    | 0.170    | 0.430    | 0.074    | 0.651    | 0.059    | 0.281    | 0.758    | 0.073    | 0.101    | 0.048    | 890.0    | 0.268    | 0.303    | 0.799    | 0.362    | 0.196    | 0.221    | 0.065    | 0.243    |     |
| Та                     | 0.400    | 0.575    | 0.343             | 0.227                | 0.207    | 0.339    | 0.260    | 0.182    | 0.192    | 0.202    | 0.315    | 0.374    | 0.362    | 0.316    | 0.192    | 0.249    | 0.551    | 0.413    | 0.280    | 0.163    | 0.151    | 0.224    | 0.197    | 0.132    | 0.173    |     |
| Database<br>ID         | AKC01808 | AKC01695 | AKC01700<br>black | AKC01700<br>red trim | AKC00443 | AKC00452 | AKC00464 | AKC00466 | AKC00473 | AKC00485 | AKC00487 | AKC00516 | AKC00541 | AKC00545 | AKC00550 | AKC00564 | AKC00569 | AKC00572 | AKC00573 | AKC00579 | AKC00596 | AKC00597 | AKC00605 | AKC00624 | AKC00628 |     |

| Но             | 0.683    | 0.435    | 0.276    | 0.237    | 0.338    | 0.750    | 0.316    | 0.462    | 0.651    | 0.413    | 0.379    | 0.150    | 0.684   | 0.512   | 0.634   | 0.223   | 0.374   | 0.798   | 0.386   | 0.743   | 0.280   | 0.762   | 0.905   | 0.883   | 098.0   | 0.498   | 860 |
|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----|
| Dy             | 3.530    | 2.249    | 1.452    | 1.237    | 1.570    | 3.049    | 1.749    | 2.559    | 3.365    | 1.788    | 1.794    | 0.441    | 1.504   | 2.040   | 3.068   | 692.0   | 2.017   | 5.137   | 1.940   | 4.075   | 1.369   | 3.763   | 5.072   | 4.609   | 4.855   | 2.828   |     |
| Tb             | 0.501    | 0.389    | 0.263    | 0.193    | 0.275    | 0.596    | 0.265    | 0.487    | 0.535    | 0.357    | 0.382    | 0.114    | 0.926   | 0.538   | 0.584   | 0.116   | 0.340   | 0.753   | 0.353   | 0.770   | 0.246   | 0.614   | 0.786   | 0.804   | 992.0   | 0.511   |     |
| РS             | 3.077    | 2.116    | 2.014    | 1.074    | 1.589    | 2.884    | 1.928    | 2.596    | 2.937    | 2.616    | 2.458    | 0.381    | 1.961   | 2.139   | 2.901   | 0.956   | 2.052   | 4.427   | 2.464   | 4.245   | 1.756   | 3.556   | 4.634   | 4.357   | 4.320   | 2.895   |     |
| Eu             | 0.759    | 0.640    | 0.404    | 998.0    | 0.381    | 1.178    | 0.443    | 1.038    | 1.351    | 0.558    | 0.510    | 0.177    | 1.023   | 1.046   | 1.248   | 0.230   | 0.621   | 1.513   | 0.497   | 1.583   | 0.318   | 1.267   | 1.615   | 1.556   | 1.533   | 1.015   |     |
| Sm             | 3.245    | 2.716    | 1.930    | 1.546    | 2.003    | 3.048    | 2.589    | 3.572    | 3.997    | 2.625    | 2.487    | 0.595    | 2.879   | 2.772   | 3.507   | 1.049   | 2.083   | 5.307   | 2.093   | 5.217   | 1.814   | 4.311   | 5.441   | 5.609   | 5.560   | 3.788   |     |
| PΝ             | 14.271   | 12.529   | 9.167    | 5.427    | 9.140    | 13.269   | 8.381    | 13.984   | 15.881   | 10.885   | 11.225   | 2.269    | 8.452   | 12.236  | 14.107  | 5.214   | 7.791   | 18.799  | 6.029   | 18.628  | 8.197   | 15.256  | 19.002  | 19.009  | 19.238  | 14.864  |     |
| Mo             | 17.449   | 18.202   | 18.109   | 3.138    | 42.084   | 0.980    | 18.235   | 1.733    | 1.015    | 7.474    | 19.283   | 629.0    | 1.953   | 1.583   | 1.000   | 1.000   | 1.000   | 10.000  | 4.000   | 1.000   | 166.000 | 2.461   | 2.746   | 2.648   | 2.715   | 21.439  |     |
| *              | 0.718    | 0.459    | 0.517    | 0.627    | 1.090    | 0.661    | 0.426    | 1.188    | 0.436    | 0.776    | 0.360    | 0.387    | 0.614   | 0.315   | 0.000   | 1.000   | 0.000   | 0.000   | 1.000   | 0.000   | 4.000   | 0.117   | 0.154   | 0.106   | 0.141   | 0.250   |     |
| n              | 1.801    | 0.923    | 806.0    | 0.634    | 1.105    | 52.488   | 0.804    | 16.530   | 58.461   | 1.216    | 1.068    | 0.339    | 35.246  | 14.272  | 51.424  | 1.264   | 1.186   | 0.582   | 0.965   | 0.323   | 0.934   | 0.283   | 0.330   | 0.323   | 0.335   | 0.904   |     |
| Bi             | 0.733    | 0.264    | 0.129    | 0.303    | 1.327    | 0.212    | 0.170    | 0.231    | 0.037    | 0.090    | 0.136    | 0.163    | 0.441   | 0.154   | 1.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 2.000   | 0.045   | 0.189   | 0.087   | 0.103   | 0.037   |     |
| Y              | 13.832   | 10.499   | 7.670    | 5.847    | 8.907    | 12.484   | 7.558    | 7.287    | 12.374   | 10.326   | 8.008    | 3.612    | 5.035   | 6.465   | 12.300  | 3.400   | 9.500   | 14.200  | 9.300   | 14.100  | 7.100   | 14.628  | 15.040  | 15.082  | 14.570  | 7.965   |     |
| Au             | 0.074    | 0.082    | 0.165    | 1.064    | 0.089    | 0.347    | 0.208    | 0.369    | 0.264    | 0.159    | 920.0    | 0.035    | 0.152   | 0.338   | 0.054   | 6.163   | 0.064   | 990.0   | 0.217   | 0.076   | 0.458   | 0.056   | 890.0   | 0.071   | 0.102   | 0.083   |     |
| Та             | 0.576    | 0.392    | 0.325    | 0.225    | 0.305    | 0.404    | 0.229    | 0.332    | 0.278    | 0.468    | 0.369    | 0.126    | 0.821   | 0.224   | 0.403   | 0.286   | 0.387   | 0.141   | 0.260   | 0.116   | 0.178   | 0.105   | 0.114   | 0.117   | 0.114   | 0.180   |     |
| Database<br>ID | AKC00630 | AKC00632 | AKC00633 | AKC00634 | AKC00641 | AKC00662 | AKC00672 | AKC00677 | AKC00683 | AKC00686 | AKC00689 | AKC00726 | AKC0733 | AKC0734 | AKC0735 | AKC0736 | AKC0737 | AKC0738 | AKC0739 | AKC0740 | AKC0741 | AKC0742 | AKC0743 | AKC0744 | AKC0745 | AKC0746 |     |

|                | _       |         |         |         |         |         |         |         |         |         |         |         |          |          |          |                 |                  |          |          |          |                 |                  |                     |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|-----------------|------------------|----------|----------|----------|-----------------|------------------|---------------------|
| Но             | 0.347   | 0.346   | 0.188   | 0.186   | 0.264   | 0.286   | 0.472   | 0.757   | 1.026   | 0.786   | 0.383   | 0.279   | 0.718    | 0.794    | 906.0    | 0.244           | 0.444            | 0.547    | 0.222    | 0.226    | 0.231           | 0.455            | 0.308               |
| Dy             | 1.215   | 1.837   | 1.047   | 0.974   | 1.130   | 1.433   | 1.800   | 3.543   | 5.621   | 4.216   | 2.068   | 1.431   | 3.915    | 4.196    | 5.046    | 1.285           | 2.168            | 2.678    | 086.0    | 1.434    | 0.932           | 1.970            | 1.480               |
| Tb             | 0.264   | 0.331   | 0.195   | 0.173   | 0.201   | 0.292   | 0.280   | 0.599   | 0.818   | 0.716   | 0.350   | 0.215   | 0.582    | 699.0    | 0.743    | 0.212           | 0.362            | 0.517    | 0.118    | 0.226    | 0.135           | 0.325            | 0.289               |
| Gd             | 1.510   | 2.252   | 1.402   | 1.125   | 1.080   | 1.428   | 1.850   | 4.774   | 5.037   | 4.259   | 2.358   | 1.348   | 3.607    | 4.015    | 4.922    | 1.606           | 2.654            | 2.637    | 0.753    | 1.518    | 0.804           | 2.403            | 1.713               |
| Eu             | 0.413   | 0.501   | 0.582   | 0.394   | 0.271   | 0.367   | 0.416   | 1.067   | 1.740   | 1.398   | 0.594   | 0.244   | 1.199    | 1.390    | 1.626    | 0.317           | 0.693            | 0.851    | 0.219    | 0.422    | 0.135           | 602.0            | 0.902               |
| Sm             | 1.384   | 2.101   | 1.772   | 1.475   | 1.501   | 1.571   | 1.842   | 4.196   | 6.470   | 5.469   | 3.470   | 1.579   | 4.890    | 5.420    | 6.628    | 1.474           | 2.481            | 3.571    | 1.090    | 1.791    | 0.870           | 2.592            | 2.184               |
| Nd             | 6.351   | 9.137   | 11.420  | 8.128   | 7.261   | 8.586   | 8.751   | 22.623  | 21.292  | 20.232  | 10.871  | 7.756   | 18.412   | 20.477   | 24.298   | 7.267           | 11.423           | 14.466   | 5.088    | 7.367    | 3.415           | 14.546           | 10.434              |
| Mo             | 14.191  | 7.000   | 2.292   | 981.9   | 37.794  | 50.335  | 3.000   | 3.623   | 3.041   | 2.000   | 1.000   | 182.377 | 3.261    | 3.306    | 4.024    | 1.031           | 962'0            | 0.844    | 0.905    | 42.448   | 0.498           | 0.915            | 2.294               |
| W              | 1.180   | 0.000   | 0.572   | 0.861   | 1.578   | 1.725   | 0.000   | 0.762   | 0.142   | 0.000   | 0.000   | 6.387   | 0.112    | 0.147    | 0.196    | 0.127           | 0.196            | 0.302    | 0.232    | 0.557    | 0.144           | 0.165            | 0.152               |
| U              | 0.755   | 1.037   | 14.249  | 52.799  | 0.829   | 1.001   | 0.970   | 4.180   | 0.452   | 1.277   | 1.441   | 686.0   | 33.950   | 32.104   | 39.673   | 0.778           | 0.738            | 1.029    | 0.488    | 0.539    | 1.681           | 4.638            | 5.883               |
| Bi             | 0.163   | 0.000   | 0.297   | 0.167   | 1.649   | 4.155   | 27.000  | 1.438   | 0.071   | 0.000   | 0.000   | 2.534   | 0.041    | 0.035    | 990.0    | 0.046           | 0.058            | 0.064    | 0.256    | 0.054    | 2.103           | 2.000            | 0.211               |
| Y              | 5.140   | 7.900   | 6.228   | 5.650   | 7.071   | 8.317   | 10.700  | 20.986  | 15.915  | 13.600  | 9.300   | 988.9   | 10.932   | 11.591   | 12.955   | 6.393           | 10.590           | 10.553   | 5.261    | 4.634    | 7.648           | 14.466           | 9.650               |
| Au             | 0.254   | 0.085   | 0.555   | 0.362   | 0.101   | 0.392   | 0.135   | 0.141   | 0.104   | 0.052   | 0.046   | 0.508   | 0.013    | 0.000    | 0.000    | 0.007           | 0.009            | 0.000    | 0.139    | 0.000    | 0.099           | 0.127            | 0.331               |
| Та             | 0.194   | 0.264   | 0.259   | 0.134   | 0.201   | 0.281   | 0.531   | 0.501   | 0.114   | 0.364   | 0.423   | 0.261   | 0.223    | 0.275    | 0.284    | 0.168           | 0.222            | 0.258    | 0.185    | 0.193    | 0.565           | 0.286            | 0.805               |
| Database<br>ID | AKC0747 | AKC0748 | AKC0749 | AKC0750 | AKC0751 | AKC0752 | AKC0753 | AKC0754 | AKC0755 | AKC0756 | AKC0757 | AKC0758 | AKC00939 | AKC01084 | AKC00912 | AKC01073 violet | AKC01073<br>blue | AKC01066 | AKC00909 | AKC00910 | AKC00959_dkblue | AKC00959_<br>red | AKC00959_<br>yellow |

| Но             | 809.0             | 1 0.537            | 1 0.363          | 3 0.550   | 7 0.510   | 0.412     | 1.032     | 1 0.267  | 199.0     | 3 0.394  | 0.299            | 5 0.031  | 3 0.227  | 9 0.287  | 906.0    | 0.704    | 1 0.708  | 1 0.537  | 3 0.203  | 7 0.103  | 3 0.540  | 3 0.852   | 5 0.416   | 5 0.587  | 8 |
|----------------|-------------------|--------------------|------------------|-----------|-----------|-----------|-----------|----------|-----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|---|
| Dy             | 3.065             | 2.551              | 1.601            | 2.663     | 2.627     | 2.022     | 4.714     | 1.201    | 3.730     | 1.788    | 1.379            | 0.126    | 1.103    | 1.399    | 4.916    | 4.440    | 3.704    | 2.714    | 1.033    | 0.597    | 2.973    | 4.268     | 2.095     | 3.046    |   |
| Tb             | 0.458             | 0.384              | 0.283            | 0.448     | 0.398     | 0.361     | 0.730     | 0.199    | 0.566     | 0.336    | 0.239            | 0.019    | 0.197    | 0.212    | 0.762    | 0.683    | 0.646    | 0.482    | 0.170    | 0.101    | 0.493    | 0.803     | 0.343     | 0.508    |   |
| P<br>G         | 2.821             | 2.786              | 2.380            | 3.230     | 3.007     | 2.289     | 5.111     | 1.360    | 3.644     | 2.046    | 1.299            | 0.273    | 1.307    | 1.503    | 4.147    | 4.199    | 3.587    | 3.133    | 1.265    | 0.495    | 2.799    | 4.463     | 2.274     | 3.031    |   |
| Eu             | 9/1/0             | 806.0              | 1.009            | 0.844     | 0.892     | 0.787     | 1.070     | 0.370    | 1.195     | 0.672    | 0.365            | 0.054    | 0.275    | 0.559    | 1.032    | 1.213    | 1.213    | 0.826    | 0.310    | 0.118    | 0.917    | 1.406     | 0.664     | 0.915    |   |
| Sm             | 3.442             | 3.329              | 2.938            | 4.183     | 3.432     | 3.350     | 2.667     | 1.326    | 4.863     | 2.514    | 1.728            | 0.310    | 1.403    | 2.006    | 3.969    | 4.389    | 4.133    | 3.421    | 1.171    | 0.751    | 3.356    | 5.242     | 2.866     | 3.920    |   |
| PN             | 17.517            | 18.454             | 15.159           | 23.026    | 18.705    | 16.875    | 28.566    | 968.9    | 18.452    | 11.359   | 7.413            | 0.885    | 7.079    | 15.282   | 13.559   | 18.415   | 17.383   | 12.811   | 5.462    | 3.118    | 14.004   | 19.742    | 12.874    | 15.335   |   |
| Mo             | 0.688             | 0.637              | 0.462            | 3.379     | 3.144     | 3.476     | 0.379     | 1.480    | 16.200    | 3.668    | 0.519            | 0.140    | 19.258   | 0.726    | 1.041    | 0.467    | 0.736    | 1.365    | 3.400    | 1.519    | 989.0    | 5.457     | 1.360     | 0.502    |   |
| *              | 0.249             | 0.149              | 0.100            | 0.229     | 0.151     | 0.189     | 0.651     | 0.129    | 0.473     | 0.262    | 0.132            | 0.274    | 0.480    | 0.826    | 0.239    | 0.192    | 0.223    | 0.342    | 0.186    | 0.401    | 0.505    | 0.327     | 0.531     | 0.396    |   |
| n              | 6.048             | 17.744             | 10.690           | 6.290     | 6.807     | 8.129     | 3.255     | 068.6    | 2.565     | 12.286   | 1.383            | 0.127    | 0.878    | 0.794    | 0.677    | 992.0    | 0.855    | 1.225    | 1.094    | 0.694    | 0.577    | 0.825     | 0.854     | 0.910    |   |
| Bi             | 1.274             | 0.288              | 0.635            | 14.379    | 0.082     | 4.451     | 0.041     | 0.492    | 0.895     | 0.317    | 0.094            | 9.994    | 0.781    | 0.192    | 0.041    | 0.106    | 0.304    | 0.218    | 0.057    | 4.935    | 0.090    | 060.0     | 0.092     | 0.115    |   |
| Y              | 19.837            | 15.177             | 8.909            | 16.473    | 14.840    | 11.396    | 24.386    | 6.462    | 12.071    | 8.952    | 8.461            | 1.076    | 6.971    | 6.252    | 21.921   | 13.872   | 15.124   | 11.896   | 5.143    | 3.379    | 11.630   | 17.120    | 11.024    | 13.060   | • |
| Au             | 880.0             | 0.208              | 0.428            | 0.081     | 2.390     | 2.050     | 0.019     | 2.952    | 52.252    | 1.678    | 18.969           | 0.570    | 0.854    | 0.219    | 0.220    | 0.106    | 9200     | 2.852    | 0.242    | 0.240    | 0.167    | 0.087     | 0.081     | 0.322    |   |
| Та             | 0.438             | 0.421              | 0.569            | 0.424     | 0.604     | 0.328     | 1.139     | 0.191    | 0.284     | 0.346    | 0.253            | 0.139    | 0.219    | 0.339    | 0.200    | 0.284    | 0.318    | 0.347    | 0.145    | 0.603    | 0.242    | 0.306     | 0.290     | 0.474    |   |
| Database<br>ID | AKC00959_<br>turq | AKC01071<br>yellow | AKC01071<br>blue | AKC00959_ | AKC010570 | AKC010710 | AKC01043b | AKC0104w | AKC01059b | AKC0105w | AKC01057<br>gold | AKC01093 | AKC00901 | AKC01022 | AKC00410 | AKC00413 | AKC00416 | AKC00327 | AKC00322 | AKC00386 | AKC00412 | AKC00425a | AKC00425b | AKC00372 |   |

| Database<br>m                     | Ta    | Ta Au | Y     | Bi    | Ω     | M     | Mo    | PΝ    | $\mathbf{Sm}$ | nЭ    | рЭ    | $\mathbf{q}\mathbf{L}$ | Dy    | $_{ m Ho}$ |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|------------------------|-------|------------|
| AKC00381 0.235 0.199 2.236        | 0.235 | 0.199 | 2.236 | 1.740 | 0.308 | 0.237 | 5.092 | 3.346 | 0.952         | 0.548 | 0.867 | 0.109                  | 0.466 | 0.101      |
| AKC00389 0.178 0.113 2.177        | 0.178 | 0.113 | 2.177 | 1.730 | 0.401 | 0.278 | 5.584 | 2.805 | 0.646         | 0.152 | 0.545 | 0.106                  | 0.470 | 0.094      |
| AKC00376 0.223 0.659 3.618        | 0.223 | 0.659 | 3.618 | 1.484 | 1.129 | 0.314 | 4.723 | 3.762 | 0.914         | 0.259 | 0.749 | 0.120                  | 0.707 | 0.132      |
| AKC00424g 0.450 0.082 2.934 0.334 | 0.450 | 0.082 | 2.934 | 0.334 | 0.624 | 0.245 | 0.508 | 2.197 | 0.483         | 0.127 | 0.468 | 060'0                  | 0.413 | 0.093      |
| AKC0042w 0.581 0.268 3.778 0.4    | 0.581 | 0.268 | 3.778 | 0.491 | 0.70  | 668.0 | 9/9.0 | 3.260 | 0.540         | 0.230 | 0.716 | 0.107                  | 0.835 | 0.105      |

|             |          |          |          |          |          |          |          |          |          |           |          |          |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 86 |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----|
| Th          | 48.194   | 8.196    | 16.487   | 15.871   | 20.598   | 25.283   | 5.664    | 998.9    | 5.974    | 2.201     | 4.813    | 2.592    | 13.277    | 4.039    | 9.490    | 3.009    | 4.683    | 4.405    | 3.825    | 5.318    | 5.675    | 13.607   | 6.291    | 13.754   | 20.402   | 5.305    | 8.217    |    |
| Hf          | 40.679   | 11.895   | 17.042   | 18.293   | 16.527   | 10.462   | 4.069    | 9.354    | 6.382    | 4.442     | 7.282    | 4.032    | 58.890    | 8.416    | 19.148   | 2.120    | 3.148    | 2.102    | 2.124    | 10.113   | 7.612    | 14.260   | 13.606   | 13.076   | 24.963   | 4.909    | 8.844    |    |
| Lu          | 0.333    | 0.291    | 0.202    | 0.197    | 0.191    | 0.210    | 0.314    | 0.320    | 0.323    | 0.380     | 0.235    | 0.121    | 8.553     | 0.233    | 0.363    | 0.204    | 0.108    | 0.111    | 0.134    | 0.317    | 0.167    | 0.235    | 0.279    | 0.184    | 0.334    | 0.354    | 0.244    |    |
| ΛP          | 1.698    | 1.775    | 1.179    | 1.151    | 1.099    | 1.192    | 1.871    | 1.951    | 1.410    | 5.688     | 4.252    | 1.032    | 28.930    | 1.179    | 1.756    | 1.395    | 0.763    | 0.738    | 0.877    | 1.586    | 1.196    | 0.941    | 1.550    | 1.278    | 1.514    | 1.850    | 1.681    |    |
| Tm          | 0.300    | 0.259    | 0.175    | 0.158    | 0.162    | 0.185    | 0.255    | 0.312    | 0.189    | 1.272     | 0.459    | 0.228    | 2.581     | 0.276    | 0.209    | 0.208    | 0.089    | 0.098    | 0.116    | 0.188    | 0.170    | 0.192    | 0.230    | 0.182    | 0.217    | 0.263    | 0.221    |    |
| Er          | 2.001    | 1.668    | 1.106    | 1.075    | 1.038    | 1.227    | 1.541    | 1.901    | 1.363    | 5.087     | 1.206    | 0.706    | 2.307     | 1.247    | 1.617    | 0.872    | 099.0    | 0.763    | 0.808    | 1.232    | 1.358    | 0.792    | 1.724    | 0.831    | 1.587    | 1.575    | 1.569    |    |
| Database ID | AKC02589 | AKC02519 | AKC02585 | AKC02584 | AKC02590 | AKC02591 | AKC02587 | AKC02588 | AKC02586 | AKC02594b | AKC02595 | AKC02592 | AKC02594y | AKC02593 | AKC02596 | AKC02057 | AKC02039 | AKC02043 | AKC02038 | AKC02045 | AKC02046 | AKC02047 | AKC02050 | AKC02048 | AKC02052 | AKC02051 | AKC02032 |    |

|             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 8 |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|
| Th          | 13.951   | 668.9    | 0.624    | 0.300    | 0.615    | 0.343    | 4.106    | 1.282    | 2.084    | 8.414    | 4.209    | 5.419    | 0.338    | 4.856    | 1.299    | 4.325    | 3.265    | 4.188    | 4.595    | 7.271    | 7.281    | 3.624    | 18.526   | 6.163    | 4.415    | 7.205    | 7.189    |   |
| Ħ           | 15.678   | 5.407    | 0.303    | 0.101    | 0.105    | 0.357    | 4.491    | 1.613    | 3.187    | 1.695    | 2.885    | 6.463    | 0.900    | 2.577    | 1.162    | 3.193    | 2.909    | 3.414    | 4.219    | 13.284   | 12.688   | 3.822    | 19.495   | 13.225   | 3.930    | 12.246   | 8.960    |   |
| Lu          | 0.156    | 0.213    | 0.025    | 0.019    | 0.013    | 0.099    | 0.439    | 0.227    | 0.156    | 0.175    | 0.177    | 0.378    | 0.208    | 0.250    | 0.332    | 0.143    | 0.210    | 0.201    | 0.247    | 0.338    | 0.263    | 0.235    | 0.165    | 0.291    | 0.257    | 0.474    | 0.273    |   |
| Yb          | 0.952    | 1.454    | 0.197    | 0.125    | 0.056    | 809.0    | 1.809    | 0.994    | 0.683    | 1.284    | 0.985    | 1.257    | 1.648    | 1.298    | 2.219    | 1.025    | 1.669    | 1.738    | 1.449    | 2.188    | 1.710    | 1.277    | 1.119    | 2.199    | 1.532    | 2.026    | 1.469    |   |
| Tm          | 0.139    | 0.194    | 0.026    | 0.023    | 0.013    | 9/0.0    | 0.318    | 0.254    | 0.139    | 0.170    | 0.198    | 0.338    | 0.213    | 0.260    | 0.310    | 0.140    | 0.204    | 0.229    | 0.191    | 0.313    | 0.233    | 0.244    | 0.148    | 0.278    | 0.239    | 0.306    | 0.227    |   |
| Er          | 0.789    | 1.457    | 0.271    | 0.157    | 0.059    | 0.354    | 1.727    | 0.590    | 0.651    | 1.329    | 1.052    | 1.146    | 1.194    | 1.215    | 2.516    | 0.924    | 1.575    | 1.397    | 1.378    | 1.881    | 1.567    | 1.084    | 0.879    | 1.441    | 1.451    | 1.544    | 1.119    |   |
| Database ID | AKC02034 | AKC02037 | AKC02031 | AKC02033 | AKC02035 | AKC02053 | AKC02049 | AKC02054 | AKC02044 | AKC02036 | AKC02055 | AKC02056 | AKC02059 | AKC02058 | AKC00727 | AKC00728 | AKC00729 | AKC00650 | AKC00649 | AKC02001 | AKC02002 | AKC02003 | AKC02004 | AKC02005 | AKC02006 | AKC02007 | AKC02008 |   |

|                        |          |          |          |          |          |          |          |          |          |          |          |                |             |                |             |                |             |                |             |                |             |          |          |          |          |          |          | 86 |
|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|----------|----------|----------|----------|----------|----------|----|
| $\mathbf{L}\mathbf{h}$ | 8.536    | 2.976    | 15.657   | 8.775    | 14.247   | 5.974    | 3.321    | 8.221    | 19.798   | 7.416    | 18.402   | 8.774          | 9.265       | 9.418          | 9.203       | 9.734          | 9.007       | 10.227         | 10.305      | 9.877          | 10.069      | 8.873    | 3.484    | 9.445    | 7.840    | 8.567    | 7.188    |    |
| JH                     | 11.932   | 2.493    | 17.398   | 16.949   | 16.761   | 8.203    | 1.675    | 8.903    | 10.718   | 12.721   | 13.647   | 9.821          | 10.698      | 10.984         | 15.712      | 10.301         | 11.430      | 11.933         | 11.475      | 11.103         | 12.828      | 1.582    | 3.445    | 6.856    | 8.724    | 9.566    | 6.566    |    |
| Lu                     | 0.238    | 0.183    | 0.244    | 1.889    | 1.007    | 1.006    | 1.278    | 0.133    | 0.121    | 0.230    | 0.248    | 0.215          | 0.188       | 0.222          | 0.222       | 0.231          | 0.218       | 0.263          | 0.184       | 0.200          | 0.262       | 0.195    | 0.212    | 0.255    | 0.190    | 0.167    | 0.202    |    |
| Λp                     | 1.408    | 1.253    | 1.360    | 3.608    | 2.383    | 2.724    | 2.928    | 1.157    | 0.807    | 1.619    | 1.085    | 1.335          | 1.201       | 1.629          | 1.568       | 1.586          | 1.435       | 1.743          | 1.287       | 1.636          | 1.601       | 1.296    | 1.398    | 1.606    | 1.325    | 1.198    | 1.388    |    |
| Tm                     | 0.164    | 0.213    | 0.162    | 1.812    | 1.049    | 0.975    | 1.141    | 0.209    | 0.122    | 0.215    | 0.161    | 0.232          | 0.209       | 0.309          | 0.258       | 0.219          | 0.229       | 0.236          | 0.208       | 0.267          | 0.275       | 0.183    | 0.232    | 0.285    | 0.210    | 0.153    | 0.166    |    |
| Er                     | 1.179    | 1.337    | 1.165    | 2.957    | 2.050    | 2.707    | 2.523    | 1.046    | 0.834    | 1.619    | 1.032    | 1.536          | 1.310       | 1.640          | 1.687       | 1.616          | 1.515       | 1.683          | 1.451       | 1.471          | 1.520       | 1.345    | 1.592    | 1.752    | 1.370    | 1.222    | 1.144    |    |
| Database ID            | AKC02009 | AKC02010 | AKC02012 | AKC02013 | AKC02014 | AKC02015 | AKC02016 | AKC02019 | AKC02020 | AKC02021 | AKC02022 | AKC02023orange | AKC02023red | AKC02024orange | AKC02024red | AKC02025orange | AKC02025red | AKC02026orange | AKC02026red | AKC02027orange | AKC02027red | AKC02028 | AKC02029 | AKC02030 | AKC01924 | AKC01922 | AKC01920 |    |

|             |          |          |          |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          |          |          |             |                |          |          |          |          |          | 80 |
|-------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------------|----------|----------|----------|----------|----------|----|
| Th          | 2.993    | 2.301    | 9.053    | 695.6    | 7.685    | 7.414    | 7.212    | 8.211     | 6.155    | 19.447   | 21.721   | 8.838    | 15.428   | 7.538    | 12.767   | 7.995    | 14.974   | 5.857    | 7.444    | 7.382    | 8.544       | 9.005          | 9.013    | 7.576    | 7.435    | 21.280   | 12.119   |    |
| Hf          | 3.255    | 2.416    | 13.598   | 11.910   | 11.500   | 15.180   | 14.081   | 10.384    | 8.718    | 17.298   | 15.837   | 10.481   | 8.512    | 14.307   | 17.424   | 9.313    | 17.036   | 12.228   | 12.242   | 10.886   | 9.995       | 986.6          | 7.168    | 9.423    | 13.276   | 28.388   | 13.350   |    |
| Гп          | 0.168    | 0.100    | 0.430    | 0.341    | 0.305    | 0.283    | 0.349    | 0.266     | 0.155    | 0.213    | 0.193    | 0.118    | 0.268    | 0.297    | 0.297    | 0.279    | 0.178    | 0.245    | 0.368    | 0.298    | 0.265       | 0.208          | 0.176    | 0.257    | 0.310    | 0.236    | 0.137    |    |
| Yb          | 1.156    | 0.992    | 2.563    | 1.887    | 1.822    | 1.889    | 1.722    | 1.557     | 0.876    | 1.203    | 1.007    | 0.694    | 1.830    | 1.597    | 1.525    | 1.470    | 0.955    | 1.621    | 2.417    | 1.987    | 1.188       | 1.468          | 1.234    | 1.620    | 2.237    | 1.466    | 0.937    |    |
| Tm          | 0.172    | 0.141    | 0.379    | 0.263    | 0.289    | 0.252    | 0.247    | 0.257     | 0.124    | 0.177    | 0.182    | 0.116    | 0.244    | 0.255    | 0.283    | 0.255    | 0.145    | 0.190    | 0.274    | 0.266    | 0.197       | 0.210          | 0.251    | 0.224    | 0.257    | 0.157    | 0.100    |    |
| Er          | 0.895    | 0.880    | 2.754    | 1.956    | 1.733    | 1.759    | 1.649    | 1.516     | 0.749    | 1.157    | 1.050    | 0.573    | 1.695    | 1.510    | 1.380    | 1.711    | 0.756    | 1.196    | 2.404    | 1.879    | 1.403       | 1.559          | 1.399    | 1.506    | 1.790    | 1.246    | 0.840    |    |
| Database ID | AKC01912 | AKC01913 | AKC01919 | AKC00224 | AKC00121 | AKC00105 | AKC00214 | AKC00214b | AKC00090 | AKC00080 | AKC00069 | AKC00291 | AKC00087 | AKC00081 | AKC00116 | AKC00115 | AKC00095 | AKC00118 | AKC00240 | AKC00245 | AKC00254red | AKC00254orange | AKC00284 | AKC00223 | AKC00221 | AKC00220 | AKC00122 |    |

| Database ID | Er    | Tm    | AV    | Lu    | JH     | $\mathbf{T}\mathbf{h}$ |
|-------------|-------|-------|-------|-------|--------|------------------------|
| AKC00278    | 3.503 | 0.452 | 3.084 | 0.491 | 14.067 | 11.745                 |
| AKC00277    | 3.420 | 0.419 | 3.044 | 0.541 | 13.540 | 11.996                 |
| AKC00057    | 0.882 | 0.146 | 0.973 | 0.186 | 1.152  | 3.035                  |
| AKC00058    | 0.900 | 0.159 | 1.130 | 0.193 | 1.599  | 3.089                  |
| AKC00059    | 1.716 | 0.258 | 1.570 | 0.249 | 3.226  | 3.980                  |
| AKC00117    | 0.862 | 0.156 | 0.965 | 0.135 | 5.545  | 3.421                  |
| AKC01651    | 1.728 | 0.270 | 1.855 | 0.274 | 13.604 | 8.849                  |
| AKC01652    | 1.183 | 0.202 | 1.389 | 0.264 | 11.981 | 10.840                 |
| AKC01658    | 2.496 | 0.351 | 2.875 | 0.452 | 18.592 | 9.940                  |
| AKC01677    | 1.842 | 0.249 | 1.758 | 0.305 | 6.185  | 13.181                 |
| AKC01679    | 1.720 | 0.230 | 1.750 | 0.250 | 9.800  | 12.280                 |
| AKC01685    | 1.589 | 0.210 | 1.582 | 0.208 | 5.946  | 9.469                  |
| AKC01683    | 1.710 | 0.250 | 1.860 | 0.260 | 21.030 | 069.6                  |
| AKC01686    | 1.527 | 0.171 | 1.477 | 0.282 | 10.311 | 8.800                  |
| AKC01688    | 1.242 | 0.199 | 1.529 | 0.258 | 25.543 | 22.638                 |
| AKC01692    | 1.292 | 0.122 | 1.135 | 0.175 | 11.615 | 7.422                  |
| AKC01696    | 1.426 | 0.385 | 1.644 | 0.211 | 10.209 | 9.349                  |
| AKC01697    | 2.684 | 0.412 | 3.023 | 0.447 | 860.6  | 22.472                 |
| AKC01699    | 2.205 | 0.305 | 2.320 | 0.345 | 15.967 | 10.332                 |
| AKC01702    | 1.230 | 0.160 | 1.210 | 0.160 | 8.770  | 8.220                  |
| AKC01722    | 1.443 | 0.238 | 1.614 | 0.244 | 10.998 | 6.156                  |
| AKC01724    | 2.491 | 888:0 | 2.813 | 0.430 | 15.125 | 9.741                  |
| AKC01726    | 1.356 | 0.201 | 1.248 | 0.246 | 9.715  | 8.022                  |
| AKC01727    | 1.595 | 0.204 | 1.695 | 0.246 | 11.019 | 7.663                  |
| AKC01729    | 2.130 | 0.330 | 2.260 | 0.350 | 13.230 | 15.060                 |
| AKC01731    | 2.064 | 0.301 | 2.344 | 0.318 | 8.217  | 14.181                 |
| AKC01731bla | 1.368 | 0.210 | 1.584 | 0.297 | 24.024 | 20.740                 |

|             |             |             |             |             |               |          |          |          |          |          |          |          |          |          |           |          |          |          |          |          |               |                  |          |          |          |          |          | 869 |
|-------------|-------------|-------------|-------------|-------------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|---------------|------------------|----------|----------|----------|----------|----------|-----|
| Th          | 9.340       | 8.714       | 9.853       | 6.359       | 8.350         | 5.796    | 7.644    | 8.512    | 8.224    | 5.912    | 8.686    | 8.841    | 8.607    | 13.480   | 17.430    | 18.830   | 17.590   | 20.140   | 9.040    | 2.450    | 2.027         | 1.863            | 8.732    | 4.858    | 3.470    | 3.990    | 1.209    |     |
| Hf          | 15.202      | 13.235      | 14.762      | 12.222      | 11.216        | 12.094   | 12.425   | 13.867   | 12.813   | 5.846    | 19.183   | 10.642   | 13.530   | 10.730   | 12.090    | 11.470   | 10.850   | 17.300   | 16.200   | 6.165    | 2.734         | 2.190            | 4.113    | 2.675    | 1.960    | 2.081    | 0.863    |     |
| Lu          | 0.457       | 0.411       | 0.482       | 0.274       | 0.502         | 0.311    | 0.284    | 0.367    | 0.334    | 0.264    | 0.338    | 0.169    | 0.349    | 0.300    | 0.390     | 0.460    | 0.790    | 098.0    | 0.390    | 0.176    | 0.116         | 0.097            | 0.211    | 0.146    | 0.137    | 0.144    | 0.388    |     |
| ΧÞ          | 2.298       | 2.549       | 2.832       | 1.723       | 2.636         | 1.347    | 1.860    | 2.484    | 2.527    | 2.133    | 1.904    | 1.252    | 2.044    | 1.620    | 2.320     | 2.390    | 2.420    | 2.200    | 2.560    | 1.020    | 969.0         | 0.627            | 1.243    | 0.829    | 0.915    | 1.025    | 2.734    |     |
| Tm          | 0.272       | 0.447       | 0.505       | 0.205       | 0.441         | 0.190    | 0.315    | 0.372    | 0.297    | 0.326    | 0.222    | 0.164    | 0.270    | 0.210    | 0.310     | 0.290    | 0.440    | 0.580    | 0.300    | 0.131    | 0.099         | 0.103            | 0.176    | 0.106    | 0.138    | 0.124    | 0.377    |     |
| Er          | 2.116       | 2.885       | 2.790       | 1.544       | 3.004         | 1.557    | 1.558    | 2.379    | 2.146    | 1.665    | 1.734    | 1.076    | 2.228    | 1.580    | 2.480     | 2.210    | 2.650    | 1.950    | 2.520    | 0.925    | 0.895         | 0.576            | 1.098    | 0.661    | 0.936    | 0.786    | 2.914    |     |
| Database ID | AKC01731blb | AKC01731blc | AKC01731bld | AKC01731ble | AKC01731green | AKC01734 | AKC01738 | AKC01742 | AKC01744 | AKC01752 | AKC01773 | AKC01774 | AKC01775 | AKC01779 | AKC01779y | AKC01780 | AKC01790 | AKC01791 | AKC01808 | AKC01695 | AKC01700black | AKC01700red trim | AKC00443 | AKC00452 | AKC00464 | AKC00466 | AKC00473 |     |

| I.h         | 4.812    | 1.360    | 3.851    | 3.863    | 3.364    | 4.976    | 3.407    | 6.134    | 5.137    | 4.097    | 0.788    | 0.941    | 3.691    | 4.497    | 1.625    | 2.179    | 6.326    | 4.696    | 4.718    | 1.983    | 4.418    | 5.112    | 3.930    | 6.421    | 5.859    | 5.847    | 5.182    |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Ħ           | 1.142    | 986.0    | 3.905    | 3.566    | 3.119    | 5.854    | 2.234    | 6.564    | 2.528    | 2.915    | 0.411    | 0.464    | 2.932    | 1.316    | 698.0    | 1.826    | 5.482    | 4.726    | 1.584    | 0.717    | 2.272    | 3.599    | 1.556    | 1.734    | 3.653    | 2.585    | 2.149    |
| Lu          | 0.166    | 0.395    | 0.249    | 0.248    | 0.193    | 0.107    | 0.166    | 0.428    | 0.218    | 0.326    | 0.139    | 0.329    | 0.129    | 0.249    | 0.382    | 0.156    | 0.344    | 0.180    | 0.121    | 0.141    | 0.153    | 0.371    | 0.127    | 0.243    | 0.239    | 0.242    | 0.161    |
| Ap          | 1.472    | 2.897    | 1.537    | 1.771    | 1.409    | 0.722    | 0.838    | 1.639    | 1.401    | 1.724    | 0.661    | 2.440    | 0.984    | 1.901    | 2.886    | 0.725    | 1.922    | 1.430    | 1.105    | 1.126    | 0.823    | 1.998    | 0.745    | 1.652    | 2.195    | 1.222    | 1.005    |
| Lm          | 0.183    | 0.385    | 0.201    | 0.282    | 0.209    | 0.104    | 0.135    | 0.289    | 0.117    | 0.271    | 0.095    | 0.354    | 0.151    | 0.299    | 0.393    | 0.088    | 0.314    | 0.184    | 0.126    | 0.127    | 0.137    | 0.349    | 0.125    | 0.216    | 0.283    | 0.149    | 0.111    |
| Ξ           | 1.267    | 2.733    | 1.478    | 1.498    | 1.286    | 908.0    | 0.877    | 1.292    | 1.187    | 1.625    | 0.643    | 2.353    | 0.937    | 1.762    | 2.669    | 0.487    | 2.104    | 1.197    | 0.827    | 0.632    | 608.0    | 1.684    | 0.732    | 1.315    | 2.396    | 1.046    | 1.005    |
| Database ID | AKC00485 | AKC00487 | AKC00516 | AKC00541 | AKC00545 | AKC00550 | AKC00564 | AKC00569 | AKC00572 | AKC00573 | AKC00579 | AKC00596 | AKC00597 | AKC00605 | AKC00624 | AKC00628 | AKC00630 | AKC00632 | AKC00633 | AKC00634 | AKC00641 | AKC00662 | AKC00672 | AKC00677 | AKC00683 | AKC00686 | AKC00689 |

| 0.411   | 0.057 |       |
|---------|-------|-------|
| 1 1 7 1 |       |       |
| 1.1.1   |       | 0.830 |
| 1.353   |       | 0.325 |
| 1.992   |       | 0.401 |
| 0.734   |       | 0.123 |
| 0.919   |       | 0.161 |
| 2.297   |       | 0.314 |
| 0.989   |       | 0.135 |
| 2.395   |       | 0.307 |
| 0.788   |       | 0.156 |
| 2.095   |       | 0.303 |
| 2.462   |       | 0.373 |
| 2.574   |       | 0.389 |
| 2.558   |       | 0.372 |
| 1.548   |       | 0.234 |
| 0.733   |       | 0.080 |
| 0.752   |       | 0.125 |
| 0.961   |       | 0.097 |
| 0.599   |       | 0.078 |
| 0.707   |       | 0.112 |
| 1.622   |       | 0.227 |
| 1.264   |       | 0.178 |
| 1.930   |       | 0.241 |
| 2.967   |       | 0.372 |
| 2.336   |       | 0.319 |
| 0.946   |       | 0.185 |
| 0.856   |       | 0.118 |

| Database ID     | Er    | Tm    | Λ     | Lu    | Hf     | Th     |
|-----------------|-------|-------|-------|-------|--------|--------|
| AKC00939        | 2.058 | 0.303 | 2.490 | 0.281 | 3.714  | 5.788  |
| AKC01084        | 2.207 | 0.379 | 2.518 | 0.392 | 3.635  | 5.352  |
| AKC00912        | 2.578 | 0.360 | 2.516 | 0.394 | 4.799  | 7.411  |
| AKC01073_violet | 0.569 | 0.070 | 0.494 | 0.072 | 1.895  | 2.751  |
| AKC01073_blue   | 1.265 | 0.169 | 1.180 | 0.181 | 2.567  | 3.335  |
| AKC01066        | 1.665 | 0.221 | 1.685 | 0.181 | 3.374  | 3.945  |
| AKC00909        | 689.0 | 0.105 | 0.821 | 0.103 | 2.027  | 2.801  |
| AKC00910        | 0.703 | 0.123 | 099'0 | 0.107 | 1.011  | 4.569  |
| AKC00959_dkblue | 0.729 | 0.099 | 0.864 | 0.125 | 1.230  | 2.953  |
| AKC00959_red    | 1.220 | 0.183 | 1.266 | 0.195 | 10.638 | 5.660  |
| AKC00959_yellow | 0.885 | 0.139 | 1.007 | 0.137 | 6.137  | 3.838  |
| AKC00959_turq   | 2.066 | 0.274 | 1.980 | 0.294 | 7.321  | 7.249  |
| AKC01071yellow  | 1.448 | 0.224 | 1.679 | 0.233 | 7.801  | 8.220  |
| AKC01071blue    | 1.089 | 0.145 | 1.147 | 0.202 | 7.658  | 8.218  |
| AKC00959_orange | 1.404 | 0.204 | 1.295 | 0.208 | 7.854  | 7.223  |
| AKC01057orange  | 1.598 | 0.218 | 1.515 | 0.287 | 11.467 | 6.979  |
| AKC01071orange  | 766.0 | 0.139 | 0.988 | 0.161 | 4.866  | 907.9  |
| AKC01043b       | 2.674 | 0.418 | 2.820 | 0.448 | 9.570  | 13.830 |
| AKC01043w       | 298.0 | 0.106 | 0.849 | 0.112 | 2.539  | 3.143  |
| AKC01059b       | 1.858 | 0.293 | 1.891 | 0.285 | 1.509  | 4.364  |
| AKC01059w       | 1.414 | 0.150 | 1.124 | 0.169 | 7.095  | 5.791  |
| AKC01057gold    | 0.780 | 0.112 | 0.894 | 0.111 | 2.526  | 1.815  |
| AKC01093        | 0.087 | 0.045 | 0.103 | 0.047 | 0.129  | 0.797  |
| AKC00901        | 899.0 | 0.092 | 0.722 | 0.104 | 2.047  | 4.416  |
| AKC01022        | 698.0 | 0.146 | 0.989 | 0.207 | 2.271  | 1.798  |
| AKC00410        | 2.649 | 0.410 | 2.583 | 0.354 | 2.693  | 3.045  |
| AKC00413        | 1.980 | 0.287 | 2.030 | 0.311 | 2.218  | 3.676  |

| Database ID | Er    | Tm    | AV    | Lu    | $_{ m JH}$ | ųД    |
|-------------|-------|-------|-------|-------|------------|-------|
| AKC00416    | 2.123 | 0.276 | 2.001 | 0.244 | 2.890      | 4.050 |
| AKC00327    | 1.473 | 0.199 | 1.331 | 0.211 | 2.731      | 4.440 |
| AKC00322    | 0.514 | 0.075 | 0.567 | 890.0 | 0.746      | 3.801 |
| AKC00386    | 0.325 | 0.043 | 0.306 | 0.072 | 0.604      | 1.487 |
| AKC00412    | 1.454 | 0.173 | 1.606 | 0.226 | 2.565      | 3.458 |
| AKC00425a   | 2.250 | 0.318 | 2.301 | 0.357 | 2.533      | 3.348 |
| AKC00425b   | 1.296 | 0.182 | 1.512 | 0.194 | 2.598      | 3.863 |
| AKC00372    | 1.625 | 0.214 | 1.478 | 0.206 | 2.974      | 4.351 |
| AKC00381    | 0.285 | 0.053 | 0.217 | 0.029 | 0.560      | 1.926 |
| AKC00389    | 0.254 | 0.041 | 0.303 | 890.0 | 0.471      | 1.453 |
| AKC00376    | 0.324 | 0.055 | 0.359 | 0.081 | 0.780      | 2.405 |
| AKC00424g   | 0.317 | 0.045 | 0.328 | 0.048 | 698'0      | 1.537 |
| AKC00424w   | 0.384 | 0.050 | 0.460 | 0.062 | 668.0      | 1.440 |

| Not included due to |          |             |          |
|---------------------|----------|-------------|----------|
| weathering          |          |             |          |
| Ban Non Wat         | AKC02040 | Noen U-Loke | AKC02011 |
| Ban Non Wat         | AKC02041 |             |          |
| Ban Non Wat         | AKC02042 |             |          |

## Appendix 7.3: PCA scores for Figure 7.30

| Elements Used: Na, Ca, K, Mg, | Al, Fe, Ti, N | In, Cu, Zn, | Ba, Rb, Ce |
|-------------------------------|---------------|-------------|------------|
|                               | PCA1          | PCA2        | PCA3       |
| Ban Non Wat, Thailand         | 0.63113       | 1.12463     | 0.04073    |
| Noen U-Loke, Thailand 1       | -0.13101      | 0.52856     | -0.7359    |
| Noen U-Loke, Thailand 2       | 0.24695       | 0.38732     | -0.08673   |
| Phu Khao Thong, Thailand 1    | -0.0544       | 1.03317     | -0.72759   |
| Phu Khao Thong, Thailand 2    | -1.07042      | -0.6463     | 0.11789    |
| Phu Khao Thong, Thailand 3    | -1.53603      | -1.19173    | 0.54637    |
| Dong Klang, Thailand          | 1.235         | -0.56821    | 0.67211    |
| Ta Chana, Thailand            | 1.29916       | -0.18184    | 1.12688    |
| Chombeung, Thailand 1         | 0.39991       | -0.34212    | -1.14704   |
| Chombeung, Thailand 2         | 1.10851       | 0.89418     | 0.36821    |
| Chombeung, Thailand 3         | 1.14134       | 0.55908     | 0.23163    |
| Khao Sam Kaeo, Thailand 1     | -1.73294      | 0.0946      | -0.26354   |
| Khao Sam Kaeo, Thailand 2     | -1.75374      | -0.28939    | -0.29457   |
| Khao Sam Kaeo, Thailand 3     | 0.95357       | -1.937      | 1.53704    |
| Kodumanal, India              | -1.33821      | 1.42185     | 1.67097    |
| Dhalbhum, India               | 0.95544       | -0.20428    | 0.64671    |
| Dulhikotta, India 1           | 0.26153       | 1.23006     | -0.74477   |
| Dulhikotta, India 2           | 0.36193       | 1.1673      | -0.96578   |
| Kalahandi, India              | -0.12579      | -0.17074    | -2.02545   |
| Kausambi, India 1             | 0.10402       | -1.74098    | -0.80629   |
| Kausambi, India 2             | 0.12879       | -1.65394    | -1.0052    |
| Giong Ca Vo, Vietnam          | -1.08475      | 0.48581     | 1.84431    |

## Appendix 8.1: Garnet Zoning and Heterogenity

Although garnet is more geochemically homogeneous than agate and carnelian, there can still be heterogeneity within a garnet sample due to garnet zoning. As a garnet crystal grows, the distribution of elements can vary between the core and outer layers in a process called zoning. Identification of the zoning patterns of major elements (Fe, Ca, Mn, Mg) has assisted with understanding the temperature and pressure under which garnets were formed (Tracy et al. 1976). Trace element zoning of garnets has also been identified (see Hickmott et al. 1987; Hickmott 1988; Spear and Kohn 1996). In previous archaeological studies involving garnets, zoning has produced samples with a wide spread of values in certain elements, for example Y values ranging from 100 to 1000 ppm (Calligaro et al. 2002). Heterogeneity in garnet compositions was also identified in the current study and this became clear when looking at the relative standard deviation (%RSD) of various elements for the five point ablations performed on a single sample. Some elements had very high %RSD (50% or more), indicating a large variation in the concentration of elements within a single sample. The RSD of the point ablations for each sample were carefully examined and it was decided that the remaining statistical analyses would focus on elements with an RSD of ten percent or less. This number was chosen by the author in order to limit variation, while also acknowledging that a small amount of variation within the sample is unavoidable. Table 8.1.1 lists the thirteen elements with an RSD of ten percent or less in at least 75% of the 68 geologic samples (n=51). It should be noted that the Anthill source garnets were extremely heterogeneous, both within a single sample and when viewed as a group. This wide variation in element concentrations may be due to zoning; further analysis of additional samples from this source would clarify this issue. Heterogeneity was also identified in

the garnet artifacts. Table 5 lists the thirteen elements identified above and the proportion of artifacts that have a RSD above or below ten percent.

In addition to the thirteen elements discussed above, exploratory bivariate plotting identified additional elements that assisted with the discrimination of garnet source groups. Furthermore, previous research has identified elements such as Cr, Ti, and Y that are important in distinguishing between garnet types (Calligaro et al. 2002). These elements were heterogeneously distributed within the garnet samples, most likely as the result of zoning. Some of these important elements are discussed on a case-by-case basis below. However, this highlights an issue that must be considered when using LA-ICP-MS to analyze garnets, as one must carefully evaluate which elements are important for distinguishing a sample or group of samples, even if they are not distributed evenly. LA-ICP-MS has successfully measured heterogeneous materials such as ceramics (Dussubieux et al. 2007) and agate (Chapter 5). Therefore, the inclusion of some heterogeneously distributed elements was not expected to adversely affect results.

| Element | Number of samples with 10% RSD or | Number of samples with 10% RSD or | Sample (%RSD)                                                                                                    |
|---------|-----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|
|         | less                              | more                              |                                                                                                                  |
| Fe      | 68                                | 0                                 | N/A                                                                                                              |
| Al      | 68                                | 0                                 | N/A                                                                                                              |
| Mg      | 67                                | 1                                 | LamDong2 (11)                                                                                                    |
| Mn      | 66                                | 2                                 | Anthill (16); SouthIndia4 (12)                                                                                   |
|         |                                   |                                   | PhuTho1 (22); Sri Lanka Group1_1 (19); Sri Lanka                                                                 |
| Ca      | 65                                | 3                                 | Group2_5 (33)                                                                                                    |
| Co      | 63                                | 5                                 | LamDong1 (22); LamDong2 (11); SouthIndia1 (12); SouthIndia10 (15); SouthIndia7 (25)                              |
|         |                                   |                                   | Anthill3 (15); Anthill4 (11); LamDong2 (18);                                                                     |
|         |                                   |                                   | Mozambique6 (13); SouthIndia7 (21); SriLankaGroup1_1                                                             |
| Sc      | 62                                | 6                                 | (17)                                                                                                             |
|         |                                   |                                   | LamDong2 (22); SouthIndia7 (17); Sri Lanka Group 2_2                                                             |
|         |                                   |                                   | (13); Sri Lanka Group2_4 (11); Sri Lanka Group1_1 (25);                                                          |
| V       | 62                                | 6                                 | Sri Lanka Group 2_5 (12)                                                                                         |
|         |                                   |                                   | Anthill2 (18); Anthill3 (60); Anthill4 (14); Anthill5 (30);                                                      |
|         |                                   |                                   | Anthill6 (14); Mozambique1 (11); Mozambique 6 (60);                                                              |
|         |                                   |                                   | SouthIndia7 (19); SriLankaGroup1_7 (11); Sri Lanka                                                               |
| Zn      | 58                                | 10                                | Group2_5 (12)                                                                                                    |
|         |                                   |                                   | Anthill1 (73); Anthill2 (10); Anthill3 (19); Antill4 (32);                                                       |
|         |                                   |                                   | Anthill5 (111); Anthill6 (48); LamDong2 (17);                                                                    |
| т.      | 57                                | 1.1                               | Mozambique6 (13); Orissa3 (21); PhuTho8 (12);                                                                    |
| Li      | 57                                | 11                                | SouthIndia4 (12)                                                                                                 |
|         |                                   |                                   | Anthill1 (14); Anthill2 (17); Anthill3 (19); Anthill4 (13); Anthill5 (38); LamDong1 (31); LamDong2 (11); PhuTho1 |
|         |                                   |                                   | (16); PhuTho10 (14); SouthIndia1 (19); SouthIndia7 (15);                                                         |
| P       | 53                                | 15                                | SouthIndia8 (89); SouthIndia9 (12); SouthIndia10 (20)                                                            |
| 1       | 33                                | 13                                | Anthill2 (15); Anthill3 (16); Anthill 4 (26); Anthill5 (11);                                                     |
|         |                                   |                                   | Anthill6 (28); India3 (11); India8 (20); LamDong2 (16);                                                          |
|         |                                   |                                   | Mozambique5 (16); Mozambique6 (15); SouthIndia4 (11);                                                            |
|         |                                   |                                   | SouthIndia5 (15); SouthIndia7 (17); SouthIndia9 (11); Sri                                                        |
| Gd      | 52                                | 16                                | Lanka Group1_1 (47); Sri Lanka Group1_7 (11)                                                                     |
|         |                                   |                                   | Anthill3 (15); Anthill4 (33); Anthill6 (18); India1 (18);                                                        |
|         |                                   |                                   | India8 (13); LamDong2 (25); Mozambique5 (25);                                                                    |
|         |                                   |                                   | PhuTho7 (14); PhuTho8 (18); PhuTho9 (17); SouthIndia4                                                            |
|         |                                   |                                   | (20); SouthIndia5 (20); SouthIndia7 (17); SouthIndia9                                                            |
| Tb      | 52                                | 16                                | (13); SouthIndia10 (11)                                                                                          |

Table 8.1.1: Thirteen elements with relative standard deviation (RSD) under ten percent in at least 75% of the geologic samples analyzed in this study. The column on the right lists the samples with RSD of 10% or higher

878

Appendix 8.2: Garnet beads recorded in this study

| Database ID | Site Name    | Context                                             | Catalogue<br>Numbor | Raw Material | Color(s)    | Bead Shape                   |
|-------------|--------------|-----------------------------------------------------|---------------------|--------------|-------------|------------------------------|
| AKC03030    | Angkor Borei | Unit AB7 Block 2N<br>Layer 7 Level 20               | 1767                | Garnet       | Dark Purple | Spherical                    |
| 1 COCO CAR  |              | Burial F16                                          |                     |              |             |                              |
| AKC03031    | Angkor Borei | Unit AB7 Block 5N<br>Layer 5 Level 25<br>Rurial E48 | 3284                | Garnet       | Dark Purple | Spherical                    |
| AKC03032    | Angkor Borei | Unit AB7 Block 2N<br>Layer 7 Level 21<br>Burial F21 | 1835                | Garnet       | Dark Purple | Spherical                    |
| AKC03033    | Angkor Borei | Unit AB7 Block 4S<br>Layer 5 Level 26               | 2801                | Garnet       | Dark Purple | Spherical                    |
| AKC03034    | Angkor Borei | Unit AB7 Block 4N<br>Layer 5 Level 30               | 3333                | Garnet       | Dark Purple | Spherical                    |
| AKC00310    | Village 10.8 | Unit EXVIII N/85<br>#46                             | N/A                 | Garnet       | Dark Purple | Rough short barrel           |
| AKC00311    | Village 10.8 | Unit EXXXII I/84<br>#32                             | N/A                 | Garnet       | Dark Purple | Rough short barrel           |
| AKC00333    | Village 10.8 | Unit E/1 T/92 #56                                   | N/A                 | Garnet       | Dark Purple | Rough long elliptical barrel |
| AKC00334    | Village 10.8 | Unit E 21/94 #37                                    | N/A                 | Garnet       | Dark Purple | Rough long elliptical barrel |
| AKC00335    | Village 10.8 | Unit E 21/94 #33                                    | N/A                 | Garnet       | Dark Purple | Rough short barrel           |
| AKC00336    | Village 10.8 | Unit E/1 T/92 #30                                   | N/A                 | Garnet       | Dark Purple | Rough short barrel           |
| AKC00337    | Village 10.8 | Unit E 21/94 #21                                    | N/A                 | Garnet       | Dark Purple | Rough short barrel           |
| AKC00338    | Village 10.8 | Unit E 21/94 #32                                    | N/A                 | Garnet       | Dark Purple | Rough short barrel           |
| AKC00339    | Village 10.8 | Unit E/1 T/92 #28                                   | N/A                 | Garnet       | Dark Purple | Rough long elliptical barrel |
| AKC00340    | Village 10.8 | Unit E 21/94 #20                                    | N/A                 | Garnet       | Dark Purple | Rough long elliptical barrel |
| AKC00341    | Village 10.8 | Unit E 21/94 #20                                    | N/A                 | Garnet       | Dark Purple | Rough short barrel           |

| Garnet |
|--------|
| Garnet |

| Hole Type  Type 3  Type 3 |           | Donforotion A  |               |        |       |         |         |      |
|---------------------------|-----------|----------------|---------------|--------|-------|---------|---------|------|
| Type 3                    |           | I ellolation A | Perforation B | Length | Width | Width A | Width B |      |
| Type 3                    | Med-high  | 1.14           | 1.31          | 2.46   | 3.6   |         |         |      |
|                           | Med-high  | 1.52           | 1.33          | 3.7    | 4.69  |         |         |      |
| Type 2                    | Medium    | 6.0            | 1.27          | 3.74   | 4.97  |         |         |      |
| Type 3                    | Med-high  | 1.2            | 1.3           | 5.25   | 6.49  |         |         |      |
| Type 3                    | Med-high  | 1.4            | 1.34          | 3.46   | 4.58  |         |         |      |
| Type 4                    | No polish | 1.18           | 1.16          | 5.66   | 5.61  | 4.39    | 4.25    |      |
| Type 4                    | No polish | 1.47           | 1.58          | 9.62   | 8.4   | 2.57    | 5.41    | 6.57 |
| Type 4                    | No polish | 2.9            | 3.4           | 12.28  | 11.82 |         |         | 9.92 |
| Type 4                    | No Polish | 2.47           | 2.34          | 72.6   | 9.76  |         |         | 8.35 |
| AKC00335 Type 4           | No polish | 2.15           | 1.85          | 9.55   | 7.86  |         |         | 7.75 |
| AKC00336 Type 4           | No polish | 1.43           | 1.84          | 10.04  | 9.29  |         |         | 6L.L |
| Type 4                    | No polish | 2.76           | 2.31          | 8.87   | 8.81  |         |         | 7.91 |
| Type 4                    | No polish | 1.49           | 1.37          | 9.11   | 7.81  |         |         | 7.04 |
| Type 4                    | No polish | 2.74           | 2.64          | 10.45  | 9.45  |         |         | 8.14 |
| Type 4                    | No polish | 2.84           | 2.56          | 8.81   | 8.83  |         |         | 7.2  |
| Type 4                    | No polish | 1.55           | 1.93          | 7.25   | 91.7  |         |         |      |
| AKC00590 Type 4           | No polish | 1.32           | 1.4           | 5.45   | 5.78  |         |         | 4.63 |
| AKC00606 Type 4           | No polish | 1.4            | 1.32          | 5.72   | 4.97  |         |         |      |
| Type 4                    | No polish | 1.25           | 1.35          | 5.44   | 5.29  |         |         | 4.09 |
| Type 4                    | No polish | 1.35           | 1.3           | 5.22   | 4.81  |         |         | 4.23 |
| Type 4                    | No polish | 1.57           | 1.75          | 5.52   | 5.71  |         |         | 3.71 |
| Type 4                    | No polish | 1.32           | 1.24          | 5.09   | 5.1   |         |         | 4.54 |
| Type 4                    | No polish | 1.69           | 1.97          | 8.48   | 7.31  |         |         | 8.31 |

881

Appendix 8.3: LA-ICP-MS data for garnet geologic sources and artifacts

| Database ID  | SiO2  | $M_{\mathbf{gO}}$ | A1203 | P203  | CaO  | MnO  | Fe2O3 | CuO   | SnO2  |
|--------------|-------|-------------------|-------|-------|------|------|-------|-------|-------|
| Orissa1      | 41.6% | 14.0%             | 22.0% | %90:0 | 1.5% | 0.4% | 20.3% | %00.0 | %00.0 |
| Orissa2      | 40.9% | 10.9%             | 21.8% | 0.03% | 2.4% | 0.7% | 23.3% | %00.0 | %00.0 |
| Orissa3      | 41.0% | 11.2%             | 21.5% | 0.04% | 2.5% | %9.0 | 23.1% | %00.0 | %00.0 |
| Orissa4      | 41.6% | 13.4%             | 22.2% | %80.0 | 1.8% | 0.3% | 20.6% | %00.0 | %00.0 |
| Orissa5      | 41.4% | 12.2%             | 22.1% | 0.04% | 3.1% | 0.3% | 20.8% | %00.0 | %00.0 |
| Orissa6      | 40.1% | 10.3%             | 22.1% | 0.02% | 3.3% | 1.2% | 22.9% | %00.0 | %00.0 |
| Orissa7      | 41.3% | 14.4%             | 22.2% | 0.04% | 1.6% | 0.3% | 20.2% | %00.0 | %00.0 |
| Orissa8      | 40.4% | 9.5%              | 21.9% | %80.0 | %6.0 | 0.7% | 26.5% | %00.0 | %00.0 |
| Orissa9      | 40.6% | %8.6              | 21.9% | 0.03% | 2.2% | 1.0% | 24.5% | %00.0 | %00.0 |
| Orissa10     | 41.2% | 12.3%             | 22.5% | 0.03% | 2.7% | 0.3% | 20.9% | %00.0 | %00.0 |
| SouthIndia1  | 39.5% | 4.9%              | 21.1% | 0.01% | 1.5% | 1.1% | 31.8% | %00.0 | %00.0 |
| SouthIndia2  | 38.2% | 3.9%              | 22.3% | 0.01% | 1.6% | 2.3% | 31.7% | %00.0 | %00.0 |
| SouthIndia3  | 38.9% | 3.8%              | 21.5% | 0.02% | 1.5% | 2.2% | 31.9% | %00.0 | %00.0 |
| SouthIndia4  | 39.1% | 4.2%              | 21.3% | 0.02% | 1.3% | 1.4% | 32.6% | %00.0 | %00.0 |
| SouthIndia5  | 38.6% | 9.6%              | 21.7% | 0.01% | 1.9% | 0.2% | 31.9% | %00.0 | %00.0 |
| SouthIndia6  | 38.7% | 4.2%              | 21.4% | 0.02% | 1.5% | 2.4% | 31.7% | %00.0 | %00.0 |
| SouthIndia7  | 39.7% | 4.6%              | 20.8% | 0.01% | 1.5% | 1.7% | 31.7% | %00.0 | %00.0 |
| SouthIndia8  | 38.4% | 4.5%              | 21.9% | 0.04% | 1.6% | 1.5% | 32.1% | %00.0 | %00.0 |
| SouthIndia9  | 39.0% | 5.0%              | 21.5% | 0.01% | 1.9% | 1.3% | 31.3% | %00.0 | %00.0 |
| SouthIndia10 | 39.0% | 4.5%              | 22.3% | 0.01% | 1.7% | 1.0% | 31.5% | %00.0 | %00.0 |
| IndiaGarnet1 | 38.5% | 10.2%             | 22.7% | 0.14% | 0.5% | 0.5% | 27.3% | %00.0 | %00.0 |
| IndiaGarnet2 | 39.2% | 10.8%             | 22.6% | 0.05% | 2.0% | 0.2% | 25.1% | %00.0 | %00.0 |
| IndiaGarnet3 | 38.5% | 10.1%             | 22.7% | 0.13% | 0.5% | 0.3% | 27.6% | 0.00% | 0.00% |

|             |              |              |              |              |              |              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |               |               |               |               |               | 882 |
|-------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------|---------------|---------------|---------------|---------------|-----|
| SnO2        | 0.00%        | 0.00%        | %00.0        | %00'0        | %00'0        | %00.0        | 0.00%            | 0.00%            | 0.00%            | %00.0            | %00.0            | %00'0            | 0.00%            | 0.00%            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | 0.00%            | %00'0            | %00.0         | 0.00%         | 0.00%         | 0.00%         | %00'0         |     |
| CuO         | %00.0        | %00.0        | %00.0        | %00.0        | %00.0        | %00.0        | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0            | %00.0         | %00.0         | %00.0         | %00.0         | %00.0         |     |
| Fe2O3       | 28.5%        | 28.2%        | 28.5%        | 27.8%        | 28.9%        | 29.1%        | 29.9%            | 29.3%            | 29.7%            | 30.6%            | 29.6%            | 31.9%            | 31.4%            | 30.3%            | 30.6%            | 27.2%            | 26.4%            | 26.9%            | 27.5%            | 30.3%            | 30.8%            | 23.9%         | 20.7%         | 18.5%         | 17.5%         | 17.5%         |     |
| MnO         | 0.5%         | 0.3%         | 0.5%         | 0.5%         | 0.7%         | 0.7%         | 3.2%             | 6.3%             | 2.0%             | 3.9%             | 6.5%             | 1.6%             | 4.5%             | 5.0%             | 4.7%             | 0.7%             | 0.2%             | 0.2%             | 0.2%             | 0.1%             | %6.0             | 2.9%          | 0.7%          | %9.0          | 0.4%          | 0.4%          |     |
| CaO         | 0.5%         | %8.0         | 0.5%         | %6.0         | 0.5%         | 0.5%         | 2.1%             | 1.2%             | 1.5%             | 1.3%             | 1.1%             | 2.1%             | 1.0%             | 1.4%             | 1.6%             | 1.3%             | 1.1%             | 1.7%             | 0.8%             | %6.0             | 1.6%             | 1.8%          | 2.6%          | 3.8%          | 3.7%          | 2.5%          |     |
| P203        | 0.10%        | 0.11%        | 0.19%        | 0.14%        | 0.18%        | 0.13%        | 0.01%            | 0.02%            | 0.02%            | 0.03%            | 0.03%            | 0.01%            | 0.04%            | 0.03%            | 0.02%            | %60.0            | 0.07%            | 0.04%            | 0.07%            | 0.07%            | 0.07%            | 0.02%         | 0.03%         | 0.02%         | 0.03%         | 0.04%         |     |
| Al203       | 22.3%        | 22.7%        | 22.2%        | 22.9%        | 22.6%        | 22.8%        | 21.2%            | 21.8%            | 22.1%            | 22.1%            | 21.6%            | 22.1%            | 22.0%            | 21.8%            | 21.9%            | 24.7%            | 25.1%            | 26.2%            | 25.7%            | 24.9%            | 24.1%            | 23.5%         | 24.0%         | 23.6%         | 23.8%         | 24.0%         |     |
| MgO         | 9.4%         | %9.6         | %8.6         | %5.6         | %6'8         | 8.7%         | 4.3%             | 4.0%             | 4.3%             | 4.6%             | 4.1%             | 5.0%             | 4.3%             | 4.5%             | 4.3%             | 4.1%             | 5.7%             | 4.7%             | 5.5%             | 4.4%             | 3.5%             | 7.8%          | 11.0%         | 12.2%         | 13.1%         | 13.9%         |     |
| SiO2        | 38.6%        | 38.2%        | 38.3%        | 38.3%        | 38.1%        | 38.1%        | 39.3%            | 37.4%            | 37.3%            | 37.4%            | 37.1%            | 37.3%            | 36.6%            | 36.9%            | 36.8%            | 41.9%            | 41.5%            | 40.3%            | 40.3%            | 39.3%            | 39.0%            | 39.9%         | 40.8%         | 41.1%         | 41.4%         | 41.7%         |     |
| Database ID | IndiaGarnet4 | IndiaGarnet5 | IndiaGarnet6 | IndiaGarnet7 | IndiaGarnet8 | IndiaGarnet9 | SriLankaGroup1_1 | SriLankaGroup1_2 | SriLankaGroup1_3 | SriLankaGroup1_4 | SriLankaGroup1_5 | SriLankaGroup1_6 | SriLankaGroup1_7 | SriLankaGroup1_8 | SriLankaGroup1_9 | SriLankaGroup2_1 | SriLankaGroup2_2 | SriLankaGroup2_3 | SriLankaGroup2_4 | SriLankaGroup2_5 | SriLankaGroup2_6 | PhuThoGarnet1 | PhuThoGarnet2 | PhuThoGarnet3 | PhuThoGarnet4 | PhuThoGarnet5 |     |

| SnO2        | %00.0           | %00.0         | %00.0         | %00.0         | %00.0          | %80.0    | 0.20%    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0       | %00.0       | %00.0       | %00.0       | %00.0       | %00.0       | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | 0.00%    | 88 |
|-------------|-----------------|---------------|---------------|---------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----|
| OnO         | %00.0           | %00.0         | %00.0         | %00.0         | %00.0          | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0       | %00.0       | %00.0       | %00.0       | %00.0       | %00.0       | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | %00.0    | 0.00%    |    |
| Fe2O3       | 19.5%           | 18.9%         | 18.8%         | 18.8%         | 19.3%          | %1.9     | 4.7%     | 19.5%    | 10.2%    | 16.4%    | 10.4%    | %8.6     | 17.2%    | 20.1%       | 20.3%       | 19.1%       | 20.2%       | 18.5%       | 18.6%       | 14.7%    | 14.5%    | 12.4%    | 13.9%    | 12.7%    | 12.6%    | 11.8%    |    |
| MnO         | 0.5%            | 0.5%          | 0.4%          | 0.5%          | %6.0           | 35.4%    | 37.0%    | 0.4%     | 0.5%     | 0.3%     | 0.5%     | 0.4%     | 0.3%     | %9.0        | %8.0        | 0.7%        | %8.0        | 0.5%        | 0.5%        | 0.5%     | 0.5%     | 0.4%     | 0.5%     | 0.4%     | 0.4%     | 0.4%     |    |
| CaO         | 1.9%            | 3.0%          | 2.8%          | 2.6%          | 2.1%           | 0.5%     | %9.0     | 8.0%     | 4.8%     | 12.7%    | 4.7%     | 4.4%     | 7.8%     | 4.1%        | 3.6%        | 4.4%        | 3.8%        | 4.1%        | 3.7%        | 6.4%     | 6.2%     | %0.9     | 7.0%     | %6.9     | 6.5%     | 6.3%     |    |
| P203        | 0.04%           | 0.03%         | 0.03%         | 0.04%         | 0.03%          | %00.0    | 0.01%    | 0.07%    | 0.01%    | 0.01%    | %00.0    | 0.02%    | 0.01%    | 0.04%       | 0.05%       | 0.04%       | 0.04%       | 0.04%       | 0.04%       | 0.02%    | 0.03%    | 0.02%    | 0.02%    | 0.02%    | 0.02%    | 0.02%    |    |
| AI203       | 23.9%           | 24.1%         | 24.1%         | 24.1%         | 24.2%          | 20.6%    | 20.6%    | 22.5%    | 21.8%    | 22.5%    | 22.1%    | 22.0%    | 22.1%    | 21.9%       | 22.8%       | 23.2%       | 22.4%       | 23.2%       | 23.2%       | 22.3%    | 22.8%    | 23.2%    | 22.8%    | 23.4%    | 23.3%    | 23.6%    |    |
| $_{ m MgO}$ | 12.8%           | 12.7%         | 13.1%         | 12.6%         | 12.2%          | 0.1%     | %0.0     | 9.4%     | 18.7%    | 8.4%     | 18.8%    | 19.1%    | 11.7%    | 11.9%       | 12.0%       | 12.6%       | 12.3%       | 13.4%       | 13.6%       | 14.2%    | 14.0%    | 16.1%    | 15.8%    | 16.6%    | 17.0%    | 17.4%    |    |
| SiO2        | 41.4%           | 40.8%         | 40.9%         | 41.3%         | 41.1%          | 36.7%    | 36.9%    | 40.1%    | 44.0%    | 39.7%    | 43.4%    | 44.2%    | 40.8%    | 41.3%       | 40.4%       | 39.9%       | 40.5%       | 40.3%       | 40.4%       | 41.8%    | 42.0%    | 41.8%    | 40.0%    | 39.9%    | 40.1%    | 40.5%    |    |
| Database ID | Phu Tho Garnet6 | PhuThoGarnet7 | PhuThoGarnet8 | PhuThoGarnet9 | PhuThoGarnet10 | LamDong1 | LamDong2 | Anthill1 | Anthill2 | Anthill3 | Anthill4 | Anthill5 | Anthill6 | Mozambique1 | Mozambique2 | Mozambique3 | Mozambique4 | Mozambique5 | Mozambique6 | AKC00590 | AKC00606 | AKC00651 | AKC00311 | AKC00310 | AKC00338 | AKC00339 |    |

| Database ID     | SiO2  | $M_{\mathbf{g}O}$ | AI203 | P203  | CaO  | MnO  | Fe2O3 | CuO   | SnO2  |
|-----------------|-------|-------------------|-------|-------|------|------|-------|-------|-------|
| AKC00731        | 40.0% | 15.9%             | 23.4% | 0.02% | %9.9 | 0.5% | 13.6% | %00.0 | %00.0 |
| AKC03030        | 35.9% | 2.7%              | 23.4% | %80.0 | 0.7% | 2.0% | 35.2% | %00.0 | %00.0 |
| AKC03031        | 35.8% | %0.€              | 24.0% | %90.0 | 0.7% | %6.0 | 35.4% | %00.0 | %00.0 |
| AKC03032        | 36.0% | 2.7%              | 22.8% | 0.04% | 0.7% | 1.0% | 36.7% | %00.0 | %00.0 |
| AKC03033        | 36.5% | 3.0%              | 23.2% | 0.05% | %9.0 | 1.3% | 35.2% | %00.0 | %00.0 |
| AKC03034        | 36.4% | 7.7%              | 23.5% | 0.03% | %8.0 | %6.0 | 35.7% | %00.0 | %00.0 |
| PorunthalGarnet | 37.6% | 7.5%              | 21.6% | 0.05% | %9.0 | 1.2% | 36.4% | %00.0 | %00.0 |
| PKTgarnet       | 39.3% | 12.0%             | 23.2% | 0.03% | 5.1% | 0.9% | 19.5% | 0.00% | 0.00% |

|             | 0.04 0.07 | 0.04 0.03 | 0.04 0.07 | 0.03    |       |         |                    |                                  |                                           |                                              |                                                             |                                                                |                                                                         |                                                                               |                                                                                        |                                                                                                              |                                                                                                                   |                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-----------|-----------|-----------|---------|-------|---------|--------------------|----------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zn          | 101.67    | 35.99     | 59.38     | 20 10   | 20.10 | 19.31   | 19.31              | 50.10<br>19.31<br>57.80<br>54.94 | 56.16<br>19.31<br>57.80<br>54.94<br>64.37 | 54.94<br>64.37<br>54.94<br>64.37             | 56.16<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14 | 56.16<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14    | 56.16<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24    | 56.16<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24<br>22.19 | 58.18<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24<br>28.24<br>25.28 | 56.16<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24<br>22.19<br>25.28<br>25.28              | 58.18<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24<br>28.24<br>25.28<br>25.28<br>25.28<br>29.07 | 28.24<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>26.07                                                | 28.32<br>28.34<br>54.34<br>64.37<br>44.94<br>53.14<br>53.14<br>28.24<br>25.28<br>25.22<br>29.07<br>29.07<br>28.93<br>25.86                             | 28.24<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.93<br>28.94<br>64.37<br>44.94<br>64.37<br>44.94<br>53.14<br>28.24<br>25.28<br>25.22<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.94<br>28.94<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28.97<br>28 | 28.78<br>28.78<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>26.51<br>26.51                            | 28.32<br>28.24<br>25.28<br>26.51<br>19.31<br>54.94<br>64.37<br>44.94<br>53.14<br>28.24<br>25.22<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>28.93<br>28.93<br>28.93<br>28.24<br>28.93<br>28.93<br>28.24<br>28.93<br>28.93<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.73<br>28.73<br>28.74<br>28.74<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28                                                                                               | 28.18<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>53.14<br>22.19<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>26.51<br>28.72<br>26.51<br>68.85<br>83.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.32<br>28.24<br>25.28<br>26.51<br>44.94<br>64.37<br>44.94<br>53.14<br>53.14<br>28.24<br>25.22<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>29.07<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.93<br>28.72<br>28.72<br>28.86<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.72<br>28.73<br>28.73<br>28.73<br>28.74<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28.75<br>28                                                                                               | 28.18<br>19.31<br>57.80<br>54.94<br>64.37<br>44.94<br>53.14<br>53.14<br>28.24<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>25.28<br>26.51<br>68.85<br>57.08<br>83.54<br>79.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Co          | 67.73     | 46.16     | 37.99     | 56.09   |       | 31.03   | 31.03              | 31.03<br>39.97<br>59.71          | 31.03<br>39.97<br>59.71<br>15.78          | 31.03<br>39.97<br>59.71<br>15.78<br>32.22    | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50          | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31     | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98      | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98            | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98<br>7.17             | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98<br>7.17<br>7.02                           | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98<br>7.17<br>7.02<br>5.89                        | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.38<br>7.17<br>7.17<br>7.17<br>7.17<br>7.14<br>5.89           | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98<br>7.17<br>7.02<br>5.89<br>5.89<br>5.89<br>6.86                                     | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.31<br>6.38<br>7.17<br>7.17<br>7.17<br>7.17<br>7.02<br>5.89<br>5.89<br>5.89<br>6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98<br>7.17<br>7.02<br>5.89<br>5.89<br>7.44<br>7.44<br>6.86<br>6.86<br>6.86<br>6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.31<br>6.38<br>7.02<br>7.02<br>5.89<br>7.44<br>7.44<br>7.44<br>7.44<br>6.86<br>6.86<br>6.86<br>6.86<br>6.23<br>6.23<br>6.23<br>6.23 | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.98<br>7.17<br>7.02<br>5.89<br>5.89<br>5.89<br>6.86<br>6.86<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.31<br>6.38<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>6.28<br>6.88<br>6.88<br>6.88<br>6.88<br>6.88<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.24<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27                                                                                                                                                                                                                                                                                                                                                     | 31.03<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.31<br>6.98<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>6.86<br>6.86<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.24<br>6.25<br>6.25<br>6.25<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27   | 31.03<br>39.97<br>39.97<br>59.71<br>15.78<br>32.22<br>51.50<br>6.31<br>6.31<br>6.31<br>6.31<br>6.31<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>6.28<br>6.86<br>6.86<br>6.86<br>6.86<br>6.87<br>6.15<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.23<br>6.24<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27<br>6.27  |
| Cr          | 563.54    | 331.71    | 12.85     | 197.94  |       | 61.61   | 61.61              | 61.61<br>246.32<br>161.43        | 61.61<br>246.32<br>161.43<br>20.52        | 61.61<br>246.32<br>161.43<br>20.52<br>126.87 | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08       | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08          | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23 | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23       | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96       | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64                    | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39                | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58                  | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>59.09                          | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>63.34<br>44.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>63.34<br>70.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>63.34<br>77.87                                                             | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>59.09<br>44.40<br>70.89<br>75.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>63.34<br>77.58<br>77.88<br>66.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>59.09<br>44.40<br>70.89<br>75.87<br>66.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.61<br>246.32<br>161.43<br>20.52<br>126.87<br>44.08<br>52.47<br>69.23<br>56.96<br>60.64<br>61.39<br>57.58<br>63.34<br>63.34<br>63.34<br>77.58<br>66.57<br>70.89<br>70.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >           | 99.35     | 156.76    | 56.86     | 28.32   |       | 56.37   | 56.37              | 56.37<br>141.01<br>32.32         | 56.37<br>141.01<br>32.32<br>23.53         | 56.37<br>141.01<br>32.32<br>23.53<br>54.54   | 56.37<br>141.01<br>32.32<br>23.53<br>54.54<br>60.88         | 56.37<br>141.01<br>32.32<br>23.53<br>54.54<br>60.88            | 56.37<br>141.01<br>32.32<br>23.53<br>54.54<br>60.88<br>18.06            | 56.37<br>141.01<br>32.32<br>23.53<br>54.54<br>60.88<br>18.06<br>15.12         | 56.37<br>141.01<br>32.32<br>23.53<br>54.54<br>60.88<br>18.06<br>15.12<br>17.55         | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>54.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55    | 56.37<br>141.01<br>32.32<br>23.53<br>54.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.55         | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>54.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.55<br>17.55  | 56.37<br>141.01<br>32.32<br>23.53<br>24.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.55<br>17.55<br>17.55<br>17.00<br>10.70<br>10.70 | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>24.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.55<br>17.00<br>10.70<br>16.00<br>10.70<br>16.00<br>10.70<br>16.00<br>16.00<br>16.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>1 | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>54.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.00<br>10.70<br>10.70<br>10.89<br>10.89<br>10.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>24.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.60<br>10.70<br>10.70<br>10.70<br>27.60<br>10.89<br>10.16<br>26.73                  | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>24.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>17.60<br>10.70<br>10.89<br>10.89<br>10.16<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>2                                                                                               | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>24.54<br>60.88<br>18.06<br>15.12<br>17.55<br>17.55<br>17.55<br>16.19<br>10.70<br>10.70<br>10.70<br>10.89<br>10.89<br>10.16<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>23.53<br>54.54<br>60.88<br>18.06<br>15.19<br>17.55<br>17.55<br>17.55<br>10.70<br>10.70<br>10.89<br>10.89<br>10.16<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.37<br>141.01<br>32.32<br>23.53<br>23.53<br>24.54<br>60.88<br>18.06<br>15.12<br>17.55<br>15.19<br>10.70<br>10.70<br>15.22<br>27.60<br>10.89<br>10.89<br>10.16<br>26.73<br>26.73<br>26.73<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>2                                                                                               |
| П           | 140.65    | 132.12    | 188.31    | 296.07  |       | 183.41  | 183.41             | 183.41<br>163.60<br>166.87       | 183.41<br>163.60<br>166.87<br>65.43       | 183.41<br>163.60<br>166.87<br>65.43<br>50.12 | 183.41<br>163.60<br>166.87<br>65.43<br>50.12                | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12         | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60  | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60        | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60<br>6.19         | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72                       | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12                    | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95                       | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95<br>31.72                              | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95<br>31.72<br>4.72<br>6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95<br>31.72<br>4.72<br>4.72<br>7.12<br>5.95<br>5.95<br>6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95<br>5.95<br>5.95<br>4.72<br>4.72<br>4.72<br>6.05<br>15.97                          | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>280.12<br>8.47<br>6.19<br>4.72<br>7.12<br>5.95<br>31.72<br>4.72<br>4.72<br>4.72<br>6.05<br>15.97<br>17.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>280.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95<br>31.72<br>4.72<br>6.05<br>17.36<br>26.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 183.41       163.60       166.87       65.43       50.12       280.12       280.12       28.47       6.60       6.19       4.72       7.12       5.95       31.72       4.72       6.05       15.97       17.36       26.68       12.42       14.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 183.41<br>163.60<br>166.87<br>65.43<br>50.12<br>280.12<br>280.12<br>280.12<br>8.47<br>6.60<br>6.19<br>4.72<br>7.12<br>5.95<br>31.72<br>4.72<br>6.05<br>17.36<br>17.36<br>26.68<br>17.36<br>17.36<br>26.68<br>17.36<br>26.68<br>17.36<br>26.68<br>17.36<br>26.68<br>17.36<br>26.68<br>26.78<br>17.36<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.1                                                                                               |
| 36          | 75.63     | 120.94    | 32.93     | 80.56   | 000   | /4.93   | 126.93             | 74.93<br>126.93<br>59.28         | 74.93<br>126.93<br>59.28<br>73.70         | 74.93<br>126.93<br>59.28<br>73.70<br>118.46  | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08        | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00 | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00          | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97      | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97<br>94.55      | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97<br>94.55<br>88.50                   | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97<br>94.55<br>88.50<br>48.60               | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>113.97<br>94.55<br>88.50<br>48.60<br>95.26                 | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97<br>94.55<br>88.50<br>48.60<br>95.26<br>60.88                                  | 74.93<br>126.93<br>59.28<br>73.70<br>1118.46<br>82.08<br>110.00<br>1123.97<br>94.55<br>88.50<br>48.60<br>95.26<br>60.88<br>85.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97<br>94.55<br>88.50<br>48.60<br>95.26<br>60.88<br>85.60<br>34.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.93<br>126.93<br>59.28<br>73.70<br>1118.46<br>82.08<br>110.00<br>113.97<br>94.55<br>88.50<br>48.60<br>95.26<br>60.88<br>85.60<br>34.78<br>73.01                                                  | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>123.97<br>94.55<br>88.50<br>95.26<br>60.88<br>85.60<br>34.78<br>73.01<br>65.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.93<br>126.93<br>59.28<br>73.70<br>1118.46<br>82.08<br>110.00<br>1123.97<br>94.55<br>88.50<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>85.60<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26<br>95.26 | 74.93<br>126.93<br>59.28<br>73.70<br>118.46<br>82.08<br>110.00<br>113.97<br>94.55<br>88.50<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>44.66<br>44.66<br>47.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.93<br>126.93<br>59.28<br>73.70<br>1118.46<br>82.08<br>110.00<br>1123.97<br>94.55<br>88.50<br>95.26<br>60.88<br>85.60<br>95.26<br>60.88<br>85.60<br>95.26<br>44.66<br>44.66<br>47.54<br>77.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| В           | 0.57      | 0.41      | 0.37      | 0.44    | 0.53  | CC.U    | 0.39               | 0.39                             | 0.39<br>0.47<br>0.54                      | 0.39<br>0.39<br>0.47<br>0.54                 | 0.39<br>0.39<br>0.47<br>0.54<br>0.65<br>0.48                | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.48                   | 0.39<br>0.39<br>0.47<br>0.65<br>0.65<br>0.48<br>0.57                    | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.48<br>0.57<br>0.57                  | 0.39<br>0.39<br>0.47<br>0.54<br>0.65<br>0.48<br>0.57<br>0.57                           | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.57<br>0.57<br>0.70<br>0.70                                         | 0.39<br>0.39<br>0.47<br>0.65<br>0.65<br>0.57<br>0.57<br>0.70<br>0.70<br>0.46                                      | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.57<br>0.57<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70                                 | 0.35<br>0.39<br>0.47<br>0.54<br>0.65<br>0.65<br>0.57<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.71<br>0.91                                           | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.57<br>0.57<br>0.70<br>0.70<br>0.70<br>0.91<br>1.53<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.35<br>0.39<br>0.47<br>0.54<br>0.65<br>0.65<br>0.70<br>0.70<br>0.70<br>0.91<br>1.53<br>0.73<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.57<br>0.57<br>0.70<br>0.70<br>0.70<br>0.70<br>0.71<br>0.73<br>0.73                                                                                       | 0.35<br>0.39<br>0.47<br>0.54<br>0.65<br>0.65<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.71<br>0.73<br>0.73<br>0.73<br>0.74<br>0.46<br>0.91<br>0.91<br>0.74<br>0.46<br>0.91<br>0.77<br>0.76<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77 | 0.33<br>0.39<br>0.39<br>0.54<br>0.65<br>0.65<br>0.57<br>0.57<br>0.70<br>0.70<br>0.70<br>0.71<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.74<br>0.74<br>0.74<br>0.74<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.39<br>0.39<br>0.47<br>0.54<br>0.65<br>0.65<br>0.70<br>0.70<br>0.70<br>0.71<br>0.73<br>0.73<br>0.73<br>0.74<br>0.74<br>0.74<br>0.74<br>0.74<br>0.74<br>0.74<br>0.76<br>0.77<br>0.76<br>0.77<br>0.76<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70 | 0.33<br>0.39<br>0.47<br>0.54<br>0.65<br>0.65<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.71<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.74<br>0.91<br>1.63<br>1.63<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70 |
| Be          | 0.25      | 0.22      | 0.22      | 0.16    | 0.30  | 2       | 0.26               | 0.26                             | 0.20<br>0.26<br>0.27<br>0.51              | 0.26<br>0.26<br>0.27<br>0.51<br>0.18         | 0.26<br>0.26<br>0.27<br>0.51<br>0.18                        | 0.26<br>0.26<br>0.27<br>0.51<br>0.18<br>0.18                   | 0.26<br>0.26<br>0.27<br>0.51<br>0.18<br>0.14<br>0.28                    | 0.26<br>0.26<br>0.27<br>0.51<br>0.18<br>0.18<br>0.28<br>0.28                  | 0.26<br>0.27<br>0.27<br>0.51<br>0.18<br>0.14<br>0.15<br>0.15                           | 0.26<br>0.26<br>0.27<br>0.51<br>0.18<br>0.18<br>0.28<br>0.15<br>0.16                                         | 0.20<br>0.27<br>0.21<br>0.18<br>0.14<br>0.15<br>0.15<br>0.16<br>0.20                                              | 0.26<br>0.26<br>0.27<br>0.51<br>0.18<br>0.18<br>0.18<br>0.18<br>0.19<br>0.16<br>0.10<br>0.10                                 | 0.20<br>0.26<br>0.27<br>0.18<br>0.14<br>0.15<br>0.15<br>0.16<br>0.10<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                           | 0.26<br>0.27<br>0.27<br>0.51<br>0.18<br>0.18<br>0.18<br>0.16<br>0.16<br>0.16<br>0.16<br>0.20<br>0.20<br>0.34<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.20<br>0.26<br>0.27<br>0.18<br>0.18<br>0.14<br>0.15<br>0.16<br>0.16<br>0.10<br>0.20<br>0.20<br>0.20<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26<br>0.27<br>0.27<br>0.51<br>0.18<br>0.18<br>0.18<br>0.16<br>0.16<br>0.16<br>0.20<br>0.20<br>0.20<br>0.25<br>0.25<br>0.26<br>0.27                                                               | 0.20<br>0.26<br>0.27<br>0.18<br>0.18<br>0.18<br>0.18<br>0.19<br>0.10<br>0.10<br>0.20<br>0.20<br>0.20<br>0.25<br>0.26<br>0.26<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26<br>0.26<br>0.27<br>0.21<br>0.18<br>0.18<br>0.18<br>0.19<br>0.16<br>0.16<br>0.16<br>0.20<br>0.20<br>0.25<br>0.26<br>0.26<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.26<br>0.26<br>0.27<br>0.51<br>0.18<br>0.18<br>0.18<br>0.16<br>0.16<br>0.16<br>0.20<br>0.20<br>0.25<br>0.26<br>0.25<br>0.26<br>0.27<br>0.27<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26<br>0.27<br>0.27<br>0.28<br>0.18<br>0.18<br>0.18<br>0.16<br>0.16<br>0.16<br>0.20<br>0.20<br>0.20<br>0.25<br>0.26<br>0.26<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r.          | 7.39      | 1.62      | 0.48      | 8.26    | 1 20  | 1.3%    | 2.18               | 2.18                             | 2.18 4.03 2.41                            | 2.18<br>4.03<br>4.43                         | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.42                | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.42<br>2.29           | 1.39<br>2.18<br>4.03<br>4.43<br>4.42<br>2.29<br>2.29                    | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.42<br>2.29<br>3.38                  | 1.39<br>2.18<br>4.03<br>2.41<br>4.42<br>4.42<br>2.29<br>3.38<br>2.57                   | 2.18<br>2.18<br>4.03<br>2.41<br>4.42<br>4.42<br>2.29<br>3.38<br>3.38<br>2.67<br>1.62                         | 1.39<br>2.18<br>4.03<br>2.41<br>4.42<br>2.29<br>2.29<br>3.38<br>2.67<br>1.62                                      | 2.18<br>2.18<br>4.03<br>2.41<br>4.42<br>4.43<br>4.42<br>2.29<br>3.38<br>3.38<br>2.57<br>2.67<br>2.67<br>1.62                 | 2.18<br>2.18<br>4.03<br>2.41<br>2.41<br>4.42<br>2.29<br>3.38<br>3.38<br>2.57<br>2.67<br>1.62<br>1.62<br>1.66<br>1.66                                   | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.42<br>2.29<br>3.38<br>3.38<br>2.57<br>2.67<br>2.67<br>2.90<br>1.66<br>1.66<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.39<br>2.18<br>2.18<br>4.03<br>2.41<br>2.41<br>4.42<br>2.29<br>3.38<br>3.38<br>2.57<br>2.67<br>1.62<br>1.66<br>1.66<br>1.66<br>1.66<br>1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.43<br>4.42<br>2.29<br>2.29<br>2.57<br>2.67<br>2.67<br>2.90<br>1.66<br>2.90<br>2.90<br>2.90<br>2.90<br>2.90<br>2.90<br>2.90<br>2.91<br>2.07               | 2.18<br>2.18<br>4.03<br>2.41<br>2.41<br>4.43<br>4.42<br>2.29<br>2.29<br>2.29<br>2.57<br>2.67<br>1.66<br>1.66<br>1.66<br>1.68<br>1.68<br>1.68<br>1.68<br>1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18<br>2.18<br>4.03<br>2.41<br>4.42<br>4.43<br>4.42<br>2.29<br>2.29<br>2.57<br>2.57<br>2.67<br>1.66<br>2.90<br>1.66<br>2.90<br>2.90<br>2.90<br>2.90<br>2.90<br>2.07<br>2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.43<br>4.42<br>2.29<br>2.29<br>2.29<br>2.57<br>2.67<br>1.66<br>1.66<br>1.68<br>2.07<br>9.10<br>9.10<br>9.10<br>9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18<br>2.18<br>4.03<br>2.41<br>4.43<br>4.43<br>4.42<br>2.29<br>2.29<br>2.37<br>2.57<br>2.67<br>2.67<br>2.67<br>2.67<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Database ID | Orissa1   | Orissa2   | Orissa3   | Orissa4 |       | Orissa5 | Orissa5<br>Orissa6 | Orissa5<br>Orissa6<br>Orissa7    | Orissa5 Orissa6 Orissa7 Orissa8           | Orissa5 Orissa7 Orissa7 Orissa8 Orissa8      | Orissa5 Orissa6 Orissa7 Orissa8 Orissa9 Orissa10            | Orissa5 Orissa6 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1   | Orissa5 Orissa7 Orissa8 Orissa8 Orissa9 Orissa10 SouthIndia1            | Orissa5 Orissa6 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia2      | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia3 SouthIndia3           | Orissa5 Orissa7 Orissa8 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia2 SouthIndia3 SouthIndia4 SouthIndia5 | Orissa5 Orissa7 Orissa8 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia3 SouthIndia5 SouthIndia5                  | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia2 SouthIndia4 SouthIndia6 SouthIndia6 SouthIndia6 SouthIndia6 | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia3 SouthIndia5 SouthIndia6 SouthIndia6 SouthIndia6 SouthIndia6 SouthIndia7 SouthIndia8   | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia4 SouthIndia5 SouthIndia6 SouthIndia6 SouthIndia6 SouthIndia8 SouthIndia8 SouthIndia8 SouthIndia8 SouthIndia8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Orissa5 Orissa7 Orissa8 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia3 SouthIndia5 SouthIndia6 SouthIndia6 SouthIndia6 SouthIndia8 SouthIndia9 SouthIndia9 SouthIndia9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia4 SouthIndia5 SouthIndia6 SouthIndia8 SouthIndia8 SouthIndia8 SouthIndia8 SouthIndia8 SouthIndia9 SouthIndia9 IndiaGarnet1          | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia3 SouthIndia5 SouthIndia5 SouthIndia6 SouthIndia6 SouthIndia9 SouthIndia9 SouthIndia9 IndiaGarnet1 IndiaGarnet2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Orissa5 Orissa6 Orissa7 Orissa8 Orissa10 SouthIndia1 SouthIndia2 SouthIndia5 SouthIndia6 SouthIndia6 SouthIndia8 SouthIndia8 SouthIndia9 SouthIndia9 IndiaGarnet1 IndiaGarnet2 IndiaGarnet2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Orissa5 Orissa7 Orissa8 Orissa9 Orissa10 SouthIndia1 SouthIndia3 SouthIndia5 SouthIndia6 SouthIndia6 SouthIndia9 SouthIndia9 SouthIndia9 SouthIndia9 IndiaGarnet1 IndiaGarnet2 IndiaGarnet3 IndiaGarnet3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Orissa5 Orissa7 Orissa8 Orissa8 Orissa10 SouthIndia1 SouthIndia2 SouthIndia5 SouthIndia6 SouthIndia8 SouthIndia9 SouthIndia9 SouthIndia10 IndiaGarnet1 IndiaGarnet2 IndiaGarnet4 IndiaGarnet4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Sr          | 0.04         | 0.02         | 0.02         | 0.13             | 0.03             | 0.05             | 0.02             | 0.04             | 0.01             | 0.02             | 0.02             | 0.02             | 0.03             | 0.03             | 0.02             | 0.01             | 0.03             | 0.02             | 0.63          | 0.39          | 0.13          | 0.17          | 0.19          | 90.0          | 0.05          | 0.29          |
|-------------|--------------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Rb          | 90.0         | 90.0         | 0.04         | 0.21             | 60.0             | 0.14             | 0.07             | 90.0             | 0.03             | 90.0             | 0.05             | 90.0             | 0.05             | 80.0             | 0.04             | 90.0             | 80.0             | 0.10             | 0.29          | 0.29          | 60.0          | 0.10          | 0.16          | 90.0          | 0.11          | 0.16          |
| Zn          | 80.59        | 59.48        | 96.46        | 9.19             | 18.32            | 19.71            | 28.17            | 20.96            | 15.46            | 27.12            | 14.72            | 20.49            | 4.01             | 13.04            | 5.31             | 8.21             | 8.74             | 5.40             | 129.56        | 42.03         | 37.83         | 36.35         | 36.66         | 45.07         | 39.31         | 99.89         |
| Co          | 45.24        | 66.31        | 46.70        | 18.16            | 18.15            | 19.24            | 20.24            | 17.56            | 21.94            | 17.75            | 20.58            | 18.84            | 3.61             | 2.91             | 4.68             | 3.54             | 4.18             | 3.45             | 32.78         | 19.81         | 19.63         | 34.13         | 20.54         | 25.80         | 34.25         | 39.96         |
| Cr          | 65.60        | 73.49        | 72.85        | 64.46            | 54.70            | 85.52            | 84.19            | 261.34           | 92.53            | 130.61           | 31.90            | 301.34           | 38.96            | 43.85            | 7.06             | 2.61             | 17.19            | 15.25            | 74.93         | 283.89        | 291.05        | 511.84        | 117.49        | 103.25        | 37.51         | 92.73         |
| ^           | 25.93        | 42.97        | 41.40        | 37.65            | 31.35            | 34.04            | 39.43            | 35.57            | 46.01            | 32.76            | 44.86            | 46.44            | 5.32             | 0.31             | 3.08             | 1.55             | 1.52             | 1.16             | 42.70         | 34.72         | 31.86         | 29.05         | 11.58         | 20.22         | 19.42         | 38.35         |
| Ţ           | 18.96        | 27.00        | 22.33        | 27.79            | 57.22            | 48.97            | 39.65            | 83.34            | 38.44            | 37.20            | 71.80            | 285.73           | 63.92            | 17.06            | 69.15            | 19.64            | 55.88            | 79.51            | 64.44         | 103.72        | 148.18        | 110.50        | 51.35         | 54.54         | 156.00        | 82.91         |
| Sc          | 64.96        | 52.24        | 83.03        | 150.41           | 152.78           | 183.05           | 150.44           | 147.71           | 263.73           | 175.99           | 154.05           | 153.94           | 16.20            | 2.90             | 21.45            | 21.89            | 15.53            | 00.9             | 212.07        | 106.42        | 69.62         | 80.50         | 79.52         | 104.35        | 80.27         | 77.23         |
| В           | 0.79         | 0.77         | 29.0         | 0.89             | 0.74             | 1.05             | 0.74             | 1.26             | 0.85             | 0.62             | 0.59             | 0.82             | 0.35             | 0.31             | 0.62             | 0.55             | 0.35             | 0.27             | 1.88          | 1.39          | 1.68          | 1.00          | 1.05          | 1.07          | 1.54          | 1.42          |
| Be          | 0.35         | 0.51         | 0.31         | 0.40             | 0.23             | 0.33             | 0.28             | 0.36             | 0.40             | 0.31             | 0.25             | 0.30             | 0.13             | 0.29             | 0.11             | 0.12             | 0.20             | 0.18             | 0.67          | 0.70          | 29.0          | 0.63          | 0.74          | 0.39          | 0.62          | 0.67          |
| Li          | 9.05         | 13.41        | 9.27         | 10.36            | 18.17            | 19.21            | 9.05             | 14.66            | 11.35            | 13.04            | 12.15            | 12.51            | 30.79            | 30.43            | 29.98            | 30.69            | 37.28            | 16.53            | 8.84          | 9.29          | 4.74          | 5.77          | 5.77          | 7.46          | 7.98          | 5.36          |
| Database ID | IndiaGarnet7 | IndiaGarnet8 | IndiaGarnet9 | SriLankaGroup1_1 | SriLankaGroup1_2 | SriLankaGroup1_3 | SriLankaGroup1_4 | SriLankaGroup1_5 | SriLankaGroup1_6 | SriLankaGroup1_7 | SriLankaGroup1_8 | SriLankaGroup1_9 | SriLankaGroup2_1 | SriLankaGroup2_2 | SriLankaGroup2_3 | SriLankaGroup2_4 | SriLankaGroup2_5 | SriLankaGroup2_6 | PhuThoGarnet1 | PhuThoGarnet2 | PhuThoGarnet3 | PhuThoGarnet4 | PhuThoGarnet5 | PhuThoGarnet6 | PhuThoGarnet7 | PhuThoGarnet8 |

| •             | 1             | 4              | 9        | 0        | 6        | 5        | 1        | 9        | 0        | 4        | 4           | 5           | 2           | 1           | 7           | 6           | 6        | 4        | 5        | 7        | 3        | 4        | 0        | 4        | 6        | 7        | 887 |
|---------------|---------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|
| Sr            | 0.11          | 0.14           | 0.16     | 0.10     | 2.79     | 0.65     | 0.81     | 90.0     | 0.10     | 0.64     | 0.04        | 0.05        | 0.02        | 0.01        | 0.07        | 60.0        | 0.43     | 0.64     | 0.25     | 0.37     | 0.33     | 0.34     | 0.40     | 0.34     | 5.29     | 0.17     |     |
| Rb            | 0.10          | 0.12           | 0.11     | 1.08     | 60.0     | 0.54     | 0.02     | 60.0     | 0.05     | 0.05     | 0.03        | 0.03        | 0.04        | 0.03        | 0.05        | 0.04        | 0.52     | 0.92     | 0.03     | 0.21     | 0.10     | 90.0     | 0.17     | 60.0     | 0.92     | 0.11     |     |
| Zn            | 54.98         | 132.18         | 260.09   | 186.71   | 76.44    | 18.79    | 25.74    | 12.22    | 15.76    | 30.97    | 49.90       | 38.80       | 41.43       | 36.17       | 54.13       | 102.83      | 43.07    | 44.04    | 34.12    | 41.56    | 36.84    | 36.04    | 34.79    | 42.26    | 125.72   | 126.37   |     |
| Co            | 25.85         | 30.03          | 0.07     | 0.05     | 51.57    | 40.13    | 46.22    | 38.77    | 41.85    | 62.78    | 60.95       | 63.24       | 56.64       | 49.27       | 59.77       | 62.00       | 68.49    | 65.44    | 61.47    | 08.99    | 64.50    | 63.79    | 62.90    | 66.37    | 37.41    | 29.18    |     |
| $\mathbf{Cr}$ | 1213.43       | 711.28         | 0.70     | 0.46     | 262.32   | 14897.54 | 315.52   | 12875.00 | 10726.24 | 293.05   | 128.15      | 110.78      | 123.89      | 175.79      | 139.94      | 198.60      | 8.11     | 5.68     | 15.04    | 46.14    | 18.30    | 23.28    | 55.97    | 39.16    | 21.98    | 18.40    |     |
| ^             | 51.10         | 80.15          | 2.11     | 1.40     | 94.66    | 171.21   | 199.12   | 123.21   | 109.65   | 156.17   | 61.31       | 54.95       | 48.77       | 44.28       | 53.31       | 57.39       | 144.48   | 162.19   | 166.64   | 190.15   | 163.95   | 168.18   | 158.92   | 159.31   | 23.21    | 36.72    |     |
| П             | 70.24         | 63.91          | 801.63   | 1021.62  | 178.37   | 314.58   | 219.31   | 157.89   | 235.49   | 198.71   | 184.12      | 195.83      | 143.33      | 154.46      | 143.91      | 166.76      | 2077.33  | 2442.75  | 1882.44  | 2401.70  | 2216.39  | 2233.04  | 2121.10  | 2131.90  | 32.26    | 35.79    |     |
| Sc            | 109.98        | 264.86         | 90.097   | 982.57   | 40.29    | 93.92    | 35.84    | 105.34   | 112.69   | 32.69    | 41.63       | 46.09       | 49.51       | 42.99       | 47.29       | 46.83       | 63.96    | 71.65    | 95.52    | 111.36   | 131.67   | 132.49   | 82.83    | 99.51    | 92.31    | 163.70   |     |
| В             | 1.24          | 0.77           | 2.55     | 8.85     | 1.43     | 1.84     | 0.59     | 09.0     | 86.0     | 1.02     | 99.0        | 0.64        | 0.30        | 0.47        | 0.93        | 0.92        | 0.91     | 1.14     | 1.11     | 1.15     | 0.91     | 1.22     | 0.49     | 1.37     | 0.97     | 0.54     |     |
| Be            | 0.32          | 0.44           | 0.49     | 1.64     | 0.34     | 0.39     | 0.35     | 88.0     | 0.37     | 0.50     | 0.28        | 0.19        | 0.29        | 0.38        | 0.31        | 0.23        | 0.42     | 0.37     | 0.31     | 0.48     | 0.38     | 0.45     | 0.35     | 0.45     | 0.13     | 0.07     |     |
| Li            | 9.12          | 21.81          | 83.27    | 41.44    | 0.93     | 0.83     | 0.45     | 0.33     | 92.0     | 1.15     | 12.54       | 12.64       | 13.38       | 11.13       | 14.35       | 16.19       | 0.48     | 0.43     | 0.23     | 0.24     | 0.15     | 0.36     | 0.22     | 0.20     | 20.12    | 21.10    |     |
| Database ID   | PhuThoGarnet9 | PhuThoGarnet10 | LamDong1 | LamDong2 | Anthill1 | Anthill2 | Anthill3 | Anthill4 | Anthill5 | Anthill6 | Mozambique1 | Mozambique2 | Mozambique3 | Mozambique4 | Mozambique5 | Mozambique6 | AKC00590 | AKC00606 | AKC00651 | AKC00311 | AKC00310 | AKC00338 | AKC00339 | AKC00731 | AKC03030 | AKC03031 |     |

| $\mathbf{Sr}$ | 0.15     | 0.22     | 0.35     | 0.46                       | 0.03      |
|---------------|----------|----------|----------|----------------------------|-----------|
| Rb            | 0.32     | 0.40     | 0.20     | 0.26                       | 0.04      |
| Zn            | 134.44   | 140.76   | 115.68   | 82.77                      | 27.24     |
| Co            | 39.96    | 42.98    | 25.34    | 24.69                      | 62.19     |
| Ç             | 49.42    | 42.17    | 38.52    | 24.65                      | 173.99    |
| >             | 27.26    | 32.98    | 19.09    | 23.15                      | 20.81     |
| Ξ             | 21.00    | 24.00    | 12.41    | 23.56                      | 138.65    |
| Sc            | 22.86    | 111.20   | 108.65   | 112.51                     | 32.59     |
| В             | 0.31     | 0.57     | 0.65     | 0.52                       | 0.85      |
| Be            | 0.11     | 0.11     | 60.0     | 0.14                       | 0.88      |
| Ę             | 21.41    | 19.29    | 15.12    | 20.54                      | 2.79      |
| Database ID   | AKC03032 | AKC03033 | AKC03034 | PorunthalGarnet 20.54 0.14 | PKTgarnet |

|               |         | 10      | ~       | 2       | ~       | 10      | 5       | 7       | 7       |          | (           | 7           | 7           | 4           |             | 7           | ~           | 8           | ~           |              | 5            | ~            | 4            | 4            |              | 2            | 889 |
|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|
| Nd            | 0.70    | 1.05    | 3.28    | 1.72    | 0.48    | 1.55    | 2.56    | 0.47    | 0.47    | 2.71     | 0.09        | 0.07        | 0.07        | 0.04        | 0.11        | 0.07        | 0.18        | 0.23        | 0.08        | 0.10         | 90.0         | 0.48         | 0.04         | 0.04         | 0.10         | 90.0         |     |
| Mo            | 0.05    | 80.0    | 80.0    | 90.0    | 0.07    | 90.0    | 0.07    | 90.0    | 0.08    | 0.05     | 0.11        | 0.08        | 0.10        | 60.0        | 0.08        | 90.0        | 80.0        | 0.08        | 0.11        | 60.0         | 90.0         | 0.03         | 0.03         | 0.03         | 0.02         | 0.05         |     |
| Ω             | 00.00   | 0.01    | 0.05    | 0.01    | 0.03    | 0.03    | 0.01    | 0.01    | 0.01    | 00.00    | 0.08        | 90.0        | 0.04        | 0.07        | 0.02        | 0.28        | 0.56        | 0.02        | 0.01        | 00.00        | 90.0         | 0.11         | 0.02         | 0.01         | 0.04         | 0.02         |     |
| Bi            | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.00     | 0.01        | 0.02        | 0.01        | 0.01        | 0.01        | 0.03        | 0.00        | 0.01        | 0.01        | 0.01         | 0.05         | 0.04         | 0.02         | 0.02         | 0.01         | 0.04         |     |
| Y             | 47.93   | 257.88  | 223.78  | 81.14   | 63.64   | 207.80  | 31.38   | 273.33  | 81.57   | 41.37    | 24.89       | 162.37      | 08.09       | 61.64       | 3.35        | 85.45       | 70.51       | 20.65       | 4.34        | 26.53        | 123.25       | 116.77       | 110.79       | 85.28        | 143.32       | 108.73       |     |
| Pr            | 0.04    | 90.0    | 0.24    | 60.0    | 0.04    | 60.0    | 0.15    | 0.03    | 0.01    | 0.15     | 0.02        | 0.03        | 0.01        | 0.00        | 0.01        | 0.03        | 0.03        | 0.04        | 0.01        | 0.01         | 0.02         | 0.04         | 0.01         | 0.01         | 0.01         | 0.04         |     |
| Ce            | 0.02    | 80.0    | 0.40    | 0.05    | 0.07    | 0.12    | 0.14    | 0.04    | 0.01    | 0.15     | 0.02        | 0.07        | 0.01        | 0.00        | 0.01        | 0.29        | 0.02        | 0.23        | 0.01        | 0.01         | 0.03         | 0.07         | 0.02         | 0.01         | 0.01         | 0.02         |     |
| Cs            | 0.01    | 00.00   | 0.01    | 0.01    | 0.01    | 00.00   | 00.00   | 0.01    | 0.02    | 0.01     | 00.00       | 0.04        | 0.01        | 0.00        | 0.01        | 0.01        | 0.02        | 0.01        | 0.01        | 0.01         | 0.03         | 0.01         | 0.02         | 0.01         | 0.00         | 0.01         |     |
| $\mathbf{Ag}$ | 0.02    | 0.01    | 0.02    | 0.03    | 0.01    | 0.02    | 0.02    | 0.02    | 90.0    | 0.01     | 0.03        | 0.02        | 0.01        | 0.02        | 0.03        | 0.14        | 90.0        | 0.03        | 0.02        | 0.07         | 0.03         | 0.03         | 0.05         | 0.05         | 0.04         | 0.04         |     |
| QN.           | 0.01    | 0.01    | 0.03    | 0.01    | 0.01    | 0.02    | 0.02    | 0.01    | 0.00    | 00.00    | 0.02        | 90.0        | 0.02        | 0.01        | 0.01        | 0.01        | 0.19        | 0.02        | 0.03        | 0.02         | 90.0         | 0.04         | 0.05         | 0.05         | 0.04         | 80.0         |     |
| Zr            | 28.04   | 15.38   | 31.81   | 81.62   | 25.13   | 20.29   | 45.28   | 10.15   | 11.66   | 54.34    | 17.30       | 4.99        | 10.02       | 13.87       | 98.9        | 12.51       | 20.25       | 4.85        | 3.23        | 4.01         | 6.24         | 14.69        | 2.67         | 4.26         | 54.79        | 13.51        |     |
| Database ID   | Orissa1 | Orissa2 | Orissa3 | Orissa4 | Orissa5 | Orissa6 | Orissa7 | Orissa8 | Orissa9 | Orissa10 | SouthIndia1 | SouthIndia2 | SouthIndia3 | SouthIndia4 | SouthIndia5 | SouthIndia6 | SouthIndia7 | SouthIndia8 | SouthIndia9 | SouthIndia10 | IndiaGarnet1 | IndiaGarnet2 | IndiaGarnet3 | IndiaGarnet4 | IndiaGarnet5 | IndiaGarnet6 |     |

| pN            | 0.05         | 0.02         | 0.03         | 0.13             | 90.0             | 0.05             | 0.04             | 90.0             | 0.07             | 0.03             | 90.0             | 80.0             | 0.17             | 0.10             | 0.21             | 0.05             | 0.05             | 0.32             | 0.81             | 0.59          | 0.70            | 0.51           | 0.34          | 0.22            | 0.54          | 0.48          |
|---------------|--------------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------|-----------------|----------------|---------------|-----------------|---------------|---------------|
| Mo            | 0.03         | 0.02         | 0.03         | 0.03             | 0.03             | 0.02             | 0.03             | 0.03             | 0.03             | 0.03             | 0.02             | 0.02             | 0.02             | 0.02             | 0.04             | 0.03             | 0.03             | 0.05             | 0.05             | 0.19          | 0.05            | 0.04           | 0.04          | 0.05            | 0.04          | 0.07          |
| Ω             | 0.01         | 0.03         | 0.01         | 0.85             | 0.01             | 0.02             | 0.01             | 0.02             | 0.01             | 0.03             | 0.04             | 0.14             | 0.13             | 0.25             | 0.03             | 0.02             | 0.02             | 0.25             | 90.0             | 0.32          | 90.0            | 0.04           | 0.02          | 0.03            | 0.02          | 0.04          |
| Bi            | 0.02         | 0.01         | 0.01         | 90.0             | 0.02             | 0.01             | 0.01             | 0.03             | 0.01             | 0.02             | 0.05             | 0.02             | 0.02             | 0.02             | 0.01             | 0.02             | 0.03             | 0.02             | 90.0             | 0.13          | 0.13            | 90.0           | 0.04          | 0.03            | 0.04          | 0.04          |
| Y             | 282.41       | 133.38       | 82.54        | 1175.10          | 621.49           | 998.34           | 528.41           | 637.23           | 340.71           | 430.46           | 596.70           | 704.61           | 73.22            | 21.16            | 118.44           | 179.88           | 111.49           | 73.52            | 513.58           | 712.67        | 39.56           | 60.45          | 15.08         | 71.06           | 393.09        | 2.51          |
| Pr            | 0.02         | 0.01         | 0.01         | 0.05             | 0.00             | 00.00            | 00.00            | 00.00            | 00.00            | 0.00             | 00.00            | 00.00            | 0.01             | 0.01             | 0.01             | 0.00             | 0.00             | 0.01             | 0.05             | 0.29          | 0.05            | 0.04           | 0.04          | 0.02            | 0.03          | 0.05          |
| Ce            | 0.02         | 0.01         | 0.01         | 0.18             | 0.00             | 0.01             | 0.00             | 0.01             | 0.01             | 0.01             | 0.01             | 0.01             | 0.01             | 0.00             | 0.01             | 0.00             | 0.01             | 0.01             | 0.79             | 0.61          | 0.16            | 0.25           | 0.25          | 0.04            | 80.0          | 0.23          |
| Cs            | 0.00         | 0.01         | 00.00        | 0.02             | 0.01             | 0.00             | 0.00             | 0.02             | 0.00             | 00.00            | 0.00             | 0.01             | 0.00             | 00.00            | 0.00             | 00.00            | 00.00            | 0.01             | 0.07             | 0.17          | 0.04            | 0.02           | 0.02          | 0.01            | 0.01          | 0.03          |
| $\mathbf{Ag}$ | 0.05         | 90.0         | 0.04         | 0.04             | 0.02             | 0.05             | 0.02             | 0.04             | 0.01             | 0.02             | 90.0             | 0.04             | 0.07             | 0.12             | 0.04             | 0.07             | 0.11             | 0.07             | 0.03             | 0.21          | 90.0            | 90.0           | 0.05          | 0.04            | 0.03          | 0.04          |
| qN            | 0.03         | 0.03         | 0.04         | 0.23             | 0.03             | 0.03             | 0.02             | 0.01             | 0.02             | 0.01             | 0.02             | 0.62             | 0.02             | 0.01             | 0.01             | 0.00             | 0.08             | 0.02             | 0.17             | 0.29          | 0.46            | 0.29           | 0.17          | 60.0            | 0.14          | 0.14          |
| Zr            | 31.24        | 11.22        | 5.77         | 50.03            | 4.06             | 4.19             | 5.26             | 6.61             | 5.07             | 5.84             | 7.28             | 16.66            | 5.34             | 8.09             | 8.02             | 5.40             | 7.13             | 6.46             | 5.33             | 7.04          | 8.26            | 17.60          | 5.87          | 4.08            | 9.42          | 10.66         |
| Database ID   | IndiaGarnet7 | IndiaGarnet8 | IndiaGarnet9 | SriLankaGroup1_1 | SriLankaGroup1_2 | SriLankaGroup1_3 | SriLankaGroup1_4 | SriLankaGroup1_5 | SriLankaGroup1_6 | SriLankaGroup1_7 | SriLankaGroup1_8 | SriLankaGroup1_9 | SriLankaGroup2_1 | SriLankaGroup2_2 | SriLankaGroup2_3 | SriLankaGroup2_4 | SriLankaGroup2_5 | SriLankaGroup2_6 | Phu Tho Garnet 1 | PhuThoGarnet2 | Phu Tho Garnet3 | Phu ThoGarnet4 | PhuThoGarnet5 | Phu Tho Garnet6 | PhuThoGarnet7 | PhuThoGarnet8 |

| Nd          | 0.33           | 0.31           | 1.41     | 99.5     | 2.08     | 0.15     | 3.35     | 0.12     | 0.38     | 2.32     | 0.30        | 0.24        | 0.34        | 0.18        | 0.26        | 0.25        | 1.10     | 1.13     | 0.94     | 1.14     | 1.24     | 1.20     | 1.15     | 1.01     | 0.15     | 0.05     | 891 |
|-------------|----------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|
|             |                |                |          |          |          |          |          |          |          |          |             |             |             |             |             |             |          |          |          |          |          |          |          |          |          |          |     |
| Mo          | 0.03           | 0.04           | 0.03     | 0.16     | 80.0     | 0.08     | 90.0     | 0.08     | 90.0     | 0.07     | 0.07        | 0.07        | 80.0        | 90.0        | 60.0        | 90.0        | 0.05     | 0.03     | 0.02     | 0.04     | 0.02     | 0.03     | 0.03     | 0.03     | 60.0     | 0.05     |     |
| Ω           | 0.03           | 0.02           | 0.12     | 0.75     | 0.01     | 0.01     | 0.02     | 0.00     | 0.01     | 0.01     | 0.03        | 0.00        | 0.01        | 0.01        | 0.01        | 0.01        | 0.04     | 0.03     | 0.01     | 0.02     | 0.02     | 0.02     | 0.07     | 0.02     | 90.0     | 0.05     |     |
| Bi          | 90.0           | 0.04           | 0.04     | 0.04     | 0.03     | 0.01     | 0.02     | 0.01     | 0.01     | 0.04     | 0.03        | 0.01        | 0.02        | 0.01        | 0.02        | 0.02        | 0.05     | 0.02     | 0.01     | 0.01     | 0.02     | 0.02     | 0.04     | 0.04     | 0.01     | 0.01     |     |
| Y           | 09.76          | 164.62         | 507.46   | 694.85   | 28.59    | 12.87    | 13.19    | 6.37     | 33.08    | 96.9     | 20.86       | 23.80       | 28.79       | 22.35       | 19.78       | 21.98       | 94.02    | 99.01    | 92.98    | 101.14   | 92.68    | 86.54    | 62.07    | 96.17    | 187.20   | 236.57   |     |
| Pr          | 0.03           | 0.02           | 0.10     | 0.50     | 0.26     | 0.03     | 0.29     | 0.05     | 90.0     | 0.44     | 0.03        | 0.02        | 0.03        | 0.02        | 0.03        | 0.02        | 0.14     | 0.14     | 60.0     | 0.11     | 0.15     | 0.12     | 60.0     | 80.0     | 0.03     | 0.01     |     |
| Ce          | 60.0           | 0.16           | 0.50     | 0.64     | 0.61     | 0.33     | 0.34     | 0.05     | 0.16     | 2.42     | 90.0        | 0.04        | 0.05        | 0.03        | 90.0        | 60.0        | 0.46     | 0.46     | 0.27     | 0.26     | 0.40     | 0.31     | 0.42     | 0.25     | 0.28     | 80.0     |     |
| Cs          | 0.03           | 0.03           | 0.01     | 0.29     | 90.0     | 0.05     | 0.02     | 0.01     | 0.01     | 0.02     | 0.01        | 0.01        | 0.03        | 0.02        | 0.01        | 0.01        | 0.05     | 0.07     | 0.01     | 0.01     | 0.01     | 0.01     | 0.02     | 0.01     | 0.04     | 0.01     |     |
| Ag          | 0.04           | 0.05           | 0.46     | 0.10     | 0.05     | 60.0     | 0.02     | 0.04     | 0.04     | 90.0     | 0.03        | 0.03        | 0.03        | 0.03        | 0.03        | 0.04        | 60.0     | 60.0     | 0.11     | 0.04     | 0.04     | 0.04     | 60.0     | 0.05     | 0.01     | 0.01     |     |
| NP          | 80.0           | 0.11           | 7.35     | 102.96   | 90.0     | 0.25     | 0.02     | 0.16     | 0.23     | 0.05     | 0.05        | 0.01        | 0.04        | 0.02        | 0.02        | 0.03        | 0.16     | 0.11     | 0.05     | 0.19     | 0.16     | 0.05     | 0.19     | 0.03     | 0.02     | 0.03     |     |
| Zr          | 7.54           | 5.69           | 4.93     | 21.30    | 4.11     | 2.96     | 8.32     | 0.70     | 4.02     | 7.13     | 22.02       | 41.19       | 30.32       | 28.32       | 29.06       | 32.29       | 38.71    | 50.63    | 45.05    | 51.02    | 51.85    | 54.31    | 56.39    | 41.52    | 3.01     | 6.64     |     |
| Database ID | Phu ThoGarnet9 | PhuThoGarnet10 | LamDong1 | LamDong2 | Anthill1 | Anthill2 | Anthill3 | Anthill4 | Anthill5 | Anthill6 | Mozambique1 | Mozambique2 | Mozambique3 | Mozambique4 | Mozambique5 | Mozambique6 | AKC00590 | AKC00606 | AKC00651 | AKC00311 | AKC00310 | AKC00338 | AKC00339 | AKC00731 | AKC03030 | AKC03031 |     |

| 80.0 | 0.03 | 0.17 | 0.01 | 16.05  | 0.01 | 0.03 | 0.01 | 0.03 | _         | 0.11  | 18.72 0.1 |
|------|------|------|------|--------|------|------|------|------|-----------|-------|-----------|
| 0.03 | 0.05 | 0.01 | 0.02 | 269.22 | 0.02 | 0.16 | 0.01 | 0    | 0.03      |       | 0.03      |
| 0.04 | 90.0 | 0.04 | 0.05 | 323.66 | 0.01 | 0.10 | 2    | 0.02 | 0.01 0.0  |       | 0.01      |
| 0.11 | 0.11 | 0.04 | 0.04 | 263.07 | 0.02 | 0.04 |      | 0.07 | 0.03 0.07 |       | 0.03      |
| 6.03 | 0.07 | 0.01 | 0.02 | 289.16 | 0.01 | 0.04 |      | 0.02 | 0.02 0.02 |       | 0.02      |
| PΝ   | Mo   | Ω    | Bi   | Ā      | Pr   | Ce   |      | Cs   | Ag Cs     | Nb Ag | Ag        |

|             | 3       | 6       | 3       | 4       | 8       |         | 8       |         | 0       | 7        | ~           | 3           | 7           | 2           | 8           | 4           |             | 4           | 6           | 7            | 8            | 7            | 8            | 8            | 7            | 6             | 893 |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|-----|
| H           | 0.53    | 0.29    | 0.63    | 1.44    | 0.48    | 0.41    | 1.05    | 0.21    | 0.20    | 0.97     | 0.58        | 0.13        | 0.27        | 1.45        | 0.15        | 0.34        | 1.31        | 0.14        | 60'0        | 0.07         | 0.18         | 0.37         | 0.15         | 0.08         | 0.67         | 0.29          |     |
| Lu          | 0.71    | 4.28    | 3.64    | 96.0    | 1.51    | 4.12    | 0.47    | 5.90    | 1.30    | 0.93     | 0.46        | 7.50        | 0.63        | 08.0        | 0.07        | 1.89        | 1.06        | 0.31        | 80.0        | 0.28         | 2.04         | 1.36         | 1.54         | 1.59         | 2.01         | 1.66          |     |
| ΛP          | 4.87    | 30.76   | 27.08   | 6.51    | 9.12    | 27.53   | 3.11    | 38.05   | 8.97    | 90.9     | 2.73        | 43.82       | 4.06        | 5.21        | 0.35        | 11.96       | 7.41        | 1.85        | 0.39        | 2.60         | 14.19        | 10.50        | 9.22         | 10.18        | 13.93        | 11.00         |     |
| Tm          | 0.71    | 4.47    | 3.99    | 86.0    | 1.22    | 3.81    | 0.46    | 5.06    | 1.27    | 08.0     | 0.42        | 5.44        | 0.65        | 0.85        | 0.04        | 1.56        | 1.05        | 0.28        | 0.05        | 0.39         | 2.27         | 1.56         | 1.49         | 1.40         | 2.07         | 1.68          |     |
| Er          | 4.97    | 30.92   | 27.36   | 7.39    | 7.57    | 25.15   | 3.42    | 30.40   | 8.39    | 5.24     | 3.11        | 29.38       | 6.32        | 95.9        | 0.33        | 9.74        | 7.42        | 1.99        | 0.32        | 2.33         | 13.03        | 11.23        | 10.79        | 8.92         | 13.83        | 11.00         |     |
| Ho          | 1.90    | 10.21   | 9.18    | 2.77    | 2.34    | 8.48    | 1.24    | 9.19    | 3.13    | 1.73     | 96.0        | 7.09        | 2.49        | 2.39        | 0.17        | 3.40        | 2.82        | 0.91        | 0.16        | 0.95         | 4.75         | 4.19         | 3.58         | 2.57         | 5.10         | 3.77          |     |
| Dy          | 9.54    | 38.14   | 38.87   | 13.24   | 8.41    | 36.31   | 6.03    | 35.16   | 16.80   | 7.97     | 5.16        | 20.60       | 12.64       | 9.82        | 1.44        | 15.82       | 13.53       | 5.39        | 1.75        | 5.29         | 13.01        | 19.07        | 10.93        | 8.01         | 22.80        | 14.24         |     |
| Tb          | 1.48    | 3.98    | 4.70    | 1.87    | 68.0    | 4.45    | 0.92    | 3.54    | 2.62    | 1.07     | 0.65        | 1.58        | 1.35        | 1.01        | 0.49        | 1.83        | 1.68        | 0.88        | 0.55        | 68.0         | 98.0         | 2.77         | 0.71         | 0.55         | 2.67         | 1.24          |     |
| рS          | 7.59    | 11.98   | 17.31   | 9.61    | 2.85    | 15.77   | 4.97    | 8.46    | 10.20   | 5.68     | 1.98        | 2.86        | 3.13        | 2.36        | 3.17        | 4.55        | 99'5        | 2.98        | 3.08        | 3.80         | 1.34         | 11.32        | 1.07         | 88.0         | 7.29         | 2.36          |     |
| Eu          | 1.13    | 0.59    | 1.37    | 1.96    | 0.47    | 1.08    | 1.50    | 0.33    | 0.56    | 1.90     | 0.27        | 0.26        | 0.28        | 0.20        | 0.55        | 0.33        | 0.51        | 0.31        | 0.62        | 0.51         | 0.11         | 0.49         | 0.05         | 0.04         | 0.19         | 60.0          |     |
| Sm          | 2.34    | 2.89    | 6.30    | 4.17    | 89.0    | 3.97    | 3.58    | 1.50    | 1.97    | 4.16     | 0.36        | 0.27        | 0.39        | 0.21        | 0.58        | 0.45        | 1.07        | 0.47        | 0.65        | 0.59         | 60.0         | 2.08         | 0.11         | 80.0         | 99.0         | 0.16          |     |
| Database ID | Orissa1 | Orissa2 | Orissa3 | Orissa4 | Orissa5 | Orissa6 | Orissa7 | Orissa8 | Orissa9 | Orissa10 | SouthIndia1 | SouthIndia2 | SouthIndia3 | SouthIndia4 | SouthIndia5 | SouthIndia6 | SouthIndia7 | SouthIndia8 | SouthIndia9 | SouthIndia10 | IndiaGarnet1 | IndiaGarnet2 | IndiaGarnet3 | IndiaGarnet4 | IndiaGarnet5 | India Garnet6 |     |

| Hf          | 0.59         | 0.25         | 0.11         | 1.38             | 0.07             | 80.0             | 0.10             | 0.11             | 60.0             | 60.0             | 0.18             | 0.49             | 0.13             | 0.24             | 0.19             | 0.15             | 0.17             | 0.17             | 0.10             | 0.27          | 0.26            | 0.41          | 0.17          | 0.13            | 0.18          | 0.37          |
|-------------|--------------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------|-----------------|---------------|---------------|-----------------|---------------|---------------|
| Lu          | 2.27         | 3.46         | 1.68         | 20.60            | 12.11            | 34.30            | 4.82             | 4.48             | 3.19             | 13.30            | 8.84             | 4.92             | 0.70             | 0.14             | 2.65             | 4.07             | 1.73             | 0.62             | 39.95            | 5.58          | 0.25            | 0.33          | 0.25          | 0.29            | 16.44         | 0.12          |
| ΛP          | 18.74        | 22.12        | 12.08        | 166.92           | 89.51            | 230.52           | 43.70            | 45.61            | 21.24            | 62'98            | 67.11            | 45.62            | 5.37             | 1.08             | 18.52            | 27.32            | 11.52            | 4.65             | 213.56           | 52.48         | 1.68            | 3.02          | 1.14          | 2.63            | 112.20        | 0.45          |
| Tm          | 3.04         | 3.13         | 1.76         | 27.36            | 12.27            | 30.62            | 7.29             | 8.03             | 3.40             | 12.44            | 10.45            | 7.92             | 62.0             | 0.16             | 2.37             | 3.30             | 1.55             | 69.0             | 23.22            | 86.8          | 0.28            | 0.53          | 0.13          | 0.47            | 13.35         | 90.0          |
| Er          | 22.79        | 18.91        | 10.75        | 185.33           | 74.15            | 172.71           | 53.57            | 09:09            | 27.10            | 72.61            | 08.89            | 59.55            | 5.16             | 1.03             | 13.70            | 16.89            | 9.05             | 4.41             | 93.45            | 66.62         | 2.49            | 4.71          | 1.09          | 4.46            | 66.29         | 0.35          |
| Ho          | 96.8         | 5.36         | 3.10         | 52.79            | 21.76            | 42.22            | 19.21            | 21.92            | 12.39            | 19.27            | 22.48            | 23.80            | 1.96             | 0.50             | 4.26             | 4.83             | 2.82             | 1.87             | 19.66            | 23.64         | 1.22            | 2.06          | 0.53          | 2.21            | 15.10         | 0.11          |
| Dy          | 39.94        | 14.75        | 8.87         | 151.17           | 68.62            | 103.56           | 67.81            | 69.87            | 59.21            | 48.54            | 80.59            | 96.14            | 9.37             | 3.40             | 15.48            | 17.05            | 11.43            | 10.41            | 47.47            | 89.85         | 69.7            | 11.13         | 3.73          | 13.13           | 41.74         | 0.51          |
| Tb          | 3.96         | 1.00         | 0.58         | 9.16             | 4.90             | 00.9             | 4.94             | 5.64             | 2.67             | 2.92             | 92.9             | 7.43             | 1.29             | 99.0             | 1.56             | 1.66             | 1.33             | 1.71             | 2.58             | 8.05          | 1.46            | 1.55          | 62.0          | 2.02            | 3.67          | 0.12          |
| РS          | 8.59         | 1.80         | 0.91         | 11.00            | 8.42             | 96.8             | 7.95             | 9.22             | 10.58            | 4.38             | 12.94            | 13.46            | 4.48             | 3.19             | 4.01             | 3.72             | 3.49             | 7.47             | 4.13             | 17.62         | 9.03            | 6.40          | 3.88          | 7.92            | 11.90         | 1.29          |
| Eu          | 0.31         | 90.0         | 0.05         | 0.27             | 0.31             | 0.26             | 0.19             | 0.31             | 0.27             | 0.15             | 0.42             | 0.36             | 0.87             | 0.46             | 89.0             | 0.21             | 0.23             | 1.77             | 0.22             | 0.88          | 1.31            | 69.0          | 0.58          | 0.58            | 1.26          | 0.41          |
| Sm          | 0.54         | 60.0         | 0.07         | 0.46             | 0.58             | 0.50             | 0.43             | 0.50             | 0.62             | 0.25             | 0.81             | 0.73             | 66.0             | 06.0             | 1.11             | 0.46             | 0.38             | 2.51             | 1.24             | 2.23          | 3.61            | 1.43          | 0.97          | 1.47            | 2.40          | 1.16          |
| Database ID | IndiaGarnet7 | IndiaGarnet8 | IndiaGarnet9 | SriLankaGroup1_1 | SriLankaGroup1_2 | SriLankaGroup1_3 | SriLankaGroup1_4 | SriLankaGroup1_5 | SriLankaGroup1_6 | SriLankaGroup1_7 | SriLankaGroup1_8 | SriLankaGroup1_9 | SriLankaGroup2_1 | SriLankaGroup2_2 | SriLankaGroup2_3 | SriLankaGroup2_4 | SriLankaGroup2_5 | SriLankaGroup2_6 | Phu Tho Garnet 1 | PhuThoGarnet2 | Phu Tho Garnet3 | PhuThoGarnet4 | PhuThoGarnet5 | Phu Tho Garnet6 | PhuThoGarnet7 | PhuThoGarnet8 |

| Hf          | 0.20          | 0.19           | 0.51     | 4.77     | 0.07     | 0.10     | 0.11     | 0.05     | 0.11     | 0.14     | 0.34        | 0.53        | 0.45        | 0.38        | 0.47        | 0.49        | 0.78     | 1.00     | 98.0     | 1.00     | 1.08     | 1.09     | 1.25     | 68.0     | 0.07     | 0.11     |
|-------------|---------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Lu          | 1.90          | 0.94           | 11.11    | 13.05    | 0.56     | 0.30     | 0.22     | 0.21     | 1.10     | 60.0     | 0.45        | 0.59        | 29.0        | 0.53        | 0.45        | 0.36        | 1.32     | 1.36     | 1.48     | 1.89     | 1.91     | 1.85     | 0.95     | 1.88     | 5.56     | 08.9     |
| A           | 11.36         | 6.87           | 72.86    | 79.28    | 3.66     | 2.04     | 1.34     | 0.81     | 6.55     | 0.79     | 3.01        | 3.51        | 4.26        | 3.39        | 2.66        | 2.38        | 90.6     | 9.73     | 9.83     | 12.23    | 11.58    | 11.48    | 6.71     | 12.39    | 39.23    | 43.20    |
| Tm          | 1.94          | 1.20           | 8.24     | 8.37     | 0.48     | 0.25     | 0.20     | 0.16     | 62.0     | 0.11     | 0.36        | 0.46        | 0.56        | 0.42        | 0.35        | 0.33        | 1.39     | 1.45     | 1.37     | 1.68     | 1.53     | 1.50     | 96.0     | 1.70     | 5.18     | 5.80     |
| Er          | 12.04         | 10.78          | 40.76    | 41.49    | 3.23     | 1.62     | 1.43     | 1.04     | 4.29     | 0.75     | 2.42        | 2.83        | 3.49        | 2.78        | 2.42        | 2.41        | 9.30     | 9.72     | 88.88    | 10.64    | 9.52     | 9.26     | 6.30     | 10.58    | 25.89    | 30.97    |
| Ho          | 3.43          | 5.12           | 12.87    | 13.63    | 1.10     | 0.44     | 0.47     | 0.22     | 1.19     | 0.26     | 92.0        | 0.87        | 1.09        | 0.81        | 0.75        | 0.79        | 2.94     | 3.06     | 2.73     | 3.27     | 2.80     | 2.79     | 2.04     | 3.14     | 7.05     | 9.33     |
| Dy          | 10.60         | 27.41          | 58.17    | 26.68    | 5.04     | 1.66     | 2.55     | 1.38     | 3.63     | 1.42     | 3.08        | 3.33        | 4.28        | 2.92        | 2.98        | 3.32        | 11.17    | 11.74    | 9.64     | 11.65    | 10.26    | 69.6     | 8.08     | 11.38    | 18.18    | 28.04    |
| Tb          | 0.92          | 3.19           | 7.32     | 12.64    | 89.0     | 0.18     | 0.35     | 0.14     | 0.34     | 0.24     | 0.35        | 0.36        | 0.45        | 0.31        | 0.32        | 0.35        | 1.23     | 1.29     | 1.03     | 1.24     | 1.09     | 1.02     | 0.91     | 1.16     | 1.22     | 2.09     |
| РS          | 2.77          | 7.27           | 19.68    | 39.70    | 3.55     | 89.0     | 2.33     | 0.46     | 0.93     | 1.59     | 1.19        | 1.27        | 1.59        | 1.09        | 1.10        | 1.33        | 4.16     | 4.76     | 3.61     | 4.44     | 4.04     | 4.00     | 3.59     | 4.21     | 1.75     | 3.41     |
| Eu          | 92.0          | 0.16           | 0.00     | 0.00     | 1.23     | 0.11     | 1.14     | 60.0     | 0.15     | 0.87     | 0.27        | 0.25        | 0.32        | 0.29        | 0.24        | 0.19        | 0.81     | 0.85     | 99.0     | 0.78     | 0.78     | 92.0     | 69.0     | 0.74     | 0.11     | 0.14     |
| Sm          | 1.20          | 1.05           | 90.9     | 15.88    | 2.10     | 0.14     | 2.38     | 0.20     | 0.31     | 1.32     | 0.36        | 0.35        | 0.61        | 0.29        | 0.33        | 0.28        | 1.32     | 1.43     | 1.10     | 1.42     | 1.50     | 1.37     | 1.25     | 1.30     | 0.12     | 0.20     |
| Database ID | PhuThoGarnet9 | PhuThoGarnet10 | LamDong1 | LamDong2 | Anthill1 | Anthill2 | Anthill3 | Anthill4 | Anthill5 | Anthill6 | Mozambique1 | Mozambique2 | Mozambique3 | Mozambique4 | Mozambique5 | Mozambique6 | AKC00590 | AKC00606 | AKC00651 | AKC00311 | AKC00310 | AKC00338 | AKC00339 | AKC00731 | AKC03030 | AKC03031 |

| Database ID     | Sm   | Eu   | РS   | $\mathbf{q}\mathbf{L}$ | Dy    | $_{ m H_0}$ | Ξr    | шL   | A     | $\Gamma$ n | Hf   |
|-----------------|------|------|------|------------------------|-------|-------------|-------|------|-------|------------|------|
| AKC03032        | 0.11 | 60.0 | 2.02 | 1.90                   | 31.45 | 12.52       | 34.34 | 4.75 | 26.39 | 3.41       | 90.0 |
| AKC03033        | 0.11 | 0.14 | 1.95 | 1.58                   | 24.77 | 10.88       | 37.07 | 6.30 | 40.88 | 6.32       | 0.10 |
| AKC03034        | 0.14 | 0.12 | 2.55 | 2.04                   | 30.91 | 10.95       | 29.20 | 4.17 | 23.04 | 2.73       | 0.04 |
| PorunthalGarnet | 0.13 | 0.13 | 2.47 | 1.82                   | 29.60 | 10.83       | 32.52 | 5.43 | 32.35 | 4.49       | 0.05 |
| PKTgarnet       | 0.14 | 0.24 | 0.64 | 0.18                   | 1.80  | 0.50        | 1.70  | 0.28 | 2.39  | 0.46       | 0.16 |

## Appendix 8.4: Differentiating between garnet sources

In order to better distinguish between the garnet sources, I used Principal Components Analysis (PCA) and bivariate plotting to highlight geochemical differences between these different sources. I began with the almandine-rich sources. Figure 8.4.1 presents these groups plotted by their first and second components using the elements Co, Tb, V, and Zn. Table 8.4.1 lists the PCA scores used in this scatterplot. The Sri Lanka Group 1 garnets are differentiated from the other two sources by their higher levels of Co and Tb. Sri Lanka Group 2 has lower concentrations V and Zn, while the South India source had moderate amounts of all four elements. Bivariate plotting of these sources also identified that the South India source is notable for low concentrations of Cu (approximately 1 ppm), while Sri Lanka Group 1 has high levels of Dy (48-151 ppm) in comparison to the other source groups (Figure 8.4.2).

| Garnet Source    | <b>Principal Component</b> | <b>Principal Component</b> |
|------------------|----------------------------|----------------------------|
|                  | Score 1                    | Score 2                    |
| SriLankaGroup1_1 | 0.52756                    | 2.00465                    |
| SriLankaGroup1_2 | 0.58962                    | 1.06061                    |
| SriLankaGroup1_3 | 0.70709                    | 1.19293                    |
| SriLankaGroup1_4 | 0.8586                     | 0.83624                    |
| SriLankaGroup1_5 | 0.68416                    | 1.11391                    |
| SriLankaGroup1_6 | 0.76171                    | 1.31738                    |
| SriLankaGroup1_7 | 0.62348                    | 0.4068                     |
| SriLankaGroup1_8 | 0.74092                    | 1.48991                    |
| SriLankaGroup1_9 | 0.84103                    | 1.3788                     |
| SouthIndia1      | -0.3384                    | -0.91313                   |
| SouthIndia2      | -0.24537                   | -0.04955                   |
| SouthIndia3      | -0.17535                   | -0.24089                   |
| SouthIndia4      | -0.28462                   | -0.49049                   |
| SouthIndia5      | -0.56606                   | -1.21249                   |
| SouthIndia6      | -0.09186                   | -0.07922                   |
| SouthIndia7      | -0.1703                    | -0.01988                   |
| SouthIndia8      | -0.4324                    | -0.61848                   |
| SouthIndia9      | -0.53175                   | -1.10507                   |
| SouthIndia10     | -0.15022                   | -0.56833                   |
| SriLankaGroup2_1 | -1.49496                   | 0.70091                    |
| SriLankaGroup2_2 | -2.13144                   | -0.82718                   |
| SriLankaGroup2_3 | -1.38988                   | 0.63103                    |
| SriLankaGroup2_4 | -1.55732                   | 0.36732                    |
| SriLankaGroup2_5 | -1.50339                   | 0.14073                    |
| SriLankaGroup2_6 | -1.79084                   | 0.61025                    |
| AB1767           | 0.88853                    | -1.38051                   |
| AB3284           | 1.42773                    | -1.15107                   |
| AB2801           | 1.6087                     | -1.15762                   |
| AB3333           | 0.69625                    | -1.37355                   |
| AB1835lg         | 0.92246                    | -1.38174                   |
| PorunthalGarnet  | 0.9763                     | -0.68227                   |

Table 8.4.1: PCA scores for the almandine-rich sources and artifacts.

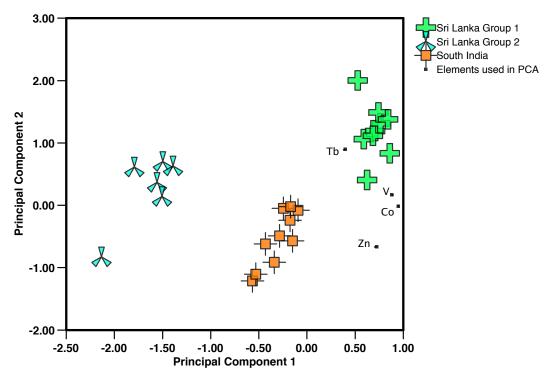



Figure 8.4.1: Principal component analysis of the Group 1 almandine garnets. The first component summarizes 59% of the variance and the second component accounts for 32%.

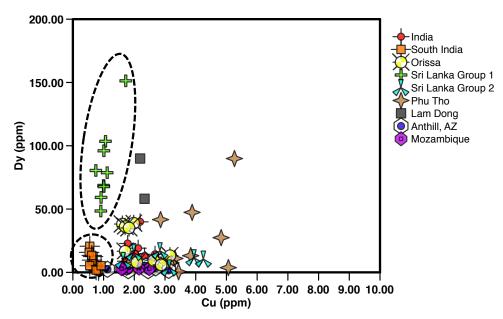



Figure 8.4.2: A bivariate plot of Cu vs. Dy highlighting the high concentration of Dy in the Sri Lanka Group 1 garnet group and the low concentration of Cu in the South India garnet group

A similar analysis was done on the almandine-pyrope source groups. PCA was performed using the elements Al, Ca, Co, Cu, Fe, Li, Sc, Tb and V (Figure 8.4.3). The table of the PCA scores is listed in Table 8.4.2 and a table for the PCA scores for the almandine-pyrope artifacts discussed in Chapter 8 is in Table 8.4.3. The element Cu was added to better distinguish the Orissa source from the other sources in the group. Cu was distributed relatively evenly within this source group, with only two samples containing an RSD above 10%. The Anthill source is clearly separated from the other groups by the higher levels of Ca, however three samples from this source (Anthill12, Anthill14, and Anthill5) had lower levels of iron than magnesium. The Phu The source is notable for higher concentrations of Cu (3-5 ppm) and Sc (70-265). Conversely, the Mozambique source group had lower levels of Sc than the Phu Tho source, but generally higher concentrations of Li (11-16 ppm). The India source had higher concentrations of Fe (68-77%), although one sample (India 2) consistently plotted with the Orissa source. The Orissa source was perhaps the most problematic source group to evaluate, as the samples were not tightly clustered and overlapped with the Phu Tho source. This highlights a drawback of not personally collecting geologic samples directly from a source, as the variation may be the result of garnets from multiple distinct sources. It is hoped that this problem will be corrected in future studies.

|             | PCA1     | PCA2     |             | PCA1     | PCA2     |
|-------------|----------|----------|-------------|----------|----------|
| PhuTho1     | 0.83841  | 1.81762  | Mozambique6 | 0.18117  | -1.14029 |
| Phulhol     | 0.03041  | 1.01/02  | Mozambiqueo | 0.16117  | -1.14029 |
| PhuTho2     | 1.03073  | 2.2892   | Orissa1     | 0.1017   | -0.15563 |
| PhuTho3     | 0.63578  | 0.94673  | Orissa2     | -0.07795 | 0.34271  |
| PhuTho4     | 0.50713  | 0.75848  | Orissa3     | 0.09501  | -0.38537 |
| PhuTho5     | 0.94668  | 1.33368  | Orissa4     | 0.53903  | 0.27446  |
| PhuTho6     | 0.98618  | 1.33581  | Orissa5     | 0.08542  | -0.00157 |
| PhuTho7     | 0.8863   | 0.78325  | Orissa6     | -0.00036 | 0.58505  |
| PhuTho8     | 0.28864  | -0.13724 | Orissa7     | 0.3375   | -0.32005 |
| PhuTho9     | 0.61945  | 0.81618  | Orissa8     | 1.15561  | 0.60434  |
| PhuTho10    | 0.69924  | 2.4496   | Orissa9     | 0.50806  | 0.41409  |
| Anthill1    | -0.48394 | -0.67561 | Orissa10    | 0.17453  | -0.20581 |
| Anthill2    | -1.22471 | 0.39788  | India1      | 1.0293   | -0.75459 |
| Anthill3    | -1.03123 | -1.58572 | India2      | 0.70494  | 0.06312  |
| Anthill4    | -1.23018 | 0.22378  | India3      | 1.25238  | -0.87257 |
| Anthill5    | -1.06626 | 0.56721  | India4      | 0.95895  | -0.7954  |
| Anthill6    | -0.86294 | -1.58128 | India5      | 1.14778  | -0.52327 |
| Mozambique1 | 0.02447  | -1.49193 | India6      | 0.94628  | -0.8792  |
| Mozambique2 | 0.19147  | -1.49031 | India7      | 1.18665  | -0.0882  |
| Mozambique3 | 0.23115  | -1.12933 | India8      | 0.98573  | -1.09782 |
| Mozambique4 | 0.23656  | -1.45333 | India9      | 1.03736  | -0.76137 |
| Mozambique5 | 0.15478  | -0.95799 |             |          |          |

Table 8.4.2: PCA scores for the almandine-pyrope garnet sources and artifacts.

|           | PCA1     | PCA2     |
|-----------|----------|----------|
| AKC00590  | -1.62482 | 0.77633  |
| AKC00606  | -1.64772 | 0.57773  |
| AKC00651  | -1.74228 | 0.27444  |
| AKC00311  | -1.79034 | 0.492    |
| AKC00310  | -1.82342 | 0.63429  |
| AKC00338  | -1.70533 | 0.70244  |
| AKC00339  | -1.74937 | 0.28334  |
| AKC00731  | -1.77421 | 0.56347  |
| PKTgarnet | -0.86932 | -1.82335 |

Table 8.4.3: PCA scores for the almandine-pyrope artifacts discussed in Chapter 8.

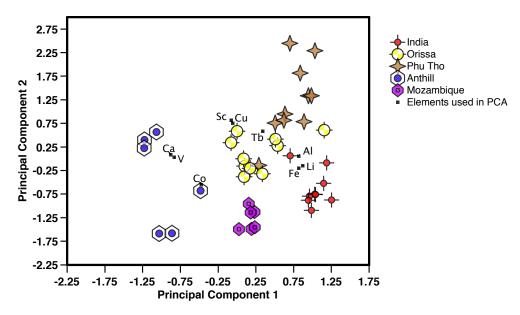



Figure 8.4.3:Principal component analysis of the group 2 almandine-pyrope garnets. The first component summarizes 44% of the variance and the second component accounts for 22%.

Lastly, the Lam Dong garnets were clearly different from the other two groups, being primarily spessartine garnets. A 3D scatterplot also shows that these samples have high concentrations of In (1-8ppm), Ti (802-1022 ppm) and Zn (187-260 ppm), the highest concentration of these elements of all the sources. (Figure 8.4.4).

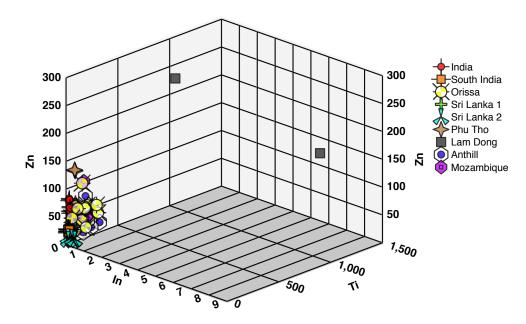



Figure 8.4.4:A 3D scatterplot showing the high levels of In, Ti, and Zn (all PPM) in the Lam Dong garnets as compared to the other garnet sources.