Milwaukee's community renewal program: residential blight analysis appendix on methods and findings.

[s.l.]: Southeastern Wisconsin Regional Planning Commission, 1964

https://digital.library.wisc.edu/1711.dl/VTNEHI4KN55JW8C
http://rightsstatements.org/vocab/InC/1.0/

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Appendix－Methods and Tables

MILWAUKEE'S
 COMMUNITYRENEWAL PROGRAM

RESIDENTIAL BLIGHT ANALYSIS

APPENDIX ON METHODS AND FINDINGS

DEPARTMENT OF CITY DEVELOPMENT MAY, 1964

The Honorable Henry W. Maier
Mayor, City of Milwaukee
The Honorable Common Council City of Milwaukee

As part of the preparation of a Community Renewal Program for the City of Milwaukee, the Department of City Development takes pleasure in submitting this report entitled Residential Blight Analysis.

An understanding of the trends and present condition of housing and of the interrelationships among housing characteristics is basic to a successful program for the improvement of the quality of housing and residential neighborhoods. This report makes available in charts, tables, and maps summary information about Milwaukee's housing. It also describes the methods used in determining the relative degree of residential blight in the 6,300 blocks of the city, and it reports some of the relationships documented in the course of extensive electronic computer analysis of data for each block of the city.

A technical appendix, published separately, contains further explanation of the procedures followed in the study as well as the detailed findings. Much additional information, too extensive for publication, is available for review in maps and tabulations on file in the library of the Department of City Development.

While this report presents summary information and the methods of analysis which provided the initial evaluation of need for renewal, the actual areas recommended for renewal action during the first six-year program are shown in the report Milwaukee's Community Renewal Program: Projects and Objectives.

Respectfully submitted,
 \sim

RICHARD W. E. PERRIN, Director
Department of City Development

TABLE OF CONTENTS

Summary 1
Data Needs and Resources 4
Data Needs 4
Data Resources 5
Block Statistics 7
Goals For Analysis 7
Description 9
Method of Analysis of Census Block Statistics 12
Summary 12
Development of Indices of Housing Quallty 14
Index A. 16
Index B 17
Index C 18
Index I 20
Index 11 21
Index III 22
City-Wide Summarization 26
T-Scores (Profile Scores) 26
Computer Mapping 28
Field Study of Condition of Structures 30
Survey Method. 31
Comparison to Census - Number of Units 32
Comparison to Census - Condition of Units 33
Associations Observed Among Housing Characteristics 36
Rank Difference Correlations 36
Product Moment Correlations 39
Multiple Regression Analysis 40
Feasibility of Using Non-Census Data In Inter-Censal Periods 41
Related Studies 44
The Role of Other Departments in the Blight Analysis. 45
Data Bank. 46

TABLES
Table Number Title Page
1
Block Statistics Edited Output Record 1123
Sample Values of Index A. 19
Sample Values of Index C. 19
Comparison of Index Scores Ranking Blocks from Worst to Best 24
Comparison of Percentage Scores Ranking Blocks from Worst to Best 25
Structure Condition Survey - Instructions to Enumerators 31
Changes to Housing Unit Count, 1960-1962 32
Condition of Structures, U.S. Census of 1960 and DCD Survey, 1962 34
Correction for Tied Scores and Comparison to Product-Moment Correlations 38
Product-Moment Correlation of Varlables With Index I 42
Predictive Value of Data Available for Intercensal Updating 43
Content of IBM Card One: Original Census Data and Indices 47
Content of IBM Card Two: "T" Scores and Indices 47
Report One: Selected Housing Characteristics and Indices for City Blocks (sample page) 48
Table NumberTitlePage
15
Report Two: Comparative "T" Scores and Indices for City Blocks (sample page) 49
16
City Summary of Block Distributions According to "T" Scores 50
City Summary of Blocks, Housing Units, Population, RentedUnits, Average Rent, Low Rent Units, Dilapidated, Deterior=ating, and Deficient Units:
According to Index I 51
17-A$17-B$$17-C$
17-D
17-E
17-F
$17-G$
17-H
17-1
18-A
18-B
18-C
1952

 According to Index 111
 According to Index III 53
According to Index A. 54
According to Index B 55
According to Index C. 56
According to Per Cent of Vacancy 57
According to Per Cent of Overcrowding 58
According to Per Cent of Sound Units With All Facilities 59

17-J
17-J
According to Value per Single-Family, Owner-Occupied Unit 60
Rank Order Correlations:Composite Indices.61
Composite Indices and Selected Variables 62
Selected Census Variables 63
Rank Order Multiple Correlations: Indices and Selected Census Variables 64Product Moment Correlations: Indices and Variables, IncludingExterior Inspection of Residential and Mixed Use Structures:
3100 Blocks Containing Both Owners and Renters 65
1460 Blocks Containing Owners Only 66
900 Blocks Containing Renters Only 67
Table NumberTitlePage
21 Regression Equations Utilizing Census Variables and Exterior Inspection to Predict Index Values and Selected Variables. 68Product Moment Multiple Correlations Using Only ThoseCensus Variables Which Could Be Duplicated in IntercensalYears Without Interior Inspection of Structures.69
FIGURES
21
Sound, Per Cent of Total Housing Units with All Plumbing Facllities, Actual "T"-Score Values for 5,452 Blocks 70
Value per Unit, Actual "T"-Score Values for 4,391 Blocks. 71

Two basic resources were utilized in the delineation of blighted areas in Milwaukee: block statistics of the U. S. Census of Housing for 1960, and exterior inspection and evaluation of all structures in the city, both residential and non-residential, by the Department of City Development.

The two evaluations were similar in their overall classification of units. The census classified 87.7 per cent of housing units as "sound". The DCD classified 85.8 per cent of housing units as "good". According to the census, more than 29,000 units were in "deteriorating" or "dilapidated" structures. The local survey identified 33,000 units in "fair" or "poor" structures.

The methods described in this report are designed to be useful for an accurate first screening of problem blocks. In addition, they serve adequately for the detailed analysis which accompanies Community Renewal Program definition and the selection of suggested treatment areas. Since the CRP covers a period of several years in its most immediate aspects, and many years in its general effect, these methods are not designed to take the place of the necessary interior inspection and evaluation of each structure which takes place during the survey-and-planning phase of project planning.

As a city-wide program, this initial evaluation did not concentrate upon the supposed poorest areas of the city. Instead, it included all the blocks of the city with no predetermination of problem areas. Each block was evaluated individually rather than as part of a larger aggregate such as census tract or quarter-section in order to arrive at preliminary delineations which would be as realistic as possible.

Although this particular report limits itself to a discussion of the evaluation of "need", or relative housing quality, many other considerations in addition to the basic element of "need" necessarily enter into the definition of projects and their scheduling as part of a comprehensive program of renewal. These considerations include planning goals for the community, market factors, the effect of expressway scheduling and other capital improvements, the strategic effect of a given project in encouraging private renewal, and others.

This appendix outlines briefly the various analytic methods which were part of the overall examination of housing quality in Milwaukee. Also included are summary tables, the complete tables of correlation coefficients, the regression equations which were developed in seeking methods for estimating housing quality and exploring the relationships among housing characteristics, and sample pages of the reports which pertain to individual blocks, the total of which would be too bulky to publish.

The various mathematical approaches utilized in the several steps of the analysis can be briefly explained as to purpose and usefulness:

Index 1 - The "best measure" of housing quality. A concise overall expression of. the quality of housing in each city block, combining several pertinent items from the 1960 census in a suitable relative form.

Indices A, B, C, II, III - Alternate methods of expressing housing quality in summary form.
"T"-Score - A device for expressing a fact about any given block in terms which offer direct comparison to other facts about the same block or to the facts about any or all of the rest of the blocks of the city -- a common scale.

Correlation Coefficients - simple linear - Values which range between zero and one to express relationships which vary from chance to complete dependability between two different situations, e.g., between "high percentage of dilapidation" and "low rent".

Correlation Coefficients - simple rank order - Similar to the above but based upon two sets of ranks rather than upon sets of measurements.

Correlation Coefficients - multiple linear - Similar to the above but usually approaching closer to 1.00 (and further from . 00) and, therefore, expressing a greater degree of association and more dependability since combinations of more than one kind of information can be used to estimate or predict the unknown item.

Regression equation - A formula for combining kinds of information which have been shown by their correlation coefficients to be efficient aids in estimating some unknown items, e.g., "housing quality". The regression equation tells how to estimate; the correlation coefficient tells the percentage of "success" to expect in the resulting estimates.

The goals of the blight analysis in residential areas included the following:

1. A block-by-block evaluation of housing quality.
2. A block-by-block description of housing characteristics.
3. Block profiles relating to housing characteristics.
4. A single-term index of blight.
5. A ranking of all blocks in terms of this index.
6. Alternate indices.
7. Totals of blocks, population, housing units at each quality or "blight" level.
8. Totals of owner-occupied and renter-occupied units at each level.
9. Totals of rented units in low-rent categories at each level.
10. Totals of dilapidated, deteriorating and deficient units at each level.
11. Study of the association of housing characteristics as expressed by simple and multiple correlation coefficients.
12. Estimating equations for measurement of blight with and without current census data.

Data Needs

The data requirements of the CRP difier markedly from the data requirements of a redevelopment project or a conservation project, even though these may be the most typical form of activity envisioned in the Program.

The CRP encompasses the whole gamut of corrective and protective measures which the city may take to defend and improve its livability. It is concerned with all levels of housing quality as well as with the good health of both residential and non-residential areas. For CRP planning, it is important to recognize potential assets as well as liabilities in residential, commercial and industrial areas.

The CRP is time-phased. Its proposals will be carried out over a period of several to many years. A precise measure of current eligibility for federal aid is, therefore, not the primary goal of its studies. It is equally important to develop data systems which can add to the technical and popular understanding of the dynamics of housing, which can reflect changing conditions; can explore relationships among housing characteristics, population characteristics, land use patterns and socio-economic trends in the community, and which may even permit the testing of alternative public policies designed to preserve and enhance the livability and vitality of the community.

The CRP data needs are similar to the overall data needs of city planning. They include access to a broad range of information, including housing, land use, population, construction, assessment and other data.

They also include flexible and effective methods of collecting, summarizing, analyzing and presenting this information. Data inputs to the CRP should be comprehensive, city-wide in coverage, including as wide a range of pertinent data as possible, updatable, flexible so that data can be considered in relation to the individual block or to a variety of larger areas of which the block may be a part. These needs imply that it is necessary to take full advantage of electronic data processing and of newly developing analytic tools such as computer graphics and operations research techniques.

Data Resources

The chief resources which were considered for use in initial CRP development included 1960 Census of Housing, Department of City Development survey, and data from other city departments on assessed valuation and building construction.
U. S. Census of Housing, 1960 Block Statistics. This data provided the most important information. A description of the method of analysis of block statistics data is contained in the next section.
U. S. Census of Population and Housing, 1960 Tract Statistics. This data was put on punched cards for use in describing the various renewal areas as they were defined. This data did not enter into the original dellneation of areas on the basis of housing condition, however. Tract data was not utilized to define problem areas, but rather to describe them and to analyze and evaluate their needs after these areas had been defined on the basis of the block statistics data, together with DCD field studies of structural condition, land use and master plan consideration.

DCD Field Survey of Structural Condition. An exterior inspection of each structure in the city was made by the DCD. Both residential and non-residentlal structures were graded on a four-point scale from good to poor. This survey yielded the following information:

1. Number and proportion of structures in each block, tract, and quarter-section, and for the city as a whole, by condition. (Census data is in terms of dwelling units, not structures.)
2. Amount and proportion of land area in each block, tract, etc., which is occupled by structures of each condition.
3. Direct comparison between census and DCD estimates of the condition of dwelling unlts - for testing correctness of each.
4. Evaluation of the non-residential structures of the city.
5. Relation between structural condltion and land use, zoning and location.

DCD Fleld Survey of Land Uses. Detalled punched card records of land use and zoning have also been prepared, summarized and analyzed. They will be discussed in detall in a separate report.

Assessed Valuation Data. Assessment data provided by the Office of the Tax Commlssioner was used to estimate acquisition costs in proposed redevelopment areas. Study of the possibilitles of also using assessment data as a means of estimating the current condition of areas of the clty and up-dating the CRP suggests that a primary problem in incorporating such data may be the establlshment of common codes for blocks in order to llnk valuation data with census and land use information. In addition, it will be necessary to examine on a sample basis the correlation of valuation and Index 1 to confirm this data's apparent usefulness.

Housing Division Inspection Records. Housing inspection records malntained by the Heal th Department constitute an Important resource in the analysis of the selected areas where these inspections have been carried out. They were not used in the present study of comparative housing quality, however, because they do not provide comprehensive coverage of the entire clty.

Construction Records. The Bullding inspector maintains a record, in punch card form, of new construction, conversions, remodelings, and demolitions authorized by building permits. When it becomes possible to include a census tract as an area identification code, this data will add significantly to the city's ability to keep the CRP up-to-date.

Goals for Analysis

The DCD's analysis of block statistlcs and related data was designed to achleve the following goals:

1. Information for each block in the city on the percentage of housing units affected by each reported characteristic - dilapidation, overcrowding, owner-occupancy, etc.
2. A method of describing the relative strong points and deflciencies of each block. An at-a-glance profile for each block showing how it compared with all of the other blocks of the city with respect to each reported characteristic.
3. One single measure, if possible, that would tell enough about the quallty of housing in each block to permit a ranking on the basis of need for renewal action.
4. A ranking of all the blocks in the clty from the worst to best housing condition. A report grouping the blocks of the clty according to this ranking.
5. A serles of alternatlve indices of housing quality to provide a comparison to the one index initlally judged most dependable in advance of a test of this judgment.
6. Summary tables showing the number of blocks in each housing condition class. (City-wide summarles of housing unlts by condition are avallable in the census, but no such summary of blocks by level of need for renewal existed.)
7. A summary of the number of housing units in low-rated blocks, and in each quallty level.
8. A summary, at each quallty level, of the number of owner-occupled and renteroccupied units, and also (on the basls of present rents) an estimate of the number of households which might be eligible for public housing.
9. A summary of the number of dilapidated, deteriorating and deficlent housing units included at each quallty level.
10. Increased information on the way in which various housing characteristics are associated with one another.
11. Investigation, through the calculation of regression equations and multiple correlations, of the possibility of developing predictive formulae sufficiently valld and reliable to screen areas for eligibillty for various types of renewal action. Such formulae should offer significant improvements over the preliminary indices devised at the outset of the study.
12. A series of maps depicting the geographic distribution of housing characterlstics and quallty levels detalled to show individual blocks.
13. A second series of maps deplcting the geographic distribution of housing characteristics and quality levels summarized to approximately 400 quarter-section areas for simplified display and analysis.
14. Flexible records to facilitate recombining of block data into specifically dellineated renewal areas, or into alternative special-purpose planning areas for summary and analysis.
15. Supporting data from the census tract statistics in sultable form for mapping or tabular summarization in relation to delineated renewal areas.
16. Comparison of census information and local agency data to provide a check on each source, a test of the DCD windshield survey, and improved estimates of quality based on the combined sources.

The achievement of the foregolng goals rested largely upon extensive use of electronic data processing.

The 1960 Census of Housing Block Statistics - Description

Several major improvements made the 1960 census of housing a much more useful tool for renewal studles than the 1950 census.
(1) An intermediate category, "deterlorating" units, was identifled where formerly only dilapidated units and standard unlts were. As a result, the classification of blocks according to the condition of housing became much more discriminating. (2) Dilapidated units were separated from units which lacked plumbing facilitles, thus permitting these two conditions to be distingulshed from one another, something which was not possible in 1950 .
(3) A more complete reporting of living units, especially in close-in areas, was achleved by the inclusion of many single-room living quarters not considered dwelling units in 1950 , with a consequent truer appralsal of some poor living conditions formerly undetected. Population in housing units and population not in housing units were reported for each block.

Table 1 Indicates the data which was avallable for each block from the "Block Statistics Edited Output Record" (a magnetic tape record). This tape record was purchased by the Clty of Milwaukee from the Bureau of the Census and used as the source for analyses of housing conditions.

In place of the very useful added data on structure and environment that the American Public Health Assoclation or simllar survey techniques would provide, considerable use was made of contract rent and the average value of owner-occupled single-family homes. Rent and value were assumed to represent the intangible "package" of characteristics assoclated with the dwelling unlt, such significant, but unreported, items as the esthetic values of the structure and environment, lot width, room size, light and air, location with respect to schools, churches, transportation, shopping, utilities, employment, nulsances and hazards, etc.

The task of surveying for these and other important factors of housing quallty and then of welghing them properly in an overall evaluation was judged too costly, time consuming, and difficult. Any analysis of such items would therefore be restricted to areas already selected, on the basis of census and other criteria, as treatment areas. Therefore, to compensate for the limited range of variables avallable in the census block statistics
that would have to represent the whole of the concept "quality of housing", it was belleved that rent and value as "dollar symbols" would be useful in distingulshing levels of housing satlsfaction.

These "dollar symbols" would, of course, be limited in their ability to represent housing satisfaction if the purchaser did not have an opportunlty to exerclse cholce among competing housing accommodations.

The fact that the housing supply in Milwaukee was relatively adequate by 1960 , as indicated by vacancy rates which rose from less than one per cent in 1950 to 3.3 per cent in 1960 (1.1 per cent in vacancy rate in sales housing and 5.6 per cent vacancy rate in rental housing), and also by a drop in the percentage of married couples without their own household (from 7.7 per cent in 1950 to 1.7 per cent in 1960), made it reasonable to assume a fair amount of cholce of housing accommodations for most familles. This competitive situation was expected to assure reasonable correspondence between levels of rent or value and the quality of the housing assoclated with them.

TABLE 1

BLOCK STATISTICS EDITED OUTPUT RECORD (20 WORD)

Attachment	chmen Techn	1 Memo	ndum No. (Suppleme	- 1)
October 20, 1961				
	Word	Bit	Language	1 tem
A	0	35-0	XS3	ED No.
B	1	35-18	XS3	Prefix area
C		17-0	XS3	Clty block no.
D	2	35-0	XS3	Serlal No.
E	3	35-18	Binary	Household population
F		17-0	"	Group quarters population
G	4	35-0	"	Sound units with all facllitles
H	5	35-0	11	Sound units lacking facllitles
1	6	35-0	"	Deterlorating units with all facllitles
J	7	35-0	11	Deterlorating units lacking facllitles, with flush tollet
K	8	35-0	11	Deterlorating unlts lacking facilitles, wlth no flush tollet
L	9	35-0	11	Total dilapldated units
M	10	35-0	11	Total owner occupled unlts
N	11	35-0	11	Total owner occupled reporting value
0	12	35-0	11	Total value reported (dollars - $\frac{1}{250}$ of actual value)
P	13	35-0	11	Owner occupled total rooms
Q	14	35-0	11	Total renter occupled units
R	15	35-0	"	Renter occupled total rooms
S	16	35-0	11	Total rent reported (dollars)
T	17	35-24	11	Renter occupled units reporting rent
U		23-12	11	Total nonwhite unlts
V		11-0	11	Units with 1.01 or more persons per room

[^0]present the totals for dwelling unlts, population, number of rented unlts, low-rent units, dilapidated units, deterlorating unlts and unlts lacking facilitles. (6) (7) (8) (9)
(See Table 17)
7. A report on the correlation coefflclents observed between 100 pairs of varlables including original census characteristics and the composite indices. (10) (11) (See Table 18)
8. Computer-printed maps of the city at 2640^{\prime} scale (one-half mile to the inch) identifying the poorest ranking blocks of the city. (12)
9. Computer-printed maps of the city at 2640^{\prime} scale summarizing various housing characteristics in each of approximately 400 quarter-sections of the clty. (13) (See Maps Section for drafted versions of some of these.)
10. Correlation coefficients between the $D C D$ structural condition rating and the census information. (16) (See Table 19)
11. Maps comparing housing unit counts by block based on DCD and census enumerations. (16)

Items 1 and 2, and 4 through 7 were completed by Remington-Rand Corporation to the specifications outlined by the planning staff. Item 8 utilized the computer graphlc techniques developed at the Unlversity of Washington and publlshed by the H.M.F.A. as CRP Guide 1: Using Computer Graphics in Communlty Renewal. Approximately 50 maps were prepared which provided part of the determination of renewal treatment areas. Item 9 utilized a different mapping program developed by the City of Mllwaukee before the University of Washington techniques became known.

Multiple regression analysis of the punch card records named in item 5, to which Information galned from the $D C D$ fleld surveys had been added, yielded additional correlation matrices and some potentially useful regression equations. (See Table 2l)

Development of Indices of Housing Quallty

Because each of the individual census varlables is subject to limitations as well as inaccuracies if used alone as a measure of blight, attempts were made to construct indices from the census data that would reflect the pertinent avallable varlables in one conclse rating. A primary difficulty in developing a good measure of blight is that there is no Independent criterla against which these experimenfal measures can be readily validated. Even the most authoritative and detalled of avallable measures, such as the American Public Housing Association scale, are favorlte targets for critical artlcles pointing out thelr inabllity to measure what they set out to measure.* In splte of the difficulties, however, it is necessary to make an attempt at as good an index as possible in order to identify the degree of need for renewal action in each block. (It is no real help to suggest that no composite index be devised at all and that the separate census items be used. At some polnt, whether it is done consclously or unconsclously, the separate items are brought together with some system of weighting, usually not defined, and specific combinations of factors are relied upon even though they may never be specifled.)

Since detalled,in-the-building surveys will be required in the process of carrying out any given project, and since not all projects could be accomplished within even a perlod of several to many years, it was not belleved approprlate or necessary that the CRP itself should attempt any detalled interlor surveys. However, the CRP would require better indices than the simple count of dilapidated or deficient housing units.

Several Indices were suggested, of varying difficulty to compute and of initlally unknown efficacy. One of the purposes of the study would be to test these measures so that they could be interpreted with greater confidence, and these or better indices refined for further use. An additlonal purpose, after defining a "best measure" from the census data, would be to identlfy types of information which would elther be continuously avallable locally, such as assessed valuation, housing inspection and construction and remodeling data, or could be obtalned with reasonable effort, such as DCD surveys of
*A.I.P. Journal, May, 1963, "Use and Mis-Use of Measurement Scales in City Planning", Gerald Hodge
the condition of structures as judged by exterior inspection, which would correlate well enough with this "best measure" to provide continuling dependable information between the decennial censuses.

Accordingly, several logical-seeming indices were suggested which combined and welghted the avallable factors from the census. These are described in turn.

Index A. Index A is a welghted sum of the percentages of housing units in each block which are dilapidated, deteriorating or deficient in facilities, modifled by the average rent per room as Indicated in the following formula:

```
A = 10(20 + 3 (% dilapidated) + % deterlorating + % deficient)
                    10 + average rent per room
```

The weights which were assigned to each of the three condition items resulted in the following total contributions to Index A considering all of the blocks of the city:

Factor	Welght		Total Weight	Percent of Total Weight
Dilapidation	3	4,170	12,510	22\%
Deterloration	1	25,354	25,354	43\%
Deficlency in facllitles	1	$20,493$	20,493	35\%
Total		$50,017$	58,357	100\%

The largest contribution to index A is made by deteriorating units because of their large numbers. The next most significant effect is exerted by units deficient in faci-
lities. Even though dilapidation was welghted three times more heavily than the others, It contributes only 22 per cent to the total score. The weights were assigned arbitrarlly on the basis that the distinction between deterlorating and dilapidated housing units was not a sharp one, it belng suspected that some units classed as dilapidated In 1950 were now classed as deteriorating. Nevertheless, it seemed important to welght dilapidation considerably heavier than any other item. Equal weights were assigned to deterloration and deficlency for the practical reason that it was difficult to make a judgment as to which condition should recelve the heavlest penalty.

As a further means of distingulshing the relative quallty of blocks, rent per room was Introduced into the denominator of the term so that quality varles inversely with rent. A constant was introduced into the denominator in order that this effect not override the condition items, and a compensating constant was introduced into the numerator to create a whole-number index which would vary between 1 and 150 . The combined effect of changes in rent and condition is shown for hypothetical blocks in Table A. (See Table 17-D)

Index B. Index B is the unwelghted sum of the percentages of housing units which are overcrowded, lacking in exclusive use of plumbing facilities, or vacant.

This very simple index attempts to consider only occupancy factors in order to contrast these to factors pertalning to the structures themselves. For this index, lack of facilitles is interpreted to mean over-use of facilitles rather than the absolute lack of them. It is assumed that most structures which contaln unlts that are classed as lackIng facilltles could serve a smaller number of households adequately, but have been subdivided to accommodate too many households. Simple reduction in the number of households occupying the structure might be sufficient to remove such deflciencles.

Since overcrowding and shared facillties are not mutually exclusive conditions, the total percentage of affected units might concelvably exceed 100 per cent. In order to conserve card capacity and because it was not belleved necessary to distinguish scores so extreme, the maximum score recorded was 99.9 per cent. In spite of the shortcomings involved in combining the few avallable measures of over and under-occupancy, it was belleved desirable to observe the behavior of an index based solely on occupancy characteristics.

No use was made of data on non-white occupancy, nor on renter-occupancy since, even though associations among owner-occupancy, renter-occupancy, race, value and condition of housing might be observable, these items appear inapproprlate at this stage as part of a definition of a housing problem. At another stage, as part of a predictive formula, this difficulty would largely disappear. (See Table 17-E)

Index C. Index C Is a welghted sum of the percentages of housing units which are dilapldated, deterlorating or deflclent in facillties, modified by the average value per room of single-famlly, owner-occupled housing units, as indicated in the following formula:
$C=2000(20+3(\%$ dilapidated $)+\%$ deterlorating $+\%$ deficlent $)$
500 + average value per room
Index C is in all respects identical with Index A except that value per room is used in the denominator instead of rent per room so that it is indicative of the quallty of blocks with five or more owner-occupled unlts, whereas Index A covers blocks with five or more renter-occupled unlts, thereby giving coverage of a largely overlapping, but somewhat different group of blocks. Of Mllwaukee blocks, 3,157 are rated by both Index A and Index C. An additional 1,393 blocks are rated by Index C only, there belng too few rented units (under five) to evaluate in these blocks. Conversely, 826 blocks have only Index A computed. Tables 1 and 2 indicate that, because of the constants used, Index C is more responsive to varlations in owner-value than is index A to varlations in rental value. Index C would have been made more directly comparable to Index A had a constant of 1000 been used in both numerator and denominator. (See Table 17-F)

Table 2
Sample Values of Index A
$A=\frac{10(20+3(\% \text { dllap. })+\% \text { deter. }+\% \text { defic. }}{10+\text { rent per room }}$

Per Cent of Unlts Which Are:				Rent Per Room			
					ndex		
0	0	0	10	7	7	6	
5	0	0	18	13	12	10	9
5	5	5	22	17	15	14	11
10	10	10	35	26	23	21	18
20	20	20	60	44	40	36	30
20	50	50	90	67	60	54	45
50	30	30	115	85	76	69	58

The value of Index A for the entire city is 16.

Table 3
Sample Values of Index C
$C=\frac{2000(20+3(\% \text { dilap. })+\% \text { deter } .+\% \text { defic. }}{500+\text { value per room }}$

0	0	0	40	27	20	16	13	11	10
5	0	0	70	47	35	28	23	20	18
5	5	5	90	60	45	36	30	26	22
10	10	10	140	93	70	56	47	40	35
20	20	20	240	160	120	96	80	69	60
20	50	50	360	240	180	144	120	103	90
50	30	30	460	306	230	184	153	131	115

The value of index C for the entire clty is 27

Index 1. Index I is a welghted average of the relative standings (T-scores) of each block as compared to the other blocks of the clty according to the following formula:

$$
1=\frac{3 T_{d I I}+2 T_{d e t}+2 T_{d e f}+T_{0}+T_{r}+T_{v}}{10}
$$

```
where | = Index I
    Tdil = dllapidation T-score
    Tdet = deterloration T-score
    T def = deficlency T-score
    To = overcrowding T-score
    Tr
    TV = value per room T-score
```

In those blocks for which rented unlts or owner-occupled units are missing the divisor becomes 9 rather than 10.

Index 1, by combining different types of data in the form of standard scores, avoids the problem which occurs with the attempted combination of non-standardized data - the problem of unintentional misweighting. All attempts to combine different kinds of data into a single Index suffer from the major problem of non-comparability and the difflculty of equating different kinds of information. Just how should differences of $\$ 5$ in rent, $\$ 1,000$ in value, five per cent in overcrowding, one-half room in the average size of a housing unlt, 10 per cent vacancy, and so forth, be related most meaningfully to each other? And do these absolute differences in rent, value, unlt size, etc., have the same meaning at all levels of value or do they differ as they occur higher or lower on a scale?

The simplest method of removing this difficulty of combining different kinds of data is to standardize each scale so that all observations are in common terms. The computation of these standard scores is explalned under " T "-scores on page 18 . Once scores have been standardized they may be compared with one another, added, or otherwise manlpulated with
confldence that differences mean approximately what they appear to mean. The problem of weighting is thereby simplified through the elimination of unrecognized sources of confusion and misweighting.

The true welghting problem, the decision as to the relative importance of varlables, remalns, of course, and this may be resolved only by expert judgment or, where possible, through regression analysis and the development of predictive equations.

In Index I, welghts have been assigned so that 50 per cent of the final score is contributed by items formally accepted as defining substandardness (dilapidation and deficient facilities). An additional 20 per cent is contributed by another measure of poor condition (deterloration). The remaining 30 per cent is based upon rent, value of single-family homes, and overcrowding.

As indicated in Table l7-A, the five per cent of blocks which rank highest on Index I contaln 60 per cent of the dilapldated units of the city, 29 per cent of the deteriorating unlts and 18 per cent of the deficlent units. The 20 per cent of blocks which rank highest on Index 1 contaln 90 per cent of the dilapidated units, 76 per cent of the deterlorating units and 68 per cent of the deficlent units of the city.

Index 11. Index 11 is an estimate of the relative value of housing in each block computed from the block's relative standing (T-score) with respect to rent per unit, welghted according to the percentage of units which are renter-occupled, plus its relative standing with respect to value per unit, welghted according to the percentage of units which are owner-occupled, according to the following formula:
$11=T_{r} \times P_{r}+T_{V} \times P_{V}$
where: $11=$ Index 11
$T_{r}=$ rent per unlt T-score for block
$P_{r}=$ percentage of occupied unlts which are renter-occupied
$T_{V}=$ value per unlt T-score for block
$P_{V}=$ percentage of occupled unlts which are owner-occupied

This index is concerned with predicting the quallty of housing from value and rent alone. If these "dollar symbols" can be found to identlfy the same blocks as are identifled by the condition variables and by eventual selection of problem areas, they suggest that such locally avallable measures as assessed valuation also could be used to predict the need for renewal. A logical error inherent in this Index is the equating of rent and owner value on the assumption that blocks with the lowest rents are similar in quallty to the blocks with the lowest owner values, and blocks with the highest rents are similar in quallty to the blocks wlth the highest owner values. In general, of course, the housing which is renter-occupled is of somewhat lower quallty than housing which is owner-occupled. It was not known, however, just how great this difference might be and whether it has a significant effect upon the usefulness of this index. (See Table l7-B)

As shown there, the highest ranking blocks, containing 7 per cent of the city's housing units, include 28 per cent of the dilapidated units, 19 per cent of the deteriorating units and 26 per cent of the deficient unlts.

Index 111. Index 111 is an estimate of per capita housing expenditures within each block, computed by adding total estimated monthly contract rent paid in the block and one per cent of total estimated value of owned homes within the block and dividing the sum by the total population in housing units in that block according to the following formula:
$111=\frac{R+\frac{V}{100}}{P}$
where: $111=$ Index 111 $R=$ total rent pald in block $V=$ total valuation of owner-occupled housing unlts in block $P=$ total population in households in block
R was estimated by multiplying the total rent reported by the ratio of total renteroccupled units to renter-occupied units reporting rent.
V was estimated by multiplying the total value reported by the ratio of total owneroccupied units to owner-occupled unlts reporting value.

Index 111 uses rent and owner value, but assumes a different relatlonship between them than does Index II. Whereas in Index $\|\|$ the two distrlbutions, rented units and owneroccupled units, are assumed to cover the same range of quallty so that equal T-scores or relative positions within the two distributions are assumed to be equal, no such assumption is used in Index lll. Instead, it is assumed that there is a constant ratio between the dollar amounts irrespective of thelr position in the total range of rents or values. The basic assumption in index lll is that monthly contract rent varles around one per cent of the capitallzed value of a housing unlt. Thus an $\$ 80$ rent would be equated with a value of $\$ 8,000$ and a $\$ 160$ rent with a value of $\$ 16,000$.

Indexes 11 and $\|\|$ will both erroneously identify public housing areas as problem areas because of their low rents. Thls type of mistake is easily spotted, however, since publlc housing areas are known.

A more serious disadvantage is thelr inabllity to adjust for possible changes in the relationshlp between rent or value and condition of housing between white and non-whlte households. This problem can be handled better after the correlation analyses and regression equation development are completed. (See Table li-C) As shown there, the five per cent of blocks whlch have the lowest per caplta housing expenditures as computed in Index $1 \| 1$ Include 6 per cent of all housing units and 30 per cent of the dilapldated unlts, 16 per cent of the deterlorating units, and 8 per cent of the deflcient unlts in the city.

Table 4
Comparison Of Index Scores Describing Blocks
Ranked In Groups From Worst To Best

Blocks In Order	Index 1	Index 11	Index 111	Index A	Index B	Index C
$4001-5452$	$40.0-46.3$	$20.0-44.0$	$\$ 99.90-\$ 46.00$	$0-4$	$0.0-6.4$	$4-9$
$3001-4000$	$46.4-47.7$	$44.1-49.0$	$45.90-38.70$	$5-7$	$6.5-10.9$	$10-12$
$2001-3000$	$47.8-49.5$	$49.1-53.2$	$38.60-30.50$	$8-11$	$11.0-19.0$	$13-17$
$1001-2000$	$49.6-53.4$	$53.3-57.4$	$30.40-24.30$	$12-20$	$19.1-29.6$	$18-31$
$501-1000$	$53.5-58.6$	$57.5-59.6$	$24.20-20.40$	$21-33$	$29.7-41.9$	$32-53$
$401-500$	$58.7-59.6$	$59.7-60.4$	$20.30-19.60$	$34-38$	$42.0-46.6$	54.61
$301-400$	$59.7-61.4$	$60.5-61.0$	$19.50-18.40$	$39-44$	$46.7-53.3$	$62-73$
$201-300$	$61.5-63.9$	$61.1-61.7$	$18.30-16.50$	$45-51$	$53.4-63.0$	$74-89$
$101-200$	$64.0-69.5$	$61.8-63.0$	$16.40-15.10$	$52-66$	$63.1-80.4$	$90-111$
Worst 100	$69.6-83.0$	$63.1-75.0$	$15.00-6.00$	$67-150$	$80.5-99.9$	$112-234$

Table 5
Comparison Of Percentage Scores Describing Blocks
Ranked In Groups From Worse To Best

Blocks In Order	Per Cent Vacant	Per Cent Crowded	Per Cent Sound-Al1	Value Per Unit
$4001-5452$	$.0-1.9 \%$	$0.0-2.9 \%$	100.0%	$\$ 19,500$ up
$3001-4000$	$1.0-1.8 \%$	$3.0-5.9 \%$	$100.0-98.1 \%$	$16,500-19,499$
$2001-3000$	$1.9-3.7 \%$	$6.0-9.5 \%$	$98.0-91.1 \%$	$14,000-16,499$
$1001-2000$	$3.8-6.9 \%$	$9.6-15.0 \%$	$91.0-71.0 \%$	$11,500-13,999$
$501-1000$	$7.0-10.4 \%$	$15.1-20.0 \%$	$70.9-46.5 \%$	$10,000-11,499$
$401-500$	$10.5-11.5 \%$	$20.1-21.3 \%$	$46.4-40.1 \%$	$9,500-9,999$
$301-400$	$11.6-13.8 \%$	$21.4-22.9 \%$	$40.0-32.0 \%$	$9,000-9,499$
$201-300$	$13.9-17.0 \%$	$23.0-25.5 \%$	$31.9-21.2 \%$	$8,500-8,999$
$101-200$	$17.1-22.2 \%$	$25.6-31.0 \%$	$21.1-8.0 \%$	$8,000-8,499$
Worst 100	$22.3-90.0 \%$	$31.1-63.9 \%$	$7.9-0.0 \%$	$0000-7,999$

City-WIde Summarization

Therefore, summary statements of the number of blocks, number of persons, households, renteroccupied or owner-occupied, average rent, number of low-rent units, etc. within each level of blight as measured by the index scores should be useful in establishing the criteria, in terms of index scores, which will be used to suggest the need for various types of renewal action.
(See Table 17)
Table 4 compares the index values which describe the poorest 100 blocks in the city, the successively better 100 -block groups and the best blocks as measured in turn by each index. High scores indlcate poor blocks and low scores indicate good blocks in all indices except Index lll which can be read as dollars per month housing expenditure per caplta.

Table 5 compares percentage scores which describe the poorest 100 blocks in the city, the successively better l00-block groups and the best blocks as measured by selected census variables.
"T"-Scores (Profile Scores)
All of the census data for blocks were converted to "T"-scores. The "T"-scores used in Report Two, Map Series D, and Indexes 1 and II were developed for each census-reported varlable such as dilapidation, owner-occupancy, etc., in the following manner:

1. The mean (average) for each variable was calculated by summing the observed values In all the blocks and dividing by the number of blocks for which the variable was pertinent.

$$
\begin{aligned}
M=\frac{S X}{N} \quad \text { where: } \quad \begin{aligned}
M & =\text { mean } \\
X & =\text { an observed value in a block for a given variable } \\
S X & =\text { the sum of the observed values in all the blocks for that } \\
& \text { variable } \\
N & =\text { the number of blocks }
\end{aligned}
\end{aligned}
$$

2. The standard deviation from the mean was calculated by computing the square root of the sum of all the squared deviations from the mean divided by the number of blocks.
$S D=\sqrt{\frac{S(X-M)^{2}}{N}}$
```
where: SD = standard deviation
    X-M 2 = deviation from the mean in a given block
    (X-M)}\mp@subsup{}{2}{2}=\mathrm{ the square of each deviation from the mean
    S(X-M)}\mp@subsup{}{}{2}=\mathrm{ the sum of the squares
    N = the number of blocks
```

3. A standard score was computed for each block by dividing the deviation of that block from the mean by the standard deviation.

$$
z_{X}=\frac{X-M}{S D} \quad \text { where: } \quad \begin{aligned}
z_{x} & =\text { the standard score of a given block } \\
X-M & =\text { deviation from the mean in a given block } \\
S D & =\text { standard devlation }
\end{aligned}
$$

4. A "Y"-score was computed for each block by multiplying the standard score by 10 and adding 50. This modification is solely for convenience and does not change the relationshlps among the standard scores. (The range of unmodifled standard scores would theoretically be from about -3.00 through . 00 to 3.00 . The range of "T"-scores would therefore be from about 30 to about 80 . Thus the conversion eliminates negative amounts and decimal fractions.)
$T_{x}=50+10\left(z_{x}\right)$ where: $T_{x}=$ the T-score for a given block
$z_{x}=$ the standard score for the same block
An advantage of the conversion of data to "T"-score form is that one can then see at a glance the precise standing of each block in relation to each other block, or to all the blocks in the clty, with respect to each varlable. Also, the "T"-scores can be read as a series of block profiles showing the partlcular strengths and weaknesses of a glven block or group of blocks. Table 16 summarizes the individual "T"-scores and shows the number of blocks scoring at each level for each of these separate factors. All of the "T"-scores are constructed so that the larger scores signify the poorer conditions and the smaller scores represent the better conditions.
"Blight" is defined in both absolute and relative terms in this analysis. Indexes A, B, C and lll are composite scores based on absolute values. Their value in any given block is independent of their value in other blocks. Indexes l and ll are composite scores based on the relative standing of an individual block with respect to all of the other blocks of the clty.

It is possible to translate any of the relative terms back into more readily understandable equivalents, however. Any "T"-score for any block can also be read as the actual percentage or value by referring to the same tract and block in Report One. The specific conditions which caused a block to rank high or low on Index I or ll can also be interpreted by reference to Report One.

In general, the absolute scores (Indexes A, B, C and III and percentages and averages) and the relative scores (Indexes \mid and $\| \mid$ and the "T"-scores) have contrasting attributes. The absolute scores provide comparison between citles or between periods of time. They are also probably more easily understood or explained. The relative scores allow more meaningful combinations of various kinds of information into composite indices for a given city at a glven time. They are also unaffected by such complicating factors as inflation or the contrast between high-rent and low-rent citles. For example, if a given block were scored at two different census dates, the absolute score might indicate an increase in rent while the relative score indicated a decline in rent in comparison with an even more rapld increase in the rest of the city.

Computer Mapping

In the course of the development of the Milwaukee CRP over 100 computer maps have been produced. These have contrlbuted to the delineation of renewal treatment areas and to the general understanding of the structure of the city. They represent the beginning of what will probably be an extensive use of mapping to interpret and display information now in sultable punch card form for such analysis, including land use, zoning, population and housing data. With some additional work much of the data which other city departments now prepare in punch card form such as new construction, remodelings, demolitions, assessed valuation of land and structures, housing inspections, vital statistics, and many other items can also be mapped and analyzed.

Two basic mapping approaches were used. The first, with which Map Serles A, B and C were produced (examples in residential blight report, ilst of titles avallable from Department of City Development), was devised specifically for use with lBM Card One which carrled the orlginal census block statistics data from the magnetic tape. It is used to position data at regular oneminch intervals which, at the 2640 scale adopted for city-wide maps, represent half-mile intervals or quarter-section areas. At the same time that data is printed, an outline map (resolution 80 points to the square inch) of the city and boundaries of the quarter-sections may optionally be printed also.

This mapping program was developed to complement the translation of the census magnetic tapes for display and analysis of census block statistics data. The program is not completely generallzed; therefore, variations in field size from the Card One format would require modifications in the program. The only fixed limitation on the output is that it must be to regularly spaced intervals. The particular map outline may be varied to sult the user. The program is written for an 8 K IBM 1401 computer with tape drive.

The second mapping approach, with which Map Serles D was prepared, is described in the Urban Renewal Adminlstration's CRP Guide No. 1 together with other mapping and graphic display programs. The programs presented in the manual are far more powerful and more general than the mapping program first described. However, for certaln purposes the Milwaukee program has advantages over the others. It can both compute (add, subtract, multiply and divide) and print the results of these computations. The other mapping programs can elther print numerlc data or compute but do not do both. Use of the programs presented in the Guide has the further disadvantage of requirlng access to the IBM 7090 computer which is often not avallable. For a planning agency which can design its data gathering with the ultimate use of these mapplng and graphic display programs in mind and can arrange access to the IBM 709, 7090 , or the new 360 , these programs provide extremely powerful, flexible and potentially effective methods of data handling.

A FIELD STUDY OF CONDITION OF STRUCTURES

Survey Method
As a supplement to census findings, the Department of City Development conducted a survey of structural condition which included an evaluation of every structure in the city This evaluation was based upon external inspection only. The inspection was carrled out by two-man crews working from an automobile in residentlalareas and on foot in commercial areas. Condition was interpreted almost entirely in terms of malntenance. Intrinsic value, as such, was not considered.

A rating, on a four-point scale, was assigned to each structure after it had been viewed both from the street and from the alley, if there was an alley. If no alley existed and there was reason to suspect the structure was not in good condition, or the possible presence of rear dwellings, the survey crew would examine the rear of the properties on foot.

All structures, both residential and non-residential, were rated with the exception of accessory buildings such as residential garages. The rating scale which was used in classifying structures is shown in Table 6. (See Table 11-A and 23-B for a summary of survey findings) An average condition was determined for each block utilizing the following arlthmetic weights: good $=1$, fair $+=2$, fair $=3$, poor $=4$.

Structure Condition Classification
Instructions to Enumerators
(Only the structure proper will be considered; landscaplng, littered yards, conditions of auxillary buildings, etc. wlll be disregarded)

1. Good (G) (Conservation)

Structure is sound and requires only normal malntenance, e.g.,

1) siding - elther wood or artificlal - is in very good condition, although wood siding may require palnting.
2) very limited porch repalrs - spindle or stalr tread replacement, gutter or downspout replacement, etc. may be necessary.

Generally, structure gives impression of good, timely maintenance.
2. Fair plus (F+) (Rehabllitation)

Structure is basically sound, but shows signs of minor neglect

1) siding - spot replacement of siding may be required
2) replacement of a sash and/or casing may be necessary; porch may require considerable repalrs (but condition is short of complete replacement)
3) foundation - must be free of cracks (bricks must not show slgns of deterioration)
3. Fair minus (F-) (Rehabilitation possible, but very expensive)

Structure gives impression of neglect over a protracted perlod of time

1) siding - is in poor condition or shows signs of extreme weathering
2) porches - virtual replacement is necessary
3) foundation - may have minor cracks
4) chimney and roof - need major repalrs
4. Poor (P) (Redevelopment)

Structurally unsound and probably should be demolished

1) structure out of plumb
2) wood foundation
3) substantlal foundation cracks

The DCD fleld survey in 1962 identifled only 95 per cent as many housing units as did the census in 1960. The census enumerated 240,934 housing units; the fleld survey enumerated 229,093. The following table summarizes changes which are estlmated to have taken place between the census date and the planning survey dates.

$$
\text { Table } 7
$$

Changes to Housing Unit Count, 1960-1962

Nearly 18,000 fewer units, a seven per cent difference, were identifled in the field survey than would have been expected from 1960 census counts plus new construction since 1960. A major source of dlscrepancy appears to be in the treatment of rooming houses and hotels. While the census included some single rooms, including permanent occupancles in hotels, in the count of dwelling unlts, the Mllwaukee DCD survey identified each rooming house or hotel as one establlshment. The total number of rooming houses thus identifled was 2,189. In addition, 70 motels and hotels were counted. An average of 8 or 9 rooms in each rooming house or hotel would be required to provide a full accounting for the observed difference. (A check of blocks near the downtown area Indicates that the under-enumeration was concentrated in these areas, with many permanent residences classifled as hotels and rooming houses.)

It is probable, also, that a considerable number of units ceased to exist through unreported "deconversions" in which second-class dwellings (lacking individual plumbing facilities) and others were withdrawn from the market as the housing supply became more adequate and vacancy rates increased.

Comparison of Fleld Survey and Census Data - Condition of Structures
A direct comparison of the ratings for structural condition assigned by the census in 1960 and by the DCD in 1962 can be made. The table below summarizes the number of housing units in structures classified as sound, deterlorating or dilapldated by the census and good, fair or poor on a four-point scale by the DCD.

Table 8

> Condition of Structures, U. S. Census of 1960 and DCD Survey, 1962

Source	Condition of Structures	Number of Housing Units	Percentage of Housing Units
1960 Census	Total	240,934	100.0%
1962 DCD Survey	Sound	211,410	87.7
	Dilapidated	25,354	10.5
	Total	4,170	1.7
	Good	229,093	100.0%
	Fair	196,504	85.8
	Fair	13,229	5.8
	Poor	10,020	4.1

The two surveys classifled very simllar proportlons of housing unlts as good or sound, 88 per cent of units according to the census, 86 per cent of unlts according to the DCD survey. The category "poor" ls more than twice as large as the category "dilapidated" indicating that a good many structures classified as deterlorating by the census were judged as poor by the $D C D$.

The correlation between the DCD field survey and census blocks ranked according to the per cent of units dilapidated is . 50, with blocks ranked according to the per cent of unlts deteriorating is . 49, and with both dilapidated and deteriorating is . 59. These correlations are not higher because the coefficients are based on a comparison between average structure condition (DCD survey) and average housing unit by condition of structure (census). For technical reasons, it was not possible at this time to test the more logical assoclation between DCD housing units and census housing unlts even though the data is available for this type of comparison.

An analysis of the assoclations among census varlables and between census data and locally avallable data such as the DCD field survey of structural condition was carried out in two phases. Initlally, a set of rank difference correlations was developed as part of the first Remington-Rand processing of the census magnetic tapes. Subsequently, product moment correlations were obtalned for purposes of comparison.

Rank Difference Correlations

Twenty varlables were selected from the avallable census data and indices for correlation analysis. One hundred palred-comparlsons were selected for completion as shown in Table 18.

Each of the 100 correlation coefficlents was computed by means of the Spearman RankDifference method as follows:
$R=1-\frac{6 S D^{2}}{N\left(N^{2}-1\right)} \quad$ where: $\quad R \quad$ rank difference correlation coefficient
$D=$ the difference between a given block's rank with respect to variable 1 and its rank with respect to variable 2
$D_{2}^{2}=$ the square of the difference
$S D^{2}=$ the sum of the squares
$N=$ the number of blocks for which both varlable 1 and varlable 2 are available.

Correlatlon coefficients can vary from 1.00 (perfect correlation: A is always accompanied by B and as A increases, B increases also) through . 00 (no apparent relationshlp other than chance, A may or may not be accompanled by B) to -1.00 (perfect negative correlation: A is never accompanled by B, or as A increases, B decreases). If a high correlation is observed (one which approaches elther 1.00 or -1.00), it is possible to predict B if A is known, or A if B is known. If little or no correlation is observed (approaching . 00) knowledge of elther A or B does nothing to improve the ability to predict the other.

The correlations ylelded by the rank-difference method appear to indicate a high degree of predictabillty of certaln varlables on the basis of knowledge of other variables,
particularly if multiple correlations are derived so that the knowledge of more than one Independent varlable can be utillzed in attempting to predict a third variable. (See Table 19 for the reported values) However, the distribution of housing characterlstics throughout the clty does not follow the normal distrlbution assumed by statistlclans as the basis for most statements of rellabillty. A large proportion of the blocks have zero per cent of unlts dilapidated, deteriorated or lacking facllities, resulting in a very large number of blocks with tied scores.

Rank difference correlations should be adjusted for tied scores. Two formulae* are avallable for use in making thls adjustment. Rhoa assumes that one set of ranks is a factual, objective representation of a true situation and that a second set of ranks is a judge's estimate, or an approximation of a true situation. Rhob assumes that both sets of ranks are approximations or judgments and that correlation between them measures only agreement and not validity. The two formulae are given below:

$$
R h o_{a}=1-\frac{6\left(S\left(D^{2}\right)+T^{\prime}+U^{\prime}\right)}{n^{3}-n} \quad \quad R h o_{b}=1-\frac{S\left(D^{2}\right)}{1 / 6\left(n^{3}-n\right)-\left(T^{\prime}+U^{\prime}\right)}
$$

where: $S\left(D^{2}\right)=$ the sum of the squared deviations between ranks
$T^{\prime}=S\left(t_{3}^{3}-t\right) / 12$
$U^{\prime}=S\left(u^{3}-u\right) / 12$
$t=$ number of cases involved in a tie in one set of ranks
$u=$ number of cases involved in a tle in the other set of ranks
The result of making either of these corrections is shown in Table 9 for a limited number of the 100 rank-difference correlations. The degree to which those correlations are reduced is dependent both upon the proportion of ties in the distribution of a given variable and upon the strength of the assoclation as orlginally computed.

Table 9 compares the original and corrected rank-difference correlations with the product-moment correlation coefficients obtalned from a sample population generally similar to the first. (The sample population lacked blocks in which either renteroccupled units or owner-occupled unlts did not equal at least five.) in general, these product-moment correlations seem most consistent with Rhoa.
*Rank Correlation Methods, Maurice G. Kendall, M.A., London, Charles Griffin \& Company Limited, 42 Drury Lane, 1948

Comparison of Corrected and Uncorrected Rank-DIfference Correlations With Product-Moment Correlatlons from a Simllar* Group of Blocks

Items Correlated		$\begin{gathered} \hline \text { Observed } \\ \text { Rho } \\ \hline \end{gathered}$	$\mathrm{RhO}_{\mathrm{b}}$	Rho_{a}	Product-Moment R
Per cent Sound	Value per Unit	. 66	. 60	. 55	. 51
Renter Occupied	Nonwhlte Occupled	. 54	. 38	. 28	. 30
Sound	Index I	-. 77	-. 66	-. 73	-. 92
Deterloratlng	Index I	. 76	. 73	. 66	. 80
Sound	Index II	-. 57	-. 47	-. 52	-. 54
Sound	Renter Occupled	-. 50	-. 44	-. 46	-. 42
Deficient	Index I	. 72	. 68	. 61	. 57
Dilapidated	Deterlorating	. 65	. 20	. 08	. 39
Overcrowded	Dilapldated	. 45	. 20	. 14	. 34
Nonwhite	Dilapidated	. 70	. 30	. 13	. 29
Value per Room	Sound	. 69	. 66	. 61	. 51
Rent per Unit	Sound	. 64	. 59	. 52	. 47
Deteriorating	Deficlent	. 61	. 47	. 42	. 38

Rhoa and Rhob have been corrected for the presence of large numbers of tied scores. No such correction is required for the product-moment R.
*SImilar - a random 10 per cent sample of the unlverse from which Rho was computed, except that nearly 40 per cent of the sample was deleted (blocks having fewer than 5 owner-occupled units and blocks having fewer than 5 renter-occupled units) for technlcal reasons associated with the limitations of the computer program which was utilized.

Product-Moment Correlations

When it became possible to carry out a product-moment correlation coefficient analysls as a recheck on the rank-difference correlations originally utillzed, this was done. A matrlx of the coefficients is included in Table 20. The coefficlents are defined by the following formula.
$r_{12}=\frac{S X Y-\frac{(S X)(S Y)}{N}}{\left(S X^{2}-\frac{\left.(S X)^{2}\right)}{N}\left(S Y^{2}-\frac{\left.(S Y)^{2}\right)}{N}\right.\right.}$
where: $\quad r_{12}=$ product-moment correlation coefficlent for varlable ${ }_{1}$ and varlable ${ }_{2}$ $X=$ the value of variable, in each block
$Y=$ the value of varlable 2 in each block
$S X=$ the total value of varlable 1 in all blocks
$S Y=$ the total value of varlable 2 in all blocks
$N=$ the number of blocks
The significance of the correlation coefficients obtalned by elther the rank-difference (corrected for tles) or the product-moment method can be evaluated generally as indicated below:

Correlation Coefficient r	Varlance Explained r^{2}	Qualitative Evaluation
$.90-1.00$	$.81-1.00$	very high
$.78-.89$	$.61-.80$	high
$.64-.77$	$.41-.60$	moderate
$.46-.63$	$.21-.40$	low
$.00-.45$	$.00-.20$	very low

(Even low correlations indicate useful relationships for practical use in this imprecise soclal-sclence application. For example, although the correlation between Index I and the proportion of dilapidated units is only. 76 in 900 renter-occupied blocks, .67 in 3100 blocks with both owners and renters, and . 46 in 1460 owner-occupled blocks, the poorest 20 per cent of blocks according to Index I contain housing units which are 28 times more likely, proportionally, to be dilapidated as units in the other 80 per cent of the clty's blocks.)

Multiple Regression Analysis

The abllity to predict or estimate an unknown factor is often increased if more than one type of information can be applled to the problem. Simple correlations, such as were carrled out both by the rank difference method and the product-moment method, describe the association between a dependent varlable (the one being estimated) and an independent varlable (the known factor). Multiple correlations describe the assoclation between a dependent varlable and two or more independent varlables.

Multiple correlation coefficients were computed according to the following formulae:

where:
$r^{2}{ }_{14.23}=\left(\frac{r_{14.2}-r_{13.2} r_{34.2}}{\sqrt{1-r^{2}}{ }_{13.2} \sqrt{1-r^{2}}}\right)^{24.2} \quad$ and $\quad r^{2}{ }_{12.3}=\left(\frac{r_{12}-r_{13} r_{23}}{\sqrt{1-r_{13}^{2}} \sqrt{1-r^{2}}}\right)^{2}$
$\mathrm{R}_{1.234}=$ the multiple correlation coefficient of the estimated (dependent) varlable 1 and the known (independent) varlables 2,3 and 4
$r^{2}{ }_{14.23}=$ the partlal coefficient of determination of the estimated (dependent) variable 1 and the known (independent) varlables 2 and 3 when the additional known varlable 4 is held constant
$r^{2}{ }_{12.3}=$ the partial coefficlent of determination (square of the correlation coefficient) of the estimated (dependent) varlable 1 and the known (independent) variable 3 when the addltional known varlable 2 is held constant
$r_{12}=$ the simple linear correlation between varlable 1 and varlable 2
Regression equatlons (predictive formulae) were computed based upon a ten per cent random sample of blocks divided into three groups:

1) blocks for which both owner-value and rent are reported
2) blocks in which only owner values were avallable
3) blocks in which only rental data were avallable

These are shown in Table 21.

Table 11 reports the multiple correlations between Index 1 and six selected independent varlables. The variables used were selected as being those items which would be most avallable on a continulng basis and therefore most sultable for use in an up-dating program. They did not include items that would require interior inspection of dwellings. The variables included: the DCD condition-of-structures survey data, the percentage of vacancy, the percentage of renter occupancy, the percentage of nonwhite occupancy, the average rent per unit, and the average value per unlt.

Between census dates, average rent and average value can be approximated from city records such as assessed valuation or the records of real estate sales. Vacancy data can be obtained from secondary sources such as the clty directory. Renter occupancy data can be similarly obtained. The percentage of nonwhite occupancy can be estimated from school enrollment data or from fleld surveys. The condition-of-structures survey can be repeated from time to time with reasonable expendlture of staff time and budget.

An examination of the product-moment correlations in a ten per cent sample of the 3157 blocks of the city which contained five or more of both owner-occupied and renter-occupied structures indicates that the field survey of structural condition carrled out by the DCD correlated equally well with Index I (considered the best measure of housing quallty) as any of the data reported in the census with the exception of sound units and deteriorating units.

Table 10
Correlation of Selected Varlables wlth Index I

Item	Correlation Coefficient
DCD fleld survey	
Sound wlth all facilities	.68
Deterloratlng	.92
Lacking facilites	.82
Dilapidated	.57
Rent per unlt	.67
Value per unlt	.63
Rent per room	.67
Value per room	.56
Renter occupancy	.68
Vacancy	.44
Overcrowding	.35
Nonwhite occupancy	.60
Rooms per unlt	.43
Persons per room	.07
	.36

Table II
Predictive Value of Data Avallable for Updating

Possible Avallable Pr Variable 1	ictors Variable 2	Coefficlent of ultiple Determination	Coefficient of Multiple Correlation
		R^{2}	R
DCD Condition Survey	Vacancy	. 47	. 69
" "1	Renter Occupancy	. 48	. 69
11	Nonwhite Occupancy	$y \quad .47$. 68
" " "	Rent per Unit	. 59	. 77
" " "	Value per Unit	. 60	. 78
Vacancy	Renter Occupancy	. 24	. 49
"	Nonwhite Occupancy	$y \quad .24$. 49
"	Value per Unit	. 49	. 70
"	Rent per Unlt	. 45	. 67
Renter Occupancy	Nonwhite Occupancy	y. 29	. 54
" "	Value per Unit	. 48	. 70
$1{ }^{\prime}$	Rent per Unit	. 45	. 67
Nonwhite Occupancy	Value per Unit	. 49	. 70
" "	Rent per Unit	. 49	. 70
Value per Unlt	Rent per Unit	. 31	. 56

The coefficients of multiple correlation and multiple determination in Table ll were computed according to the following simplified formula:
$R_{1.23}=\sqrt{\frac{r^{2} 12+r^{2} 13-2 r_{12} r_{13} r_{23}}{1-r^{2} 23}}$
where:

```
R1.23 = the coefficlent of multiple correlation of the dependent (estlmated) varlablel
                and the independent (known) varlables}2\mathrm{ and 3.
    r12 = the simple correlation between varlablel and variable2 .
```


RELATED STUDIES

Based upon DCD field studies, detalled reports on the relation of land uses, condition of structures and zoning have been prepared. While these have been important in the analysis of residential treatment areas, they are discussed in other publications. Some of the study toplcs include: residential density for residential structures and mixed use structures as well as for total residentlal units, the condition of structures in each of ten major land use classes for the non-residential areas analyses, the use of residentiallyzoned land, the land use zoning of the city and the relationship of existing uses to zoning, the condition of structures according to their classification as residential, nonresidentlal or mixed. These studies are generally detalled to the block level as well as summarized to census tracts, quarter-sections and the city as a whole.

Census of population tract data has been related to treatment areas for description of the population characteristics of the areas.

THE ROLE OF OTHER DEPARTMENTS IN THE BLIGHT ANALYSIS

A great deal of the analysis involved in the development of the Community Renewal Program would not have been possible without the use of electronic data processing methods. Both of the clty departments with general service computer centers were very helpful in their explanation of computer capabilities and the provision of some programming assistance, as well as the actual production of computer analyses and reports.

Mr. Albert Bethke, Director of the Tabulating Section of the Comptroller's Office, originated the basic concepts of the Milwaukee mapping program subsequently developed and utilized for the Department of Clty Development. In addltion, he was most generous with his counsel In the original design of Input records for the DCD land use and condition survey. His department, under the supervision of Mr. Gllbert Behling, performed many of the actual computer runs and related card processing. He also advised in the development of the DCD contract with Remington-Rand, Univac Service Center, for analysis of the block statistics data.

Mr. Peter Wal, Director of the Tabulating Section of the Office of the Tax Commissioner, devised the program for analysis of the DCD field survey of structural condition and assisted in designing other applications. His department also performed many of the actual computer runs and related card processing. In addition, he provided summarles and analyses of tax assessment data for selected potential treatment areas within the clty.

The data needs and resources avallable for a continuing Community Renewal Program will probably be re-evaluated as technological progress and increased awareness of the value of shared-data systems make more and better information avallable. The Department of City Development is currently making studies to determine the advantages of and the feasibillty of a Data Bank for the City of Mllwaukee Into which all pertinent informam tion could come for joint use regardless of the originating department. The resulting economies through avoldance of duplicate data gathering and analysis, together with the Increased range of information avallable to each department, recommend this area as one for careful joint study and action within the very near future.

Table 12
Content of IBM Card One: Original Census Data and Indices

Table 13
Content of IBM Card Two: "T" Scores and Indices

Data

census tract
census block
household population population in group quarters
hash cross foot check total
sound units with all facllities
sound unlts lacking facllities
deterlorating units with all facilities
deteriorating units lacking facilities
dilapidated units owner occupled units owner-occupled units reporting value
total value reported owner-occupled rooms renter-occupied units renter-occupled units reportling rent
renter-occupied rooms non-white units unlts more than one person per room total rent reported quarter section grids card identification

Card Columns

1-4	census tract
5-7	census block
8-11	household population
12-15	population in group quarters
16-22	hash cross foot check total
23-25	sound units with all facllitles
26-28	sound unlts lacking facllities
29-31	deterlorating units with all facilities
32-34	deteriorating units lacking facilities
35-37	dilapldated units
38-40	owner occupled units
41-43	owner-occupled units reporting value
44-50	total value reported
51-54	owner-occupled rooms
55-57	renter-occupied units
58-60	renter-occupled units reporting rent
61-64	renter-occupied rooms
65-67	non-white units
68-70	unlts more than one person per room
71-75	total rent reported
76-79	quarter section grids
80	card identification

```
Card Columns
    1-4
    5-7
    8-11
    12-15
    16-18
    19-20
    21-23
    24-25
    26-27
    28-30
    31-32
    33-34
    35-36
    37-38
    39-40
    41-42
    43-44
    45-46
    47-48
    49-50
    51-52
    53-54
    55-56
    57-58
59-60
61-62
63-64
65-67
68-70
71-73
74-75
76-79
80
```

Data
census tract
census block
household population
hash total
index A
index B
Index C
Index 1
index 11
Index III
sound, all facilities
sound, lacking facilittes deteriorating, all facilities deterlorating, lacking facilities
total deteriorating
total lacking facillties
dilapidated
rent per unit
rent per room
value per unlt
value per room
per cent renter occupancy
per cent vacant
overcrowding
per cent nonwhite occupancy
rooms per unlt
persons per room
renter occupled units
total deterlorating, dllapidated,
and lacking units
total housing units
population per household
quarter section grid
card identification

REPORT TWO: COMPARATIVE "T" SCORES AND INDICES FOR CITY BLOCKS

Clty Summary of Block Distributions According to "T" Scores
(:!unber of Blocks)

01-31								112	125	159	105					109	124
32								16	19	29	45					16	
33								22	15	26	42						
34								23	29	29	58					23	
35								29	19	42	63	461				22	
36								42	31	50	76	193				45	
37								42	38	50		139				49	738
38								42	35	83	117	160					
39								72	49	79	118	136		1009		56	
40								60	61	102	146	147		8		103	
41								56	62	96	153	142		69		122	
42								76	82	116	182	129		200		170	
43								152	99	162		124		304		198	
44	2417							93	108	122	191	143	2266	255			
45	447		3072		2995			96	102	144	192	143	15	272		2571	1715
46	324	3549	200		326	3238		165	126	124	204	129	181	257		369	
47	253	68	322	4353	270	266		118	124.	202	183	169	302	238	4415	421	
48	187	246	221	9	224	262	4652	143	152	212	177	174	346	246	265	491	
49	147	212	156	110	172	232	28	218	156	172		156	329	221	133		
50	147	195	154	93	149	171	72	133	160	207	167	177	231	228	46	516	
51	114	171	142	106	107	128	75	160	161	197	133	192	237	213	39	443	
52	97	111	85	94	88	143	68	254	191	182	171	158	181	186	35	421	
53	95	98	85	79	72	102	51	192	242	219	208	254	177	168	19	332	1560
54	92	91	72	54	78	96	53	196	273	162	195	213	144	142	15	291	
55	65	74	59	59	63	62	35	313	296	146	193	203	115	157	16		
56	81	66	53	48	67	67	31	208	311	192		192	124	123	14	183	
57	76	61	62	24	51	61	27	187	294	147	186	186	97	122	6	153	
58	62	37	48	35	48	57	23	252	273	197	192	168	91	98	${ }^{6}$	125	
59	57	43	50	42	55	41	20	128	167	134	179	166	66	76	11	70	
60	38	26	37	23	36	38	19	88	101	126	188	132	72	109	11		908
61	46	28	53	24	47	36	26	1ッ	54	155	182	113	51	76	11	62	
62	41	16	53	22	43	36	21	52	19	109		104	26	84	2	48	
63	47	25	25	28	36	37	18	48	5	92	164	98	38	67	4	47	
64	36	18	31	12	33	23	11	27	4	110	121	69	47	79	12	25	
65	38	24	39	19	25	24	15	7	2	59	91	78	17	50	10	20	
66	39	21	25	10	37	19	19	9		48	60	69	10	48	13		
67	27	25	21	11	26	20	4	12		30	40	52	33	39	8	15	
68	41	18	35	17	31	15	9	5		18	13	57	13	37	8	12	296
69	32	12	21	5	29	17	12	2		9		70	19	25	13	13	
70	34	6	18	20	19	13	4	2		5	14	62	29	50	11	15	
71	31	9	21	10	26	19	8	7	1	4	4	94	12	11	6		
72	31	11	16	5	13	10	6	2		1			8	5	8	19	
73	22	10	21	5	18	8	7	2		1	1		17	27	7	15	
74	19	6	20	9	13	14	3	1		1			11	7	13	10	
75	23	12	16	6	20	9	9						2	24	6	9	
76	24	6	17	6	15	15	6						15	9	9	15	80
77	15	9	15	6	25	9	5						13	9	10		
78	23	7	10	3	9	6	4						13		12	13	
79	22	8	10	2	18	10	4						9	12	6	10	
80	16	5	19	6	19	8	3						4	2	10	10	
81	19	7	13	6	11	8	2						8	23	13	10	
82	15	7	9	4	6	9	5						4	3	13		
83	17	4	10	1	10	5	2							4	16	12	
84	18	5	9	5	10	10	2						6	2	4	10	21
85	22	11	8	1	10	3	8						2	7	13	6	
86	14	5	9	4	4	6	1						4	4	7	9	
87	41	4	8	2	8	5	3						4		20	4	
88		1	2	3	9	4	2						2	3	8		
89		4	10	5	10		3							10	20	4	
90		2	5		9	1	3						2	5	7		
91		4	4	3	8	2	6							1	11	5	
92		4	7	1	2		1						5	2	8	5	5
93		1	2	3	5	4	3						5	3	10		
94			4	3	9	3	2						2	1	11	2	
95		3	3		1	5	2						1		9	6	
96		3	3	4	8	3	1						1	3	13	3	
97		1	4			5	1						7		${ }_{1}^{6}$	7	
98 99		55	5 33	4 48	$2{ }_{2}^{2}$	6 60	5 52						32	12	11 42	11 2	3
9		57	33	48	27	60	52									2	3
Total 99	5452	5452	5452	5452	5452	5452	5452	3983	3986	4550	4554	5452	5452	5452	5452	5439	5450
No report								1469	1466	902	898					13	2
Count =	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452	5452

$\begin{aligned} & \text { VALUE OF } \\ & \text { INDEX II } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { BLOCKS } \end{aligned}$	HOUSING UNITS	$\begin{aligned} & \text { POPU } \\ & \text { TOTAL } \end{aligned}$	ION HOUSING	$\begin{aligned} & \text { RENTED } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { AVERAGE } \\ & \text { KENT } \end{aligned}$	LOW RENT UNITS	$\begin{aligned} & \text { UILAPE } \\ & \text { IOATED } \end{aligned}$	DETER- IURATED	DEFICIENT
00.0-21.9	194	2711	8477	7353	1153	111.06	425	28	179	107
22.0-22.9	5	114	405	405	11	. 00	11			
23.0-23.9	5	91	275	275	8	119.29			1	1
24.0-24.9	8	524	1160	1850	348	137.47	8		1	12
25.0-25.9	5	166	469	469	03	123.37	4	14		1
26.0.26.9	8	148	511	511	19	135.89				
27.0-27.9	14	484	1305	1305	258	120.13	10		4	1
28.0-28.9	10	326	1045	1040	151	128.71	3	2	3	1
29.0-29.9	9	343	1117	1117	113	132092	9	1	13	4
30.0-30.9	15	417	1304	1304	176	114.69	9		6	3
31.0-31.9	32	1083	3304	3225	405	126.53	20	10	79	12
32.0-32.9	36	1037	3421	3386	363	112.38	23	7	66	3
33.0-33.9	44	2006	5411	5282	1044	113097	14		24	16
34.0-34.9	38	1336	4112	4088	469	104.25	14		44	5
35.0-35.9	57	1775	5440	5297	757	107.91	31	1	22	14
36.0.36.9	73	2734	7825	7730	1121	107.39	41	2	15	43
37.0-37.9	74	2567	7946	7946	965	104.98	27	2	25	13
38.0-38.9	85	2590	8079	8072	731	97.44	80	2	14	14
39.0-39.9	107	3499	11407	11397	1223	99.92	50	5	77	28
40.0-40.9	117	4356	13657	13029	1573	98.01	75	14	08	35
41.0-41.9	134	4815	15239	15198	1759	95.50	69	10	88	49
42.0-42.9	188	7304	24507	23905	2503	95.30	113	13	120	51
43.0-43.9	157	6128	19843	19220	2387	89.43	101	16	105	44
44.0-44.9	153	5362	17122	17068	1706	90.32	95	12	116	58
45.0.45.9	181	7077	22178	22046	2717	80.56	83	16	184	126
40.0-46.9	204	7578	24903	24585	2504	85.30	124	18	265	123
47.0-47.9	239	9926	31013	30580	3718	81.44	158	21	276	325
48.0-48.9	240	10220	31911	31594	3954	81.76	121	45	482	254
49.0-49.9	214	8943	29621	26663	3904	78.06	113	120	406	$\begin{aligned} & 405 \\ & 368 \end{aligned}$
50.0-50.9	246	10203	31738	31354	4017	70.99	142	66	558	368
51.0-51.9	247	11374	33548	33252	5399	74.01	136	84	742	768
52.0-52.9	224	11011	29680	29135	6213	71.88	114	176	1010	974
53.0-53.9	223	10152	31436	31177	5147	$70 \cdot 30$	105	134	1072	591
54.0-54.9	244	12515	37370	36774	6929	68.70	109	106	1411	1166
55.0-55.9	262	14008	40563	39949	8275	65.74	614	213	1531	1565
56.0.56.9	247	13305	41072	40398	7528	63.03	346	227	2108	1358
57.0.57.9	222	12209	38337	37759	6996	63.16	904	254	2074	1299
58.0-58.9	250	13973	42543	42003	8387	59.93	4228	410	2617	2081
59.0-59.9	186	10717	32682	32389	6626	57.99	4569	510	2610	1722
60.0-60.9	141	8260	25572	25209	5089	56.21	4056	430	2040	1520
61.0-61.9	133	8356	24716	23906	5651	52.56	5487	601	1947	1820
62.0-62.9	73	4265	12366	12234	2836	49.75	2835	306	1873	1138
63.0-63.9	40	1921	5448	5208	1254	40.38	1254 682	$\begin{array}{r} 81 \\ 131 \end{array}$	$\begin{aligned} & 511 \\ & 378 \end{aligned}$	$\begin{aligned} & 529 \\ & 414 \end{aligned}$
64.0.64.9	20	986	2299	2192	682	44.60	682	131	378	414
65.0-65.9	11	791	1523	1439 452	607	$\begin{aligned} & 41.42 \\ & 39.79 \end{aligned}$	$\begin{aligned} & 607 \\ & 246 \end{aligned}$	20	$\begin{aligned} & 279 \\ & 197 \end{aligned}$	$\begin{aligned} & 504 \\ & 273 \end{aligned}$
66.0-66.9	5	356	452	452	246	39.79	246	18		
$67.0-67.9$ $68.0-68.9$	15 2	553 56	926	926 89	417 41	$\begin{aligned} & 36.85 \\ & 34.15 \end{aligned}$	417 41	10	180 2	$\begin{array}{r} 386 \\ 36 \\ \hline \end{array}$
69.0-69.9						NO DATA				
70.0 UP	15	263	331	320	210	27.77	210	13	102	220

CITY OF MIĽWAUKEE 1960 U. S. CENSUS OF HOUSING

TABLE 17-D
CITY SUMMARY ACCORDING TO INDEX A
CITY OF MILWAUKEE 1960 U. S. CENSUS OF HOUSING

$\begin{aligned} & 00 \cdot 0=01: 9 \\ & 02 \cdot 0-03.9 \end{aligned}$	$\begin{aligned} & 541 \\ & 364 \end{aligned}$	$\begin{array}{r} 14609 \\ 14923 \\ \hline \end{array}$	$\begin{array}{r} 48890 \\ 45864 \\ \hline \end{array}$	$\begin{array}{r} 41627 \\ 43382 \end{array}$	$\begin{aligned} & 5494 \\ & 5744 \end{aligned}$	$\begin{aligned} & 84.90 \\ & 85.55 \end{aligned}$	$\begin{aligned} & 498 \\ & 216 \end{aligned}$	$\begin{aligned} & 17 \\ & 34 \end{aligned}$	$\begin{aligned} & 229 \\ & 317 \end{aligned}$	23
04.0-05.9	441	17580	51594	51062	7229	82.66	269	39	575	79
06.0-07.9	405	15649	48137	47170	6388	84.01	415	34	431	120
08.0.09.9	409	17575	53642	53248	7445	81.11	738	06	706	226
10.0-11.9	369	14239	45053	44919	5606	77.08	433	72	654	224
12.0-13.9	327	14553	46040	45648	6353	79.01	408	80	820	363
14.0-15.9	296	12438	40732	40598	5174	75.53	559	96	855	342
16.0-17.9	254	11487	36653	36012	5187	72.83	756	137	1007	437
18.0-19.9	230	12089	40055	39929	5436	71.77	997	146	1155	414
20.0-21.9	226	9110	31071	30323	4374	69.24	922	239	1288	461
22.0-23.9	179	8852	28053	27729	4756	75.26	566	100	1202	552
24.0-25.9	165	7297	24580	24374	3575	69.22	825	171	895	465
26.0-27.9	144	7656	24254	24106	4124	73.83	972	218	1238	604
28.0-29.9	123	6459	20050	19545	3709	60.43	1014	230	1052	020
30.0-31.9	110	5972	19710	19284	3310	63.90	1192	106	1265	604
32.0.33.9	104	4430	14300	14232	2441	62.63	1142	202	981	515
34.0-35.9	70	4083	13321	12886	2706	69.39	882	186	958	517
36.0-37.9	72	3693	10955	10871	2309	62.67	857	178	589	580
38.0-39.9	36	3286	9518	9124	2160	65.61	649	91	630	633
$40.0-41.9$	64	3259	10549	10081	2175	59.97	1205	131	632	517
42.0.43.9	53	3509	9910	9799	2347	63.59	1054	104	638	737
44.0-45.9	37	1865	5800	5608	1306	66.38	456	97	508	361
46.0.47.9	38	2220	6340	6182	1541	59.91	705	125	907	532
48.0.49.9	22	1293	3407	3318	863	64.62	348	59	286	273
50.0-51.9	35	2059	5995	5687	1341	58.31	825	51	542	536
52.0.53.9	24	1580	4924	4480	1134	65.69	341	123	257	428
54.0-55.9	27	1675	5142	4350	1129	$59 \cdot 16$	595	179	304	486
56.0.57.9	26	1929	4776	4731	1420	60.14	677	64	306	663
58.0-59.9	19	1253	3401	3380	1014	65.34	376	39	292	418
60.0-61.9	16	1101	2501	2411	802	66.25	342	73	274	452
62.0-63.9	10	734	1857	1852	541	61.28	265	39	217	287
64.0-63.9	22	1929	5284	5228	1432	58.13	988	73	386	585
66.0-67.9	13	1007	2269	2050	845	59.82	411	25	205	474
68.0-69.9	9	358	928	915	256	60.87	151	31	139	134
$70.0-71.9$	5	544	893	889	459	51.55	459	20	89	270
72.0-73.9	16	805	1571	1512	623	53.72	544	32	307	407
$74.0-75.9$	11	607	1522	1344	447	53.36	398	10	107	304
76.0-77.9	8	507	1232	1175	357	64.68	147	18	172	194
78.0-79.9	9	510	1093	1036	390	57.25	227	13	105	271
80.0-81.9	10	600	1082	1045	436	59.58	238	52	149	304
82.0-83.9	11	678	1423	1304	570	55.49	366	15	101	436
84.0-85.9	6	164	466	373	110	$42 \cdot 34$	110	7	59	89
86.0-87.9	6	348	645	602	273	51.33	223	5	133	247
88.0-89.9	7	304	777	777	216	51.78	170	35	140	156
90.0-91.9	5	406	780	630	342	$51 \cdot 15$	332	2	26	288
92.0-93.9	3	94	233	233	53	41.34	53	20	71	33
94.0-95.9	4	244	458	446	190	53.38	116		206	168
96.0-97.9	5	281	631	494	212	52.62	212	8	106	184
98.0-99.9	46	3091	4346	4004	23 cs	45.45	2289	123	634	2424

$\begin{aligned} & \text { VALUE OF } \\ & \text { INDEX C } \end{aligned}$	TOTAL 8LOCKS	$\begin{aligned} & \text { HOUSING } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { POP } \\ & \text { TOTAL } \end{aligned}$	$\begin{aligned} & \text { TION } \\ & \text { HOUSING } \end{aligned}$	$\begin{aligned} & \text { RENTED } \\ & \text { UNITS } \end{aligned}$	$\begin{gathered} \text { AVERAGE } \\ \text { RENT } \end{gathered}$	$\begin{gathered} \text { LOW RENT } \\ \text { UNETS } \\ \hline \end{gathered}$	$\begin{aligned} & \text { DILAP } \\ & \text { IDATED } \end{aligned}$	$\begin{aligned} & \text { DETER- } \\ & \text { IORATED } \end{aligned}$	DEFICIENT
$\begin{aligned} & 000-004 \\ & 005-009 \end{aligned}$	$\begin{aligned} & 892 \\ & 480 \end{aligned}$	$\begin{aligned} & 38086 \\ & 15673 \end{aligned}$	$\begin{aligned} & 97474 \\ & 48057 \end{aligned}$	$\begin{aligned} & 89339 \\ & 47838 \end{aligned}$	$\begin{array}{r} 29634 \\ 5030 \\ \hline \end{array}$	69.50 91.51	10701 336	1229	$\begin{array}{r} 5748 \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 8272 \\ 120 \end{array}$
010014	18.5	66257	215421	214430	20224	84.09	1919	16	375	371
015.019	631	28546	88805	88354	11368	78.47	814	71	788	672
020-024	340	16902	52973	52531	8221	70.71	676	42	790	655
025-029	215	11851	36385	358, 3	6211	68.44	789	50	702	847
0300034	168	9310	28869	28667	5023	68.16	854	57	904	802
035-039	131	7256	23006	22743	3975	66.33	1159	72	979	684
040-044	141	8072	24592	23806	4786	65.75	1403	189	1252	8213
045-049	91	5714	16980	16530	3462	65.80	1044	128	809	1034
050-054	64	4208	12725	12661	2617	62.36	998	73	909	700
055-059	67	4794	14195	13917	2974	65.33	893	105	1098	939
060-064	46	2851	0437	8221	1820	64.95	492	98	639	624
065-069	37	2051	6651	6614	1226	67.81	212	80	759	195
070-074	44	2443	7767	7574	1463	66.34	526	77	943	360
075-079	31	1840	5608	5544	1174	63.60	343	116	717	315
080-084	26	1395	4129	4129	816	63.36	357	66	584	287
005-089	37	1983	6202	6223	1109	58.31	630	134	855	358
090-094	27	1910	5643	5599	1896	61.54	604	123	922	427
095-099	34	1997	6303	6274	1283	61.69	693	129	982	369
100-104	18	870	2781	2749	480	60.25	302	66	504	$1: 17$
105-109	11	648	2112	2076	429	61.13	162	38	438	108
180-114	17	1070	3540	3477	720	60.29	424	68	528	220
115-119	6	375	1319	1268	234	60.00	96	42	199	58
120-124	8	405	1417	1386	253	63.46	67	19	304	56
125-129	6	448	1332	1325	309	35.22	244	96	172	71
130-134	7	402	1171	1160	251	54.07	128	40	234	103
135-139	4	256	973	973	177	50.02	115	38	155	39
240-144	8	306	977	964	190	55.78	138	55	204	55
145-149	4	189	576	361	131	61.94	39	19	130	50
$150-154$	3	237	831	831	158	54.80	158	77	80	32
155-159	6	387	1223	1219	276	59.92	156	57	245	76
160-164	4	220	739	739	147	61.69	52	57	126	18
165-169	2	139	493	493	92	56.80	92	26	95	13
170-174	5	198	642	642	138	$56 \cdot 88$	112	71	82	25
175-179	2	157	472	472	99	51.52	99	23	115	10
180-184	4	269	851	851	189	56.37	146	71	156	42
185-189	5	360	989	989	203	50.26	142	123	176	41
190-194	1	64	276	276	46	60.80		25	16	4
195-199	3	162	525	525	103	57.93	71	61	86	9
200-204	3	227	755	755	160	65.61	43	104	113	13
205-209	2	106	409	409	72	55.25	72	37	40	9
210-214						NO UATA				
215-219	1	67	247	241	45	61.10		32	31	2
220-224	1	63	210	202	41	58.63	42	27	26	7
225-229						no uata				
230-234	4	170	615	615	116		92	74	68	19
235-239						NO OATA				
240-244						NO UATA				
2451 UP						NO UATA				

TABLE 17-G
CITY SUMMARY ACCORDING TO PER CENT OF VACANCY CITY OF MILWAUKEE 1960 U.S. CENSUS OF HOUSING

Range	TOTAL BLOCKS	HOUSING UNITS	$\begin{aligned} & \text { POPULATION } \\ & \text { TOTAL HOUSING } \end{aligned}$	$\begin{aligned} & \text { RENTED } \\ & \text { UNITS } \end{aligned}$	$\begin{gathered} \text { AVERAGE } \\ \text { RENT } \end{gathered}$	LOW RENT UNITS	$\begin{aligned} & \text { DILAPA } \\ & \text { IDATEU } \end{aligned}$	DETERdorated	DEFICIENT

RANES	$\begin{aligned} & \text { TOTAL } \\ & \text { BLOCKS } \end{aligned}$	HOUSING UNETS	$\begin{aligned} & \text { POPV } \\ & \text { TOTAL } \end{aligned}$	$\begin{aligned} & \text { ION } \\ & \text { HOUSING } \end{aligned}$	$\begin{gathered} \text { RENTED } \\ \text { UNITS } \end{gathered}$	$\begin{aligned} & \text { AVERAEE } \\ & \text { RENT } \end{aligned}$	$\begin{gathered} \text { LOW RENT } \\ \text { UNITS } \end{gathered}$	$\begin{aligned} & \text { DILAPO } \\ & \text { IDATEU } \end{aligned}$	OETER IORATED	DEFICIENT
$\begin{array}{r} 0000 \\ 00.1-0109 \end{array}$	1009	$\begin{aligned} & 28530 \\ & 10435 \end{aligned}$	$\begin{aligned} & 78969 \\ & 25028 \end{aligned}$	$\begin{aligned} & 77109 \\ & 24332 \end{aligned}$	$\begin{array}{r} 11967 \\ 6770 \end{array}$	$\begin{aligned} & 81.11 \\ & 82.49 \\ & \hline \end{aligned}$	$\begin{array}{r} 1643 \\ 765 \end{array}$	$\begin{aligned} & 97 \\ & 33 \end{aligned}$	$\begin{aligned} & 947 \\ & 500 \end{aligned}$	$\begin{array}{r} 919 \\ 1051 \end{array}$
0200-03.9	645	33348	92639	89328	16913	80.30	1428	171	1443	2070
0400.08 .9	642	30176	85465	83117	15359	72.48	2615	250	2435	2606
06.0-07.9	591	30083	88276	87302	25155	71.46	2966	354	3057	3023
08.0009.9	518	24896	73474	74588	12234	67.23	4165	322	2876	3012
10.0-11.9	442	19657	63676	63012	8954	68.03	2614	374	4922	1796
$12.0-13.9$	328	14707	48995	48413	6614	67.03	1879	201	1805	1347
84,0085.9	262	18634	40499	39718	5305	66.82	2081	337	1758	1043
1600-17.9	221	10775	36836	36218	5591	04.90	2862	451	1845	1391
18.0-19.9	851	7188	26193	25949	3375	67.57	1015	241	1420	538
20,0-21.9	170	6574	23672	23467	3417	65.95	1369	341	1278	653
22.0-23.9	84	3860	14085	13917	1927	62.08	932	233	972	395
24.0-25.9	72	2318	9016	8971	1063	65.23	440	180	510	189
26.0-27.9	36	1329	4892	4884	692	65.98	270	108	353	105
28.0-29.9	35	1466	5493	5451	843	60.79	497	70	482	125
$30.0-31.9$	23	905	3506	3506	503	70.27	157	30	149	50
$3200-33.9$	29	674	2655	2637	337	$56,59$	194	74	166	55
34.0-35.9	8	341	1475	1469	222	70.09	130	7	24	3
36.0-37.9	12	222	959	936	145	54.68	03	51	57	14
38.0-39.9	3	369	1785	1629	348	57.78	321		8	5
$40.0-41.9$	16	398	1791	1767	273	50.68	122	57	94	26
42.0-43.9	5	433	1483	1483	382	45.59	318	5	42	7
44.0-45.9	4	18	485	378	43	88.36	6	2	4	1
$\begin{aligned} & 46.0=47.9 \\ & 48.0-49.9 \end{aligned}$	1	79	360	360	74	$\begin{array}{r} 68.57 \\ \text { NO DATA } \end{array}$				3
$\begin{aligned} & 50.0-51 \cdot 9 \\ & 52.0-53.9 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{array}{r} 62 \\ 107 \\ \hline \end{array}$	$\begin{aligned} & 298 \\ & 495 \end{aligned}$	$\begin{aligned} & 230 \\ & 495 \end{aligned}$	$\begin{aligned} & 46 \\ & 99 \end{aligned}$	40.36 09.70	38	3	9	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & 54,0-55 \cdot 9 \\ & 56,0-57.9 \\ & \hline \end{aligned}$	3	246	1236	1236	220	$\begin{array}{r} \text { NO DAYM } \\ 75.50 \\ \hline \end{array}$	35	22	26	7
$\begin{aligned} & 58.0=59.9 \\ & 60.0-61,9 \end{aligned}$						$\begin{aligned} & \text { NO OATA } \\ & \text { NO DATA } \end{aligned}$				
$\begin{aligned} & 62.0=63.9 \\ & 64.0-65.9 \end{aligned}$	2	17	91	91	12	$\begin{array}{r} 43.75 \\ \text { NO DATA } \end{array}$	4	1	3	1
$66.0-67 \cdot 9$						NO UATA				
$68.0-69.9$						NO DATA				
70.0-71.9						NO OATA				
72.0.73.9						NO DATA				
$74.0-75 \cdot 9$	1	6	20	20	1	NO DiOO	1			
76.0.77.9						NO DATA				
$78.0-79.9$						NO DATA				
$80.0-81.9$						NO DATA				
82.0083.9						NO DATA				
84.0-85.9						NO DATA				
86.0-87.9						NO DATA				
88.0-89.9						NO DATA				
$\begin{aligned} & 90.0=91.9 \\ & 92.0-93.9 \end{aligned}$						NO DATA				
92.0-9509						NO OATA				
$96.0=100.0$						NO DATA				

RANGE	TOTAL BLOCKS	HOUSING UNITS	$\begin{aligned} & \text { POPU } \\ & \text { TOTAL } \end{aligned}$	ION HOUSING	$\begin{aligned} & \text { RENTED } \\ & \text { UNITS } \end{aligned}$	$\begin{gathered} \text { AVERAGE } \\ \text { KENT } \end{gathered}$	$\begin{gathered} \text { LOW RENT } \\ \text { UNITS } \end{gathered}$	$\begin{aligned} & \text { OILAPO } \\ & \text { IDATEO } \end{aligned}$	OETERIOMATED	DEFICIENT
00.0-03.9	62	2613	6933	6818	1926	55.95	1293	518	1695	803
04.0.05.9	22	1230	2784	2705	911	52.37	669	195	704	550
06.0-07.9	16	649	1743	1727	461	53.57	302	116	374	237
08.0-09.9	12	669	1651	1645	405	55.72	349	76	496	217
10.0-1109	14	672	1949	1866	497	60.60	353	98	453	188
$12.0-13.9$	15	903	1958	1828	706	49.68	047	60	384	511
14.0-15.9	13	841	1822	1768	624	52.47	498	49	457	458
1600-17.9	15	833	2273	2264	573	53.37	408	135	303	274
18.0-19.9	17	956	2695	2575	675	53.09	614	109	480	346
20.0-21.9	24	1044	2670	2595	769	53.95	563	96	484	410
22.0-23.9	14	820	2605	2584	578	60.39	310	102	398	168
24.0-25.9	22	1285	3467	3408	907	58.17	546	110	609	416
26.0-27.9	18	1214	3213	3009	813	57.03	638	121	468	409
28.0-29.9	16	1242	2744	2674	861	58.90	480	71	314	474
30.0.31.9	20	1079	3082	2959	744	58.47	540	83	506	291
32.0.33.9	28	1332	3792	3520	952	60.71	493	90	433	475
3400-35.9	19	1052	2794	2761	729	59.33	343	71	487	245
36.0-37.9	25	1545	4077	3875	1140	61.45	658	116	623	459
38.0-39.9	23	1669	4053	4018	1280	59.20	625	72	488	580
40.0-4109	35	2201	8103	5811	1571	67.19	537	147	809	552
42.0-43.9	33	1734	5455	5426	1206	58.71	655	138	715	286
44.0-45.9	30	1614	4643	4611	1042	58.61	633	83	577	390
46.0-47.9	27	1730	4664	4314	1879	61.07	461	59	359	608
48.0.49.9	30	1703	4706	4686	1078	01.01	611	92	509	404
50.0-51.9	39	2142	6668	6469	1416	64.97	274	247	646	399
52.0.53.9	29	1426	4199	4057	961	61.74	523	60	394	287
54.0-55.9	41	2427	7059	6824	1645	$62 \cdot 15$	838	46	615	551
56.0-57.9	33	2347	6629	6008	1609	64.47	643	82	501	506
58.0-59.9	36	2294	6232	5974	1527	67.89	251	42	529	476
60.0-61.9	39	2659	6885	6852	1829	65.96	371	83	574	519
62.0-63.9	42	2772	7688	7461	1838	65.49	701	38	588	538
64.0-65.9	48	3205	8940	8803	2099	60.69	299	86	578	579
66.0-67.9	53	2903	8990	8721	1786	64.63	710	46	490	521
68.0-69.9	61	3905	10378	10138	2580	65.54	477	80	593	696
70.0-71.9	71	3571	10621	10571	2124	64.23	580	62	589	481
72.0-73.9	62	3390	10589	10441	2041	64044	742	44	554	392
74.0.75.9	76	3975	12475	12028	2344	66.74	477	83	667	346
76.0.77.9	67	3584	10323	10069	2136	66.52	440	45	428	439
78.0-79.9	76	4212	12817	12740	2513	00.18	567	58	445	449
80.0-81.9	93	4942	15038	14749	2887	69.43	436	53	531	431
82.0-83.9	98	4554	14376	14141	2470	79.62	555	42	420	372
84.0-85.9	126	6304	19357	19011	3365	69.76	575	30	560	448
86.0-87.9	108	5804	17700	17532	3001	70.46	405	30	400	400
88.0-89.9	147	7907	23451	23187	4374	73.18	555	25	438	456
90.0-91.9	188	8554	26321	25950	4036	74.20	206	40	343	377
92.0-93.9	226	10755	31726	31595	5047	79.89	425	33	408	356
94.0-95.9	279	13579	42364	41996	5898	75.29	590	40	335	332
96.0-97.9	402	19317	59653	59342	8222	83.72	525	24	312	256
98.0-99.9	135	10972	33852	33426	5730 24035	79.44	1120	9	66	76
100.0	2327	72904	237500	234473	24035	84.22	2429			

RANEE	$\begin{aligned} & \text { TOTAL } \\ & \text { DOCKS } \end{aligned}$	housing UNITS	$\begin{aligned} & \text { POPU } \\ & \text { TOTAL } \end{aligned}$	10 N HOUSING	$\begin{aligned} & \text { RENTED } \\ & \text { UNITS } \end{aligned}$	$\begin{gathered} \text { AVERAEE } \\ \text { RENT } \end{gathered}$	$\begin{gathered} \text { LOW NTNT } \\ \text { UNITS } \end{gathered}$	$\begin{aligned} & \text { DILAPO } \\ & \text { IOATEO } \end{aligned}$	$\begin{aligned} & \text { DETER- } \\ & \text { IORATED } \end{aligned}$	DEFICIENT
80000-4999	894	38139	97632	09497		69.48	80708	1231	5769	8279
5000-5409	1	50	148	148	32	63.05		4	45	6
5500-5999	4	244	880	874	173	57.34	136	24	125	14
6000-6499	5	302	1820	1128	223	68.64		6	105	29
6500-6999	12	672	2068	2068	421	55.17				112
7000-7499	24	1312	4510	4504	844	59.54	457	126	505	131
	51	3822	10473	10486	1935	62,00	1019	164	026	413
$8000-8499$	63	3762	12292	12143	2327	02.92	1014	228	1057	544
8500-8999	98	5112	16434	16360	2919	60.67	1462	275	1273	530
9000-2499	119	7080	22476	22344	4066	14.67	1392	193	1445	775
$9500-9999$	232	7332	23259	23177	4125	62.70	1307	243	1390	
$10000-0499$	173	9870	31506	31302	5359	65.03	1260	176	1919	982
$10500-0999$	165	9993	31063	30794	5577	67.41	1403	292	1503	1818
$11000-1499$	176	10604	33188	32962	6139	66.13	1796	196	1534	857
$11500-1999$	187	10302	31100	30425	5821	66.63	1002	191	1313	983
12000-2499	196	9987	30321	30809	4888	69.86	628	57	050	18
12500-2999	177	8188	24649	24388	4024	71.59	553	82	481	444
13000-3499	202	8984	26704	26597	4215	72054	375	61	823	871
13500-3999	223	10108	32686	31262	4323	74.64	600	148	812	613
14000-4499	214	8278	26469	26245	2873	76050	264	39	438	236
14500-4999	224	9228	29443	29270	3068	$78 \cdot 16$	249	42	424	285
$15000-5499$	230	9015	29053	28898	3348	80.96	340	67	306	188
85500-5999	285	8701	21292	28184	2651	-1.07	261	30	254	214
16000-6499	245	9777	31030	30963	3325	18.63	651	20	213	148
16500-6999	158	5610	18627	18560	1592	86.23	92	23	125	102
17000-7499	142	5353	17773	17634	1461	03.08	118	12	89	100
17500-7999	160	3346	17652	17557	2413	83.86	130	14	67	104
18000-8499	165	6070	20525	20104	1735	88.45	123	24	120	92
$18500-1999$	121	4427	13530	13458	1447	-1.32	274	85	104	208
$19000-9499$	107	3848	12683	12640	1081	92.31	63	10	51	9
$19500-9999$	99	3186	10272	10875	902	42088	97	17	33	189
$20000-0499$	83	2760	0666	8430	773	84.76	180	0	69	117
2050000999	62	2320	6940	6086	914	81.84	31	17	100	143
21000-1499	60	1657	3326	3250	533	22.75	48	3	29	5
28500-1999	36	1272	3730	3676	451	93.78	14		20	46
$\frac{22000-2499}{22500-2999}$	34	1018	3090	3090	204	94.08	15	2	. 5	3
22500-2999	31	847	2855	2255	304	103.04	27	2	1	1
23000-3499	26	862	2602	2560	277	97.37	18		6	
23500-3999	23	773	2334	2317	285	97.73	6		6	1
24000-4499	18	334	1088	1088	77	98.57	12	2	3	1
24500-4999	82	204	801	008	48	03.26	10		12	2
25000-5499	18	238	243	438	40	97.47			1	
$25500-5899$	8	633	8275	1257	453	79.36	5	34	42	207
26000-6499	8	249	484	664	59	90.09	7		7	1
26500-6999	8	238	094	684	97	118002	3		1	1
$27000-7499$	9	240	883	813	32	19.85	12			2
$\begin{aligned} & 27500=7999 \\ & 28000 \text { U } \\ & \hline \end{aligned}$	54	$\begin{array}{r} 32 \\ 3094 \\ \hline \end{array}$	$\begin{array}{r} 807 \\ 6853 \\ \hline \end{array}$	$\begin{array}{r} 107 \\ 6410 \end{array}$	2125	$\begin{array}{r} .00 \\ 89.91 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 340 \\ \hline \end{array}$		158	367

Table 18-A
Rank Order Correlations: Composite Indices*
(Selected Pairs)

First Index	Second Index	Rho	Rho ${ }^{2}$
1	A	. 95	. 90
	B	. 72	. 52
	11	. 77	. 59
	111	-. 79	. 62
11	A	. 78	. 58
	C	. 81	. 66
	1	. 77	. 59
	111	-. 69	. 62
111	A	-. 70	. 49
	B	-. 59	. 34
	1	-. 79	. 62
	11	-. 69	. 47
A	C	. 95	. 90
	1	. 95	. 90
	11	. 78	. 58
	111	-. 70	. 49
B		. 72	. 52
	11	- 59	35
	11	-. 59	. 35
C	A	. 95	. 90
	11	. 81	. 66

*Uncorrected for tie scores

Table 18-B
Rank Order Correlations: Composite Indices and Selected Varlables*

Varlable	Index	Rho	Rho ${ }^{2}$
\% Dilapldation	A	. 64	41
	B	. 51	. 26
	C	. 62	. 38
	1	. 62	. 38
	111	. 10	. 01
\% Deterlorating	A	. 82	. 67
	B	. 49	. 24
	C	. 82	. 67
	1	. 76	. 58
	11	. 56	. 31
	111	-. 40	-. 16
\% Deficient	A	. 74	. 55
	B	. 68	. 46
	C	. 75	. 56
	1	. 72	. 52
	11	. 64	. 41
	111	-. 34	-. 12
* Overcrowded	A	. 38	. 12
	B	. 72	. 52
\% Vacancy	1	. 40	. 16
	111	-. 30	-. 09
\% Renter Occupancy	1	. 51	. 26
	111	-. 56	-. 31
\% Non-Housing Unit Population	1	. 48	. 23
\% Non-White Occupancy	A	. 51	. 26
	1	. 55	. 30
	111	-. 01	-. 00
Rent per Unit	1	-. 76	-. 58
Value per Unit	1	-. 80	-. 64
Rent per Room	1	-. 60	-. 36
Value per Room	B	-. 39	-. 15
	1	-. 82	-. 67
Rooms per Unlt	A	-. 03	-. 00
	1	-. 07	-. 00
	11	-. 16	-. 03
	111	-. 08	-. 01

*uncorrected for tle scores

Table 18-C
Rank Order Correlations: Selected Census Variables*


```
Table 19
Rank Order Multiple Correlations: Indices and Selected Census Variables
```


Multiple Correlation Coefficients*

Correlation Code

Index I	Percent sound, all facllltes	Percent deficlent
$\mathrm{R}_{\mathrm{d} .0 \mathrm{O}}=.97$ (
$R_{\text {d. }}^{\text {af }}$ = $=.97$	Rg. $1 p=.65$	$R_{\text {j } . o p}=.76$
$\mathrm{R}_{\mathrm{d} .0 \mathrm{op}}=.92$	Rg. $10=.36$	$\mathrm{R}_{\mathrm{j} . \mathrm{no}}=.63$
$R_{d . g s}=.87$	$\underline{\mathrm{Rg} \text {. } \mathrm{mo}}=\underline{.59}$	\underline{R} ¢ . $r^{=}=61$
Rd. $\mathrm{Rf}=.85$	Percent	Percent non
$\mathrm{R}_{\mathrm{d} . \mathrm{gp}}=.85$	dilapidated	white occupancy
R $\mathrm{d}_{\text {. }} \mathrm{pq}=.85$		
$\mathrm{R}_{\mathrm{d} .1 \mathrm{l}}=.83$	Rh. $\mathrm{oq}=.72$	$\mathrm{R}_{\text {O.hp }}=.70$
$\mathrm{R}_{\mathrm{d} . \mathrm{or}}=.82$	\underline{R} h,op $=.70$	Ro.hq $=.70$
$\mathrm{R}_{\mathrm{d} . \mathrm{gm}}=.78$		$\mathrm{R}_{\mathrm{O} .1 \mathrm{l}}=.65$
$\mathrm{R}_{\text {d. }} \mathrm{hl}=.78$	Percent	$\mathrm{R}_{\mathrm{O} . \mathrm{jp}}=.64$
$\mathrm{R}_{\text {d. }} \mathrm{ae}=.77$	deterlorating	$\mathrm{R}_{\text {O. } 1 \mathrm{p}}=.62$
Rd. $10=.77$ -		
$\mathrm{R}_{\mathrm{d} . \mathrm{pr}}=.76$	Ri. 10=. 60	Average rent
Rd.hj $=.76$	Ri. $1 p=.52$	per unit
Rd. $\mathrm{ho}=.64$	R1. $\mathrm{km}=.56$	
Rd.hl $=.63$	Ri.fo $=.70$	$R_{\text {p.gl }}=.64$
$\underline{R_{\text {d. }}{ }^{=}=57}$	Ri. $\mathrm{mo}=.61$	$\mathrm{R}_{\mathrm{p.11}}=.43$

Average value of owner occupled home

```
a. Index A
b. Index B
c. Index C
d. Index I
e. Index II
f. Index |||
g. % sound, all faclllties
h. % dilapidated
i. % deterlorating
j. % deficlent
k. % overcrowded
l. % vacancy
m. % renter occupancy
n. % non housing unlt occupancy
o. % non white occupancy
p. average rent per unit
q. average value of owner occupied
r. average rent per room
s. average value per room
t. average rooms per dwelling
```

Table 20-A
Product Moment Correlations: Indices and Variables, Including Exterior Inspection of Residential and Mixed Use Structures: 3100 Blocks Contalning Both Owners and Renters

DCD-Residentlal DCD-Mixed
A
A
B
C
C
1 11
Sound, all fac.
Sound, lack. fac
Deter., all fac.
Deter., lack. fac.
Deter., total
Lacking total
Dilapidated
Rent/Unlt
Rent/Room
Value/Unit
Value/Room
Renter Occupancy
Vacancy
Overcrowding Non-White Occ.
Rooms/Unit Persons/Room

Table 20~B
Product-Moment Correlations: Indices and Varlables, Including Exterior Inspection Of Residential and Mixed Use Structures: 1460 Blocks Containing Owners Only

DCD Res DCD Mix
B
B
C
C
11
111
Sound, all Sound, lack. Deter., all Deter., lack. Deter., tot. Lack., tot. Dilapidated Value/Unit Value/Room Renter-Occ. Vacant Crowding Non-White Rooms/Unit Persons/Rm.

Table 20-C
Product-Moment Correlations: Indices and Variables, Including Exterior Inspection Of Residentlal and Mixed Use Structures: 900 Blocks Containing Renters Only

Res Condition
Mixed Condlition
Mndex A
Index B
Index I
Index 11
Index III
Sound, all
Sound, lacking
Deter., all
Deter., lacking
Total Deter.
Total lacking Dilapidated
Rent/Unit Rent/Room Renter Occ. Vacancy Crowding
Non-White
Rooms/Unit 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Persons/Room

46
4866
$\begin{array}{lll}27 & 43 & 56 \\ 45 & 63 & 97\end{array}$
$\begin{array}{llll}45 & 63 & 97 & 69\end{array}$
$\begin{array}{lllll}37 & 59 & 61 & 64 & 68\end{array}$
$\begin{array}{rrrrrr}-34 & -29 & -40 & -27 & -47 & -56 \\ 41 & 57 & 87 & 76 & 90 & 65\end{array}$
$\begin{array}{llllllll}41 & 57 & 87 & 76 & 90 & 65 & -28\end{array}$
$\begin{array}{llllllll}33 & 25 & 16 & 70 & 27 & 40 & 01 & 48\end{array}$
$\begin{array}{lllllllll}36 & 24 & 57 & 01 & 51 & 22 & -28 & 57 & -13\end{array}$

$$
\begin{array}{lllllllllll}
04 & 34 & 62 & 55 & 68 & 42 & -12 & 59 & & 12 & \\
15 & 36 & 73 & 37 & 72 & 41 & -24 & 76 & -13 & 72 & 70
\end{array}
$$

$$
\begin{array}{lllllllllll}
21 & 38 & 44 & 91 & 56 & 57 & -05 & 72 & 81 & -09 & 53 \\
30
\end{array}
$$

$$
\left[\begin{array}{rrrrrrrrrrrrr}
21 & 38 & 44 & 91 & 66 & 51 & -05 & 12 & 81 & -09 & 53 & 30 & \\
44 & 56 & 83 & 18 & 76 & 34 & -32 & 52 & -07 & 45 & 34 & 39 & 04 \\
37 & 59 & 61 & 64 & 68 & 1.00 & -56 & 65 & 40 & 22 & 42 & 41 & 57
\end{array}\right.
$$

$$
\begin{array}{rrrrrrrrrrrrrr}
44 & 50 & 0 & 64 & 68 & 1.00 & -56 & 65 & 40 & 22 & 42 & 41 & 57 & 34 \\
37 & 59 & 61 & 64 & 68 & 48 & -84 & 13 & -13 & 32 & & 17 & -16 & 35
\end{array}
$$

$$
\begin{array}{rrrrrrrrrrrrrrr}
39 & 28 & 35 & -02 & 35 & 48 & -84 & 13 & -13 & 32 & & 17 & -16 & 35 & 48 \\
02 & 10 & 14 & 36 & 16 & 06 & 41 & 29 & 32 & -03 & 20 & 14 & 40 & & 06
\end{array}
$$

$$
\left[\begin{array}{rrrrrrrrrrrrrrrr}
39 & 28 & 56 & -02 & 35 & 48 & -84 & 13 & -13 & 32 & & 1 / & -16 & 35 & 48 & \\
02 & 10 & 14 & 36 & 16 & 06 & 41 & 29 & 32 & -03 & 20 & 14 & 40 & & 06 & -51 \\
10 & 30 & 26 & 56 & 31 & 30 & -10 & 38 & 27 & 03 & 31 & 25 & 44 & 05 & 30 & -07 \\
23 & 13 & 35 & 34 & 44 & 26 & -55 & 20 & -04 & 20 & 08 & 12 & -03 & 40 & 26 & 32 \\
10 & 26 & 1 & 16 & 1 & 21 & 25 & 20 & 02 & 20 & 0 & 10 & 0 & 1,5 & 21 & 26
\end{array}\right)
$$

$$
\left[\begin{array}{rrrrrrrrrrrrrrrrr}
42 & 26 & 44 & 16 & 41 & 31 & -35 & 29 & 03 & 32 & 04 & 19 & & 45 & 31 & 36 & 08 \\
-02 & 46
\end{array}\right]
$$

$$
\begin{array}{rrrrrrrrrrrrrrrrrrrrr}
-04 & 21 & 18 & 59 & 24 & 28 & 43 & 44 & 50 & -16 & 38 & 19 & 67 & -06 & 28 & -65 & 72 & 30 & -10 & -08 & \\
05 & 10 & 26 & 55 & 37 & 26 & -48 & 29 & 10 & 24 & 20 & 27 & 12 & 26 & 02 & 18 & 16 & 71 & 24 & 26 \\
\hline
\end{array}
$$

Regression Equations Utilizing Census Varlables and Exterior Inspection to Predlct Index Values and Selected Varlables
(Based upon a stepwlse regression analysis of a ten per cent random sample of Milwaukee blocks containing both renters (five or more) and owners (five or more) $N=310$

```
DEPENDENT VARIABLE
DCD condltion-residential
DCD condltion-mixed use
Index A
Index B
Index C
Index I
Index II
Index l||
% sound, all facllities
% sound, lacking facll.
% deteriorating, all facil.
% deterloratlng, lack facil.
% deteriorating, total
% lacking facllities, total
% dllapidated
Average rent per unit
Average rent per room
Average value per unit
Average value per room
% renter occupancy
% vacancy
% overcrowding
% nonmwhl te occupancy
Average rooms per unit
Average persons per room
```

Table 22
Product-Moment Multiple Correlations Using Only Those Census Varlables Which Could Be Duplicated In Intercensal Years Without Interior Inspection of Structures

Dependent Variable	Independent Variables Added Successively	Coefficient of Multlple Correlation	Irrelevant Variables
Index I	Exterior Inspection of		Nonwhite Occupancy
	Residential StructuresmDCD	. 68	Renter Occupancy
	Value per Unit	. 78	
	Rent per Unit	. 80	
	Vacancy	. 80	
Index II	Value per Unit	. 90	Residential Structures-DCD
	Rent per Unit	. 98	Nonwhite Occupancy
	Renter Occupancy	. 98	Vacancy
Index 111	Value per Unit	86	Residential Structures-DCD
	Rent per Unit	. 88	Vacancy
	Renter Occupancy	. 89	
	Nonwhite Occupancy	. 89	
Index A	Residential Structures-DCD	. 64	Nonwhite Occupancy
	Rent per Unit	. 70	Renter Occupancy
	Value per Unit	. 71	
	Vacancy	. 71	
Index B	Vacancy	. 62	Nonwhite Occupancy
	Value per Unit	. 75	Renter Occupancy
	Residential Structures-DCD	. 78	
	Rent per Unit	. 79	
Index C	Residential Structures-DCD	. 67	Nonwhite Occupancy
	Value per Unit	. 73	Renter Occupancy
	Vacancy	. 73	
	Rent per Unit	. 74	

SOUND, PERCENT OF TOTAL HOUSING UNITS WITH ALL PLUMBING FACILITIES
 ACTUAL T-SCORE VALUES FOR 5,452 BLOCKS

VALUE PER UNIT, ACTUAL T-SCORE
 VALUES FOR 4,391 BLOCKS**

CITY OF MILWAUKEE, 1960

${ }^{*}$ For most distribution it is expected that 99.7% of all values will be included between $\pm 3 \sigma$ of \bar{x}.

DEPARTMENT OF CITY DEVELOPMENT

Richard W. E. Perrin, Director
Frank J. Polidori, Assistant Director
Vincent L. Lung, Planning Director
Carl H. Quast, Assistant Planning Director

Community Renewal Program Staff
Robert S. DeVoy, Project Director
Jean R. Moehring, Planning Analyst IV
John A. Balon, Planning Analyst II
Gerald A. Holtenhoff, Planning Analyst II
Clyde B. Bethke, Planner II
Peter K. Riese, Planning Analyst I
Leroy A. Brazale, Planner I
Arnold L. Clement, Planner I
Mary Stott, Statistical Clerk

Graphics Section

Robert W. Reupert, Delineator II
Robert J. Felber, Draftsman IV
Gregory A. Laabs, Draftsman III
Stanley L. Golec, Draftsman III
William T. Caspary, Draftsman II

[^0]: Summary
 The following llst describes very brlefly the various elements of the analysis of the block statistics which were devised to accomplish the goals for analysis listed on pages 7 and 8. The numbers following each item indicate the goals for which that particular item is pertinent.

 1. A 5,500 line report (one line for each block with five or more housing units) converting the housing data for each clty block into a serles of derlved percentages, averages, indices, etc., for easier interpretation. Report One is in order by tract and block. (1) (5) (See Table 14)
 2. A 5,500 line report converting the computed percentages, averages and indices to standard scores having a mean of 50 and a standard deviation of 10 , and also presenting additional indices. Report Two is in order by housing quality from poorest in clty to best as judged by Index 1.(2) (3) (4) (5) (See Table 15)
 3. Report Three contains the same information as Report Two but it is in order by tract and block. (2) (5)
 4. A 5,500 card deck of $1 B M 80$-column punch cards carrying the original data from the magnetic tape - essentially the data contalned in the published block statistics but with some addltions Including mapping coordinates. (12) (13) (14) (See Table 12)
 5. A 5,500 card deck of IBM 80-column punch cards carrying the standard scores and Indices, including mapping coordinates. (12) (14) (See Table 13)
 6. Ten reports summarizing city-wide totals for the blocks in each of about 50 quallty levels as measured by the six indices of housing quallty and four additional signiflcant variables - vacancy, overcrowding, percentage of units which are sound with all facilitles, and average value of single-family, owner-occupled unlts. These reports
