MOLECULAR FUNCTIONS OF THE EVOLUTIONARILY CONSERVED WETA REGULATOR IN *ASPERGILLUS*.

By

MING-YUEH WU

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Genetics)

at the

UNIVERSITY OF WISCONSIN-MADISON

2017

Date of final oral examination: 04/20/2017

The dissertation is approved by the following member of the Final Oral Committee:

Jae-Hyuk Yu, Professor, Bacteriology and Genetics

Nancy P. Keller, Professor, Medical Microbiology & Immunology

Christina Hull, Associate Professor, Biomolecular Chemistry

Melissa M. Harrison, Assistant Professor, Biomolecular Chemistry

Allen Laughon, Associate Professor, Genetics

ABSTRACT

Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA \rightarrow AbaA \rightarrow WetA. First, we characterized the WetA function in mycotoxin producer, A. flavus. The AflWetA protein is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in A. flavus. Loss of function AflwetA leads to the formation of conidia with defective cell wall and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. AflWetA is also required for normal vegetative growth, proper hyphal branching, and production of aflatoxins, suggesting that WetA may play a global regulatory role in fungal lifecycle. We further carried out targeted and genome-wide expression analyses in A. nidulans, A. fumigatus, and A. flavus. The comparative RNA-seq studies reveal that WetA exerts feedback control of conidiation and regulates over 40% of each Aspergillus genome in conidia. Moreover, over 60% of the WetA-affected genes have orthologs in the three species, indicating the evolutional conservation of the WetA-mediated gene regulatory networks (GRNs). Finally, we identified the WetA response elements (WREs) by investigating the genome-wide WetA-DNA interaction in conidia in A. nidulans. The WREs are present in promoter regions of 23% of A. nidulans genes, while mRNA levels of only 55% of them were affected in the Δ AniwetA conidia, suggesting that the WetA-mediated GRNs may be temporal-/ spatial-specific. Functional category analyses indicate that WetA contributes to stress response, sporulation, cell wall integrity, and carbohydrate metabolic process in conidia. However, even WetA is functionally conserved; the WetA-mediated regulatory effects on the associated GRNs are usually divergent in *Aspergillus*, which suggests the GRNS has rewired during evolution. In summary, WetA is an evolutionarily conserved DNA-binding protein regulating the cellular and chemical development in Aspergillus.

ACKNOWLEDGEMENTS

It's such a long and rocky journey, but I made it – because of the support from all of you.

I would like to appreciate my advisor, Dr. Jae-Hyuk Yu. I still remember that you told me that you'll make me not only a good scientist but a good person on the first day we met in your office. I hope I didn't fail you. Without you, I wouldn't be able to go so far.

I want to express my sincerest gratitude to all my committee members, Dr. Nancy P. Keller, Dr. Christina Hull, Dr. Allen Laughorn, and Dr. Melissa Harrison. Your insightful comments are my most valuable assets to improve my study; your warm encouragements nourish my confidence as a young researcher. It's my pleasure to cooperate with Dr. Antonis Rokas and Dr. Matthew E. Mead. You made the research to another level and I really learned a lot from you.

I'd like to thank my previous lab members, Dr. Heesoo Park and Dr. Nak-Jun Kwon. Your excellent academic achievement and the diligent work attitude are so admirable and have been our standards to follow. All my dear and best labmates, Mi-Kyung, Fahad, Erin, Ahmad, and Heungyun, you guys are my family in Madison. The hearty supports, the fierce academic debates, the morning coffee time, the afternoon trash talks... These treasure moments made the past years colorful and made the lab like home. To our smart, thoughtful, and happy undergrads (a.k.a. young beloved scientists), Ethan, Ellie, Nara, Nick, Amanda, thank you for sharing so much interesting views which help me to cross the culture difference and the generation gap!

To Genetics Class 2017(ish), you're the best classmates one can ask for! We've gone through so much and we all nail it! To all my friends in Madison, it would be extremely harsh to survive in a strange and frozen town far far away from home, but you made my life here fun and joyful. Thanks for my dearest friends in the rest of the world for never forgetting me and being always with me. To my family, thanks for all the understandings and supports, this Ph. D is all to you.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	v
LIST OF TABLES	. vi
LIST OF SUPPLEMENTARY TABLES	vii
CHAPTER 1	1
1-1 Introduction	2
1-2 Asexual development in Aspergilli	2
1-3 Conidia maturation in Aspergilli	4
1-4 Regulation of asexual development	6
1-5 Central regulatory pathway	7
1-5-1 BrlA	8
1-5-2 AbaA	12
1-5-3 WetA	14
1-6 Conclusion and the dissertation overview	16
1-7 References	17
CHAPTER 2	23
2-1 Abstract	24
2-2 Introduction	24
2-3 Materials and methods	29
2-3-1 Strains, media, and culture conditions	29
2-3-2 Generation of <i>wetA</i> deletion and complemented strains	30
2-3-3 Nucleic acid manipulation	30
2-3-4 Conidia viability, autolysis, and stress response test	31
2-3-5 Conidia content quantification	31
2-3-6 Transmission electron microscopy (TEM)	31
2-3-7 Vegetative growth rate and hyphal branching rate tests	32
2-3-8 AFB1 quantification	32
2-3-9 RNA sequencing	33
2-3-10 Gene expression analysis	33
2-3-11 Functional Enrichment Analysis	34
2-4 Results	34
2-4-1 Protein sequence features of WetA in A. flavus	34
2-4-2 The role of WetA in conidia	35

2-4-3 The roles of WetA in growth, hyphal branching, AFB production, and	
developmental control	
2-4-4 Genome-wide expression analyses in conidia	
2-5 Discussion	
2-6 References	
CHAPTER 3	103
3-1 Abstract	
3-2 Introduction	105
3-3 Materials and methods	109
3-3-1 Strains, media, and culture conditions	109
3-3-2 Generation of <i>wetA</i> deletion and complemented strains	110
3-3-3 Nucleic acid manipulation	110
3-3-4 Anti-WetA polyclonal antibody synthesis	110
3-3-5 RNA sequencing	111
3-3-6 Chromatin immunoprecipitation sequencing (ChIP-seq)	112
3-3-7 Motif discovery analyses	113
3-3-8 Functional Enrichment Analysis	113
3-4 Results	114
3-4-1 WetA is a potential transcription factor	114
3-4-2 Conserved and diverged roles of WetA in Aspergilli	114
3-4-3 Rewired WetA-mediated GRNs of asexual development, signal transdu	ction, and
conidial integrity in Aspergilli	122
3-4-4 Identification of WetA response elements (WREs)	127
3-5 Discussion	
3-6 References	
CHAPTER 4	
4-1 Conclusion	
4-2 Future direction	
4-2-1 WetA-regulated targets in Aspergilli	
4-2-2 Analysis of WetA-mediated VosA and FlbC regulatory mechanism	
4-2-3 Metabolome analysis of WetA-regulated metabolic processes	
4-2-4 WetA-mediated regulation in different development stages	
4-3 References	

LIST OF FIGURES

Fig 1-1 Diagram of Aspergillus asexual development	
Fig 1-2 Diagrammatic representation of A. nidulans conidium formation and matura	ation5
Fig 1-3 Overview of the upstream regulation of conidiation in A. nidulans	7
Fig 1-4 Central regulators of A. nidulans conidiation	9
Fig 1-5 The central regulators are highly conserved in Aspergilli and Penicillia	
Fig 1-6 Morphology of wild-type and mutant conidiophores in A. nidulans	11
Fig 1-7 Model for differential control of AnibrlA α and AnibrlA β during conidiation	
Fig 2-1 WetA is required for proper conidial maturation and contains both a transcri	ption
activation domain and a nuclear localization signal in a variety of fungi	
Fig 2-2 WetA is necessary for the proper formation of conidia in Aspergillus flavus.	
Fig 2-3 Multiple roles of WetA	
Fig 2-4 RNA-seq analyses of conidia	
Fig 2-5 Summary of WetA functions and a model for WetA-mediated developmenta	l regulation
in A. flavus	47
Fig 3-1 The central regulatory pathway is highly conserved in Aspergillus species	107
Fig 3-2 Summary of DEGs in the three <i>Aspergillus</i> ΔwetA conidia	116
Fig 3-3 WetA-mediated regulation of asexual development in the three Aspergillus	species 122
Fig 3-4 Identification of WetA binding motif	
Fig 3-5 Summary of DEG, WRE, and DEG with WRE in Aspergillus AwetA conidia	a 129

LIST OF TABLES

Table 2-1 DEGs of interest	44
Table 2-2 DEGs involved in spore maturation	46
Table 2-3 DEGs within the secondary metabolite biosynthesis clusters	54
Table 3-1 Different phenotypes in three Aspergillus species	115
Table 3-2 Conserved and differential WetA-regulated All_orthogroups	118
Table 3-3 Conserved and differential WetA-regulated N:NOrthogroups	119
Table 3-4 WetA-mediated SMG regulation	126
Table 3-5 WetA targeted DEGs in Δ <i>AniwetA</i> conidia	
Table 3-6 Conserved and differential WetA-directly-regulated All_orthogroups	

LIST OF SUPPLEMENTARY TABLES

Table S2-1 Aspergillus strains and oligonucleotides used in this study	63
Table S2-2 Top enriched GO categories of decreased mRNA levels in the $\Delta wetA$ conidia	63
Table S2-3 Top enriched GO categories of genes showing increased mRNA levels in the Δw	vetA
conidia	65
Table S2-4 Top 100 genes showing decreased mRNA levels in the ΔwetA conidia	67
Table S2-5 Top 100 genes showing increased mRNA levels in the ΔwetA conidia	70
Table S2-6 DEGs related to asexual development	73
Table S2-7 DEGs related to conidia maturation	76
Table S2-8 mRNA levels of secondary metabolic clustered genes in A. flavus	78
Table S2-9 DEGs predicted to encode transcription factors	98
Table S3-1 Aspergillus strains and oligonucleotides used in this study	146
Table S3-2 Top enriched GO categories of differential expressed genes in the $\Delta wetA$ conidia	a. 148
Table S3-3 Top 100 genes showing decreased mRNA levels in the Δ <i>AniwetA</i> conidia	151
Table S3-4 Top 100 genes showing increased mRNA levels in the ΔAniwetA conidia	157
Table S3-5 Top 100 genes showing decreased mRNA levels in the $\Delta A fuwetA$ conidia	163
Table S3-6 Top 100 genes showing increased mRNA levels in the ΔAfuwetA conidia	169
Table S3-7 Top enriched GO categories of orthologs in All_orthogroups consistently up-/do	wn-
regulated in $\Delta wetA$ condia	175
Table S3-8 List of All_orthogroups _{N:N:N} consistently regulated by WetA	196
Table S3-9 Top enriched GO categories of orthologs species-specifically regulated in $\Delta wetA$	1
conidia	203
Table S3-10 Conserved and divergent GO categories of WetA-regulated N:NOrthogroups	227
Table S3-11 DEGs related with as exual development in $\Delta wetA$ conidia	234
Table S3-12 Kinase encoded DEGs in ∆ <i>wetA</i> conidia	238
Table S3-13 Transcription factor encoded DEGs in Δ <i>wetA</i> conidia	244
Table S3-14 DEGs related to trehalose metabolic process in <i>ΔwetA</i> conidia	252
Table S3-15 DEGs related to chitin metabolic process in $\Delta wetA$ conidia	253
Table S3-16 DEGs related to β -(1,3)-glucan metabolic process in $\Delta wetA$ conidia	255
Table S3-17 DEGs related to α -(1,3)-glucan metabolic process in $\Delta wetA$ conidia	257
Table S3-18 DEGs related to melanin metabolic process in $\Delta wetA$ conidia	258
Table S3-19 Hydrophobin-encoded DEGs in ∆ <i>wetA</i> conidia	259
Table S3-20 Top enriched GO categories of potential <i>AniWetA</i> target genes	260

CHAPTER 1

Introduction

1-1 Introduction

Fungi have vital roles in agriculture, medicine, and biotechnology in human lives as well as in the natural ecosystems [1]. Since the 1940s, fungi serve as great genetic model systems in the study of eukaryotic genetics because of the convenience and efficiency of handling and the abundance of available genetic research resources [2]. Among the variety studied filamentous fungi, *Aspergillus* species are popular research targets due to their importance in the areas of human health (*A. fumigatus*), industry (*A. niger* and *A. oryzae*), agriculture (*A. flavus*), and general genetic researches (*A. nidulans*) [3]. Similar to other filamentous fungi, *Aspergilli* produce the asexual spore (conidia) for proliferation, which is the most dominant way to effectively propagate. Asexual development has been studied in *Aspergilli* and other fungi for many years [4–20]. The process of asexual sporulation (conidiation in higher fungi) happens in a timely and complicated manner, which needs to be delicately and precisely controlled. Understanding of the genetic regulatory networks (GRNs) behind this conidiation would provide insights into the developmental and morphological mechanisms on molecular level.

1-2 Asexual development in Aspergilli

The general life cycle of *Aspergillus* species initiates from vegetative growth stage. Spores germinate by breaking the dormancy state and transiting to the metabolically active state. The germinated spores then release the germ tubes and extend them in a highly-polarized manner to form the undifferentiated network of the interconnected hyphal mat (mycelium). Under appropriate conditions, the *Aspergilli* shift from the vegetative growth stage to the development stage, the sexual or asexual reproductive process takes place for propagation. All *Aspergilli* are able to reproduce through the asexual sporulation process (conidiation), while only some

Aspergilli can reproduce through sexual development [21]. Conidiation is the most common way for *Aspergilli* and other conidiogenous fungi to rapidly reproduce abundant spores for dispersion to the environment and survival. *Aspergilli* enters into conidiation stage by producing the asexual reproductive structure, conidiophore. Conidiophore development starts from the formation of the thick-cell-wall foot cell, which is differentiated from the vegetative hyphae [22]. An aerial branch (stalk) then get risen from the foot cell, with the apical swelling at its tip (vesicle) [23]. In *A. nidulans*, a layer of uninucleate cells (metulae) buds from the vesicle surface, and another layer of uninucleate sporogenous cells (phialides) formed on the top of metulae [17]. Not all *Aspergilli* contains metulae. The *Aspergilli* species contain both metulae and phialides called biseriate species like *A. nidulans*, while the species contain only contain phialides called uniseriate species like *A. flavus* contain both uniseriate and biseriate structures [24]. Chains of conidia are produced by the repetitive mitosis division by the phialides [25] (Fig 1-1).

Fig 1-1 Diagram of Aspergillus asexual development

In *Aspergilli*, initiate by the differentiation of the foot cell (B) from the vegetative hyphae (A). From the foot cell, a stalk emerges and a vesicle (C) is formed on the top of the stalk. Subsequently, metulae (D), phialides (E), and asexual spores (conidia) (G) bud from the vesicle. The whole structure of (C)-(F) is called conidiophore (G). Conidia then germinate (H) and form vegetative hyphae.

Note: Not all Aspergilli contain metulae (D), as mentioned in content.

1-3 Conidia maturation in Aspergilli

The life cycle of conidia includes following stages: formation, maturation, dormancy, and germination [26]. Conidia maturation is defined as differentiation occurring after septum formation between phialide and newborn conidium, and the delimitation of this conidium from the phialide. It is a distinct phase of development, and less is known about the details of conidia maturation except for the change of the spore wall structure and the accumulation of certain chemical components during the process. The spore wall differentiation during conidia maturation can be divided into three stages based on the carbohydrate cytochemistry studies [11]. The Stage I conidium is the youngest spore in a chain, which contains two conidial wall layers (outer C1 and inner C2 layers), which is similar to the hyphae cell wall layers (P1 and P2). At Stage II, the conidium has been displaced from the phialide tip by subsequently formed conidia. The C1 and C2 layer are most separated at Stage II. Moreover, C2 layer condenses and the C1 layer becomes crenulated rodlet layer at this stage. At Stage III, the C3 layer is formed between C1 and C2 layers, and then the C4 layer is formed as the innermost layer of the spore wall (See the Fig 1-2). When observing the A. nidulans wild type (AniWT) conidia under the transmission electron microscopic (TEM), the C1 layer is electron condense, while C2, C3, and C4 layers are electron light [27]. Previous studies proposed that the four-layer spore wall structure makes the conidia impermeable, which is essential for stress tolerance and maintaining the spore dormancy [28].

Fig 1-2 Diagrammatic representation of A. nidulans conidium formation and maturation

The stages of conidium maturation (reproduced from Sewall et al., 1990)[11]. Each conidium and phialide (P) contain a nucleus (N), mitochondria (M), endoplasmic reticulum (ER), vacuoles (V), and vesicles (Ve). Three stages (I, II, and III) of conidium maturation are shown after a conidium initial (CI) is delimited from the phialide. Phialide contains two cell wall layers: P1 and P2. The CI and conidium at stage I also contain two cell wall layers: C1 and C2. At stage II, C2 layer condenses to form projections (*) in contact with C1. During stage III, the conidium becomes mature containing four cell layers: C1~C4.

During the maturation, the composition of conidial chemical components also changes. One of the most important conidial content is trehalose. Trehalose is a non-reducing disaccharide which is synthesized in a wide range of organisms, from bacteria to invertebrates. It not only serves as an energy source but also a protectant against the environmental stresses [29]. *Aspergillus* conidia contain a high amount of trehalose (up to 15% of the dry mass), which is quickly degraded during germination, suggests the trehalose catabolism is related to the conidial dormancy [30,31]. Moreover, conidial trehalose functions both as a reserve carbohydrate and a stress metabolite [32,33]. In *Aspergilli*, the conidial trehalose amount is linked with the loss of several genes, such as the trehalose-6-phosphate synthase *tpsA* [30], the *velvet* regulators *vosA* [34] and *velB* [35], and the central regulator *wetA* [5], and all these mutants show impaired conidial viability.

1-4 Regulation of asexual development

Genes involved in the regulation of asexual development are highly conserved in *Aspergilli* [36]. Most of the genetic studies of *Aspergillus* using *A. nidulans* as the research material, thus here we use *A. nidulans* as the model system to illustrate the regulation of conidiation.

The entire process of conidiation is regulated by distinct gene sets, including central regulators, upstream activators, negative regulators, light-dependent regulators, and *velvet* regulators (Fig 1-3) [36,37]. The central regulatory pathway (*brlA* \rightarrow *abaA* \rightarrow *wetA*) acts in concert with other conidiation regulators to control conidiation-specific gene expression [3,12]. To kick on the central regulatory pathway, upstream activators (*fluG*, *flbA-E*) are activated and the negative regulators (*sfgA*, *vosA*, *nsdD*, *ganB*, *fadA*, *sfaD*, *gpgA*, and *pkaA*) are repressed [37–39]. The velvet regulators (*veA*, *velB*, *velC*, and *vosA*) are able to form diverse complexes with other proteins, which makes their function flexible in coordinating various biological processes [35,40,41]. Moreover, light is a key environmental stimulus of asexual development in *A. nidulans* [42,43]. The light dependent

regulators include one red-light receptor FphA and three blue-light receptors LreA, LreB, and CryA [43].

Fig 1-3 Overview of the upstream regulation of conidiation in A. nidulans

Regulatory pathway of asexual sporulation in *A. nidulans* (reproduced from de Vries et al., 2017 [36]). Central regulators, upstream activators, negative regulators, *velvet* regulators, and light dependent regulators are illustrated by green, light purple, blue, dark purple, and red icons, respectively.

1-5 Central regulatory pathway

Among the many regulatory pathways, the central regulatory pathway is the key orchestrator of the conidiation event. As summarized in Fig 1-4, the activation of *brlA*, *abaA*, and *wetA* is corresponding to different stages of the conidiation. The *brlA* \rightarrow *abaA* \rightarrow *wetA* central regulatory cascade presents in all *Aspergillus* and *Penicillium* genomes, while only one or two central regulators were found in Ascomycotina in general (Fig 1-5) [36]. In most cases, only a single copy

of each central regulatory gene presents in the *Aspergillus* genome [36]. Based on the expression levels of the loss of function mutants of *AnibrlA*, *AniabaA*, the conidiation-specific genes can be divided into four classes (Class A-D) (Fig 1-4) [12,16,44]. Class A genes, including *AniyA* and *AnirodA*, are induced by either *AnibrlA* or *AniabaA* or both. Class B genes like *AniwA*, which are also known as conidia-specific genes, are induced by *AniwetA*, but independent with *AnibrlA* or *AniabaA*. Class C and Class D genes require all three central regulators for proper expression, which are also known as phialide-specific genes. The Class C and Class D genes can be further distinguished by their expression patterns during conidiation [12,16,44]. Put together, the central regulators constitute a genetic circuit which governs the conidiation by regulating a large group of conidiation-specific genes.

1-5-1 BrlA

Activation of *brlA* (<u>bristle</u> A) is the key and essential initiation step of conidiation [44,45]. The *AnibrlA* mutants produce the elongated stalk but fail to develop vesicles or any subsequent structures [44,45] (See Fig 1-6, Upper right panel). Overexpression of *AnibrlA* leads to the termination of vegetative growth and causes the formation of conidial spores from hyphae in submerged culture [16,46]. The *AnibrlA* encodes two transcripts, *AnibrlA* and *AnibrlA*β (Fig 1-7) [47], which provides the translational repression of *AnibrlA* expression and prevents the premature development (Fig 1-7)[48]. As the two transcripts play distinct roles, their mRNA expression levels are differentially regulated at different development stages [48]. While *AnibrlA*α is regulated at the transcription level, *AnibrlA*β is regulated at both the transcriptional and translational levels [48,49]. The activation of *AnibrlA*α in the *AniabaA* mutant. The expression of *AnibrlA*β is independent of BrlA but its translation is damped by the expression of *AnibrlA*βµORF,

which is a short open reading frame (ORF) located upstream of the *AnibrlA* start codon [48,49]. *AnibrlA* begins to express at 10 h after asexual induction and results in the formation of vesicles (Fig 1-4) [44,50,51]. *Ani*BrlA protein localizes in vesicles, metulae, and phialides, but not in hyphae or mature conidia [44,50,51], suggesting that the main role of *Ani*BrlA is to initiate conidiation.

The *brlA* encodes a C_2H_2 zinc finger transcription factor (TF) [16]. The BrlA response elements (BREs, [C/A][G/A]AGGG[G/A]) has been identified using the yeast system and is widely existed in *A. nidulans* genome [52]. Overexpression of *AnibrlA* leads to the activation of *AniabaA*, *AniwetA*, and other conidiation-specific genes [12,16,44]. Taken together, *AnibrlA* is the key transcription factor, which dominates the initiation of conidiation and termination of vegetative growth.

Fig 1-4 Central regulators of A. nidulans conidiation

A model for the roles of the central regulators in *A. nidulans* conidiogenesis. The black square illustrates the graphic view of the wall structure of the mature conidium, including the crenulated electron-dense outer layer C1, the carbohydrate-condensed layer C3, the electron-thin layer C2, and the innermost layer C4. The central regulators cooperatively activate other genes (Class A~D) responsible for the morphogenesis of conidiophores.

Fig 1-5 The central regulators are highly conserved in Aspergilli and Penicillia

Distribution of central regulators for asexual sporulation in 85 fungi (reproduced from de Vries et al., 2017 [36]). These fungi are representatives from the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Their genome protein sequences were searched for homologs of AbaA, BrlA, and WetA by BlastP using sequences of A. nidulans AbaA, BrlA, and WetA as queries. Details of these fungi are presented in Central Regulator Strain Information. As shown, BrlA seems to be limited to the Eurotiales group, suggesting a specific role for conidiation in Eurotiales fungi. By contrast, WetA is widely distributed in Pezizomycotina fungi, which suggests a general function for the synthesis of cell wall layers to make conidia mature and impermeable. Surprisingly, AbaA is widespread being found in the phyla Ascomycota, Basidiomycota, and Zygomycota, suggesting that AbaA is involved not only in conidial development but also has other general functions in fungal development

The morphology changes due to the disruption of the central regulator encoded genes in *A*. *nidulans* (reproduced from Boylan et al., 1987 [44]). Upper left panel: The *Ani*WT conidiophore. Upper right panel: The bristle-like structure in the *AnibrlA*1 mutant. Bottom left panel: The abacus-like structure in the *AniabaA*1 mutant. Bottom right panel: The collapsed conidia chain in the *AniwetA*6 mutant.

Fig 1-7 Model for differential control of AnibrlAa and AnibrlAb during conidiation

(A) *AnibrlA* β is constitutively transcribed during *A. nidulans* life cycle. In vegetative growth stage, the translation *Ani*BrlA β is blocked by the *AnibrlA* µORF. Dark blue arrow: *AnibrlA* β transcript. Brick red box: *AnibrlA* µORF. Grey shaded box: The translation is blocked. (B) Unknown regulators shut down the translation of *AnibrlA* µORF when the conidiation is induced by appropriate environment stimuli signals. *Ani*BrlA α and *Ani*BrlA β are now able to be properly translated, and then activate the downstream *AniabaA*, which can feedback activate *AnibrlA* α expression. Of note, overexpression of *AnibrlA* β can also activate *AnibrlA* α in Δ *AniabaA* mutant.

1-5-2 AbaA

The *abaA* (<u>aba</u>cus A) gene is activated by *brlA* at the middle stage of conidiation. In *A. nidulans*, *AniabaA* begins to express between 10-15 h after conidiation induction, which is after the metulae differentiation (Fig 1-4) [44,53,54]. Loss of *AniabaA* causes repeated sterigmata development and forms abacus-like structure, which is not capable of forming phialides and conidia (Fig 1-6) [3,11]. The abacus-like structure is more metulae-like rather than phialide-like, suggesting that the

AniabaA functions in the differentiation of phialides [55]. Overexpression of *AniabaA* results in the interruption of vegetative growth and the accentuation of cellular vacuolization. However, unlike the overexpression of AnibrlA, overexpression of *AniabaA* does not cause conidiation [50]. Similar to BrlA, AbaA is TF which contains ATTS/TEA DNA binding domain, which recognizes the consensus motif CATTC[C/T] (also known as AbaA response elements, AREs) [54]. The AbaA binding motif is present in the promoter regions of many conidiation regulatory genes, including *AnibrlA*, *AniwetA*, *AniyA*, *AnirodA*, and *AniabaA* itself [3,52]. *AniabaA* induces *AnibrlA* at a certain time during conidiation, although *AnibrlA* has to be expressed first and activates *AniabaA* first. However, the *AniAbaA*-mediated regulation of *AnibrlA* is more complicated. *AnibrlA* during life cycle [50]. Previous study shows the *AniAbaA*-mediated repression of *AnibrlA* is through the repression of *AnibrlA* [49]. However, there is no AbaA binding motif present in *AnibrlA* promoter region [49], indicating that *AniAbaA* indirectly represses *AnibrlA* through its effect on other genes.

Moreover, the AbaA plays different regulatory roles in conidiation in different *Aspergillus* species. Several *velvet* genes, like *veA*, *vosA*, and *velB*, contain AREs in their promoter regions and are differentially regulated by AbaA in *A. nidulans* and *A. fumigatus* [5,12,19,56]. Loss of *AfuabaA* causes the loss of *AfuvosA* mRNA accumulation and reduced *AfuvelB* mRNA accumulation, while it has no effect on *AfuveA* expression [5]. However, the overexpression of *AniabaA* leads to increased mRNA levels of *AniveA* and *AnivelB*, but not *AnivosA* [12,19]. Taken together, these results suggest that AbaA-mediated GRNs has been genetically rewired in *Aspergilli* during the revolution.

1-5-3 WetA

The *wetA* (wet-white A) gene is activated by AbaA at the late phase of conidiation and is essential for conidial survival [10,11,55]. Interestingly, AbaA is sufficient to activate *wetA* since the overexpression of *AniabaA* can induce *AniwetA* in the *AnibrlA* loss-of-function mutant [12]. Additionally, accumulation of *wetA* mRNA requires *wetA*⁺ activity during conidiation, suggesting that *wetA* is autogenously regulated [10,44]. The transcription of *AniwetA* is initiated at 15 h after conidiation induction, which is corresponding to the timing of conidia formation (Fig 1-4) [12,44]. Moreover, unlike *AnibrlA* and *AniabaA*, *AniwetA* mRNA keeps high levels in conidia [44], which may result from the autogenous regulation of *AniwetA* itself. Taken together, WetA is likely to play more important roles in conidia than just contributes to conidia maturation.

The disruption of *wetA* results in various defects of conidia, including the formation of colorless conidia that undergo autolysis in *A. nidulans* (Fig 1-6) [10–12,15–18,44], *A. fumigatus* [5,20], and *A. oryzae* [8]. The disruption of *AniwetA* causes the loss of the C4 layer of the conidia wall, which makes conidia impermeable and mature [10,11,55]. Moreover, loss of *AniwetA* and *AfuwetA* leads to the failure of the condensation of the C2 layer in Δ *AniwetA* and Δ *AfuwetA* conidia [5,11]. The condensation of the C2 layer along with the formation of the C3 and C4 layers are the final stage of conidial maturation, which contributes to the impermeability of the conidial wall [11]. In addition, overexpression of *AniwetA* in vegetative cells inhibited hyphal growth and resulted in excessive branching and the activation of spore specific genes, however, it does not result in the activation of *AniabaA* activation and never led to premature conidiation [10].

WetA is not only involved in the conidial morphological changes but also associated with the metabolism and expression control of the conidial components. Based on microscopy images, trehalose quantifications, and β -(1,3)-glucan quantifications from our group as well as others,

studies proposed that WetA regulates conidial wall integrity and trehalose content [5–7,9,11,19]. The disruption of the metabolism of trehalose and β -(1,3)-glucan usually leads to reduced stress tolerance and viability of conidia, which are both observed in Δ *AniwetA* and Δ *AfuwetA* conidia [5]. WetA is highly and broadly conserved in Ascomycetes (Fig 1-5) and has been characterized in several species, including A. oryzae, A. fumigatus, A. nidulans, Penicillium chrysogenum, P. digitatum, Beauveria bassiana, and Fusarium graminearum [5–13,15–18,20,44]. The functions of WetA are highly conserved. P. chrysogenum wetA can fully complement the A. nidulans wetA deletion mutation, suggesting that the WetA-mediated sporulation regulatory mechanisms are conserved in A. nidulans and P. chrysogenum [13] As the loss of AniwetA in A. nidulans, the lack of wetA also results in abnormal conidia, delayed germination, and reduced stress tolerance in P. digitatum and F. graminearum [6,7]. Moreover, F. graminearum WetA suppresses microcycle conidiation and then further maintains conidial dormancy [6]. In the insect pathogen B. bassiana, $\Delta BbwetA$ mutant produces deficient conidia which are sensitive to environment stresses [9]. Put together, the conserved protein sequence and functions of WetA suggest that WetA plays similar regulatory roles in Ascomycetes.

Previous studies report that *Ani*WetA is required to activate the conidia-specific Class B genes and is able to autogenously activate itself [10,12,16,44]. Moreover, all characterized WetA contains a ESC1/WetA-related domain (PTHR22934: SF29) with the putative DNA-binding ability originating near the C-terminus [6,57], which also contains a predicted transcription activation domain (TAD) [58] and a nuclear localization signal (NLS) [59,60], suggesting that WetA is a potential TF, as well as the other two central regulators, BrIA and AbaA. Collectively, we propose that the evolutionarily conserved WetA plays a global regulatory role in bridging spore differentiation and survival in *Ascomycetes* by serving as a transcription factor.

Although WetA is required for trehalose biosynthesis in *A. nidulans*, *A. fumigatus* and *B. bassiana* loss of *wetA* did not alter the trehalose amount in *F. graminearum* and *P. digitatum* [5–7,9]. Moreover, loss of *wetA* in different species results in variable degrees of tolerance to oxidative stress and osmotic stress. The *A. fumigatus* and *F. graminearum wetA* deletion mutants are highly sensitive to H_2O_2 [5,6], while the *B. bassiana wetA* deletion mutants showed WT level tolerance to H_2O_2 [9], and the *P. digitatum wetA* deletion mutants even showed enhanced tolerance to H_2O_2 [7]. Similarly, loss of *wetA* causes reduced osmotic stress tolerance in *A. fumigatus*, *P. digitatum*, and *B. bassiana*, but has not in *F. graminearum* [5–7,9]. Put together, the WetA-mediated GRNs have been rewired during evolution.

1-6 Conclusion and the dissertation overview

In this chapter, we summarized the current understanding of the central regulatory pathway of *Aspergillus* conidiation. As the high degree of cell differentiation and the importance of the fungal reproduction, conidiation in filamentous fungi has long been studied and is still attracting interest from the research society. Even though there many GRNs involved in conidiation have been reported, the systematic transcriptome study of the central regulatory circuit $brlA \rightarrow abaA \rightarrow wetA$ is still lack. Although WetA has been reported as a regulator of the completion of conidia maturation, its regulatory mechanism still remains unknown. We hypothesize that WetA is an evolutionally and functionally conserved transcription factor in Ascomycetes, which controls various GRNs involved in biological processes as well as in conidiation.

The ultimate goal of this thesis is to elucidate the roles and regulatory mechanism of WetA in three important *Aspergillus* species, the model organism *A. nidulans*, the human pathogen *A. fumigatus*, and the mycotoxin producer *A. flavus*. While WetA has been characterized in *A. nidulans* and *A. fumigatus*, its functions in *A. flavus* was still unclear. In chapter 2, we characterized the function

of *Afl*WetA and carried out transcriptome analysis of the *Afl*WT and Δ *AflwetA* conidia. The result demonstrated that *Afl*WetA bridges cellular and chemical development in *A. flavus*. In chapter 3, we elucidated the conserved and diverged WetA-mediated GRNs in three *Aspergillus* species using comparative transcriptome analysis. Furthermore, we identified the WetA binding motif in *A. nidulans* and predicted potential WetA targeted genes in each species. Chapter 4 provides concluding remarks and ideas for future work on the project. In addition, the reprint of a published book chapter "Epigenetics of fungal secondary metabolism related genes" is included as Appendix 1.

1-7 References

- Newbound M, Mccarthy MA, Lebel T. Fungi and the urban environment: A review. Landsc Urban Plan. 2010;96: 138–145. doi:10.1016/j.landurbplan.2010.04.005
- Casselton L, Zolan M. The art and design of genetic screens: filamentous fungi. Nat Rev Genet. 2002;3: 683–697. doi:10.1038/nrg889
- Adams TH, Wieser JK, Yu J-H. Asexual sporulation in *Aspergillus nidulans*. Microbiol Mol Biol Rev. American Society for Microbiology; 1998;62: 35–54. Available: http://www.ncbi.nlm.nih.gov/pubmed/9529886
- Timberlake WE, Boylan MT, Mirabito PM, Willett CE, Zimmerman CR. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*. Antonie Van Leeuwenhoek. 1987;53: 317. doi:10.1007/BF00400554
- 5. Tao L, Yu J-H. AbaA and WetA govern distinct stages of *Aspergillus fumigatus* development. Microbiology. 2011;157: 313–326. doi:10.1099/mic.0.044271-0
- Son H, Kim M-G, Min K, Lim JY, Choi GJ, Kim J-C, et al. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus *Fusarium graminearum*. Eukaryot Cell. 2014;13: 87–98.
- Wang M, Sun X, Zhu C, Xu Q, Ruan R, Yu D, et al. *PdbrlA*, *PdabaA* and *PdwetA* control distinct stages of conidiogenesis in *Penicillium digitatum*. Res Microbiol. 2015;166: 56–65. doi:10.1016/j.resmic.2014.12.003

- Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y. Genetic analysis of conidiation regulatory pathways in koji-mold *Aspergillus oryzae*. Fungal Genet Biol. Elsevier Inc.; 2010;47: 10–18. doi:10.1016/j.fgb.2009.10.004
- Li F, Shi H-Q, Ying S-H, Feng M-G. WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol. Springer Berlin Heidelberg; 2015;99: 10069– 10081. doi:10.1007/s00253-015-6823-7
- Marshall MA, Timberlake WE. *Aspergillus nidulans wetA* activates spore-specific gene expression. Mol Cell Biol. 1991;11: 55–62. doi:10.1128/mcb.11.1.55
- Sewall TC, Mims CW, Timberlake WE. Conidium differentiation in *Aspergillus nidulans* wild-type and wet-white (wetA) mutant strains. Dev Biol. 1990;138: 499–508. doi:http://dx.doi.org/10.1016/0012-1606(90)90215-5
- Mirabito PM, Adams TH, Timberlake WE. Interactions of three sequentially expressed genes control temporal and spatial specificity in *Aspergillus* development. Cell. 1989;57: 859–868. doi:http://dx.doi.org/10.1016/0092-8674(89)90800-3
- Prade RA, Timberlake WE. The *Penicillium chrysogenum* and *Aspergillus nidulans wetA* developmental regulatory genes are functionally equivalent. Mol Gen Genet. 1994;244: 539–47. Available: http://www.ncbi.nlm.nih.gov/pubmed/8078481
- Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, et al. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. Richardson PM, editor. PLoS Genet. 2011;7: e1002345. doi:10.1371/journal.pgen.1002345
- 15. Clutterbuck SDM and AJ. A quantitative survey of conidiation mutants in *Aspergillus nidulans*. J Gen Microbiol. 1971;69: 261–268.
- Adams TH, Boylan MT, Timberlake WE. *brlA* is necessary and sufficient to direct conidiophore development in *Aspergillus nidulans*. Cell. 1988;54: 353–362. doi:http://dx.doi.org/10.1016/0092-8674(88)90198-5
- Timberlake WE. Translational triggering and feedback fixation in the control of fungal development. Plant Cell. American Society of Plant Biologists; 1993;5: 1453. doi:10.1105/tpc.5.10.1453
- 18. Sewall TC. Cellular effects of misscheduled *brlA*, *abaA*, and *wetA* expression in

Aspergillus nidulans. Can J Microbiol. 1994;40: 1035–1042.

- Clutterbuck AJ. A mutational analysis of conidial development in *Aspergillus nidulans*. Genetics. 1969;63: 317–327. Available: http://www.genetics.org/content/63/2/317.short
- Shin K-S, Kim YH, YuJ -H. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in *Aspergillus fumigatus*. Biochem Biophys Res Commun. 2015;463: 428–433. doi:10.1016/j.bbrc.2015.05.090
- Ebbole DJ. The Conidium. Cellular and molecular biology of filamentous fungi.
 American Society of Microbiology; 2010. pp. 577–590. doi:10.1128/9781555816636.ch36
- Singh R. The foot cell morphology of genus *Aspergillus*. Mycopathologia. Springer Netherlands; 1973;49: 209–215. doi:10.1007/BF02050867
- Oliver PTP. Conidiophore and spore development in Aspergillus nidulans. J Gen Microbiol. 1972;73: 45–54. doi:10.1099/00221287-73-1-45
- Bennett JW. An overview of the genus *Aspergillus*. Caiser Academic Press, Portland; 2010.
- Kendrick B. Analysis of morphogenesis in hyphomycetes: new characters derived from considering some conidiophores and conidia as condensed hyphal systems. Can J Bot. NRC Research Press Ottawa, Canada ; 2003;81: 75–100. doi:10.1139/b03-008
- Rivero F, Cerdá-Olmedo E. Spore dormancy mutants of phycomyces. Exp Mycol. 1994;18: 221–229. doi:10.1006/emyc.1994.1022
- Weisberg SH, Turian G. Ultrastructure of *Aspergillus nidulans* conidia and conidial lomasomes. Protoplasma. 1971;72: 55–67. Available: http://www.ncbi.nlm.nih.gov/pubmed/5578692
- Timberlake WE. Molecular genetics of *Aspergillus* development. Annu Rev Genet. 1990;24: 5–36.
- Elbein AD, Pan YTT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. Oxford University Press; 2003;13: 17R–27. doi:10.1093/glycob/cwg047
- Ruijter G, Fillinger S, Thevelein J, Chaveroche M-K, deVries R, d'Enfert C, et al. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus *Aspergillus nidulans*. Microbiology. 2001;147: 1851–1862. doi:10.1099/00221287-147-7-1851

- Lingappa BT, Sussman AS. Endogenous substrates of dormant, activated and germinating ascospores of *Neurospora tetrasperma*. Plant Physiol. American Society of Plant Biologists; 1959;34: 466–72. Available: http://www.ncbi.nlm.nih.gov/pubmed/16655255
- 32. Thevelein JM, Hohmann S. Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci. 1995;20: 3–10. Available: http://www.ncbi.nlm.nih.gov/pubmed/7878741
- Argüelles JC. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol. Springer-Verlag; 2000;174: 217–224. doi:10.1007/s002030000192
- Ni M, Yu J-H. A Novel regulator couples sporogenesis and trehalose biogenesis in *Aspergillus nidulans*. PLoS One. Public Library of Science; 2007;2: e970. doi:10.1371/journal.pone.0000970
- 35. Park HS, Ni M, Jeong KC, Kim YH, Yu JH. The role, interaction and regulation of the *velvet* regulator VelB in *Aspergillus nidulans*. PLoS One. 2012;7: e45935. doi:10.1371/journal.pone.0045935
- 36. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus *Aspergillus*. Genome Biol. 2017;18: 28. doi:10.1186/s13059-017-1151-0
- 37. Park H-S, Yu J-H. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012;15: 669–677. doi:http://dx.doi.org/10.1016/j.mib.2012.09.006
- Etxebeste O, Garzia A, Espeso EA, Ugalde U. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol. 2010;18: 569–576. doi:10.1016/j.tim.2010.09.007
- Lee M-K, Kwon N-J, Choi JM, Lee I-S, Jung S, Yu J-H. NsdD is a key repressor of asexual development in *Aspergillus nidulans*. Genetics. 2014;197: 159–173. doi:10.1534/genetics.114.161430
- Sarikaya BayramÖ, BayramÖ, ValeriusO, ParkHS, IrnigerS, GerkeJ, et al. LaeA Control of Velvet Family Regulatory Proteins for Light-Dependent Development and Fungal Cell-Type Specificity. BrakhageAA, editor. PLoS Genet. Public Library of Science; 2010;6: e1001226. doi:10.1371/journal.pgen.1001226
- Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park HS, Irniger S, Gerke J, et al. LaeA control of *velvet* family regulatory proteins for light-dependent development and fungal cell-type specificity. Brakhage AA, editor. PLoS Genet. Public Library of Science; 2010;6: e1001226. doi:10.1371/journal.pgen.1001226
- 42. Mooney JL, Yager LN. Light is required for conidiation in Aspergillus nidulans. Genes

Dev. 1990;4: 1473-82. Available: http://www.ncbi.nlm.nih.gov/pubmed/2253875

- Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J. Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol. 2010;47: 900–908. doi:10.1016/j.fgb.2010.05.008
- 44. Boylan MT, Mirabito PM, Willett CE eal, Zimmerman CR, Timberlake WE. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*. Mol Cell Biol. 1987;7: 3113–3118. doi:10.1128/mcb.7.9.3113
- 45. Clutterb.AJ. A mutational analysis of conidial development in *Aspergillus nidulans*. Genetics. 1969;63: 317
- 46. Adams TH, Timberlake WE. Upstream elements repress premature expression of an *Aspergillus* developmental regulatory gene. Mol Cell Biol. 1990;10: 4912–4919.
- 47. Prade RA, Timberlake WE. The *Penicillium chrysogenum* and *Aspergillus nidulans wetA* developmental regulatory genes are functionally equivalent. Mol Gen Genet MGG. 1994;244: 539–547
- 48. Han S, Navarro J, Greve RA, Adams TH. Translational repression of *brlA* expression prevents premature development in *Aspergillus*. EMBO J. European Molecular Biology Organization; 1993;12: 2449–57. Available: http://www.ncbi.nlm.nih.gov/pubmed/8508770
- Han S, Adams TH. Complex control of the developmental regulatory locus *brlA* in *Aspergillus nidulans*. Mol Genet Genomics. 2001;266: 260–70. Available: http://www.ncbi.nlm.nih.gov/pubmed/11683268
- Aguirre J. Spatial and temporal controls of the *Aspergillus brlA* developmental regulatory gene. Mol Microbiol. 1993;8: 211–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/8316075
- Timberlake WE, Marshall MA. Genetic regulation of development in *Aspergillus nidulans*. Trends Genet. 1988;4: 162–169. doi:http://dx.doi.org/10.1016/0168-9525(88)90022-4
- 52. Chang YC, Timberlake WE. Identification of *Aspergillus brlA* response elements (BREs) by genetic selection in yeast. Genetics. 1993;133: 29–38
- 53. AndrianopoulosA, TimberlakeWE. ATTS, a new and conserved DNA binding domain. Plant Cell. American Society of Plant Biologists; 1991;3: 747. doi:10.1105/tpc.3.8.747
- Andrianopoulos A, Timberlake WE. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol. American Society for Microbiology; 1994;14: 2503–2515. doi:10.1128/mcb.14.4.2503
- 55. Sewall TC, Mims CW, Timberlake WE. *abaA* controls phialide differentiation in

Aspergillus nidulans. Plant Cell Online. 1990;2: 731–739

- Aramayo R, Timberlake WE. The *Aspergillus nidulans yA* gene is regulated by *abaA*.
 EMBO J. 1993;12: 2039–48. Available: http://www.ncbi.nlm.nih.gov/pubmed/8491194
- 57. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38: D204–D210.
- Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-aminoacid transactivation domain: Establishment and prediction utilities. Genomics. 2007;89: 756–768. doi:10.1016/j.ygeno.2007.02.003
- 59. Ba ANN, Pogoutse A, Provart N, Moses AM. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10: 202.
- 60. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35: W585–W587.

CHAPTER 2

WetA bridges cellular and chemical development

in Aspergillus flavus

Acknowledgements: RNA-seq data processing and functional enrichment analysis were cooperated with Drs. Matthew E. Mead and Antonis Rokas.

The results described in this chapter have been published. The citation is as follows: Wu M-Y, Mead ME, Kim S-C, Rokas A, Yu J-H (2017) WetA bridges cellular and chemical development in *Aspergillus flavus*. PLoS ONE 12(6): e0179571. https://doi.org/10.1371/journal.pone.0179571

2-1 Abstract

Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA \rightarrow AbaA \rightarrow WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in $\Delta wetA$ RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α -(1,3)-glucan, β -(1,3)-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of *wetA*, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.

2-2 Introduction

Coordination of cellular reproduction and survival is fundamental to the existence and propagation of all living organisms. From the simplest single cell organisms to complex multicellular plants and animals, regulatory and signalling systems have evolved to ensure that future viability of the reproductive cells. Fungi primarily reproduce through spore propagation; fungal spores are adapted for dispersal and are resistant to desiccation, heat, oxidative and UV stresses, properties which also render them very capable of establishing infections [1]. Fungal sporulation involves coordinated control of morphological, physiological, and metabolic (chemical) developmental processes.

The genus Aspergillus includes several organisms that are commonly found in the human environment. For example, the widely distributed *Aspergillus flavus* is an opportunistic pathogen of plants and humans [2], and can produce the mycotoxin aflatoxin B1 (AFB1), the most potent carcinogen found in nature. The main means of dissemination of this fungus is producing a massive number of asexual spores (conidia), which are dispersed in the soil and air. In agricultural fields, these spores are carried to corn ears by insects or the wind where they grow in maize kernels and produce AFB1 [3]. AFB1 can be present in oil-seed crops, such as corn, cereals, sorghum, and peanuts, and when AFB1 is present in the feed consumed by a cow, it can be metabolised to AFM1 (M for milk), which is also highly toxic and carcinogenic [4]. Consumption of high doses of AFB1 in humans can lead to acute aflatoxicosis, liver necrosis, and even death. Due to their carcinogenicity and toxicity, levels of aflatoxins in foods and feeds are strictly regulated worldwide [5]. As conidiation and AF production are tightly correlated in A. flavus, understanding the mechanisms bridging cellular and chemical development may provide novel insights into controlling the dissemination of the fungus and subsequent contamination of crops by AFB1 [6-8].

The asexual reproductive cycle of *Aspergillus* fungi can be divided into two distinct phases: growth and development. The growth phase involves germination of the conidium and formation of an undifferentiated network of hyphal cells that form the mycelium. Once nutritional resources begin

to be limiting, some of the hyphal cells stop mycelial growth and begin asexual development (conidiation) by forming complex structures called conidiophores that bear multiple chains of conidia (Fig 2-1A), completing the asexual reproductive cycle [9]. Conidiation in *Aspergillus* involves distinct morphological and chemical processes [9]. For example, a key morphological process is the formation of a large number of conidia with specialized cell walls. Similarly, key primary metabolic processes include the acquisition of pigments and massive biogenesis of trehalose within the spore (up to 15% of dry weight), providing protection and long-term viability [10].

Fig 2-1 WetA is required for proper conidial maturation and contains both a transcription activation domain and a nuclear localization signal in a variety of fungi

(A) A model for the roles of the central regulators in *Aspergillus* conidiogenesis. WetA is activated by AbaA and is responsible for conidia wall maturation. The black square illustrates the graphic view of the wall structure of the mature conidium, including the crenulated electron-dense outer layer C1, the carbohydrate-condensed layer C3, the electron-thin layer C2, and the innermost layer C4. Note: some Aspergillus species lack metulae (ex. A. parasiticus), and some species can have both metulae-phialides or phialides-only conidiophores (ex. some A. flavus variants) [11]. (B) Unrooted phylogeny of WetA amino acid sequences of A. flavus NRRL3357 XP 002383329.1 (AFL), A. fumigatus Af293 XP 751508.1 (AFU), A. nidulans FGSC4 XP 659541.1 (ANI), A. oryzae RIP40 XP 001816745.1 (AOR), Penicillium chrysogenum Wisconsin 54-1255 XP 002564365.1 (PCH), P. digitatum Pd1 XP 014534725.1 (PDI), Fusarium graminearum PH-1 IIS0E2.2 (FGR), and *Beauveria bassiana* ARSEF 2860 XP 008599445.1 (BBA) [12–18]. The sequences were aligned using MAFFT, version 7.1.5 [19]. The WetA protein phylogeny was calculated using the maximum likelihood optimality criterion, as implemented in PAUP [20], version 4.0a152; we used the WAG model of amino acid evolution [21], with empirical amino acid frequencies and allowing for rate heterogeneity among sites. Values near internal branches correspond to bootstrap support values (only values above 70% are shown). Branch lengths correspond to the estimated number of amino acid substitutions per site – the internal branch leading to the FGR and BBA sequences has been truncated for optimal visualization. (C) The predicted WetA protein architecture. The red circle and the red box represent the transcription activation domain (TAD) which was predicted by 9aaTAD using the "Less stringent Pattern" setting [22]. The blue diamond and the blue box represent the nuclear localization signal (NLS) predicted by NLStradamus using the 4 state HMM static model [23]. The orange rectangle and the orange box represent the ESC1/WetA-related domain (PTHR22934) predicted by the PANTHER classification system [24]. The consensus sequence and the consensus histogram are shown under the amino acid sequence multiple sequence alignment.

A key and essential step for conidiophore development in *Aspergillus* is activation of *brlA*, which encodes a C_2H_2 zinc finger transcription factor (TF) (Fig 2-1A) [9,25]. Further genetic and biochemical studies identified *abaA* and *wetA* as genes that are also important for conidiation. The *abaA* gene, activated by BrlA during the middle stages of conidiation, has been reported to function in the differentiation and functionality of the cells that produce conidia, which are known as phialides [26,27]. The *wetA* gene is activated by AbaA at the late phase of conidiation and functions in the synthesis of crucial conidial wall components, such as the inner C4 layer, which makes conidia impermeable and mature [28,29]. These three genes define a central regulatory pathway that acts in concert with other genes to control conidiation-specific gene expression and determine the order of gene activation during conidiophore development and spore maturation [30].
In this report, we have characterised the functions of WetA (wet-white A) in an aflatoxigenic A. flavus strain (NRRL3357) employing genetic, analytical, and genomic approaches as a way to better understand the developmental and chemical biology of this important plant pathogen that dramatically impacts human health. Similar to what has been described in A. nidulans [29], the deletion (Δ) of *wetA* in *A*. *flavus* resulted in various defects, including the formation of wet-white conidia that take up water and autolyze rather than undergoing the final stages of maturation. A. *flavus* $\Delta wetA$ conidia are defective in the formation of a complex cell wall and lack pigments. TEM analysis indicates that many of the $\Delta wetA$ mutant conidia are misshaped and lack cytoplasm. Moreover, the $\Delta wetA$ mutant conidia lack trehalose and are highly sensitive to heat and oxidative stress. Importantly, WetA is also necessary for proper vegetative growth and AFB production. RNA-seq analyses of conidia indicate over 5,700 genes are differentially expressed between wildtype (WT) and the mutant conidia including 160 genes predicted to encode (putative) TFs, indicating a global regulatory role of WetA in conidiogenesis. Collectively, we propose that the evolutionarily conserved WetA protein plays a global regulatory role in governing growth, development, and bridging spore differentiation and survival in A. flavus.

2-3 Materials and methods

2-3-1 Strains, media, and culture conditions

Aspergillus strains used in this study are listed in Table S2-1. The fungal strains were grown on minimal medium (MM) with appropriate supplements as described previously [31,32] and incubated at 30°C. To determine the number of conidia, WT and mutant strains were point-inoculated and grown on solid MM at 30°C for 2 days. The conidia were collected in ddH₂O from the entire colony and counted using a hemocytometer. For liquid submerged cultures, conidia of

WT and mutant strains were inoculated in liquid MM and incubated at 30°C, 220 rpm. Conidiation induction was performed as previously described [33]. *Escherichia coli* strains, DH5α and BL21 (DE3), were grown in Luria-Bertani medium with ampicillin (50 mg/ml) for plasmid amplification.

2-3-2 Generation of *wetA* deletion and complemented strains

The oligonucleotides used in this study are listed in Table S2-1. Double-joint PCR was used to generate the deletion constructs of *wetA* [34]. Briefly, the deletion constructs containing *A*. *fumigatus pyrG* marker with 5' and 3' flanking regions of *wetA* were introduced into the recipient strain NRRL3357.5 [35]. To generate complemented strains, a WT *wetA* gene region including its upstream 2 kb region and downstream 1 kb region was amplified and introduced into the recipient strain. Multiple *wetA* deletion mutants ($\Delta wetA$) in *A. flavus* were generated, which all behaved the same in every assay tested. We also generated three independent complemented strains (C'wetA), and they all behaved identically to one another as well. We chose TMY1 ($\Delta wetA$) and TMY2 (C'wetA) as the testing strains for further experiments.

2-3-3 Nucleic acid manipulation

To isolate genomic DNA, about 10^6 conidia of relevant strains were inoculated in 2 ml liquid MM and stationary cultures at 30° C for 2 days. The mycelial mat was collected, squeeze-dried, and genomic DNA was isolated as described [34]. Total RNA isolation for Northern blot analyses was performed as described [33,34,36]. For RNA-seq, 2-day-old conidia of WT and Δ *wetA* strains were harvested from solid MM. Total RNA was extracted and submitted to ProteinCT Biotechnologies (Madison, WI) and the University of Wisconsin Biotechnology Center (Madison, WI) for library preparation and sequencing.

2-3-4 Conidia viability, autolysis, and stress response test

To check conidial viability, 2-day-old conidia of WT, $\Delta wetA$, and C'*wetA* strains were collected and spread onto solid MM and cultured at 30°C. At 2-, 5-, 7-, 14-, and 20-days post-inoculation, conidia were collected from MM plates, and approximately 200 conidia were inoculated onto solid MM and cultured until colonies appeared. Survival rate was calculated as the ratio of the actual colony number to expected colony number. To test for conidial autolysis, approximately 100 conidia of WT, $\Delta wetA$, and C'*wetA* strains were inoculated onto solid MM and incubated at 30°C for 4, 7, and 18 days. Conidia from the entire plate were collected and counted. Relative conidial number was compared to the number of conidia derived from a 4-day-old plate of each strain.

Two-day-old conidia of WT, $\Delta wetA$, and C'*wetA* strains were collected to examine stress tolerance. For thermal stress tolerance tests, conidia were incubated at 50°C for 0, 10, and 60 minutes, and then spread onto solid MM. For UV stress tolerance tests, conidia were spread on solid MM and exposed to varying UV intensities (0, 100, and 200 J/cm²). For osmotic stress tolerance tests, conidia were spread onto solid MM with different concentrations (0.0, 0.6, and 2.4 M) of KCI. Finally, for oxidative stress tolerance tests, conidia were spread onto solid MM with different concentrations (0, 2, and 4 mM) of H₂O₂. All plates were incubated at 30°C until colonies appeared. Colony numbers were counted and calculated as a percentage of the untreated control.

2-3-5 Conidia content quantification

Two-day-old conidia of WT, $\Delta wetA$, and C'*wetA* strains were collected. Trehalose and β -glucan quantification was performed as previously described [13,37].

2-3-6 Transmission electron microscopy (TEM)

Two-day-old conidia of WT and $\Delta wetA$ were collected from MM plates. Sample preparation was

performed as previous described [31]. TEM analyses were done by the UW Electron Microscope Facility.

2-3-7 Vegetative growth rate and hyphal branching rate tests

Conidia of WT, $\Delta wetA$, and C'wetA strains were point inoculated onto solid MM and cultured at 30°C. Colony diameter was measured daily until day 7 post inoculation. To measure the hyphal branching rate, conidia of WT and $\Delta wetA$ strains were inoculated and cultured for 18 hours at 30°C, 220 rpm in liquid MM (V18). The mycelium aggregates were transferred to solid MM and cultured for 8 hours (A8). The average peripheral growth unit (PGU) is defined as the distance between two branching points. At least 15 PGUs were measured for each strain.

2-3-8 AFB1 quantification

Two-day-old conidia of WT, $\Delta wetA$, and C'*wetA* strains were inoculated into 100 ml MM (10³/ml) and cultured for 5 days at 30°C, 220 rpm. Individual liquid cultures were filtered by a single layer of Miracloth. The mycelium aggregates were squeezed with a paper towel to remove as much of the medium as possible. The mycelium mat was placed in a 65°C oven for 2 hours and then its dry weight was quantified. Two milliliters of the culture (with or without filtration to remove the mycelium) were mixed with an equal volume of chloroform, vigorously vortexed, and centrifuged. The chloroform (bottom) layer (750 μ l) of each sample was transferred and evaporated in a glass tube overnight. Then each dried sample was dissolved in 500 μ l methanol anhydrous and filtrated by a 0.45 μ m filter syringe into HPLC vials. Each sample was injected into the HPLC (Agilent 1200 series) at a flow rate of 0.8ml/min with water:acetonitrile anhydrous:methanol anhydrous (20:40:40, v/v), and AFB was detected by a diode array detector at a wavelength of 365 nm [38]. The injected volume was 10 μ l and the separation was performed via Agilent HPLC column Zorbax Eclipse XDB-C18, 5um, 4.6 x 250mm cart.

2-3-9 RNA sequencing

A strand-specific library was prepared from total RNA using the Illumina TruSeq Strand-specific RNA sample preparation system. Briefly, mRNA was extracted from total RNA using poly-A selection, followed by RNA fragmentation. The strand-specific library was constructed by first-strand cDNA synthesis using random primers, sample cleanup, and second-strand synthesis using DNA Polymerase I and RNase H. A single 'A' base was added to the cDNA fragments followed by ligation of the adapters. Final cDNA library was achieved by further purification and enrichment with PCR, then quality checked using a Bioanalyzer 2100. The library was sequenced (SE100bp) using the Illumina HiSeq2500, and over 19 million high-quality reads per sample were achieved. All RNA-seq data files are available from the NCBI Gene Expression Omnibus database (Accession number: GSE95711).

2-3-10 Gene expression analysis

The quality of the raw sequence reads was verified using version 0.11.5 of FastQC [39]. The *A*. *flavus* genome and gene annotations were downloaded from NCBI (GCF_000006275.2_JCVI-afl1-v2.0_genomic.gff) and used for mapping. Mapping of the raw sequence reads to the genome was carried out with version 2.1.1 of Tophat2 [40], and the default options were used except for the maximum intron length was set to 4,000 bases (--max-intron-length 4000). Most (77-93%) of the reads from each of the samples mapped to the *A. flavus* genome. The alignment BAM files were compared against the gene annotation GFF file, and raw counts for the number of reads mapping to each gene were generated using version 0.6.1 of HTSeq-count [41]. Approximately 70-80% of mappable reads from each of the samples could be assigned to genes. Differential expression analysis of the raw counts was carried out using version 1.14.1 of DESeq2 [42]. Genes

were considered differentially expressed between the WT and $\Delta wetA$ conidia if their adjusted pvalue was less than 0.05 and their log₂ fold change was less than -1 or greater than 1.

2-3-11 Functional Enrichment Analysis

GO annotations for *A. flavus* genes were downloaded from the AmiGO 2 website (version 2.4) on February 8, 2017 [43], and terms enriched in either the WetA-activated or -repressed gene lists were detected using version 3.0.3 of the BiNGO application [44] for Cytoscape (version 3.4.0) [45]. Version 1-26-17 of the Gene Ontology (go.obo) [46] was used to establish GO term relationships. GO terms were considered enriched if their p-value, following the Benjamini-Hochberg correction as implemented in BiNGO, was less than 0.05.

2-4 Results

2-4-1 Protein sequence features of WetA in A. flavus

The *A. flavus wetA* (XM_002383288.1) ORF comprises 1,692 bp with no introns and is predicted to encode a 563 amino-acid (aa) long protein. BlastP analysis against eight previously characterized WetA amino acid sequences reveals that *A. flavus* WetA has 99%, 61%, 57%, 53%, 53%, 68%, and 35% aa identity with WetA of *A. oryzae*, *A. fumigatus*, *A. nidulans*, *Penicillium chrysogenum*, *P. digitatum*, *Beauveria bassiana*, and *Fusarium graminearum*, respectively. Phylogenetic analysis revealed that *A. flavus* WetA is nested within a clade that also contains the *A. oryzae*, *A. nidulans*, *P. digitatum*, and *P. chrysogenum* WetA sequences, while *B. bassiana* WetA clusters with the *F. graminearum* sequence. Moreover, *A. flavus* WetA is almost identical to *A. oryzae* WetA and is relatively more similar to *A. fumigatus* WetA compared to *A. nidulans* WetA (Fig 2-1B). *A. flavus* WetA, along with all other WetA proteins included in our analyses, has a conserved 51-aa-length ESC1/WetA-related domain (PTHR22934: SF29) with the putative DNA-

binding ability originating near the C terminus (Fig 2-1C) [14,47]. This highly conserved domain is further predicted by 9aaTAD and NLStradamus [22,23] to contain a 9-aa-length transcription activation domain (TAD) and a 16-aa-length nuclear localization signal (NLS), suggesting that WetA is a potential TF (Fig 2-1C).

2-4-2 The role of WetA in conidia

To understand the biological functions of WetA, we generated multiple *wetA* deletion mutants and complement strains in *A. flavus*. The *wetA* null mutant forms colourless (white) conidia which start to autolyze (wet) and collapse at 2 to 3 days after conidiation, forming an aggregated sphere structure (Fig 2-2A).

To check the detailed structural defects of the $\Delta wetA$ conidia, we carried out transmission electron microscopy (TEM) of conidiophores of WT and $\Delta wetA$ strains. As shown in Fig 2-2B, while WT formed intact conidial chains, the $\Delta wetA$ mutant showed fewer intact conidia and a high number of lysed conidial remnants. The WT conidial diameter is about 153% longer than that observed with $\Delta wetA$ (Fig 2-2C). Moreover, the WT conidium shows a crenulated electron-opaque outer layer (C1) and an electron-translucent inner layer (C2), as reported in *A. nidulans* and *A. fumigatus* [13,29]. Although $\Delta wetA$ conidium forms the C1 and C2 layers, the C1 outer layer is smooth and the C2 layer is more condensed and thinner than that of WT (Fig 2-2D). Although the TEM results show that the intact $\Delta wetA$ conidium is as electron-opaque as the WT conidium, the intact $\Delta wetA$ conidium contains more β -(1,3)-glucan but less trehalose when compared to the WT conidium (Fig 2-2E and 2F).

Fig 2-2 WetA is necessary for the proper formation of conidia in Aspergillus flavus

(A) Phenotypes of WT (NRRL3357), *AwetA*, and C'*wetA* grown on solid MM at 30°C for 3, 4, 16 days after asexual induction. The white triangles indicate the liquid droplets formed on the autolyzing conidiophores of $\Delta wetA$ strain. (B) TEM images of 2-day-old conidiophores/conidia of WT and $\Delta wetA$ strains. Note: the remnant of lysed conidia formed a wet-vesicle-like structure on the top of the conidia chain, and most of the conidiophore/conidia contents were lost in the $\Delta wetA$ strain. The bottom panels show the conidia wall structures of WT and $\Delta wetA$ strains. Arrows indicate the locations of the C1 and C2 layers while the arrowheads indicate the C2 layer thickness. (C, D) The average diameter of conidia and thickness of the C2 layer of WT and $\Delta wetA$ conidia. (E, F) Quantification of conidia content (β -(1,3)-glucan (E) and trehalose (F)) of WT, $\Delta wetA$, and C'wetA 2-day-old conidia The error bars indicate one standard deviation from the mean and the asterisks the level of significance (*, p < 0.05; **, p < 0.01). (G) The relative viability of WT, AwetA, and C'wetA conidia grown on solid MM at 30°C for 4, 7, 18 days after inoculation. The conidial viability at day 4 of each strain was set as 100%. ** (p < 0.01). The error bars indicate one standard deviation from the mean viability of triplicates. (H) Tolerance of WT, $\Delta wetA$, and C'wetA 2-day-old conidia to heat (50°C), oxidative (H₂O₂), osmotic (KCl), and UV stresses. The control indicates untreated conidia. The viability of the untreated conidia of each strain was set as 100%. ** (p < 0.01). The error bars indicate one standard deviation from the mean viability of triplicates.

Somewhat surprisingly, while the loss of *wetA* leads to systemic defects in conidia, about 10% of the total $\Delta wetA$ conidia appears to be intact (Fig 2-2A) and equally viable as WT (data not shown) even at day 16. However, as the majority of the $\Delta wetA$ conidia autolyze and disintegrate, the total number of the $\Delta wetA$ conidia is dramatically decreased at day 7 and 18 post inoculation, whereas no significant changes in the viability of WT and C'*wetA* conidia were observable even at day 18 (Fig 2-2A and 2G). Finally, we examined whether the $\Delta wetA$ conidia show altered responses to various stresses. As shown in Figure 2H, the *wetA* null conidia are sensitive to osmotic (KCl) and oxidative (H₂O₂) stresses, and highly sensitive to heat (50°C) and UV stress (Fig 2-2H). Taken together, these results suggest that WetA plays an essential role in the proper maturation and stress tolerance of conidia in *A. flavus*.

2-4-3 The roles of WetA in growth, hyphal branching, AFB production, and developmental control

We further tested the roles of WetA in governing other biological processes. We found that, in addition to conidiation, WetA is associated with proper hyphal growth. The WT and C'wetA strains showed higher colony growth rate than the $\Delta wetA$ mutant on solid minimal medium (MM), regardless of the presence or absence of the light (Fig 2-3A and Fig 2-3C). However, WetA appears to affect conidiation and hyphal development in response to light. Under dark condition, the $\Delta wetA$ colony exhibits highly reduced conidiation levels (Fig 2-3A). The WT colony edge can be divided into three regions, the single layer vegetative hyphae region (V_s) , the multi-layer vegetative hyphae region (V_m), and the dense aerial hyphae region (A_d). In comparison to WT, the $\Delta wetA$ colony's edge does not contain the V_s region and instead has a sparse aerial hyphae region (A_s) between the V_m and A_d regions (Fig 2-3B). In addition, the A_s region of the $\Delta wetA$ colony is expanded when grown in the dark environment (Fig 2-3A and Fig 2-3B). Furthermore, the absence of wetA results in about 2.5-fold lower hyphal branching rate in both the submerged culture and the solid culture (Fig 2-3D and Fig 2-3E), which is consistent with our previous observation of the same phenotype in $\Delta wetA$ in A. fumigatus [13]. To further elucidate the role of WetA, we examined AFB production in WT, $\Delta wetA$, and C'wetA strains shake-cultured for 5 days by HPLC. The results show that the $\Delta wetA$ strain was unable to produce AFB1 and AFB2 in the submerged culture (Fig 2-3F and Fig 2-3G).

Fig 2-3 Multiple roles of WetA

(A-C) WetA affects vegetative growth. (A) The colony image of WT, *AwetA*, and C'*wetA* strains on solid MM at 5 days after point inoculation under light and dark conditions. (B) Colony edge image of WT and $\Delta wetA$ strains under light and dark conditions. V_s: single-layer vegetative hyphae region. V_m: multi-layer vegetative region. A_s: sparse aerial hyphae region. A_d: dense aerial hyphae region. (C) Colony growth rates of WT, *AwetA*, and C'wetA strains after point inoculation on solid MM. The error bars indicate one standard deviation. * (p < 0.05) and ** (p < 0.01). (D, E) Hyphal branching rates of WT and $\Delta wetA$ strains. (D) Microscopy images show WetA regulates hyphal branching. Loss of wetA leads to reduced hyphal branching rate in both solid and submerged cultures. (E) Average PGU values of A8. ** (p < 0.01). The error bars indicate one standard deviation. (F, G) Aflatoxin quantification by HPLC of WT and *AwetA* submerged culture after 5days cultivation. (F) AFB1 amount (per g dry weight) in WT and $\Delta wetA$ vegetative cells. ** (p < p0.01). The error bars indicate one standard deviation. (G) The HPLC chromatograms of AFB1 and AFB2 in the culture medium of WT and $\Delta wetA$ strains. (H) WT and $\Delta wetA$ strains were induced for asexual development and observed after 8 h incubation at 30°C on solid MM plate. The white arrows indicate conidiophores. Note: the abundant conidiophore formation in $\Delta wetA$ culture. (I) Northern blot analysis of *brlA*, *abaA*, *wetA*, and *vosA* mRNA levels in WT and $\Delta wetA$ strains at 6, 12, 24, 48 h after conidiation induction.

We found that the absence of *wetA* resulted in precocious conidiophore development. The $\Delta wetA$ mutant started to generate abundant conidiophores at 6 h post asexual developmental induction, an hour earlier than WT and complement strains, and by 8 hours the difference in conidiophore production was striking (Fig 2-3H). This observation was corroborated by Northern blot analysis. As shown in Fig 2-3I, loss of *wetA* leads to early accumulation of mRNA from the asexual reproduction-inducing gene *brlA* at 6 h after asexual developmental induction, whereas *brlA* transcript only started to accumulate at 12 h after induction in WT. In WT, mRNA levels of *brlA* and *abaA*, another conidia-inducing regulator, reach their highest at 24 h and drop at 48 h after induction. In contrast, transcript levels of *brlA* and *abaA* dramatically increase at 12 h and stay at high levels at 24 and 48 h after asexual induction in the $\Delta wetA$ mutant. In WT, the mRNA for the regulator *vosA* started to accumulate at 24 h post-induction, while *vosA* mRNA accumulation was hardly detected in $\Delta wetA$ strain (Fig 2-3I). These results indicate that in *A. flavus*, WetA is a key feedback negative controller of *brlA* expression and conidiation. Overall, our data suggest that WetA plays multiple roles in cellular and chemical development in *A. flavus*.

2-4-4 Genome-wide expression analyses in conidia

To shed more light on the multiple regulatory roles WetA appeared to play in *A. flavus* biology, we carried out genome-wide expression analyses in WT and mutant conidia using RNA-seq. Poly-A mRNA from three technical replicates of 2-day-old conidia of WT and $\Delta wetA$ strains were purified and sequenced as described in the methods section; one technical replicate of the $\Delta wetA$ was discarded following failure in multiple quality control analyses. Examination of global gene expression differences between the WT and mutant *wetA* indicate that WetA plays a broad regulatory role in conidia. Out of the 13,485 mapped *A. flavus* genes, 5,755 (42.68% of the total) showed differential accumulation of mRNAs in the $\Delta wetA$ conidia in comparison to WT conidia. Among 5,755 differentially expressed genes (DEGs), mRNA levels of 2,856 (21.18%) genes were lower (Down) in the $\Delta wetA$ conidia compared to WT conidia, and those of 2,899 (21.50%) genes were higher (Up) in the $\Delta wetA$ conidia compared to WT conidia (Fig 2-4A).

	D١	
	K 1	
	_,	
•	_,	

(A)

N	lumbe	r of Ge	enes	% o	f Gene	Number	in GC	Category
0	500 1	000 1	500	0%	20%	40%	60%	80%
	1	802		27.	34%	23.07%		Biological
	436			28	.87%	24.69%		Process
20	00			27.	03%	27.03%		
12	5			22.1	2%	35.48%		
			1,626	6 24.1	13%	22.36%	Ν	Aolecular
	58	6		29	.59%	23.93%		Function
2	29			28	.81%	24.82%		
	330			23.1	2%	25.48%		Cellular
	324			22.9	5%	25.34%	Со	mponent
15	4			29	.60%	32.00%	.	
69				15.97	%	42.02%		
25				18.18	3%	57.58%	6	
	0 20 122 22 122 123 124 125	0 500 1 0 500 1 0 436 1 0 125 58 0 229 58 154 330 324 154 69 25	0 500 1000 1 0 500 1000 1 0 436 802 1 0 200 1 1 125 586 1 0 229 1 1 154 154 1 1 125 1 1 1	Number of Genes 0 500 1000 1500 802 802 1000 1500 125 100 1000 1000 125 586 1000 1000 330 586 1000 1000 154 1154 1154 1154 25 1154 1154 1154	Number of Gene % of 0 500 1000 1500 0% 0 500 1000 1500 0% 0 436 58 27. 0 125 58 27. 125 586 1,626 24.1 0 586 1,626 24.1 125 586 29 28.1 125 586 29 28.1 125 586 29 28.1 154 58.1 1.626 24.1 154 59.1 1.626 29.1 69 15.4 59.1 1.626 25 59.1 59.1 1.626 29.1	Number of Cenes % of Cenes 0 500 1000 1500 0% 20% 0 500 1000 1500 0% 20% 0 436 27.34% 28.87% 27.03% 125 125 1,626 24.13% 2 125 1,626 29.59% 2 229 23.12% 2 2 330 22.95% 2 2 154 25 2 29.59% 2	Number of Gene % of Gene Number 0 500 1000 1500 0% 20% 40% 436 802 28.87% 24.69% 27.03% 27.03% 27.03% 125 125 1626 24.13% 22.36% 28.81% 24.82% 229 1,626 24.13% 22.36% 28.81% 24.82% 330 229 23.12% 25.48% 29.59% 23.93% 3324 29.60% 32.00% 22.95% 25.34% 29.60% 32.00% 69 154 154 15.97% 42.02% 18.18% 57.58%	Number of Gene % of Gene Number of Gene 0% 20% 40% 60% 0 500 1000 1500 0% 20% 40% 60% 436 28.87% 24.69% 27.03%

mRNA level increased in \u00e5wetA mRNA level decreased in \u00e5wetA

Fig 2-4 RNA-seq analyses of conidia

(A) The numbers of genes whose mRNA levels were similar (Unaffected, grey), or different between WT and $\Delta wetA$ conidia (DEG, green), with down (blue) and up (yellow) in the $\Delta wetA$ conidia compared to WT. A DEG is defined by having a > 2-fold change of mRNA levels between WT and $\Delta wetA$ conidia and an adjusted *p*-value of less than 0.05. (B) Functional categories of DEGs in conidia. The yellow bars represent genes whose mRNA levels increased in the $\Delta wetA$ conidia, whereas the blue bars represent those genes whose mRNA levels decreased in the $\Delta wetA$ conidia. The pink shaded box represents the biological process GO categories; the yellow shaded box represents the molecular function GO categories; the blue shaded box represents the cellular component GO categories. "Number of Genes": the total number of DEGs assigned to the specific GO category in the genome as a whole. (C) The schematic diagram and mRNA expression profile of the G-protein regulatory pathways controlling development, stress response, and aflatoxin biosynthesis.

Functional category analysis was carried out by determining Gene Ontology (GO) terms that were enriched in DEGs. The top enriched biological process GO categories are "single-organism metabolic process", "oxidation-reduction process", "carbohydrate metabolic process", and "secondary metabolic process". The top enriched molecular function GO categories are "catalytic activity", "oxidoreductase activity", and "cofactor binding". The top enriched cellular component GO categories are "intrinsic component of membrane", "integral component of membrane", "extracellular region", "cell periphery", and "fungal-type cell wall" (Fig 2-4B). Of note, over 50% of all genes in the A. flavus genome annotated with the GO terms "carbohydrate metabolic process" (54.05%), "secondary metabolic process" (57.60%), and "fungal-type cell wall" (75.76%), were regulated by WetA in our RNA-seq data, consistent with our phenotypic data (Fig 2-4B). The top enriched GO categories for genes whose mRNA levels decreased or increased in the $\Delta wetA$ conidia are listed in Table S2-2 and Table S2-3, and the top 100 DEGs with decreased/increased mRNA accumulation levels in the $\Delta wetA$ conidia are listed in Table S2-4 and Table S2-5, respectively. To explore the molecular roles of WetA in conidiation, we checked mRNA levels of those genes assigned to the GO term "Asexual Development" (GO:0019954) and other known genes related to asexual development [16]. In total, 77 genes related to asexual development are differentially

expressed by the absence of WetA: 29 genes (37.66%) and 48 genes (62.34%) showed decreased and increased mRNA levels in the $\Delta wetA$ conidia, respectively (see Table 2-1 and Table S2-6). These data corroborate our working hypothesis that WetA is an important feedback regulator of conidiation, likely by activating several conidiation repressors and repressing key conidiation activators.

	mRNA level decreased in <i>∆wetA</i>	mRNA level increased in <i>∆wetA</i>
Asexual Development	argB, bem1, dewA, fluG, fphA, kex1, nce102, nudG, osaA, pbcR, pkaA, pkaB, pkaR, ppoA, ppoB, rft1, rhbA, ricA, rodB, sfgA, swoM, tcpA, tmpA, tpsA ortholog, tpsC, veA, vosA, wA/pksP, wetA	abaA, ams1, atg1, atgH, brlA, cch1, chsA, chsB, chsE, chsF, chsG, crzA, esdC, fbx15, figA, flbA, flbC, ime2, llmB, llmF, medA, midA, mob1, msdS, mtfA, nsdC, nsdD, nudA, odeA, pac2/osaB, pcl1, phnA, ppoC, ppoD, prpA, rgdA, rho1, rodA, sidB, sltA, ssc1, steC, stuA, ugtA, vapA, wsc1, wsc3, zipA
Transcription Factor [*]	aflR, aflYd, amdA, amdR, aro80, atf21, clrA, ctf1B, fcr1, fkh1, galX, metR, nosA, nscR, pbcR, pcaG, prnA, rdr1, regA, scfA, sdrA, sfgA, sfp1, silA	abaA, amdX, aoiH, brlA, cnjB, cpcA, crzA, devR/hpa3, egd1, egr2, flbC, glcD, hacA, mtfA, ndtA, nsdC, nsdD, pacC, rap1, rfeB, rfeG, rgdA, rpn4, seb1, sltA, srbA, steA, stuA, zipA
Aflatoxin Cluster	aflA, aflR, aflS, aflYd	aflB, aflC, aflT, aflU, aflW, alfYa

Table 2-1 DEGs of interest

only those genes with annotation are listed

As the GO terms "intrinsic component of membrane" and "integral component of membrane" were enriched in functional analysis, we further examined mRNA levels of the membrane-receptorencoded-genes like G-protein coupled receptors (GPCRs). A heterotrimeric G-protein pathway can be involved in the activation of cAMP pathways and MAPK pathways, which then lead to the repression of asexual development [48]. The A. flavus genome contains 15 GPCRs [49], of which 9 showed altered mRNA levels (4 up, 5 down) in the $\Delta wetA$ conidia compared to WT (Fig 2-4C). The ganA gene predicted to encode a G protein alpha subunit (G α), and the *flbA* gene predicted to

encode a regulator of G protein signaling (RGS) protein showed increased mRNA levels in the $\Delta wetA$ conidia (Fig. 4C). Genes involved in the cAMP pathway like *pdeA*, *pkaA*, *pkaB*, and *pkaR*, showed decreased mRNA levels in the $\Delta wetA$ conidia (Fig 2-4C). Gene involved in the MAPK pathway, *steC*, show increased mRNA levels in the $\Delta wetA$ conidia (Fig 2-4C). Our results suggest that the WetA-mediated regulation may be associated with signal transduction pathways.

Next, we checked the expression levels of genes involved in conidia content and conidial wall integrity. As shown in Table 2-2, genes associated with the biosynthesis of trehalose, melanin, and hydrophobins, as well as the degradation of β -glucan, showed decreased mRNA levels in the $\Delta wetA$ conidia. Conversely, mRNA levels of genes associated with biosynthesis of chitin and β -(1,3)-glucan were increased in the $\Delta wetA$ conidia. These transcriptomic data and our direct measurement of β -glucan and trehalose indicate that WetA governs the integrity of conidia by coordinating intracellular contents and conidial wall biogenesis (Fig 2-5A, Table 2-2, and Table S2-7).

Table 2-2 DEGs involved in spore maturation

	mikina level decreased in $\Delta wetA$	maina level increased in $\Delta wetA$
Trehalose Biosynthesis	<i>tppB, tppC, rfaB, ccg-9, tpsC,</i> AFLA 087630	
Trehalose Degradation	treA	
Chitin Biosynthesis		chsA, chsC, chsE, chsF, chsG, chsZ
Chitin Degradation		<i>chiA</i> , <i>chiB</i> , <i>cts2</i> , <i>ctcB</i> , <i>nagA</i> , AFLA_031380, AFLA_107830, AFLA_057680
α-(1,3)-glucan Biosynthesis	ags1	ags2
α-(1,3)-glucan Degradation	agnD, agnE	AFLA_091790
β-(1,3)-glucan Biosynthesis		<i>fksP, gel1, gel2, gel4, gel5, gel6, gel7,</i> AFLA_107790, AFLA_064920
β-(1,3)-glucan Degradation	<i>bgt1, exg1,</i> AFLA_023650	engl1, eng3, eng4, eng8, exg0, exg2
Melanin Biosynthesis	wA (pksP), ayg1	
Hydrophobin	<i>dewA, rodB</i> , AFLA_063080, AFLA_098980	rodA, AFLA_094600

mRNA level decreased in $\Delta wetA$ mRNA level increased in $\Delta wetA$

(B)

Fig 2-5 Summary of WetA functions and a model for WetA-mediated developmental regulation in *A. flavus*

(A) Schematic diagram of the WetA-mediated regulatory model of conidia architecture. The question mark indicates that the WetA-mediated activation/repression function needs to be verified by further experiments. (B) A comprehensive model for WetA-mediated regulation of asexual development based on transcriptomic, genetic, and biochemical data. In this model, those genes with increased and decreased mRNA levels in the Δ *wetA* conidia are labeled in yellow (WetA-inhibited) and blue (WetA-activated), respectively.

The GO term "secondary metabolic process" is enriched in the WetA-influenced transcriptome. We examined the differentially expressed genes belonging to secondary metabolite gene clusters (SMG clusters). We predicted the *A. flavus* SMG clusters with antiSMASH and used the cluster boundaries identified by Inglis *et al.* for *A. oryzae* clusters if they were conserved in *A. flavus* [50,51]. If the clusters were not identified by Inglis *et al.*, we used the default boundaries provided by antiSMASH. There are 660 SMGs distributed in the 74 SMG clusters (7able S2-8). We found that 306 genes (46.37%) distributed in 68 SMG clusters (92%) showed altered mRNA levels in the $\Delta wetA$ conidia (136 down and 170 up, see Table S2-8). All of the genes located in Clusters 23, 35, 41, 46, 48, 52, 54, and 71 showed altered mRNA levels in the $\Delta wetA$ conidia. Interestingly, all genes in Clusters 23 and 52 showed decreased mRNA levels in the $\Delta wetA$ conidia, whereas all genes in Cluster 71 showed increased mRNA levels the $\Delta wetA$ conidia. These data indicate an important role of WetA governing secondary metabolic chemical development in conidia.

Finally, we focused on putative TFs showing altered mRNA levels in the $\Delta wetA$ conidia as this functional category was enriched among WetA-induced DEGs (Table S2-2. We found that 160 genes predicted to encode TFs exhibited altered mRNA accumulation in the presence and absence

of WetA in conidia: 100 (62.50%) showed decreased mRNA levels and 60 (37.50%) showed increased mRNA levels in the $\Delta wetA$ conidia. Approximately 80% of these putative TFs have a zinc binding domain, including 18 TFs with a C₂H₂ domain and 64 TFs with a Zn(II)₂Cys₆ (or C6) domain (Table 2-1 and Table S2-9); important classes for the regulation of fungal development and metabolism. Taken together, WetA governs proper expression of various signaling, regulatory, structural, and metabolic elements that coordinate cellular and chemical development of conidia.

2-5 Discussion

Asexual development has been studied in *Aspergilli* and other fungi for many years [13–18,28– 30,52–59]. In addition to *Aspergillus* fungi, the function of WetA is highly conserved in other Ascomycetes. In *P. digitatum*, the lack of *wetA* also results in abnormal conidia, delayed germination, and reduced stress tolerance [15]. Moreover, *P. chrysogenum wetA* can fully complement the *A. nidulans wetA* deletion mutation, suggesting that the WetA-mediated sporulation regulatory mechanisms are conserved in *A. nidulans* and *P. chrysogenum* [18]. In *F. graminearum*, loss of *wetA* causes deficient conidia, reduced oxidative and heat stress tolerance, and reduced chronological spore viability. *F. graminearum* WetA suppresses microcycle conidiation and then further maintains conidial dormancy [14]. In *B. bassiana, wetA* null mutants produce deficient conidia which are sensitive to environment stresses [17].

Previous studies suggest that WetA is responsible for activating a set of genes whose products comprise or direct the assembly of the conidial wall layers and ensure proper cytoplasmic status [28]. In *A. nidulans*, WetA together with AbaA activate genes which are expected to encode spore-specific functions (Class B Genes). WetA together with both BrlA and AbaA activate Class C and Class D genes, which are expected to encode phialide-specific functions [28,30,60]. However, WetA alone is sufficient to activate Class B and some Class D genes [28]. At least one gene (*wA*),

whose mRNA accumulates in phialide cells instead of in conidia, is activated by WetA, indicating that WetA may regulate genes in these cells as well as in conidia [28]. Additionally, accumulation of *wetA* mRNA requires *wetA*⁺ activity during conidiation, suggesting that *wetA* is autogenously regulated [12,28].

WetA is functionally conserved and required in *A. flavus* for many aspects of its biology, including spore viability, wall integrity, and stress tolerance. Although the *wetA* null mutant forms the C2 spore wall layer as found in WT, the $\Delta wetA$ C2 layer is hyper-condensed in *A. flavus* while it fails to condense in *A. nidulans*, *A. fumigatus*, and *P. digitatum* [13,15] (Fig 2-2B and Fig 2-2D). The condensation of the C2 layer along with the formation of the C3 and C4 layers are the final stage of conidial maturation, which contributes to the impermeability of the conidial wall [29]. We observed that the relative conidial viability and tolerance to UV and oxidative stresses are higher in the *A. flavus* $\Delta wetA$ mutant than the *A. nidulans* $\Delta wetA$ mutant, which may be due to the hypercondensed C2 layer of the *A. flavus* $\Delta wetA$ conidia (Wu and Yu, unpublished data).

WetA is essential for establishing the heat stress tolerance in Ascomycetes [13,15,17]. However, loss of *wetA* in different species results in variable degrees of tolerance to oxidative stress and osmotic stress. The *A. fumigatus* [13], *A. flavus* (Fig 2-2H), *A. nidulans* (Wu and Yu, unpublished data), and *F. graminearum* [14] *wetA* deletion mutants are highly sensitive to H₂O₂. However, the *B. bassiana* [17] *wetA* deletion mutants showed WT level tolerance to H₂O₂ and the *P. digitatum* [15] *wetA* deletion mutants even showed enhanced tolerance to H₂O₂. Loss of *wetA* causes reduced osmotic stress tolerance in *A. nidulans* (Wu and Yu, unpublished data), *A. fumigatus* [13], *P. digitatum* [15], and *B. bassiana* [17], but has not in *F. graminearum* [14]. Somewhat surprisingly, even though the $\Delta wetA$ conidial structure and stress tolerance were impaired, the small numbers of intact $\Delta wetA$ conidia that could be isolated showed similar viability as the WT conidia (data not shown). However, only about 30% of the total $\Delta wetA$ conidia remain intact on day 7 after inoculation, while almost 100% of WT conidia remain intact (Fig 2-2G).

WetA appears to be involved in both the trehalose biosynthetic and degradation pathways in *A*. *flavus* (Fig 2-2F, Table 2-2, and Table S2-7), both of which are required for conidial stress tolerance and viability. The *velvet* regulator VosA is known as the regulator which couples sporogenesis and trehalose biogenesis, and it activates *wetA* in *A. nidulans* [31]. Our data show that WetA also activates *vosA* in *A. flavus* (Table 2-1 and Table S2-6) and in *A. nidulans* (Wu and Yu, unpublished data), suggesting an inter-dependent activation between the two regulators in conidia. While the loss of *wetA* does not completely block *vosA* expression in conidia (Table S2-6) and vice versa [31], almost no trehalose can be detected in the $\Delta wetA$ (Fig 2-2F) and $\Delta vosA$ [31] conidia, suggesting that both WetA and VosA are required for proper trehalose biosynthesis in conidia. Although WetA is required for trehalose biosynthesis in *A. flavus* (Fig 2-2F), *A. nidulans* (Wu and Yu, unpublished data), *A. fumigatus* [13], and *B. bassiana* [17], loss of *wetA* did not alter the trehalose amount in *F. graminearum* [14] and *P. digitatum* [15].

Based on microscopy images, trehalose quantifications, and β -(1,3)-glucan quantifications from our group as well as others, studies proposed that WetA regulates conidial wall integrity and trehalose content [13–15,17,29,58]. Our RNA-seq analyses further expands our understanding of how WetA affects overall conidial wall integrity. More than 75% of the genes assigned to the Cellular Component GO category "fungal-type cell wall" in the *A. flavus* genome were differentially expressed in the Δ *wetA* conidia (Fig. 4B), resulting in this category being statistically enriched amongst WetA-regulated genes. This suggests that WetA plays a global regulatory role in spore wall integrity. The *Aspergillus* conidial wall is composed of chitin, β -(1,3)-glucan, α -(1,3)glucan, melanin, and hydrophobin [61] (Fig 2-5A). Our transcriptome analyses support the

hypothesis that genes involved in the metabolic pathways of the conidial wall components are differentially expressed in the $\Delta wetA$ conidia (Table 2-2 and Table S2-7). Taken together, we present a summary of the role of WetA in governing conidial maturation by regulating the metabolic pathways of trehalose and conidial wall components in A. flavus (Fig 2-5A). However, the WetA-mediated regulatory circuits governing maturation and stress responses of conidia among various fungal species may be genetically re-wired in each fungal species, as is the case for other proteins involved in the regulation of asexual development and secondary metabolism [62]. Our data suggest that WetA is necessary to turn off the conidiation initiation process after the formation of conidiophores. Loss of *wetA* resulted in greatly enhanced levels of *brlA* and *abaA* in A. flavus (Fig 2-1D, Table 2-1, and Table S2-6), A. nidulans (Wu and Yu, unpublished data), A. fumigatus [13], P. digitatum [15], and B. bassiana [17]. Moreover, our transcriptome analyses indicate that loss of wetA resulted in altered mRNA levels of various regulators of conidiation (Table 2-1 and Table S2-6), implying an upstream regulatory role of WetA in conidia (Fig 2-5B). Consistent with this, we observed earlier conidiation in the $\Delta wetA$ mutant compared to WT in A. *flavus* (Fig 2-3H). However, the $\Delta wetA$ mutant showed delayed conidiation in A. *fumigatus* [13], and no differences in A. nidulans (Wu and Yu, unpublished data), suggesting that WetA-mediated feedback regulation of conidiation has undergone genetic rewiring in Aspergilli.

About 46% of genes positioned in the predicted SMG clusters showed altered mRNA levels in the $\Delta wetA$ conidia, including 15 genes predicted to encode polyketide synthases (PKSs) and PKS-like proteins, and 19 genes predicted to encode non-ribosomal polyketide synthases (NRPSs) and NRPS-like proteins (Table 2-3 and Table S2-8), suggesting that WetA affects biosynthesis of several secondary metabolites in conidia. The backbone gene, *aflC*, and the transcription factor, *aflR*, of the AF cluster were differentially expressed in the $\Delta wetA$ conidia (Table 2-1 and Table

S2-8). Although there is no significant difference in AFB amount between WT and $\Delta wetA$ conidia (data not shown), the loss of *wetA* reduces the amount of AFB1 and AFB2 in submerged culture (Fig 2-3F and Fig 2-3G), suggesting that WetA exerts temporal and spatial regulation of aflatoxin metabolism.

Loss of *wetA* results in reduced radial growth and lowered hyphal branching rates (Fig. 3A, 3C, 3D, 3E). RNA-seq results showed about 50% of the genes in the GO categories, "hyphal tip" and "site of polarised growth", exhibited increased mRNA levels in $\Delta wetA$ conidia (Table S2-3). Put together, WetA may play a regulatory role in hyphal development. It is possible that WetA regulates both hyphal and conidial cell wall assembly and therefore affects both the radial growth rate and branching rate of *A. flavus*.

BACKBONE GENES					
	mRNA level	decreased in <i>∆wetA</i>	mRNA level increased in <i>∆wetA</i>		
	CLUSTER	GENE ID	CLUSTER	GENE ID	
PKS/PKS-LIKE	3 12 20 21 55	AFLA_127090 AFLA_079360 AFLA_116220 AFLA_116890 AFLA_006170	6 10 24 24 50 58 59 71 71 71 74	AFLA_053870 AFLA_010000 AFLA_118940 AFLA_118960 AFLA_002900 AFLA_137870 AFLA_139410 AFLA_060020 AFLA_060010 AFLA_062820	
NRPS/NRPS-LIKE	10 10 23 25 35 45 52 54 63 65	AFLA_010020 AFLA_010010 AFLA_118440 AFLA_119110 AFLA_038600 AFLA_064560 AFLA_004450 AFLA_005440 AFLA_028720 AFLA_105190	11 26 27 41 44 46 48 61 69	AFLA_010620 AFLA_119820 AFLA_121520 AFLA_101700 AFLA_064240 AFLA_066720 AFLA_069330 AFLA_023020 AFLA_109430	
TRANSCRIPTION I	FACTORS				
	mRNA level	decreased in <i>∆wetA</i>	mRNA level increased in Δ <i>wetA</i>		
	CLUSTER	GENE ID	CLUSTER	GENE ID	
	18 31 40 59 63 66	AFLA_087810 AFLA_096330 AFLA_100300 AFLA_139360 AFLA_028760 AFLA_105530	31 71	AFLA_096370 AFLA_059960	

Table 2-3 DEGs within the secondary metabolite biosynthesis clusters

We observed differential conidial and hyphal development between light and dark conditions in the $\Delta wetA$ mutant (Fig 2-3A and Fig 2-3B). Transcriptome analyses revealed that several lightsensor-encoding genes were differentially expressed in the $\Delta wetA$ conidia, including *fphA*, *nopA*, *gprF*, and *gprR*. FphA is a phytochrome that represses sexual development in *A. nidulans* under red-light induction [63,64]. NopA is a fungal opsin type GPCR that represses conidiation in *Neurospora crassa* [65,66], but its function in *Aspergilli* is still vague [49,67]. GprF and GprR repress conidiation under the dark condition [49]. Taken together, WetA may be involved in light-dependent regulatory pathways that affect conidiation and hyphal development.

Our data show that WetA plays multiple roles in governing development (Fig 2-3). Transcriptome analyses showed that WetA affects mRNA levels of 160 genes predicted to encode TFs and 9 genes predicted to encode GPCRs (Fig 2-4C, Table 2-1, and Table S2-9). G-protein signaling governs normal growth, development, and mycotoxin production in filamentous fungi [68]. GPCRs are known to be involved in multiple cell processes, including carbon and nitrogen sensing, aflatoxin repression, germination, quorum sensing, oxylipin sensing, light sensing, and osmotic, acidic pH, ROS, and cell wall stress responses [49]. Taken together, our data suggest that the absence of WetA function results in disturbed expression of TFs and GPCRs leading to downstream pleiotropic effects. As annotation of the *A. flavus* genome improves to the levels of that of *A. nidulans*, *A. oryzae*, *A. fumigatus*, and *A. niger* genomes, we may identify additional putative regulators influenced by WetA in conidia.

In conclusion, we present a genetic model depicting the molecular mechanisms of WetA-mediated regulation in cellular and chemical development in *A. flavus* (Fig 2-5B). WetA affects the pathways of conidial content and conidial wall component metabolism, and further affects conidia viability and stress tolerance. Furthermore, WetA exerts feedback control of conidiation initiation by regulating upstream regulators of asexual development.

2-6 References

- Ebbole DJ. The Conidium. Cellular and Molecular Biology of Filamentous Fungi. American Society of Microbiology; 2010. pp. 577–590. doi:10.1128/9781555816636.ch36
- Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. *Aspergillus flavus*: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153: 1677–1692. doi:10.1099/mic.0.2007/007641-0
- Payne GA. Process of contamination by aflatoxin-producing fungi and their impact on crops. Mycotoxins Agric food Saf. Marcel Dekker: New York, NY, USA; 1998;9: 279–306.
- Kensler TW, Roebuck BD, Wogan GN, Groopman JD. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci. Oxford University Press; 2011;120: S28–S48. doi:10.1093/toxsci/kfq283
- Udomkun P, Wiredu AN, Nagle M, Müller J, Vanlauwe B, Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review. Food Control. 2017;76: 127–138. doi:10.1016/j.foodcont.2017.01.008
- Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66: 447–459. doi:10.1128/mmbr.66.3.447-459.2002
- Hicks JK, Yu J-H, Keller NP, Adams TH. *Aspergillus* sporulation and mycotoxin production both require inactivation of the FadA Gα protein-dependent signaling pathway. EMBO J. 1997;16: 4916–4923. doi:10.1093/emboj/16.16.4916
- Yu J-H, Keller NP. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43: 437–458.
- Adams TH, Wieser JK, Yu J-H. Asexual sporulation in *Aspergillus nidulans*. Microbiol Mol Biol Rev. 1998;62: 35–54.
- Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. Oxford University Press; 2003;13: 17R–27. doi:10.1093/glycob/cwg047
- Klich M, Pitt J. A laboratory guide to the common *Aspergillus* species and their teleomorphs. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing; 1988.

- Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*. Mol Cell Biol. 1987;7: 3113–3118. doi:10.1128/mcb.7.9.3113
- Tao L, Yu J-H. AbaA and WetA govern distinct stages of *Aspergillus fumigatus* development. Microbiology. 2011;157: 313–326. doi:10.1099/mic.0.044271-0
- Son H, Kim M-G, Min K, Lim JY, Choi GJ, Kim J-C, et al. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus *Fusarium graminearum*. Eukaryot Cell. 2014;13: 87–98.
- Wang M, Sun X, Zhu C, Xu Q, Ruan R, Yu D, et al. *PdbrlA*, *PdabaA* and *PdwetA* control distinct stages of conidiogenesis in *Penicillium digitatum*. Res Microbiol. 2015;166: 56–65. doi:10.1016/j.resmic.2014.12.003
- Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y. Genetic analysis of conidiation regulatory pathways in koji-mold *Aspergillus oryzae*. Fungal Genet Biol. Elsevier Inc.; 2010;47: 10–18. doi:10.1016/j.fgb.2009.10.004
- Li F, Shi H-Q, Ying S-H, Feng M-G. WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol. Springer Berlin Heidelberg; 2015;99: 10069–10081. doi:10.1007/s00253-015-6823-7
- Prade RA, Timberlake WE. The *Penicillium chrysogenum* and *Aspergillus nidulans wetA* developmental regulatory genes are functionally equivalent. Mol Gen Genet. 1994;244: 539–47.
- Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30: 772–780. doi:10.1093/molbev/mst010
- Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0 b10. Sinauer Associates, Sunderland Massachusetts. 2002.
- Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18: 691–9.
- 22. Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-amino-acid transactivation domain: Establishment and prediction utilities. Genomics. 2007;89: 756–

768. doi:10.1016/j.ygeno.2007.02.003

- Nguyen Ba AN, Pogoutse A, ProvartN, Moses AM. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10: 202.
- Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. Cold Spring Harbor Laboratory Press; 2003;13: 2129–41. doi:10.1101/gr.772403
- 25. Chang YC, Timberlake WE. Identification of *Aspergillus brlA* response elements (BREs) by genetic selection in yeast. Genetics. 1993;133: 29–38.
- 26. Andrianopoulos A, Timberlake WE. ATTS, a new and conserved DNA binding domain. Plant Cell. American Society of Plant Biologists; 1991;3: 747. doi:10.1105/tpc.3.8.747
- Andrianopoulos A, Timberlake WE. The *Aspergillus nidulans abaA* gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol. American Society for Microbiology; 1994;14: 2503–2515. doi:10.1128/mcb.14.4.2503
- 28. Marshall MA, Timberlake WE. *Aspergillus nidulans wetA* activates spore-specific gene expression. Mol Cell Biol. 1991;11: 55–62. doi:10.1128/mcb.11.1.55
- Sewall TC, Mims CW, Timberlake WE. Conidium differentiation in *Aspergillus nidulans* wild-type and wet-white (*wetA*) mutant strains. Dev Biol. 1990;138: 499–508. doi:http://dx.doi.org/10.1016/0012-1606(90)90215-5
- Mirabito PM, Adams TH, Timberlake WE. Interactions of three sequentially expressed genes control temporal and spatial specificity in *Aspergillus* development. Cell. 1989;57: 859–868. doi:http://dx.doi.org/10.1016/0092-8674(89)90800-3
- Ni M, Yu J-H. A novel regulator couples sporogenesis and trehalose biogenesis in *Aspergillus nidulans*. PLoS One. Public Library of Science; 2007;2: e970. doi:10.1371/journal.pone.0000970
- Käfer E. Meiotic and mitotic recombination in *Aspergillus* and its chromosomal aberrations. Adv Genet. 1977;19: 33–131. doi:10.1016/S0065-2660(08)60245-X
- Seo J-A, Guan Y, Yu J-H. Suppressor mutations bypass the requirement of *fluG* for asexual sporulation and sterigmatocystin production in *Aspergillus nidulans*. Genetics. 2003;165: 1083–1093.
- 34. Yu J-H, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. Double-joint

PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41: 973–981. doi:10.1016/j.fgb.2004.08.001

- Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, et al. Fusion PCR and gene targeting in *Aspergillus nidulans*. Nat Protoc. 2006;1: 3111–20. doi:10.1038/nprot.2006.405
- 36. Han KH, Seo JA, Yu J-H. Regulators of G-protein signalling in *Aspergillus nidulans*: RgsA downregulates stress response and stimulates asexual sporulation through attentuation of GanB (Gα) signalling. Mol Microbiol. 2004;53: 529–540. doi:10.1111/j.1365-2958.2004.04163.x
- Park H-S, Man Yu, Lee M-K, Maeng PJ, Kim SC, Yu J-H, et al. Velvet-mediated repression of β-glucan synthesis in *Aspergillus nidulans* spores. Sci Rep. Nature Publishing Group; 2015;5: 10199. doi:10.1038/srep10199
- Lilleho jEB, Ciegler A, Hall HH. Fungistatic action of aflatoxin B1. Experientia. Birkhäuser-Verlag; 1967;23: 187–188. doi:10.1007/BF02136277
- Andrews S. FastQC: a quality control tool for high throughput sequence data [Internet].
 2010. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14: R36. doi:10.1186/gb-2013-14-4-r36
- Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. Oxford University Press; 2015;31: 166–169. doi:10.1093/bioinformatics/btu638
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi:10.1186/s13059-014-0550-8
- Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics. Oxford University Press; 2009;25: 288–289. doi:10.1093/bioinformatics/btn615
- Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics. Oxford University Press; 2005;21: 3448–3449. doi:10.1093/bioinformatics/bti551
- 45. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a

software environment for integrated models of biomolecular interaction networks. Genome Res. Cold Spring Harbor Laboratory Press; 2003;13: 2498–504. doi:10.1101/gr.1239303

- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. Nature Publishing Group; 2000;25: 25–29. doi:10.1038/75556
- Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38: D204–D210.
- Grice CM, Bertuzzi M, Bignell EM. Receptor-mediated signaling in *Aspergillus fumigatus*. Front Microbiol. Frontiers; 2013;4: 26. doi:10.3389/fmicb.2013.00026
- Affeldt KJ, Carrig J, Amare M, Keller NP. Global survey of canonical *Aspergillus flavus* G protein-coupled receptors. MBio. American Society for Microbiology; 2014;5: e01501-14. doi:10.1128/mBio.01501-14
- Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. Oxford University Press; 2015;43: W237–W243. doi:10.1093/nar/gkv437
- Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, et al. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of *Aspergillus nidulans*, *A. fumigatus*, *A. niger* and *A. oryzae*. BMC Microbiol. 2013;13: 91. doi:10.1186/1471-2180-13-91
- Timberlake WE, Boylan MT, Mirabito PM, Willett CE, Zimmerman CR. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*. Antonie Van Leeuwenhoek. 1987;53: 317. doi:10.1007/BF00400554
- Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, et al. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet. 2011;7: e1002345. doi:10.1371/journal.pgen.1002345
- Martinelli SD, Clutterbuck AJ. A quantitative survey of conidiation mutants in *Aspergillus nidulans*. J Gen Microbiol. 1971;69: 261–268.
- Adams TH, Boylan MT, Timberlake WE. *brlA* is necessary and sufficient to direct conidiophore development in *Aspergillus nidulans*. Cell. 1988;54: 353–362. doi:http://dx.doi.org/10.1016/0092-8674(88)90198-5

- Timberlake WE. Translational triggering and feedback fixation in the control of fungal development. Plant Cell. American Society of Plant Biologists; 1993;5: 1453. doi:10.1105/tpc.5.10.1453
- 57. Sewall TC. Cellular effects of misscheduled *brlA*, *abaA*, and *wetA* expression in *Aspergillus nidulans*. Can J Microbiol. 1994;40: 1035–1042.
- Clutterbuck AJ. A mutational analysis of conidial development in *Aspergillus nidulans*. Genetics. 1969;63: 317–327.
- Shin K-S, Kim YH, Yu J-H. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in *Aspergillus fumigatus*. Biochem Biophys Res Commun. 2015;463: 428–433. doi:10.1016/j.bbrc.2015.05.090
- Timberlake WE. Molecular genetics of *Aspergillus* development. Annu Rev Genet. 1990;24: 5–36.
- Erwig LP, GowN AR. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. Nature Research; 2016;14: 163–176. doi:10.1038/nrmicro.2015.21
- 62. Lind AL, Wisecaver JH, Smith TD, Feng X, Calvo AM, Rokas A. Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus *Aspergillus*. PLOS Genet. 2015;11: e1005096. doi:10.1371/journal.pgen.1005096
- Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, et al. The *Aspergillus nidulans* phytochrome FphA represses sexual development in red light. Curr Biol. 2005;15: 1833–1838. doi:10.1016/j.cub.2005.08.061
- Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, et al. Functional and physical interaction of blue- and red-light sensors in *Aspergillus nidulans*. Curr Biol. 2008;18: 255–259. doi:10.1016/j.cub.2008.01.061
- 65. Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA. The *nop-1* gene of *Neurospora crassa* encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A. National Academy of Sciences; 1999;96: 8034–9.
- Bieszke JA, Li L, Borkovich KA. The fungal opsin gene *nop-1* is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in *Neurospora crassa*. Curr Genet. 2007;52: 149–157. doi:10.1007/s00294-007-0148-8

- Rodriguez-Romero J, Hedtke M, Kastner C, Uller S, Fischer R. Fungi, Hidden in soil or up in the air: Light makes a difference. Annu Rev Microbiol. 2010;64: 585–610. doi:10.1146/annurev.micro.112408.134000
- Li L, Wright SJ, Krystofova S, Park G, Borkovich KA. Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol. 2007;61: 423–452. doi:10.1146/annurev.micro.61.080706.093432

STRAINS		
Name	GENOTYPE	SOURCE
		Fungal Genetic Stock
NRRL3357	Wild-type	Center
3357.5	$pyrG^-$	[100]
TMY1	$\Delta wetA::AfupyrG^+; pyrG^-$	This study
TMY2	$\Delta wetA::AfupyrG^+; pyrG^-; wetA$	This study
OLIGONU	CLEOTIDES	
Name	SEQUENCE (5'→3')	PURPOSE
oMY-19	ggagagcagattagcacctg	5' flanking of wetA
oMY-20	ttacctcgacatgccacag	3' flanking of wetA
oMY-21	ccatgcatggttactggagg	5' nested of <i>wetA</i>
oMY-22	atgcgaccacgaatgcatcc	3' nested of <i>wetA</i>
oMY-51	gggtgaagagcattgtttgaggcacgatggtggttccaagctcagctgtc	5' wetA with AfupyrG tail
oMY-52	tcagtgcctcctctcagacagaatatcggtgttctgatggatccggagtc	3' wetA with AfupyrG tail
oMY-25	gaccactcgttcaacaacgatg	5' wetA
oMY-26	cgtactgcattaagtgcgg	3' wetA
oJH-84	gctgaagtcatgatacaggccaaa	5' AfupyrG marker
oJH-85	atcgtcgggaggtattgtcgtcac	3' AfupyrG marker

Table S2-1 Aspergillus strains and oligonucleotides used in this study

Table S2-2 Top enriched GO categories of decreased mRNA levels in the $\Delta wetA$ conidia

GO Category	# of Genes	% of Genes in Category
Biological Process		
metabolic process	846	25.22%
biosynthetic process	298	27.41%
organic substance biosynthetic process	280	27.78%
cellular biosynthetic process	275	28.09%
oxidation-reduction process	235	28.87%
cellular nitrogen compound biosynthetic process	209	33.07%

organonitrogen compound metabolic process	204	30.96%
organic cyclic compound biosynthetic process	161	28.75%
heterocycle biosynthetic process	157	30.13%
organonitrogen compound biosynthetic process	153	31.94%
cellular amide metabolic process	94	33.57%
amide biosynthetic process	86	33.46%
peptide metabolic process	73	33.64%
translation	60	38.22%
organophosphate metabolic process	60	34.29%
cofactor metabolic process	44	35.48%
nucleoside phosphate metabolic process	40	40.00%
coenzyme metabolic process	37	39.36%
pyridine-containing compound metabolic process	19	54.29%
pyridine nucleotide metabolic process	17	54.84%
nicotinamide nucleotide metabolic process	17	54.84%
vitamin metabolic process	16	66.67%
cellular modified amino acid metabolic process	14	51.85%
cellular modified amino acid biosynthetic	12	50.000/
process	13	59.09%
tetrapyrrole metabolic process	9	69.23%
GTP metabolic process	6	100.00%
molybdopterin cofactor metabolic process	6	85.71%
prosthetic group metabolic process	6	85.71%
Molecular Function		
oxidoreductase activity	1095	29.59%
RNA polymerase II transcription factor activity,	167	25 220/
sequence-specific DNA binding	107	33.33%0
structural molecule activity	115	46.96%
structural constituent of ribosome	97	54.64%
Cellular Component		
extracellular region	74	29.60%
intracellular ribonucleoprotein complex	53	39.85%
ribonucleoprotein complex	53	39.85%
ribosome	53	54.64%
ribosomal subunit	12	63.16%
small ribosomal subunit	8	80.00%
Table S2-3 Top enriched GO categories of genes showing increased mRNA levels in the $\Delta wetA$ conidia.

GO Category	# of Genes	% of Genes in Category
Biological process		
single-organism process	500	23.89%
transmembrane transport	167	25.97%
response to stimulus	113	29.66%
lipid metabolic process	86	28.67%
secondary metabolic process	77	35.48%
secondary metabolite biosynthetic process	73	35.27%
response to chemical	52	40.00%
cellular response to chemical stimulus	50	40.98%
cell wall organization or biogenesis	39	41.94%
asexual reproduction	38	34.86%
asexual sporulation	37	35.24%
toxin metabolic process	30	38.46%
response to drug	23	41.07%
cellular response to drug	22	41.51%
external encapsulating structure organization	21	48.84%
cell wall organization	21	48.84%
asexual sporulation resulting in formation of a cellular spore	21	42.00%
fungal-type cell wall organization or biogenesis	20	50.00%
chemical homeostasis	18	45.00%
aminoglycan metabolic process	15	57.69%
cation homeostasis	15	57.69%
ion homeostasis	15	51.72%
cell wall polysaccharide metabolic process	15	48.39%
glucosamine-containing compound metabolic process	14	66.67%
amino sugar metabolic process	14	60.87%
metal ion homeostasis	14	58.33%
inorganic ion homeostasis	14	51.85%
chitin metabolic process	11	61.11%
divalent inorganic cation homeostasis	8	66.67%
chitin biosynthetic process	6	85.71%
amino sugar biosynthetic process	6	85.71%
glucosamine-containing compound biosynthetic process	6	85.71%

positive regulation of conidiophore development	5	100.00%
---	---	---------

Molecular Function		
catalytic activity	782	22.36%
iron ion binding	60	34.68%
flavin adenine dinucleotide binding	58	30.37%
tetrapyrrole binding	55	35.71%
heme binding	55	35.71%
oxidoreductase activity, acting on paired donors, with	<i></i>	22.060/
incorporation or reduction of molecular oxygen	33	32.90%
electron carrier activity	46	32.86%
monooxygenase activity	29	48.33%
acyl-CoA dehydrogenase activity	10	58.82%
chitin synthase activity	6	100.00%
1,3-beta-glucanosyltransferase activity	5	100.00%
Cellular Component		
membrane	277	26.01%
intrinsic component of membrane	173	25.48%
integral component of membrane	170	25.34%
extracellular region	80	32.00%
cell periphery	50	42.02%
plasma membrane	28	44.44%
cell septum	24	57.14%
site of polarized growth	23	50.00%
external encapsulating structure	22	52.38%
hyphal tip	22	50.00%
cell wall	21	53.85%
fungal-type cell wall	19	57.58%
plasma membrane part	10	55.56%
cell surface	9	81.82%

GENE ID	Log ₂ Fold	Description
	Change	
AFLA_126840	-11.62	conserved hypothetical protein
AFLA_071920	-11.61	class III aminotransferase, putative
AFLA_001980	-11.56	glutamate cysteine ligase, putative
AFLA_007360	-11.52	hypothetical protein
AFLA_116190	-11.46	conserved hypothetical protein
AFLA_102370	-11.30	conserved hypothetical protein
AFLA_124380	-11.18	hypothetical protein
AFLA_075640	-11.09	pigment biosynthesis protein Ayg1
AFLA_116180	-11.04	hypothetical protein
AFLA_120760	-11.01	fatty acid oxygenase, putative
AFLA_124110	-10.99	galactose-proton symport, putative
AFLA_096210	-10.90	catalase, putative
AFLA_077930	-10.90	conserved hypothetical protein
AFLA_126820	-10.90	conserved hypothetical protein
AFLA_004410	-10.89	conserved hypothetical protein
AFLA_066550	-10.87	alcohol dehydrogenase, putative
AFLA_117120	-10.85	hypothetical protein
AFLA_036400	-10.80	conserved hypothetical protein
AFLA_075630	-10.79	conserved hypothetical protein
AFLA_101770	-10.79	conserved hypothetical protein
AFLA_001030	-10.79	lanosterol synthase, putative
AFLA_007350	-10.76	hypothetical protein
AFLA_124890	-10.74	hypothetical protein
AFLA_052030	-10.74	developmental regulatory protein WetA
AFLA_056870	-10.71	conserved hypothetical protein
AFLA_124560	-10.70	conserved hypothetical protein
AFLA_126830	-10.70	conserved hypothetical protein
AFLA_064190	-10.70	hypothetical protein
AFLA_123950	-10.69	ankyrin repeat protein
AFLA_116170	10.67	hypothetical protein
AFLA_009740	-10.66	hypothetical protein
AFLA_023610	-10.65	conserved hypothetical protein

Table S2-4 Top 100 genes showing decreased mRNA levels in the $\Delta wetA$ conidia

AFLA_126260	-10.59	extracellular 3-ketosteroid 1-dehydrogenase, putative
AFLA_034380	-10.59	catalase, putative
AFLA_007880	-10.59	conserved hypothetical protein
AFLA_085550	-10.55	hypothetical protein
AFLA_117110	-10.50	conserved hypothetical protein
AFLA_073970	-10.48	conserved hypothetical protein
AFLA_104490	-10.46	conserved hypothetical protein
AFLA_126170	-10.41	conserved hypothetical protein
AFLA_004440	-10.38	ABC multidrug transporter, putative
AFLA_101550	-10.38	thioredoxin reductase, putative
AFLA_072030	-10.28	conserved hypothetical protein
AFLA_063400	-10.27	hypothetical protein
AFLA_066540	-10.24	hypothetical protein
AFLA_096220	-10.20	HHE domain protein
AFLA_122950	-10.17	conserved hypothetical protein
AFLA_121110	-10.13	conserved hypothetical protein
AFLA_044800	-10.11	conidiation protein Con-6, putative
AFLA_000870	-10.09	hypothetical protein
AFLA_092300	-10.09	hypothetical protein
AFLA_063080	-10.01	conserved hypothetical protein
AFLA_063110	-9.92	hypothetical protein
AFLA_043550	-9.85	conserved hypothetical protein
AFLA_024660	-9.83	conserved hypothetical protein
AFLA_059700	-9.82	conserved hypothetical protein
AFLA_099050	-9.79	conserved hypothetical protein
AFLA_083110	-9.72	conidiation-specific protein (Con-10), putative
AFLA_034370	-9.67	hypothetical protein
AFLA_014240	-9.66	conserved hypothetical protein
AFLA_002840	-9.66	HHE domain protein
AFLA_117130	-9.61	conserved hypothetical protein
AFLA_003760	-9.59	NACHT domain protein
AFLA_059670	-9.58	conserved hypothetical protein
AFLA_008630	-9.45	hypothetical protein
AFLA_102410	-9.44	conserved hypothetical protein
AFLA_120190	-9.42	67 kDa myosin-cross-reactive antigen family protein
AFLA_077900	-9.41	conserved hypothetical protein

AFLA_057190	-9.38	conserved hypothetical protein
AFLA_033450	-9.36	gamma-glutamylputrescine oxidoreductase, putative
AFLA_010480	-9.33	potassium channel, putative
AFLA_007580	-9.28	MFS sugar transporter, putative
AFLA_102420	-9.20	hypothetical protein
AFLA_123310	-9.17	conserved hypothetical protein
AFLA_048440	-9.13	conserved hypothetical protein
AFLA_071780	-9.06	Dyp-type peroxidase family protein
AFLA_126860	-9.03	cell wall cysteine-rich protein
AFLA_059690	-8.97	conserved hypothetical protein
AFLA_039040	-8.93	conserved hypothetical protein
AFLA_131930	-8.86	conserved hypothetical protein
AFLA_090360	-8.86	conserved hypothetical protein
AFLA_106210	-8.85	efflux pump antibiotic resistance protein, putative
AFLA_010090	-8.85	hypothetical protein
AFLA_096740	-8.85	monoxygenase, putative
AFLA_008410	-8.81	MFS multidrug transporter, putative
AFLA_074740	-8.77	conserved hypothetical protein
AFLA_039050	-8.71	hypothetical protein
AFLA_131600	-8.69	lysine-rich arabinogalactan protein 18 precursor, putative
AFLA_092090	-8.67	oxidoreductase, short-chain dehydrogenase/reductase
		family
AFLA_016440	-8.67	conserved hypothetical protein
AFLA_124370	-8.64	hypothetical protein
AFLA_126850	-8.63	vacuolar protease A, putative
AFLA_094770	-8.62	conserved hypothetical protein
AFLA_024540	-8.52	sensory transduction histidine kinase, putative
AFLA_015260	-8.50	short chain dehydrogenase/oxidoreductase, putative
AFLA_106220	-8.50	cytochrome P450, putative
AFLA_072380	-8.50	conserved hypothetical protein
AFLA_024610	-8.49	NADP-dependent alcohol dehydrogenase
AFLA_053400	-8.47	hypothetical protein
AFLA_120210	-8.44	conserved hypothetical protein

GENE ID	Log ₂ Fold	Description
	Change	
AFLA_121740	10.28	hypothetical protein
AFLA_070470	8.84	conserved hypothetical protein
AFLA_118990	7.89	efflux pump antibiotic resistance protein, putative
AFLA_020010	7.69	hypothetical protein
AFLA_106850	7.56	thioredoxin reductase GliT-like, putative
AFLA_059770	7.54	conserved hypothetical protein
AFLA_064950	7.51	conserved hypothetical protein
AFLA_106040	7.48	conserved hypothetical protein
AFLA_060200	7.45	neutral amino acid permease, putative
AFLA_135310	7.43	hypothetical protein
AFLA_045570	7.40	acetyl xylan esterase, putative
AFLA_134850	7.37	conserved hypothetical protein
AFLA_059950	7.37	oxidoreductase, FAD-binding, putative
AFLA_033410	7.37	conserved hypothetical protein
AFLA_116630	7.35	(S)-2-hydroxy-acid oxidase, putative
AFLA_064840	7.27	conserved hypothetical protein
AFLA_059900	7.21	calcium-binding protein precursor, putative
AFLA_004880	7.10	amine oxidase, flavin-containing superfamily
AFLA_100200	7.01	conserved hypothetical protein
AFLA_001750	6.90	cell surface protein Mas1, putative
AFLA_073230	6.83	conserved hypothetical protein
AFLA_064850	6.83	aminotriazole resistance protein, putative
AFLA_107900	6.82	conserved hypothetical protein
AFLA_104680	6.80	class V chitinase ChiB1
AFLA_137110	6.79	extracellular serine-rich protein, putative
AFLA_043870	6.71	conserved hypothetical protein
AFLA_104880	6.68	glycosyl hydrolase, putative
AFLA_033420	6.61	Mn superoxide dismutase MnSOD
AFLA_060340	6.56	conserved hypothetical protein
AFLA_052490	6.55	C2H2 finger domain protein, putative
AFLA_135300	6.54	hypothetical protein
AFLA_073220	6.51	hypothetical protein

Table S2-5 Top 100 genes showing increased mRNA levels in the $\Delta wetA$ conidia.

AFLA_008450	6.50	conserved hypothetical protein
AFLA_087030	6.41	conserved hypothetical protein
AFLA_004510	6.39	peroxidase, putative
AFLA_125710	6.37	conserved hypothetical protein
AFLA_065460	6.36	conserved hypothetical protein
AFLA_137940	6.36	conserved hypothetical protein
AFLA_138180	6.34	lysozyme, putative
AFLA_085820	6.32	conserved hypothetical protein
AFLA_129170	6.30	conserved hypothetical protein
AFLA_106070	6.30	conserved hypothetical protein
AFLA_123580	6.28	hypothetical protein
AFLA_023760	6.28	conserved hypothetical protein
AFLA_061710	6.15	calcium/calmodulin-dependent protein kinase type,
		putative
AFLA_040090	6.14	conserved hypothetical protein
AFLA_053300	6.10	cytochrome P450, putative
AFLA_102200	6.09	conserved hypothetical protein
AFLA_120930	6.03	glycosyl transferase, putative
AFLA_131620	6.00	acyl-CoA desaturase, putative
AFLA_041690	5.98	cysteine synthase B, putative
AFLA_053560	5.90	conserved hypothetical protein
AFLA_060010	5.88	PKS-like enzyme, putative
AFLA_065760	5.87	cytochrome P450, putative
AFLA_001680	5.87	conserved hypothetical protein
AFLA_129490	5.86	hypothetical protein
AFLA_082410	5.84	conserved hypothetical protein
AFLA_122200	5.83	conserved hypothetical protein
AFLA_099940	5.82	conserved hypothetical protein
AFLA_070320	5.80	choline transport protein, putative
AFLA_031380	5.80	class V chitinase, putative
AFLA_039740	5.80	conserved hypothetical protein
AFLA_005370	5.80	conserved hypothetical protein
AFLA_067760	5.78	conserved histidine-rich protein
AFLA_059610	5.68	conserved hypothetical protein
AFLA_100210	5.66	ankyrin repeat-containing protein, putative
AFLA_137860	5.64	conserved hypothetical protein

AFLA_117000	5.64	RNA exonuclease, putative
AFLA_072810	5.62	conserved hypothetical protein
AFLA_110980	5.62	conserved hypothetical protein
AFLA_045580	5.61	hypothetical protein
AFLA_029970	5.60	conserved hypothetical protein
AFLA_116260	5.58	N-hydroxyarylamine O-acetyltransferase, putative
AFLA_034810	5.56	hypothetical protein
AFLA_023250	5.53	conserved hypothetical protein
AFLA_023160	5.53	ankyrin repeat-rich membrane-spanning protein,
		putative
AFLA_060110	5.52	conserved hypothetical protein
AFLA_001670	5.52	3-demethylubiquinone-9 3-methyltransferase, putative
AFLA_066790	5.51	conserved hypothetical protein
AFLA_137850	5.50	conserved hypothetical protein
AFLA_019000	5.49	conserved hypothetical protein
AFLA_031140	5.49	LipA and NB-ARC domain protein
AFLA_074240	5.48	conserved hypothetical protein
AFLA_075190	5.48	conserved hypothetical protein
AFLA_064810	5.46	extracellular proline-serine rich protein
AFLA_095440	5.45	serine/threonine protein kinase, putative
AFLA_010870	5.43	endo-1,4-beta-xylanase B precursor, putative
AFLA_097190	5.42	conserved hypothetical protein
AFLA_009870	5.41	conserved hypothetical protein
AFLA_134330	5.41	conserved hypothetical protein
AFLA_065050	5.39	Defensin domain protein
AFLA_077720	5.37	conserved hypothetical protein
AFLA_077730	5.36	carnitinyl-CoA dehydratase, putative
AFLA_101360	5.36	cytochrome P450, putative
AFLA_107340	5.35	C4-dicarboxylate transporter/malic acid transport
		protein, putative
AFLA_078910	5.35	hypothetical protein
AFLA_101190	5.33	conserved hypothetical protein
AFLA_034670	5.31	poly(ADP)-ribose polymerase PARP, putative
AFLA_121660	5.30	conserved hypothetical protein
AFLA_042430	5.28	hypothetical protein

Gene ID	Log2 Fold Change	Common Name
AFLA_034670	5.31	prpA
AFLA_033400	4.17	msdS
AFLA_021100	3.74	ppoD
AFLA_099380	3.60	wsc1
AFLA_136030	3.37	chsE
AFLA_082850	3.31	brlA
AFLA_137320	3.04	flbC
AFLA_052510	3.01	wsc3
AFLA_029620	2.96	abaA
AFLA_008970	2.89	llmF
AFLA_031700	2.89	midA
AFLA_087350	2.86	sltA
AFLA_136410	2.81	medA
AFLA_131330	2.72	nsdC
AFLA_060590	2.59	chsG
AFLA_071090	2.51	esdC
AFLA_028750	2.49	llmB
AFLA_078290	2.43	chsF
AFLA_029150	2.40	pcl1
AFLA_086010	2.40	figA
AFLA_135550	2.38	mob1
AFLA_046990	2.32	stuA
AFLA_091490	2.27	mtfA
AFLA_102850	2.22	rgdA
AFLA_092800	2.17	nudA
AFLA_042780	1.95	chsA
AFLA_066330	1.85	odeA
AFLA_083100	1.81	zipA
AFLA_019100	1.74	fbx15
AFLA_098380	1.72	rodA
AFLA_114760	1.72	chsB
AFLA_134030	1.71	flbA
AFLA_136540	1.71	ime2

Table S2-6 DEGs related to asexual development

AFLA_020210	1.68	nsdD
AFLA_093230	1.66	phnA
AFLA_037320	1.58	rho1
AFLA_127920	1.57	crzA
AFLA_068440	1.53	cch1
AFLA_132340	1.48	vapA
AFLA_048880	1.48	steC
AFLA_004760	1.40	ssc1
AFLA_091740	1.39	sidB
AFLA_110620	1.39	atg1
AFLA_020990	1.34	ugtA
AFLA_030430	1.23	ppoC
AFLA_022400	1.23	atgH
AFLA_085200	1.08	pac2/osaB
AFLA_086900	1.02	ams l
AFLA_028410	-1.02	pbcR
AFLA_088670	-1.05	kex1
AFLA_110790	-1.07	ricA
AFLA_082510	-1.07	tcpA
AFLA_065850	-1.09	fphA
AFLA_114720	-1.12	bem1
AFLA_048000	-1.15	rhbA
AFLA_029640	-1.26	nudG
AFLA_032870	-1.36	pkaR
AFLA_044820	-1.43	swoM
AFLA_026790	-1.46	ppoA
AFLA_055650	-1.50	osaA
AFLA_112660	-1.53	argB
AFLA_066460	-1.90	veA
AFLA_014260	-2.00	rodB
AFLA_091910	-2.09	pkaB
AFLA_131370	-2.30	tpsC
AFLA_093580	-2.48	tmpA
AFLA_039530	-2.59	fluG
AFLA_135040	-2.63	pkaA
AFLA 087630	-2.65	tpsA ortholog

	1	
AFLA_005520	-2.82	sfgA
AFLA_026900	-3.70	vosA
AFLA_060780	-4.32	dewA
AFLA_062460	-5.13	nce102
AFLA_006170	-5.70	wA/pksP
AFLA_074470	-6.25	rft1
AFLA_052030	-10.74	wetA
AFLA_120760	-11.01	рроВ

Table S2-7 DEGs related to conidia maturation

Gene ID	Log ₂ Fold	Common Name/ Function
	Change	
AFLA_075640	-11.09	ayg1
AFLA_063080	-10.01	putative hydrophobin
AFLA_006170	-5.70	pksP
AFLA_060780	-4.32	dewA
AFLA_023650	-4.21	endo-1,3-1,4-beta-D-glucanase, putative
AFLA_002830	-3.85	tpsc
AFLA_028260	-3.06	exg1
AFLA_090490	-2.85	treA
AFLA_087630	-2.65	alpha, alpha-trehalose-phosphate synthase subunit,
		putative
AFLA_068300	-2.36	bgtl
AFLA_131370	-2.30	tppb
AFLA_098980	-2.28	putative hydrophobin
AFLA_030450	-2.24	ccg-9
AFLA_008180	-2.02	rfab
AFLA_014260	-2.00	rodB
AFLA_077910	-1.86	agnD
AFLA_023460	-1.76	ags1
AFLA_087640	-1.09	tppc
AFLA_004480	1.17	eng4
AFLA_129100	1.37	exg2
AFLA_091790	1.43	agnE
AFLA_091790	1.43	alpha-1,3-glucanase/mutanase, putative
AFLA_098380	1.72	rodA
AFLA_108860	1.92	gel2
AFLA_052800	1.92	fksP
AFLA_042780	1.95	chsA
AFLA_006590	2.02	chiA
AFLA_107830	2.03	brain chitinase and chia, putative
AFLA_107790	2.09	glucan 1,3-beta-glucosidase precursor, putative
AFLA_095890	2.10	eng8

AFLA_033550	2.30	cts2
AFLA_078290	2.43	chesF
AFLA_121370	2.45	gel4
AFLA_060590	2.59	chsG
AFLA_058480	2.67	gell
AFLA_052810	2.72	gel7
AFLA_041950	2.77	exg0
AFLA_064920	2.81	1,3-beta-glucanosyltransferase gel4 precursor, putative
AFLA_078900	2.97	nagA
AFLA_129440	3.02	gel5
AFLA_057680	3.18	beta-N-hexosaminidase, putative
AFLA_136030	3.37	chsE
AFLA_020630	3.56	gel6
AFLA_028950	3.61	engl1
AFLA_136040	3.86	chsZ
AFLA_013690	3.97	chsC
AFLA_101800	4.16	ctcB
AFLA_134100	4.21	ags2
AFLA_094600	4.57	putative hydrophobin
AFLA_029950	5.25	eng3
AFLA_031380	5.80	class V chitinase, putative
AFLA_104680	6.80	chiB

Cluster	Gene ID	Log ₂ Fold	Description
		Change	
1	AFLA_125780	-	ATP-binding cassette transporter, putative
1	AFLA_125770	-1.76	LysR family regulatory protein, putative
1	AFLA_125760	-1.24	squalene-hopene-cyclase, putative
2	AFLA_126710	-	polyketide synthase, putative
2	AFLA_126720	-	hypothetical protein
2	AFLA_126730	-	conserved hypothetical protein
2	AFLA_126740	-	lipase precursor, putative
3	AFLA_126970	-	arginine permease, putative
3	AFLA_126980	-	conserved hypothetical protein
3	AFLA_126990	-	conserved hypothetical protein
3	AFLA_127000	-	hypothetical protein
3	AFLA_127010	-	conserved hypothetical protein
3	AFLA_127020	-	monooxygenase, putative
3	AFLA_127030	-	conserved hypothetical protein
3	AFLA_127040	-	MFS monocarboxylate transporter, putative
3	AFLA_127050	-	conserved hypothetical protein
3	AFLA_127060	-	conserved hypothetical protein
3	AFLA_127070	-	short-chain dehydrogenase, putative
3	AFLA_127080	-	conserved hypothetical protein
3	AFLA_127100	-	conserved hypothetical protein
3	AFLA_127110	-	MFS transporter, putative
3	AFLA_127120	-	hypothetical protein
3	AFLA_127130	-	conserved hypothetical protein
3	AFLA_127140	-	conserved hypothetical protein
3	AFLA_127150	-	hypothetical protein
3	AFLA_127160	-	NB-ARC and TPR domain protein
3	AFLA_127170	-	penicillin-binding protein, putative
3	AFLA_127090	-2.42	polyketide synthase, putative
4	AFLA_128040	-	efflux pump antibiotic resistance protein,
			putative
4	AFLA_128060	-	polyketide synthase, putative
4	AFLA_128050	1.12	conserved hypothetical protein

Table S2-8 mRNA levels of secondary metabolic clustered genes in A. flavus

5	AFLA_128160	-	C6 transcription factor, putative
5	AFLA_128170	-	NRPS-like enzyme, putative
6	AFLA_053900	-	conserved hypothetical protein
6	AFLA_053910	-	pantothenate transporter, putative
6	AFLA_053950	-	conserved hypothetical protein
6	AFLA_053880	-2.39	hypothetical protein
6	AFLA_053930	-2.24	multicopper oxidase, putative
6	AFLA_053940	-1.99	multicopper oxidase, putative
6	AFLA_053890	-1.89	acetylcholinesterase, putative
6	AFLA_053870	1.99	polyketide synthase, putative
6	AFLA_053920	3.88	hypothetical protein
7	AFLA_054040	-	conserved hypothetical protein
7	AFLA_054070	-	conserved hypothetical protein
7	AFLA_054090	-	polyketide synthase, putative
7	AFLA_054100	-	DUF341 family oxidoreductase, putative
7	AFLA_054080	-2.74	Na(+)/H(+) antiporter, putative
7	AFLA_054050	1.24	ABC multidrug transporter, putative
7	AFLA_054060	5.22	ATP/GTP-binding protein, putative
8	AFLA_054180	-	conserved hypothetical protein
8	AFLA_054190	-	conserved hypothetical protein
8	AFLA_054200	-	hypothetical protein
8	AFLA_054210	-	ankyrin repeat-containing protein, putative
8	AFLA_054220	-	conserved hypothetical protein
8	AFLA_054230	-	conserved hypothetical protein
8	AFLA_054250	-	conserved hypothetical protein
8	AFLA_054260	-	MFS transporter, putative
8	AFLA_054270	-	NRPS-like enzyme, putative
8	AFLA_054280	-	conserved hypothetical protein
8	AFLA_054290	-	aldehyde reductase I (ARI), putative
8	AFLA_054300	-	pantothenate transporter, putative
8	AFLA_054320	-	NPP1 domain protein, putative
8	AFLA_054370	-3.48	short-chain dehydrogenase, putative
8	AFLA_054310	-3.24	conserved hypothetical protein
8	AFLA_054330	-2.68	conserved hypothetical protein
8	AFLA_054340	-1.28	isoflavone reductase family protein
8	AFLA_054350	-1.27	actin-binding protein Fragmin, putative

8	AFLA_054240	2.53	conserved hypothetical protein
8	AFLA_054360	3.36	conserved hypothetical protein
9	AFLA_008700	-	monooxygenase, putative
9	AFLA_008710	-	monooxygenase, putative
9	AFLA_008740	-	oxidoreductase, short chain
			dehydrogenase/reductase family
9	AFLA_008760	-	multidrug resistance protein, putative
9	AFLA_008770	-	nonribosomal peptide synthase, putative
9	AFLA_008780	-	asparagine synthetase, putative
9	AFLA_008790	-	conserved hypothetical protein
9	AFLA_008730	-3.17	hypothetical protein
9	AFLA_008720	-1.54	conserved hypothetical protein
9	AFLA_008750	3.63	hypothetical protein
10	AFLA_009980	-	ABC multidrug transporter, putative
10	AFLA_010030	-	oxidoreductase, 2OG-Fe(II) oxygenase family,
			putative
10	AFLA_010040	-	conserved hypothetical protein
10	AFLA_010050	-3.13	alcohol dehydrogenase, putative
10	AFLA_010020	-1.84	nonribosomal peptide synthase, putative
10	AFLA_010010	-1.18	nonribosomal peptide synthase, putative
10	AFLA_010000	1.98	polyketide synthase, putative
10	AFLA_009990	3.05	1-aminocyclopropane-1-carboxylate oxidase,
			putative
11	AFLA_010590	-	siderophore biosynthesis lipase/esterase,
			putative
11	AFLA_010600	-	siderophore biosynthesis acetylase AceI,
			putative
11	AFLA_010610	-	enoyl-CoA hydratase/isomerase family protein
11	AFLA_010640	-2.52	MFS siderophore transporter, putative
11	AFLA_010630	-2.47	ABC multidrug transporter SidT
11	AFLA_010620	1.56	nonribosomal siderophore peptide synthase
			Sid2
12	AFLA_079370	-	hypothetical protein
12	AFLA_079380	-	NRPS-like enzyme, putative
12	AFLA_079390	-	hypothetical protein
12	AFLA_079400	-	NRPS-like enzyme, putative

12	AFLA_079420	-	conserved hypothetical protein
12	AFLA_079440	-	allantoate permease, putative
12	AFLA_079460	-	DNA mismatch repair protein Msh1, putative
12	AFLA_079360	-4.14	PKS-like enzyme, putative
12	AFLA_079430	-3.82	amidase, putative
12	AFLA_079450	-2.39	ureidoglycolate hydrolase, putative
12	AFLA_079410	-2.04	MFS transporter, putative
13	AFLA_080490	-	polyketide synthase, putative
13	AFLA_080510	-	conserved hypothetical protein
13	AFLA_080550	-	conserved hypothetical protein
13	AFLA_080500	-1.47	cation-transporting ATPase, putative
13	AFLA_080480	1.10	HD superfamily hydrolase, putative
13	AFLA_080520	1.46	ADP-ribosylglycohydrolase family protein
13	AFLA_080540	1.98	DEAD box helicase Mph1, putative
13	AFLA_080470	3.03	conserved hypothetical protein
13	AFLA_080530	3.07	conserved hypothetical protein
14	AFLA_082050	-	epimerase/dehydratase family protein, putative
14	AFLA_082060	-	conserved hypothetical protein
14	AFLA_082070	-	pantothenate transporter, putative
14	AFLA_082080	-	alpha/beta hydrolase, putative
14	AFLA_082090	-	conserved hypothetical protein
14	AFLA_082100	-	conserved hypothetical protein
15	AFLA_082150	-	polyketide synthase, putative
15	AFLA_082170	-	efflux pump antibiotic resistance protein,
			putative
15	AFLA_082180	-	hypothetical protein
15	AFLA_082190	-	conserved hypothetical protein
15	AFLA_082210	1.94	conserved hypothetical protein
15	AFLA_082230	2.05	pantothenate transporter, putative
15	AFLA_082160	2.47	MFS glucose transporter, putative
15	AFLA_082220	2.70	short-chain dehydrogenase, putative
15	AFLA_082200	4.14	AAA family ATPase, putative
16	AFLA_082430	-	conserved hypothetical protein
16	AFLA_082440	-	conserved hypothetical protein
16	AFLA_082480	-	NRPS-like enzyme, putative
16	AFLA_082470	2.61	AMP dependent CoA ligase, putative

16	AFLA_082450	3.29	bicyclomycin resistance protein, putative
16	AFLA_082460	4.47	conserved hypothetical protein
17	AFLA_083210	-	conserved hypothetical protein
17	AFLA_083220	-	ATP dependent RNA helicase (Rok1), putative
17	AFLA_083230	-	mitochondrial F1F0-ATP synthase g subunit,
			putative
17	AFLA_083260	-	hypothetical protein
17	AFLA_083270	2.12	GABA permease, putative
17	AFLA_083250	2.43	dimethylallyl tryptophan synthase, putative
17	AFLA_083240	3.57	xylitol dehydrogenase LadA/XdhB
18	AFLA_087830	-	DNA excision repair protein Rad2
18	AFLA_087850	-	conserved hypothetical protein
18	AFLA_087820	-3.25	cell wall integrity signaling protein Lsp1/Pil1,
			putative
18	AFLA_087840	-1.43	WD repeat protein
18	AFLA_087810	-1.07	bZIP transcription factor, putative
18	AFLA_087860	1.80	cellulose-binding GDSL lipase/acylhydrolase,
			putative
18	AFLA_087870	3.02	endoglucanase, putative
18	AFLA_087880	5.24	integral membrane protein
19	AFLA_114820	-	polyketide synthase, putative
19	AFLA_114830	-	aminopeptidase, putative
19	AFLA_114840	-	conserved hypothetical protein
20	AFLA_116140	-	putative secreted protein
20	AFLA_116230	-	conserved hypothetical protein
20	AFLA_116300	-	short-chain dehydrogenase, putative
20	AFLA_116310	-	short-chain dehydrogenase, putative
20	AFLA_116330	-	O-methyltransferase, putative
20	AFLA_116190	-11.46	conserved hypothetical protein
20	AFLA_116180	-11.04	hypothetical protein
20	AFLA_116170	-10.67	hypothetical protein
20	AFLA_116200	-8.39	conserved hypothetical protein
20	AFLA_116210	-4.69	O-methyltransferase, putative
20	AFLA_116290	-3.47	conserved hypothetical protein
20	AFLA_116280	-3.36	dihydroxy-acid dehydratase, putative
20	AFLA_116270	-3.06	paraoxonase, putative

20	AFLA_116220	-3.01	polyketide synthase, putative
20	AFLA_116320	-1.97	hypothetical protein
20	AFLA_116150	-1.67	integral membrane protein
20	AFLA_116160	1.32	zinc-binding dehydrogenase family
			oxidoreductase
20	AFLA_116250	1.44	conserved hypothetical protein
20	AFLA_116240	4.52	hypothetical protein
20	AFLA_116260	5.58	N-hydroxyarylamine O-acetyltransferase,
			putative
21	AFLA_116840	-	salicylate 1-monooxygenase SalA
21	AFLA_116850	-	Ankyrin domain protein
21	AFLA_116880	-	C6 transcription factor, putative
21	AFLA_116900	-	conserved hypothetical protein
21	AFLA_116860	-5.73	alpha-N-acetylglucosaminidase, putative
21	AFLA_116870	-2.05	transferase family protein
21	AFLA_116830	-1.28	hypothetical protein
21	AFLA_116890	-1.02	polyketide synthase, putative
22	AFLA_117770	-	DnaJ domain protein
22	AFLA_117780	-	farnesyl-diphosphate farnesyltransferase,
			putative
22	AFLA_117760	2.10	phytase, putative
23	AFLA_118440	-4.87	NRPS-like enzyme, putative
23	AFLA_118430	-3.82	conserved hypothetical protein
24	AFLA_118820	-	short-chain dehydrogenase, putative
24	AFLA_118830	-	conserved hypothetical protein
24	AFLA_118860	-	hypothetical protein
24	AFLA_118870	-	cikharallin 2 hata hydroxylaga, putative
24	AFLA_118800	-	gibberennin 5-beta hydroxylase, putative
24	AFLA_110090	-	2
24	AFLA 118900	_	conserved hypothetical protein
24	AFLA 118910	_	conserved hypothetical protein
24	AFLA 118920	_	hypothetical protein
24	AFLA 118930	-	hypothetical protein
24	AFLA 118980	-	mitochondrial carrier protein Leu5
24	AFLA_118840	-4.41	pantothenate transporter, putative

24	AFLA_118850	-3.61	2,4-dihydroxyhept-2-ene-1,7-dioic acid
			aldolase, putative
24	AFLA_118940	1.18	polyketide synthase, putative
24	AFLA_118960	2.48	polyketide synthase, putative
24	AFLA_118970	3.45	MAK1-like monooxygenase, putative
24	AFLA_118950	4.67	conserved hypothetical protein
24	AFLA_118990	7.89	efflux pump antibiotic resistance protein,
			putative
25	AFLA_119100	-	hypothetical protein
25	AFLA_119090	-3.44	oxidoreductase, short chain
			dehydrogenase/reductase family, putative
25	AFLA_119120	-3.25	beta-lactamase family protein
25	AFLA_119110	-1.86	NRPS-like enzyme, putative
25	AFLA_119080	-1.66	hypothetical protein
26	AFLA_119750	-	riboflavin aldehyde-forming enzyme
26	AFLA_119790	-	beta-xylosidase
26	AFLA_119810	-	sensory transduction histidine kinase bacterial,
			putative
26	AFLA_119860	-	pectin lyase, putative
26	AFLA_119870	-	iron-sulfur protein subunit of succinate
			dehydrogenase Sdh2, putative
26	AFLA_119850	-2.57	LsdA family protein
26	AFLA_119770	-2.49	conserved hypothetical protein
26	AFLA_119780	-2.14	neutral protease 2 precursor, putative
26	AFLA_119880	-1.51	hypothetical protein
26	AFLA_119840	-1.45	hypothetical protein
26	AFLA_119760	-1.13	conserved hypothetical protein
26	AFLA_119800	1.00	conserved hypothetical protein
26	AFLA_119820	1.59	NRPS-like enzyme, putative
26	AFLA_119830	2.66	MFS multidrug transporter, putative
27	AFLA_121400	-	hypothetical protein
27	AFLA_121410	-	hypothetical protein
27	AFLA_121420	-	hypothetical protein
27	AFLA_121430	-	conserved hypothetical protein
27	AFLA_121440	-	fumarylacetoacetate hydrolase, putative
27	AFLA_121460	-	hypothetical protein

27	AFLA_121470	-	hscarg dehydrogenase, putative
27	AFLA_121540	-	MFS multidrug transporter, putative
27	AFLA_121580	-	C-4 methyl sterol oxidase, putative
27	AFLA_121590	-3.55	zinc-binding alcohol dehydrogenase, putative
27	AFLA_121450	-2.35	trihydroxytoluene oxygenase
27	AFLA_121600	-1.73	conserved hypothetical protein
27	AFLA_121550	1.94	conserved hypothetical protein
27	AFLA_121560	1.97	conserved hypothetical protein
27	AFLA_121570	2.40	conserved hypothetical protein
27	AFLA_121520	2.54	NRPS-like enzyme, putative
27	AFLA_121500	2.78	cytochrome P450, putative
27	AFLA_121490	2.81	NmrA-like family protein
27	AFLA_121530	2.87	NADH-dependent flavin oxidoreductase,
			putative
27	AFLA_121480	3.14	phytanoyl-CoA dioxygenase family protein
27	AFLA_121510	3.53	conserved hypothetical protein
28	AFLA_089620	-	chalcone synthase, putative
28	AFLA_089630	-	choline transport protein, putative
28	AFLA_089640	-	conserved hypothetical protein
28	AFLA_089650	-	high-affinity iron transporter FtrA
28	AFLA_089660	-	ferrooxidoreductase Fet3, putative
28	AFLA_089670	-3.14	ferric reductase transmembrane component 4
			precursor, putative
29	AFLA_090190	-	dimethylallyl tryptophan synthase, putative
29	AFLA_090200	-	nonribosomal peptide synthase, putative
29	AFLA_090180	3.80	alpha/beta hydrolase, putative
30	AFLA_090590	-	alpha-1,2-mannosidase, putative subfamily
30	AFLA_090600	-	conserved hypothetical protein
30	AFLA_090610	-	hypothetical protein
30	AFLA_090620	-	hypothetical protein
30	AFLA_090630	-	cytochrome P450, putative
30	AFLA_090640	-	geranyl geranyl pyrophosphate synthase,
			putative
30	AFLA_090660	-	conserved hypothetical protein
30	AFLA_090650	-1.23	DUF1115 domain protein
30	AFLA_090670	1.11	hypothetical protein

30	AFLA_090680	1.92	cytochrome P450, putative
30	AFLA_090690	2.38	mycelial catalase Cat1
31	AFLA_096340	-	hypothetical protein
31	AFLA_096350	-	TrkA-N domain dehydrogenase, putative
31	AFLA_096390	-	prenyl transferase AtmC
31	AFLA_096400	-	FAD-dependent monooxygenase AtmM
31	AFLA_096430	-	cytochrome P450, putative
31	AFLA_096410	-3.01	PTH11-like integral membrane protein,
			putative
31	AFLA_096330	-2.40	C6 and C2H2 transcription factor
31	AFLA_096420	-1.66	hypothetical protein
31	AFLA_096370	2.41	Zn2Cys6 transcription factor
31	AFLA_096360	3.83	hypothetical protein
31	AFLA_096380	4.42	FAD dependent oxidoreductase, putative
32	AFLA_096700	-	NRPS-like enzyme, putative
32	AFLA_096710	-	NRPS-like enzyme, putative
32	AFLA_096720	-	hypothetical protein
32	AFLA_096730	-	conserved hypothetical protein
32	AFLA_096770	-	polyketide synthase, putative
32	AFLA_096740	-8.85	monoxygenase, putative
32	AFLA_096760	-7.35	monocarboxylate transporter, putative
32	AFLA_096750	-5.37	cytochrome P450, putative
33	AFLA_017840	-	NRPS-like enzyme, putative
33	AFLA_017850	-4.85	conserved hypothetical protein
33	AFLA_017860	-2.98	hypothetical protein
34	AFLA_018250	-	conserved hypothetical protein
34	AFLA_018270	-	hypothetical protein
34	AFLA_018280	-	mitochondrial outer membrane protein
			(Sam35), putative
34	AFLA_018290	-	conserved hypothetical protein
34	AFLA_018300	-	cell division control protein 14
34	AFLA_018310	-	geranylgeranyl diphosphate synthase
34	AFLA_018320	-	Smr domain protein
34	AFLA_018340	-	G-protein complex alpha subunit GpaA/FadA
34	AFLA_018260	-1.42	DUF543 domain protein
34	AFLA_018350	1.72	conserved hypothetical protein

34	AFLA_018330	3.00	hypothetical protein
35	AFLA_038600	-1.10	nonribosomal peptide synthase, putative
35	AFLA_038590	3.93	Ankyrin repeat protein
35	AFLA_038580	4.10	RTA1 domain protein
35	AFLA_038570	4.44	malonyl CoA-acyl carrier protein transacylase,
			putative
36	AFLA_039200	-	cytochrome P450, putative
36	AFLA_039210	-	cytochrome P450, putative
36	AFLA_039220	-	cytochrome P450, putative
36	AFLA_039230	-	short-chain dehydrogenase, putative
36	AFLA_039240	-	aristolochene synthase, putative
36	AFLA_039270	-	carboxylesterase, putative
36	AFLA_039260	2.02	esterase, putative
36	AFLA_039250	2.04	hypothetical protein
37	AFLA_041590	-	peroxisomal multifunctional beta-oxidation
			protein (MFP), putative
37	AFLA_041600	-	RING finger protein (Zin), putative
37	AFLA_041610	-	NRPS-like enzyme, putative
37	AFLA_041620	3.61	aquaporin, putative
38	AFLA_042330	-	conserved hypothetical protein
38	AFLA_042340	-	conserved hypothetical protein
38	AFLA_042350	-	conserved hypothetical protein
38	AFLA_042360	-	hypothetical protein
38	AFLA_042370	-	conserved hypothetical protein
39	AFLA_045490	-	dimethylallyl tryptophan synthase, putative
39	AFLA_045510	-	integral membrane protein
39	AFLA_045500	4.36	cytochrome P450, putative
40	AFLA_100320	-	hypothetical protein
40	AFLA_100330	-	FAD dependent oxidoreductase, putative
40	AFLA_100340	-	nonribosomal peptide synthase, putative
40	AFLA_100360	-	amino acid transporter, putative
40	AFLA_100370	-	acetylornithine aminotransferase, putative
40	AFLA_100380	-	hypothetical protein
40	AFLA_100390	-	conserved hypothetical protein
40	AFLA_100400	-	hypothetical protein
40	AFLA_100410	-	hypothetical protein

40	AFLA_100420	-	amidase, putative
40	AFLA_100270	-2.06	aliphatic nitrilase, putative
40	AFLA_100280	-1.96	MFS transporter, putative
40	AFLA_100310	-1.94	oxidoreductase, putative
40	AFLA_100300	-1.44	C6 transcription factor, putative
40	AFLA_100290	-1.43	aliphatic nitrilase, putative
40	AFLA_100350	3.46	conserved hypothetical protein
41	AFLA_101740	-6.59	glycerophosphoinositol/
			glycerophosphocholine transporter, putative
41	AFLA_101750	-5.66	molybdopterin synthase small subunit CnxG
41	AFLA_101760	-4.09	molybdenum cofactor biosynthesis protein
			Gephyrin, putative
41	AFLA_101720	1.27	cytochrome P450, putative
41	AFLA_101730	2.08	ferulate-5-hydroxylase, putative
41	AFLA_101700	2.24	NRPS-like enzyme, putative
41	AFLA_101710	2.37	NmrA-like family protein
41	AFLA_101690	3.10	alcohol dehydrogenase, putative
42	AFLA_102110	-	conserved hypothetical protein
42	AFLA_102150	-	SAM dependent methyltransferase, putative
42	AFLA_102140	1.24	conserved hypothetical protein
42	AFLA_102120	1.25	hypothetical protein
42	AFLA_102160	2.89	lanosterol synthase, putative
42	AFLA_102130	3.34	conserved hypothetical protein
43	AFLA_102480	-	isoamyl alcohol oxidase
43	AFLA_102490	-	conserved hypothetical protein
43	AFLA_102500	-	9-cis-epoxycarotenoid dioxygenase, putative
43	AFLA_102520	-	phytoene dehydrogenase, putative
43	AFLA_102530	-	UMTA methyltransferase family protein
43	AFLA_102540	-	hypothetical protein
43	AFLA_102550	-	G-patch domain protein, putative
43	AFLA_102510	2.71	phytoene synthase, putative
44	AFLA_064250	-	silk seellin 2 secides a metating
44	AFLA_064270	-	gibbereinin 2-oxidase, putative
44	AFLA_004280	-	O methyltronafornan mutative
44	AFLA_004290	-	C-memyntansierase, putative
44	AFLA_004300	-	nuclosyl amino acid oxidase, putative

44	AFLA_064330	-	conserved hypothetical protein
44	AFLA_064340	-	conserved hypothetical protein
44	AFLA_064260	-1.01	oligopeptide transporter, putative
44	AFLA_064320	1.16	oligopeptide transporter, putative
44	AFLA_064310	1.21	hypothetical protein
44	AFLA_064240	1.54	nonribosomal peptide synthase, putative
45	AFLA_064510	-	thioredoxin reductase GliT-like, putative
45	AFLA_064520	-	O-methyltransferase GliM-like, putative
45	AFLA_064610	-	short-chain oxidoreductase, putative
45	AFLA_064630	-	hypothetical protein
45	AFLA_064560	-1.39	nonribosomal peptide synthase GliP-like, putative
45	AFLA_064620	-1.00	conserved hypothetical protein
45	AFLA_064500	1.33	conserved hypothetical protein
45	AFLA_064580	2.12	oxidoreductase, putative
45	AFLA_064570	2.17	uracil permease, putative
45	AFLA_064540	2.31	cytochrome P450 oxidoreductase GliC
45	AFLA_064600	2.34	conserved hypothetical protein
45	AFLA_064550	2.53	membrane dipeptidase GliJ-like, putative
45	AFLA_064530	2.63	glutathione S-transferase GliG-like, putative
45	AFLA_064460	2.88	conserved hypothetical protein
45	AFLA_064440	3.02	transport protein, putative
45	AFLA_064590	3.17	O-methyltransferase, putative
45	AFLA_064480	3.28	conserved hypothetical protein
45	AFLA_064470	3.31	cytochrome P450, putative
45	AFLA_064450	3.74	aminotransferase GliI-like, putative
45	AFLA_064490	3.82	conserved hypothetical protein
45	AFLA_064640	4.45	oxidoreductase, short-chain
			dehydrogenase/reductase family
46	AFLA_066730	-2.68	alcohol dehydrogenase, putative
46	AFLA_066710	1.68	conserved hypothetical protein
46	AFLA_066700	2.27	P450 family sporulation-specific N-
			formyltyrosine oxidase Dit2
46	AFLA_066720	2.34	nonribosomal peptide synthase, putative
47	AFLA_066840	-	hybrid PKS/NRPS enzyme, putative
47	AFLA_066850	-	conserved hypothetical protein

47	AFLA_066860	-	conserved hypothetical protein
47	AFLA_066870	-	conserved hypothetical protein
47	AFLA_066900	-1.60	conserved hypothetical protein
47	AFLA_066970	1.28	conserved hypothetical protein
47	AFLA_066890	1.36	cytochrome P450, putative
47	AFLA_066950	2.04	conserved hypothetical protein
47	AFLA_066880	2.08	monocarboxylate transporter, putative
47	AFLA_066920	2.36	alcohol dehydrogenase, putative
47	AFLA_066910	2.48	conserved hypothetical protein
47	AFLA_066960	3.82	hypothetical protein
47	AFLA_066930	3.86	cytochrome P450, putative
47	AFLA_066940	4.39	O-methyltransferase, putative
48	AFLA_069340	-2.33	MSF drug transporter, putative
48	AFLA_069350	-1.42	conserved hypothetical protein
48	AFLA_069330	1.19	nonribosomal peptide synthase Pes1
49	AFLA_070860	-	ACV synthetase PcbAB
49	AFLA_070900	-	conserved hypothetical protein
49	AFLA_070920	-	NRPS-like enzyme, putative
49	AFLA_070890	-3.79	hypothetical protein
49	AFLA_070870	1.52	isopenicillin N synthetase PcbC
49	AFLA_070910	1.79	aminotransferase, putative
49	AFLA_070880	3.90	acyl-coenzyme A:Isopenicillin N
			acyltransferase PenDE
50	AFLA_002910	-	conserved hypothetical protein
50	AFLA_002930	-	hypothetical protein
50	AFLA_002920	-4.66	flavonoid 3-hydroxylase, putative
50	AFLA_002890	-1.06	AMP-binding enzyme family protein
50	AFLA_002900	2.44	polyketide synthase, putative
51	AFLA_004280	-	C6 transcription factor, putative
51	AFLA_004290	-	conserved hypothetical protein
51	AFLA_004300	-5.05	prenyltransferase, putative
52	AFLA_004440	-10.38	ABC multidrug transporter, putative
52	AFLA_004430	-7.35	conserved hypothetical protein
52	AFLA_004450	-6.59	nonribosomal peptide synthase, putative
53	AFLA_005270	-	conserved hypothetical protein
53	AFLA_005280	-	hypothetical protein

53	AFLA_005300	-	ankyrin repeat-containing protein, putative
53	AFLA_005320	-	polyketide synthase, putative
53	AFLA_005330	-	conserved hypothetical protein
53	AFLA_005340	-	conserved hypothetical protein
53	AFLA_005350	-	hypothetical protein
53	AFLA_005360	-	conserved hypothetical protein
53	AFLA_005380	-	hypothetical protein
53	AFLA_005400	-	ankyrin repeat-containing protein, putative
53	AFLA_005390	-3.83	conserved hypothetical protein
53	AFLA_005290	-1.14	conserved hypothetical protein
53	AFLA_005410	-1.05	5-AMP-activated protein kinase, putative
53	AFLA_005310	5.04	vacuolar ATP synthase proteolipid subunit,
			putative
53	AFLA_005370	5.80	conserved hypothetical protein
54	AFLA_005440	-1.70	nonribosomal peptide synthase, putative
54	AFLA_005450	1.33	conserved hypothetical protein
55	AFLA_006110	-	conserved hypothetical protein
55	AFLA_006130	-	NADH pyrophosphatase, putative
55	AFLA_006140	-	conserved hypothetical protein
55	AFLA_006150	-	flavin dependent monooxygenase, putative
55	AFLA_006160	-	HDA1 complex subunit, putative
55	AFLA_006180	-	conidial pigment biosynthesis oxidase
			Arb2/brown2
55	AFLA_006190	-	multicopper oxidase, putative
55	AFLA_006240	-	PHD transcription factor (Rum1), putative
55	AFLA_006170	-5.70	polyketide synthetase PksP
55	AFLA_006100	-2.45	HypA-like protein, putative
55	AFLA_006230	-1.88	1-aminocyclopropane-1-carboxylate
			deaminase, putative
55	AFLA_006120	-1.26	glutamine dependent NAD+ synthetase,
			putative
55	AFLA_006220	-1.22	exopolyphosphatase, putative
55	AFLA_006210	1.43	SH3 domain protein (Cyk3), putative
55	AFLA_006200	3.15	hypothetical protein
56	AFLA_006800	-	DNA damage repair protein (Rad9), putative
56	AFLA_006810	-	50S ribosomal protein L27, putative

56	AFLA_006830	-	scramblase family protein
56	AFLA_006860	-	oxidosqualene:lanosterol cyclase
56	AFLA_006870	-	SGT1 and CS domain protein
56	AFLA_006900	-	cyclin-dependent protein kinase PhoA
56	AFLA_006920	-3.09	cAMP receptor-like protein, putative
56	AFLA_006880	-2.68	PQ loop repeat protein
56	AFLA_006890	-1.82	SIR2 family histone deacetylase, putative
56	AFLA_006840	-1.39	ubiquitin conjugating enzyme (UbcH), putative
56	AFLA_006850	1.02	meiosis-specific topoisomerase Spo11, putative
56	AFLA_006820	1.64	conserved hypothetical protein
56	AFLA_006910	2.74	hypothetical protein
57	AFLA_135430	-	cytochrome P450, putative
57	AFLA_135440	-	cytochrome P450, putative
57	AFLA_135450	-	trichodiene synthase, putative
57	AFLA_135470	-	ornithine decarboxylase, putative
57	AFLA_135480	-	galactose-proton symport, putative
57	AFLA_135490	-	nonribosomal peptide synthase, putative
57	AFLA_135460	-1.66	conserved hypothetical protein
58	AFLA_137790	-	cell wall protein, putative
58	AFLA_137800	-	conserved hypothetical protein
58	AFLA_137810	-	pantothenate transporter, putative
58	AFLA_137890	-	conserved hypothetical protein
58	AFLA_137880	1.22	extracellular triacylglycerol lipase, putative
58	AFLA_137830	1.77	hypothetical protein
58	AFLA_137780	2.50	ABC transporter, putative
58	AFLA_137820	2.92	conserved hypothetical protein
58	AFLA_137840	4.15	integral membrane protein
58	AFLA_137870	5.11	polyketide synthase, putative
58	AFLA_137850	5.50	conserved hypothetical protein
58	AFLA_137860	5.64	conserved hypothetical protein
59	AFLA_139160	-	aflX/ ordB/ monooxygenase/ oxidase
59	AFLA_139180	-	afIV/ cypX/ cytochrome P450 monooxygenase
59	AFLA_139190	-	afIK/ vbs/ VERB synthase
59	AFLA_139200	-	aflQ/ ordA/ ord-1/ oxidoreductase/ cytochrome
			P450 monooxigenase
59	AFLA_139210	-	aflP/ omtA/ omt-1/ O-methyltransferase A

59	AFLA_139220	-	aflO/ omtB/ dmtA/ O-methyltransferase B
59	AFLA_139230	-	aflI/ avfA/ cytochrome P450 monooxygenase
59	AFLA_139250	-	aflL/ verB/ desaturase/ P450 monooxygenase
59	AFLA_139260	-	aflG/ avnA/ ord-1/ cytochrome P450
			monooxygenase
59	AFLA_139280	-	aflN/ verA/ monooxygenase
59	AFLA_139300	-	aflM/ ver-1/ dehydrogenase/ ketoreductase
59	AFLA_139310	-	aflE/ norA/ aad/ adh-2/ NOR reductase/
			dehydrogenase
59	AFLA_139320	-	aflJ/ estA/ esterase
59	AFLA_139330	-	aflH/ adhA/ short chain alcohol dehydrogenase
59	AFLA_139390	-	aflD / nor-1 / reductase
59	AFLA_139400	-	aflCa / hypC / hypothetical protein
59	AFLA_139440	-	aflF / norB / dehydrogenase
59	AFLA_139340	-3.16	aflS/ pathway regulator
59	AFLA_139360	-2.99	aflR / apa-2 / afl-2 / transcription activator
59	AFLA_139380	-2.57	aflA / fas-2 / hexA / fatty acid synthase alpha
			subunit
59	AFLA_139150	1.16	aflY/ hypA/ hypP/ hypothetical protein
59	AFLA_139370	1.47	aflB / fas-1 / fatty acid synthase beta subunit
59	AFLA_139410	2.00	aflC / pksA / pksL1 / polyketide synthase
59	AFLA_139170	2.05	aflW/ moxY/ monooxygenase
59	AFLA_139420	2.73	afIT / afIT / transmembrane protein
59	AFLA_139430	4.24	aflU / cypA / P450 monooxygenase
60	AFLA_139590	-	choline dehydrogenase, putative
60	AFLA_139600	-	glucose-methanol-choline (gmc)
			oxidoreductase, putative
60	AFLA_139620	-	amino acid permease family protein
60	AFLA_139630	-	ABC multidrug transporter, putative
60	AFLA_139640	-	hypothetical protein
60	AFLA_139650	-	hypothetical protein
60	AFLA_139660	-	hypothetical protein
60	AFLA_139670	-	nonribosomal peptide synthase, putative
60	AFLA_139610	1.75	ceramidase, putative
61	AFLA_022840	-	allantoate permease, putative
61	AFLA_022850	-	conserved hypothetical protein

61	AFLA_022870	-	conserved hypothetical protein
61	AFLA_023000	-	Ankyrin domain protein
61	AFLA_023010	-	GA4 desaturase family protein
61	AFLA_023030	-	cytochrome P450 oxidoreductase GliC-like,
			putative
61	AFLA_023040	-	C6 transcription factor, putative
61	AFLA_023060	-	hypothetical protein
61	AFLA_023080	-	integral membrane protein TmpA
61	AFLA_023070	-2.93	integral membrane protein
61	AFLA_022990	-1.83	conserved hypothetical protein
61	AFLA_022880	-1.54	oligopeptide transporter, putative
61	AFLA_022860	1.73	hypothetical protein
61	AFLA_023050	1.99	MFS transporter, putative
61	AFLA_023020	4.15	NRPS-like enzyme, putative
62	AFLA_027210	-	conserved hypothetical protein
62	AFLA_027220	-	hypothetical protein
62	AFLA_027230	-	alpha-aminoadipate reductase Lys2, putative
62	AFLA_027250	-	aldo-keto reductase, putative
62	AFLA_027260	-	conserved hypothetical protein
62	AFLA_027200	1.28	xanthine dehydrogenase HxA, putative
62	AFLA_027240	1.58	carbonic anhydrase Nce103, putative
63	AFLA_028730	-	conserved hypothetical protein
63	AFLA_028740	-	coenzyme A transferase, putative
63	AFLA_028760	-1.30	C2H2 transcription factor, putative
63	AFLA_028720	-1.20	NRPS-like enzyme, putative
63	AFLA_028710	2.28	short chain type dehydrogenase, putative
63	AFLA_028750	2.49	UMTA methyltransferase family protein
64	AFLA_105000	-	DUF636 domain protein
64	AFLA_105040	-	conserved hypothetical protein
64	AFLA_105060	-	NAD dependent epimerase/dehydratase,
			putative
64	AFLA_105080	-	terpene synthase family protein
64	AFLA_105030	-2.57	cytosine deaminase, putative
64	AFLA_105010	-2.53	methyltransferase, putative
64	AFLA_105020	-1.54	conserved hypothetical protein
64	AFLA_105050	-1.45	geranylgeranyl pyrophosphate synthetase

			AtmG, putative
64	AFLA_105070	-1.13	cytochrome P450 oxygenase, putative
65	AFLA_105130	-	conserved hypothetical protein
65	AFLA_105140	-	conserved hypothetical protein
65	AFLA_105150	-	extracellular carboxylesterase, putative
65	AFLA_105160	-	hypothetical protein
65	AFLA_105190	-4.46	NRPS-like enzyme, putative
65	AFLA_105180	-2.54	hypothetical protein
65	AFLA_105170	-2.39	O-methyltransferase, putative
65	AFLA_105120	-1.50	GNAT family acetyltransferase, putative
66	AFLA_105370	-	conserved hypothetical protein
66	AFLA_105380	-	actin-binding protein, putative
66	AFLA_105400	-	kinesin family protein (KlpA), putative
66	AFLA_105440	-	cytochrome P450, putative
66	AFLA_105450	-	polyketide synthase, putative
66	AFLA_105460	-	conserved hypothetical protein
66	AFLA_105490	-	phosphoribulokinase/uridine kinase family
			protein
66	AFLA_105480	-5.35	DUF636 domain protein
66	AFLA_105470	-3.91	translation initiation factor eIF-2B subunit
			family protein
66	AFLA_105540	-2.34	MFS multidrug transporter, putative
66	AFLA_105530	-2.27	C6 transcription factor, putative
66	AFLA_105390	-1.20	conserved hypothetical protein
66	AFLA_105520	1.07	conserved hypothetical protein
66	AFLA_105510	1.33	conserved hypothetical protein
66	AFLA_105430	1.37	fatty acid desaturase protein, putative
66	AFLA_105410	1.97	thioester reductase family protein, putative
66	AFLA_105420	2.16	hypothetical protein
66	AFLA_105500	4.17	conserved hypothetical protein
67	AFLA_107100	-	conserved hypothetical protein
67	AFLA_107120	-	conserved hypothetical protein
67	AFLA_107130	-	D-isomer specific 2-hydroxyacid
			dehydrogenase family protein
67	AFLA_107140	-	conserved hypothetical protein
67	AFLA_107110	-1.93	conserved hypothetical protein

67	AFLA_107150	1.94	conserved hypothetical protein
68	AFLA_108540	-	NADH oxidase, putative
68	AFLA_108550	-	polyketide synthase, putative
68	AFLA_108560	-	O-methyltransferase, putative
68	AFLA_108570	-	conserved hypothetical protein
68	AFLA_108580	-	cytochrome P450, putative
69	AFLA_109390	-	conserved hypothetical protein
69	AFLA_109400	-	extracellular protein, putative
69	AFLA_109410	-	UV-endonuclease UVE-1
69	AFLA_109420	-	actin cytoskeleton organization protein App1,
			putative
69	AFLA_109440	-	long-chain-fatty-acid-CoA ligase, putative
69	AFLA_109380	-2.84	alcohol dehydrogenase, putative
69	AFLA_109430	4.23	nonribosomal siderophore peptide synthase SidC
70	AFLA_112780	-	conserved hypothetical protein
70	AFLA_112790	-	acyl-CoA thioester hydrolase, putative
70	AFLA_112810	-	trytophan synthase alpha subunit, putative
70	AFLA_112820	-	toxin biosynthesis ketoreductase, putative
70	AFLA_112830	-	conserved hypothetical protein
70	AFLA_112840	-	polyketide synthase, putative
70	AFLA_112880	-	2,4-dichlorophenol 6-monooxygenase, putative
70	AFLA_112900	-	epoxide hydrolase, putative
70	AFLA_112910	-	conserved hypothetical protein
70	AFLA_112920	-	mitochondrial cytochrome b2-like, putative
70	AFLA_112800	-4.33	L-lactate dehydrogenase
70	AFLA_112870	1.11	monooxygenase, putative
70	AFLA_112890	1.30	MFS transporter, putative
70	AFLA_112860	1.82	conserved hypothetical protein
70	AFLA_112850	3.07	O-methyltransferase, putative
71	AFLA_059980	3.75	choline dehydrogenase, putative
71	AFLA_060020	4.04	PKS-like enzyme, putative
71	AFLA_059960	4.33	conserved hypothetical protein
71	AFLA_059970	4.65	short-chain dehydrogenase, putative
71	AFLA_059990	4.88	O-methyltransferase, putative
71	AFLA_060000	5.07	metallo-beta-lactamase domain protein

71	AFLA_060010	5.88	PKS-like enzyme, putative	
71	AFLA_059950	7.37	oxidoreductase, FAD-binding, putative	
72	AFLA_060650	-	glutaminyl-tRNA synthetase	
72	AFLA_060660	-	AMP-binding enzyme, putative	
72	AFLA_060670	-	integral membrane protein	
72	AFLA_060680	1.60	conserved hypothetical protein	
73	AFLA_062440	-	conserved hypothetical protein	
73	AFLA_062450	-	sphingomyelin phosphodiesterase, putative	
73	AFLA_062460	-	non-classical export protein Nce102, putative	
73	AFLA_062470	-	pentalenene synthase, putative	
73	AFLA_062480	-	conserved hypothetical protein	
73	AFLA_062500	-	mitogen-activated protein kinase MAF1	
73	AFLA_062510	-	myosin heavy chain, embryonic smooth	
			muscle isoform, putative	
73	AFLA_062520	-	COPII-coated vesicle protein (Erv41), putative	
73	AFLA_062430	-5.13	non-classical export protein Nce102, putative	
73	AFLA_062490	1.25	COPII-coated vesicle protein (Erv41), putative	
74	AFLA_062830	-	monoxygenase, putative	
74	AFLA_062870	-	conserved hypothetical protein	
74	AFLA_062880	-	short chain dehydrogenase/oxidoreductase,	
			putative	
74	AFLA_062890	-	hypothetical protein	
74	AFLA_062900	-	glycerol-3-phosphate O-acyltransferase,	
			putative	
74	AFLA_062910	-	proline-specific permease, putative	
74	AFLA_062920	-	conserved hypothetical protein	
74	AFLA_062930	-	glycosyl hydrolase, family 43, putative	
74	AFLA_062840	-3.46	short chain dehydrogenase/oxidoreductase,	
			putative	
74	AFLA_062860	-1.15	glycerol-3-phosphate O-acyltransferase,	
			putative	
74	AFLA_062810	1.15	fatty acid desaturase, putative	
74	AFLA_062850	3.26	hypothetical protein	
74	AFLA_062820	3.38	polyketide synthase, putative	
74	AFLA_062800	3.98	conserved hypothetical protein	

Gene ID	Log ₂ Fold Change	Description	Туре
AFLA_122410	7.84	Putative TF	bZIP
AFLA_040300	7.03	Putative TF	C6
AFLA_094010	6.01	atf21	bZIP
AFLA_000010	4.85	Putative TF	Zinc-binding
AFLA_049410	4.68	Putative TF	C ₆
AFLA_085880	4.19	Putative TF	BTB
AFLA_103640	4.14	fcr1	C_6
AFLA_079250	4.13	Putative TF	Zinc-binding
AFLA_120470	4.06	silA ortholog	Zinc-binding
AFLA_007370	3.81	Putative TF	Zinc-binding
AFLA_096100	3.73	Putative TF	
AFLA_139560	3.60	Putative TF	C_6
AFLA_001310	3.57	Putative TF	Zinc-binding
AFLA_120480	3.15	silA	Zinc-binding
AFLA_120780	3.10	Putative TF	C ₆
AFLA_139360	2.99	aflR	C ₆
AFLA_051880	2.92	prnA	C_6
AFLA_097720	2.91	clrA	C ₆
AFLA_123530	2.86	Putative TF	Zinc-binding
AFLA_096320	2.84	Putative TF	C6 / C2H2
AFLA_005520	2.82	sfgA	C ₆
AFLA_126910	2.72	Putative TF	C ₆
AFLA_059110	2.72	Putative TF	Zinc-binding
AFLA_009580	2.63	Putative TF	C_6
AFLA_065310	2.57	Putative TF	Zinc-binding
AFLA_124010	2.44	Putative TF	C_6
AFLA_064980	2.44	<i>sdrA</i>	C ₆
AFLA_096330	2.40	Putative TF	C6 / C2H2
AFLA_038210	2.39	Putative TF	C_6
AFLA_122500	2.37	Putative TF	C_6
AFLA_134920	2.36	Putative TF	C_6
AFLA_009690	2.31	Putative TF	Zinc-binding

Table S2-9 DEGs predicted to encode transcription factors

AFLA_034610	2.28	Putative TF	C ₆
AFLA_105530	2.27	Putative TF	C ₆
AFLA_033480	2.26	Putative TF	C ₆
AFLA_041330	2.22	Putative TF	C ₆
AFLA_123540	2.22	Putative TF	Zinc-binding
AFLA_136880	2.19	Putative TF	C ₆
AFLA_012100	2.16	pcaG	NDT80_PhoG
AFLA_093070	2.15	Putative TF	C_2H_2
AFLA_049640	2.06	Putative TF	Zinc-binding
AFLA_119890	2.01	Putative TF	C ₆
AFLA_062330	1.93	Putative TF	C ₆
AFLA_076330	1.90	Putative TF	Zinc-binding
AFLA_124630	1.87	Putative TF	Zinc-binding
AFLA_000720	1.85	Putative TF	Zinc-binding
AFLA_123770	1.81	scfA ortholog	C ₆
AFLA_014270	1.81	Putative TF	C ₆
AFLA_080780	1.81	Putative TF	Zinc-binding
AFLA_120290	1.80	Putative TF	C ₆
AFLA_000730	1.79	Putative TF	C ₆
AFLA_075420	1.78	Putative TF	Homeobox
AFLA_079320	1.77	Putative TF	Zinc-binding
AFLA_138930	1.72	Putative TF	C ₆
AFLA_042930	1.71	Putative TF	Zinc-binding
AFLA_025720	1.69	nosA	C ₆
AFLA_025860	1.65	Putative TF	C ₆
AFLA_015850	1.62	Putative TF	C ₆
AFLA_125590	1.61	Putative TF	Zinc-binding
AFLA_118080	1.60	rdr1	Zinc-binding
AFLA_097920	1.59	scfA	C ₆
AFLA_053760	1.58	Putative TF	Zinc-binding
AFLA_110020	1.57	Putative TF	C ₆
AFLA_097740	1.49	Putative TF	Zinc-binding
AFLA_012010	1.49	ctf1B	C ₆
AFLA_030600	1.45	fkh l	Forkhead
AFLA_073870	1.45	regA	C_6

AFLA_100300	1.44	Putative TF	C ₆
AFLA_068100	1.43	Putative TF	Zinc-binding
AFLA_049270	1.42	galX	C ₆
AFLA_036490	1.36	nscR	C ₆
AFLA_063720	1.33	Putative TF	Zinc-binding
AFLA_028760	1.30	Putative TF	C ₂ H ₂
AFLA_014120	1.30	scfA ortholog	C ₆
AFLA_048870	1.29	amdA	C_2H_2
AFLA_042030	1.29	Putative TF	C ₆
AFLA_033160	1.27	sfp1	C_2H_2
AFLA_097680	1.26	Putative TF	C ₆
AFLA_010880	1.26	Putative TF	Zinc-binding
AFLA_053230	1.26	Putative TF	Zinc-binding
AFLA_015920	1.25	aro80	C ₆
AFLA_139110	1.24	aflYd	Zinc-binding
AFLA_048920	1.24	Putative TF	C ₆
AFLA_123500	1.19	Putative TF	C ₆
AFLA_024580	1.19	Putative TF	C ₆
AFLA_018110	1.18	Putative TF	bZIP
AFLA_076320	1.18	Putative TF	C ₆
AFLA_043710	1.17	Putative TF	C ₆
AFLA_013890	1.17	Putative TF	C_2H_2
AFLA_083510	1.14	Putative TF	Homeobox/ C ₂ H ₂
AFLA_090160	1.13	Putative TF	Zinc-binding
AFLA_010240	1.13	Putative TF	Zinc-binding
AFLA_121770	1.12	Putative TF	Zinc-binding
AFLA_098130	1.11	Putative TF	Zinc-binding
AFLA_064370	1.08	Putative TF	C ₆
AFLA_087810	1.07	metR	bZIP
AFLA_028560	1.06	amdR	C ₆
AFLA_017040	1.03	Putative TF	C ₆
AFLA_028410	1.02	pbcR	C ₆
AFLA_009490	1.01	Putative TF	C ₆
AFLA_118300	-1.00	Putative TF	C ₆
AFLA_023420	-1.01	Putative TF	Zinc-binding
AFLA_076040	-1.04	Putative TF	Zinc-binding
-------------	-------	-------------	-------------------------------
AFLA_036190	-1.10	rap1	
AFLA_089270	-1.11	hacA	bZIP
AFLA_083820	-1.13	Putative TF	C ₆
AFLA_048650	-1.14	steA	Homeobox/ Zinc-binding
AFLA_030580	-1.17	pacC	C ₂ H ₂
AFLA_080270	-1.17	Putative TF	C ₂ H ₂
AFLA_097380	-1.21	Putative TF	CP2
AFLA_020130	-1.21	rgdA	APSES
AFLA_018410	-1.21	Putative TF	C_2H_2
AFLA_129530	-1.22	Putative TF	Zinc-binding
AFLA_074060	-1.28	Putative TF	NF-X1
AFLA_051900	-1.35	cnjB	Zinc-binding
AFLA_067300	-1.37	Putative TF	Zinc-binding
AFLA_074200	-1.41	Putative TF	C ₆
AFLA_135110	-1.44	Putative TF	HLH
AFLA_131640	-1.47	devR/hpa3	HLH
AFLA_070980	-1.48	Putative TF	C ₆
AFLA_038860	-1.49	Putative TF	Zinc-binding
AFLA_058610	-1.54	srbA	HLH
AFLA_104780	-1.57	Putative TF	C ₆
AFLA_127920	-1.57	crzA	C_2H_2
AFLA_002290	-1.58	amdX	C_2H_2
AFLA_084200	-1.59	Putative TF	C ₆
AFLA_050970	-1.61	Putative TF	Zinc-binding
AFLA_020210	-1.68	nsdD	GATA
AFLA_109220	-1.73	Putative TF	C ₆
AFLA_050250	-1.75	срсА	bZIP
AFLA_099460	-1.76	rfeG	
AFLA_083100	-1.81	zipA	bZIP
AFLA_044680	-1.88	ndtA	NDT80_PhoG domain
AFLA 088390	-2.07	egd1	btf3-like
AFLA 035590	-2.12	Putative TF	C ₆
			-

AFLA_026250	-2.16	rfeB	Homeobox
AFLA_071330	-2.18	Putative TF	Zinc-binding
AFLA_110650	-2.23	seb1	C_2H_2
AFLA_091490	-2.27	mtfA	C_2H_2
AFLA_046990	-2.32	stuA	APSES
AFLA_064960	-2.36	Putative TF	Zinc-binding
AFLA_096370	-2.41	Putative TF	C ₆
AFLA_008120	-2.47	Putative TF	Zinc-binding
AFLA_057080	-2.48	Putative TF	Zinc-binding
AFLA_067290	-2.60	Putative TF	Zinc-binding
AFLA_083560	-2.61	Putative TF	C ₆
AFLA_119280	-2.63	Putative TF	Zinc-binding
AFLA_131330	-2.72	nsdC	C_2H_2
AFLA_087350	-2.86	sltA	C_2H_2
AFLA_017640	-2.87	rpn4	C ₂ H ₂
AFLA_029620	-2.96	abaA	TEA/ATTS
AFLA_137320	-3.04	flbC	C ₂ H ₂
AFLA_069460	-3.11	egr2	C_2H_2
AFLA_069100	-3.18	Putative TF	LIM/homeobox
AFLA_082850	-3.31	brlA	C ₂ H ₂
AFLA_086110	-3.54	Putative TF	C ₆
AFLA_057480	-4.22	Putative TF	Zinc-binding
AFLA_021240	-4.26	glcD gamma	HLH
AFLA_059960	-4.33	aoiH	C ₆
AFLA_113790	-5.05	Putative TF	bZIP

CHAPTER 3

Comparative analyses of WetA-mediated gene regulatory networks

in Aspergillus

The results described in this chapter are being prepared for publication

3-1 Abstract

Asexual development is widespread among the fungal class Eurotiomycetes (phylum Ascomycota) and is a key factor contributing the fecundity and fitness of Ascomycete fungi. These mitotically derived asexual spores are an efficient agent for genome protection, survival, propagation, and infecting hosts. Asexual sporulation (conidiation) is a highly successful and effective reproductive mechanism for Aspergillus fungi as vast numbers of asexual spores (conidia) can be produced from a single colony through repetitive cycles of mitosis. The Aspergillus conidiation is primarily governed by the highly conserved central regulatory circuit BrlA \rightarrow AbaA \rightarrow WetA, where WetA controls the proper formation, maturation, and viability of conidia and couples morphological differentiation and chemical development. While all Aspergillus species appear to require WetA function for sporulation, divergent gene regulatory networks (GRNs) governing distinct morphology of conidia and varying metabolic remodeling associated with conidiogenesis in each species are not known. To address this key research gap, we have carried out comparative expression analyses of conidia of wild type (WT) and wetA null mutant in Aspergillus nidulans, Aspergillus flavus, and Aspergillus fumigatus. Moreover, employing WetA-chromatin association in A. nidulans conidia, we prove that WetA is a DNA-binding protein that interacts with the WetA Response Element (WRE). Taken together, WetA is functionally conserved in regulation in Aspergillus cellular and chemical development while the Wet-mediated GRNs have been rewired during evolution. In summary, we have unveiled the evolutionary alterations of WetA-mediated GRNs that result in the changes in conidia development and metabolism in three Aspergillus species.

3-2 Introduction

Fungi are greatly important to humankind as pathogens, environmental recyclers, industrial producers, and agricultural aids. Filamentous fungi, particularly those in the species-rich class Eurotiomycetes (phylum Ascomycota), often reproduce asexually. Importantly, in some fungi, morphological development is coordinated with the production of secondary metabolites with toxic and antibiotic properties [1–3]. Asexual development (conidiation) in the fungal class Eurotiomycetes (phylum Ascomycota) results in the formation of mitotically derived conidiospores, or conidia. While all conidia represent non-motile asexual propagules, the morphology of the complex spore-producing structure conidiophore is distinct in various *Aspergillus* species [4]. As asexual sporulation is widespread among fungi, it represents a simple highly tractable system to understand how gene regulatory networks (GRNs) are re-wired to underlie the evolution of development and metabolic control in microbial eukaryotes.

Conidiation in *Aspergillus* begins with forming the specialized conidiogenous structure (conidiophore), and then the haploid conidia are formed by mitosis followed by repeated asymmetric division from the apex or side of the conidiophore. The conidia are isogenic to the haploid parent and serve in long-term viability and genome protection, which are capable of germinating and forming new colonies under appropriate conditions [5]. Conidiogenesis is a complex, precisely timed, and genetically programmed event involving specialized cellular differentiation, temporal and spatial regulation of gene expression, and cellular communications [4], which needs dedicate coordination of the gene regulatory networks (GRNs) to secure survival. The three distantly related species *Aspergillus nidulans, Aspergillus flavus*, and *Aspergillus fumigatus* whose genomes are more highly divergent than those of human-chicken-fish [6], form distinct conidiophores with varying sizes of conidia. The regulatory mechanisms of conidiation

have been extensively studied in *A. nidulans* [7–23]. The regulatory genes can be divided into central regulators, upstream activators, negative regulators, light-dependent regulators, and the *velvet* regulators [24,25]. The central genetic regulatory circuit BrIA \rightarrow AbaA \rightarrow WetA is present in most *Aspergillus* and *Penicillium*, governing conidiation-specific GRNs and a sequentially dependent pathway of conidiation (Fig 3-1A) [15,24,26]. BrIA (bristle A) is a C₂H₂-zinc-finger type transcription factor (TF), which recognizes and interacts with the BrIA Response Elements (BREs; 5'-(C/A)(G/A)AGGG(G/A)-3') (Fig 3-1B) [27,28]. The *brlA* gene is expressed in the early phase of conidiation and mediates vesicle formation and budding-like cell growth [19]. The *abaA* (abacus A) gene is activated by BrIA and regulates metulae and phialides formation. Similar to BrIA, AbaA is a TF, containing an ATTS/TEA DNA binding motif and a potential leucine zipper, that recognizes the AbaA Response Element (ARE: 5'-CATTCY-3') (Fig 3-1B) [29].

WetA (wet-white A) is highly and broadly conserved in *Ascomycetes* [8–16,18–21,23,26,30]. The *wetA* gene is activated by AbaA at the late phase of conidiation and is essential for maturation of conidia [31]. WetA functions in the synthesis of crucial conidial wall component and makes the conidia impermeable and mature [13,14,30]. The deletion (Δ) of *wetA* results in various defects of conidia, including the formation of colorless conidia that undergo autolysis in *A. nidulans* [13–15,18–21,26], *A. fumigatus* [8,23], *A. oryzae* [11], and *A. flavus* [30]. The metabolism and expression control of several conidial components, including β -glucan and trehalose, are perturbed leading to reduced stress tolerance and viability of conidia in *A. nidulans*, *A. flavus*, and *A. fumigatus* [8,30].

Fig 3-1 The central regulatory pathway is highly conserved in Aspergillus species

(A)

(A) The central regulators are highly conserved in *Aspergilli*. The phylogenetic tree was constructed based on NCBI taxonomy and visualized by iTOL [32]. Green, blue, and yellow circles represent that the species contains BrlA, AbaA, and WetA orthologs. The orthologs were identified by BlastP [33] using *A. nidulans* BrlA, AbaA, and WetA amino acid sequences as templates. (B) The predicted conserved central regulator protein architectures in *A. nidulans*, *A. fumigatus*, and *A. flavus*. The blue box and the brick hexagon represents C2H2 zinc finger domain and TEA/ATT domain in BrlA and AbaA, which were predicted in NCBI BlastP 2.6.0 [33]. The red circle and the red box represent the transcription activation domain (TAD) which was predicted by 9aaTAD using the "Less stringent Pattern" setting [34]. The blue diamond and the blue box represent the nuclear localization signal (NLS) predicted by NLStradamus using the 4 state HMM static model [35]. The orange rectangle and the orange box represent the ESC1/WetA-related domain (PTHR22934) predicted by the PANTHER classification system [36]. The consensus sequence and the consensus histogram are shown under the amino acid sequence multiple sequence alignment.

A. nidulans WetA is required for the activation of Class B genes, which are predicted to have sporespecific functions, and Class C and Class D genes, expected to have phialide-specific functions [13,15,37]. At least one Class B gene called wA, whose mRNA accumulates in phialide cells instead of in spores, is activated by WetA, indicating that WetA may regulate genes in these cells as well as in conidia [31]. Our recent A. flavus transcriptome analysis shows that WetA plays a broad regulatory role in conidia, and may serve as a key upstream regulator of multiple cellular and chemical developmental pathways [30]. Moreover, A. nidulans WetA, along with A. fumigatus WetA and A. flavus WetA, has a conserved ESC1/WetA-related domain (PTHR22934: SF29) with the putative DNA-binding ability originating near the C terminus (Fig 3-1B) [9,38], which also contains a predicted transcription activation domain (TAD) [34] and a nuclear localization signal (NLS) [35,39], suggesting that WetA is a potential TF (Fig 3-1B) [30]. Collectively, we propose that the evolutionarily conserved WetA plays a global regulatory role in bridging spore differentiation and survival in A. nidulans, A. fumigatus, and A. flavus [8,13–15,18–21,23,26,30]. Moreover, WetA functions differently in the early stage of conidiation and C2 layer condensation [8,30], suggesting that the WetA-mediated GRNs have been rewired during evolution.

In this report, we hypothesize that WetA is an evolutionarily conserved TF which directly binds to

conserved and distinct targets in *A. nidulans*, *A. fumigatus*, and *A. flavus*, and results in respective WetA-mediated GRNs that cause distinct effects in cellular and chemical development. To test this, we have identified the WetA Response Elements (WRE) and elucidate WetA-mediated GRNs by employing ChIP-seq and RNA-seq. Furthermore, we interpret how WetA-mediated GRNs have been rewired during the evolution by the comparative transcriptome analysis in *A. nidulans*, *A. fumigatus*, and *A. flavus*. Our results shed the lights on the global regulatory roles of WetA in Aspergilli and the rewired WetA-mediated GRNs, which help us to understand the evolution of asexual development and metabolism in fungi.

3-3 Materials and methods

3-3-1 Strains, media, and culture conditions

Aspergillus strains used in this study are listed in Table S3-1.The fungal strains were grown on minimal medium (MM) with appropriate supplements as described previously [40,41] and incubated at 37°C (*A. nidulans* and *A. fumigatus*) or 30°C (*A. flavus*). To determine the number of conidia, WT and mutant strains were point-inoculated and grown on solid MM at 37°C (*A. nidulans* and *A. fumigatus*) or 30°C (*A. flavus*) or 30°C (*A. nidulans* and *A. fumigatus*) or 30°C (*A. flavus*) for 2 days. The conidia were collected in ddH₂O from the entire colony and counted using a hemocytometer. For liquid submerged cultures, conidia of WT and mutant strains were inoculated in liquid MM and incubated at 37°C (*A. nidulans* and *A. fumigatus*) or 30°C (*A. flavus*), 220 rpm. Conidiation induction was performed as previously described [42]. *Escherichia coli* strains, DH5 α and BL21 (DE3), were grown in Luria-Bertani medium with ampicillin (50 mg/ml) for plasmid amplification.

In this study, we generated the deletion (Δ) and complement (C') strains of *AniwetA*. The oligonucleotides used in this study are listed in Table S3-1. Double-joint PCR was used to generate the deletion constructs of *AniwetA* [43]. Briefly, the deletion constructs containing *A. fumigatus pyrG* marker with 5' and 3' flanking regions of *AniwetA* were introduced into the recipient strains RJMP1.59 [44]. To generate complemented strains, a WT *AniwetA* gene region including its upstream 2 kb region was cloned to pHS13 [45], which contains $\frac{3}{4}$ *pyroA* [46], a 3xFLAG tag and the *trpC* terminator [47]. The resulting plasmid pMY1 was then introduced into the recipient Δ *AniwetA* strain TMY3, in which preferentially a single copy *AniwetA*⁺ gets inserted into the *pyroA* locus complementing the *pyroA4* allele, and gives rise to TMY4. Multiple *AniwetA* deletion mutants were generated, which all behaved the same in every assay testing. We also generated three independent complemented strains (*C'AniwetA*), and they all behaved identically to one another as well. The Δ *AfiwetA* (TSGw4), Δ *AflwetA* (TMY1), and *C'AflwetA* (TMY2) strains were generated in previous studies [8,30].

3-3-3 Nucleic acid manipulation

To isolate genomic DNA, about 10^6 conidia of relevant strains were inoculated in 2 ml liquid MM and stationary cultures at 37°C (*A. nidulans* and *A. fumigatus*) or 30°C (*A. flavus*) for 2 days. The mycelial mat was collected, squeeze-dried, and genomic DNA was isolated as described [43]. Total RNA isolation for Northern blot analyses was performed as described [42,43,48]. For RNA-seq and ChIP-seq, 2-day-old conidia of WT and $\Delta wetA$ strains were harvested from solid MM.

3-3-4 Anti-WetA polyclonal antibody synthesis

Multiple alignment-based phylogenetic analysis using Clustal W/X [49] revealed that AniWetA,

*Afu*WetA, and *Afl*WetA contains a 14-aa-length conserved region near the C terminus (Fig 3-4A and Fig 3-4B). The 13-aa-peptide RKAGGDVEALEAV was selected, synthesized, and used for immunization in the rabbit and generation of an affinity-purified polyclonal antibody (GenScript Corp., Piscataway, NJ). The rabbit anti-WetA polyclonal antibodies were lyophilized in phosphate-buffered saline (pH 7.4) with 0.02% sodium azide as a preservative. Lyophilized antibodies were reconstituted with MilliQ water and aliquots were stored at -80°C until use.

3-3-5 RNA sequencing

Total RNA was extracted and submitted to ProteinCT Biotechnologies (Madison, WI) and the University of Wisconsin Biotechnology Center (Madison, WI) for library preparation and sequencing. A strand-specific library was prepared from total RNA using the Illumina TruSeq Strand-specific RNA sample preparation system. Briefly, mRNA was extracted from total RNA using poly-A selection, followed by RNA fragmentation. The strand-specific library was constructed by first-strand cDNA synthesis using random primers, sample cleanup, and second-strand synthesis using DNA Polymerase I and RNase H. A single 'A' base was added to the cDNA fragments followed by ligation of the adapters. Final cDNA library was achieved by further purification and enrichment with PCR, then quality checked using a Bioanalyzer 2100. The library was sequenced (PE100bp for *A. nidulans* and SE100bp for *A. fumigatus* and *A. flavus*) using the Illumina HiSeq2500, and over 10 million (*A. nidulans*), 9.1 million, and 19 million (*A. flavus*) high-quality reads per sample were achieved.

The quality of the raw sequence reads was verified using version 0.11.5 of FastQC [50]. The genome and gene annotations were downloaded from AspGD and NCBI and used for mapping. Mapping of the raw sequence reads to the genome was carried out with version 2.1.1 of Tophat2 [51], and the default options were used except for the maximum intron length was set to 4,000

bases (--max-intron-length 4000). Most (77-93%) of the reads from each of the samples mapped to the genome. The alignment BAM files were compared against the gene annotation GFF file, and raw counts for the number of reads mapping to each gene were generated using version 0.6.1 of HTSeq-count [52]. Approximately 70-80% of mappable reads from each of the samples could be assigned to genes. Differential expression analysis of the raw counts was carried out using version 1.14.1 of DESeq2 [53]. Genes were considered differentially expressed between the WT and $\Delta wetA$ conidia if their adjusted p-value was less than 0.05 and their log₂ fold change was less than -1 or greater than 1.

3-3-6 Chromatin immunoprecipitation sequencing (ChIP-seq)

ChIP assays were performed using MAGnify ChIP assays (Invitrogen) according to the manufacturer's instructions. Briefly, 10⁹ conidia were cross-linked with 1% formaldehyde, lysed and broken as described [54]. Cell lysates were sonicated to shear DNA to the 300-500 bp and were immunoprecipitated with the rabbit anti-WetA polyclonal antibody. Ten-percent of the supernatants were kept as input (input represents PCR amplification of the total sample). ChIP DNA samples were sent for ChIP-Seq service (ProteinCT, Madison, WI). Libraries were prepared using TruSeq ChIP Library Preparation Kit (Illumina, San Diego, CA), and sequenced on HiSeq2500 with single reads of 50 bp, about 8-30 M reads per sample. The raw sequence reads were aligned to *A. nidulans* genome (FGSC A4) using bowtie2 [55,56]. The Homer [57] program was used to create normalized genome coverage files and make peak calls. For each ChIP pair, the ChIP sample is compared to Input samples. Peaks were considered enriched between the ChIP samples and Input samples if their adjusted p-value was less than 0.001 and their log₂ fold change was less than -1 or greater than 1. The peak corresponding DNA sequences were downloaded from AspGD for further analysis [58].

3-3-7 Motif discovery analyses

De novo motif finding program MEME-ChIP 4.11.3 [59] was used to predict WetA-binding motifs from the over-represented motifs in the 'peak sequences' with the settings: "meme-chip -oc . index-name meme-chip.html -time 300 -fdesc description -order -db 1 db/JASPAR/JASPAR CORE 2016 fungi.meme -meme-mod anr -meme-minw 4 -meme-maxw 50 -meme-nmotifs 10 -dreme-e 0.05 -centrimo-score 5.0 -centrimo-ethresh 10.0 sequences.fa". The sequences of the identified 'peaks' were uploaded into meme. Possible functions associated with identified motifs were analyzed using Tomtom motif comparison tool against the JASPAR CORE (2016) fungi database [60]. The WetA-enriched regions were predicted and annotated by searching predicted WetA-binding-motif in the three Aspergillus genomes for the closest downstream genes (up to 2 kb) using FIMO [61] and FungiDB analysis tool [62].

3-3-8 Functional Enrichment Analysis

GO annotations were downloaded from the AmiGO 2 website (version 2.4) on February 8, 2017 [63], and terms enriched in either the WetA-activated or -repressed gene lists were detected using version 3.0.3 of the BiNGO application [64] for Cytoscape (version 3.4.0) [65]. Version 1-26-17 of the Gene Ontology (go.obo) [66] was used to establish GO term relationships. GO terms were considered enriched if their p-value, following the Benjamini-Hochberg correction as implemented in BiNGO, was less than 0.05.

3-4 Results

3-4-1 WetA is a potential transcription factor

The *A. nidulans wetA* (*AniwetA*), *A. fumigatus wetA* (*AfiwetA*), and *A. flavus wetA* (*AflwetA*) ORFs comprise 1,668 bp, 1,701 bp, and 1,692 bp with no introns and are predicted to encode 555, 566, and 563 amino-acid (aa) long proteins, respectively. BlastP analysis reveals that *A. nidulans* WetA (*AniWetA*, XP_659541.1), *A. fumigatus* WetA (*AfuWetA*, XP_751508.1), and *A. flavus* WetA (*AftWetA*, XP_002383329.1) amino acid sequences share about 60% aa identity with each other [33]. *AftWetA* and is relatively more similar to *AfuWetA* compared to *AniWetA* (Wu 2017). *AniWetA*, *AfuWetA*, and *AftWetA* proteins have a conserved 51-aa-length ESC1/WetA-related domain (PTHR22934: SF29) with the putative DNA-binding ability originating near the C terminus (Fig 3-1B) [9,38]. This highly conserved domain is further predicted by 9aaTAD and NLStradamus [34,35] to contain a 9-aa-length transcription activation domain (TAD) and a 16-aa-length nuclear localization signal (NLS), suggesting that WetA is a potential TF (Fig 3-1B).

3-4-2 Conserved and diverged roles of WetA in Aspergilli

A. flavus genome-wide expression analysis in conidia shows that WetA plays multiple roles in governing cellular and chemical development in *A. flavus* [30]. The deletion of *wetA* causes similar phenotypes in Δ *AniwetA*, Δ *AfuwetA*, and Δ *AflwetA* mutants, such as reduced hyphal branching rate, reduced trehalose and β -glucan amount in conidia, conidia autolysis, reduced stress tolerance, disrupted conidial pigmentation, etc [8,30], which suggests that WetA is functionally conserved in many developmental regulations. However, considering the different conidial morphology of *A. nidulans*, *A. fumigatus*, and *A. flavus*, and the different phenotypes of the Δ *AniwetA*, Δ *AniwetA*,

and Δ *AniwetA* mutants (Table 3-1), we proposed that WetA acts differently in certain biological processes among the three *Aspergillus* species.

	A. nidulans	A. fumigatus	A. flavus
WT conidiophore head structure	Biseriate	Uniseriate	Can be either
[67]			uniseriate or
			biseriate
WT conidia size [68] (Wu 2017)	2.4 to 2.7 µm	1.3 to 1.8 µm	3.3 to 3.5µm
WT conidia color	Deep green	Grayish green	Yellowish green
$\Delta wetA$ conidial wall C2 layer	Thicker than WT	Thicker than WT	Thinner than WT
thickness [68] (Wu 2017)	conidia	conidia	conidia
ΔwetA conidiation timing [68]	Same with WT	Later than WT	Earlier than WT
(Wu 2017)			

Table 3-1 Different phenotypes in three Aspergillus species

To shed the light on the conserved and differential regulatory roles WetA appeared to play in the three *Aspergillus* species, we carried out genome-wide expression analyses in WT and mutant conidia using RNA-seq. The *A. flavus* RNA-seq data was generated in our previous study [30]. In short, Poly-A mRNA from four (*Ani*WT and Δ *AniwetA* strains) or three (*Afu*WT and Δ *AfuwetA* strains) technical replicates of 2-day-old conidia were purified and sequenced as described in the methods section.

Examination of global gene expression differences between the WT and mutant *wetA* indicate that WetA plays a broad regulatory role in conidia in all three *Aspergillus* species. Out of the 10,602 mapped *A. nidulans* genes, 5,706 (54% of the total) showed differential accumulation of mRNAs in the Δ *AniwetA* conidia in comparison to *Ani*WT conidia. Among 5,706 differentially expressed genes (DEGs), mRNA levels of 2,635 (25%) genes were lower (Down) in the Δ *AniwetA* conidia compared to *Ani*WT conidia, and those of 3,071 (29%) genes were higher (Up) in the Δ *AniwetA* conidia compared to *Ani*WT conidia (Fig 3-2). Out of the 9,908 mapped *A. fumigatus* genes, 5,730 (58% of the total) showed differential accumulation of mRNAs in the Δ *AfuwetA* conidia in comparison to *Afu*WT conidia. Among 5,730 differentially expressed genes (DEGs), mRNA levels of 2,734 (28%) genes were lower (Down) in the Δ *AfuwetA* conidia compared to *Afu*WT conidia, and those of 2,996 (30%) genes were higher (Up) in the Δ *AfuwetA* conidia compared to *Afu*WT conidia (Fig 3-2).

	A. nidulans	A. fumigatus	A. flavus
Unaffected genes	4,896 (46%)	4, 178 (42%)	7,730 (57%)
DEG	5,706 (54%)	5,730 (58%)	5,755 (43%)
Up-regulated in <i>∆wetA</i>	3,071 (29%)	2,996 (30%)	2,899 (21%)
Down-regulated in ∆wetA	2,635 (25%)	2,734 (28%)	2,856 (21%)
TOTAL	10,602	9,908	13,485

Fig 3-2 Summary of DEGs in the three Aspergillus ∆wetA conidia

The numbers of genes whose mRNA levels were similar (Unaffected, gray), or different between WT and $\Delta wetA$ conidia (DEG, green), with down (blue) and up (yellow) in the $\Delta wetA$ conidia compared to WT. A DEG is defined by having a > 2-fold change in mRNA levels between WT and $\Delta wetA$ conidia and an adjusted *p*-value of less than 0.05.

Functional category analysis was carried out by determining Gene Ontology (GO) terms that were enriched in DEGs. In *A. flavus*, the top enriched biological process GO categories are "singleorganism metabolic process", "oxidation-reduction process", "transmembrane transport", "carbohydrate metabolic process", "cell wall organization or biogenesis", "polysaccharide metabolic process", and "secondary metabolic process", which are also highly enriched in *A. nidulans* and *A. fumigatus* (Table S3-2). Moreover, over 70% of all genes in the cellular component GO category, "fungal-type cell wall", is also highly enriched in all three species. These top enriched GO categories are consistent with the phenotypes in $\Delta wetA$ mutants, suggested that WetA plays key roles in carbohydrate metabolism, secondary metabolism, and conidial wall integrity. Of note is that the difference of the top enriched GO categories between the three species may result from the different degree of completion of the genome annotation. The top 100 DEGs with decreased/increased mRNA accumulation levels in the Δ *AniwetA* and Δ *AfuwetA* conidia are listed in Table S3-3, Table S3-4, Table S3-5, and Table S3-6, respectively.

To explore the conserved and differential regulatory roles of WetA, we checked the mRNA expression profiles of orthologs in the three *Aspergillus* genomes. We identified the orthologs in the three tested genomes using OrthoMCL database with the settings: "30% identity, 70% coverage, and an inflation value of 4" [69]. Total 17,537 orthogroups were identified, whereas 6,466 orthogroups contains orthologs in all three species (All_orthogroups), 546 orthogroups contains orthologs in *A. nidulans* and *A. fumigatus* (NU_orthogroups), 895 orthologroups contains orthologs in *A. nidulans* and *A. flavus* (NL_orthogroups), and 724 orthogroups contains orthologs in *A. flavus* (UL_orthogroups).

Among all orthogroups, 9,876 orthogroups (56% orthogroups) showed differential expression levels in $\Delta wetA$ conidia, where 4,561 orthogroups (46%) are species-specific. Total 5,315 All_orthogroups (82% of All_orthogroups), 436 NU_orthogroups (80% of NU_orthogroups), 724 NL_orthogroups (81% NL_orthogroups), and 583 UL_orthogroups (81% of UL_orthogroups) contain at least one ortholog differentially expressed in $\Delta wetA$ conidia (Table 3-2 and Table 3-3).

	Expression	Orthogroups	Expression	Orthogroups	Total
	pattern	number	pattern	number	Total
NUL	$\downarrow \downarrow \downarrow$	343	$\uparrow\uparrow\uparrow$	419	762
NU↔L	$\downarrow \downarrow \uparrow$	19	$\uparrow\uparrow\downarrow$	51	70
NL↔U	$\downarrow\uparrow\downarrow$	36	$\uparrow\downarrow\uparrow$	56	92
N↔UL	$\downarrow \uparrow \uparrow$	50	$\uparrow\downarrow\downarrow$	42	92
N↔U	$\downarrow \uparrow -$	148	$\uparrow \downarrow -$	129	277
N↔L	$\downarrow - \uparrow$	53	$\uparrow - \! \downarrow$	50	103
U⇔L	$-\downarrow\uparrow$	62	$-\!\uparrow\downarrow$	61	123
NU	$\downarrow \downarrow -$	297	$\uparrow \uparrow -$	265	562
NL	$\downarrow - \downarrow$	160	$\uparrow - \uparrow$	133	293
UL	$-\downarrow\downarrow$	175	$-\uparrow\uparrow$	179	353
Ν	\downarrow — —	513	\uparrow	292	805
U	$-\!\downarrow-$	517	$-\uparrow-$	458	975
L	\downarrow	177	\uparrow	168	345
Mixed					462
TOTAL					5,315

Table 3-2 Conserved and differential WetA-regulated All orthogroups

Note: Expression pattern: The mRNA expression levels in Δ *AniwetA*, Δ *AfuwetA*, and Δ *AflwetA* conidia. \uparrow : upregulated in Δ *wetA* conidia; \downarrow : downregulated in Δ *wetA* conidia; -: not regulated in Δ *wetA* conidia. *NUL*: all up-/down-regulated in Δ *wetA* conidia; *NU* \leftrightarrow *L*: up-/down-regulated in Δ *AniwetA* and Δ *AfuwetA* conidia, and down-/up-regulated in Δ *AflwetA* conidia; *NL* \leftrightarrow *U*: up-/down-regulated in Δ *AniwetA* and Δ *AflwetA* conidia, and down-/up-regulated in Δ *AfuwetA* conidia; *UL* \leftrightarrow *N*: up-/down-regulated in Δ *AflwetA* and Δ *AflwetA* conidia, and down-/up-regulated in Δ *AfuwetA* conidia; *NU*: all up-/down-regulated in Δ *AflwetA* conidia, but not regulated in Δ *AflwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia, but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia, but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia, but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia, but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* conidia; *U*: only regulated in Δ *AfiwetA* conidia; *U*: only regulated in Δ *AfiwetA* conidia; *U*: only regulated in Δ *AfiwetA* conidia; *L*: only regulated in Δ *AfiwetA* conidia. *Mixed*: WetA showed mixed regulatory effects on orthologs in Δ *wetA* conidia.

NU_orthogroups		NL_orthogroups		UL_orthogroups	
NU		NL		UL	
expression	Orthogroups #	expression	Orthogroups #	expression	Orthogroups #
pattern		pattern		pattern	
$\downarrow -$	45	$\downarrow -$	97	$\downarrow -$	85
$\uparrow-$	55	$\uparrow-$	142	$\uparrow-$	91
$-\downarrow$	68	$-\downarrow$	85	$-\downarrow$	57
$-\uparrow$	63	$-\uparrow$	67	$-\uparrow$	62
$\downarrow \downarrow$	60	$\downarrow\downarrow$	67	$\downarrow\downarrow$	75
$\downarrow \uparrow$	26	$\downarrow \uparrow$	38	$\downarrow \uparrow$	35
$\uparrow\downarrow$	26	$\uparrow\downarrow$	60	$\uparrow\downarrow$	41
↑ ↑	66	$\uparrow \uparrow$	88	$\uparrow \uparrow$	82
Mixed	27	Mixed	80	Mixed	55
TOTAL	436	TOTAL	724	TOTAL	583

Table 3-3 Conserved and differential WetA-regulated N:NOrthogroups

Among all All_orthogroups, 762 All_orthogroups (12% of All_orthogroups) are consistently up-/down-regulated in Δ *wetA* conidia (Table 3-2). The top enriched GO categories of these conserved WetA-regulated-All_orthogroups include "response to stimulus", "response to stress", "carbohydrate metabolic process", "sporulation", "filamentous growth", "cell wall organization or biogenesis", "pigment metabolic process", "negative regulation of sporulation", "glucan biosynthetic process", "trehalose metabolic process", and "cell wall chitin metabolic process", "cell tip growth" (Table S3-7). The functional analysis result shows that WetA is functionally conserved in stress response, pigmentation, cell wall organization, and cellular development, which is consistent with the observed phenotypes. However, 5,315 WetA-regulated-All_orthogroups (84% of All_orthogroups) were differentially regulated in different species, implies that WetA functionally diverges in the three species (Table 3-2). Among the three species, WetA shows more conserved regulatory effects on *A. flavus* orthologs and more diverted regulatory effects on A. fumigatus orthologs in All_orthogroups (Table 3-2).

Total 466 All orthogroups (9% of All orthogroups) contain more than one ortholog in single species (All orthogroup_{N:N:N}). WetA plays mixed regulatory roles in almost all All orthogroup_{N:N:N}, that is, some of the orthologs in the same All orthogroup_{N:N:N} were upregulated and some were downregulated in the same species. There were 127 All orthogroup_{N:N:N} (27% of All orthogroup_{N:N:N}) shows consistent regulatory effects in single species (i.e. all orthologs in single species are all up-/down-regulated in $\Delta wetA$ conidia) (Table S3-8). Total 27 All orthogroup_{N:N:N} (6% of All orthogroup_{N:N:N}) were all up-/down-regulated in all three species, including genes encode trehalose synthases (tpsC and tpsD), α -amylase (amvA and amyB), septation-required ser/thr protein kinase (*sepH*), and cell wall lysozyme (*gh25*). The other 100 All orthogroup_{N:N:N} shows differential regulatory patterns in the three species, including genes encoding putative transcription factors, putative major facilitator superfamily (MFS) transporters, kinases, GTPase, and carbohydrate metabolism-related proteins. Taken together, total 46% orthogroups were regulated by WetA in conidia, however, only 4% orthogroups were consistently all up-/down-regulated in all three species, which suggests that most of the WetAmediated regulation has been genetically rewired during the revolution.

We further identified the species-specifically regulated All_orthogroups (genes show different WetA-regulated effect with the other two species) and performed function analysis against these genes (Table S3-9). Our results show that the WetA-mediated GRNs are rewired in the mitotic cell cycle, response to stimulus, DNA/RNA/protein metabolic process, nitrogen compound metabolic process, organic acid metabolic process, cytoskeleton organization, cell communication, aromatic compound metabolic process, regulation of signaling, cell communication, and another primary metabolic process.

Next, we checked the WetA-regulated NU_orthogroups, NL_orthogroups, and UL_orthogroups ($_{N:N}$ Orthogroups) (Table 3-3). Total 21~29% of the WetA-mediated regulation of $_{N:N}$ Orthogroups were consistently up-/down-regulated by WetA in both species. Functional analysis shows that the WetA-mediated GRNs has been rewired in the biological processes of the cell cycle, primary metabolism, secondary metabolism, transcription, and transmembrane transport (Table S3-10).

We further examined the DEGs in each species which has no orthologs in any other two species (N-/U-/L-specific DEGs). Functional analysis shows that N-specific DEGs are involved in "carbohydrate metabolic process", "cell wall organization", "response to stress", "sporulation resulting in formation of a cellular spore", "regulation of protein ubiquitination", "response to drug", "nucleotide-sugar transport", "nucleotide transmembrane transport", "protein sumoylation", and "cellular calcium ion homeostasis"; U-specific DEGs are involved in "secondary metabolic process", "alkaloid metabolic process", "ergot alkaloid metabolic process", "terpenoid indole alkaloid metabolic process", "alkaloid biosynthetic process", "epoxide metabolic process", "fumagillin metabolic process", "obsolete electron transport", "glycosaminoglycan metabolic process", "peptidoglycan metabolic process", and "transmembrane transport".

Taken together, WetA exerts broad regulatory effects in conidia by controlling about half the *Aspergillus* transcriptomes. Although 56% orthogroups in the three *Aspergillus* species were regulated in $\Delta wetA$ conidia, most of their mRNA expression levels are differentially regulated in each species, suggesting that the WetA-mediated GRNs has been rewired during the revolution in *Aspergilli*.

3-4-3 Rewired WetA-mediated GRNs of asexual development, signal transduction, and conidial integrity in *Aspergilli*

To explore the conserved and differential molecular roles of WetA in conidiation in the three species, we checked mRNA levels of the interested genes related to asexual development (Fig 3-3 and Table S3-11).

Fig 3-3 WetA-mediated regulation of asexual development in the three Aspergillus species

A Schematic diagram of the WetA-mediated regulatory model of asexual development. In this model, those genes with increased, decreased, and unaffected mRNA levels in the $\Delta wetA$ conidia are labeled with red (WetA-inhibited), blue (WetA-activated), and grey (not affected by WetA) circles and the WetA-regulatory effects in $\Delta AniwetA$, $\Delta AfuwetA$, and $\Delta AflwetA$ conidia are listed under the gene name from left to right, respectively.

In short, WetA negatively feedback regulates asexual develop by repressing its upstream regulator *brlA* in *Aspergillus* conidia. To achieve the conserved repression of *brlA* mRNA accumulation, WetA shows species-specific regulatory effects on *brlA* upstream regulatory networks. Take the *velvet* protein family (*veA*, *velB*, *velC*, and *vosA*) for example, although *vosA* mRNA levels were consistently decreased in the three $\Delta wetA$ conidia, the WetA effects on *veA*, *velB*, and *velC* are different in each species. Similarly, the light-dependent regulators were differentially regulated by WetA. The blue-light-dependent regulators, *lreA*, and *lreB* were unaffected in $\Delta AflwetA$ conidia but repressed in in $\Delta AniwetA$ and $\Delta AflwetA$ conidia. Put together, the WetA-mediated feedback repression of asexual development is functionally conserved but its GRNs are rewired during evolution.

Our previous study shows that *Afl*WetA is involved in G-protein regulatory pathways. Here we examined whether WetA-mediated regulation of G-protein regulatory pathways is conserved in the other two *Aspergillus* species. The result shows that the mRNA levels of three G-protein receptors, *gprC*, *gprF*, *gprG*, and *nopA*, and the downstream regulators, *flbA* and *pkaA*, were consistently differentially regulated in $\Delta wetA$ conidia (down-, down-, up-, down-, up-, and down-regulated, respectively), while other members in the G-protein regulatory pathways were either not affected by WetA or showed species-specific regulatory patherns in $\Delta wetA$ conidia (Table 3-5). Since WetA plays a role in G-protein regulatory pathways, we proposed that WetA is involved in other signal transduction pathways as well. We examined the mRNA levels of kinases in $\Delta wetA$ conidia. The result shows that WetA differentially regulates about 100 kinase-encoded genes in $\Delta wetA$ conidia (Table S3-12). Most of the WetA-regulated kinase-encoded genes have one ortholog in each species and only 31 only exist in one species. Although WetA-mediated regulation targeted

in a conserved group of kinase-encoded genes, but only 21 of them were consistently up- or downregulated in all $\Delta AniwetA$, $\Delta AfuwetA$, and $\Delta AflwetA$ conidia.

Our previous study reports that the *Afl*WetA is involved in the regulation of TFs [30]. The comparative RNA-seq results show that about 150 putative TF-encoded genes in each species were differentially regulated in $\Delta wetA$ conidia (Table S3-13). There are 249 WetA-regulated TF-encoded genes have one ortholog in each species, and 41 are species-specific. Among the 153 conserved WetA-regulated putative TF-encoded genes, only 32 were consistently up- or down-regulated in all $\Delta AniwetA$, $\Delta AfuwetA$, and $\Delta AflwetA$ conidia.

Since our functional analysis data shows that WetA is involved in secondary metabolism in all three species, we checked the mRNA levels of the backbone genes in the secondary metabolite gene clusters (SMGs) in each species. The SMG backbone gene list was identified by Inglis *et al.* and our previous study [30,70]. Total 70, 37, and 74 SMG clusters were completely/partially showed altered mRNA expression levels in Δ *AniwetA*, Δ *AfuwetA*, and Δ *AflwetA*, respectively (Table 3-4). One of the SMG backbone gene *wA* is conserved in *Aspergilli* and encodes the conidial pigment. The previous study shows that *wA* is activated by WetA [13], which is consistent with the colorless conidia phenotype of the Δ *wetA* mutants. Although the *wA* mRNA level was decreased in Δ *AniwetA* and Δ *AflwetA* as expected, we found *wA* mRNA level was increased in Δ *AfuwetA*, suggesting that the conidial pigmentation regulatory pathway is more complex in *A. fumigatus*.

GENE ID	A. nidu	ılans	A. fumig	gauts	A. flavı	ıs
		Log ₂		Log ₂ Fold		Log ₂ Fold
		Fold		Change		Change
		Change				
fadA/gpaA	AN0651	-	Afu1g13140	3.82	AFLA_018340	-
flbA	AN5893	4.08	Afu2g11180	2.7	AFLA_134030	1.71
ganA	AN3090	-1.72	Afu3g12400	2.88	AFLA_079780	1.20
<i>gprA</i>	AN2520	-	Afu3g14330	1.58	AFLA_060740	2.03
<i>gprB</i>	AN7743	-3.67	Afu5g07880	-1.24	AFLA_061620	-
<i>gprC</i>	AN3765	1.85	Afu7g04800	4.4	AFLA_074150	2.04
gprD	AN3387	-1.72	Afu2g12640	4.12	AFLA_135680	-
<i>gprE</i>	AN9199	3.01	NA	NA	NA	NA
<i>gprF</i>	AN12206	-3.59	Afu5g04100	-2.79	AFLA_006880	-2.68
<i>gprG</i>	AN10166	2.71	Afu1g11900	3.86	AFLA_067770	3.09
gprH	AN8262	-	Afu5g04135	2.07	AFLA_006920	-3.09
gprK	AN7795	4.29	Afu4g01350	1.67	AFLA_009790	-1.41
<i>gprM</i>	AN6680	2.01	Afu7g05300	2.04	AFLA_075000	-
<i>gprO</i>	AN4932	-	Afu3g10570	1.32	AFLA_032130	-
gpr R	NA	NA	NA	NA	AFLA_023070	-2.93
<i>gprS</i>	NA	NA	NA	NA	AFLA_006320	1.16
nopA	AN3361	-1.16	Afu7g01430	-3.51	AFLA_117970	-3.04
pdeA	AN0829	1.29	Afu1g14890	-	AFLA_084770	-1.39
pkaA	AN6305	-2.35	Afu2g12200	-3.46	AFLA_135040	-2.63
pkaB	AN4717	-	Afu5g08570	-1.16	AFLA_091910	-2.09

Table 3-5 G-protein pathway related DEGs in $\Delta wetA$ conidia in three Aspergillus species

Note: "NA": not exist in the genome. "-": not differential expressed in $\Delta wetA$ conidia

	A. nidulans	A. fumigatus	A. flavus	
Total cluster number	70	37	74	
Regulated cluster number	64 (91%)	35 (95%)	68 (92%)	
100% regulated cluster number	5 (7%)	8 (22%)	8 (11%)	
	3 (4%)	5 (14%)	1 (1%)	
Cluster w/ all	Terriquinone cluster	Conidial pigment cluster	Cluster 71	
genes	Emericellamide cluster	Fumigaclavine cluster		
upregulated in	sidC cluste	Fumipyrrole cluster		
DwetA conidia		Fumiquinazoline cluster		
		Pseurotin cluster		
Cluster w/ all	0 (0%)	2 (5%)	2 (3%)	
downregulated in		Cluster 30*	Cluster 23*	
DwetA conidia		Cluster 36*	Cluster 52*	

Table 3-4 WetA-mediated SMG regulation

Finally, we checked the expression levels of genes involved in conidia content and conidial wall integrity. All the DEGs associated with trehalose biosynthesis were downregulated in Δ *wetA* conidia in all three species, while *treA*, which is involved in trehalose degradation, was upregulated in Δ *AniwetA* and Δ *AflwetA* conidia but downregulated in Δ *AfuwetA* (Table S3-14). Loss of *wetA* resulted in increased mRNA levels of almost all DEGs involved in the biosynthesis of chitin and β -(1,3)-glucan, but had a mixed regulatory effect on the DEGs involved in the degradation process and the metabolic processes of α -(1,3)-glucan (Table S3-15, Table S3-16, and Table S3-17). Of note, all DEGs involved in the biosynthesis of melanin or hydrophobin DEGs were upregulated in Δ *AfuwetA* conidia (Table S3-18 and Table S3-19), which is not consistent with the phenotypes we observed.

In sum, WetA is a critical regulator of various signaling, developmental, and metabolic pathways in conidia. Even the WetA-mediated regulation results in similar phenotypes, the underneath GRNs has been rerouted in *Aspergilli*.

3-4-4 Identification of WetA response elements (WREs)

To understand the WetA regulatory mechanism in conidia, we carried out ChIP using customized Anti-WetA polyclonal antibody which specifically against the conserved 14-aa-length region (RKAGGDVEALEAVL) at the C' terminus of *Ani*WetA (Fig 3-4A and Fig 3-4B). ChIP-seq was performed to identify the *Ani*WetA response elements in conidia as described in methods. Total 2,210 peaks from three ChIP-seq replicates were reported with False Discovery Rate (FDR) less than 0.001 and the Fold Change (FC, sample tag counts divided by input tag counts) more than 2. The WetA-binding motif was predicted by MEME-ChIP [59]. The motif CCGCAWRCGGM was identified as the top candidate and exists in *AniwetA* upstream 2kb region (Fig 3-4C).

The potential *Ani*WetA binding regions were predicted by searching the predicted motif in the upstream 2kb regions of ORFs in *A. nidulans* genome using the FIMO [61] and annotated by FungiDB [62]. Total 2,437 genes were predicted to contain the WetA-binding motif within their upstream 2 kb regions. Function analysis of these potential *Ani*WetA targeted genes shows that the GO categories including "carbohydrate metabolic process", "transport", "DNA-mediated regulation of transcription", "chromatin modification", "cell cycle", "cell wall organization", "response to stress", "regulation of secondary metabolite biosynthesis", "conidium formation", and "pigment biosynthesis" (Table S3-20), which matches the observed phenotypes and transcriptome analysis results in Δ *AniwetA* conidia.

Fig 3-4 Identification of WetA binding motif

(A) The diagram of the recognized region of the customized anti-WetA polyclonal antibody. The anti-WetA recognized region overlaps with partial highly conserved Esc1/WetA-related domain near the WetA C' terminus. (B) Western blot analysis of the crude proteins extracted from *AniWT*, Δ *AniwetA*, and C'*AniwetA* conidia using anti-WetA and anti-FLAG polyclonal antibodies. Only the C'*AniwetA* expresses WetA::3xFLAG and can be recognized by both anti-WetA and anti-FLAG antibodies. The result showed that the customized anti-WetA polyclonal antibody can specifically recognize conidial *Ani*WetA. (C) The predicted WetA response element (WRE).

To investigate the expression profile of *Ani*WetA target genes in conidia, data from the previous transcriptomic analysis was utilized. Total 1,331 *Ani*WetA-targeted genes were differentially regulated (Fig 3-5). The *Ani*WetA-targeted DEGs includes 3 G-protein-pathway associated genes, 17 conidial integrated associated genes, 21 putative kinase-encoded genes, 31 putative transcription factor encoded genes, 5 SMG backbone genes, and 17 asexual development associated genes (Table 3-5).

AniWetA, AfuWetA, and AflWetA show high similarity in their protein sequence and have conserved functions in conidia. We proposed that AfuWetA and AflWetA may recognize similar DNA binding motif with AniWetA. To test our hypothesis, we search the AniWetA binding motif in the A. fumigatus and A. flavus. Total 2,147 and 2,826 AfuWetA and AflWetA targeted genes were identified, and 1,238 (58% of AfuWetA targeted genes, 22% of DEGs in Δ AfuwetA conidia) and 1,244 (44% of AfuWetA targeted genes, 22% of DEGs in Δ AfuwetA conidia) of them were differentially regulated in Δ AfuwetA and Δ AflwetA conidia, respectively.

Fig 3-5 Summary of DEG, WRE, and DEG with WRE in Aspergillus ∆wetA conidia

The number and percentage of genes were differentially regulated in $\Delta wetA$ conidia (DEG), with down (blue), contains predicted WRE in the upstream 2kb regions (WRE), and DEG with WREs. The percentage is shown in black: the percentage of the total genome; The percentage is shown in red: the percentage of all DEGs. The percentage is shown in blue: the percentage of total genes with WRE.

G-protein	aprC nonA flbA						
pathway	ερις, πορΑ, μυΑ						
Conidial	bglA, bglK, btgA, btgC, chsA, dewA, eglC, exgD, hpdA, orlA, treA, AN0031,						
integrity	AN0499, AN1069, AN1837, AN5021, AN7869						
Kinase	<i>aromA</i> , <i>atg1</i> , <i>clgA</i> , <i>ffkA</i> , <i>gin4</i> , <i>mst1</i> , <i>nimO</i> , <i>nimX</i> , <i>pho80</i> , <i>psk1</i> , <i>rio2</i> , <i>sD</i> , <i>sudD</i> , <i>tear</i> , <i>tinC</i> , AN0156, AN10551, AN1854, AN8886, AN9022, AN9500						
TF	<i>creA, fhpA, flbC, napA, qutA, vosA, wetA,</i> AN0094, AN0388, AN0585, AN0817, AN0902, AN10491, AN10550, AN10600, AN10809, AN1500, AN2615, AN3391, AN3502, AN3769, AN4001, AN4133, AN4324, AN6790, AN7919, AN8111, AN8164, AN8355, AN8645, AN8949						
SMG backbones	apdA, micA, nisA, AN0016, AN9129						
Asexual	velB, mns1B, odeA, atg1, wetA, vosA, flbC, msd2, orlA, gprC, flbA, cnaB, chsA,						
development	dewA, esdC, AN7683, AN4745						

Table 3-5 WetA targeted DEGs in *AAniwetA* conidia

Although about 50% of the DEGs which are associated with 5,619 orthogroups contain WetAbinding motif in their upstream 2 kb regions in Δ *AniwetA*, Δ *AfiwetA*, and Δ *AflwetA* conidia, only 18 genes which contain WRE in the upstream 2kb regions were differentially regulated in all three species, including *vosA*, *wetA*, *flbC*, AN8121, AN11058, AN10265, AN9038, AN3706, AN5935, AN1528, AN1524, AN0315, AN5715, AN8763, AN8927, AN6048, AN3752, and AN2982 orthogroups (Table 3-6).

	Expression	Orthogroups	Expression	Orthogroups	Total
	pattern	number	pattern	number	Total
NUL	$\downarrow \downarrow \downarrow$	13	$\uparrow\uparrow\uparrow$	5	18
NU↔L	$\downarrow \downarrow \uparrow$	1	$\uparrow\uparrow\downarrow$	1	2
NL↔U	$\downarrow\uparrow\downarrow$	4	$\uparrow\downarrow\uparrow$	0	4
N↔UL	$\downarrow \uparrow \uparrow$	0	$\uparrow\downarrow\downarrow$	0	0
N↔U	\downarrow $\uparrow-$	5	$\uparrow \downarrow -$	2	7
N↔L	$\downarrow - \uparrow$	1	$\uparrow - \! \downarrow$	0	1
U⇔L	$-\downarrow\uparrow$	1	$-\uparrow\downarrow$	1	2
NU	$\downarrow \downarrow -$	3	$\uparrow \uparrow -$	2	5
NL	$\downarrow -\downarrow$	4	$\uparrow - \uparrow$	0	4
UL	$-\downarrow\downarrow$	5	$-\uparrow\uparrow$	0	5
Ν	\downarrow	8	\uparrow	7	15
U	$-\!\!\downarrow -$	10	$-\uparrow-$	5	15
L	\downarrow	5	\uparrow	3	8
Mixed					3,033
TOTAL					3,119

Table 3-6 Conserved and differential WetA-directly-regulated All orthogroups

Note: Expression pattern: The mRNA expression levels in Δ *AniwetA*, Δ *AfuwetA*, and Δ *AflwetA* conidia. \uparrow : upregulated in Δ *wetA* conidia; \downarrow : downregulated in Δ *wetA* conidia; -: not regulated in Δ *wetA* conidia. *NUL*: all up-/down-regulated in Δ *wetA* conidia; *NU* \leftrightarrow *L*: up-/down-regulated in Δ *AniwetA* and Δ *AfuwetA* conidia, and down-/up-regulated in Δ *AflwetA* conidia; *NL* \leftrightarrow *U*: up-/down-regulated in Δ *AniwetA* and Δ *AflwetA* conidia, and down-/up-regulated in Δ *AfuwetA* conidia; *NL* \leftrightarrow *U*: up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia, and down-/up-regulated in Δ *AfuwetA* conidia; *UL* \leftrightarrow *N*: up-/down-regulated in Δ *AflwetA* and Δ *AflwetA* conidia; *NU*: all up-/down-regulated in Δ *AflwetA* conidia, but not regulated in Δ *AflwetA* conidia; *NL*: all up-/down-regulated in Δ *AflwetA* and Δ *AflwetA* conidia, but not regulated in Δ *AflwetA* conidia; *NL*: all up-/down-regulated in Δ *AflwetA* and Δ *AflwetA* conidia, but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AflwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AflwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* and Δ *AflwetA* conidia; but not regulated in Δ *AfuwetA* conidia; *NL*: all up-/down-regulated in Δ *AfuwetA* conidia; *U*: only regulated in Δ *AfiwetA* conidia; *L*: only regulated in Δ *AfiwetA* conidia; *U*: only regulated in Δ *AfiwetA* conidia; *L*: only regulated in Δ *AfiwetA* conidia. *Mixed*: WetA showed mixed regulatory effects on orthologs in Δ *wetA* conidia.

Finally, we checked the expression levels of N-/U-/L-specific WetA targeted genes in $\Delta wetA$

conidia. Total 503, 327, 852 WetA targeted genes were differential regulated in ΔAniwetA (9% of

AniDEGs), Δ AfuwetA (6% of AfuDEGs), and Δ AflwetA (15% of AfuDEGs) conidia, respectively.

Taken together, WetA regulates the Aspergillus conidial transcriptomes by both direct and indirect

ways and controls species-specific GRNs to achieve conserved and diverged functions.

3-5 Discussion

While WetA is well known as the key regulator of many cellular and chemical development processes, including spore viability, wall integrity, and stress tolerance in Ascomycetes [7–23,30], the behind regulatory mechanism is still vague. In this study, we investigated the roles of the WetA-mediated GRNs in the model organism *A. nidulans*, the human pathogen *A. fumigatus*, and the aflatoxin producer *A. flavus*, and further identified the putative WetA binding motif in *A. nidulans*.

Previous studies suggest that the AniWetA is required for activating a set of genes (Class B, Class C, and some Class D genes) whose products comprise or direct the assembly of the conidial wall layers and ensure proper cytoplasmic status [13,15,37]. We also reported that AflWetA is involved in the regulation of the metabolic pathways of conidial contents and secondary metabolism which is possibly through controlling a group of transcription factors and signaling pathways [30]. Our RNA-seq results show that 54%, 58%, and 43% of A. nidulans, A. fumigatus, and A. flavus transcriptomes were differentially regulated in $\Delta wetA$ conidia respectively, suggest that the broad regulatory effect of WetA in Aspergilli conidia (Fig 3-2). Although the percentage of the AflWetAregulated genes of whole A. flavus genome is about 10~15% lower than the other two species, the total number of AflWetA-regulated genes is almost the same with other two species (Fig 3-2). The A. flavus genome size (36.8 Mb) is significantly larger than the A. nidulans (30.1 Mb) and A. fumigatus (29.4 Mb) genomes and is highly similar to A. oryzae genome regarding both the genome size and the sequence similarity [71]. The previous comparative genomic study proposed that the smaller genome size of A. nidulans and A. fumigatus relative to A. oryzae is more likely due to the independent gene loss during evolution [72]. This hypothesis explains our findings here.

The WetA-mediated regulation is crucial for survival and therefore is conserved during evolution while about 3,000 genes were lost during evolution. Our orthologroup analysis shows that about among 9,876 WetA-regulated orthogroups, there are 5,315 WetA-regulated orthogroups (54%) exist in more than one *Aspergillus* species. Moreover, function analysis shows that WetA-regulated orthogroups shared in all three species are involved in stress response, sporulation, cell wall integrity, and carbohydrate metabolic process (Table S3-7), which match to the observed phenotypes in the three species. Taken together, our data support that the WetA-mediated regulation is functionally conserved in *Aspergilli*.

While *Ani*WetA, *Afu*WetA, and *Afu*WetA are functionally conserved in many aspects of development processes in conidia, the WetA regulatory roles are divergent in each species. Even WetA regulates a large number of common orthogroups in *Aspergilli*, only 8% WetA-regulated orthogroups were consistently all up-/ down-regulated in $\Delta wetA$ conidia in the three species (Table 3-2 and Table 3-3), suggests that even the WetA-mediated regulation is functionally conserved, the WetA-mediated GRNs are highly rewired. The *Aspergillus* asexual development serves as a good example to illustrate the divergent WetA-mediated GRNs of functionally conserved negative feedback regulation (Fig 3-3 and Table S3-11). Loss of *wetA* leads to increased level of the central regulator *brlA* in conidia and shutdown the asexual development. WetA-mediated repression of *brlA* is likely through controlling a wide spectrum of upstream regulators of *brlA* (Fig 3-3 and Table S3-11).

Although WetA shows broad regulatory effects in *Aspergillus* species, however, only several genes with WRE in their upstream regions were consistently down-/ up-regulated in $\Delta wetA$ conidia including *vosA* and *flbC* (Table 3-5), which suggests that these genes may play a crucial roles in

survival and thus be conserved during the revolution. Both VosA and FlbC were reported as TFs in A. nidulans [73,74]. Loss of vosA causes some phenotypes like reduced trehalose amount common with loss of *wetA* [40], which suggests that the part of the WetA-mediated regulation may be conducted by regulating VosA. Previous studies show that AniWetA contains AniVosA binding motif in its upstream 2kb region [74] and was down-regulated in Δ *AnivosA* conidia (unpublished data), which indicates the cross feedback regulation of VosA and WetA. Moreover, when comparing VosA and WetA co-regulated genes in Δ AniwetA and Δ AnivosA conidia, about 95% WetA/VosA co-regulated genes were consistently up-/down-regulated (unpublished data). Taken together, it is possible that WetA/VosA mediated coregulation is through forming a complex to directly bind to downstream genes. AniFlbC exists in the nuclei of hyphae and in developmental cells except conidia and serves a C₂H₂ TF regulating development in A. nidulans [73]. Overexpression of AniflbC leads to inhibition of hyphal growth, reduced conidiation, and activation of AnibrlA, AniabaA, and AnivosA [73], which is the same with the phenotypes of AniwetA mutant. Although AniFlbC is a TF and binds to AnibrlA, AniabaA, and AnivosA upstream regions, however, theres no AniFlbC predicted binding site in the AniwetA upstream region [73]. Moreover, overexpression of *AniflbC* does not induce *AniwetA* mRNA expression [73]. When comparing the *AniflbC* and *AniwetA* expression patterns during development in WT, we can found that *AniflbC* decreases when *AniwetA* starts to express [73]. In sum, we propose that part of the WetA-mediated regulation is through directly binds to *flbC* upstream region and represses the *flbC* expression. Interestingly, VosA may also play a role in the WetA-mediated regulation of *flbC*, since *flbC* contains predicted *vosA* binding motif and is also upregulated in $\Delta vosA$ mutant (data not shown).

Our data shows that AflWetA is more specified in the light-dependent regulation of asexual

development. Both AniWetA and AfuWetA downregulates the blue light sensing regulators, *lreA*, and *lreB*, in Δ *AniwetA* and Δ *Afu*WetA conidia, but *Afl*WetA shows no effect on the blue light sensing regulators, *AflreA* and *AflreB*, mRNA levels (Fig 3-3 and Table S3-11). Instead, *Afl*WetA downregulates the red light sensing regulator *AflfphA* in Δ *AflwetA* conidia, while the expression mRNA levels of *AnifphA* is not affected and *AfufphA* ortholog is increased in Δ *AniwetA* and Δ *Afu*WetA conidia, respectively (Fig 3-3 and Table S3-11).

We further examine the WetA-mediated GRNs in other aspects based on the conserved functions characterized in previous studies. First, we checked the genes involved in conidial integrity. As we reported before, *Afl*WetA is involved in the regulation of metabolic processes of trehalose, chitin, β -(1,3)-glucan, α -(1,3)-glucan, melanin, and hydrophobin [30]. The mRNA levels of the genes associated with trehalose biosynthesis are all reduced in $\Delta AniwetA$, $\Delta AfuWetA$, and $\Delta AflWetA$ conidia (Table S3-14). Similarly, the mRNA levels of almost all the genes associated with β -(1,3)glucan biosynthesis increased in $\Delta AniwetA$, $\Delta A fu$ WetA, and $\Delta A fl$ WetA conidia (Table S3-16). These results explain the dramatically reduced amount of trehalose and increased amount of β-(1,3)-glucan in $\Delta wetA$ conidia [8,30] and suggest the conserved WetA-mediated GRNs in trehalose and β -(1,3)-glucan biosynthesis. WetA's function is likely diverged in α -(1,3)-glucan metabolism. AniWetA downregulates the α -(1,3)-glucan synthase Aniags2 but upregulates all the genes associated with α -(1,3)-glucan synthase degradation Δ AniwetA conidia except AN1604 (Table S3-17). In contrast, AfuWetA upregulates all the α -(1,3)-glucan synthese Afuags1, Afuags2, and Afuags3, but has mixed effects on the genes associated with α -(1,3)-glucan synthese degradation in ΔA fuwetA conidia (Table S3-17). In ΔA flwetA conidia, A flWetA shows mixed effects on both the genes associated with α -(1,3)-glucan biosynthesis and degradation (Table S3-17).

WetA is involved in the regulation of hydrophobin expression. All four reported hydrophobin encoded genes in *A. nidulans* were regulated in $\Delta wetA$ conidia, and only *AnidewA* was downregulated (Table S3-19). In *A. fumigatus*, all six hydrophobins encoded genes were upregulated in $\Delta wetA$ conidia (Table S3-19). In *A. flavus*, four of five reported hydrophobin encoded genes were down-regulated in $\Delta wetA$ conidia except for *AflrodA* (Table S3-19). Since the loss of *wetA* causes lower hydrophobicity of conidia, it is possible there are other unidentified hydrophobins were controlled by *Afu*WetA.

*Afu*WetA is more specialized in the regulation of melanin biosynthesis. The previous study shows that *wA*, which is the first regulator in the DHN-melanin synthesis pathway, is activated by WetA in *A. nidulans* conidia [13,75]. Our RNA-seq results show that both *AniwA* and *AflwA* were downregulated in Δ *AniwetA* and Δ *AflwetA* conidia (Table S3-18). Moreover, *Aflayg1*, the second gene in the DHN-melanin pathway [76], and *Aflbck1*, the MAP kinase of the brownish pigment pyomelanin biosynthesis pathway [77], are downregulated in Δ *AflwetA* conidia (Table S3-18). Surprisingly, although the Δ *AfiwetA* conidia are colorless, all the DEGs associated with both DHN-melanin and pyomelanin biosynthesis were upregulated in Δ *AflwetA* conidia (Table S3-18), suggests the melanin biosynthesis pathway may be more complicated in *A. fumigatus*.

We identified the putative *AniWetA* binding motif by performing ChIP-seq. The 11-aa-length predicted motif (CCGCAWRCGGM) is highly similar to the *S. cerevisiae* LEU3 motif. LEU3 is a C6 type transcription factor, which controls a group of leucine-specific genes [78]. About 23% genes in the *A. nidulans* contain the *Ani*WetA binding motif in their upstream 2 kb regions but only 55% of them are differentially regulated in Δ *AniwetA* conidia (Fig 3-5), suggests that the WetA-mediated regulation may have a temporal and spatial difference. Moreover, only 23% of the DEGs
in Δ *AniwetA* conidia contain the *Ani*WetA binding motif (Fig 3-5), which suggests that *Ani*WetA may serve as a conserved regulatory hub which controls a group of regulators of various biological processes. *Ani*WetA directly targets and regulates genes associated with G-protein regulatory pathways, putative kinases, and putative TFs (Table 3-5). The RNA-seq results also show a lot more genes associated with G-protein regulatory pathways, putative kinases, and putative TFs were differentially regulated in Δ *wetA* conidia. Our data support that the WetA-mediated regulation is through the combination of hierarchical and cooperative modes to control its downstream genes. We also scanned the *A. fumigatus* and *A. flavus* genomes with *Ani*WetA binding motif, the result shows that 3,942 orthogroups containing the *Ani*WetA binding motif are differentially regulated in at least one species. WetA binding motif is somehow conserved in the three *Aspergillus* species and targets to similar set of genes to conserve the essential functions for survival.

In conclusion, we present a comprehensive comparative transcriptome study to illustrate the WetAmediated regulation in *A. nidulans*, *A. fumigatus*, and *A. flavus* conidia. WetA is functionally conserved in the regulation of cellular and chemical development through directly and indirectly controlling the genetic rewired GRNs. Furthermore, we identified the *Ani*WetA binding motif which is likely also conserved in *A. fumigatus* and *A. flavus*.

3-6 References

- Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66: 447–459. doi:10.1128/mmbr.66.3.447-459.2002
- Yu J-H, Keller N. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43: 437–458. doi:10.1146/annurev.phyto.43.040204.140214
- 3. Bennett JW, Klich MA. *Aspergillus*: biology and industrial applications. Butterworth-Heinemann Boston; 1992.
- 4. Adams TH, Wieser JK, Yu J-H. Asexual sporulation in Aspergillus nidulans. Microbiol Mol

Biol Rev. American Society for Microbiology; 1998;62: 35–54. Available: http://www.ncbi.nlm.nih.gov/pubmed/9529886

- 5. Ebbole DJ. The Conidium. Cellular and Molecular Biology of Filamentous Fungi. American Society of Microbiology; 2010. pp. 577–590. doi:10.1128/9781555816636.ch36
- Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, et al. Genomic islands in the pathogenic filamentous fungus *Aspergillus fumigatus*. RichardsonPM, editor. PLoS Genet. Springer-Verlag; 2008;4: e1000046. doi:10.1371/journal.pgen.1000046
- Timberlake WE, Boylan MT, Mirabito PM, Willett CE, Zimmerman CR. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*. Antonie Van Leeuwenhoek. 1987;53: 317. doi:10.1007/BF00400554
- 8. Tao L, Yu J-H. AbaA and WetA govern distinct stages of *Aspergillus fumigatus* development. Microbiology. 2011;157: 313–326. doi:10.1099/mic.0.044271-0
- Son H, Kim M-G, Min K, Lim JY, Choi GJ, Kim J-C, et al. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus *Fusarium graminearum*. Eukaryot Cell. 2014;13: 87–98.
- Wang M, Sun X, Zhu C, Xu Q, Ruan R, Yu D, et al. *PdbrlA*, *PdabaA* and *PdwetA* control distinct stages of conidiogenesis in *Penicillium digitatum*. Res Microbiol. 2015;166: 56–65. doi:10.1016/j.resmic.2014.12.003
- Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y. Genetic analysis of conidiation regulatory pathways in koji-mold *Aspergillus oryzae*. Fungal Genet Biol. Elsevier Inc.; 2010;47: 10–18. doi:10.1016/j.fgb.2009.10.004
- Li F, Shi H-Q, Ying S-H, Feng M-G. WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol. Springer Berlin Heidelberg; 2015;99: 10069–10081. doi:10.1007/s00253-015-6823-7
- Marshall MA, Timberlake WE. *Aspergillus nidulans wetA* activates spore-specific gene expression. Mol Cell Biol. 1991;11: 55–62. doi:10.1128/mcb.11.1.55
- Sewall TC, Mims CW, Timberlake WE. Conidium differentiation in *Aspergillus nidulans* wild-type and wet-white (*wetA*) mutant strains. Dev Biol. 1990;138: 499–508. doi:http://dx.doi.org/10.1016/0012-1606(90)90215-5
- 15. Mirabito PM, Adams TH, Timberlake WE. Interactions of three sequentially expressed

genes control temporal and spatial specificity in *Aspergillus* development. Cell. 1989;57: 859–868. doi:http://dx.doi.org/10.1016/0092-8674(89)90800-3

- Prade RA, Timberlake WE. The *Penicillium chrysogenum* and *Aspergillus nidulans wetA* developmental regulatory genes are functionally equivalent. Mol Gen Genet. 1994;244: 539–47. Available: http://www.ncbi.nlm.nih.gov/pubmed/8078481
- Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, et al. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. RichardsonPM, editor. PLoS Genet. 2011;7: e1002345. doi:10.1371/journal.pgen.1002345
- 18. Clutterbuck SDM and AJ. A quantitative survey of conidiation mutants in *Aspergillus nidulans*. J Gen Microbiol. 1971;69: 261–268.
- Adams TH, Boylan MT, Timberlake WE. *brlA* is necessary and sufficient to direct conidiophore development in *Aspergillus nidulans*. Cell. 1988;54: 353–362. doi:http://dx.doi.org/10.1016/0092-8674(88)90198-5
- Timberlake WE. Translational triggering and feedback fixation in the control of fungal development. Plant Cell. American Society of Plant Biologists; 1993;5: 1453. doi:10.1105/tpc.5.10.1453
- 21. Sewall TC. Cellular effects of misscheduled *brlA*, *abaA*, and *wetA* expression in *Aspergillus nidulans*. Can J Microbiol. 1994;40: 1035–1042.
- 22. Clutterbuck AJ. A mutational analysis of conidial development in *Aspergillus nidulans*. Genetics. 1969;63: 317–327. Available: http://www.genetics.org/content/63/2/317.short
- Shin K-S, Kim YH, Yu J-H. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in *Aspergillus fumigatus*. Biochem Biophys Res Commun. 2015;463: 428–433. doi:10.1016/j.bbrc.2015.05.090
- 24. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus *Aspergillus*. Genome Biol. 2017;18: 28. doi:10.1186/s13059-017-1151-0
- Park H-S, Yu J-H. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012;15: 669–677. doi:http://dx.doi.org/10.1016/j.mib.2012.09.006
- 26. Boylan MT, Mirabito PM, Willett CE eal, Zimmerman CR, Timberlake WE. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*.

Mol Cell Biol. 1987;7: 3113–3118. doi:10.1128/mcb.7.9.3113

- Chang YC, Timberlake WE. Identification of *Aspergillus brlA* response elements (BREs) by genetic selection in yeast. Genetics. 1993;133: 29–38.
- Adams TH, Timberlake WE. Upstream elements repress premature expression of an Aspergillus developmental regulatory gene. Mol Cell Biol. 1990;10: 4912–4919.
- Andrianopoulos A, TimberlakeWE. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol. American Society for Microbiology; 1994;14: 2503–2515. doi:10.1128/mcb.14.4.2503
- Wu M-Y, Mead ME, Kim S-C, Rokas A, Yu J-H, Borkovich K. WetA bridges cellular and chemical development in *Aspergillus flavus*. Harris S, editor. PLoS One. Public Library of Science; 2017;12: e0179571. doi:10.1371/journal.pone.0179571
- Sewall TC, Mims CW, Timberlake WE. *abaA* controls phialide differentiation in Aspergillus nidulans. Plant Cell Online. 1990;2: 731–739.
- Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. Oxford University Press; 2016;44: W242–W245. doi:10.1093/nar/gkw290
- Altschul SF, Madden TL, Schäffer AA, Zhang J, ZhangZ, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–402. Available: http://www.ncbi.nlm.nih.gov/pubmed/9254694
- Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-aminoacid transactivation domain: Establishment and prediction utilities. Genomics. 2007;89: 756–768. doi:10.1016/j.ygeno.2007.02.003
- Ba ANN, PogoutseA, Provart N, Moses AM. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10: 202.
- 36. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. Cold Spring Harbor Laboratory Press; 2003;13: 2129–41. doi:10.1101/gr.772403
- Timberlake WE. Molecular genetics of *Aspergillus* development. Annu Rev Genet. 1990;24: 5–36.

- Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38: D204–D210.
- Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35: W585–W587.
- Ni M, Yu J-H. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One. Public Library of Science; 2007;2: e970. doi:10.1371/journal.pone.0000970
- Käfer E. Meiotic and mitotic recombination in *Aspergillus* and its chromosomal aberrations.
 Adv Genet. 1977;19: 33–131. doi:10.1016/S0065-2660(08)60245-X
- Seo J-A, Guan Y, Yu J-H. Suppressor mutations bypass the requirement of *fluG* for asexual sporulation and sterigmatocystin production in *Aspergillus nidulans*. Genetics. 2003;165: 1083–1093.
- Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41: 973–981. doi:10.1016/j.fgb.2004.08.001
- Shaaban MI, Bok JW, Lauer C, Keller NP. Suppressor mutagenesis identifies a velvet complex remediator of *Aspergillus nidulans* secondary metabolism. Eukaryot Cell. 2010;9: 1816–1824. doi:10.1128/ec.00189-10
- Park H-S, Ni M, Jeong KC, Kim YH, Yu J-H. The role, interaction and regulation of the velvet regulator VelB in *Aspergillus nidulans*. PLoS One. Public Library of Science; 2012;7: e45935. doi:10.1371/journal.pone.0045935
- 46. Osmani AH, May GS, Osmani SA. The extremely conserved *pyroA* gene of *Aspergillus nidulans* is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J Biol Chem. 1999;274: 23565–23569. doi:10.1074/jbc.274.33.23565
- 47. Yelton MM, Hamer JE, Timberlake WE. Transformation of *Aspergillus nidulans* by using a *trpC* plasmid. Proc Natl Acad Sci U S A. 1984;81. doi:10.1073/pnas.81.5.1470
- 48. Han KH, Seo JA, Yu JH. Regulators of G-protein signalling in *Aspergillus nidulans:* RgsA downregulates stress response and stimulates asexual sporulation through attentuation of GanB (Gα) signalling. Mol Microbiol. 2004;53: 529–540. doi:10.1111/j.1365-2958.2004.04163.x

- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23: 2947–2948. doi:10.1093/bioinformatics/btm404
- Andrews S. FastQC: a quality control tool for high throughput sequence data [Internet].
 2010. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- 51. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14: R36. doi:10.1186/gb-2013-14-4-r36
- Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. Oxford University Press; 2015;31: 166–169. doi:10.1093/bioinformatics/btu638
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi:10.1186/s13059-014-0550-8
- Park HS, Yu J-H. Multi-Copy Genetic Screen in *Aspergillus nidulans*. In: Keller NP, Turner G, editors. Fungal Secondary Metabolism. Totowa, NJ: Humana Press; 2012. pp. 183–190. doi:10.1007/978-1-62703-122-6_13
- Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10: R25. doi:10.1186/gb-2009-10-3-r25
- Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. Nature Publishing Group; 2012;9: 357–9. doi:10.1038/nmeth.1923
- Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38: 576–89. doi:10.1016/j.molcel.2010.05.004
- 58. Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, et al. The Aspergillus Genome Database (AspGD): Recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res. 2012;40. doi:10.1093/nar/gkr875
- Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27: 1696–1697. doi:10.1093/bioinformatics/btr189

- 60. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble W. Quantifying similarity between motifs. Genome Biol. 2007;8: R24. doi:10.1186/gb-2007-8-2-r24
- Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27: 1017–1018. doi:10.1093/bioinformatics/btr064
- Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. Oxford University Press; 2012;40: D675–D681. doi:10.1093/nar/gkr918
- Carbon S, IrelandA , Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics. Oxford University Press; 2009;25: 288–289. doi:10.1093/bioinformatics/btn615
- Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics. Oxford University Press; 2005;21: 3448–3449. doi:10.1093/bioinformatics/bti551
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. Cold Spring Harbor Laboratory Press; 2003;13: 2498–504. doi:10.1101/gr.1239303
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. Nature Publishing Group; 2000;25: 25–29. doi:10.1038/75556
- 67. Bennett JW. An overview of the genus Aspergillus. Caiser Academic Press, Portland; 2010.
- Yu J-H. Regulation of development in *Aspergillus nidulans* and *Aspergillus fumigatus*. Mycobiology. 2010;38: 229–237.
- Chen F, Mackey AJ, Stoeckert CJ, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34: D363–D368. doi:10.1093/nar/gkj123
- Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, et al. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of *Aspergillus nidulans*, *A. fumigatus*, *A. niger* and *A. oryzae*. BMC Microbiol. 2013;13: 91. doi:10.1186/1471-2180-13-91
- 71. Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, et al. Whole

genome comparison of *Aspergillus flavus* and *A. oryzae*. Med Mycol. Oxford University Press; 2006;44: 9–11. doi:10.1080/13693780600835716

- 72. Machida M, Asai K, San oM, Tanaka T, Kumagai T, Terai G, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. Nature Publishing Group; 2005;438: 1157–1161. doi:10.1038/nature04300
- Kwon N-J, Garzia A, Espeso EA, Ugalde U, Yu J-H. FlbC is a putative nuclear C2H2 transcription factor regulating development in *Aspergillus nidulans*. Mol Microbiol. Blackwell Publishing Ltd; 2010;77: 1203–1219. doi:10.1111/j.1365-2958.2010.07282.x
- 74. Ahmed YL, Gerke J, Park H-S, Bayram Ö, Neumann P, Ni M, et al. The Velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. Stock AM, editor. PLoS Biol. Public Library of Science; 2013;11: e1001750. doi:10.1371/journal.pbio.1001750
- 75. Bayry J, Beaussart A, Dufrene YF, Sharma M, Bansal K, Kniemeyer O, et al. Surface structure characterization of *Aspergillus fumigatus* conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect Immun. 2014;82: 3141–3153. doi:10.1128/IAI.01726-14
- 76. Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in *Aspergillus fumigatus*. J Bacteriol. 1999;181: 6469–77. Available: http://www.ncbi.nlm.nih.gov/pubmed/10515939
- 77. Valiante V, Jain R, Heinekamp T, Brakhage AA. The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in *Aspergillus fumigatus*. Fungal Genet Biol. 2009;46: 909–918. doi:10.1016/j.fgb.2009.08.005
- 78. Friden P, Schimmel P. LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a group of leucine-specific genes. Mol Cell Biol. American Society for Microbiology; 1987;7: 2708–17. doi:10.1128/MCB.7.8.2708
- 79. He Z-MM, Price MS, Obrian GR, Georgianna DR, Payne GA. Improved protocols for functional analysis in the pathogenic fungus *Aspergillus flavus*. BMC Microbiol. BioMed

Central; 2007;7: 104. doi:10.1186/1471-2180-7-104

 Brookman JL, Denning DW. Molecular genetics in *Aspergillus fumigatus*. Curr Opin Microbiol. 2000;3: 468–474. doi:10.1016/S1369-5274(00)00124-7

STRAINS				
Name	GENOTYPE	SOURC	E	
		Fungal	Genetic	Stock
NRRL3357	Wild-type	Center		
3357.5	pyrG ⁻	[79]		
TMY1	$\Delta A flwet A :: A fupyr G^+; pyr G^-$	[30]		
TMY2	$\Delta A flwet A :: A fupyr G^+; pyr G^-; wet A$	[30]		
Af293	Wild-type	[80]		
TSGw4	AfupyrG1 Δ AfuwetA::AnipyrG ⁺	[8]		
		Fungal	Genetic	Stock
FGSC4	Wild-type	Center		
RJMP1.59	pyrG89; pyroA4	[44]		
TMY3	<i>pyrG89</i> ; <i>pyroA4</i> ; Δ <i>AniwetA</i> :: <i>AfupyrG</i> ⁺	This stuc	ły	
	<i>pyrG</i> 89;			
	<i>pyroA</i> :: <i>AniwetA</i> (p):: <i>AniwetA</i> ::FLAG _{3X} :: <i>pyroA</i> *;			
TMY4	$\Delta AniwetA::AfupyrG^+$	This stuc	ły	

Table S3-1 Aspergillus strains and oligonucleotides used in this study.

*The 3/4 pyroA marker selects for the targeted integrationat the *pyroA* locus

OLIGONUCLEOTIDES

Name	SEQUENCE $(5' \rightarrow 3')$	PURPOSE
oMY-43	tagcgcattgttgcttaggg	5' flanking of <i>AniwetA</i>
oMY-44	gccgttaccgacggatactc	3' flanking of <i>AniwetA</i>
oMY-45	gtaatagactcagtggaccgggc	5' nested of AniwetA
oMY-46	ctcctcctagaacccattatggc	3' nested of AniwetA
оМҮ-47	gtgaagagcattgtttgaggcaggaagaggctgccagaagacctg	5' <i>AniwetA</i> with <i>AfupyrG</i> tail
oMY-48	agtgcctcctctcagacagaataggaggaagcttagatctgtggc	3' <i>AniwetA</i> with <i>AfupyrG</i> tail
oMY-25	gaccactcgttcaacaacgatg	5' AniwetA
oMY-26	cgtactgcattaagtgcgg	3' AniwetA
oMY-53	ccgaattcttgaagtattgattatgtaattatgc	5' AniwetA with EcoRI
oMY-54	tagcggccgcgcagaggacagcctctaggg	3' AniwetA with NotI

oJH-84	gctgaagtcatgatacaggccaaa	5' AfupyrG marker
oJH-85	atcgtcgggaggtattgtcgtcac	3' <i>AfupyrG</i> marker

GO Category	# of Genes	% of Genes in Category
A. nidulans		
oxidoreductase activity	660	57.5
organonitrogen compound metabolic process	540	58.8
amide biosynthetic process	183	62.7
extracellular region	155	66.5
peptide biosynthetic process	153	64.8
nucleolus	141	70.1
secondary metabolite biosynthetic process	137	65.6
ribonucleoprotein complex biogenesis	135	69.9
ribosome	132	69.5
ribosome biogenesis	129	75.9
translation	129	65.2
ncRNA processing	122	65.2
structural constituent of ribosome	98	73.1
rRNA metabolic process	87	75
rRNA processing	87	75
preribosome	68	77.3
external encapsulating structure	66	73.3
cell wall	65	74.7
fungal-type cell wall	62	74.7
cell surface	60	78.9
ribosomal small subunit biogenesis	48	80
maturation of SSU-rRNA	43	84.3
cytosolic ribosome	43	86
ribosomal large subunit biogenesis	40	81.6
90S preribosome	40	83.3
maturation of SSU-rRNA from tricistronic rRNA		
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	38	86.4
maturation of 5.8S rRNA from tricistronic rRNA		
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	33	82.5
maturation of 5.8S rRNA	33	82.5
A. fumigatus		

Table S3-2 Top enriched GO categories of differential expressed genes in the $\Delta wetA$ conidia.

material entity	3224	62.2
specimen	3219	62.2
oxidoreductase activity	577	64.3
oxidation-reduction process	463	64.8
carbohydrate metabolic process	316	67.4
secondary metabolic process	170	79.4
extracellular region	162	71.4
secondary metabolite biosynthetic process	121	79.1
fungal-type cell wall	62	78.5
cell wall macromolecule metabolic process	60	80
toxin metabolic process	53	82.8
toxin biosynthetic process	53	82.8
nucleoside triphosphate metabolic process	49	81.7
phenol-containing compound biosynthetic		
process	36	87.8
respiratory chain complex	26	96.3
respiratory chain	26	96.3
mitochondrial respiratory chain	25	96.2
1 2		
A. flavus		
<i>A. flavus</i> catalytic activity	1967	43.6
A. flavus catalytic activity single-organism metabolic process	1967 1028	43.6 43.4
A. flavus catalytic activity single-organism metabolic process oxidoreductase activity	1967 1028 703	43.6 43.4 49
A. flavus catalytic activity single-organism metabolic process oxidoreductase activity metal ion binding	1967 1028 703 573	43.6 43.4 49 44.1
A. flavus catalytic activity single-organism metabolic process oxidoreductase activity metal ion binding oxidation-reduction process	1967 1028 703 573 515	43.6 43.4 49 44.1 47.7
A. flavus catalytic activity single-organism metabolic process oxidoreductase activity metal ion binding oxidation-reduction process intrinsic component of membrane	1967 1028 703 573 515 434	43.6 43.4 49 44.1 47.7 46.5
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membrane	1967 1028 703 573 515 434 429	43.6 43.4 49 44.1 47.7 46.5 46.3
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transport	1967 1028 703 573 515 434 429 379	43.6 43.4 49 44.1 47.7 46.5 46.3 46.4
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transport	1967 1028 703 573 515 434 429 379 266	43.6 43.4 49 44.1 47.7 46.5 46.3 46.4 49.2
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportcofactor binding	1967 1028 703 573 515 434 429 379 266 247	43.6 43.4 49 44.1 47.7 46.5 46.3 46.3 46.4 49.2 48.8
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportcofactor bindingcarbohydrate metabolic process	1967 1028 703 573 515 434 429 379 266 247 226	43.6 43.4 49 44.1 47.7 46.5 46.3 46.3 46.4 49.2 48.8 47.4
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportcofactor bindingcarbohydrate metabolic processcell periphery	1967 1028 703 573 515 434 429 379 266 247 226 217	43.6 43.4 49 44.1 47.7 46.5 46.3 46.4 49.2 48.8 47.4 50.7
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportobsolete electron transportcofactor bindingcarbohydrate metabolic processcell peripherycoenzyme binding	1967 1028 703 573 515 434 429 379 266 247 226 217 188	43.6 43.4 49 44.1 47.7 46.5 46.3 46.4 49.2 48.8 47.4 50.7 48.6
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportcofactor bindingcarbohydrate metabolic processcell peripherycoenzyme bindingplasma membrane	1967 1028 703 573 515 434 429 379 266 247 226 247 226 217 188 162	43.6 43.4 49 44.1 47.7 46.5 46.3 46.3 46.4 49.2 48.8 47.4 50.7 48.6 50.8
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportcofactor bindingcarbohydrate metabolic processcell peripherycoenzyme bindingplasma membraneoxidoreductase activity, acting on paired donors,	1967 1028 703 573 515 434 429 379 266 247 226 247 226 217 188 162	43.6 43.4 49 44.1 47.7 46.5 46.3 46.4 49.2 48.8 47.4 50.7 48.6 50.8
A. flavuscatalytic activitysingle-organism metabolic processoxidoreductase activitymetal ion bindingoxidation-reduction processintrinsic component of membraneintegral component of membranetransmembrane transportobsolete electron transportcofactor bindingcarbohydrate metabolic processcell peripherycoenzyme bindingplasma membraneoxidoreductase activity, acting on paired donors,with incorporation or reduction of molecular	1967 1028 703 573 515 434 429 379 266 247 226 217 188 162	43.6 43.4 49 44.1 47.7 46.5 46.3 46.4 49.2 48.8 47.4 50.7 48.6 50.8

iron ion binding	128	51.8
monooxygenase activity	120	52.9
tetrapyrrole binding	112	49.8
heme binding	112	49.8
cytosol	110	55.3
cell wall organization or biogenesis	79	62.2
hydrolase activity, acting on carbon-nitrogen (but		
not peptide) bonds	77	52.7
polysaccharide metabolic process	58	55.2
intrinsic component of plasma membrane	56	55.4
cytosolic part	52	59.8
cytosolic ribosome	50	61.7
external encapsulating structure	46	67.6
cell wall	43	70.5
carbohydrate catabolic process	42	58.3
pyridine nucleotide metabolic process	39	58.2
fungal-type cell wall	39	72.2
transferase activity, transferring nitrogenous		
groups	39	60
cell wall macromolecule metabolic process	30	81.1
aminoglycan metabolic process	28	65.1
cytosolic large ribosomal subunit	27	67.5
cell wall macromolecule catabolic process	12	85.7

GENE ID	Log2 Fold Change	Description
		Ortholog of Aspergillus clavatus NRRL 1 : ACLA_055850 and
AN6403	-11.38	Aspergillus aculeatus ATCC16872 : Aacu16872_061969
AN10028	-11.36	Putative cytochrome P450
AN3783	-11.06	protein of unknown function
AN12038	-11.00	protein of unknown function
		Ortholog of A. nidulans FGSC A4 : AN5887, AN4831, A.
		fumigatus Af293 : Afu2g11250, A. niger CBS 513.88 :
		An08g09700 and A. oryzae RIB40 : AO090026000525,
AN1616	-11.00	AO090005000474, AO090113000193
AN1937	-10.99	Regulatory protein involved in conidial development
		Ortholog of A. oryzae RIB40 : AO090038000479,
		AO090009000246, Aspergillus flavus NRRL 3357 :
		AFL2T_10422, Aspergillus versicolor : Aspve1_0046662 and
AN8335	-10.94	Aspergillus sydowii : Aspsy1_0136121
		Has domain(s) with predicted FAD binding, oleate hydratase
AN3782	-10.90	activity and role in fatty acid metabolic process
		Ortholog of A. fumigatus Af293 : Afu5g09180, A. niger CBS
		513.88 : An07g03930, A. oryzae RIB40 : AO090020000514,
		Aspergillus wentii : Aspwe1_0035291 and Aspergillus terreus
AN10040	-10.80	NIH2624 : ATET_06551
AN3966	-10.79	protein of unknown function
		Ortholog of A. niger CBS 513.88 : An07g01780, Neosartorya
		fischeri NRRL 181 : NFIA_113800, Aspergillus wentii :
AN10041	-10.73	Aspwe1_0281884 and Aspergillus versicolor : Aspve1_0082092
AN11624	-10.60	protein of unknown function
		Ortholog of A. nidulans FGSC A4 : AN6727, AN0386, A.
		fumigatus Af293 : Afu1g01610, Afu4g01060, Afu6g03180,
		Afu7g05880 and A. niger CBS 513.88 : An04g08650,
AN5371	-10.52	An07g02000
AN5325	-10.51	protein of unknown function
AN11574	-10.48	protein of unknown function
AN3079	-10.47	Secreted thaumatin-like protein

Table S3-3 Top 100 genes showing decreased mRNA levels in the Δ *AniwetA* conidia.

		Ortholog(s) have flavin-linked sulfhydryl oxidase activity and
AN6963	-10.40	role in oxidation-reduction process
AN3968	-10.37	protein of unknown function
AN3485	-10.13	Ortholog of Aspergillus acidus : Aspfo1_0060189
AN12115	-10.09	protein of unknown function
AN1605	-9.99	Ortholog of Aspergillus sydowii : Aspsy1_0679421
		Ortholog of A. niger CBS 513.88 : An11g08150, Neosartorya
		fischeri NRRL 181 : NFIA_040880, Aspergillus wentii :
AN3243	-9.98	Aspwe1_0036368 and Aspergillus versicolor : Aspve1_0033884
		Putative glutamate decarboxylase with a predicted role in the 4-
AN7278	-9.70	aminobutyrate (GABA) shunt
AN8382	-9.69	protein of unknown function
		Ortholog of Aspergillus glaucus : Aspgl1_0163409, Neosartorya
		fischeri NRRL 181 : NFIA_097910, Aspergillus clavatus NRRL
AN2838	-9.69	1 : ACLA_058550 and Aspergillus zonatus : Aspzo1_0133076
		Ortholog of A. niger CBS 513.88 : An18g01250, Aspergillus
		tubingensis : Asptu1_0114551, Aspergillus brasiliensis :
AN11337	-9.60	Aspbr1_0322983 and Aspergillus kawachii : Aspka1_0173401
AN9194	-9.57	Transcript enriched in dormant conidia
AN10984	-9.51	protein of unknown function
AN8581	-9.50	Putative laccase related protein
		Hydrophobin, protein of the conidium wall responsible for
AN8006	-9.48	hydrophobicity of conidium surface
AN11917	-9.45	Ortholog(s) have fungal-type vacuole localization
		Has domain(s) with predicted oxidoreductase activity, transferase
		activity, transferring acyl groups other than amino-acyl groups,
AN5355	-9.37	zinc ion binding activity and role in oxidation-reduction process
		Has domain(s) with predicted inorganic phosphate
		transmembrane transporter activity, role in phosphate ion
AN3781	-9.34	transport and membrane localization
		Has domain(s) with predicted role in isoprenoid biosynthetic
AN2611	-9.31	process
AN3967	-9.25	protein of unknown function
		Ortholog of A. niger CBS 513.88 : An02g07790, Neosartorya
		fischeri NRRL 181 : NFIA_065240, Aspergillus clavatus NRRL
AN2471	-9.22	1 : ACLA_039940, ACLA_078340 and Aspergillus niger ATCC

		1015 : 144091-mRNA
AN0396	-9.09	Has domain(s) with predicted protein dimerization activity
		Has domain(s) with predicted oxidoreductase activity and role in
AN10494	-9.03	metabolic process
		Ortholog of A. nidulans FGSC A4 : AN5639, AN2587, AN9444,
		A. fumigatus Af293 : Afu5g00840, A. niger CBS 513.88 :
AN7395	-8.96	An03g01000 and A. oryzae RIB40 : AO090102000018
		Ortholog(s) have identical protein binding, mRNA binding,
AN10507	-8.90	unfolded protein binding activity
AN10499	-8.86	Ortholog(s) have cytosol, nucleus localization
		Has domain(s) with predicted 3-hydroxyacyl-CoA dehydrogenase
		activity, coenzyme binding, oxidoreductase activity, acting on the
AN8921	-8.81	CH-OH group of donors, NAD or NADP as acceptor activity
		Ortholog of Aspergillus sydowii : Aspsy1_0137382 and
AN11477	-8.63	Aspergillus aculeatus ATCC16872 : Aacu16872_040719
		Has domain(s) with predicted catalytic activity, coenzyme
AN4177	-8.55	binding activity and role in cellular metabolic process
		Has domain(s) with predicted catalytic activity, metal ion
AN5411	-8.54	binding, phosphoric diester hydrolase activity
		Ortholog of A. nidulans FGSC A4 : AN3540, A. fumigatus
		Af293 : Afu8g00120, A. oryzae RIB40 : AO090038000188,
		AO090026000095 and Neosartorya fischeri NRRL 181 :
AN3539	-8.45	NFIA_032270
		Has domain(s) with predicted oxidoreductase activity and role in
AN0216	-8.40	metabolic process
		Has domain(s) with predicted NADP binding, coenzyme binding,
		oxidoreductase activity, acting on the CH-OH group of donors,
		NAD or NADP as acceptor, phosphogluconate dehydrogenase
AN10233	-8.38	(decarboxylating) activity
		Ortholog of A. nidulans FGSC A4 : AN12398, A. oryzae RIB40 :
		AO090023000067, AO090010000683, Aspergillus wentii :
AN6460	-8.38	Aspwe1_0075588 and Aspergillus versicolor : Aspve1_0086685
		Ortholog of A. nidulans FGSC A4 : AN1754, A. fumigatus
	0.2-	At293 : Atu3g02050, A. niger CBS 513.88 : An11g06690,
AN8607	-8.37	An18g01930 and A. oryzae RIB40 : AO090001000144
AN6457	-8.31	Has domain(s) with predicted peroxidase activity

AN1740	-8.29	protein of unknown function
AN7053	-8.29	Ortholog of Aspergillus versicolor : Aspve1_0054863
AN2720	-8.24	Has domain(s) with predicted catalytic activity
		Putative catalase with a predicted role in gluconic acid and
AN8553	-8.24	gluconate metabolism
		Ortholog of A. niger CBS 513.88 : An11g08070, An09g03760,
		Neosartorya fischeri NRRL 181 : NFIA_030520, Aspergillus
		versicolor : Aspve1_0031176 and Aspergillus niger ATCC 1015 :
AN1314	-8.15	39297-mRNA, 43311-mRNA
		Has domain(s) with predicted methyltransferase activity and role
AN1614	-8.12	in metabolic process
AN5015	-8.11	Putative conidiation gene
AN5553	-8.04	Putative cytochrome P450
		Ortholog of N. crassa conF, light-induced transcript expressed
AN8640	-7.93	during conidiation in N. crassa
		Ortholog of A. oryzae RIB40 : AO090103000089, Aspergillus
		flavus NRRL 3357 : AFL2T_12280, Aspergillus terreus
		NIH2624 : ATET_03032 and Aspergillus aculeatus ATCC16872 :
AN5089	-7.90	Aacu16872_034601
		Ortholog of A. nidulans FGSC A4 : AN7222, A. fumigatus
		Af293 : Afu1g01490, Afu2g01760, A. niger CBS 513.88 :
		An03g06670, An15g07300 and A. oryzae RIB40 :
AN0391	-7.89	AO090010000045/aoiD, AO090102000259
		Ortholog of A. oryzae RIB40 : AO090038000523, Aspergillus
		flavus NRRL 3357 : AFL2T_07855 and Aspergillus sydowii :
AN1040	-7.81	Aspsy1_0160459, Aspsy1_0165518
		Ortholog of A. niger CBS 513.88 : An11g06780, Aspergillus
		wentii : Aspwe1_0176973, Aspergillus sydowii :
		Aspsy1_0047960 and Aspergillus terreus NIH2624 :
AN7990	-7.74	ATET_06661
AN6972	-7.73	protein of unknown function
AN11945	-7.68	Ortholog of A. oryzae RIB40 : AO090001000155
		Ortholog of A. fumigatus Af293 : Afu8g05985, Neosartorya
		fischeri NRRL 181 : NFIA_098760, NFIA_099140, Aspergillus
		wentii : Aspwe1_0689083 and Aspergillus versicolor :
AN1603	-7.68	Aspve1_0037404

AN3535	-7.67	Has domain(s) with predicted ATP binding activity
		Has domain(s) with predicted oxidoreductase activity and role in
AN8398	-7.61	metabolic process
		Ortholog of A. oryzae RIB40 : AO090003001515, Aspergillus
		flavus NRRL 3357 : AFL2T_01577 and Aspergillus wentii :
AN3474	-7.59	Aspwe1_0071034
		Has domain(s) with predicted catalytic activity, coenzyme
AN5409	-7.51	binding activity and role in cellular metabolic process
		Has domain(s) with predicted oxidoreductase activity and role in
AN11122	-7.50	metabolic process
AN1604	-7.48	Putative alpha-1,3-glucanase
		Ortholog of A. niger CBS 513.88 : An08g03560, A. oryzae
		RIB40 : AO090038000281, Aspergillus wentii :
		Aspwe1_0508022, Aspergillus sydowii : Aspsy1_0035009 and
AN8776	-7.47	Aspergillus terreus NIH2624 : ATET_00334
AN2351	-7.45	Putative zinc-containing alcohol dehydrogenase
AN7988	-7.40	protein of unknown function
		Ortholog of A. fumigatus Af293 : Afu8g06974, A. niger CBS
		513.88 : An01g03010, Neosartorya fischeri NRRL 181 :
AN11533	-7.40	NFIA_099710 and Aspergillus kawachii : Aspka1_0178966
		Ortholog of the non-ribosomal peptide synthetase (NRPS) of A.
AN6962	-7.39	fumigatus, nrps14/Afu8g00540
AN11916	-7.35	Has domain(s) with predicted ATP binding activity
		Ortholog(s) have role in cellular response to drug, hexose
AN8122	-7.34	transport, pathogenesis
AN5654	-7.33	protein of unknown function
AN0397	-7.32	protein of unknown function
		Ortholog of Aspergillus flavus NRRL 3357 : AFL2T_11759,
		Neosartorya fischeri NRRL 181 : NFIA_094100, Aspergillus
		versicolor : Aspve1_0085617 and Aspergillus clavatus NRRL 1 :
AN11000	-7.30	ACLA_044880
AN2472	-7.25	Has domain(s) with predicted catalytic activity
AN3484	-7.15	Ortholog of Aspergillus acidus : Aspfo1_0160947
AN5326	-7.14	protein of unknown function
AN8358	-7.08	Putative cytochrome P450
AN5938	-7.08	Ortholog(s) have cytosol, nucleus localization

		Ortholog of A. fumigatus Af293 : Afu4g09610, A. niger CBS
		513.88 : An04g07500, A. oryzae RIB40 : AO090003001281,
		Neosartorya fischeri NRRL 181 : NFIA_106400 and Aspergillus
AN0400	-7.04	wentii : Aspwe1_0022929
AN4127	-7.04	Ortholog(s) have intracellular localization
AN3330	-7.00	protein of unknown function
		Ortholog of A. fumigatus Af293 : Afu3g15050, A. niger CBS
		513.88 : An14g03430, A. oryzae RIB40 : AO090701000428,
		Aspergillus wentii : Aspwe1_0175480 and Aspergillus sydowii :
AN2558	-7.00	Aspsy1_0055978
		Ortholog of A. fumigatus Af293 : Afu4g03830, A. niger CBS
		513.88 : An14g01068, A. oryzae RIB40 : AO090011000343,
		Aspergillus wentii : Aspwe1_0030332 and Aspergillus sydowii :
AN7102	-6.96	Aspsy1_0060599
AN4627	-6.96	protein of unknown function
AN11946	-6.93	protein of unknown function
		Ortholog of A. fumigatus Af293 : Afu7g05770, A. oryzae RIB40 :
		AO090005000440, Aspergillus wentii : Aspwe1_0167865,
		Aspergillus sydowii : Aspsy1_0049271 and Aspergillus terreus
AN6719	-6.92	NIH2624 : ATET_06356
AN2610	-6.89	Putative cytochrome P450
AN3537	-6.89	Has domain(s) with predicted O-methyltransferase activity
		Transcript induced in response to calcium dichloride in a CrzA-
AN8774	-6.87	dependent manner
		Ortholog of A. fumigatus Af293 : Afu1g06670, A. niger CBS
		513.88 : An18g05730, A. oryzae RIB40 : AO090001000467,
		Aspergillus wentii : Aspwe1_0038290 and Aspergillus sydowii :
AN5709	-6.86	Aspsy1 0056984

GENE ID	Log ₂ Fold	Description
	Change	
		Has domain(s) with predicted 2 iron, 2 sulfur cluster binding,
		iron ion binding, oxidoreductase activity, oxidoreductase activity
AN8656	9.32	and acting on paired donors, more
		Has domain(s) with predicted catalytic activity, metal ion
AN3331	9.27	binding, phosphoric diester hydrolase activity
		Ortholog of A. fumigatus Af293 : Afu5g00450, Afu6g10780, A.
		niger CBS 513.88 : An03g05860, A. oryzae RIB40 :
		AO090003001528, AO090023001010 and Aspergillus wentii :
AN6383	9.17	Aspwe1_0052273, Aspwe1_0067889
		Has domain(s) with predicted cysteine-type endopeptidase
AN3882	9.01	activity and role in proteolysis
		Putative mannosyl-oligosaccharide 1,2-alpha-mannosidase with
AN0787	9.00	a predicted role in mannose polymer metabolism
AN11510	8.94	Has domain(s) with predicted role in defense response
		Ortholog of Aspergillus flavus NRRL 3357 : AFL2T_00195,
		Aspergillus wentii : Aspwe1_0174848, Aspergillus versicolor :
AN9273	8.93	Aspve1_0083996 and Aspergillus sydowii : Aspsy1_0900274
		Has domain(s) with predicted phosphoric diester hydrolase
AN6382	8.89	activity and role in lipid metabolic process
AN5611	8.83	Putative carbonic anhydrase
AN3858	8.59	Possible pseudogene
AN3264	8.51	Putative xylose transporter
		Ortholog of A. nidulans FGSC A4 : AN6319, A. fumigatus
		Af293 : Afu1g16870, A. oryzae RIB40 : AO090005000988,
		Aspergillus wentii : Aspwe1_0038696 and Aspergillus sydowii :
AN0638	8.47	Aspsy1_0129541, Aspsy1_0995740
AN1618	8.41	protein of unknown function
		Has domain(s) with predicted role in transmembrane transport
AN0760	8.40	and integral component of membrane localization
		Ortholog of Aspergillus versicolor : Aspve1_0052822 and
AN5505	8.32	Aspergillus sydowii : Aspsy1_0046382
AN4806	8.26	Ortholog of A. fumigatus Af293 : Afu3g07000, A. niger CBS

Table S3-4 Top 100 genes showing increased mRNA levels in the Δ *AniwetA* conidia.

		513.88 : An02g13810, Aspergillus wentii : Aspwe1_0042056,
		Aspergillus sydowii : Aspsy1_0043180 and Aspergillus terreus
		NIH2624 : ATET_08722
		Ortholog(s) have catalytic activity and role in ascospore wall
AN2705	8.25	assembly
AN4871	8.23	Class V chitinase
AN7975	8.21	Ortholog of Aspergillus kawachii : Aspka1_0183274
AN10995	8.17	protein of unknown function
AN6472	8.17	Putative endo-mannanase GH76 family protein
AN6929	8.15	Putative alpha-L-rhamnosidase
AN3555	8.15	Small heat-shock protein
AN2530	8.12	Heat shock protein 30
		Ortholog of A. nidulans FGSC A4 : AN8020, A. fumigatus
		Af293 : Afu5g02380, A. niger CBS 513.88 : An03g04900,
		An02g10420 and A. oryzae RIB40 : AO090001000067,
AN0195	8.08	AO090102000350
		Has domain(s) with predicted oxidoreductase activity and role in
AN6658	7.97	oxidation-reduction process
		Has domain(s) with predicted solute:proton antiporter activity,
		role in cation transport, transmembrane transport and integral
AN4131	7.97	component of membrane localization
		Putative gluconolactonase with a predicted role in gluconic acid
AN8977	7.94	and gluconate metabolism
		Ortholog of A. nidulans FGSC A4 : AN8977/alcP, A. fumigatus
		Af293 : Afu1g08990, Afu1g11330 and A. niger CBS 513.88 :
AN4004	7.84	An05g02030, An10g00900, An16g06620
		Has domain(s) with predicted carbon-nitrogen ligase activity,
AN9324	7.81	with glutamine as amido-N-donor activity
		Has domain(s) with predicted chitin binding activity, role in
AN0499	7.81	chitin metabolic process and extracellular region localization
		Has domain(s) with predicted ADP binding, microtubule motor
		activity, nucleoside-triphosphatase activity, nucleotide binding
AN8322	7.76	activity and kinesin complex localization
AN9007	7.75	Putative cytochrome P450
		Ortholog of A. nidulans FGSC A4 : AN3346, AN3348, AN2044,
AN3303	7.73	AN8727 and A. fumigatus Af293 : Afu4g10080, Afu7g00420,

		Afu8g06100, Afu4g01242
AN5506	7.73	protein of unknown function
AN2895	7.73	Has domain(s) with predicted ADP binding activity
		Ortholog of A. fumigatus Af293 : Afu2g01430, Aspergillus
		wentii : Aspwe1_0114055, Aspergillus versicolor :
		Aspve1_0030702 and Aspergillus clavatus NRRL 1 :
AN7670	7.66	ACLA_093480
AN5407	7.61	Has domain(s) with predicted intracellular localization
AN10385	7.60	protein of unknown function
AN3304	7.59	Putative GABA transporter
		Ortholog(s) have role in melanin biosynthetic process from
AN1898	7.56	tyrosine, tyrosine catabolic process and cytoplasm localization
		Ortholog of A. nidulans FGSC A4 : AN4177, AN12488, A.
		fumigatus Af293 : Afu8g00600, A. niger CBS 513.88 :
		An03g00920, An02g01430, A. oryzae RIB40 :
AN2921	7.56	AO090010000696 and Aspergillus wentii : Aspwe1_0029035
		Ortholog of A. fumigatus Af293 : Afu4g03322, A. niger CBS
		513.88 : An14g01990, A. oryzae RIB40 : AO090011000139,
		Aspergillus sydowii : Aspsy1_0052594 and Aspergillus terreus
AN7177	7.55	NIH2624 : ATET_02136
		Ortholog of A. fumigatus Af293 : Afu7g01695, Aspergillus
		clavatus NRRL 1 : ACLA_065860, Aspergillus zonatus :
AN9137	7.52	Aspzo1_0012532 and Aspergillus sydowii : Aspsy1_0093862
		Ortholog of A. fumigatus Af293 : Afu6g04470, A. niger CBS
		513.88 : An15g01120, A. oryzae RIB40 : AO090701000109,
		Aspergillus wentii : Aspwe1_0179993 and Aspergillus terreus
AN6579	7.51	NIH2624 : ATET_07015
		Ortholog of A. fumigatus Af293 : Afu5g08180, A. oryzae
		RIB40 : AO090701000735, Aspergillus wentii :
	7.40	Aspwe1_016/58/, Aspergillus sydowii : Aspsy1_0046259 and
AN7716	7.48	Aspergillus terreus NIH2624 : AIEI_08308
AIN609/	/.48	protein of unknown function
A NI 1 1 0 7	7 4 4	Has domain(s) with predicted carbonydrate binding, catalytic
ANII9/	/.44	Los domain(a) with predicted role in transmembrane transmet
A N/7200	7 40	rias domain(s) with predicted role in transmembrane transport
AIN / 200	/.40	and integral component of memorane localization

AN6088	7.39	Predicted metal ion transmembrane transporter
AN11851	7.39	protein of unknown function
		Ortholog of A. nidulans FGSC A4 : AN6780, A. fumigatus
		Af293 : Afu7g01210, Aspergillus sydowii : Aspsy1_0029236,
		Aspsy1_0043488 and Aspergillus terreus NIH2624 :
AN10401	7.38	ATET_08673
AN8981	7.33	Protein with homology to GPR1/FUN34/YaaH family members
AN6697	7.30	Putative Sun-family protein
AN10473	7.28	protein of unknown function
AN11641	7.26	Ortholog of Aspergillus versicolor : Aspve1_0117193
AN3325	7.25	protein of unknown function
AN7823	7.19	Putative peroxidase
AN6648	7.17	protein of unknown function
		Has domain(s) with predicted role in transmembrane transport
AN4109	7.17	and integral component of membrane localization
AN7131	7.16	Putative cytochrome P450
AN6273	7.16	Ortholog(s) have intracellular localization
		Ortholog of Aspergillus versicolor : Aspve1_0064838 and
AN1646	7.14	Aspergillus sydowii : Aspsy1_0059989
AN12034	7.12	protein of unknown function
AN8617	7.10	protein of unknown function
AN9171	7.09	protein of unknown function
		Has domain(s) with predicted role in transmembrane transport
AN8083	7.06	and integral component of membrane localization
AN8803	7.02	Hydrophobin
		Has domain(s) with predicted metal ion transmembrane
		transporter activity, role in metal ion transport, transmembrane
AN6960	7.00	transport and membrane localization
AN11193	6.99	Has domain(s) with predicted oxygen transporter activity
		Has domain(s) with predicted 2 iron, 2 sulfur cluster binding,
AN10493	6.98	oxidoreductase activity and role in oxidation-reduction process
		Putative glutaminase A with a predicted role in glutamate and
AN4809	6.98	glutamine metabolism
		Ortholog of Aspergillus glaucus : Aspgl1_0040120, Aspergillus
		versicolor : Aspve1_0054084 and Aspergillus sydowii :
AN4374	6.97	Aspsy1_0062289

		Ortholog of A. fumigatus Af293 : Afu5g03300, A. niger CBS
		513.88 : An09g05625, Neosartorya fischeri NRRL 181 :
		NFIA_038810, Aspergillus wentii : Aspwe1_0114897 and
AN11597	6.97	Aspergillus versicolor : Aspve1_0203178
		Putative transglycosidase with a predicted role in glucan
AN3053	6.96	processing
AN5474	6.96	protein of unknown function
		Has domain(s) with predicted metal ion transmembrane
		transporter activity, role in metal ion transport, transmembrane
AN6940	6.95	transport and membrane localization
		Ortholog of A. niger CBS 513.88 : An09g02430, An03g05960,
		An09g00710, An09g00820, An09g01710 and A. oryzae RIB40 :
		AO090005000954, AO090003000250, AO090012000369,
		AO090010000570, AO090023000882, AO090120000022,
AN0788	6.95	AO090012000900
		Alcohol dehydrogenase with a role in two-carbon compound
AN8979	6.94	metabolism
		Putative L-arabinitol 4-dehydrogenase with a predicted role in
		L-arabinose/arabitol and D-xylose/D,L-xylulose/xylitol
AN4336	6.93	metabolism
AN0791	6.89	protein of unknown function
AN7892	6.89	Small heat-shock protein
AN8514	6.88	Asterriquinone prenyltransferase
AN8513	6.88	Putative single-module nonribosomal peptide synthetase (NRPS)
		Has domain(s) with predicted aspartic-type endopeptidase
AN7858	6.87	activity and role in proteolysis
		Ortholog of A. niger CBS 513.88 : An02g00370, An06g00670,
		A. oryzae RIB40 : AO090102000655, Aspergillus wentii :
		Aspwe1_0024055, Aspwe1_0181691 and Aspergillus
AN9323	6.87	versicolor : Aspve1_0090061, Aspve1_0142746
AN10482	6.86	Putative beta-glucosidase
		Has domain(s) with predicted role in response to stress and
AN2355	6.86	integral component of membrane localization
AN11966	6.85	protein of unknown function
		Has domain(s) with predicted role in transmembrane transport
AN6928	6.84	and integral component of membrane localization

AN5781	6.84	Putative 30 kilodalton heat shock protein
AN1897	6.83	Homogentisate 1,2-dioxygenase, enzyme in phenylalanine catabolism
		Putative proline dehydrogenase with a predicted role in proline
AN1731	6.82	metabolism
AN10238	6.81	Putative GNAT-type acetyltransferase
		Has domain(s) with predicted role in transmembrane transport
AN0374	6.80	and integral component of membrane localization
		Arrestin domains and PY motif-containing protein with
		homology to Saccharomyces cerevisiae Rod1p and Rog3p
AN3265	6.80	proteins
		Has domain(s) with predicted catalytic activity,
		phosphopantetheine binding, transferase activity and role in
AN12440	6.79	metabolic process
		Ortholog(s) have nitronate monooxygenase activity and role in
AN4268	6.77	denitrification pathway, detoxification of nitrogen compound
AN11923	6.77	protein of unknown function
AN12330	6.77	protein of unknown function

GENE ID	Log2 Fold Change	Description
		Has domain(s) with predicted RNA binding, ribonuclease III
AFU5G06830	-13.96	activity and role in RNA processing
		Has domain(s) with predicted intramolecular transferase
AFU7G00260	-13.69	activity and role in hopanoid biosynthetic process
		Ortholog of A. oryzae RIB40 : AO090138000080, Aspergillus
		flavus NRRL 3357 : AFL2T_08758, Neosartorya fischeri
		NRRL 181 : NFIA_040860 and Aspergillus fumigatus A1163 :
AFU5G01260	-13.60	AFUB_049760
AFU7G04920	-13.34	protein of unknown function
		Ortholog of A. nidulans WetA, a developmental regulatory
		protein involved in conidial development and activator of
AFU4G13230	-12.90	conidium-specific gene expression
		Ortholog(s) have role in austinol biosynthetic process,
AFU7G00270	-12.61	dehydroaustinol biosynthetic process
AFU2G14330	-12.44	Ortholog of Aspergillus fumigatus A1163 : AFUB_029950
		Ortholog of A. oryzae RIB40 : AO090005000031, Aspergillus
		glaucus : Aspgl1_0049355, Aspergillus flavus NRRL 3357 :
AFU6G09570	-12.33	AFL2T_00053 and Aspergillus wentii : Aspwe1_0032683
AFU7G08580	-12.23	Has domain(s) with predicted GTP binding, GTPase activity
AFU1G17060	-12.15	Ortholog(s) have nucleus localization
AFU6G03285	-12.12	protein of unknown function
		Ortholog of Aspergillus acidus : Aspfo1_0053584 and
AFU8G05770	-12.06	Aspergillus fumigatus A1163 : AFUB_081780
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA_094800
AFU8G01330	-12.04	and Aspergillus fumigatus A1163 : AFUB_085280
		Ortholog of A. oryzae RIB40 : AO090010000310, Aspergillus
		wentii : Aspwe1_0294100, Aspwe1_0531408, Aspergillus
		niger ATCC 1015 : 53802-mRNA and Aspergillus terreus
AFU3G03040	-11.93	NIH2624 : ATET_10090
AFU6G03210	-11.75	protein of unknown function
AFU4G00180	-11.69	Fatty acid 8,11-diol synthase
AFU1G01490	-11.59	Ortholog of A. nidulans FGSC A4 : AN0391, AN7222, A.

Table S3-5 Top 100 genes showing decreased mRNA levels in the $\Delta A fuwetA$ conidia.

		fumigatus Af293 : Afu2g01760, A. niger CBS 513.88 :
		An03g06670, An15g07300 and A. oryzae RIB40 :
		AO090010000045/aoiD, AO090102000259
		Ortholog of A. nidulans FGSC A4 : AN8638/cetJ, A.
		fumigatus Af293 : Afu2g14320, Afu3g13130, Afu8g01530, A.
		niger CBS 513.88 : An12g10710, An01g01230 and A. oryzae
AFU4G00730	-11.52	RIB40 : AO090113000154
		Ortholog of A. oryzae RIB40 : AO090010000138,
		Neosartorya fischeri NRRL 181 : NFIA_063520, Aspergillus
		wentii : Aspwe1_0044901 and Aspergillus fumigatus A1163 :
AFU3G13750	-11.52	AFUB_035440
		Ortholog of Aspergillus fumigatus A1163 : AFUB_081770 and
AFU8G05780	-11.51	Aspergillus zonatus : Aspzo1_1313164
		Protein of unknown function identified by mass spectrometry,
AFU4G00740	-11.47	abundant in conidia
		Has domain(s) with predicted UDP-N-acetylmuramate
		dehydrogenase activity, flavin adenine dinucleotide binding
AFU4G14630	-11.42	activity and role in oxidation-reduction process
		Has domain(s) with predicted transferase activity, transferring
AFU3G03580	-11.35	acyl groups other than amino-acyl groups activity
AFU1G01175	-11.17	Has domain(s) with predicted role in cell redox homeostasis
		Has domain(s) with predicted oxidoreductase activity and role
AFU1G01500	-11.12	in metabolic process
		Ortholog of A. nidulans FGSC A4 : AN2488, A. fumigatus
		Af293 : Afu4g03010, A. niger CBS 513.88 : An14g03080, A.
		oryzae RIB40 : AO090012000174 and Aspergillus wentii :
AFU3G00500	-11.08	Aspwe1_0176515, Aspwe1_0622364
AFU3G00605	-11.08	protein of unknown function
		Has domain(s) with predicted triglyceride lipase activity and
AFU7G04950	-10.88	role in lipid metabolic process
AFU5G09180	-10.87	Ortholog(s) have extracellular region localization
		Ortholog of A. oryzae RIB40 : AO090103000096, Aspergillus
		flavus NRRL 3357 : AFL2T_12273, Aspergillus niger ATCC
		1015: 127757-mRNA and Aspergillus terreus NIH2624:
AFU8G06510	-10.86	ATET_04327
AFU7G04930	-10.85	Putative alkaline serine protease

AFU4G00450	-10.81	Ortholog of Aspergillus fumigatus A1163 : AFUB_100990
		Has domain(s) with predicted phosphatidylserine
		decarboxylase activity and role in phospholipid biosynthetic
AFU6G00260	-10.80	process
AFU5G00660	-10.64	Ortholog of Aspergillus fumigatus A1163 : AFUB_049130
AFU2G00440	-10.56	protein of unknown function
		Ortholog of A. nidulans FGSC A4 : AN12093, A. niger CBS
		513.88 : An01g11550, Neosartorya fischeri NRRL 181 :
		NFIA_057330, Aspergillus wentii : Aspwe1_0039637 and
AFU6G11670	-10.46	Aspergillus clavatus NRRL 1 : ACLA_085310
AFU1G01170	-10.43	Ortholog of Aspergillus fumigatus A1163 : AFUB_079640
AFU7G08575	-10.37	Hsp70 family chaperone
AFU5G14800	-10.25	Lactate dehydrogenase
		Ortholog(s) have role in hyphal growth, response to cold,
		response to heat, response to oxidative stress, response to salt
AFU1G01980	-10.22	stress, sporocarp development involved in sexual reproduction
AFU5G01340	-10.21	Putative phospholipase B
		Has domain(s) with predicted carbon-sulfur lyase activity and
AFU5G06910	-10.21	role in metabolic process
		Has domain(s) with predicted FAD binding, oleate hydratase
AFU3G03570	-10.20	activity and role in fatty acid metabolic process
		Has domain(s) with predicted FAD binding, oxidoreductase
AFU1G17670	-10.08	activity and role in metabolic process
		Ortholog of A. niger CBS 513.88 : An07g06270, Aspergillus
		tubingensis : Asptu1_0057823, Aspergillus fumigatus A1163 :
		AFUB_090620 and Aspergillus terreus NIH2624 :
AFU7G05050	-10.05	ATET_00875
		Ortholog of A. oryzae RIB40 : AO090701000205, Aspergillus
		flavus NRRL 3357 : AFL2T_05851 and Aspergillus fumigatus
AFU7G08560	-9.99	A1163 : AFUB_097700
AFU1G17430	-9.97	Ortholog(s) have monophenol monooxygenase activity
AFU3G13755	-9.79	protein of unknown function
AFU8G04870	-9.75	Has domain(s) with predicted oxidoreductase activity
		Ortholog of A. oryzae RIB40 : AO090010000578 and
AFU8G01690	-9.73	Aspergillus fumigatus A1163 : AFUB_084900
AFU2G00470	-9.72	Has domain(s) with predicted RNA polymerase II

		transcription factor activity, sequence-specific DNA binding,
		zinc ion binding activity, role in regulation of transcription,
		DNA-templated and nucleus localization
		Has domain(s) with predicted transferase activity, transferring
AFU8G07260	-9.48	glycosyl groups activity and membrane localization
		Ortholog(s) have identical protein binding, mRNA binding,
AFU5G10270	-9.39	unfolded protein binding activity
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA 032740,
		Aspergillus versicolor : Aspve1 0033447, Aspergillus niger
		ATCC 1015 : 45038-mRNA and Aspergillus sydowii :
AFU7G08570	-9.31	Aspsy1 0034803
		Protein similar to nonribosomal peptide synthases (NRPS-
AFU8G01640	-9.28	like), encoded in a predicted secondary metabolite gene cluster
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA_094550
AFU8G01110	-9.27	and Aspergillus fumigatus A1163 : AFUB_085490
		Has domain(s) with predicted role in transmembrane transport
AFU3G02780	-9.25	and integral component of membrane localization
AFU3G03560	-9.20	Putative coenzyme A disulfide reductase
AFU5G14810	-9.15	Putative pyruvate decarboxylase
AFU1G15610	-9.14	Putative zinc-binding dehydrogenase family oxidoreductase
		Ortholog(s) have oxidoreductase activity, acting on CH-OH
AFU7G00700	-8.92	group of donors activity and cytosol, nucleus localization
AFU4G08240	-8.88	Putative zinc-containing alcohol dehydrogenase
AFU1G16960	-8.82	Protein of unknown function identified by mass spectrometry
		Has domain(s) with predicted oxidoreductase activity and role
AFU4G00440	-8.72	in metabolic process
		Has domain(s) with predicted phosphoric diester hydrolase
AFU4G09255	-8.68	activity and role in lipid metabolic process
AFU7G00805	-8.66	protein of unknown function
		Has domain(s) with predicted phosphatidylserine
		decarboxylase activity and role in phospholipid biosynthetic
AFU1G16930	-8.65	process
		Ortholog of A. nidulans FGSC A4 : AN8649, A. niger CBS
		513.88 : An01g02930, A. oryzae RIB40 : AO090009000519,
		Aspergillus wentii : Aspwe1_0037325, Aspwe1_0104267 and
AFU1G04100	-8.65	Aspergillus sydowii : Aspsy1_0048337

		Has domain(s) with predicted catalytic activity, cation binding
AFU2G11610	-8.62	activity and role in carbohydrate metabolic process
		Putative questin oxygenase involved in trypacidin
		biosynthesis, member of the tpc secondary metabolite gene
AFU4G14500	-8.58	cluster
		Has domain(s) with predicted ATP binding, protein kinase
		activity, protein tyrosine kinase activity and role in protein
AFU3G02460	-8.56	phosphorylation
		Has domain(s) with predicted catalytic activity, magnesium
AFU6G11680	-8.54	ion binding, thiamine pyrophosphate binding activity
		Has domain(s) with predicted role in cell wall macromolecule
AFU6G09790	-8.50	catabolic process
AFU1G00300	-8.37	Ortholog of Aspergillus acidus : Aspfo1_0200728
		Ortholog of A. nidulans FGSC A4 : AN8144, AN1651, A.
		fumigatus Af293 : Afu5g14600, Afu6g13950, A. niger CBS
		513.88 : An11g02490, An01g11420 and A. oryzae RIB40 :
AFU6G00460	-8.35	AO090001000384, AO090011000740
		Has domain(s) with predicted catalytic activity and role in
AFU7G06900	-8.35	metabolic process
		Ortholog of A. nidulans FGSC A4 : AN2445, A. fumigatus
		Af293 : Afu6g10580, A. niger CBS 513.88 : An11g00710, A.
		oryzae RIB40 : AO090023000216 and Aspergillus wentii :
AFU6G14010	-8.31	Aspwe1_0027041
		Has domain(s) with predicted polygalacturonase activity and
AFU8G07265	-8.27	role in carbohydrate metabolic process
AFU6G12210	-8.27	Putative endo-1,4-beta-xylanase
AFU3G00850	-8.26	Transcript up-regulated in conidia exposed to neutrophils
		Ortholog of A. nidulans FGSC A4 : AN2683, AN5069, A.
		fumigatus Af293 : Afu5g02860, A. niger CBS 513.88 :
		An09g04830, An14g05730 and A. oryzae RIB40 :
AFU5G14320	-8.25	AO090102000482, AO090001000197
		Ortholog of A. nidulans FGSC A4 : AN1754, AN8607, A.
		niger CBS 513.88 : An11g06690, An18g01930, A. oryzae
		RIB40 : AO090001000144 and Aspergillus wentii :
AFU3G02050	-8.19	Aspwe1_0028029, Aspwe1_0705658
AFU2G11620	-8.18	Has domain(s) with predicted catalytic activity, cation binding

	activity and role in carbohydrate metabolic process
	Has domain(s) with predicted transporter activity, role in
-8.18	transmembrane transport, transport and membrane localization
	Has domain(s) with predicted heme binding, peroxidase
-8.10	activity and role in oxidation-reduction process
	Ortholog of A. nidulans FGSC A4 : AN0020, A. niger CBS
	513.88 : An15g07480, Aspergillus versicolor :
	Aspve1_0365574, Aspergillus niger ATCC 1015 : 40853-
-8.07	mRNA and Aspergillus zonatus : Aspzo1_0077270
	Has domain(s) with predicted oxidoreductase activity and role
-8.06	in metabolic process
-8.02	Major facilitator superfamily (MFS) sugar transporter
	Has domain(s) with predicted catalytic activity, oxidoreductase
-7.99	activity
-7.98	AraC-like ligand binding domain protein
-7.96	Glutamate decarboxylase
	Putative zinc-dependent alcohol dehydrogenase, involved in
-7.95	ethanol fermentation
-7.93	Has domain(s) with predicted hydrolase activity
-7.92	Has domain(s) with predicted zinc ion binding activity
-7.88	Ortholog(s) have catalase activity
-7.88	Has domain(s) with predicted role in cell adhesion
	Ortholog of Aspergillus glaucus : Aspgl1_0038114,
	Neosartorya fischeri NRRL 181 : NFIA_011700 and
-7.85	Aspergillus fumigatus A1163 : AFUB_013300
-7.82	Ortholog(s) have cytosol, nucleus localization
-7.81	protein of unknown function
-7.80	Ortholog of Aspergillus fumigatus A1163 : AFUB_095080
	-8.18 -8.10 -8.07 -8.06 -8.02 -7.99 -7.98 -7.96 -7.95 -7.93 -7.92 -7.88 -7.88 -7.88 -7.88 -7.85 -7.82 -7.81 -7.80

GENE ID	Log ₂ Fold	Description
	Change	
AFU8G00500	10.61	Putative acetate-CoA ligase
AFU8G00510	10.34	Predicted oxidoreductase
		Putative transferase family protein with a predicted role in
AFU4G14820	10.29	helvonic acid biosynthesis
		Ortholog(s) have role in arginine transport, asperfuranone
AFU8G00940	10.24	biosynthetic process and plasma membrane localization
AFU3G12910	10.01	Putative O-methyltransferase
AFU8G00550	9.99	Putative methyl transferase
AFU8G00580	9.92	Putative elongation factor ElfB
AFU6G00180	9.80	Fibrinogen-binding protein of unknown function
AFU7G05180	9.72	Afusin
AFU8G00570	9.54	Putative hydrolase
AFU8G00540	9.52	Non-ribosomal peptide synthetase (NRPS)
AFU8G00530	9.52	Putative alpha/beta hydrolase
		Putative oxidosqualene:protostadienol cyclase (OSPC) which is
AFU4G14770	9.43	involved in the biosynthesis of the antibiotic helvolic acid
AFU5G01990	9.35	BYS1 domain protein
AFU8G00520	9.31	Membrane-bound terpene cyclase
		Has domain(s) with predicted role in transmembrane transport
AFU8G06560	9.30	and integral component of membrane localization
		Has domain(s) with predicted 3-deoxy-7-phosphoheptulonate
		synthase activity, catalytic activity and role in aromatic amino
AFU4G01450	9.25	acid family biosynthetic process, biosynthetic process
		Ortholog of A. nidulans FGSC A4 : AN7941, A. fumigatus
		Af293 : Afu7g00370, A. niger CBS 513.88 : An03g01770,
		Aspergillus sydowii : Aspsy1_0156290 and Aspergillus terreus
AFU2G12680	9.12	NIH2624 : ATET_07370
AFU8G00430	8.93	Ortholog of A. nidulans AN1088
		Ortholog of Aspergillus glaucus : Aspgl1_0034877, Neosartorya
		fischeri NRRL 181 : NFIA_102140, Aspergillus wentii :
		Aspwe1_0171319 and Aspergillus fumigatus A1163 :
AFU4G14170	8.86	AFUB_071320

Table S3-6 Top 100 genes showing increased mRNA levels in the $\Delta A fuwetA$ conidia.

		Ortholog of A. niger CBS 513.88 : An08g12010 and Aspergillus
AFU1G00770	8.84	fumigatus A1163 : AFUB_075320, AFUB_096610
		Has domain(s) with predicted catalytic activity and role in
AFU3G03270	8.82	metabolic process
		Has domain(s) with predicted role in defense response, negative
AFU8G00710	8.82	regulation of growth
AFU7G00170	8.80	Dimethylallyl tryptophan synthase
AFU2G12630	8.67	Allergen Asp f 13
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA_043690,
		Aspergillus fumigatus A1163 : AFUB_101940 and Aspergillus
AFU4G01460	8.60	clavatus NRRL 1 : ACLA_061720
		Ortholog of A. nidulans FGSC A4 : AN9441, A. oryzae RIB40 :
		AO090023000672, AO090026000071, Neosartorya fischeri
		NRRL 181 : NFIA_107300 and Aspergillus wentii :
AFU4G08870	8.56	Aspwe1_0064277
AFU5G13730	8.49	Ortholog of Aspergillus fumigatus A1163 : AFUB_061470
AFU8G00480	8.42	Putative iron-dependent oxygenase
		Ortholog of A. fumigatus Af293 : Afu4g01290/csn, A. niger
		CBS 513.88 : An04g04530, A. oryzae RIB40 :
		AO090011000027, AO090020000697/csnA and Neosartorya
AFU8G00930	8.41	fischeri NRRL 181 : NFIA_043990, NFIA_094360
AFU8G00560	8.22	Putative P450 monooxygenase
		Putative transferase family protein with a predicted role in
AFU4G14840	8.15	helvonic acid biosynthesis
		Ortholog of A. nidulans FGSC A4 : AN3285, Neosartorya
		fischeri NRRL 181 : NFIA_044020, Aspergillus versicolor :
		Aspve1_0066429 and Aspergillus fumigatus A1163 :
AFU4G01270	8.05	AFUB_101760
		Putative cellobiohydrolase, a predicted secreted hydrolase with a
AFU3G01910	7.93	fungal cellulose binding domain
AFU3G12920	7.80	Nonribosomal peptide synthase (NRPS)
		Putative cytochrome P450 monooxygenase with a predicted role
AFU4G14780	7.79	in helvonic acid biosynthesis
AFU5G01490	7.78	Putative hydrophobin
		Ortholog of A. oryzae RIB40 : AO090003001576, Aspergillus
AFU8G06810	7.74	glaucus : Aspgl1_0145643, Aspergillus flavus NRRL 3357 :

		AFL2T_01871 and Neosartorya fischeri NRRL 181 :
		NFIA_024040
		Ortholog of A. oryzae RIB40 : AO090001000013/wykH,
		AO090102000466, Aspergillus flavus NRRL 3357 :
		AFL2T_07266, AFL2T_09860, Neosartorya fischeri NRRL
		181 : NFIA_007610 and Aspergillus versicolor :
AFU6G03450	7.74	Aspve1_0401363
AFU5G02330	7.70	Allergen Asp f 1
		Ortholog of Aspergillus brasiliensis : Aspbr1_0199026,
		Neosartorya fischeri NRRL 181 : NFIA_055440, NFIA_112700,
		Aspergillus fumigatus A1163 : AFUB_075800 and Aspergillus
AFU6G09745	7.70	clavatus NRRL 1 : ACLA_006680
AFU8G01760	7.70	protein of unknown function
AFU8G00440	7.68	Baeyer-Villiger monooxygenase (BVMO)
AFU3G12900	7.67	Putative transporter
AFU1G16190	7.60	Cell wall glucanase
AFU6G00270	7.51	protein of unknown function
AFU3G00870	7.49	Has domain(s) with predicted N-acetyltransferase activity
AFU8G00490	7.46	Putative polyketide synthase
		Ortholog of A. fumigatus Af293 : Afu3g13630, Afu7g00570, A.
		niger CBS 513.88 : An15g01210, An09g06230, An09g04210,
		An01g07840 and Neosartorya fischeri NRRL 181 :
AFU2G17160	7.45	NFIA_095980
AFU6G07820	7.43	Putative integral membrane protein
AFU4G01290	7.37	Glycosyl hydrolase family 75 chitosanase
		Ortholog of A. nidulans FGSC A4 : AN5172, A. fumigatus
		Af293 : Afu4g09700, A. niger CBS 513.88 : An04g07430, A.
		oryzae RIB40 : AO090012000946, AO090003001270 and
AFU6G07000	7.33	Aspergillus wentii : Aspwe1_0166832
AFU6G03440	7.31	fructosyl amino acid oxidase, putative
		Ortholog of A. nidulans FGSC A4 : AN9206, AN1849, A.
		fumigatus Af293 : Afu5g02320, Afu5g09930, A. niger CBS
		513.88 : An03g02680, An12g10080, An12g02060 and A. oryzae
AFU4G01210	7.31	RIB40 : AO090001000129, AO090010000537
		Has domain(s) with predicted catalytic activity, hydrolase
AFU4G00390	7.31	activity, hydrolyzing O-glycosyl compounds activity and role in

		carbohydrate metabolic process
		Ortholog of A. niger CBS 513.88 : An05g02310, A. oryzae
		RIB40 : AO090010000612, Neosartorya fischeri NRRL 181 :
		NFIA 095740 and Aspergillus clavatus NRRL 1 :
AFU8G02070	7.29	ACLA 043710
		Predicted O-methyltransferase, encoded in the putative gliotoxin
AFU6G09680	7.28	biosynthetic gene cluster
AFU3G00880	7.27	Putative adhesin protein
		Predicted repeat rich glycophosphatidylinositol (GPI)-anchored
AFU7G00970	7.24	cell wall protein
AFU8G00380	7.24	Putative alpha/beta hydrolase
		Putative major facilitator superfamily (MFS) monosaccharide
AFU6G03060	7.23	transporter
AFU1G03210	7.20	Myb family transcription factor
		Has domain(s) with predicted hydrolase activity, acting on
		carbon-nitrogen (but not peptide) bonds, in linear amides
		activity, role in ceramide metabolic process and integral
AFU3G01270	7.19	component of membrane localization
AFU6G03490	7.19	phenol-2-monooxygenase, putative
		Has domain(s) with predicted RNA binding, endoribonuclease
AFU4G01200	7.17	activity, ribonuclease activity
		Ortholog of A. nidulans FGSC A4 : AN7941, A. fumigatus
		Af293 : Afu2g12680, A. niger CBS 513.88 : An03g01770,
		Aspergillus sydowii : Aspsy1_0156290 and Aspergillus terreus
AFU7G00370	7.11	NIH2624 : ATET_07370
		Putative cytochrome P450 monooxygenase with a predicted role
AFU4G14830	7.10	in helvonic acid biosynthesis
		Ortholog of A. nidulans FGSC A4 : AN7836, A. oryzae RIB40 :
		AO090003000833, Neosartorya fischeri NRRL 181 :
AFU7G01060	7.03	NFIA_113770 and Aspergillus terreus NIH2624 : ATET_02590
		Putative cytochrome P450 monooxygenase with a predicted role
AFU4G14790	7.03	in helvonic acid biosynthesis
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA_093900,
		Aspergillus versicolor : Aspve1_0045862, Aspergillus fumigatus
		A1163 : AFUB_086210 and Aspergillus sydowii :
AFU8G00360	7.03	Aspsy1_0048601
AFU6G00690	7.02	protein of unknown function
------------	------	--
		Has domain(s) with predicted transferase activity, transferring
AFU6G14480	6.97	glycosyl groups activity and role in protein glycosylation
AFU8G07090	6.95	Predicted adhesin-like protein, ortholog of A. nidulans AN3258
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA 067110 and
AFU3G10175	6.94	Aspergillus fumigatus A1163 : AFUB 038990
AFU2G14520	6.92	Secreted hydrolase
AFU4G13610	6.91	Ortholog of Aspergillus fumigatus A1163 : AFUB 070530
AFU1G17180	6.90	Putative pyridine nucleotide-disulphide oxidoreductase
AFU6G03430	6.87	Putative C6 finger domain protein
AFU8G01770	6.85	Predicted adhesin-like protein
		Has domain(s) with predicted nucleic acid binding, zinc ion
AFU4G13600	6.84	binding activity
AFU3G12200	6.82	OPT family small oligopeptide transporter
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA_062590 and
AFU3G14665	6.81	Aspergillus fumigatus A1163 : AFUB_034560
AFU2G03830	6.78	Allergen Asp f 4
AFU2G14480	6.78	Ortholog(s) have extracellular region localization
		Ortholog of Aspergillus fumigatus A1163 : AFUB_081100 and
AFU8G06680	6.78	Aspergillus terreus NIH2624 : ATET_08599
AFU5G03780	6.77	Putative L-PSP endoribonuclease family protein
		Has domain(s) with predicted beta-N-acetylhexosaminidase
		activity, catalytic activity, hydrolase activity, hydrolyzing O-
		glycosyl compounds activity and role in carbohydrate metabolic
AFU2G00640	6.76	process
AFU8G00910	6.76	Ortholog(s) have role in asperfuranone biosynthetic process
AFU3G14170	6.75	Putative high-affinity hexose transporter
		Ortholog of Neosartorya fischeri NRRL 181 : NFIA_069600,
		Aspergillus wentii : Aspwe1_0176375, Aspergillus fumigatus
		A1163 : AFUB_041540 and Aspergillus clavatus NRRL 1 :
AFU3G07580	6.73	ACLA_035370
		Has domain(s) with predicted role in transmembrane transport
AFU8G00800	6.72	and membrane localization
AFU3G01400	6.70	Ortholog(s) have role in drug transmembrane transport
		Has domain(s) with predicted sugar:proton symporter activity,
AFU8G02090	6.70	role in carbohydrate transport and Golgi membrane, integral

		component of membrane localization
		Novel beta-1,3-glucan modifying enzyme involved in fungal
AFU7G05450	6.69	morphogenesis
		Has domain(s) with predicted poly(beta-D-mannuronate) lyase
		activity, role in alginic acid catabolic process and periplasmic
AFU1G01300	6.68	space localization
		Has domain(s) with predicted catalytic activity, pyridoxal
AFU6G00290	6.67	phosphate binding activity and role in biosynthetic process
AFU8G00400	6.65	protein of unknown function
AFU8G05630	6.59	putative chitin synthase
AFU4G11480	6.58	Ortholog(s) have role in cellular potassium ion homeostasis
AFU3G01390	6.57	protein of unknown function

Table S3-7 Top enriched GO categories of orthologs in All_orthogroups consistently up-/down-regulated in *∆wetA* condia

GO Category	# of	% of Genes
	Gene	in Category
	S	
A. nidulans		
single-organism process	305	7.8
single-organism cellular process	240	8.1
single-organism metabolic process	189	8.2
response to stimulus	107	9.5
organonitrogen compound metabolic process	94	10.2
small molecule metabolic process	88	9
cellular response to stimulus	88	8.8
oxidation-reduction process	81	9.2
response to stress	72	10
carbohydrate metabolic process	68	13.4
developmental process	65	14.8
single-organism developmental process	62	14.9
phosphate-containing compound metabolic process	60	11.8
phosphorus metabolic process	60	11.4
response to chemical	59	10.3
reproduction	57	12.8
organonitrogen compound biosynthetic process	57	9.2
anatomical structure development	56	14.8
cellular response to chemical stimulus	53	10.6
cellular response to stress	53	9.1
cellular component biogenesis	52	9.7
anatomical structure morphogenesis	50	16
sporulation	49	16.8
anatomical structure formation involved in morphogenesis	49	16.4
multi-organism process	48	12.1
organophosphate metabolic process	46	14.4
carbohydrate derivative metabolic process	46	13.5
single-organism carbohydrate metabolic process	43	16.2
growth	43	11.2

cellular developmental process	42	17.4
reproductive process	42	13.3
filamentous growth	42	11.5
asexual reproduction	40	18.8
asexual sporulation	39	20.3
cell differentiation	39	17.6
sporulation resulting in formation of a cellular spore	37	17.8
cellular amide metabolic process	37	11.1
positive regulation of biological process	37	10.3
developmental process involved in reproduction	36	12.9
regulation of biological quality	33	11.6
nucleobase-containing small molecule metabolic process	32	13.6
amide biosynthetic process	31	10.6
cell wall organization or biogenesis	30	14.8
cellular carbohydrate metabolic process	30	14.5
response to abiotic stimulus	30	12.4
nucleotide metabolic process	29	16.7
nucleoside phosphate metabolic process	29	16.4
monocarboxylic acid metabolic process	29	12
multi-organism reproductive process	28	10.8
sexual reproduction	28	10.8
response to external stimulus	27	11.1
cofactor metabolic process	26	14.1
phosphorylation	26	12.3
peptide metabolic process	26	10.3
hyphal growth	25	13.8
peptide biosynthetic process	25	10.6
fungal-type cell wall organization or biogenesis	24	18.6
conidium formation	24	18.6
ribose phosphate metabolic process	23	18.5
response to oxidative stress	23	18.5
coenzyme metabolic process	23	15
single organism reproductive process	23	13.3
translation	23	11.6
carbohydrate catabolic process	22	13.3
external encapsulating structure organization	21	19.4

cell wall organization	21	19.4
regulation of developmental process	21	15.2
filamentous growth of a population of unicellular organisms	21	10.8
pyridine-containing compound metabolic process	20	27
regulation of anatomical structure morphogenesis	20	15.7
generation of precursor metabolites and energy	20	13
carbohydrate derivative biosynthetic process	20	12.1
asexual sporulation resulting in formation of a cellular spore	19	30.2
fungal-type cell wall organization	19	19.6
pathogenesis	19	15.6
organ development	19	12.1
reproductive structure development	19	12.1
system development	19	12.1
spore-bearing organ development	19	12.1
reproductive system development	19	12.1
multicellular organismal development	19	12
single-multicellular organism process	19	11.7
multicellular organismal process	19	11.7
nicotinamide nucleotide metabolic process	18	26.5
pyridine nucleotide metabolic process	18	26.5
oxidoreduction coenzyme metabolic process	18	22.5
nucleoside metabolic process	18	13
glycosyl compound metabolic process	18	12.7
small molecule catabolic process	18	11.8
carbohydrate biosynthetic process	17	23
monosaccharide metabolic process	17	18.1
cellular response to oxidative stress	17	16.8
purine-containing compound metabolic process	17	13.7
response to inorganic substance	17	12.1
conidiophore development	16	20.3
response to oxygen-containing compound	16	16.5
ribonucleoside metabolic process	16	15.7
ribonucleotide metabolic process	16	15.5
cellular response to oxygen-containing compound	15	17.9
ribonucleoside monophosphate metabolic process	15	15.3
nucleoside monophosphate metabolic process	15	15.2

purine ribonucleotide metabolic process	15	15
purine nucleotide metabolic process	15	14.6
cellular homeostasis	15	12
symbiosis, encompassing mutualism through parasitism	14	26.4
interspecies interaction between organisms	14	25.5
single-organism carbohydrate catabolic process	14	21.9
regulation of sporulation	14	19.2
purine ribonucleoside monophosphate metabolic process	14	14.9
purine nucleoside monophosphate metabolic process	14	14.9
purine nucleoside metabolic process	14	14.7
purine ribonucleoside metabolic process	14	14.7
cellular component morphogenesis	13	23.2
hexose metabolic process	13	20.3
cell wall biogenesis	13	19.7
response to osmotic stress	13	13.8
response to toxic substance	13	12.9
regulation of asexual sporulation	12	23.5
regulation of asexual reproduction	12	23.1
regulation of sporulation resulting in formation of a cellular	12	23.1
spore		
regulation of cell differentiation	12	22.2
positive regulation of developmental process	12	18.2
purine ribonucleoside triphosphate metabolic process	12	16.2
ribonucleoside triphosphate metabolic process	12	16.2
purine nucleoside triphosphate metabolic process	12	15.8
nucleoside triphosphate metabolic process	12	15.4
cell wall macromolecule metabolic process	12	13.3
biological adhesion	11	35.5
cellular carbohydrate biosynthetic process	11	21.6
regulation of response to stress	11	16.4
ATP metabolic process	11	15.1
organelle assembly	11	14.5
positive regulation of response to stimulus	10	14.7
glucose metabolic process	9	31
nucleoside diphosphate metabolic process	9	27.3
interaction with host	9	25.7

positive regulation of sporulation	9	25.7
pyruvate metabolic process	9	24.3
amino sugar metabolic process	9	19.1
cellular aldehyde metabolic process	9	18.8
fungal-type cell wall biogenesis	9	18.4
spore germination	9	18.4
pigment biosynthetic process	9	17.6
pigment metabolic process	9	16.1
positive regulation of cell differentiation	8	29.6
response to host defenses	8	29.6
positive regulation of sporulation resulting in formation of a	8	29.6
cellular spore		
response to host	8	29.6
response to other organism	8	27.6
ADP metabolic process	8	27.6
response to external biotic stimulus	8	27.6
response to defenses of other organism involved in symbiotic	8	27.6
interaction		
cellular component macromolecule biosynthetic process	8	26.7
ribonucleoside diphosphate metabolic process	8	26.7
purine ribonucleoside diphosphate metabolic process	8	26.7
cell wall macromolecule biosynthetic process	8	26.7
purine nucleoside diphosphate metabolic process	8	26.7
regulation of conidium formation	8	22.9
cellular polysaccharide biosynthetic process	8	21.6
response to salt stress	8	21.1
polysaccharide biosynthetic process	8	20.5
RNA export from nucleus	8	19
cell wall polysaccharide metabolic process	8	18.2
RNA transport	8	18.2
establishment of RNA localization	8	18.2
nucleic acid transport	8	17.8
glucosamine-containing compound metabolic process	8	17.8
aminoglycan metabolic process	8	17
RNA localization	8	16.7
tRNA modification	8	15.7

regulation of defense response	7	38.9
modulation by symbiont of host defense response	7	38.9
modulation by organism of defense response of other organism	7	38.9
involved in symbiotic interaction		
modification of morphology or physiology of other organism	7	36.8
involved in symbiotic interaction		
modification of morphology or physiology of other organism	7	36.8
modification by symbiont of host morphology or physiology	7	36.8
pentose-phosphate shunt	7	36.8
glyceraldehyde-3-phosphate metabolic process	7	36.8
glucose 6-phosphate metabolic process	7	33.3
positive regulation of asexual reproduction	7	30.4
spore wall biogenesis	7	30.4
NADP metabolic process	7	30.4
regulation of asexual sporulation resulting in formation of a	7	30.4
cellular spore		
nucleoside diphosphate phosphorylation	7	29.2
cell morphogenesis	7	25.9
nucleotide phosphorylation	7	25.9
response to reactive oxygen species	7	25
cellular component assembly involved in morphogenesis	7	23.3
positive regulation of reproductive process	7	21.2
vitamin metabolic process	7	18.4
cell growth	7	17.9
response to radiation	7	17.1
response to light stimulus	7	17.1
chitin metabolic process	7	16.7
positive regulation of asexual sporulation resulting in formation	6	42.9
of a cellular spore		
gluconeogenesis	6	31.6
aldonic acid metabolic process	6	30
cell wall polysaccharide biosynthetic process	6	28.6
hexose biosynthetic process	6	28.6
monosaccharide biosynthetic process	6	28.6
ATP generation from ADP	6	26.1
cell adhesion	6	26.1

glycolytic process	6	26.1
cellular response to reactive oxygen species	6	25
negative regulation of sporulation	6	22.2
negative regulation of developmental process	6	20
organic hydroxy compound catabolic process	6	20
establishment of nucleus localization	6	18.8
nucleus localization	6	18.8
single-species submerged biofilm formation	6	18.2
pentose metabolic process	6	18.2
single-species biofilm formation	6	18.2
lipid modification	6	17.6
rRNA transport	5	45.5
rRNA export from nucleus	5	45.5
induction by symbiont of host defense response	5	41.7
positive regulation by organism of defense response of other	5	41.7
organism involved in symbiotic interaction		
positive regulation by symbiont of host defense response	5	41.7
adhesion of symbiont to host	5	41.7
induction by organism of defense response of other organism	5	41.7
involved in symbiotic interaction		
positive regulation of defense response	5	41.7
glucan biosynthetic process	5	33.3
D-gluconate metabolic process	5	33.3
monosaccharide catabolic process	5	31.3
trehalose metabolic process	5	31.3
regulation of spore-bearing organ development	5	29.4
regulation of multicellular organismal development	5	29.4
regulation of multicellular organismal process	5	29.4
negative regulation of cell differentiation	5	27.8
negative regulation of sporulation resulting in formation of a	5	27.8
cellular spore		
cytoplasmic translation	5	25
beta-glucan metabolic process	5	25
spore wall assembly	5	23.8
negative regulation of meiotic cell cycle	5	22.7
cell wall assembly	5	22.7

alcohol catabolic process	5	22.7
primary alcohol metabolic process	5	22.7
NAD metabolic process	5	21.7
cell redox homeostasis	5	20.8
negative regulation of reproductive process	5	20
beta-glucan biosynthetic process	4	50
NADH metabolic process	4	44.4
regulation of conidiophore development	4	40
cell wall chitin metabolic process	4	36.4
septin ring organization	4	36.4
septin cytoskeleton organization	4	33.3
developmental growth involved in morphogenesis	4	33.3
positive regulation of conidium formation	4	33.3
negative regulation of sexual sporulation resulting in formation	4	33.3
of a cellular spore		
unidimensional cell growth	4	33.3
regulation of generation of precursor metabolites and energy	4	30.8
protein secretion	4	30.8
polyol catabolic process	4	30.8
developmental growth	4	26.7
cell-substrate adhesion	4	26.7
glucosamine-containing compound biosynthetic process	4	25
ascospore wall biogenesis	4	25
chitin biosynthetic process	4	25
aminoglycan biosynthetic process	4	25
amino sugar biosynthetic process	4	25
reactive oxygen species metabolic process	4	23.5
regulation of glucose metabolic process	4	23.5
cell wall beta-glucan metabolic process	3	75
pyrimidine nucleoside biosynthetic process	3	75
cell tip growth	3	75
pyrimidine ribonucleoside biosynthetic process	3	75
protein autophosphorylation	3	60
regulation of immune response	3	60
regulation of immune system process	3	60
positive regulation of conidiophore development	3	60

(1->3)-beta-D-glucan metabolic process	3	60
response to antibiotic	3	60
cell adhesion involved in single-species biofilm formation	3	50
mitochondrial electron transport, cytochrome c to oxygen	3	42.9
cell adhesion involved in biofilm formation	3	42.9
septin ring assembly	3	42.9
submerged biofilm formation	3	42.9
pyrimidine ribonucleoside metabolic process	3	37.5
development of symbiont involved in interaction with host	3	37.5
pyrimidine nucleoside metabolic process	3	37.5
development of symbiont in host	3	37.5
development involved in symbiotic interaction	3	37.5
positive regulation of spore-bearing organ development	3	33.3
positive regulation of multicellular organismal process	3	33.3
oligosaccharide biosynthetic process	3	33.3
cell wall chitin biosynthetic process	3	33.3
disaccharide biosynthetic process	3	33.3
trehalose biosynthetic process	3	33.3
response to cold	3	30
folic acid-containing compound metabolic process	3	30
modulation by symbiont of host cell-mediated immune response	2	100
fungal-type cell wall beta-glucan metabolic process	2	100
modulation by organism of cell-mediated immune response of	2	100
other organism involved in symbiotic interaction		
fungal-type cell wall beta-glucan biosynthetic process	2	100
endocytic recycling	2	100
age-dependent response to reactive oxygen species	2	66.7
response to superoxide	2	66.7
induction of conjugation upon nutrient starvation	2	66.7
aspartate transport	2	66.7
cellular age-dependent response to reactive oxygen species	2	66.7
negative regulation of cell development	2	66.7
siroheme metabolic process	2	66.7
siroheme biosynthetic process	2	66.7
xylulose 5-phosphate biosynthetic process	2	66.7
pyrimidine ribonucleotide biosynthetic process	2	66.7

regulation of ribosomal protein gene transcription from RNA	2	66.7
polymerase II promoter		
eisosome assembly	2	66.7
pentitol catabolic process	2	66.7
cellular response to oxygen radical	2	66.7
pentitol metabolic process	2	66.7
pentose-phosphate shunt, oxidative branch	2	66.7
cell wall (1->3)-beta-D-glucan metabolic process	2	66.7
induction of conjugation upon nitrogen starvation	2	66.7
cell wall beta-glucan biosynthetic process	2	66.7
cellular response to superoxide	2	66.7
cell wall (1->3)-beta-D-glucan biosynthetic process	2	66.7
xylulose 5-phosphate metabolic process	2	66.7
response to oxygen radical	2	66.7
A. fumigatus		
single-organism metabolic process	168	7.1
organonitrogen compound metabolic process	83	9.2
small molecule metabolic process	72	7.9
carbohydrate metabolic process	52	10.9
organonitrogen compound biosynthetic process	52	8.7
phosphorus metabolic process	47	9.7
phosphate-containing compound metabolic process	45	9.6
carbohydrate derivative metabolic process	38	11.9
organophosphate metabolic process	32	11.5
cellular amide metabolic process	30	9
cell wall organization or biogenesis	27	21.3
cell cycle	27	10.1
amide biosynthetic process	27	9.3
single-organism carbohydrate metabolic process	26	12.4
nucleobase-containing small molecule metabolic process	26	11.2
cell cycle process	25	10
multi-organism process	23	16.1
translation	23	9.5
nucleotide metabolic process	22	13.3
nucleoside phosphate metabolic process	22	12.6
cofactor metabolic process	21	12.1

phosphorylation	21	10.2
reproduction	20	12.9
cell wall organization	19	25.3
external encapsulating structure organization	19	25
polysaccharide metabolic process	19	18.1
ribose phosphate metabolic process	19	15.4
cellular carbohydrate metabolic process	18	17.3
coenzyme metabolic process	18	12.2
monocarboxylic acid metabolic process	18	10.3
generation of precursor metabolites and energy	16	13.3
developmental process	14	16.9
purine-containing compound metabolic process	14	11.6
glucan metabolic process	13	27.1
cellular aldehyde metabolic process	13	26.5
anatomical structure morphogenesis	13	22.4
cellular polysaccharide metabolic process	13	21.7
anatomical structure development	13	20
nicotinamide nucleotide metabolic process	13	19.7
pyridine nucleotide metabolic process	13	19.4
pyridine-containing compound metabolic process	13	17.8
oxidoreduction coenzyme metabolic process	13	16.7
single-organism developmental process	13	16.3
multi-organism reproductive process	13	14.1
sexual reproduction	13	14.1
reproductive process	13	12.7
ribonucleotide metabolic process	13	12.3
cellular glucan metabolic process	12	25.5
carbohydrate biosynthetic process	12	23.1
cellular developmental process	12	19.7
monosaccharide metabolic process	12	19
meiotic cell cycle process	12	17.4
meiotic cell cycle	12	17.4
purine ribonucleotide metabolic process	12	11.8
purine nucleotide metabolic process	12	11.5
hexose metabolic process	11	23.4
reproduction of a single-celled organism	11	16.2

glucose metabolic process	10	40
carbohydrate catabolic process	10	13.9
pathogenesis	9	25.7
cytokinesis	9	16.4
cell division	9	14.1
glucose 6-phosphate metabolic process	8	42.1
pyruvate metabolic process	8	23.5
anatomical structure formation involved in morphogenesis	8	22.9
sporulation	8	22.9
sporulation resulting in formation of a cellular spore	8	22.9
single-organism carbohydrate catabolic process	8	20
cell differentiation	8	20
amino sugar metabolic process	8	18.6
beta-glucan metabolic process	7	38.9
pentose-phosphate shunt	7	38.9
glyceraldehyde-3-phosphate metabolic process	7	38.9
NADP metabolic process	7	31.8
nucleoside diphosphate phosphorylation	7	29.2
nucleotide phosphorylation	7	28
nucleoside diphosphate metabolic process	7	23.3
ascospore formation	7	21.9
sexual sporulation	7	21.9
sexual sporulation resulting in formation of a cellular spore	7	21.9
cell development	7	21.9
nucleobase metabolic process	7	21.2
cytokinetic process	7	20.6
cytoskeleton-dependent cytokinesis	7	20.6
mitotic cytokinetic process	7	20.6
mitotic cytokinesis	7	20.6
reproductive process in single-celled organism	7	19.4
single organism reproductive process	7	17.5
aminoglycan metabolic process	7	16.3
developmental process involved in reproduction	7	14.9
(1->3)-beta-D-glucan metabolic process	6	46.2
gluconeogenesis	6	40
hexose biosynthetic process	6	37.5

monosaccharide biosynthetic process	6	37.5
glycolytic process	6	26.1
ATP generation from ADP	6	26.1
ADP metabolic process	6	23.1
purine ribonucleoside diphosphate metabolic process	6	23.1
purine nucleoside diphosphate metabolic process	6	23.1
ribonucleoside diphosphate metabolic process	6	23.1
cellular component morphogenesis	6	21.4
cytokinesis, site selection	6	18.8
mitotic cytokinesis, site selection	6	18.8
cellular bud site selection	6	18.8
chitin metabolic process	6	17.1
cell wall macromolecule metabolic process	6	16.2
glucosamine-containing compound metabolic process	6	15.4
response to oxidative stress	6	15.4
cellular lipid catabolic process	6	15.4
axial cellular bud site selection	5	55.6
cell morphogenesis	5	21.7
pyrimidine-containing compound biosynthetic process	5	19.2
cellular divalent inorganic cation homeostasis	4	33.3
divalent inorganic cation homeostasis	4	33.3
purine nucleobase metabolic process	4	22.2
superoxide metabolic process	3	42.9
reactive oxygen species metabolic process	3	37.5
calcium ion homeostasis	3	33.3
cellular calcium ion homeostasis	3	33.3
autophagic cell death	2	100
phosphatidylethanolamine metabolic process	2	66.7
leucine catabolic process	2	66.7
phosphatidylethanolamine biosynthetic process	2	66.7
branched-chain amino acid catabolic process	2	50
pyrimidine ribonucleotide biosynthetic process	2	50
pyrimidine ribonucleotide metabolic process	2	50
carbon utilization	2	50
pyrimidine ribonucleoside biosynthetic process	2	50
obsolete cytokinesis, completion of separation	2	50

A. flavus		
single-organism process	301	8.7
single-organism cellular process	232	8.6
single-organism metabolic process	179	9.1
response to stimulus	102	9.6
organonitrogen compound metabolic process	84	10.3
oxidation-reduction process	79	11.1
response to stress	68	9.9
developmental process	66	15.1
single-organism developmental process	63	15.1
reproduction	59	13.6
carbohydrate metabolic process	58	12.4
anatomical structure development	57	15.1
cellular component biogenesis	55	10.4
phosphate-containing compound metabolic process	54	11.7
phosphorus metabolic process	54	11.2
multi-organism process	53	13.4
anatomical structure morphogenesis	51	16.5
sporulation	49	17.3
anatomical structure formation involved in morphogenesis	49	16.7
reproductive process	44	13.9
cellular developmental process	43	17.9
growth	43	11.4
carbohydrate derivative metabolic process	42	14.5
filamentous growth	42	11.6
asexual reproduction	41	20.4
asexual sporulation	40	21.7
organophosphate metabolic process	40	14.4
cell differentiation	39	18
developmental process involved in reproduction	38	13.5
cellular component assembly	38	10.4
sporulation resulting in formation of a cellular spore	37	18
cell wall organization or biogenesis	34	18.7
regulation of biological quality	34	11.8
nucleobase-containing small molecule metabolic process	30	15.4
single-organism carbohydrate metabolic process	30	14.9

response to abiotic stimulus	30	13.7
multi-organism reproductive process	30	11.7
sexual reproduction	30	11.7
nucleotide metabolic process	28	18.5
nucleoside phosphate metabolic process	28	17.9
fungal-type cell wall organization or biogenesis	27	21.8
response to external stimulus	27	11.3
hyphal growth	26	14.3
single organism reproductive process	25	14.6
phosphorylation	25	12.9
conidium formation	24	19
cofactor metabolic process	24	14.3
cell wall organization	23	22.5
external encapsulating structure organization	23	22.5
ribose phosphate metabolic process	22	21.2
filamentous growth of a population of unicellular organisms	22	11.8
fungal-type cell wall organization	21	23.1
pathogenesis	21	16.8
coenzyme metabolic process	21	14.7
asexual sporulation resulting in formation of a cellular spore	20	33.3
carbohydrate catabolic process	20	13.2
organ development	20	12.2
system development	20	12.2
spore-bearing organ development	20	12.2
reproductive system development	20	12.2
reproductive structure development	20	12.2
multicellular organismal development	20	12.1
single-multicellular organism process	20	11.9
multicellular organismal process	20	11.9
pyridine-containing compound metabolic process	19	31.1
response to oxidative stress	19	16.4
regulation of anatomical structure morphogenesis	19	16
regulation of developmental process	19	14.7
sexual sporulation	19	12.6
sexual sporulation resulting in formation of a cellular spore	19	12.6
response to inorganic substance	18	12.3

pyridine nucleotide metabolic process	17	31.5
nicotinamide nucleotide metabolic process	17	31.5
oxidoreduction coenzyme metabolic process	17	26.2
conidiophore development	17	19.8
generation of precursor metabolites and energy	17	19.8
cell development	17	12.7
purine-containing compound metabolic process	16	15.8
nucleoside metabolic process	16	15.7
glycosyl compound metabolic process	16	15.1
cellular component morphogenesis	15	26.8
ribonucleotide metabolic process	15	17.9
ribonucleoside metabolic process	15	17.6
cell wall biogenesis	14	22.2
regulation of sporulation	14	20.9
ribonucleoside monophosphate metabolic process	14	18.2
nucleoside monophosphate metabolic process	14	17.7
purine ribonucleotide metabolic process	14	17.5
purine nucleotide metabolic process	14	17.3
single-organism carbohydrate catabolic process	13	23.6
carbohydrate biosynthetic process	13	20.3
purine nucleoside monophosphate metabolic process	13	17.6
purine ribonucleoside monophosphate metabolic process	13	17.6
cell wall macromolecule metabolic process	13	17.3
purine ribonucleoside metabolic process	13	17.1
purine nucleoside metabolic process	13	17.1
multi-organism cellular process	13	14.6
cellular response to oxidative stress	13	14.3
regulation of sporulation resulting in formation of a cellular	12	26.1
spore		
regulation of asexual sporulation	12	25.5
regulation of cell differentiation	12	25
regulation of asexual reproduction	12	24.5
symbiosis, encompassing mutualism through parasitism	12	23.1
interspecies interaction between organisms	12	22.2
response to osmotic stress	12	17.4
purine ribonucleoside triphosphate metabolic process	11	20.4

ribonucleoside triphosphate metabolic process	11	20
purine nucleoside triphosphate metabolic process	11	20
nucleoside triphosphate metabolic process	11	18.3
positive regulation of response to stimulus	11	16.4
regulation of response to stress	11	16.2
fungal-type cell wall biogenesis	10	21.3
ATP metabolic process	10	18.9
cellular carbohydrate biosynthetic process	10	18.5
response to oxygen-containing compound	10	17.9
cellular aldehyde metabolic process	9	29
biological adhesion	9	29
response to salt stress	9	26.5
cellular response to oxygen-containing compound	9	20.5
spore germination	9	19.6
cell wall polysaccharide metabolic process	9	18.8
monosaccharide metabolic process	9	17.6
spore wall biogenesis	8	40
nucleoside diphosphate metabolic process	8	40
pyruvate metabolic process	8	38.1
positive regulation of sporulation	8	28.6
cellular component assembly involved in morphogenesis	8	28.6
response to reactive oxygen species	8	28.6
cell wall macromolecule biosynthetic process	8	25.8
cellular component macromolecule biosynthetic process	8	25.8
regulation of conidium formation	8	23.5
interaction with host	8	23.5
cellular polysaccharide biosynthetic process	8	21.1
pigment biosynthetic process	8	20.5
polysaccharide biosynthetic process	8	20
RNA export from nucleus	8	19
RNA transport	8	18.2
establishment of RNA localization	8	18.2
pigment metabolic process	8	18.2
nucleic acid transport	8	17.8
RNA localization	8	17
tRNA modification	8	16.3

glyceraldehyde-3-phosphate metabolic process	7	43.8
pentose-phosphate shunt	7	43.8
ADP metabolic process	7	43.8
purine nucleoside diphosphate metabolic process	7	41.2
purine ribonucleoside diphosphate metabolic process	7	41.2
ribonucleoside diphosphate metabolic process	7	41.2
glucose 6-phosphate metabolic process	7	38.9
regulation of asexual sporulation resulting in formation of a	7	36.8
cellular spore		
NADP metabolic process	7	33.3
positive regulation of sporulation resulting in formation of a	7	31.8
cellular spore		
positive regulation of cell differentiation	7	30.4
response to host defenses	7	28
cellular response to reactive oxygen species	7	26.9
response to host	7	26.9
response to defenses of other organism involved in symbiotic	7	25.9
interaction		
cell morphogenesis	7	25
response to external biotic stimulus	7	25
response to other organism	7	25
establishment of nucleus localization	7	21.2
nucleus localization	7	21.2
biofilm formation	7	20
hexose metabolic process	7	17.5
nucleoside diphosphate phosphorylation	6	50
nucleotide phosphorylation	6	40
glucose metabolic process	6	37.5
regulation of defense response	6	35.3
positive regulation of asexual reproduction	6	35.3
modulation by symbiont of host defense response	6	35.3
modulation by organism of defense response of other organism	6	35.3
involved in symbiotic interaction		
spore wall assembly	6	33.3
cell wall assembly	6	31.6
modification by symbiont of host morphology or physiology	6	31.6

modification of morphology or physiology of other organism	6	30
modification of morphology or physiology of other organism	6	30
involved in symbiotic interaction		
cell wall polysaccharide biosynthetic process	6	27.3
cell adhesion	6	24
negative regulation of sporulation	6	21.4
negative regulation of developmental process	6	19.4
positive regulation of asexual sporulation resulting in formation	5	50
of a cellular spore		
rRNA export from nucleus	5	45.5
ATP generation from ADP	5	45.5
rRNA transport	5	45.5
glycolytic process	5	45.5
positive regulation by symbiont of host defense response	5	41.7
positive regulation of defense response	5	41.7
induction by organism of defense response of other organism	5	41.7
involved in symbiotic interaction		
induction by symbiont of host defense response	5	41.7
positive regulation by organism of defense response of other	5	41.7
organism involved in symbiotic interaction		
septin cytoskeleton organization	5	38.5
beta-glucan metabolic process	5	35.7
ascospore wall biogenesis	5	35.7
glucan biosynthetic process	5	33.3
monosaccharide catabolic process	5	33.3
response to hydrogen peroxide	5	26.3
negative regulation of sporulation resulting in formation of a	5	26.3
cellular spore		
negative regulation of cell differentiation	5	26.3
trehalose metabolic process	5	26.3
cytoplasmic translation	5	22.7
negative regulation of meiotic cell cycle	5	21.7
regulation of cytokinetic process	5	21.7
NAD metabolic process	5	21.7
beta-glucan biosynthetic process	4	50
NADH metabolic process	4	44.4

positive regulation of conidium formation	4	40
septin ring organization	4	36.4
protein secretion	4	36.4
cell wall chitin metabolic process	4	33.3
negative regulation of sexual sporulation resulting in formation	4	33.3
of a cellular spore		
unidimensional cell growth	4	30.8
microtubule polymerization	4	30.8
ascospore wall assembly	4	30.8
developmental growth involved in morphogenesis	4	30.8
fungal-type cell wall assembly	4	28.6
polyol catabolic process	4	28.6
cell-substrate adhesion	4	26.7
regulation of cell size	4	26.7
response to antibiotic	3	75
cell tip growth	3	75
cell wall beta-glucan metabolic process	3	75
pyrimidine ribonucleoside biosynthetic process	3	60
pyrimidine nucleoside biosynthetic process	3	60
(1->3)-beta-D-glucan metabolic process	3	60
cell adhesion involved in biofilm formation	3	50
submerged biofilm formation	3	50
regulation of actomyosin contractile ring contraction	3	50
gluconeogenesis	3	50
cell adhesion involved in single-species biofilm formation	3	50
septin ring assembly	3	42.9
mitochondrial electron transport, cytochrome c to oxygen	3	42.9
development of symbiont involved in interaction with host	3	42.9
development of symbiont in host	3	42.9
development involved in symbiotic interaction	3	42.9
hexose biosynthetic process	3	37.5
monosaccharide biosynthetic process	3	37.5
mitophagy	3	33.3
regulation of conidiophore development	3	33.3
mitochondrion disassembly	3	33.3
fungal-type cell wall beta-glucan biosynthetic process	2	100

fungal-type cell wall beta-glucan metabolic process	2	100
eisosome assembly	2	100
endocytic recycling	2	100
response to superoxide	2	66.7
aspartate transport	2	66.7
cellular response to superoxide	2	66.7
pentitol catabolic process	2	66.7
cell wall (1->3)-beta-D-glucan biosynthetic process	2	66.7
xylulose 5-phosphate metabolic process	2	66.7
glycolytic fermentation to ethanol	2	66.7
cellular response to oxygen radical	2	66.7
pentitol metabolic process	2	66.7
cellular age-dependent response to reactive oxygen species	2	66.7
hexose catabolic process to ethanol	2	66.7
regulation of ribosomal protein gene transcription from RNA	2	66.7
polymerase II promoter		
siroheme metabolic process	2	66.7
ethanol biosynthetic process involved in glucose fermentation to	2	66.7
ethanol		
cell wall beta-glucan biosynthetic process	2	66.7
negative regulation of cell development	2	66.7
xylulose 5-phosphate biosynthetic process	2	66.7
age-dependent response to reactive oxygen species	2	66.7
induction of conjugation upon nitrogen starvation	2	66.7
protein autophosphorylation	2	66.7
cell wall (1->3)-beta-D-glucan metabolic process	2	66.7
response to oxygen radical	2	66.7
pentose-phosphate shunt, oxidative branch	2	66.7
siroheme biosynthetic process	2	66.7
induction of conjugation upon nutrient starvation	2	66.7

Expression pattern in ∆ <i>wetA</i> conidia (Ani/Afu/Afl)	A. nidulans Gene ID	A. fumigatus Gene ID	A. flavus Gene ID
	AN6673	Afu5g01190	AFLA_053690 AFLA_077650
*	AN6338	Afu2g13630	AFLA_099700 AFLA_136830
	AN2598 AN7557	Afu1g17570	AFLA_024150 AFLA_089810
	AN3546	Afu4g14400 Afu6g09300	AFLA_040660 AFLA_040670
	AN8261	Afu5g04130	AFLA_006900 AFLA_035750
	AN11188	Afu4g00230	AFLA_010030 AFLA_063630
	AN4175	Afu6g07950	AFLA_036680 AFLA_126010
	AN7832	Afu5g00630	AFLA_037690 AFLA_092920
	AN7147	Afu4g03590	AFLA_040470 AFLA_121350
	AN5984	Afu2g10240	AFLA_044390 AFLA_090140
$-\uparrow-$	AN11010	Afu5g07440	 AFLA_061180 AFLA_061190
	AN1060	Afu1g12332	AFLA_067020 AFLA_067030
	AN4791	Afu3g06800	AFLA_100980 AFLA_100990
	AN10834 AN12335	Afu5g06500	AFLA_049020
	AN11089 AN1129	Afu1g11650	AFLA_068070
	AN0146 AN7806	Afu2g17560	AFLA_139300
	AN6385	Afu7g07030 Afu7g08290	AFLA_124690

Table S3-8 List of All_orthogroups_{N:N:N} consistently regulated by WetA

	AN4135	۸ fr-7 ~05020	AFLA_004460
	AN6731	A10/g05920	AFLA_076880
	AN1840	$1 + \frac{1}{2} + $	AFLA_024060
	AN4353	A104g00580	AFLA_113580
	AN4082	Afu1g05580	A EL A 050010
	AN4084	Afu1g05595	AFLA_030910
	A N10070	$\Lambda f_{1} 2_{\alpha} 12500$	AFLA_035810
	AIN0970	Alu2g12500	AFLA_135320
	A NO110	Δ fu5α11700	AFLA_092780
	ANULLA	AluSg11790	AFLA_092790
↑	AN3341	$\Lambda fu 8 a 0.2660$	
I	AN5427	Aluog02000	APLA_037800
	AN5348	A fu6a1/160	AFLA 105/10
	AN6432	A100g14100	APLA_103410
	A N/4818	Afu3g07130	AELA 101010
	AIN4010	Afu8g06140	AI ⁻ LA_101910
	A N 5000	Δ fu2g10160	AFLA_001930
	AI(3770	Aluzg10100	AFLA_044460
	ΔN7027	Δ fu/30/250	AFLA_009860
			AFLA_114880
	AN4590	Δ fu2g02110	AFLA_043090
	7111-370	11112202110	AFLA_097730
	AN3236	Afu6g01830	AFLA_060450
	1113250	11110501050	AFLA_120990
	AN3396	Afu5900150	AFLA 044200
	AN8513	11100 800 100	
$\uparrow \uparrow -$	AN6477	Afu1901930	AFLA 108170
1 1	AN8610		111 211_100170
	AN8502	Afu3g01370	AFLA 054130
		Afu5g13290	
	AN2180	Afu2g08110	AFLA_015310
		Afu2g15700	AFLA_023380
			AFLA_022200
	AN5146	Afu1g07200	AFLA_063650
			AFLA_079950
	AN3790		AFLA_034920
	AN9042	Afu2g03980	AFLA_087590
			AFLA_124510

	AN1950	Afu2g17650 Afu4g13340	AFLA_052220 AFLA_069580 AFLA_075860
	AN11080	Afu2g18040	AFLA_083250 AFLA_139480
$-\uparrow\uparrow$	AN3393 AN7962	Afu4g13750	AFLA_065450
	AN0773	Afu1g14340 Afu7g04970	AFLA_042050
	AN4385	Afu4g06750	AFLA_113190 AFLA_113200
	AN12126 AN9187	Afu4g09270	AFLA_003770
	AN1428	Afu1g00450 Afu8g04100	AFLA_012050
	AN1418	Afu1g00480 Afu8g04070	AFLA_012080
↑↑↑	AN9205	Afu5g00100 Afu7g06523	AFLA_038870
	AN11043	Afu3g01610 Afu4g09300	AFLA_110180
	AN9305	Afu3g14730 Afu7g00200	AFLA_117500
	AN1427	Afu1g00440 Afu8g04110 Afu8g06560	AFLA_012030
	AN2018 AN3402	Afu2g00710 Afu4g10130	AFLA_026140
	AN10062 AN5559	Afu4g00570 Afu4g11780	AFLA_027800
	AN6470 AN8969	Afu6g10130 Afu8g06980	AFLA_104880
	AN8019	Afu1g01020 Afu8g06400	AFLA_136760
[↓	AN1620 AN2626	Afu8g02040	AFLA_120950 AFLA_137460
$\uparrow \! \! \downarrow -$	AN1821	Afu8g07040	AFLA_009480 AFLA_072930

			AFLA 010110
	AN2175	Afu2g14840	AFLA_076820
	A N12962	A fy 5 ~ 10040	AFLA_052940
	AIN3003	AluJg10040	AFLA_135160
	A N6802	Afu5a1/315	AFLA_058300
	A110002	Alusg14515	AFLA_126460
	AN7201	Afu6g10250	AFLA_106870
	7117201		AFLA_138570
	AN11209	A fu7000280	AFLA 138480
	AN8768	11107500200	
	AN1430	Afu1g00470	AFLA 012070
	7111750	Afu8g04080	<u> </u>
	AN7083	A fu8000380	AFLA_003940
—↑ I			AFLA_041480
Ι Ψ	AN9168	A fu8005710	AFLA_097330
	1117100	11100503710	AFLA_126340
	AN3349	Afu2914430	AFLA_007470
		g11100	AFLA_024080
↑↓↑	AN2530		
	AN3555	Afu3g14540	AFLA_060260
	AN7892		
	AN1519	Afu8g05280	AFLA_021300
			AFLA_078690
↑	AN8102	Afu3g01220	AFLA_038650
1 * *		8	AFLA_121260
	AN9189	Afu5g00110	AFLA 125760
		Afu7g00260	
	AN3117	Afu3g12740	AFLA_020960
		8	AFLA_053470
$\uparrow - \uparrow$	AN6227	Afu2g13295	AFLA_089880
			AFLA_136340
	AN0118	Afu5g11810	AFLA_092800
		0	AFLA_092810
	AN0507	Afu6g11450	AFLA_039960
			AFLA_125160
\downarrow	\downarrow AN1227 Afu1 σ 10525	Afu1g10525	AFLA_069160
			AFLA_069170
	AN8787	Afu5g09850	AFLA_098220

			AFLA_098230	
	A N 3851	$\Delta fu 4 c07880$	AFLA_111860	
	AN3651	A104g07880	AFLA_111870	
	A N1 207	$4 f_{1} = -0.2100$	AFLA_113330	
	AN1007	Alu5g02100	AFLA_120230	
	A NI2075	Afu3g15150	AELA 115920	
	AN3973	Afu6g03300	AFLA_113820	
	A NI2269	$4 f_{0} 7 = 01220$	AFLA_079930	
	ANJJUO	Alu7g01320	AFLA_117830	
	A N110054	A fu 2~06050	AFLA_096560	
	AN10954	A1u2g00050	AFLA_130180	
	A NICO20	$4 f_{11} 4 = 0.0660$	AFLA_119980	
	AN0820	A104g00000	AFLA_123400	
	AN12097	۸ fp 1 ~ 17220		
	AN6395	Aluigi7250	AFLA_014290	
	AN0509	A fu6a12720		
	AN7613	Aluog15720	AFLA_034470	
$-\!\downarrow-$	AN4532	$\Lambda f_{1} 2 \sigma 0 2010$	AELA 122150	
	AN8998	A1u2g02910	AFLA_155150	
	AN7598	Afu2g15420	AFLA 038270	
	AN7570	Afu6g11720	APLA_030270	
	AN3/1/	Afu1g15970	A EL A 077260	
	AN3414	Afu8g01560	APLA_077200	
		Afu1g00630		
	AN5483	Afu6g13290	AFLA_033660	
		Afu7g08480		
	AN3369	Afu6g12130	AFLA 117820	
	AN6832	Afu7g01310	APLA_117020	
	A N8063	Δ fu5α01880	AFLA_024970	
	A110003	Alubgo1000	AFLA_101770	
— — I	A N/2237	Δ fu5 α07330	AFLA_056810	
\checkmark	AN2257	Alusgorsso	AFLA_107990	
	AN10869	$\Delta fu 2 \sigma 14650$	ΔFI Δ 0/2510	
	AN1789	Alu2g14030	AI ⁻ LA_043310	
	Δ N 8 8 1 /	$\Delta f_{\rm H} 5 \sigma \Omega 0 47 \Omega$	AFLA_035450	
↑	A110014	Alu3g09470	AFLA_09	AFLA_098530
	AN4182	Δ fu6α07080	AFLA_036730	
		Aluogo/960	AFLA_125910	

	AN3489	Afu5g07540	AFLA_059060 AFLA_104630
	AN1506	Afu8g05090	 AFLA_078840 AFLA_127110
	AN6730 AN6932	Afu7g05910	 AFLA_076870
	AN1429	Afu1g00460 Afu8g04090	AFLA_012060
	AN4153	Afu6g09640	AFLA_064450 AFLA_108700
$-\downarrow\uparrow$	AN5591	Afu4g11460 Afu4g11467	AFLA_027440
	AN9021	Afu1g16070 Afu5g14980	AFLA_040590
$\downarrow\uparrow\uparrow$	AN2834	Afu2g17250	AFLA_002200 AFLA_096230
$\downarrow\uparrow\downarrow$	AN1414	Afu1g00580 Afu8g04050	AFLA_012100
	AN10626 AN1523	Afu8g05320	AFLA_078650
$\downarrow \downarrow -$	AN1772	Afu6g00450 Afu6g09040	AFLA_128870
	AN2674	Afu5g14270	AFLA_002100 AFLA_066060
_11	AN6608	Afu6g04190	AFLA_056000 AFLA_056010
$\downarrow \downarrow$	AN11701	Afu4g03550 Afu6g04370	AFLA_120360
	AN8467	Afu1g11050 Afu3g01230	AFLA_097900 AFLA_117440
	AN0391	Afu1g01490	AFLA_003760 AFLA_013730
	AN8621	Afu3g02780	AFLA_008410 AFLA_015590
$\downarrow \downarrow \downarrow$	AN5563	Afu4g11730	AFLA_027730 AFLA_049340
	AN0895	Afu1g15610	AFLA_061270 AFLA_083890

	AN11094	Afu6g10120	AFLA_077990 AFLA 110070
	AN6349	Afu2g14180	AFLA_105670 AFLA_105680
	AN0963 AN10629	Afu3g01900	AFLA_097450
	AN10421 AN3523	Afu6g13470	AFLA_097700
	AN3243 AN8549	Afu5g01248	AFLA_138550
	AN8639	Afu4g03190 Afu5g14300	AFLA_002830
	AN2470	Afu2g00170 Afu5g03930	AFLA_006730
	AN8587	Afu1g00500 Afu8g06000	AFLA_028100
	AN4913	Afu3g00370 Afu3g10760	AFLA_019650 AFLA_031900
	AN7632	Afu2g01040	AFLA_058310 AFLA_059790 AFLA_072340
	AN11921	Afu8g07200	AFLA_062120 AFLA_072920 AFLA_120010
	AN3539	Afu8g00120	AFLA_126540 AFLA_138450
$\downarrow - \uparrow$	AN2463 AN3201	Afu5g14550	AFLA_016530
	AN9022	Afu1g16060 Afu5g14970	AFLA_040580
	AN6451 AN7295	Afu2g16860	AFLA_002590
$\downarrow - \downarrow$	AN2422 AN2785	Afu4g09860	AFLA_025860
	AN5500	Afu5g00820 Afu6g14570	AFLA_049540

Table S3-9 Top enriched GO categories of orthologs species-specifically regulated in $\Delta wetA$ conidia

GO Category	# of Genes	% of Genes in Category
A. nidulans		in ewegery
cellular process	652	15.2
metabolic process	583	13.8
single-organism process	526	13.5
organic substance metabolic process	482	15.2
cellular metabolic process	459	16.1
primary metabolic process	449	15.8
single-organism cellular process	421	14.2
macromolecule metabolic process	319	17.1
nitrogen compound metabolic process	314	17.1
single-organism metabolic process	301	13
cellular macromolecule metabolic process	300	17.8
cellular nitrogen compound metabolic process	273	17.5
organic cyclic compound metabolic process	249	16
biological regulation	236	16
heterocycle metabolic process	232	16.5
cellular aromatic compound metabolic process	228	16.3
biosynthetic process	225	14.9
organic substance biosynthetic process	221	15.6
cellular component organization or biogenesis	217	19.4
regulation of biological process	215	15.8
cellular biosynthetic process	213	15.7
nucleobase-containing compound metabolic process	210	17.6
response to stimulus	193	17.1
regulation of cellular process	188	15
nucleic acid metabolic process	176	18.7
cellular response to stimulus	175	17.5
cellular component organization	174	17.8
gene expression	157	18.9
organonitrogen compound metabolic process	150	16.3
protein metabolic process	148	17
small molecule metabolic process	148	15.1
regulation of metabolic process	143	14.7
cellular nitrogen compound biosynthetic process	135	16.3

RNA metabolic process	132	19.3
cellular protein metabolic process	132	17
organelle organization	131	18.3
regulation of cellular metabolic process	127	14
regulation of macromolecule metabolic process	125	14.2
regulation of primary metabolic process	125	14.2
response to stress	124	17.2
macromolecule biosynthetic process	124	16.4
cellular macromolecule biosynthetic process	122	16.4
organonitrogen compound biosynthetic process	120	19.4
cellular component biogenesis	117	21.8
single-organism biosynthetic process	114	14.1
response to chemical	108	18.9
cellular response to chemical stimulus	99	19.8
cellular localization	93	16
cellular response to stress	91	15.7
oxoacid metabolic process	87	15.8
organic acid metabolic process	87	15.6
carboxylic acid metabolic process	85	15.7
organic substance catabolic process	84	14.6
macromolecular complex subunit organization	83	19.3
cell cycle	81	17.9
reproduction	80	18
cell cycle process	79	17.9
macromolecule modification	77	14.8
single-organism organelle organization	75	16.7
RNA processing	72	25.5
growth	72	18.7
developmental process	71	16.1
cellular catabolic process	69	15.4
ncRNA metabolic process	68	27.6
single-organism developmental process	68	16.3
multi-organism process	67	16.8
macromolecule localization	67	15.4
cellular component assembly	66	17.8
filamentous growth	65	17.8
cellular amide metabolic process	64	19.2
small molecule biosynthetic process	64	16.8
positive regulation of biological process	63	17.5

anatomical structure development	63	16.7
negative regulation of biological process	63	16.5
protein localization	60	16
amide biosynthetic process	59	20.2
cell communication	59	16.2
ribonucleoprotein complex biogenesis	56	29
peptide metabolic process	56	22.1
cellular macromolecule localization	56	16.1
regulation of biological quality	54	18.9
negative regulation of cellular process	54	16
cellular protein localization	54	15.7
ribosome biogenesis	53	31.2
ncRNA processing	53	28.3
protein complex subunit organization	53	19.8
DNA metabolic process	53	17.4
positive regulation of cellular process	53	17.2
peptide biosynthetic process	52	22
macromolecular complex assembly	52	18.9
cellular amino acid metabolic process	51	17.6
chromosome organization	50	19.9
anatomical structure morphogenesis	50	16
reproductive process	50	15.8
anatomical structure formation involved in morphogenesis	48	16.1
cellular macromolecular complex assembly	47	20.5
sporulation	46	15.8
translation	45	22.7
developmental process involved in reproduction	44	15.8
rRNA metabolic process	43	37.1
rRNA processing	43	37.1
multi-organism reproductive process	43	16.6
sexual reproduction	43	16.6
organic acid biosynthetic process	42	16.5
carboxylic acid biosynthetic process	42	16.5
regulation of cell cycle	42	15.9
proteolysis	41	16
regulation of transcription from RNA polymerase II promoter	39	21
vesicle-mediated transport	37	18
meiotic cell cycle	37	17.2
mitotic cell cycle process	36	17.6

mitotic cell cycle	36	17.5
meiotic cell cycle process	36	17.1
response to drug	36	17.1
cellular response to nutrient levels	35	17
cellular response to extracellular stimulus	35	16.9
cellular response to external stimulus	35	16.6
response to nutrient levels	35	16.4
response to extracellular stimulus	35	16.4
cellular response to DNA damage stimulus	34	16.6
response to organic substance	33	21.3
hyphal growth	33	18.2
cellular response to drug	33	18.1
alpha-amino acid metabolic process	33	17.1
DNA repair	32	18.8
cellular macromolecule catabolic process	32	17.5
regulation of response to stimulus	31	21.1
homeostatic process	31	18.5
protein complex assembly	31	17.9
protein complex biogenesis	31	17.8
response to inorganic substance	29	20.7
sulfur compound metabolic process	28	20.4
cellular amino acid biosynthetic process	28	19.2
cytoskeleton organization	28	18.7
cell division	27	22.1
cellular response to organic substance	27	21.8
chromatin organization	27	19.7
organelle fission	27	17.6
response to metal ion	26	21.8
regulation of growth	26	20.2
nuclear division	26	17.8
regulation of molecular function	25	18.8
response to toxic substance	24	23.8
cellular response to metal ion	24	22.6
cellular response to inorganic substance	24	22.4
tRNA metabolic process	24	21.2
cellular homeostasis	24	19.2
detoxification	23	26.4
chromosome segregation	23	21.9
detoxification of inorganic compound	22	26.8

stress response to cadmium ion	22	26.8
detoxification of cadmium ion	22	26.8
stress response to metal ion	22	26.8
response to cadmium ion	22	25.3
mRNA metabolic process	22	20.4
ribosomal large subunit biogenesis	21	42.9
cellular response to cadmium ion	21	25.6
sulfur compound biosynthetic process	21	23.3
nuclear chromosome segregation	21	21.6
aromatic compound catabolic process	21	21.4
alpha-amino acid biosynthetic process	21	20.4
organic cyclic compound catabolic process	21	18.8
regulation of cell communication	20	23.3
DNA replication	20	19.6
protein-DNA complex subunit organization	19	24.1
regulation of signal transduction	19	23.5
regulation of signaling	19	22.9
heterocycle catabolic process	19	21.1
cellular ion homeostasis	19	20.9
cellular nitrogen compound catabolic process	19	20.9
monosaccharide metabolic process	19	20.2
ion homeostasis	19	19.8
cellular chemical homeostasis	19	19.2
actin filament-based process	18	25.7
regulation of cellular component biogenesis	18	24.3
cytokinesis	18	21.7
regulation of gene expression, epigenetic	18	20.5
inorganic ion homeostasis	18	20.2
DNA conformation change	17	28.3
actin cytoskeleton organization	17	25
filamentous growth of a population of unicellular organisms in response to starvation	17	19.3
maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	16	40
maturation of 5.8S rRNA	16	40
DNA-dependent DNA replication	16	26.2
sister chromatid segregation	16	20.5
negative regulation of transcription from RNA polymerase II	15	27.3
promoter	15	21.3
nucleic acid phosphodiester bond hydrolysis	15	26.3

cytokinetic process	15	25.9
ribosomal small subunit biogenesis	15	25
protein folding	15	20.8
maturation of SSU-rRNA	14	27.5
protein-DNA complex assembly	14	26.4
nucleobase-containing compound catabolic process	14	24.6
ribonucleoprotein complex assembly	14	23
RNA splicing	14	22.6
ribonucleoprotein complex subunit organization	14	21.9
regulation of response to stress	14	20.9
positive regulation of response to stimulus	14	20.6
RNA modification	14	20.6
maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	13	29.5
RNA phosphodiester bond hydrolysis	13	27.7
RNA splicing, via transesterification reactions	13	25
cleavage involved in rRNA processing	12	34.3
nucleosome organization	12	26.1
cellular aldehyde metabolic process	12	25
DNA packaging	12	23.5
endocytosis	12	23.1
aspartate family amino acid metabolic process	12	22.6
ribosome assembly	11	29.7
sulfur amino acid metabolic process	11	28.2
chromatin assembly or disassembly	11	25.6
cell wall polysaccharide metabolic process	11	25
regulation of hydrolase activity	11	23.4
regulation of cellular ketone metabolic process	11	22.4
chromatin remodeling	11	22.4
tRNA aminoacylation for protein translation	10	28.6
chromatin assembly	10	27
RNA catabolic process	10	26.3
tRNA aminoacylation	10	26.3
amino acid activation	10	26.3
post-Golgi vesicle-mediated transport	10	25.6
regulation of cytoskeleton organization	10	25
cellular component disassembly	10	23.8
ribosomal large subunit assembly	9	40.9
DNA replication initiation	9	37.5
endonucleolytic cleavage involved in rRNA processing	9	36
--	---	------
sulfur amino acid biosynthetic process	9	36
endonucleolytic cleavage of tricistronic rRNA transcript (SSU- rRNA, 5.8S rRNA, LSU-rRNA)	9	36
methionine metabolic process	9	34.6
RNA phosphodiester bond hydrolysis, endonucleolytic	9	34.6
regulation of actin cytoskeleton organization	9	33.3
regulation of actin filament-based process	9	33.3
regulation of cellular component size	9	31
regulation of anatomical structure size	9	31
cortical actin cytoskeleton organization	9	31
cortical cytoskeleton organization	9	30
regulation of cellular response to stress	9	29
serine family amino acid metabolic process	9	26.5
water-soluble vitamin biosynthetic process	9	25
RNA 3'-end processing	9	25
aspartate family amino acid biosynthetic process	9	25
vitamin biosynthetic process	9	25
water-soluble vitamin metabolic process	9	24.3
maturation of LSU-rRNA	8	44.4
methionine biosynthetic process	8	36.4
ncRNA 3'-end processing	8	36.4
endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript	8	36.4
(SSU-FRINA, 5.05 FRINA, LSU-FRINA) response to nitrogen compound	8	34.8
nrotain complex disassambly	Q	33.3
macromolocular complex disassembly	8	28.6
macromotecular complex disassembly	8	20.0
nuclear-transcribed mRNA catabolic process	8	27.6
phytosteroid metabolic process	8	26.7
ergosterol metabolic process	8	26.7
cellular alcohol metabolic process	8	26.7
cellular response to pheromone	8	26.7
endonucleolytic cleavage in 5'-ETS of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	7	50
rRNA 5'-end processing	7	46.7
RNA 5'-end processing	7	46.7
ncRNA 5'-end processing	7	46.7

endonucleolytic cleavage to generate mature 5'-end of SSU- rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	7	46.7
establishment or maintenance of cytoskeleton polarity	7	43.8
maturation of LSU-rRNA from tricistronic rRNA transcript	7	13.8
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)	/	+5.0
nucleosome assembly	7	36.8
translational initiation	7	35
hemicellulose metabolic process	7	33.3
ncRNA transcription	7	30.4
mitochondrial genome maintenance	7	29.2
sphingolipid metabolic process	7	29.2
rRNA modification	6	54.5
postreplication repair	6	40
snRNA metabolic process	6	40
cysteine metabolic process	6	37.5
cellular protein complex disassembly	6	37.5
cellular response to nitrogen compound	6	33.3
regulation of carbohydrate biosynthetic process	6	31.6
protein stabilization	5	83.3
rRNA catabolic process	5	71.4
DNA geometric change	5	62.5
DNA duplex unwinding	5	62.5
ncRNA catabolic process	5	62.5
regulation of transcription during mitosis	5	62.5
regulation of protein stability	5	62.5
cellular response to oxygen levels	5	50
response to oxygen levels	5	50
snoRNA processing	5	41.7
establishment or maintenance of actin cytoskeleton polarity	5	41.7
positive regulation of chromatin modification	5	41.7
response to organic cyclic compound	5	38.5
snoRNA metabolic process	5	38.5
regulation of actin filament polymerization	5	35.7
response to endogenous stimulus	5	35.7
DNA unwinding involved in DNA replication	4	100
translational termination	4	50
sulfate assimilation	4	50
'de novo' IMP biosynthetic process	4	50
snoRNA 3'-end processing	4	44.4

D-xylose metabolic process	4	44.4
IMP metabolic process	4	44.4
IMP biosynthetic process	4	44.4
phosphate ion transport	4	44.4
glycerol catabolic process	3	75
negative regulation of actin filament polymerization	3	75
negative regulation of protein polymerization	3	60
regulation of cellular response to oxidative stress	3	60
N-terminal protein amino acid acetylation	3	60
polyadenylation-dependent RNA catabolic process	3	60
divalent inorganic anion homeostasis	3	60
tRNA catabolic process	3	60
nuclear polyadenylation-dependent ncRNA catabolic process	3	60
nuclear polyadenylation-dependent tRNA catabolic process	3	60
nuclear ncRNA surveillance	3	60
chromatin remodeling at centromere	3	60
polyadenylation-dependent ncRNA catabolic process	3	60
cellular divalent inorganic anion homeostasis	3	60
regulation of response to oxidative stress	3	60
galactonate metabolic process	3	60
A. fumigatus		
cellular process	720	18.4
single-organism process	634	18.2
metabolic process	592	15.6
single-organism cellular process	515	19
organic substance metabolic process	481	16.5
cellular metabolic process	462	17.9
primary metabolic process	448	17.2
single-organism metabolic process	330	16.8
macromolecule metabolic process	328	18.6
cellular macromolecule metabolic process	315	19.7
nitrogen compound metabolic process	290	17.4
biological regulation	259	19
cellular nitrogen compound metabolic process	259	17.9
biosynthetic process	244	17.7
cellular component organization or biogenesis	241	21.8
organic cyclic compound metabolic process	238	17
organic substance biosynthetic process	236	18
regulation of biological process	235	18.8

cellular biosynthetic process	235	18.3
localization	234	18.6
heterocycle metabolic process	223	17.2
cellular aromatic compound metabolic process	220	17.4
cellular component organization	219	22.5
establishment of localization	213	18.6
transport	208	18.6
regulation of cellular process	207	18.2
response to stimulus	201	18.8
nucleobase-containing compound metabolic process	194	17.8
protein metabolic process	188	21.8
single-organism localization	188	18.2
single-organism transport	180	18.2
cellular response to stimulus	179	19.2
cellular protein metabolic process	178	23.1
organelle organization	177	24.6
nucleic acid metabolic process	162	18.4
regulation of metabolic process	150	17.1
macromolecule biosynthetic process	148	20.8
cellular nitrogen compound biosynthetic process	148	19.2
gene expression	148	18.7
cellular macromolecule biosynthetic process	147	20.8
organonitrogen compound metabolic process	143	17.6
cellular localization	138	23.8
response to stress	134	19.4
single-organism organelle organization	122	26.9
establishment of localization in cell	114	24.7
RNA metabolic process	114	17.6
organonitrogen compound biosynthetic process	113	19.4
cellular response to stress	111	20.7
cell cycle	109	24.2
macromolecule modification	109	21.3
cell cycle process	107	24.3
cellular component biogenesis	107	20.3
intracellular transport	103	24.7
macromolecule localization	100	23.7
protein modification process	99	22
cellular protein modification process	99	22
organic substance transport	96	21.3

protein localization	94	25.5
developmental process	94	21.6
growth	92	24.4
filamentous growth	91	25.2
single-organism developmental process	91	21.9
macromolecular complex subunit organization	90	21.3
reproduction	90	20.8
cellular protein localization	89	26.2
cellular macromolecule localization	89	26
single-organism intracellular transport	88	24.2
phosphorus metabolic process	84	17.4
anatomical structure development	83	22
oxoacid metabolic process	83	18
organic acid metabolic process	83	17.8
cellular component assembly	82	22.5
carboxylic acid metabolic process	81	17.9
phosphate-containing compound metabolic process	81	17.5
cytoplasmic transport	76	24.3
cell communication	76	21.5
negative regulation of biological process	75	20.1
nucleobase-containing compound biosynthetic process	72	17.9
cellular amide metabolic process	71	21.1
multi-organism process	71	18
establishment of protein localization	69	26.5
positive regulation of biological process	69	19.7
protein transport	68	27
amide biosynthetic process	68	22.7
anatomical structure morphogenesis	68	22
regulation of cell cycle	67	26.5
reproductive process	67	21.2
intracellular protein transport	64	27.8
negative regulation of cellular process	64	19.5
macromolecular complex assembly	63	23.1
anatomical structure formation involved in morphogenesis	63	21.4
peptide metabolic process	61	22.6
developmental process involved in reproduction	61	21.7
peptide biosynthetic process	60	23.8
DNA metabolic process	60	21.2
positive regulation of cellular process	60	19.8

regulation of cellular component organization	59	23.7
chromosome organization	58	22.9
vesicle-mediated transport	57	27.8
single-organism cellular localization	57	24.7
sporulation	57	20.1
regulation of biological quality	57	19.8
regulation of cell cycle process	54	28.1
translation	54	26.7
protein complex subunit organization	54	20.5
hyphal growth	53	29.1
cellular macromolecular complex assembly	53	23.7
cellular developmental process	52	21.7
macromolecule catabolic process	52	18.6
protein localization to organelle	51	28.3
sexual reproduction	51	19.9
multi-organism reproductive process	51	19.9
ion transport	51	18.8
meiotic cell cycle	50	22.7
regulation of mitotic cell cycle	49	30.4
meiotic cell cycle process	49	22.8
mitotic cell cycle	47	22.6
mitotic cell cycle process	47	22.6
cell differentiation	47	21.7
response to external stimulus	46	19.2
regulation of organelle organization	45	24.1
cellular amino acid metabolic process	45	19.1
organelle fission	44	28
response to nutrient levels	44	21.1
response to extracellular stimulus	44	21
cellular response to DNA damage stimulus	43	21.4
sporulation resulting in formation of a cellular spore	43	21
negative regulation of metabolic process	43	19.1
nuclear division	42	28
cellular macromolecule catabolic process	42	23.5
filamentous growth of a population of unicellular organisms	42	22.5
asexual reproduction	42	20.9
response to starvation	41	21.9
cellular response to nutrient levels	41	20.4
cellular response to extracellular stimulus	41	20.3

cellular response to external stimulus	41	20
protein targeting	40	27.4
regulation of cell division	39	28.3
establishment of protein localization to organelle	39	26.9
protein complex assembly	39	22.5
protein complex biogenesis	39	22.4
homeostatic process	39	21.9
cytoskeleton organization	38	26.6
mitochondrion organization	38	24.7
single organism signaling	38	22.2
signal transduction	38	22.2
signaling	38	22.2
cellular response to starvation	38	21.1
asexual sporulation	38	20.7
DNA repair	37	22.4
single-multicellular organism process	37	22
multicellular organismal process	37	22
single organism reproductive process	37	21.6
single-organism membrane organization	36	25.9
membrane organization	36	25.7
organ development	36	22
system development	36	22
spore-bearing organ development	36	22
reproductive system development	36	22
reproductive structure development	36	22
multicellular organismal development	36	21.8
reproduction of a single-celled organism	34	22.7
cation transport	34	21.5
negative regulation of cell cycle	33	26
carbohydrate derivative biosynthetic process	33	20.4
Golgi vesicle transport	32	32.7
chromosome segregation	32	31.1
regulation of nuclear division	32	29.4
regulation of molecular function	32	24.1
sexual sporulation resulting in formation of a cellular spore	32	21.2
sexual sporulation	32	21.2
regulation of growth	31	24.8
regulation of developmental process	31	24
regulation of response to stimulus	31	21.2

organophosphate biosynthetic process	31	20.4
vacuolar transport	30	36.6
peptidyl-amino acid modification	30	30.9
reproductive process in single-celled organism	30	22.1
protein catabolic process	30	20.4
establishment or maintenance of cell polarity	29	24
regulation of catalytic activity	29	23.8
cell development	29	21.6
cellular protein catabolic process	29	20.9
microtubule-based process	28	31.1
nuclear chromosome segregation	28	29.5
negative regulation of cell cycle process	28	26.9
regulation of anatomical structure morphogenesis	28	23.5
cellular protein complex assembly	28	23
proteolysis involved in cellular protein catabolic process	28	21.2
cellular homeostasis	28	20.7
mitotic nuclear division	27	30.7
chemical homeostasis	27	24.3
modification-dependent protein catabolic process	27	23.1
ubiquitin-dependent protein catabolic process	27	23.1
modification-dependent macromolecule catabolic process	27	22.3
ascospore formation	27	22.3
intracellular signal transduction	27	21.6
regulation of mitotic cell cycle phase transition	26	28.3
regulation of cell cycle phase transition	26	28
tRNA metabolic process	26	22.6
regulation of cell communication	25	27.2
sporocarp development	25	21.4
regulation of mitotic nuclear division	24	37.5
regulation of signaling	24	26.7
cellular chemical homeostasis	24	23.1
microtubule cytoskeleton organization	23	31.9
organelle assembly	23	30.3
sister chromatid segregation	23	29.9
regulation of signal transduction	23	26.4
ion homeostasis	23	23
positive regulation of cellular component organization	23	22.1
mitotic sister chromatid segregation	21	31.8
regulation of localization	21	31.3

cation homeostasis	21	23.1
cellular ion homeostasis	21	22.1
protein localization to vacuole	20	42.6
negative regulation of mitotic cell cycle	20	28.6
metal ion transport	20	25
heterocycle catabolic process	20	24.7
establishment of protein localization to vacuole	19	41.3
protein targeting to vacuole	19	41.3
cellular response to nitrogen starvation	19	28.8
cellular response to nitrogen levels	19	28.8
regulation of catabolic process	19	25
peptidyl-lysine modification	18	31.6
small GTPase mediated signal transduction	18	30.5
regulation of intracellular signal transduction	18	28.1
regulation of chromosome organization	18	26.1
ER to Golgi vesicle-mediated transport	17	36.2
vacuole organization	17	34
proteasomal protein catabolic process	17	25.8
proteasome-mediated ubiquitin-dependent protein catabolic	17	25.8
process	17	25.0
meiotic nuclear division	17	25.4
tRNA processing	17	24.3
transcription from RNA polymerase II promoter	17	24.3
positive regulation of cell cycle process	16	35.6
positive regulation of cell cycle	16	34
covalent chromatin modification	16	25.8
phospholipid biosynthetic process	16	25.8
histone modification	16	25.8
actin cytoskeleton organization	16	25
actin filament-based process	16	24.2
regulation of sporulation	16	23.9
autophagy	15	41.7
regulation of transport	15	28.3
endosomal transport	15	25.9
positive regulation of mitotic cell cycle	14	50
regulation of hydrolase activity	14	30.4
protein-DNA complex assembly	14	28
negative regulation of mitotic cell cycle phase transition	14	26.4
negative regulation of cell cycle phase transition	14	25.9

protein acylation	13	34.2
establishment of cell polarity	13	27.7
regulation of protein catabolic process	13	26.5
intracellular protein transmembrane transport	13	26
protein transmembrane transport	13	26
cellular amine metabolic process	13	25.5
regulation of small GTPase mediated signal transduction	12	36.4
protein acetylation	12	35.3
growth of unicellular organism as a thread of attached cells	12	34.3
positive regulation of cell division	12	31.6
regulation of Ras protein signal transduction	11	42.3
peptidyl-lysine acetylation	11	37.9
internal protein amino acid acetylation	11	37.9
internal peptidyl-lysine acetylation	11	37.9
movement of cell or subcellular component	11	33.3
regulation of chromosome segregation	11	31.4
nucleus organization	11	30.6
regulation of cellular localization	11	29.7
nucleotide-excision repair	11	28.9
RNA catabolic process	11	28.9
single-organism membrane invagination	10	52.6
membrane invagination	10	52.6
lysosomal microautophagy	10	52.6
regulation of GTPase activity	10	33.3
syncytium formation by plasma membrane fusion	10	32.3
protein maturation	10	32.3
organelle fusion	10	32.3
syncytium formation	10	32.3
positive regulation of nuclear division	10	32.3
spindle organization	10	32.3
divalent inorganic cation transport	10	31.3
regulation of sister chromatid segregation	10	31.3
regulation of cytokinesis	10	31.3
nucleobase metabolic process	10	30.3
establishment of nucleus localization	10	30.3
nucleus localization	10	30.3
secretion by cell	10	29.4
secretion	10	29.4
regulation of conidium formation	10	29.4

negative regulation of cell cycle G2/M phase transition	10	28.6
negative regulation of G2/M transition of mitotic cell cycle	10	28.6
CVT pathway	9	64.3
sister chromatid cohesion	9	42.9
negative regulation of catabolic process	9	36
meiotic chromosome segregation	9	33.3
chromatin silencing at silent mating-type cassette	9	33.3
histone acetylation	9	33.3
positive regulation of cellular amide metabolic process	9	31
protein dephosphorylation	9	31
late endosome to vacuole transport	9	30
positive regulation of cell communication	9	30
regulation of mitotic sister chromatid segregation	9	30
positive regulation of mitotic nuclear division	8	61.5
piecemeal microautophagy of nucleus	8	57.1
nucleophagy	8	57.1
mitotic sister chromatid cohesion	8	50
regulation of barrier septum assembly	8	47.1
pseudohyphal growth	8	44.4
regulation of mitotic cytokinetic process	8	42.1
regulation of mitotic cytokinesis	8	42.1
regulation of vesicle-mediated transport	8	40
invasive growth in response to glucose limitation	8	40
regulation of cell septum assembly	8	40
signal transduction involved in conjugation with cellular fusion	8	38.1
invasive filamentous growth	8	36.4
regulation of cytokinetic process	8	34.8
regulation of DNA-dependent DNA replication	8	33.3
amide transport	8	33.3
chromosome condensation	7	46.7
organelle disassembly	7	41.2
negative regulation of intracellular signal transduction	7	41.2
macroautophagy	7	41.2
homologous chromosome segregation	7	41.2
carbon utilization	7	36.8
acetate catabolic process	6	75
mitochondrion disassembly	6	66.7
mitophagy	6	66.7
regulation of penicillin biosynthetic process	6	60

acetate metabolic process	6	50
positive regulation of cell cycle phase transition	6	46.2
positive regulation of mitotic cell cycle phase transition	6	46.2
metallo-sulfur cluster assembly	6	40
iron-sulfur cluster assembly	6	40
regulation of penicillin metabolic process	6	37.5
pre-replicative complex assembly involved in cell cycle DNA replication	5	55.6
pre-replicative complex assembly involved in nuclear cell cycle DNA replication	5	55.6
pre-replicative complex assembly	5	55.6
positive regulation of chromosome segregation	5	50
regulation of cell cycle G1/S phase transition	5	45.5
negative regulation of small GTPase mediated signal transduction	5	45.5
regulation of G1/S transition of mitotic cell cycle	5	45.5
regulation of septation initiation signaling	5	45.5
intra-Golgi vesicle-mediated transport	5	45.5
regulation of endocytosis	5	45.5
negative regulation of Ras protein signal transduction	5	45.5
post-translational protein modification	4	100
establishment of mitotic sister chromatid cohesion	4	80
establishment of sister chromatid cohesion	4	80
peptide pheromone maturation	4	80
traversing start control point of mitotic cell cycle	4	80
positive regulation of cell cycle G1/S phase transition	4	66.7
N-glycan processing	4	66.7
positive regulation of G1/S transition of mitotic cell cycle	4	66.7
attachment of spindle microtubules to kinetochore involved in homologous chromosome segregation	4	57.1
kinetochore organization	4	57.1
microtubule cytoskeleton organization involved in homologous chromosome segregation	4	57.1
vesicle localization	4	57.1
'de novo' pyrimidine nucleobase biosynthetic process	4	57.1
positive regulation of penicillin biosynthetic process	4	57.1
regulation of vacuole fusion, non-autophagic	4	57.1
attachment of spindle microtubules to kinetochore involved in meiotic chromosome segregation	4	57.1
meiotic gene conversion	4	57.1
regulation of sister chromatid cohesion	4	57.1

regulation of centromeric sister chromatid cohesion	3	100
C-terminal protein amino acid modification	3	100
DNA replication, removal of RNA primer	3	75
protein folding in endoplasmic reticulum	3	75
phosphatidylethanolamine biosynthetic process	3	75
regulation of iron ion transport	3	75
histone H3 deacetylation	3	75
pyrimidine dimer repair	3	75
telomere capping	3	75
A. flavus		
cellular process	461	10.6
organic substance metabolic process	353	10.9
primary metabolic process	333	11.3
cellular metabolic process	328	11.5
single-organism cellular process	300	11
macromolecule metabolic process	213	11.1
nitrogen compound metabolic process	210	11.5
cellular macromolecule metabolic process	197	11.8
cellular nitrogen compound metabolic process	173	11.3
biosynthetic process	163	11
organic substance biosynthetic process	160	11.4
organic cyclic compound metabolic process		10.9
cellular biosynthetic process		11.8
cellular aromatic compound metabolic process		11
heterocycle metabolic process	147	11.1
nucleobase-containing compound metabolic process		11.5
biological regulation	121	10.9
small molecule metabolic process	120	13.1
organonitrogen compound metabolic process	114	12.6
regulation of biological process	113	11.3
cellular component organization or biogenesis	110	12.6
protein metabolic process		11.9
regulation of cellular process 109		12
cellular nitrogen compound biosynthetic process 99		11.6
cellular protein metabolic process 96		12.8
cellular macromolecule biosynthetic process 9		11.5
macromolecule biosynthetic process	93	11.2
cellular component organization 91		12.5
response to stimulus	82	14

organonitrogen compound biosynthetic process	82	13.7
phosphorus metabolic process	79	16.2
phosphate-containing compound metabolic process	77	16.4
single-organism biosynthetic process	74	11.5
heterocycle biosynthetic process	73	11.6
organelle organization	70	13
aromatic compound biosynthetic process	70	12
macromolecule modification	63	13.8
oxoacid metabolic process	62	12.5
organic acid metabolic process	62	12.4
carboxylic acid metabolic process	61	12.4
nucleobase-containing compound biosynthetic process	61	12.2
cellular response to stimulus	59	16.5
catabolic process	58	12.3
protein modification process	57	14
cellular protein modification process	57	14
organic substance catabolic process	56	12.4
organophosphate metabolic process	52	18.7
lipid metabolic process	50	12.3
cellular catabolic process	49	13.8
carbohydrate derivative metabolic process	47	14.7
response to stress	47	14.2
single-organism organelle organization	43	14.2
cell cycle process	41	16.3
cell cycle	41	15.3
cellular amino acid metabolic process	41	13.9
cellular lipid metabolic process	39	14
nucleobase-containing small molecule metabolic process	35	15
organophosphate biosynthetic process	34	22.8
cell communication	34	17.4
nucleoside phosphate metabolic process	33	18.9
signal transduction	32	18.4
single organism signaling	32	18.4
signaling	32	18.4
macromolecule catabolic process	32	13.8
nucleotide metabolic process	31	18.7
phosphorylation	31	15
carbohydrate derivative biosynthetic process	30	18.5
cellular response to stress	29	16.8

alpha-amino acid metabolic process	29	14.9
DNA metabolic process	29	13.7
cellular macromolecule catabolic process	27	15.6
reproduction	24	15.5
mitotic cell cycle	23	17
mitotic cell cycle process	23	17
nucleoside phosphate biosynthetic process	22	25.6
ribose phosphate metabolic process	22	17.9
protein catabolic process	22	16.1
purine-containing compound metabolic process	21	17.4
nucleoside metabolic process	21	15.4
glycosyl compound metabolic process	21	15.3
nucleotide biosynthetic process	20	25.6
nucleoside monophosphate metabolic process	20	20.8
purine nucleotide metabolic process	20	19.2
ribonucleotide metabolic process	20	18.9
cytoskeleton organization	20	16.1
cellular response to DNA damage stimulus	20	14.2
ribonucleoside monophosphate metabolic process	19	20.2
ribonucleoside metabolic process	19	18.8
intracellular signal transduction	19	17.1
purine ribonucleoside monophosphate metabolic process	18	19.8
purine nucleoside monophosphate metabolic process	18	19.6
purine ribonucleoside metabolic process	18	19.1
purine nucleoside metabolic process	18	18.9
purine ribonucleotide metabolic process	18	17.6
small molecule catabolic process	18	15.4
cofactor biosynthetic process	17	16.5
cellular carbohydrate metabolic process	17	16.3
mitochondrion organization	16	26.7
nucleoside triphosphate metabolic process	16	21.3
phospholipid metabolic process	16	18.8
ribonucleoside triphosphate metabolic process	15	20.5
energy derivation by oxidation of organic compounds	15	16.1
regulation of cell cycle	15	16
organelle fission	15	16
organic acid catabolic process	15	15.3
carboxylic acid catabolic process	15	15.3
microtubule-based process	14	23

regulation of cellular protein metabolic process	14	20.3
ATP metabolic process	14	19.7
purine nucleoside triphosphate metabolic process	14	19.4
purine ribonucleoside triphosphate metabolic process	14	19.4
regulation of protein metabolic process	14	18.7
coenzyme biosynthetic process	14	17.5
DNA replication	14	16.7
microtubule cytoskeleton organization	13	25.5
nucleoside monophosphate biosynthetic process	13	25
ribonucleotide biosynthetic process	13	24.1
ribose phosphate biosynthetic process	13	24.1
cell division	13	20.3
regulation of catalytic activity	13	20
regulation of molecular function	13	20
nucleoside biosynthetic process	12	25
ribonucleoside biosynthetic process	12	25
glycosyl compound biosynthetic process	12	24.5
ribonucleoside monophosphate biosynthetic process	12	24
purine nucleotide biosynthetic process	12	23.5
purine-containing compound biosynthetic process	12	19.7
cellular respiration	12	17.9
membrane organization	12	16.7
purine ribonucleoside biosynthetic process	11	25.6
purine nucleoside biosynthetic process	11	25.6
purine ribonucleoside monophosphate biosynthetic process	11	23.4
purine nucleoside monophosphate biosynthetic process		22.9
purine ribonucleotide biosynthetic process	11	22
cytokinesis	11	20
glycerophospholipid metabolic process	11	20
glycerolipid metabolic process	11	19
regulation of phosphate metabolic process	10	28.6
regulation of phosphorus metabolic process	10	28.6
regulation of cell communication	10	27.8
regulation of signal transduction	10	27.8
regulation of signaling	10	27.8
regulation of response to stimulus	10	27
phospholipid biosynthetic process	10	19.2
peptidyl-amino acid modification	10	17.9
glycoprotein metabolic process	10	17.9

mitochondrial transport	9	30
regulation of phosphorylation	9	29
nucleoside triphosphate biosynthetic process	9	28.1
phosphatidylinositol metabolic process	9	25.7
DNA recombination	9	23.7
regulation of transferase activity	9	23.1
regulation of protein modification process	9	21.4
protein import	9	20.9
aspartate family amino acid metabolic process	9	19.6
protein targeting to mitochondrion	8	38.1
protein localization to mitochondrion	8	38.1
establishment of protein localization to mitochondrion	8	38.1
regulation of intracellular signal transduction	8	32
regulation of protein kinase activity	8	28.6
regulation of kinase activity	8	28.6
regulation of protein phosphorylation	8	26.7
ribonucleoside triphosphate biosynthetic process	8	25.8
electron transport chain	7	33.3
regulation of protein serine/threonine kinase activity	7	28
energy coupled proton transport, down electrochemical gradient	7	26.9
ATP synthesis coupled proton transport	7	26.9
hydrogen ion transmembrane transport	7	25
ATP biosynthetic process	7	24.1
purine nucleoside triphosphate biosynthetic process	7	23.3
purine ribonucleoside triphosphate biosynthetic process	7	23.3
hydrogen transport	7	21.2
positive regulation of metabolic process	7	21.2
proton transport	7	21.2
ATP synthesis coupled electron transport	6	37.5
oxidative phosphorylation	6	37.5
respiratory electron transport chain	6	33.3
regulation of small GTPase mediated signal transduction	6	31.6
intracellular protein transmembrane transport	6	30
protein transmembrane transport	6	30
regulation of cyclin-dependent protein kinase activity	6	26.1
regulation of cyclin-dependent protein serine/threonine kinase activity	6	26.1
liposaccharide metabolic process	6	25

branched-chain amino acid metabolic process	6	23.1
mitochondrial transmembrane transport	5	45.5
intracellular protein transmembrane import	5	35.7
double-strand break repair	5	27.8
positive regulation of catalytic activity	4	57.1
positive regulation of molecular function	4	57.1
regulation of Ras protein signal transduction	4	40
mitochondrial ATP synthesis coupled electron transport	4	30.8
lagging strand elongation	4	30.8
termination of RNA polymerase II transcription, exosome-	3	60
inositol metabolic process	3	60
obsolete mutagenesis	3	60
positive regulation of cellular protein metabolic process	3	50
positive regulation of protein metabolic process	3	50
DNA integrity checkpoint	3	42.9
DNA damage checkpoint	3	42.9
Mo-molybdopterin cofactor biosynthetic process	3	42.9
molybdopterin cofactor biosynthetic process	3	42.9
molybdopterin cofactor metabolic process	3	42.9
positive regulation of phosphorus metabolic process	3	42.9
prosthetic group metabolic process	3	42.9
positive regulation of phosphate metabolic process	3	42.9
pyrimidine nucleotide biosynthetic process	3	42.9
Mo-molybdopterin cofactor metabolic process	3	42.9
termination of RNA polymerase II transcription	3	42.9
pyrimidine deoxyribonucleotide biosynthetic process	2	100
deoxyribonucleotide biosynthetic process	2	100
glycoprotein catabolic process	2	100
deoxyribose phosphate biosynthetic process	2	100
cortical protein anchoring	2	100
plasma membrane fusion	2	100
2'-deoxyribonucleotide biosynthetic process	2	100
positive regulation of hydrolase activity	2	100

Table S3-10 Conserved and divergent GO categories of WetA-regulated $_{N:N} Orthogroups % \mathcal{O}_{N:N} Orthogroups \mathcal{O}_{N:N} Orthogroup \mathcal{O}_{N:N} Orthogr$

Conserved GO	benzene-containing compound metabolic process
categories	cellular ketone metabolic process
cutegoiles	phenol-containing compound metabolic process
	organic hydroxy compound biosynthetic process
	coenzyme M metabolic process
	maturation of LSU-rRNA
	dUTP metabolic process
	RNA methylation
	extracellular polysaccharide metabolic process
	ferrous iron transport
	peptidyl-glutamine methylation
	cellobiose transport
	arsenite transport
	quinone metabolic process
	monocarboxylic acid biosynthetic process
Diverged GO	calcium ion import
categories	xyloglucan metabolic process
	replication fork protection
	triglyceride metabolic process
	neutral lipid metabolic process
	methylglyoxal metabolic process
	acylglycerol metabolic process
	negative regulation of DNA replication
	ribosomal small subunit assembly
	hemicellulose metabolic process
	alkaloid metabolic process
	DNA integration
	glucan metabolic process
	indole alkaloid metabolic process
	pyruvate metabolic process
	triglyceride metabolic process
	austinol metabolic process
	neutral lipid metabolic process
	dehydroaustinol biosynthetic process
	givenities process
	ATD convertion from ADD
	ATP generation from ADP

WetA-mediated NU_orthogroups

Mixed GO	DNA-mediated transposition
categories	DNA integration
	RNA-dependent DNA replication
	DNA metabolic process
	DNA recombination
	DNA replication
	phosphorelay signal transduction system
	peptidyl-histidine autophosphorylation
	protein autophosphorylation
	macromolecule biosynthetic process
	nucleic acid metabolic process
	defense response

WetA-mediated NU_orthogroups

Conserved GO	secondary metabolite biosynthetic process
categories	oxidation-reduction process
	peptidyl-lysine oxidation
	peptide cross-linking
	spore wall assembly
	phosphatidic acid metabolic process
	protein oxidation
	cell wall assembly
	mycotoxin metabolic process
	organic heteropentacyclic compound metabolic process
	cellular lactam metabolic process
	antibiotic metabolic process
	drug metabolic process
	obsolete electron transport
	amine metabolic process
	transition metal ion homeostasis
Diverged GO	oxidation-reduction process
categories	secondary metabolic process
	transmembrane transport
	DNA-templated transcription,
	RNA metabolic process
	macromolecule biosynthetic process
	nucleobase-containing compound metabolic process
	nitrogen compound metabolic process
	obsolete electron transport
	mycotoxin metabolic process

	organic heteropentacyclic compound metabolic process
	transmembrane transport
	heterocycle biosynthetic process
	tetraterpenoid metabolic process
	formaldehyde metabolic process
	organic cyclic compound biosynthetic process
Mixed GO	alcohol metabolic process
categories	aldonic acid metabolic process
	amino acid transmembrane transport
	asparagine metabolic process
	austinol metabolic process
	cell wall macromolecule catabolic process
	cellular ketone metabolic process
	cinnamic acid metabolic process
	dehydroaustinol metabolic process
	D-gluconate metabolic process
	establishment of localization
	glycosyl compound metabolic process
	ketone biosynthetic process
	localization
	mycotoxin metabolic process
	nucleobase transport
	nucleobase-containing small molecule metabolic process
	nucleoside metabolic process
	obsolete electron transport
	organic hydroxy compound metabolic process
	oxidation-reduction process
	phenylpropanoid metabolic process
	quinone metabolic process
	regulation of asperthecin biosynthetic process
	regulation of nitrogen utilization
	regulation of sterigmatocystin biosynthetic process
	secondary metabolic process
	single-organism localization
	transmembrane transport
	transport

WetA-mediated UL_orthogroups

Conserved GO	(1->6)-beta-D-glucan metabolic process
categories	amino acid activation for nonribosomal peptide biosynthetic process

amino acid adenylylation by nonribosomal peptide synthase amino sugar catabolic process aminoglycan catabolic process anaerobic amino acid catabolic process anaerobic glutamate catabolic process arginine catabolic process beta-glucan metabolic process carbohydrate derivative catabolic process cell killing cell wall organization or biogenesis cell wall polysaccharide metabolic process cellular glucan metabolic process cellular polysaccharide metabolic process chitin catabolic process cytolysis cytolysis by symbiont of host cells cytolysis in other organism 'de novo' protein folding defense response deoxyribonucleotide metabolic process energy derivation by oxidation of organic compounds fermentation generation of precursor metabolites and energy glucan metabolic process glucosamine-containing compound catabolic process glutamine family amino acid catabolic process hemicellulose metabolic process high-affinity iron ion transmembrane transport hormone transport iron ion transmembrane transport mycotoxin metabolic process obsolete cytokinesis, completion of separation obsolete vitamin or cofactor transport organonitrogen compound catabolic process peptide pheromone export polysaccharide metabolic process positive regulation of ergosterol biosynthetic process positive regulation of ergosterol biosynthetic process by positive regulation of transcription from RNA polymerase II promoter positive regulation of lipid transport

	positive regulation of steroid biosynthetic process
	positive regulation of storal transport
	regulation of ergestered biosymptotic process by regulation of transcription
	from PNA polymoroso II promotor
	regulation of hormono levels
	regulation of light transport
	regulation of fibre transport
	regulation of sterof transport
	succinyi-CoA metabolic process
	xylan metabolic process
Diverged GO	amine biosynthetic process
categories	aromatic amino acid family biosynthetic process
	carbohydrate metabolic process
	cellular biogenic amine biosynthetic process
	cellular potassium ion transport
	copper ion transmembrane transport
	cytoplasmic sequestering of transcription factor
	galacturonan metabolic process
	hemicellulose catabolic process
	negative regulation of cellular protein localization
	negative regulation of intracellular transport
	pectin metabolic process
	phosphatidic acid metabolic process
	polyamine metabolic process
	polysaccharide metabolic process
	potassium ion transmembrane transport
	production of siRNA involved in RNA interference
	regulation of nitrogen utilization
	RNA interference
	secondary metabolic process
	xanthone-containing compound metabolic process
Mixed GO	(R)-carnitine transport
categories	allantoin transport
	amide transport
	amine metabolic process
	amine transport
	amino acid transmembrane transport
	amino acid transport
	amino-acid betaine transport
	anion transmembrane transport
	antibiotic metabolic process

beta-lactam antibiotic metabolic process biological adhesion capsule organization carboxylic acid transport carnitine transport cation transport cell adhesion cellular amine metabolic process cellular lactam metabolic process cellular nitrogen compound catabolic process choline transport dipeptide transport divalent metal ion transport drug metabolic process establishment of localization ethanolamine transport fatty acid derivative metabolic process fumiquinazoline metabolic process gliotoxin metabolic process glycine betaine transport heterocycle catabolic process icosanoid metabolic process inorganic ion transmembrane transport ion transport iron assimilation by reduction and transport lipid catabolic process localization mycotoxin metabolic process neutral amino acid transport nitrogen compound transport nonribosomal peptide biosynthetic process nucleobase transport oligopeptide transport organic acid transport organic cyclic compound catabolic process organonitrogen compound catabolic process oxidation-reduction process peptide transport polyketide metabolic process proline transport

prostaglandin metabolic process prostanoid metabolic process quaternary ammonium group transport response to antibiotic response to chemical response to copper ion response to drug response to toxic substance response to transition metal nanoparticle secondary metabolic process single-organism catabolic process single-organism localization single-organism process single-organism transport toxin metabolic process transition metal ion transport transmembrane transport zinc II ion transport

	A. nidulans		A. fumi	gauts	A. flavus	
	ID	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold
	ID	Change	ID	Change	ID	Change
abaA	AN0422	4.96	Afu1g04830	3.72	AFLA_029620	2.96
асуА	AN2623	4.03	Afu3g12620		AFLA_070880	3.90
ams1	AN2936	1.56	Afu3g08200		AFLA_086900	1.02
areA	AN8667		Afu6g01970		AFLA_049870	-0.45
argB	AN4409		Afu4g07190		AFLA_112660	-1.53
atfA	AN2911		Afu3g11330		AFLA_031340	-0.64
atfB	AN6849	-1.79	Afu5g12960	1.53	AFLA_094010	-6.01
atg l	AN1632	1.42	Afu4g09050		AFLA_110620	1.39
atgH	AN5131	3.34	Afu1g07470	1.08	AFLA_022400	1.23
bem1	AN7030	1.16	Afu4g04120	2.68	AFLA_114720	-1.12
brlA	AN0973	6.65	Afu1g16590	1.93	AFLA_082850	3.31
cchl	AN1168		Afu1g11110		AFLA_068440	1.53
chsA	AN4566		Afu2g01870	2.50	AFLA_042780	1.95
chsB	AN7032	2.19	Afu4g04180	1.25	AFLA_114760	1.72
chsE	AN6318	4.97	Afu2g13440	3.56	AFLA_136030	3.37
chsF	AN1555	3.05	Afu8g05630	6.59	AFLA_078290	2.43
chsG	AN2523	2.55	Afu3g14420	4.00	AFLA_060590	2.59
cmdA	AN2047		Afu4g10050		AFLA_026020	1.59
cnaA	AN8820		Afu5g09360		AFLA_098750	0.49
cnaB	AN6566	-1.59	Afu6g04540		AFLA_055480	-0.06
срсВ	AN4163	-2.58	Afu4g13170		AFLA_051980	-0.91
crzA	AN5726		Afu1g06900		AFLA_127920	1.57
dewA	AN8006	-9.48	Afu8g07060	3.48	AFLA_060780	-4.32
esdC	AN9121	1.02	Afu7g01930	3.32	AFLA_071090	2.51
fadA	AN0651		Afu1g13140	3.82	AFLA_018340	0.25
fbx15	AN2505	1.25	Afu3g14150	1.93	AFLA_019100	1.74
figA	AN3036	4.02	Afu3g09060		AFLA_086010	2.40
flbA	AN5893	4.08	Afu2g11180	2.70	AFLA_134030	1.71
flbB	AN7542		Afu2g14680	1.17	AFLA_131490	0.95
flbC	AN2421	1.91	Afu2g13770	4.92	AFLA_137320	3.04

Table S3-11 DEGs related with as exual development in $\Delta wetA$ conidia

flbD	AN0279		Afu1g03210	7.20	AFLA_080170	0.43
flbE	AN0721		-		AFLA_017380	0.14
fluG	AN4819	-2.37	Afu3g07140	1.88	AFLA_039530	-2.59
fphA	AN9008		Afu4g02900	1.02	AFLA_065850	-1.09
ganB/gpaB	AN1016		Afu1g12930		AFLA_018540	0.63
gpaA	AN0651		Afu1g13140	3.82	AFLA_018340	0.25
gpgA	AN2742		Afu1g05210		AFLA_030020	-0.41
gprC	AN3765	1.85	Afu7g04800	4.40	AFLA_074150	2.04
gprD	AN3387	-1.72	Afu2g12640	4.12	AFLA_135680	0.49
hsp90	AN8269	3.67	Afu5g04170	-2.33	AFLA_006960	-0.70
ime2	AN6243	2.24	Afu2g13140	3.44	AFLA_136540	1.71
kex1	AN10184		Afu1g08940		AFLA_088670	-1.05
laeA	AN0807	-2.93	Afu1g14660	2.92	AFLA_033290	0.15
llmB/vipC	AN8945		Afu8g01930		AFLA_121330	-4.53
llmF	AN6749		Afu8g01930		AFLA_008970	2.89
lreA	AN3435	-3.04	Afu3g05780	-1.73	AFLA_103610	0.35
lreB	AN3607	-1.06	Afu4g12690	-3.43	AFLA_051690	-0.49
meaB	AN4900		Afu3g10930		AFLA_031790	0.36
medA	AN6230		Afu2g13260	5.50	AFLA_136410	2.81
midA	AN4897	3.21	Afu3g10960	3.26	AFLA_031700	2.89
mkkB	AN4189		Afu1g05800		AFLA_051240	0.58
mob1	AN6288	2.26	Afu2g12390		AFLA_135550	2.38
mpkB	AN3719	4.29	Afu6g12820	1.98	AFLA_034170	0.96
msdS	AN0787	9.00	Afu1g14560	4.99	AFLA_033400	4.17
msnA	AN1652	-1.66	Afu4g09080	3.52	AFLA_110650	2.23
mtfA	AN8741	1.51	Afu6g02690	3.71	AFLA_091490	2.27
napA	AN8863		Afu5g05540	1.50	AFLA_048050	0.43
nce102	AN7683	-2.44	Afu2g01590	-4.35	AFLA_062460	-5.13
nsdC	AN4263	1.60	Afu7g03910		AFLA_131330	2.72
nsdD	AN3152		Afu3g13870	2.78	AFLA_020210	1.68
nudA	AN0118	2.76	Afu5g11810		AFLA_092800	2.17
nudG	AN0420		Afu1g04850	-1.22	AFLA_029640	-1.26
odeA	AN1037	1.50	Afu1g12530	3.08	AFLA_066330	1.85
orlA	AN3441	-2.90	Afu3g05650		AFLA_103730	-0.59
osaA	AN6578		Afu6g04490		AFLA_055650	-1.50
pac2/osaB	AN3074		Afu3g09640	2.06	AFLA_085200	1.08

nhcR	AN1599		Afu7001640		AFLA 028410	-1.02
ncll	AN0453	5 52	Afu1g04750	4 14	AFLA 029150	2 40
peri nhnA	AN0082	5.52	Afu5g12200	-1 39	AFLA 093230	1.66
nkaA	AN6305	-2.36	Afu2g12200	-3.46	AFLA 135040	-2.63
pkaR	AN4717	2.50	Afu5908570	-1.16	AFLA 091910	-2.09
pkaB pkaR	AN4987	-1 69	Afu3g10000	-1.81	AFLA 032870	-1.36
nksP	AN8209	-4 97	Afu2g17600	1.01	AFLA 006170	-5.70
nnoA	AN1967	,	Afu4g10770	-2.51	AFLA 026790	-1.46
ppoll	AN6320	4 75	Afu4g00180	-11 69	AFLA 120760	-11.01
ppoC	AN5028	3.00	Afu3g12120	5.41	AFLA 030430	1.23
ppoD	-		-		AFLA 021100	3.74
prpA	AN3129	1.85	Afu5g07320	2.50	AFLA 034670	5.31
rasA	AN0182		Afu5g11230	2.06		0.21
rasB	AN5832	1.88	Afu2g07770		AFLA_047110	0.17
rgdA	AN4745	2.26	Afu3g06280		AFLA_102850	2.22
rgsA	AN5755		Afu6g06860	1.01	AFLA_037370	0.56
rhbA	AN8868	-1.30	Afu5g05480	-2.91	AFLA_048000	-1.15
rho1	AN5740	1.09	Afu6g06900		AFLA_037320	1.58
ricA	AN1661		Afu4g08820	-1.33	AFLA_110790	-1.07
rlmA	AN2984	1.73	Afu3g08520		AFLA_086590	0.34
rodA	AN8803	7.02	Afu5g09580		AFLA_098380	1.72
rodB	-		Afu1g17250	6.54	AFLA_014260	-2.00
sfaD	AN0081	1.59	Afu5g12210	2.31	AFLA_093240	0.47
sfgA	AN8129	-1.13	Afu5g02800		AFLA_005520	-2.82
sidB	AN8751	2.40	Afu6g02840	2.09	AFLA_091740	1.39
sltA	AN2919	3.33	Afu3g08010	3.36	AFLA_087350	2.86
somA	AN9087		Afu7g02260		AFLA_071410	0.05
srgA	AN6974		Afu4g04810		AFLA_115520	-0.44
ssc1	AN9467		Afu5g02560	1.16	AFLA_004760	1.40
steC	AN2269		Afu5g06420	2.37	AFLA_048880	1.48
steD	AN7252		Afu2g17130	2.55	AFLA_002340	-0.45
stuA	AN5836	4.03	Afu2g07900	5.61	AFLA_046990	2.32
swoM	AN6037	-1.22	Afu2g09790	-1.29	AFLA_044820	-1.43
tcpA	AN0641		Afu1g16840		AFLA_082510	-1.07
tmpA	AN0055	-2.08	Afu5g12520		AFLA_093580	-2.48
<i>tpsA</i>	AN5523	-1.62	Afu6g12950	-2.09	AFLA_034030	0.25

tpsB	AN5523	-1.62	Afu2g04010	-1.84	AFLA_087630	-2.65
tpsC	AN10533	-1.50	Afu7g03940	-2.63	AFLA_131370	-2.30
ugtA	AN3113		Afu3g12700	2.63	AFLA_020990	1.34
vapA	AN0186	2.98	Afu5g11190	5.93	AFLA_132340	1.48
veA	AN1052	-2.43	Afu1g12490	2.44	AFLA_066460	-1.90
velB	AN0363	1.07	Afu1g01970	-2.20	AFLA_081490	0.20
velC	AN2059	2.36	Afu4g09770	1.07	AFLA_025780	0.82
vosA	AN1959	-3.35	Afu4g10860	-3.28	AFLA_026900	-3.70
vosB	-		-		AFLA_074470	-6.25
wetA	AN1937	-10.99	Afu4g13230	-12.90	AFLA_052030	-10.74
wsc1	AN4674	5.45	Afu5g09020	3.89	AFLA_099380	3.60
wsc3	AN5660	3.81	Afu4g13670	5.57	AFLA_052510	3.01
zipA	AN11891	1.74	Afu1g16460	3.77	AFLA_083100	1.81

	A. nic	A. nidulans		A. fumigauts		A. flavus	
	m	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold	
	ID	Change	ID	Change	ID	Change	
dakA	AN0034	1.18	AFU5g12690	-	AFLA_093790	-3.14	
atmA	AN0038	-1.33	Afu5g12660	1.09	AFLA_093750	-	
pkcA	AN0106	1.49	AFU5g11970	-	AFLA_092990	-	
rio2	AN0124	-2.13	Afu5g11730	-1.90			
	AN0156	-1.08	AFU5g11450	-	AFLA_132700	-	
ireA	AN0235	3.74	Afu1g01720	2.32	AFLA_081860	-	
	AN0259	-	Afu1g03420	1.64	AFLA_080110	-	
	AN0699	-	Afu1g13600	-1.72	AFLA_017810	-	
aromA	AN0708	-1.12	AFU1g13740	1.65	AFLA_017680	-	
	AN0929	1.66	AFU1g15930	-	AFLA_083430	1.32	
pbsA	AN0931	-1.67	Afu1g15950	-2.63	AFLA_083380	-	
oca2	AN10019	1.08	Afu5g11840	-1.41	AFLA_092880	-1.06	
srpkF	AN10082	2.77	Afu6g02242	2.18	AFLA_090470	-	
	AN10156	2.34	AFU1g11550	2.41	AFLA_068180	3.36	
null	AN10188	-2.09	AFU1g08840	-	AFLA_088770	-	
srpkG	AN10462	1.35			AFLA_090280	-2.55	
stk21	AN10485	-	Afu6g08590	1.68	AFLA_128210	-	
prk1	AN10515	3.43	Afu1g05930	2.01	AFLA_090810	2.29	
	AN10551	-2.81	AFU4g07140	-1.97	AFLA_112710	-1.10	
	AN10646	-	AFU1g07040	-2.48	AFLA_022040	-1.09	
	AN10682	-	Afu6g12890	-1.76	AFLA_034120	-	
	AN10731	-1.35					
pclB	AN10741	1.61	AFU2g07660	2.33	AFLA_047210	-	
pkpA	AN10800	1.66	Afu2g13600	-1.91	AFLA_136730	-	
snf4	AN10854	-	AFU5g12990	-1.11	AFLA_094030	-1.08	
srpk B	AN10895	-2.24	Afu6g02590	4.06	AFLA_106860	-	
srpkE	AN10937	4.04	Afu3g02460	-8.56	AFLA_009240	-	
	AN1096	-1.08	Afu1g11950	-1.77	AFLA_067680	-2.15	
	AN11032	-	AFU5g02220	-	AFLA_004050	1.50	
gin4	AN11101	3.95	Afu6g02300	2.79	AFLA_091080	2.64	
kin1	AN1171	-	Afu1g11080	1.15	AFLA_068480	3.19	

Table S3-12 Kinase encoded DEGs in *∆wetA* conidia

	AN1176	-1.11	AFU1g10980	-	AFLA_068540	-
	AN11803	-2.71	AFU4g10840	-	AFLA_026880	-2.24
	AN11814	-6.30			AFLA_119130	1.67
	AN4279	-	Afu7g03750	1.33		
	AN11932	3.11	AFU7g01620	-	AFLA_070720	1.66
sD	AN1194	-2.00	AFU1g10820	-	AFLA_068790	-
pgkA	AN1246	-2.45	Afu1g10350	-3.19	AFLA_069370	-2.11
srpkC	AN1315	2.18			AFLA_072390	-1.69
	AN1315	2.18			AFLA_072390	-1.69
	AN1370	-	Afu1g09170	3.58	AFLA_088430	-
plkA	AN1560	-	AFU8g05680	1.72	AFLA_078250	-
atg1	AN1632	1.42	Afu4g09050	-	AFLA_110620	1.39
	AN1668	-	Afu4g08900	-1.64	AFLA_110530	-
nimO	AN1779	-1.76	Afu6g09180	1.22	AFLA_129020	-
sln1	AN1800	-	AFU2g00660	-	AFLA_039130	1.15
	AN1854	1.47	Afu4g09910	2.05	AFLA_025890	-
phoB	AN1867	1.17				
	AN2211	-1.42	AFU5g07030	-	AFLA_057380	-
gcn2	AN2246	-1.05	AFU5g06750	-	AFLA_056720	-
ksp1	AN2265	1.35	AFU5g06470	-		
	AN2269	-	Afu5g06420	2.37	AFLA_048880	1.48
	AN2272	-	Afu5g06390	1.02	AFLA_048840	-
	AN2311	-	AFU5g10680	-	AFLA_119540	1.82
ffkC	AN2373	1.98				
	AN2412	-	Afu2g13680	3.37	AFLA_136990	1.89
ssn3	AN2489	-	Afu3g13990	1.14	AFLA_019840	-
	AN2513	-	AFU3g14290	-	AFLA_098060	-1.32
	AN2766	-	Afu3g06080	1.06	AFLA_103280	-
mps1	AN2927	3.58	AFU3g08100	3.54	AFLA_087000	-
isr1	AN3001	-2.33	AFU3g08710	-		
	AN3065	-	Afu3g09550	1.83	AFLA_085320	-
	AN3110	-	Afu3g12670	2.58	AFLA_021030	2.35
	AN3177	-	Afu3g13270	1.08	AFLA_020560	-
	AN3181	-3.01	AFU3g13210	-	AFLA_020620	1.18
	AN3214	-2.86	Afu4g01020	-1.58	AFLA_024540	-8.52
cdc7	AN3450	1.54	AFU3g05540	-	AFLA_103840	1.13

	AN3619	1.20	Afu4g12680	1.08	AFLA_051700	2.46
	AN3648	2.27	Afu4g12160	2.94	AFLA_028230	-
mpkB	AN3719	4.29	Afu6g12820	1.98	AFLA_034170	-
	AN3755	-	Afu7g04640	-1.19	AFLA_073980	-
erg12	AN3869	1.73	Afu4g07780	1.99	AFLA_112040	-
srrC	AN4134	3.46				
teaR	AN4214	1.88	AFU1g06090	2.05	AFLA_050110	1.79
ura6	AN4258	-	Afu7g03990	-1.37	AFLA_131420	-
stt4	AN4278	1.17	Afu7g03760	1.45	AFLA_131170	1.11
phoC	AN4310	-	Afu4g06020	-1.06	AFLA_113980	-
	AN4380	1.65	Afu4g06690	1.28	AFLA_113250	-
	AN4382	-2.43	AFU4g06710	-2.39	AFLA_113230	2.69
	AN4447	1.96	Afu4g07400	4.51	AFLA_112430	-
	AN4483	-	Afu2g03490	-1.68	AFLA_092240	-
psk1	AN4536	1.80	Afu2g02850	-1.70	AFLA_133230	2.95
ckiA	AN4563	1.55	AFU2g02530	-	AFLA_133580	-
vps34	AN4709	-1.08	Afu5g08670	1.08	AFLA_099880	-
pkaC2	AN4717	-	Afu5g08570	-1.16	AFLA_091910	-2.09
bck1	AN4887	-	Afu3g11080	1.63	AFLA_031560	-
	AN4914	-	Afu3g10750	-4.53	AFLA_031910	-3.50
ran1	AN4935	1.23	AFU3g10530	-	AFLA_032170	-1.54
	AN4957	1.39	Afu3g10300	-2.30	AFLA_032510	-1.06
	AN4984	-1.23	AFU3g10040	-	AFLA_032830	-
pkaR	AN4987	-1.69	Afu3g10000	-1.81	AFLA_032870	-1.36
	AN5122	-1.40	AFU1g07530	-	AFLA_022470	-
	AN5144	-	AFU1g07220	-	AFLA_022220	-1.35
pho80	AN5156	1.18	AFU1g07070	-	AFLA_022060	-
	AN5167	1.07	Afu6g06990	5.82	AFLA_021950	2.31
pkiA	AN5210	1.44	AFU6g07430	-	AFLA_087900	-
fos-1	AN5296	-	Afu6g10240	-1.32	AFLA_106830	-
chkA	AN5494	2.04	Afu6g13160	1.95	AFLA_033770	1.54
	AN5529	-	Afu4g11890	4.79	AFLA_027910	1.72
mpkA	AN5666	-1.15	Afu4g13720	1.48	AFLA_052570	-
mst1	AN5674	2.44	Afu7g04330	2.23	AFLA_073630	-
	AN5719	-2.16				
stk22	AN5728	-1.71	AFU1g06920	-		

	AN5757	-	Afu6g06870	1.66	AFLA_037350	1.55
ark1	AN5815	-	AFU2g07550	-	AFLA_047300	-1.22
	AN5817	-	Afu2g07570	-	AFLA_047280	-
ankA	AN5822	3.54	AFU2g07690	3.22	AFLA_047180	3.31
pdkA	AN5843	2.44	AFU5g14790	-7.47		
pkcB	AN5973	2.02	Afu2g10620	1.62	AFLA_043950	2.63
tor	AN5982	-	Afu2g10270	1.02	AFLA_044350	-
npkA	AN6044	-	Afu2g09710	-1.32	AFLA_044920	-
	AN6053	-	AFU2g09570	1.53	AFLA_045240	2.68
ffkG	AN6192	2.36	Afu2g11730	4.71	AFLA_134590	-
imeB	AN6243	2.24	Afu2g13140	3.44	AFLA_136540	1.71
mob1	AN6288	2.26	AFU2g12390	-	AFLA_135550	2.38
pkaA	AN6305	-2.36	Afu2g12200	-3.46	AFLA_135040	-2.63
pod6	AN6339	-1.94	AFU2g13640	-	AFLA_136840	-
	AN6347	-	Afu2g14200	2.58	AFLA_105620	-
sudD	AN6363	-2.49	AFU2g14090	-1.04	AFLA_138010	-
	AN6367	-	Afu2g14040	-1.49	AFLA_137970	-1.68
gsk3	AN6508	1.36	Afu6g05120	1.05	AFLA_054840	-
	AN6570	-	Afu6g04500	-1.20	AFLA_055520	-1.44
	AN6572	-2.19	AFU6g04380	-	AFLA_055540	-
ffk J	AN6758	2.70				
	AN6824	-	AFU5g12870	-2.24	AFLA_093870	-2.75
	AN6943	3.48				
uvsb	AN6975	-	AFU4g04760	-	AFLA_115480	1.24
bem1	AN7030	1.16	AFU4g04120	2.68	AFLA_114720	-1.12
	AN7185	-	Afu4g03140	-1.21	AFLA_039070	-
	AN7321	-	AFU2g16620	-	AFLA_002970	-1.07
	AN7469	-	AFU2g05820	-	AFLA_129990	-1.62
	AN7502	-1.14	AFU2g05430	-	AFLA_129590	-
ppk33	AN7537	-	AFU6g09240	-	AFLA_129090	-
chkC	AN7563	5.65	AFU2g14920	4.04	AFLA_016700	1.55
snf1	AN7695	-2.05	Afu2g01700	-1.80	AFLA_062250	-
	AN7737	-	AFU5g07950	-	AFLA_061710	6.15
ku70	AN7753	-	AFU5g07740	-1.12	AFLA_061470	1.69
	AN7787	-				
	AN7945	-			AFLA_104660	-1.55

ffkA	AN7986	2.87				
	AN7995	-	Afu5g02530	-2.32	AFLA_004730	-1.10
	AN8213	-3.22	AFU5g03460	-1.15	AFLA_006260	-
swoH	AN8216	-2.09	Afu5g03490	-3.32	AFLA_006300	-1.35
	AN8751	2.40	Afu6g02840	2.09	AFLA_091740	1.39
iki3	AN8790	-	AFU5g09840	-1.29	AFLA_098240	-1.49
cmkC	AN8827	2.16	AFU5g05980	-	AFLA_048460	1.48
cla4	AN8836	2.24	Afu5g05900	4.30	AFLA_048350	1.07
	AN8837	2.16	Afu5g05890	-1.71	AFLA_048340	-
	AN8843	-2.74	Afu5g05820	-1.05	AFLA_048290	-
	AN8859	-1.69	AFU5g05590	-	AFLA_048100	-
ptkA	AN8865	-1.10			AFLA_048030	-
	AN9022	-1.74			AFLA_040580	1.03
	AN9024	2.30				
tinC	AN9067	1.21	AFU7g02570	2.68	AFLA_071680	-1.55
ffkK	AN9302	-				
panK	AN9446	-1.35	AFU3g07180	-	AFLA_102040	-1.51
	AN9461	-	Afu5g03240	-1.35	AFLA_005960	-
	AN9500	3.58	AFU6g02020	-	AFLA_049940	-
nimA	AN9504	-	Afu6g02670	-1.43	AFLA_091450	-
			Afu1g00530	-2.02	AFLA_028130	-2.85
			AFU1g00640	2.66	AFLA_003780	3.03
			Afu2g00670	-1.09		
tcsC			Afu2g03560	3.16		
			Afu4g04680	2.25		
			Afu4g14735	2.24		
			Afu4g14740	3.85		
			Afu5g03950	-		
			Afu5g06730	1.79	AFLA_138880	-
			Afu5g08480	-3.44	AFLA_091820	-
			Afu5g13420	3.67		
			Afu6g03252	3.48		
			AFU7g00530	1.36	AFLA_005410	-1.05
			Afu7g04550	-1.84	AFLA_073810	2.42
			Afu7g04735	1.50		
			Afu8g06150	-3.14		

			Afu8g06180	2.46		
					AFLA_008230	-2.78
					AFLA_009250	-3.25
					AFLA_010150	-1.50
					AFLA_040840	-2.10
					AFLA_043510	-2.09
cdc2l1					AFLA_069750	2.37
bos1					AFLA_092160	1.10
phoA	AN8261	-	Afu5g04130	1.05	AFLA_006900	-
		Following g	genes are grouped	l by their o	orthogroup	
fphA	AN9008	-	Afu4g02900	1.02	AFLA_065850	-1.09
					AFLA_095440	5.45
					AFLA_101910	2.09
sepH	AN4385	2.06	AFU4g06750	2.38	AFLA_113190	1.19
					AFLA_113200	1.62
nimX	AN4182	-1.23	Afu6g07980	4.43	AFLA_036730	-
					AFLA_125910	-
	AN6985	2.31	Afu4g04680	2.25	AFLA_097830	3.44
	AN1568	-		-	AFLA_115360	-
	AN4479	2.42	Afu2g03560	3.16	AFLA_092150	1.28
					AFLA_092160	1.10
					AFLA_119810	-
	AN1568	-	Afu4g04680	2.25	AFLA_097830	3.44
	AN6985	2.31		-	AFLA_115360	-
	AN1017	-1.20	Afu1g12940	-1.92	AFLA_099500	-
	AN4668	-	Afu5g09100	-3.10		
	AN8886	-1.22	AFU1g11630	1.87	AFLA_068090	-
	AN1132	-	AFU8g02700	-	AFLA_122560	1.18
	AN5589	-1.54	Afu4g11540	-2.20	AFLA_027530	-
	AN3916	-	Afu6g08470	2.68	AFLA_128100	-

	A. nidulans		A. fumigauts		A. flavus	
	ID	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold
	ID	Change	ID	Change	ID	Change
sfgA	AN8129	-1.13	Afu5g02800	-	AFLA_005520	-2.82
	AN12489	3.57	Afu2g16230	4.00	AFLA_003630	1.67
mdpE	AN0148	-2.04	Afu4g14540	-1.33		-
	AN0333	-	Afu1g02360	1.22	AFLA_081130	-
rsrA	AN0273	1.38				
			Afu5g09170	-1.45	AFLA_099570	-2.18
	AN10809	1.58	Afu2g14250	-1.31	AFLA_105360	-
	AN5806	-	Afu2g07460	-3.33		
	AN11962	-	Afu3g14600	2.27	AFLA_059510	-
	AN7434	-1.09	Afu2g06130	1.84	AFLA_013090	-2.16
	AN7434	-1.09	Afu2g05360	2.77	AFLA_013090	-2.16
			Afu3g01155	-1.21		
	AN0585	1.11	Afu6g11110	4.36	AFLA_109220	1.73
cnjB	AN4133	-3.17	Afu4g13060	-	AFLA_051900	1.35
	AN0658	-1.02	Afu1g13190	-		
	AN0671	-1.48	Afu1g13310	-1.73	AFLA_018110	-1.18
			Afu3g14750	-1.86		
	AN0644	3.62	Afu1g13050	-	AFLA_018410	1.21
	AN0718	-	Afu1g14460	2.22	AFLA_017290	1.36
<i>zfpB</i>	AN1251	3.37	Afu1g10230	4.64	AFLA_069460	3.11
	AN5929	2.03	Afu2g10770	2.04	AFLA_043760	-
uaY	AN0891	-	Afu1g15470	1.62	AFLA_083940	-
	AN0902	5.76	Afu1g15680	4.41	AFLA_083820	1.13
			Afu1g16620	2.82	AFLA_082910	-
	AN4175	-	Afu6g07950	2.91	AFLA_036680	-
	AN1298	5.64	Afu1g09670	5.38	AFLA_021240	4.26
brlA	AN0973	6.65	Afu1g16590	1.93	AFLA_082850	3.31
	AN6295	1.65	Afu2g12310	3.56	AFLA_135110	1.44
	AN10059	4.56			AFLA_081600	-
	AN10083	1.69	Afu6g03700	-	AFLA_108220	-
rosA	AN5170	-	Afu4g09710	1.52		

Table S3-13 Transcription factor encoded DEGs in *AwetA* conidia
	AN10120	-	Afu1g14360	1.63	AFLA_042030	-1.29
	AN10128	1.12	Afu1g15370	1.28	AFLA_084200	1.59
	AN10294	-	Afu5g09890	-	AFLA_120290	-1.80
zipC	AN10378	1.79	Afu4g02940	-1.64	AFLA_066000	-
	AN10384	-	Afu5g14530	-		
rfeG	AN4680	3.88	Afu5g08990	5.57	AFLA_099460	1.76
	AN10491	1.08	Afu6g08550	-	AFLA_128160	-
	AN3667	-	Afu4g12410	1.09	AFLA_050300	-3.01
galX	AN10543	-2.46	Afu1g11000	-	AFLA_049270	-1.42
	AN10548	-1.57	Afu4g06420	-2.04	AFLA_113510	-
	AN10600	2.73			AFLA_000770	-
	AN11165	1.29	Afu7g01960	1.79		
	AN11222	2.59	Afu2g17880	-	AFLA_124220	2.51
qutA	AN1134	-1.06	Afu1g11620	2.05		
wetA	AN1937	-10.99	Afu4g13230	-12.90	AFLA_052030	-10.74
zipA	AN11891	1.74	Afu1g16460	3.77	AFLA_083100	1.81
	AN1217	2.10	Afu1g10580	3.97	AFLA_069100	3.18
	AN3761	2.31	Afu7g04710	-	AFLA_074060	1.28
	AN3063	-	Afu3g09380	-2.13	AFLA_085360	-1.13
<i>srbA</i>	AN7661	1.81	Afu2g01260	1.17	AFLA_058610	1.54
zapA	AN1265	-1.71	Afu1g10080	-1.38	AFLA_069700	-
	AN1536	1.67	Afu8g05460	3.26	AFLA_078500	-
	AN8753	2.80	Afu6g02850	2.25	AFLA_091710	-1.14
	AN0568	-1.46	Afu6g11230	-1.53	AFLA_109030	-
	AN1569	-			AFLA_097720	-2.91
rfeB	AN2009	2.14	Afu4g10220	4.22	AFLA_026250	2.16
msnA	AN1652	-1.66	Afu4g09080	3.52	AFLA_110650	2.23
	AN1678	2.18			AFLA_054310	-3.24
	AN1736	-1.45	Afu2g00880	1.64	AFLA_104780	1.57
jlbA	AN1812	1.48				
	AN0817	-1.59	Afu1g14750	-1.97	AFLA_033160	-1.27
	AN1924	1.52	Afu6g07780	4.63	AFLA_036460	-
	AN8596	-2.00	Afu1g17150	-	AFLA_120780	-3.10
	AN2025	2.89				
<i>dopA</i>	AN2094	-1.03	Afu2g05020	-	AFLA_035130	-
	AN1212	-2.04	Afu1g10660	1.68	AFLA_068970	-

	AN2367	-			AFLA 024570	-1.01
flbC	AN2421	1.91	Afu2g13770	4.92	AFLA 137320	3.04
	AN2615	-1.82	Afu7g00210	-4.32	_	
metR	AN4361	-1.08	Afu4g06530	-2.94	AFLA_113450	-
hexA	AN4695	4.36	Afu5g03920	-1.83	AFLA_099650	-
pacC	AN2855	2.08	Afu3g11970	-	AFLA_030580	1.17
nscR			Afu7g00130	1.44		
sltA	AN2919	3.33	Afu3g08010	3.36	AFLA_087350	2.86
	AN7170	-	Afu4g03460	-2.31	AFLA_040260	2.00
rlmA	AN2984	1.73	Afu3g08520	-	AFLA_086590	-
mbf1	AN2996	2.67	Afu3g08630	-	AFLA_086430	-
abaA	AN0422	4.96	Afu1g04830	3.72	AFLA_029620	2.96
tbp	AN4976	-	Afu3g10120	-2.03	AFLA_032740	-
	AN3216	1.54				
oefC	AN3075	5.13	Afu3g09670	3.05	AFLA_085170	-
	AN0026	-	Afu5g09990	-3.30	AFLA_138930	-1.72
	AN3385	-			AFLA_116880	-
prtT			Afu4g10120	2.40	AFLA_026130	-
	AN0096	-	Afu5g12060	-	AFLA_093070	-2.15
	AN3433	-4.20	Afu3g05760	-4.30	AFLA_103640	-4.14
lreA	AN3435	-3.04	Afu3g05780	-1.73	AFLA_103610	-
	AN3501	-1.72	Afu4g14590	-	AFLA_009580	-2.63
	AN3502	-1.75	Afu1g06540	-	AFLA_107030	-1.06
	AN3506	-2.63			AFLA_123840	-2.87
lreB	AN3607	-1.06	Afu4g12690	-3.43	AFLA_051690	-
	AN7610	1.08	Afu2g15620	1.28	AFLA_015390	-
срсА	AN3675	1.92	Afu4g12470	3.74	AFLA_050250	1.75
flbD	AN0279	-	Afu1g03210	7.20	AFLA_080170	-
vosA	AN1959	-3.35	Afu4g10860	-3.28	AFLA_026900	-3.70
	AN3769	1.90	Afu7g04820	-1.98	AFLA_074200	1.41
fhpA	AN4521	1.46			AFLA_132980	-
	AN0486	-	Afu3g02070	-	AFLA_013890	-1.17
facB	AN0689	-	Afu1g13510	-2.72	AFLA_017900	-
rpn4	AN0709	1.17	Afu1g13750	-1.15	AFLA_017640	2.87
	AN0094	-1.10	Afu5g12080	-	AFLA_093110	-
	AN10432	-			AFLA_040220	-2.62

	AN3290	5.63			AFLA_101420	-4.05
	AN4001	-1.65	Afu1g04170	-		
	AN10192	-	Afu8g04540	-	AFLA_139560	-3.60
sln1	AN1028	-	Afu3g02700	2.90	AFLA_038210	-2.39
	AN4185	-1.02	Afu4g03430	-2.82	AFLA_040300	-7.03
nsdC	AN4263	1.60	Afu7g03910	-	AFLA_131330	2.72
	AN4324	1.94	Afu4g06170	6.27	AFLA_113790	5.05
	AN10295	-	Afu2g14350	1.84	AFLA_105310	-
	AN10334	-	Afu2g00360	-1.09	AFLA_083510	-1.14
	AN4773	1.29				
	AN4821	-	Afu8g01150	-1.02	AFLA_101970	-
thiA	AN10492	-	Afu6g08350	1.34	AFLA_037170	-1.50
	AN7971	-1.09				
	AN11003	-	Afu8g07360	-	AFLA_062330	-1.93
	AN11073	-			AFLA_136880	-2.19
	AN4788	-1.17	Afu3g06770	-	AFLA_100950	-
	AN11793	-	Afu8g07000	-3.21	AFLA_009490	-1.01
fcr1	AN4861	1.23	Afu3g07670	-1.12	AFLA_100080	-
	AN4878	1.36	Afu3g11170	1.39	AFLA_031450	-
btf3	AN12485	-	Afu1g09130	1.47	AFLA_088390	2.07
metZ	AN5218	-1.16	Afu6g07530	-	AFLA_087810	-1.07
<i>zfpA</i>	AN1500	1.09	Afu8g05010	2.32	AFLA_078920	4.44
	AN1824	-	Afu5g14390	1.10	AFLA_097680	-1.26
	AN1906	-	Afu6g07560	1.80	AFLA_036190	1.10
aslA	AN5583	1.87	Afu4g11480	6.58	AFLA_027460	1.78
rfeF	AN2012	2.72	Afu4g10200	2.84		
htfA	AN2020	-	Afu4g10110	1.16	AFLA_026100	-
	AN5775	1.90	Afu6g06530	1.83	AFLA_037760	2.87
amdA	AN2270	-	Afu5g06410	1.14	AFLA_048870	-1.29
stuA	AN5836	4.03	Afu2g07900	5.61	AFLA_046990	2.32
	AN5849	5.89	Afu2g08040	5.90		
	AN5870	-1.05	Afu2g11460	-	AFLA_134320	1.07
steA	AN2290	-	Afu5g06190	3.22	AFLA_048650	1.14
	AN2667	-	Afu8g01990	2.14	AFLA_097920	-1.59
fkh1/2	AN2854	-	Afu3g11960	-1.64	AFLA_030600	-1.45
	AN2957	-2.16			AFLA_017040	-1.03

areB	AN6221	-1.69	Afu2g13380	-	AFLA_136100	-
	AN3024	-	Afu3g08880	-2.96	AFLA_085880	-4.19
nsdD	AN3152	-	Afu3g13870	2.78	AFLA_020210	1.68
	AN3154	-1.06	Afu3g13920	1.45	AFLA_020130	1.21
	AN3217	-	Afu4g01010	-	AFLA_024580	-1.19
	AN3224	-	Afu4g00950	-1.05	AFLA_024470	-
regA	AN3391	2.99	Afu1g17640	-3.64	AFLA_073870	-1.45
	AN6715	-1.75	Afu7g05620	-	AFLA_076560	-
	AN3900	-	Afu5g06460	-	AFLA_048920	-1.24
	AN6790	-1.15			AFLA_013200	1.02
	AN4013	-	Afu1g04110	-1.07	AFLA_028760	-1.30
amdR	AN4035	-	Afu1g03860	-	AFLA_028560	-1.06
	AN7061	-3.95				
ace2	AN4873	-	Afu3g11250	-1.85	AFLA_031400	-
	AN7073	5.16			AFLA_059960	4.33
	AN7343	3.41				
	AN5048	1.48	Afu3g12160	2.25	AFLA_030390	-
napA	AN7513	1.81	Afu6g09930	-1.10	AFLA_129340	-
	AN5405	-	Afu6g13680	2.03	AFLA_008860	-
devR	AN7553	1.77	Afu2g14800	3.25	AFLA_131640	1.47
aflR	AN8645	-1.94			AFLA_139360	-2.99
crz1	AN5726	-	Afu1g06900	-	AFLA_127920	1.57
anbH1	AN7734	3.52	Afu5g08020	-	AFLA_061790	1.92
dbaA	AN7896	3.80				
	AN7919	2.46	Afu8g05840	-2.39	AFLA_024040	-
	AN5924	-	Afu2g10850	-	AFLA_043710	-1.17
	AN8111	-1.55			AFLA_058750	-
	AN6396	-	Afu1g17240	-	AFLA_014270	-1.81
azfl	AN6503	-	Afu6g05160	2.32	AFLA_054800	-
	AN8164	1.53	Afu5g02880	2.23	AFLA_005580	1.20
	AN8177	-1.04	Afu5g03030	1.34	AFLA_005740	-
	AN6747	-	Afu7g00652	-6.11	AFLA_096330	-2.40
palcA	AN8271	-1.57	Afu5g04190	-	AFLA_006980	-
	AN8355	-3.25	Afu6g00220	-	AFLA_050970	1.61
apdR	AN8414	1.67				
	AN8506	-1.65			AFLA_049680	-

	AN8535	1.24	Afu5g09740	-	AFLA_118300	1.00
	AN6828	-	Afu5g12900	-2.05	AFLA_093810	-
	AN6846	-	Afu5g12930	-	AFLA_093980	-1.45
farA	AN7050	-	Afu4g03960	1.02	AFLA_041540	-
	AN8655	2.64	Afu8g06460	2.25	AFLA_123500	-1.19
mcmA	AN8676	1.08	Afu6g02110	-	AFLA_090910	-
mtfA	AN8741	1.51	Afu6g02690	3.71	AFLA_091490	2.27
flbB	AN7542	-	Afu2g14680	1.17	AFLA_131490	-
	AN7592	-	Afu2g15340	-2.26	AFLA_015850	-1.62
mcnB	AN8858	1.30	Afu5g05600	-	AFLA_048110	-
	AN8918	-3.38			AFLA_129400	-2.83
	AN8949	5.67				
alcR	AN8978	4.15	Afu5g07510	-	AFLA_013240	-
	AN9013	1.77	Afu8g02280	-2.48	AFLA_132200	-
hsfl	AN8035	-	Afu5g01900	-1.14	AFLA_025030	-
	AN9240	3.35				
	AN8894	-	Afu8g02640	3.76	AFLA_122500	-2.37
	AN9328	1.03				
hacA	AN9397	4.00	Afu3g04070	3.12	AFLA_089270	1.11
	AN9117	-	Afu7g01890	2.03	AFLA_071050	-
amdX	AN9492	1.77	Afu2g17220	-	AFLA_002290	1.58
atfB			Afu5g12960	1.53	AFLA_094010	-6.01
					AFLA_080270	1.17
					AFLA_096320	-2.84
			Afu7g04811	3.98	AFLA_074180	-1.49
			Afu3g00490	1.56	AFLA_059360	2.05
			Afu5g01460	-2.04	AFLA_038900	-3.28
			Afu1g04140	-1.01	AFLA_028840	1.05
			Afu1g03775	-	AFLA_028410	-1.02
aro90					AFLA_015920	-1.25
			Afu1g01240	1.24	AFLA_124010	-2.44
			Afu3g01510	-1.75	AFLA_105530	-2.27
			Afu1g15850	-1.93	AFLA_083560	2.61
			Afu4g03670	2.41	AFLA_041330	-2.22
			Afu3g03315	-3.05	AFLA_119890	-2.01
			Afu3g00690	4.82	AFLA_034610	-2.28

			Afu3g13600	-1.27	AFLA_110020	-1.57
			Afu7g06370	2.09	AFLA_126910	-2.72
					AFLA_033480	-2.26
					AFLA_036490	-1.36
					AFLA_086110	3.54
					AFLA_100300	-1.44
acu-15					AFLA_134920	-2.36
			Afu3g02750	-	AFLA_064370	-1.08
			Afu5g00950	-3.18	AFLA_049410	-4.68
			Afu2g04600	-	AFLA_035590	2.12
			Afu1g17350	-	AFLA_097380	1.21
асиК	AN7468	1.08	Afu2g05830	-		-
					AFLA_023420	1.01
			Afu7g06500	-	AFLA_123770	-1.81
nirA	AN0098	-1.21	Afu5g12020	-1.02	AFLA_093040	-
			Afu5g10250	-2.50	AFLA_120090	2.62
creA	AN6195	1.09	Afu2g11780	-	AFLA_134680	-
					AFLA_096370	2.41
hasA			Afu3g12890	4.91		
fumR			Afu8g00420	1.12		
			Afu2g01190	2.97		
	AN1962	-	Afu4g10820	-	AFLA_026850	-2.34
			Afu2g03050	-1.13		
			Afu3g03230	1.68		
			Afu5g02655	1.65		
			Afu7g08320	-4.53		
			Afu8g07180	-1.37		
atfC			Afu1g17360	-1.66		
fmpR			Afu6g03430	6.87	AFLA_064330	-
			Afu1g17460	-1.12		
			Afu3g02000	-1.32		
			Afu7g04340	2.21	AFLA_073640	-
			Afu1g02860	4.84		
gliZ			Afu6g09630	-2.12		
	AN11098	-	Afu4g14712	1.65	AFLA_076320	-1.18
nosA	AN1848	1.57	Afu6g07010	-1.06	AFLA_025720	-1.69

					AFLA_066630	-1.30				
					AFLA_093080	-2.33				
	Following genes are grouped by their orthogroup									
	AN10906	-	Afu5g01662	-1.49	AFLA_023260	-1.88				
	AN11169	-1.98	Afu7g01820	-1.88	AFLA_070980	1.48				
	AN10579	-	Afu8g06630	-						
			Afu1g16115	-1.82						
	AN0388	2.27	Afu1g01590	-	AFLA_025430	-				
	AN10550	-2.10								
xprG	AN1414	-1.18	Afu1g00580	3.58	AFLA_012100	-2.16				
			Afu8g04050	2.16		-				
	AN2422	-1.41	Afu4g09860	-	AFLA_025860	-1.65				
	AN2785	-1.69								
farB2	AN1425	-	Afu1g00410	-	AFLA_012010	-1.49				
farB1			Afu8g04130	1.75						

	A. nidulans		A. fumi	gauts	A. flavus		
	ID	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold	
	ID	Change	ID	Change	ID	Change	
Biosynthesis							
rfab	AN10506	-1.65	Afu5g14780	-7.43	AFLA_008180	-2.02	
tppC	AN10533	-1.50			AFLA_087640	-1.09	
orlA	AN3441	-2.90	Afu3g05650		AFLA_103730	-2.24	
treB	AN5635		Afu4g13530	-2.02	AFLA_052430	-2.65	
ccg-9	AN5021	-1.81	Afu3g12100	-2.58	AFLA_030450	-2.65	
<i>tpsA</i>	AN5523	-1.62	Afu6g12950	-2.09	AFLA_087630	-3.85	
tpsB			Afu2g04010	-1.84			
tpsC	AN8639	-2.01	Afu4g03190	-4.68	AFLA_002830		
tpsD		-1.65	Afu5g14300	-5.46		-	
Degradation							
treA	AN9340	1.58	Afu3g02280	4.26	AFLA_090490	-2.85	

Table S3-14 DEGs related to trehalose metabolic process in *AwetA* conidia

	A. ni	A. nidulans		A. fumigauts		A. flavus	
	m	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold	
	ID	Change	ID	Change	ID	Change	
Biosynthesis							
chsD	AN1555	3.05	Afu8g05630	6.59	AFLA_078290	2.43	
рстА	AN4234	1.88	Afu1g06210	4.45	AFLA_127350		
	AN8765	1.37	Afu6g02940		AFLA_131730	3.44	
	AN5152	1.90	Afu1g07110	5.80	AFLA_022110		
csmB	AN6317	4.75	Afu2g13430	4.78	AFLA_136040	3.86	
csmA	AN6318	4.97	Afu2g13440	3.56	AFLA_136030	3.37	
ungA	AN9094	-1.14	Afu7g02180		AFLA_071350	2.29	
	AN1069	2.02	Afu1g12040	1.20	AFLA_067530		
gnaA	AN8706	1.58	Afu6g02460	-1.23	AFLA_091260		
chs5	AN8710		Afu6g02510	3.72	AFLA_091300	2.30	
chs3	AN1554		Afu8g05620	3.25	AFLA_078300	1.85	
chsA	AN7032	2.19	Afu2g01870	2.50	AFLA_042780	1.95	
chsB	AN2523	2.55	Afu4g04180	1.25	AFLA_114760	1.72	
chsC			Afu3g14420	4.00	AFLA_013690	3.97	
chsG					AFLA_060590	2.59	
Degradation							
	AN10838						
	AN11233	4.82	Afu3g07160	4.05	AFLA_102010	4.03	
nagA	AN1502	5.51	Afu8g05020	2.20	AFLA_078900	2.97	
chiB	AN4871	8.23	Afu3g11280	1.90	AFLA_031380	5.80	
	AN5454	4.17	Afu8g01410	4.11	AFLA_104680	6.80	
chiA	AN8241	2.84					
	AN0299	1.44	Afu1g02800	1.00	AFLA_080650		
csnC	AN11051	4.59	Afu3g14980	2.88	AFLA_089380	1.18	
			Afu4g01290	7.37	AFLA_038420		
chi4	AN11059	1.06	Afu5g03530	3.60	AFLA_006340		
			Afu5g03760	4.09			
			Afu5g03960	2.79			
			Afu5g06840	-3.45	AFLA_013280	-1.97	
			Afu6g09780	-3.61			

Table S3-15 DEGs related to chitin metabolic process in $\Delta wetA$ conidia

	AN10309		Afu6g10430	-1.93	AFLA_106680	
			Afu7g05140	6.47	AFLA_101800	4.16
			Afu8g00700	3.24		
	AN7794	5.34				
	AN9390		Afu6g09307	3.24	AFLA_028280	
			Afu7g00670	-1.77		
cts2					AFLA_033550	2.30
					AFLA_040330	1.62
null	AN9327	2.34				
chiA1					AFLA_006590	2.02
	AN077		Afu1g14430	1.63	AFLA_041970	2.17
	AN9380				AFLA_025900	5.08
	AN1852	3.70	Afu4g09940			
	AN12279	2.58			AFLA_107830	2.03
			Afu6g00500	-3.21		
	AN0499	7.81				

	A. nid	ulans	A. fumigauts		A. flavus	
	ID	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold
	ID	Change	e Change		ID	Change
Biosynthesis						
gelB	AN0558	2.92	Afu6g11390	3.04	AFLA_108860	1.92
btgA	AN10150	4.56	Afu1g11460	2.16	AFLA_068300	-2.36
btgD	AN3727	3.17	Afu6g12380	1.27	AFLA_052780	1.57
fksA	AN3729	5.81	Afu6g12400	4.57	AFLA_052800	1.92
gelA	AN7657	4.03	Afu2g01170	5.59	AFLA_058480	2.67
	AN8846	1.80	Afu5g05770	1.98	AFLA_048250	
sunA	AN6697	7.30	Afu7g05450	6.69	AFLA_076430	2.88
chs3	AN1554		Afu8g05620	3.25	AFLA_078300	1.85
			Afu3g13200	2.34	AFLA_020630	3.56
gelD	AN11152	2.54	Afu2g05340	4.85	AFLA_052810	2.72
gelC	AN3730	4.37	Afu2g12850		AFLA_064920	2.81
gelE	AN7511	-1.53	Afu6g12410	4.23	AFLA_121370	2.45
			Afu8g02130	3.26	AFLA_129440	3.02
Degradation						
					AFLA_023650	-4.21
	AN2217		Afu5g07080		AFLA_057310	1.03
	AN7915	-2.63			AFLA_066750	3.68
					AFLA_075690	-2.09
	AN2690	3.17	Afu5g14030	2.62	AFLA_095890	2.10
					AFLA_107790	2.09
			Afu4g03350	2.91	AFLA_107800	1.15
exg1	AN4052		Afu1g03600	-1.59	AFLA_028260	-3.06
	AN7869	2.22				
eglC	AN7950	-1.37				
engA	AN0245	3.43	Afu1g05290	1.35	AFLA_029950	5.25
engA	AN0472	4.55	Afu1g04260	2.06	AFLA_028950	3.61
	AN3883	4.68	Afu5g02280	4.85	AFLA_004480	1.17
bglN	AN3949	5.39				
btgC	AN4700	2.10	Afu5g08780	5.29	AFLA_099780	

Table S3-16 DEGs related to β -(1,3)-glucan metabolic process in Δ *wetA* conidia

	AN4825	3.01				
exgD	AN7533	3.24	Afu6g09250	1.08	AFLA_129100	1.37
btgE	AN1551	6.59	Afu8g05610	4.39	AFLA_078320	2.36
exg9	AN4852	3.61	Afu2g00430	-5.62	AFLA_102640	
			Afu3g07520	4.62		
bglJ	AN7865	6.69	Afu5g07190	2.43	AFLA_057030	
bglH	AN3903	4.46	Afu3g00230		AFLA_000810	
bglK	AN2612	-2.74	Afu6g11910		AFLA_116080	-1.63
bglB	AN0712	5.19	Afu6g14490	5.05		
			Afu7g00240	-3.34		
exgO	AN0779	6.26	Afu1g14450	2.58	AFLA_041950	2.77
	AN0550		Afu6g11980	-2.41		
exgб	AN8480	-2.45	Afu6g13270	3.53		
exg9	AN4852	3.61	Afu2g00430	-5.62	AFLA_102640	
			Afu3g07520	4.62		
eng7	AN0031	1.33	Afu3g03080	4.23		
	AN6620		Afu6g14540	2.83		
bglF	AN10482	6.86	Afu1g05770	4.20	AFLA_023350	-2.54
bglA	AN4102	2.27	Afu1g17410		AFLA_014190	
	AN5976		Afu6g03570		AFLA_051140	1.76
	AN6652		Afu6g08700	3.77	AFLA_049420	
bglL	AN2828	4.84	Afu8g02100		AFLA_063040	3.33
					AFLA_126780	-1.38
					AFLA_128480	4.27

	A. nidulans		A. fumigauts		A. flavus	
	т	Log ₂ Fold		Log ₂ Fold	ID	Log ₂ Fold
	ID	Change	ID	Change		Change
Biosynthesi	is					
ags1	AN5585		Afu3g00910	5.31	AFLA_023460	-1.76
ags2	AN3307	-1.24	Afu2g11270	3.14	AFLA_134100	4.21
ags3			Afu1g15440	1.68	AFLA_116810	
Degradatio	n					
agnD	AN11064	1.26	Afu5g03940	-2.89	AFLA_006740	-2.18
	AN1604	-7.48	Afu8g06030	-7.06	AFLA_077910	-1.86
			Afu7g08350	2.09	AFLA_091790	1.43
agnB	AN3790	5.34	Afu2g03980	1.71	AFLA_034920	
agnC	AN9042	4.03			AFLA_087590	
					AFLA_124510	
mutA	AN7349	3.80				

Table S3-17 DEGs related to α -(1,3)-glucan metabolic process in Δ *wetA* conidia

	A. ni	dulans	A. fum	A. fumigauts		vus	
	m	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold	
	ID	Change	ID	Change	ID	Change	
DHN-melanin biosynthesis							
wA	AN8209	-4.97	Afu2g17600	1.22	AFLA_006170	-5.70	
ayg1	AN9171	7.09	Afu2g17550	2.15	AFLA_075640	-11.09	
arp1	AN10049		Afu2g17580	3.52	AFLA_016140	1.75	
arp2	AN0146		Afu2g17560	2.98			
abr1			Afu2g17540	2.35			
abr2	AN6635		Afu2g17530	1.70	AFLA_045660		
Pyomelanin biosynthesis							
bck1	AN4887		Afu3g11080	1.63	AFLA_073870	-1.45	
hmgX	AN1898	7.56	Afu2g04210	3.50	AFLA_036100		
hppD	AN1899	6.48	Afu2g04200	2.75	AFLA_036110		
maiA	AN1895	6.39	Afu2g04240	2.90	AFLA_036070	1.13	

Table S3-18 DEGs related to melanin metabolic process in *AwetA* conidia

	A. nia	lulans	A. fum	igauts	A. fla	vus	
	ID	Log ₂ Fold	ID	Log ₂ Fold	ID	Log ₂ Fold	
		Change		Change		Change	
rodA	AN8803	7.02	Afu5g09580	3.61	AFLA_098380	1.72	
	AN6401	1.16					
dewA	AN8006	-9.48			AFLA_060780	-4.32	
	AN1837	5.78					
	AN0940						
			Afu8g07060	3.48			
			Afu2g14661	4.44			
rodB*			Afu1g17250	6.54			
			Afu5g03280	3.98			
			Afu5g13480	1.05	AFLA_094660		
rodB*					AFLA_014260	-2.00	
					AFLA_063080	-10.01	

Table S3-19 Hydrophobin-encoded DEGs in ∆wetA conidia

* Afu1g17250 and AFLA_014260 are both annotated as *rodB*, but not in the same orthogroup.

	# of	% of Genes in
GO Category	Genes	Category
metabolic process	47	3%
carbohydrate metabolic process	34	12%
polysaccharide catabolic process	23	27%
transcription DNA-templated	20	6%
transport	20	5%
DNA-templated regulation of transcription	20	4%
cell wall organization	18	37%
protein transport	14	14%
cellulose catabolic process	9	29%
ribosome biogenesis	9	16%
proteolysis	9	6%
glucan catabolic process	8	40%
rRNA processing	8	15%
sterigmatocystin biosynthetic process	8	12%
pectin catabolic process	7	23%
cell cycle	7	17%
cellular response to osmotic stress	7	16%
conidium formation	7	9%
carbon utilization	6	27%
response to stress	6	11%
intracellular protein transport	6	9%
DNA repair	6	7%
cellulose metabolic process	5	56%
oxalate metabolic process	5	38%
positive regulation of sterigmatocystin biosynthetic process	5	22%
chromatin modification	5	19%
cellular amino acid biosynthetic process	5	13%
aromatic amino acid family biosynthetic process	5	12%
cellular response to DNA damage stimulus	5	9%
mannan catabolic process	4	40%
xylan catabolic process	4	18%
autophagy	4	17%

Table S3-20 Top enriched GO categories of potential AniWetA target genes

gluconeogenesis	4	17%
cleistothecium development	4	15%
mitotic nuclear division	4	14%
sporocarp development involved in sexual reproduction	4	13%
sexual sporulation resulting in formation of a cellular spore	4	12%
cell division	4	12%
acetate metabolic process	3	43%
mannose metabolic process	3	30%
glutamine family amino acid metabolic process	3	30%
glucan metabolic process	3	27%
acetate catabolic process	3	25%
formation of translation preinitiation complex	3	23%
positive regulation of transcription from RNA polymerase	2	2104
II promoter	5	2170
regulation of conidium formation	3	19%
regulation of translational initiation	3	19%
monodictyphenone biosynthetic process	3	14%
establishment of cell polarity	3	14%
glycerol metabolic process	3	13%
protein import into peroxisome matrix	2	67%
asexual spore wall assembly	2	50%
GDP-mannose biosynthetic process	2	50%
glycogen biosynthetic process	2	50%
iron ion homeostasis	2	50%
regulation of carbon utilization	2	50%
peptidyl-diphthamide biosynthetic process from peptidyl-	2	40%
histidine	2	40%
nucleosome assembly	2	40%
quinate metabolic process	2	33%
arginine biosynthetic process	2	33%
glutamine metabolic process	2	33%
ER to Golgi vesicle-mediated transport	2	29%
xyloglucan metabolic process	2	29%
glucose metabolic process	2	29%
positive regulation of penicillin metabolic process	2	29%
DNA-templated, negative regulation of transcription	2	29%

CHAPTER 4

Conclusions and Future Directions

4-1 Conclusion

The *Aspergillus* life cycle is complex, precisely timed, and genetically programmed to involve specialized cellular differentiation, temporal and spatial regulation of gene expression, and cellular communications [1]. Numerous genes are involved in regulating fungal development. In asexual development, the central regulators, BrIA, AbaA, and WetA, play crucial roles and define sequentially-dependent pathway of conidiation [2,3]. However, the extent to how WetA functions in conidia maturation remains unknown. Previous studies show that WetA activates a series of spore-specific genes [3]. Importantly, WetA contains a conserved DNA-binding domain with a nuclear localization signal (NLS) inside of the domain, suggesting that it is a potential transcription factor. Moreover, as AbaA exerts differential regulatory effects on the *velvet* regulators in different *Aspergillus* species [4,5,3], we proposed that the WetA-mediated genetic regulatory networks (GRNs), as well as AbaA-mediated GRNs, reroute during evolution. To solve the last puzzle of the WetA-mediated regulation in *Aspergilli*, we carried out systematic analyses of the WetA phenotypes, transcriptomics, and direct targets in three important *Aspergillus* species: *A. nidulans*, *A. fumigatus*, and *A. flavus*.

AniWetA and AfuWetA have been characterized in previous studies [2–4,6–12]. We generated the Δ AflwetA mutant and characterized the functions of AflWetA (Chapter 2). AflWetA is a multifunctional regulator that couples spore differentiation and survival, and governs proper chemical development in A. flavus. WetA is functionally conserved and required in A. flavus for many aspects of its biology, including spore viability, wall integrity, and stress tolerance. However, loss of AflwetA causes earlier conidiation and hyper-condensation of the C2 layer of the conidia wall in Δ AflwetA conidia, suggesting the differential regulatory roles of AflWetA in comparison to AniWetA and AfuWetA. Moreover, we performed transcriptome analysis to elucidate the functions of *AflwetA* in conidia. The results show that *Afl*WetA contributes the regulation of conidial components metabolic processes and conidiation. Furthermore, *Afl*WetA regulates a variety of transcription factors and signaling pathways, indicates that the *Afl*WetA is an upstream regulator of multiple development processes.

We further carried out RNA-seq to illustrate the functions of *Ani*WetA and *Afu*WetA in conidia (Chapter 3). The results show that the *Aspergillus* WetA regulates more than half of the genome in conidia. The *Aspergillus* WetAs are functionally conserved in the feedback repression of conidiation, activation of trehalose biosynthesis, repression of β -(1,3)-glucan, and the response to environmental stimuli. More than 40% WetA-regulated genes have at least one orthologs in other two species, suggesting that the WetA-regulated targets are highly conserved in *Aspergilli*. However, the WetA-mediated regulatory effect on the conserved targets is divergent.

To verify whether WetA is a transcription factor, we carried out ChIP-seq in *A. nidulans*. The result shows that WetA can physically interact with its target's promoter region, including WetA itself. The WetA response elements (WREs) are widely presented in *A. nidulans* genome, as well as in *A. fumigatus* and *A. flavus* genomes. About half of the *Ani*WetA-targeted genes are regulated by WetA in conidia, suggesting that the WetA-mediated regulation may be temporal- and spacious-specific. Moreover, only ~20% WetA-regulated genes contain WRE in their promoter regions, indicating that WetA is a supreme upstream regulator, which indirectly regulates it targets by controlling their regulators.

To sum up, WetA is evolutionally and functionally conserved key transcription factor, which bridges cellular and chemical development processes. Furthermore, the WetA-mediated GRNs are re-wired to underlie the evolution of development and metabolic control in *Aspergillus* species.

4-2 Future direction

4-2-1 WetA-regulated targets in Aspergilli

Based on the transcriptome analyses, we're able to identify several interesting WetA-regulated targets for further study. For example, AFLA_063080 is a predicted hydrophobin encoded gene which is almost fully shut down in Δ *AflwetA* conidia, as well as the *AnidewA* in Δ *AniwetA* conidia. AFLA_063080 is a *A. flavus*-specific gene, which may play an important role in *A. flavus* conidia maturation. AN1298, Afu1g09670, and AFLA_021240 are orthologs which are predicted as the bHLH transcription factor with unknown function. Their expression levels are increased 20~50 times in Δ *wetA* conidia, suggesting that they may play an important role in WetA-mediated GRNs.

4-2-2 Analysis of WetA-mediated VosA and FlbC regulatory

mechanism

Based on our RNA-seq and ChIP-seq results, WetA activates *vosA* and represses *flbC* by direct binding. We plan to create the *vosA* overexpression mutant and *flbC* deletion mutant on the *wetA* deletion background to verify whether some of the $\Delta wetA$ phenotypes can be rescued. However, the WetA-VosA regulatory mechanism may be more complicated since our data suggests that WetA and VosA can cross-activate each other by direct binding and may form a complex and co-regulate the *Aspergillus* genomes. To prove our hypothesis, the *in vitro* and/or *in vivo* protein-protein interaction assays are necessary. Moreover, the binding motifs' co-occurrence in *Aspergilli* and cross-comparison of RNA-seq results from $\Delta AniwetA$ and $\Delta AnivosA$ analysis are in progress.

4-2-3 Metabolome analysis of WetA-regulated metabolic processes

Function analysis of our RNA-seq results shows that WetA contributes to both primary and secondary metabolism. However, WetA usually shows a mix regulatory effects on different

members in the same pathway. To know the net effect of WetA, a comprehensive metabolome analysis is necessary. Our preliminary data shows that WetA is involved in several amino acid metabolic pathways. However, the extraction method of the primary and secondary metabolites still needs to be optimized.

4-2-4 WetA-mediated regulation in different development stages

In this study, we focused on a single cell type, conidia. However, both the phenotype observation and functional analysis of RNA-seq data suggest that WetA also plays regulatory roles in different development stages. For example, it will be interesting to check the transcriptome and WetA-DNA interaction at early conidiation stage, which WetA begins to feedback repress *brlA* expression. Our result also shows that *Ani*WetA and *Afu*WetA repress the blue-light receptors, *lreA*, and *lreB*, while *Afl*WetA represses the red-light receptor *fphA*. Comparative transcriptome analysis of different light source during conidiation would elucidate the WetA-mediated light-dependent regulation of conidiation.

4-3 References

- Adams TH, Wieser JK, Yu JH. Asexual sporulation in *Aspergillus nidulans*. Microbiol Mol Biol Rev. 1998;62: 35–54. Available: http://www.ncbi.nlm.nih.gov/pubmed/9529886
- Boylan MT, Mirabito PM, Willett CE eal, ZimmermanCR, Timberlake WE. Isolation and physical characterization of three essential conidiation genes from *Aspergillus nidulans*. Mol Cell Biol. 1987;7: 3113–3118. doi:10.1128/mcb.7.9.3113
- Mirabito PM, Adams TH, Timberlake WE. Interactions of three sequentially expressed genes control temporal and spatial specificity in *Aspergillus* development. Cell. 1989;57: 859–868. doi:http://dx.doi.org/10.1016/0092-8674(89)90800-3
- 4. Tao L, Yu J-H. AbaA and WetA govern distinct stages of *Aspergillus fumigatus* development. Microbiology. 2011;157: 313–326. doi:10.1099/mic.0.044271-0
- 5. Clutterbuck AJ. A mutational analysis of conidial development in Aspergillus nidulans.

Genetics. 1969;63: 317–327. Available: http://www.genetics.org/content/63/2/317.short

- 6. Clutterbuck SDM and AJ. A quantitative survey of conidiation mutants in *Aspergillus nidulans*. J Gen Microbiol. 1971;69: 261–268.
- Adams TH, Boylan MT, Timberlake WE. *brlA* is necessary and sufficient to direct conidiophore development in *Aspergillus nidulans*. Cell. 1988;54: 353–362. doi:http://dx.doi.org/10.1016/0092-8674(88)90198-5
- Sewall TC, Mims CW, Timberlake WE. Conidium differentiation in *Aspergillus nidulans* wild-type and wet-white (*wetA*) mutant strains. Dev Biol. 1990;138: 499–508. doi:http://dx.doi.org/10.1016/0012-1606(90)90215-5
- 9. Marshall MA, Timberlake WE. *Aspergillus nidulans wetA* activates spore-specific gene expression. Mol Cell Biol. 1991;11: 55–62. doi:10.1128/mcb.11.1.55
- Timberlake WE. Translational triggering and feedback fixation in the control of fungal development. Plant Cell. American Society of Plant Biologists; 1993;5: 1453. doi:10.1105/tpc.5.10.1453
- Sewall TC. Cellular effects of misscheduled *brlA*, *abaA*, and *wetA* expression in *Aspergillus nidulans*. Can J Microbiol. 1994;40: 1035–1042.
- Shin K-S, Kim YH, YuJ -H. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in *Aspergillus fumigatus*. Biochem Biophys Res Commun. 2015;463: 428–433. doi:10.1016/j.bbrc.2015.05.090