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abstract

The following chapters detail improvements made to the data acquisition methods

used in mass spectrometry-based proteomics. Mass spectrometers were empow-

ered to analyze spectral data in real-time and make informed decisions on how

to proceed based on the results. Chapter 1 begins with a broad overview of pro-

teomics, mass spectrometry, and commonly used data acquisition methods. The

second chapter focuses on the instant sequencing (inSeq) algorithm that improves

reproducibility, boosts quantitative results, and localizes more post-translational

modifications (PTMs) in LC-MS/MS experiments. Chapter 3 introduces a novel

real-time elution ordering algorithm (EOA) to target hundreds of peptides across

multiple LC-MS/MS experiments reproducibly. In chapter 4, two large software

packages (COMPASS & CSMSL), which handle large-scale data analysis, are pre-

sented. The final chapter suggests future improvements to further IDA methods.
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Chapter 1

proteomic acquisition strategies for mass

spectrometry

Proteomics and Mass Spectrometry

Proteomics. Proteomics is the large-scale study of proteins, which are an essential

part of life. If genes are the blueprints for life, then proteins are the construction

workers, building supplies, and tools that empower and sustain life. Their involve-

ment in life ranges from the diseases and aliments that cause impairment, to the

therapeutics and medicines that cure them. From agriculture and food that pro-

vides energy, to the composition and structure of cells, there is very little in life that

proteins do not affect. Understanding their role and function in biological systems

is an overarching goal of life sciences.

Proteins are structurally similar to deoxyribonucleic acid (DNA); both are long,

linear chemical polymers comprised of different monomers in a sequence. DNA

has four nucleotide bases (G,T,A,C) and proteins are made up of roughly twenty

amino acids (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y). The sequential order of

these monomers in both DNA and proteins encodes information. The information
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stored in DNA is transcribed to mRNA and translated into proteins; DNA can be

thought of as an instruction book, or blueprint for life. It provides the recipes to

make all the proteins in the cell. On the other hand, the sequence of amino acids in

proteins isn’t used to store instructions, but rather it defines their structure. Proteins

fold into complex three dimensional structures depending on their amino acid

sequence and it is these 3D structures that provide the different mechanical and

chemical functions for life to work.

A single organism can contain hundreds or thousands of different protein se-

quences depending on its complexity, and that set of proteins is called the proteome.

The proteome of baker’s yeast (Saccharomyces cerevisiae) contains ~4,600 different

protein sequences. The human (Homo sapiens) proteome is much larger, with nearly

12,000 unique protein sequences that are known to be expressed. The interactions

between proteins and other molecules within the cell provides many of the critical

functions for life to exist and procreate. Proteins are essential to most cellular

processes, and when they fail to adequately perform their duty, they can cause

serious problems, even death. Thus it is very important to understand organisms’

proteomes and how they are affected by different treatments and conditions. Un-

derstanding how proteins change in abundance and are covalently modified by

chemical signals (e.g., phosphorylation, acetylation, ubiquitination, etc.), and alter
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their interactions with each other are important parts of the scientific field of study

called ’systems biology’. Studying large and complex systems, such as the cell, relies

on the identification and quantitation of large portions of a organism’s proteome.

However, detecting thousands of proteins and measuring their abundances is a

daunting task. Only in the last two decades have technologies been developed that

are capable of identifying and analyzing such large sets of proteins, and more often

than not, the technology of choice is mass spectrometry (MS).

Mass Spectrometry. Mass spectrometry is a powerful analytical tool for measuring

the mass of molecules. Current mass spectrometers can regularly measure mass

to a single dalton (Da) or lower and are sensitive enough to detect as little as

a few thousands molecules. Since each amino acid has a different mass, mass

spectrometry is an ideal analytical technique to study and identify proteins. A mass

spectrometer is an instrument that measures the mass of ions and is comprised of

three parts: 1) an ionization source, 2) a mass analyzer, and 3) a detector.

Gas phase ions (negative or positive) are first generated by an ionization source

from an analyte in either the solid or liquid phases. There are many ionization

techniques in use today: hard-ionization methods such as electron impact ioniza-

tion (EI) causes the analyte to fragment during ionization. Softer methods that

minimize fragmentation include fast-atom bombardment (FAB)1, matrix assisted
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laser desorption ionization (MALDI)2,3, electrospray ionization (ESI)4, and chemical

ionization (CI)5, among others. ESI has become the primary method for large-scale

proteomic studies because of the ease which it can be coupled to a front-end separa-

tion technique such as liquid chromatography (LC). An ESI emitter is constructed

at the end of a LC column, and ionizes the eluting proteins into the MS (LC-MS).

Separation is often needed in large-scale proteomic experiments because samples

can consist of overly complex mixtures of thousands of analytes, and separating

them prior to ionization increases sensitivity.

The second part of a mass spectrometer is the mass analyzer, which separates the

gas phase ions based on their mass-to-charge ratios (m/z). To effectively manipulate

ions in the gas phase, various electrical devices have be developed to store, move,

and analyze them. Since ions are charged particles, only their m/z ratio is detected,

and their mass (m) is not directly measured. However, the mass can be calculated

from the m/z if the number of charges is known. There are many different types of

mass analyzers: magnetic sector, time-of-flight (TOF)6, quadrupole mass filters7,

ion-traps8, Orbitraps9, and fourier transform ion cyclotron resonsnace (FT-ICR)10.

Each analyzer relies on a different principle to separate ions by m/z, and some are

able to separate better and/or faster than others. The Orbitrap and FT-ICR are

capable of separating closely spaced m/z ions (i.e., high resolution), while ion-traps
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and TOFs can mass analyze very quickly with sufficient resolution. Each analyzer

has its pros and cons, so it has become common to include multiple mass analyzers

in one instrument to increase the capabilities of the MS. These multi-analyzer

instruments are called hybrid instruments as they blend multiple techniques into

one package.

The final portion of a mass spectrometer is the detector. Following mass sep-

aration, the ions need to be detected and converted into electrical signals to be

recorded. Some detectors are destructive, consuming the ion when detected. Ex-

amples of these include Faraday cups and electron multipliers. Some detectors

are non-destructive, being able to detect the ions without consuming them. These

detectors are unique in that they can act both as a mass analyzer and detector. The

Orbitrap and FT-ICR are examples of non-destructive, inductive detectors where an

AC current is produced by ions oscillating within the detector. This generates an

AC current in the detector that is stored and subsequently Fourier transformed into

a m/z spectrum. These inductive detectors rely on Fourier transformation which

scales with the length of acquisition. Thus, the longer the ions are detected the

higher the resolution and increased signal-to-noise (S/N) achieved.

Mass spectrometers are powerful instruments that ionize, separate, and detect

various analytes. While determining the mass of analytes is useful in and of itself,
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mass analysis of proteins is more convoluted. This is because the order of amino

acids in a protein does not change the total mass. Two functionally different proteins

could have the same amino acid contents, but in a different order, and would appear

at the same m/z value. To ascertain their sequence—and determine their identity,

additional analysis steps are needed. First, a set of ions are injected into the MS

and a full scan is taken (MS or MS1). Then a certain m/z feature is isolated from the

other ions in the MS. These isolated ions are then dissociated into smaller pieces

(fragments) and mass analyzed again (MS/MS). Proteins can be dissociated by a

variety of different methods. The most common approach is to forcefully collide the

ions with background gas molecules that are present in the instrument (Collision-

Activated Dissociation, CAD). Other approaches exist, such as electron-capture

dissociation (ECD)11 and electron-transfer dissociation (ETD)12, as well as infrared

mulitple photon dissociation (IRMPD)13 and higher energy C-trap dissociation

(HCD)14. Following dissociation, a fragmentation spectrum is collected and can

help provide clues on the sequence of the protein being analyzed. This process

is called tandem mass spectrometry, as multiple mass anlaysis steps are taken

to identify proteins. While tandem mass analysis of intact proteins is possible,

their large size, complex fragmentation spectra, and poor separability make large-

scale analysis of proteins challenging. One popular approach called bottom-up
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proteomics alleviates some of these issues by breaking proteins apart into smaller

pieces and mass analyzing those.

Acquisition Methods for Shotgun Proteomics

Shotgun proteomics is the process of digesting proteins into smaller pieces, called

peptides, prior to separation and mass analysis (LC-MS). This scheme (bottom-up

proteomics) offers many benefits over mass analysis of intact proteins (top-down

proteomics). First, the smaller size of peptides makes separation by LC simpler.

Since peptides have less 3D structure than proteins, they interact more with the

stationary phase of the separation, which helps improves the separation. Differences

in ionization between peptides and proteins is another major factor. Peptides often

ionize into a smaller number of charge states than proteins because they contain

fewer charge-carrying sites. This concentrates the signal into fewer states, increasing

the S/N for any given one. Proteins often exist in dozens of different charge states,

which dilutes the S/N among them. On top of the charge state distribution, the

wide isotopic distributions of proteins further decreases the S/N and increases

spectral complexity. The distribution of m/z for peptides is also centered in the

optimal mass range of most mass spectrometers (e.g., 300 - 1500 m/z). Finally, the

smaller the analyte the less complex the fragmentation spectra are and that usually



8

means easier interpretation and identification. These and other reasons make

peptide mass analysis easier than intact protein mass analysis.

While bottom-up proteomics offers many advantages compared to top-down

analysis, new challenges also arise. First, the sample becomes much more complex.

For example, the proteome of yeast contains ~4,600 proteins, but when they are

digested into peptides by proteases, such as trypsin, hundreds of thousands of

peptides result. Another issue that surfaces is increased ambiguity in protein iden-

tification. Following sequencing of peptides by LC-MS/MS, computer algorithms

map these peptides back to their parent proteins. But shorter peptide sequences

are more likely to have originated from more than one protein, obscuring which

protein was actually identified. This can be partially combated by identifying other

peptides from those proteins to help distinguish them apart. Other challenges are

also present, but most proteomic publications make use of the shotgun proteomic

scheme.

The typical shotgun proteomic workflow begins with protein extraction from

cell cultures or tissues. Proteins are then isolated and digested into peptides by

proteolysis and are separated by liquid chromatography. Peptides elute from the

LC column and are ionized by ESI into the MS. From here a variety of acquisi-

tion methods are can be used to generate tandem mass spectra (MS/MS) of the
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eluting peptides; these will be discussed in detail below. Following acquisition,

the collection of spectra are searched against a database of protein sequences to

identify the peptide sequences from the fragmentation spectra. This is followed

by statistical analysis that culls out false identifications.15 Finally, the identified

peptides are assembled back into protein groups and optional quantitative anal-

ysis can be conducted. This results in a list of identified proteins, their relative

abundances, and possible post-translational modifications (PTMs). This workflow

first emerged in 2001 and has changed very little since.16 Improvements to each

part of this worklow, especially the advent of new hybrid mass spectrometers, have

propelled this methodology from identifying 1,483 yeast proteins in ~68 hours to

>4,000 proteins in an hour, all in the past decade.17

Probably the one aspect of this workflow that has changed the least is the data

acquisition method—how the MS decides what m/z to dissociate and MS/MS ana-

lyze. The two overarching methods for data acquisition in a shotgun experiment are

the data-dependent and data-independent methods. Data-dependent acquisition

(DDA) relies on surveying all the intact m/z of peptide precursors with a full MS

scan, followed by successive isolation and fragmentation of different m/z peaks

based on their intensity.18,19 Data-independent acquisition (DIA), on the other hand,

forgoes the initial survey scan and iteratively isolates and fragments different m/z
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regions in a predictable fashion.20,21

Data-Dependent Acquisition Data-dependent acquisition relies on gathering in-

formation about the peptides currently eluting to select the best candidates for

MS/MS sampling. It is typically performed with an initial MS scan to mass analyze

all the peptide precursors. Then the mass spectrometer selects the top N most

intense m/z features to undergo dissociation and MS/MS analysis in subsequent

scans. The value of N is typically between 5 and 20 depending on the instrument.

Following acquisition of N MS/MS spectra, the whole process is repeated with

another survey scan. This straightforward and simple method is highly effective

and has been relatively unchanged since its debut.

The DDA method has been supplemented with additional filtering criteria

to improve the diversity of m/z peaks sampled. With the dynamic exclusion fil-

ter, closely-spaced m/z features are excluded from being reselected within some

time range since it was first selected (e.g., 30 seconds). This prevents the repeated

sampling and identification of the same precursor and tries to sample a wider

population of precursors. Other DDA filtering criteria try to avoid sampling precur-

sors that will not produce identifiable fragmentation spectra. With high-resolution

spectra, m/z features that are singly charged are often avoided as they produce poor

MS/MS spectra. Other filters look at the isotopic ratios of the analytes and avoid
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sampling features that don’t display peptidic ratios. These and other filters help

DDA segment the MS time to select a diverse set of peptide precursors during an

experiment with high throughput.

One of the biggest issues with DDA is that the analyte must be detected in

the initial survey scan in order to be sampled and identified. If a precursor, for

whatever reason, never exceeds a S/N threshold to be selected, it will never be

identified. This makes DDA a stochastic process, depending on the quality of the

survey scan data to make its future decisions. This leads to irreproducible sampling

and identification across multiple experiments, leaving datasets incomplete. The

other acquisition method, Data-independent acquisition, tries to avoid this issue

by skipping the survey scan altogether.

Data-Independent Acquisition Data-independent acquisition is a methodology

where the MS iteratively isolates and dissociates different m/z regions regardless of

detection in a survey scan. There are a few different approaches that DIA methods

can take. The simplest is to repetitively isolate and dissociate the same m/z region

for the entire LC separation. This guarantees that any peptide precursor whose

m/z is within the isolation range will be analyzed. This method is extremely low-

throughput though, only able to analyze a few dozen different precursors over the

course of the separation.
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Increased throughput can be gained by changing the isolated m/z region through-

out the separation. For example, in the first MS/MS scan the m/z range 300 - 303

is isolated and mass analyzed. The following scan the m/z range changes to 303

- 306, the third scan to 306 - 309, and so forth. After the complete mass range is

analyzed once (e.g., 300-1200 m/z), it starts over at 300 - 303 m/z. This approach

samples all possible m/z ranges during the experiment, but each individual m/z

range must wait until all the other ones have been sampled. This leads to long

times between analysis and could lead to completely missing an eluting analyte

from being sampled. However, when not limited by time or sample amounts this

approach can produce a comparable number of identifications to DDA methods.22

Probably the most popular DIA method is selected reaction monitoring (SRM).23,24

This type of experiment is usually conducted on a triple-quadrupole instrument in

a scheduled fashion. Scheduling involves breaking up the LC-MS/MS experiment

into different time segments, and targeting a subset of peptides per segment. In

an SRM experiment, the first quadrupole isolates a single precursor during its

expected elution time, the second quadrupole fragments those ions, and the final

quadrupole isolates another m/z before the ions reach the detector. SRM is a very

sensitive and selective method, and is the gold-standard for targeted proteomics.

The method, however, is low-throughput and is able to target only a few hundred
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peptides per LC-MS experiment. SRM methods also do not usually include a full

MS/MS spectrum for each peptide, favoring increased sensitivity at the cost of

more ambiguity. Recent work by our lab and others have extended the SRM method

to work on high-resolution instruments with a full MS/MS scan being acquired, a

method called parallel reaction monitoring (PRM).25,26

More recent advances in DIA methods include isolating and mass analyzing

large m/z regions. Here, instead of 3 m/z isolation ranges, the isolation window

is open up to 10, 20 or even 50 m/z. Methods such as ”sequential windowed data

independent acquisition of the total high-resolution mass spectra” (SWATH) and

MS everything (MSE) seek to further improve the throughput and reproducibility

of DIA methods with informatic advances.27,28 Here multiple precursors are co-

isolated and co-fragmented, producing complex fragmentation spectra that are

deconvoluted post-acquisition. This increases throughput as less m/z regions need

to be analyze per cycle. However, post-translational modification (PTM) analysis

is stymied because the complex fragmentation spectra which are produced make

PTM localization a very difficult process.
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Intelligent Data Acquisition

Although most mass spectrometry-related technologies have constantly improved

over the past two decades, improvements to the data acquisition methods have

progressed at a far slower pace. The DDA strategy has only been modestly supple-

mented in the past decade while the DIA strategy seeks to remove all intelligence

from the acquisition in favor of simplicity. Perhaps the biggest step forward in

increasing the performance of DDA methods was the introduction of the ETD-CAD

decision tree (DT) algorithm.29 Here, precursors were either dissociated with ETD

or CAD based on their m/z and charge-state, increasing identification rates. Unlike

DDA, the DT algorithm incorporated multiple pieces of data (m/z, z, intensity, etc.)

to make an advanced decision.

Following the advent of the DT algorithm, which relied on advanced analysis

of a MS scan, we thought it could be expanded to the analysis of MS/MS scans.

Direct analysis of MS/MS scans in real-time provides a lot more information that

could be used to make more advanced decisions. The following chapters describe

some of the first work on improving the intelligence of MS acquisition methods

for proteomic research. These methods, grouped under the term intelligent data

acquisition (IDA), represent new methodologies in how the MS selects peptide

precursors and improves the data quality. In chapter 2, the development of the
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first real-time database searching algorithm (inSeq) is described. The MS was em-

powered to identify MS/MS spectra immediately following acquisition, allowing

for the MS to decide what to do next. Improvements to reproducibility, quantita-

tive accuracy, and PTM analysis are demonstrated over traditional DDA methods.

Chapter 3 summarizes our real-time algorithms for improving the run-to-run repro-

ducibility of peptide identification. Peptides are scheduled based on their relative

elution order instead of the more typical absolute retention times. The IDA method

could determine the overall elution order by analyzing survey MS scans, and then

subsequently target peptides in a DIA fashion. The method increased the number

of peptides identified in repeated experiments by over 50%. Chapter 4 is devoted

to the programming and software frameworks used for data analysis and real-time

control. The chapter starts off with a summary of the Coon OMSSA Proteomic

Analysis Software Suite (COMPASS) and the improvements made to it since its

initial publication.30 The suite is a complete data-analysis package for tandem mass

spectrometry data. The chapter continues with a brief discussion on the develop-

ments of the C# Mass Spectrometry Library (CSMSL). This library provides many

tools and programs to develop new analysis programs in a fast and easy manner.

The final chapter in this document looks at the future of IDA methods and what

challenges they face and offers a few suggestions on possible solutions.
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Chapter 2

instant spectral assignment for advanced decision

tree-driven mass spectrometry

Summary

We have developed and implemented a sequence identification algorithm (inSeq)

that processes tandem mass spectra in real-time using the mass spectrometer’s

(MS) on board processors. inSeq relies on accurate mass tandem MS data for swift

spectral matching with high accuracy. The instant spectral processing technology

takes ~16 ms to execute and provides information to enable autonomous, real-time

decision making by the MS system. Using inSeq, and its advanced decision tree

(DT) logic, we demonstrate: (1) real-time prediction of peptide elution windows en

masse (~3 minute width, 3,000 targets), (2) significant improvement of quantitative

precision and accuracy (~3X boost in detected protein differences), and (3) boosted

rates of post-translational modification (PTM) site localization (90% agreement in

real-time vs. offline localization rate and a ~25% gain in localized sites). The DT

logic enabled by inSeq promises to circumvent longstanding problems with the

conventional data-dependent acquisition paradigm and provides a direct route to
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streamlined and expedient targeted protein analysis.

Introduction

The shotgun sequencing method has rapidly evolved over the past two decades.1,2

In this strategy eluting peptide cations have their mass-to-charge (m/z) values

measured in the MS scan. Then precursor m/z values are selected for a series of

sequential tandem MS events (MS/MS). This succession is cycled for the duration

of the analysis. The process, called data-dependent acquisition (DDA), is at the very

core of shotgun analysis and has not changed for over fifteen years; MS hardware,

however, has. Major improvements in MS sensitivity, scan rate, mass accuracy and

resolution have been achieved. Orbitrap hybrid systems, for example, routinely

achieve low ppm mass accuracy with MS/MS repetition rates of 5-10 Hz.3,4 Con-

stant operation of such systems generates hundreds of thousands of spectra in

days. These MS/MS spectra are then mapped to sequences using database search

algorithms.5–7

The DDA sampling strategy offers an elegant simplicity and has proven highly

useful for discovery-driven proteomics. Of recent years, however, emphasis has

shifted from identification to quantification—often with certain targets in mind.

In this context faults in the DDA approach have become increasingly evident.
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There are two primary limitations of the DDA approach: First, is poor run-to-run

reproducibility and, second, is the inability to effectively target peptides of interest.8

Hundreds of peptides often co-elute so that low-level signals often get selected

in one run and not the next. And selecting m/z peaks to sequence by abundance

certainly does not offer the opportunity to inform the system of pre-selected targets.

Several DDA add-ons and alternatives have been examined. Sampling depth,

for example, can be increased by preventing selection of a m/z value identified in a

prior technical replicate (PANDA).9 Irreproducibility can be somewhat countered

by informing the DDA algorithm of the precursor m/z values of desired targets

(inclusion list)—if observed this can ensure their selection for MS/MS. Frequently,

however, low abundance peptides may not have precursor signals above noise so

that a MS/MS scan, which is requisite for identification, is never triggered. This

conundrum is avoided altogether in the data-independent acquisition approach

(DIA).10 Here no attention is paid to precursor abundance, or even presence, instead

consecutive m/z isolation windows are dissociated and mass analyzed. A main

drawback of DIA is that it requires significantly more instrument analysis time as

MS/MS scans from every m/z window must be collected.11 As such, DDA analysis

remains the preeminent method for MS data acquisition.

Besides improvements in MS analyzer performance, numerous alternative dis-
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sociation methods and scan types have recently advanced. These include collision,

electron and/or photon-based fragmentation (i.e., trapHCD, HCD, ETD, IRMPD,

etc.), specialized quantification scans (i.e., QuantMode), or simply analysis using

varied precursor ion targets, m/z accuracy, etc.12–17 Each of these techniques show

applicability and superlative performance for a subset of peptide precursors. The

result is a dizzying alphabet soup of techniques, scan types, and parameter space

that is not easily integrated into the current data acquisition paradigm. Recently

we introduced a decision tree (DT) algorithm that used precursor m, z, and m/z

to automatically determine, in real-time, whether to employ CAD or ETD during

MS/MS.18 The approach significantly improved sequencing success rates and was

an important step in a movement toward development of informed acquisition.

Here we describe the next advance in DT acquisition technology—instant se-

quence confirmation (inSeq). The inSeq algorithm processes MS/MS spectra at the

moment of collection using the MS system’s on-board processing power. With

sequence in hand the MS acquisition system can process this knowledge to make

autonomous, real-time decisions about what type of scan to trigger next. Here,

with the inSeq instant identification algorithm, we extend our simple DT method

by adding several new decision nodes. These nodes enable novel automated func-

tionalities including: real-time elution prediction, advanced quantification, PTM
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localization, large-scale targeted proteomics, and increased proteome coverage,

among others. This technology provides a direct pathway to transform the current

passive data collection paradigm. Specifically, knowing the identity of a peptide

that is presently eluting into the MS system permits an ensemble of advanced,

automated decision-making logic.

Results and Discussion

Instant sequence confirmation (inSeq). To develop an advanced DT acquisition

schema, which can seamlessly incorporate the myriad of specialized procedures

and scans available on modern day MS systems, we must expedite the spectral

analysis process—i.e., from off-line to real-time. There are two obvious pathways

to incorporate real-time spectral analysis within an MS system. The first approach

exports spectra for processing with an external computing system followed by

import of the search outcome.19 A second, more elegant strategy, is to perform all

computation within the MS’s on-board computing system.20 The former approach

circumvents complications in accessing instrument firmware and allows for the use

of more sophisticated processing power; however, a serious constraint is the time

required for import/export of the information (~40 ms). We have pursued tech-

nologies and computational algorithms that integrate real-time spectral analysis
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into the MS system’s on-board processors and firmware. We call this method in-

stant sequence confirmation (inSeq). Experimental details (e.g., peptide candidates,

scan sequences, etc.) are transferred, on-demand, along with the instrument’s

method file to the instrument before the experiment commences, allowing for flexi-

bility in experimental design with minimum configuration. To establish robustness

across platforms we implemented inSeq on two distinct MS systems (operating

with different code bases)—a dual cell quadrupole linear ion trap-Orbitrap hybrid

(LTQ-Velos Orbitrap) and a quadrupole mass filter-Orbitrap hybrid (Q Exactive).

In both cases we modified and extended the instrument firmware to quickly (~<20

ms in the case of the more modern Q Exactive system) and accurately (<2% false

discovery rate (FDR)) map MS/MS spectra to sequence. The embedded peptide

database-matching algorithm processes MS/MS scans immediately (Figure 2.1A&B)

by comparing product ions present in the MS/MS scan to those from peptide can-

didates pre-loaded onto the instrument’s firmware. Note the candidate sequences

are first filtered so that only sequences whose mass is within a small window (e.g.,

5-50 ppm) of the sampled precursor neutral mass are considered (Figure 2.1C).

For each candidate sequence the number of +1 product ions (+2 ions are included

for precursors >+2) that matched the spectrum at a mass tolerance < 10 ppm is

recorded (Figure 2.1C). Next, it uses straightforward scoring metrics, providing
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sufficient evidence for the confirmation of a putative sequence without burdening

the system with non-essential calculations. On both MS platforms the real-time

confirmation algorithm was expediently executed and required no hardware modi-

fication, taking an average of 16 ms to perform (Q Exactive, Figure 2.2). To confirm

that this small overhead does not affect the overall duty cycle, we compared the

number of MS/MS scans performed when inSeq was and was not operating (9,076

DDA vs. 8,908 DDA with inSeq, ~1.6%). The number of MS scans for the peptide

IVGIVSGELNNAAAK within its elution profile further demonstrates the negligible

impact on duty cycle as 20 MS scans were taken with inSeq inactive as compared to

19 scans with inSeq active (Figure 2.3).

To characterize the inSeq algorithm we performed a nHPLC-MS/MS experiment

on tryptic peptides derived from human embryonic stem cells. A database consist-

ing of all theoretical tryptic peptides (up to three missed cleavages, 6-50 in length)

contained within the human proteome was uploaded to the instrument’s (Q Exac-

tive) on-board computer. A DDA method was employed and analysis proceeded

as usual, except following each MS/MS scan the inSeq algorithm was executed

and the results logged. This manifest of instant identifications was then compared

to those made post-acquisition via traditional database searching at a 1% FDR

(target-decoy method). We assumed the conventional post-acquisition approach
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Figure 2.2: Distribution of inSeq analysis times (Q Exactive). The complete yeast
proteome (6,717 proteins) was digested in silico, trypsin specificity up to 3 missed
cleavages) and the resulting peptides sorted to only retain those between 6-50
residues in length for a database of 1,174,780 unique sequences. The overhead
accrued by inSeq is small (µ = 16 ms / spectrum) compared to the overall acquisition
rate (~100-250 ms/spectrum), with over 95% of the MS/MS events taking less than
45 ms to search.
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Figure 2.3: Frequency of MS scans with and without inSeq active. The extracted
ion chromatograms of a random peptide (IVGIVSGELNNAAAK) is displayed for
two data-dependent top 10 experiments without (top) and with (bottom) inSeq
active. In both cases, a large number of MS scans are performed within the elution
profile (20 and 19 for inSeq off and on, respectively).
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to represent the true answer and compared the number of correct instant spectral

identifications as a function of matched product ions (Figure 2.1D). From these data

we conclude the detection of >6 product ions at high mass accuracy (<10 ppm) by

the inSeq algorithm produces the correct sequence identification >98% of the time.

To determine the impact of inSeq on the depth of protein coverage, we compared

OMSSA identifications with inSeq identifications (species with >6 matching peaks)

(Figure 2.4). Traditional post-acquisition searching identified more peptides than

inSeq (11,095 vs. 7,910, respectively) indicating strong initial performance but also

room for further development of a more sophisticated real-time scoring algorithm.

inSeq represents a straightforward approach to correlate sequence to spectrum

and is positioned to become an essential technology in transforming the current

passive data collection paradigm. Specifically, learning the identity of a peptide that

is presently eluting into the MS system permits an ensemble of advanced, automated

decision-making logic. These concepts build upon our previous development

of the data-dependent decision tree (DT) method. There we embedded an on-

board algorithm to make unsupervised, real-time decisions of which fragmentation

method to engage, based on precursor charge (z) and m/z. Here, with the inSeq

instant identification algorithm, we extend our simple DT method by adding several

new decision nodes (Figure 2.5). These nodes enable automated functionalities
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including: real-time elution prediction, advanced quantification, PTM localization,

large-scale targeted proteomics, and increased proteome coverage, among others

(Figure 2.1F).

Predicting peptide elution. Liquid chromatography is the conventional approach

to fractionate highly complex peptide mixtures prior to measurement by MS. The

highest MS sensitivity is achieved when one tunes the MS system to detect a given

target (i.e., execute MS/MS) regardless of its presence in the preceding MS event

(i.e., selected reaction monitoring). SRM measurements deliver both sensitivity

and reproducibility at the cost of bandwidth. Specifically, if one does not know

the elution time of a target, the duration of the nHPLC-MS/MS analysis must

be dedicated to conditions for that specific entity. If elution times are known,

then multiple SRM scan events can be programmed allowing for detection of

multiple targets; however, chromatographic conditions must remain identical or

the scheduled SRM elution windows will no longer align. Still, the bandwidth

of that approach is low (~100 peptide targets per nHPLC-MS/MS analysis) and

compiling such an experiment is highly laborious.21

We surmised that inSeq could inform the MS system, without human inter-

vention, of which peptide targets are most likely to subsequently elute. Such

capability could enable robust, large-scale targeting (>500 per analysis) in an au-
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Figure 2.5: Basic information flow for implementing inSeq. The flow of inSeq
follows a targeted Top-N inclusion list (Target List) routine with additional analysis
steps interspersed. Following an MS scan, the top 10 peaks that match precursors
in the Target List (filtered by elution order) are added to a Scan Queue (SQ). Each
MS/MS scan is analyzed with inSeq to determine if the peptide of interest is there.
If identified, the peptide is removed from the Target List and additional analyses
for quantitation and PTM localization may be performed.
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tomated manner. Our approach relies upon relative peptide elution order and,

consequently, bypasses the use of absolute retention times, which shift depend-

ing on chromatographic conditions and are not directly portable from multiple

disparate experiments. Peptide elution order can be obtained in two ways: First,

discovery experiments can be employed to determine retention order by normaliz-

ing the measured retention time for each detected peptide sequence. Second, the

relative hydrophobicity for any sequence can be theoretically determined using

existing software (e.g., SSRCalc).22–24 In our experience experimentally determined

retention order offers better precision; still, it requires prior knowledge which may

not be available. However retention order is determined, the real-time confirmation

algorithm maintains a rolling average of the calculated elution order (CEO—a num-

ber describing the relative elution order of a target peptide) so that target peptides

having nearby CEOs are specifically pursued (Figure 2.1B). Figure 2.6 presents an

overview of this approach. This example, 60.39 minutes into the chromatograph,

highlights the last five inSeq identified peptides and their average CEO (26.926 a.u.).

The on-board algorithm then computes an asymmetric CEO window (5 a.u., 24.926-

29.926) that presents a short list of desired targets having CEOs within that range

(Figure 2.1C). With this information the MS system can trigger specialized MS/MS

scans specific to this refined target subset. Note that as targets are identified, the
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CEO window is dynamically adjusted so targets come into and out of the range

precisely when they are eluting.

To test this technology, we performed a DDA nHPLC-MS/MS experiment in

which tryptic peptides from a human ES cell sample were separated over a 60 minute

gradient. Following data collection the resulting MS/MS spectra were mapped to

sequence using database searching (1% FDR). The unique peptide identifications

(4,237) were sorted by observed retention time—this ordering then served as the

CEO. 3,000 of these peptides were randomly selected as ”targets” and loaded onto

the instrument firmware (Velos-Orbitrap), along with their respective CEO, as a

database for inSeq. The sample was then re-analyzed with inSeq activated, but with

a doubled gradient length (120 min). Figure 2.6D displays the CEO window as

calculated in real-time by the MS system (inSeq) plotted beside the actual elution

time of identified peptides. Greater than 95% of the peptides (2,889) fell within

the rolling CEO window and were identified by both inSeq and post-acquisition

searching. At our present capability we can achieve window widths similar to those

used in absolute scheduling type experiments (~3-6 minutes) on a scale that is 30X

larger (e.g., 3,000 targets vs. 100) with minimal effort.21,25 Further, we demonstrate

that our approach adapts to different chromatographic conditions with no negative

effects (Figure 2.6D). The key to the high portability and simplicity of our algorithm
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is the use of inSeq for continual, real-time realignment.

Improvement of quantitative accuracy. The method of stable isotope labeling has

greatly propelled large-scale, quantitative analysis.26–31 While generally robust,

these techniques can yield spotty data for certain peptide and protein groups—

mainly those present at low abundances. For SILAC, low signal-to-noise (S/N)

precursor peaks in the MS scan often result in either omission of that particular

feature or quantitative imprecision, if included.32 For isobaric tagging, low intensity

reporter ion signals (MS/MS) induce similar shortcomings.33 We surmised that

inSeq could be employed to counter these limitations.

First, we developed an inSeq module to improve the quality of isobaric label-

based measurements. The module analyzes MS/MS spectra, using inSeq, and, when

a peptide of interest is detected, the quality of quantitative data is assessed. Should

the reporter ion signals fall below a specified threshold, inSeq triggers follow-up

scans to generate increased signal at the very instant the target peptide is eluting. In

one implementation, we instructed inSeq to automatically trigger three quantitative

scans, using the recently developed QuantMode (QM) method, to generate superior

quality quantitative data on targets of high value.16 The trio of QM scans are then

summed offline.

To assess this decision node we analyzed a sample comprising three biological
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replicates of human embryonic stem cells pre- and two days-post bone morpho-

genetic protein 4 (BMP4) treatment (i.e., TMT 6-plex, three pre-treatment and

three post BMP4 treatment cell populations). BMP4, a growth factor that induces

context-dependent differentiation in pluripotent stem cells, is widely used to study

differentiation to biologically relevant cell lineages such as mesoderm and endo-

derm.34–36 Whenever a target peptide was identified by inSeq, three QM scans were

immediately executed. This ensured that all identified peptides had the same num-

ber of quantitation scans, enabling a direct comparison for analyzing multiple QM

scans within this experiment. Figure 2.7A demonstrates the benefit of summing

isobaric tag intensities from one, two, or three consecutive quantitation scans for

an inSeq identified target peptide having the sequence FCADHPFLFFIR from the

protein SERPINB8. Here the ratio of change between control and treatment cell

lines measured in one QM scan is large (5.86) but not significant (P = 0.067, Stu-

dent’s t-test with Storey correction).37 Note significance testing was accomplished

by assessing variation within the three biological replicates of both treatment and

control cell lines. The measured ratio remains relatively unchanged (5.22 and 5.43)

as reporter tag signals from additional quantitation scans are added; however, the

corresponding P-values decrease to 0.014 and 0.012 when two or three quantitation

scans are summed. By plotting the log2 ratio of quantified proteins from the three
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biological replicates against the average intensity of isobaric labels (Figure 2.7 B) we

demonstrate this improved significance results from boosted reporter S/N. Ideally

this log2 ratio would be zero, indicating perfect biological replication; however,

when only one quantitation scan is employed this ratio severely deviates from zero

with decreasing tag intensity. To improve overall data quality and to omit poten-

tially erroneous measurements we, and others, employ arbitrary reporter signal

cutoffs (dashed vertical line in Figure 2.7B). Summation of additional quantitation

scans increases the average reporter tag intensity, raising nearly all of the protein

measurements above the intensity cutoff value (74, 9, and 4 proteins omitted using

one, two, and three quantification scans, respectively). This quantification deci-

sion node also increased the number of proteins within 25% of perfect biological

replication (horizontal dashed line).

To determine if the method could improve the number of statistically significant

differences between the cell populations, we calculated the log2 ratio of treated vs.

control (i.e., 2 days/0 days) for each of the 596 quantified proteins (P<0.05, Student’s

t-test with Storey correction, Figure 2.7C). Only 28 proteins display significant

change when one QM scan is used. By simply adding the reporter tag signal from

additional scans the number of significantly changing proteins increases nearly

threefold, from 28 to 91 when all three QM scans are analyzed together. Many stable
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isotope incorporation techniques measure heavy and light peptide pairs in MS (e.g.,

SILAC). This approach, of course, requires the detection of both partners; note low

abundance peptides are often identified with low, or no, precursor signal in the

MS. We supposed that addition of another inSeq decision node could circumvent

this problem. We cultured human embryonic stem cells in light and heavy media.

Protein extract from these cultures was mixed 5:1 (light:heavy), before digestion

overnight with LysC. The SILAC node was developed to select precursors from

an MS scan only if the monoisotopic mass was within 30 ppm of any target on

a list which contained 4,000 heavy and light peptides from a previous discovery

run. Targets were selected only if the SILAC ratio deviated from the expected

ratio of 5 by 25%, i.e., the subset containing the most error. Following MS/MS, the

resulting spectra were analyzed using inSeq. When a target of interest was identified,

inSeq instructed the system to immediately record a SIM scan surrounding the

light/heavy pair with a small, charge-dependent isolation window (~8-10 Th).

The average ratio of the light and heavy peptides subtly, but significantly, shifted

from 4.47 under normal analysis to 5.34 for the inSeq triggered SIM scans (Student’s

t-test, p-value < 6×10−20). More importantly, the number of useable measurements,

i.e., when both partners of the pair are observed, increased by ~20% (2,887 under

normal analysis to 3,548 with inSeq, Figure 2.8A). Figure 2.8B displays an example
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of the inSeq-triggered SIM scan and the increase in S/N and accuracy it affords.

Here the MS/MS scan of the light partner was mapped, in real-time, to the sequence

IEELDQENEAALENGIK. This event triggered a high resolution SIM scan (8 Th

window), which led to the ratio of 4.99:1 (correct ratio 5:1). Here gas phase enrich-

ment was essential to quantify the relative abundance, as the isotopic envelope

of the heavy partner was not observed, even with extensive spectral averaging

of successive MS scans (~30 s, Figure 2.8B). Whether for MS or MS/MS centric

methods, we conclude that inSeq technology will significantly improve the quality

of quantitative data with only a minimal impact on duty cycle.

Post-Translational Modification Site Localization. The presence of post-translational

modifications (PTMs) on proteins plays a major role in cellular function and signal-

ing. Unambiguous localization of PTMs to residue demands observation of product

ions resulting from cleavage of the residues adjacent to the site of modification,

i.e., site-determining fragments (SDFs). In a typical analysis only about half of the

identified phosphorylation sites can be mapped with single amino acid resolution,

stymying systems-level data analysis. We reasoned that inSeq could be leveraged

to boost PTM localization rates by dynamically modifying MS/MS acquisition

conditions when necessary. As such we developed an online PTM localization

decision node to determine, within milliseconds, whether a MS/MS spectrum
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contains SDFs to unambiguously localize the PTM. Should SDFs be lacking, inSeq

instantly orchestrates further interrogation.

The PTM localization node is engaged when inSeq confirms the detection of a

PTM-bearing peptide. After the sequence is confirmed, inSeq assesses the confi-

dence with which the PTM(s) can be localized to a particular amino acid residue.

This procedure is accomplished by computing an online probability score similar

to post-acquisition PTM localization software—i.e., AScore.38 Briefly, inSeq com-

pares all possible peptide isoforms against the MS/MS spectrum. For each SDF the

number of matches at <10 ppm tolerance is counted and an AScore is calculated

(inSeq uses similar math). If the AScore of the best fitting isoform is above 13 (p <

0.05) the PTM is declared localized. When the AScore is below 13, however, inSeq

triggers further characterization of the eluting precursor until either the site has

been deemed localized or all decision nodes have been exhausted. Additional char-

acterization can include many procedures such as acquisition of MS/MS spectra

using different fragmentation methods (e.g., CAD, HCD, ETD, PD, etc.), varied

fragmentation conditions (e.g., collision energy, reaction time, laser fluence, etc.),

increased spectral averaging, MSn, pseudo MSn, modified dynamic exclusion, and

altered AGC target values, among others.39

To obtain proof-of-concept results we wrote a simple inSeq node that triggered
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Figure 2.9: inSeq can improve PTM localization rates. Following MS/MS (HCD)
of the singly-phosphorylated precursor RNsSEASSGDFLDLK, inSeq could not find
sufficient information to confidently localize the modification to either Ser 3 or 4 (A,
AScore = 0). inSeq immediately triggered an ETD MS/MS scan event on the same
precursor (B). This spectrum was assigned an AScore of 31.0129 (phosphorylation
on Ser3) and was considered confidently localized—note the SDFs c3 and z·12 ions.
(C) Globally, the inSeq localization calculation agreed with offline analysis using
the actual AScore algorithm. (D) Using a simple dissociation method DT, inSeq
produced a confidently localized phosphorylation site for 78 of 324 unlocalizable
sites, saving nearly 25% of them.
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an ETD MS/MS scan of phosphopeptides that were not localized following HCD

MS/MS. In one example (Figure 2.9) the sequence, RNSSEASSGDFLDLK, was

confirmed to contain a phosphoryl group; however, the inSeq algorithm could not

confidently localize the PTM to any of the four Ser residues (AScore = 0). Next,

inSeq triggered an ETD MS/MS scan of the same precursor (Figure 2.9B). The

resulting spectrum was then analyzed for the presence of the SDFs, c3 / z·12. Both

of these fragments were present and the site was localized to Ser 3 with an AScore

of 31.0129 (p < 0.00079). Post-acquisition analysis confirmed the results of our

online inSeq approach—both spectra (HCD and ETD) were confidently identified

and their calculated AScores were 0 and 45.58, respectively. When compared on

a global scale, 993 of the 1,134 inSeq-identified phosphopeptides had localization

judgments that matched post-acquisition AScore analysis (Figure 2.9). This slight

difference is the result of using different localization algorithms for online and post-

acquisition analysis. Primarily, the post-acquisition method considers fragment

ions on either side of the site-determining fragments separately, while the inSeq

method does perform this extra step for simplicity.30,38 These data demonstrate that

our localization node is highly effective at instantaneously determining whether

a PTM site can be localized. Unfortunately, only marginal gains were achieved in

this basic implementation as most precursors were doubly charged and, therefore,
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not effectively sequenced by ETD. Next, we modified the inSeq decision node to

incorporate a dissociation method DT. Here a follow-up ETD or combination ion

trap CAD/HCD scan was triggered depending upon precursor charge (z) and m/z.

With the slightly evolved algorithm the inSeq method detected 998 phosphopeptides

in a single shotgun experiment. It determined that 324 of these identifications

lacked the information to localize the PTM site and, in those cases, triggered the

new dissociation decision node. 78 of these unlocalizable sites were confidently

mapped with this technique—salvaging nearly 25% of the unlocalized sites (Figure

2.9D). These encouraging results demonstrate that inSeq has great promise to curtail

the problem of PTM localization in a highly automated fashion. We note there

are dozens of parameters to explore in the continued advancement of this PTM

localization decision node.

Conclusion

Here we described an instant sequencing algorithm (inSeq) that operates using the

pre-existing processors of the MS. Rapid real-time sequencing affords several novel

data acquisition opportunities. To orchestrate these opportunities we constructed

an advanced decision tree logic that extends our earlier use of the method to

intelligently select dissociation type. The approach can circumvent longstanding
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problems with the conventional DDA paradigm. We provided three such examples

herein. First, we demonstrated that knowledge of which peptide sequences are

eluting can facilitate the prediction of soon to elute targets. This method shows

strong promise to revolutionize the way in which targeted proteomics is conducted.

Second, we used quantitative decision nodes that fired when inSeq detected a

peptide sequence of interest. With either SILAC or isobaric tagging, significant

gains in quantitative outcomes were documented. Third, we endowed inSeq with an

instant PTM site-localization algorithm to determine whether or not to initiate more

rigorous follow-up at the very instant the peptide of interest was eluting. We show

that the inSeq site localizer is highly effective (90% agreement with post-acquisition

analysis) and that triggering a simple dissociation method DT can improve site

localization by ~25%. Further development will doubtless deliver additional gains.

Targeted proteomics is an area of increasing importance. Following discovery

analysis it is natural to cull the list of several thousand detected proteins to several

hundred key players. In an ideal world these key proteins are then monitored

in dozens or even hundreds of samples with high sensitivity and reproducibility,

without rigorous method development and be expediently performed. We envision

that advanced DT analysis with inSeq could offer such a platform. Using the

retention time prediction algorithm we introduced here one can foresee the inSeq
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algorithm quickly and precisely monitoring hundreds of peptides without the

extensive labor and pre-planning required by the selected reaction monitoring

(SRM) technique, current state-of-the-art.40 Other possibilities include automated

pathway analysis where user-defined proteins, within a collection of pathways,

are simply uploaded to the MS system. Then, inSeq automatically determines

the best peptides to track, their retention times, and constructs the method. Two

key advantages over current SRM technology make this operation possible. First,

knowledge of specific fragmentation transitions are not necessary as all products

are monitored with high mass accuracy. Second, precise elution time scheduling is

not necessary as inSeq can use CEO, experimental or theoretical, to dynamically

adjust the predicted elution of targets. In this fashion the most tedious components

of the SRM workflow can be avoided.

Experimental Methods

Cell Culture. Human embryonic stem cells (line H1) were maintained in feeder

independent media as previously described.41 For SILAC experiments, DMEM/F12

lacking lysine and arginine (Mediatech Inc.) was supplemented with light arginine

(Sigma-Alrich) and either heavy labeled lysine (Cambridge Isotopes Laboratories)

or light lysine (Sigma-Aldrich). Cells were cultured on Matrigel (BD Biosciences)
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and split 1:8 at approximately 80% confluency using 0.1 mM EDTA. To harvest cells,

TripLE Express (Invitrogen) was applied for five minutes at 37◦C. Following cell

detachment, an equivalent volume of ice-cold DPBS (Invitrogen) was added before

centrifugation. Cell pellets were subsequently washed twice in ice-cold DPBS and

stored at −80◦C. BMP4-treated cells were grown and harvested as described above,

except that 5 ng/mL BMP4 (R&D Systems) was added into the media and cells

were split using TrypLE (Invitrogen). For BMP4 experiments, single cells were

plated at the density of 4×104/cm2, for 2 days of treatment. We collected ~108 cells

for each analysis.

Cell Lysis. For all analysis, human embryonic stem cells were lysed in ice-cold 8 M

urea, 40 mM NaCl, 50 mM tris (pH 8), 2 mM MgCl2, 50 mM NaF, 50 mM β-glycerol

phosphate, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 1X mini

EDTA-free protease inhibitor (Roche Diagnostics), and 1X phosSTOP phosphatase

inhibitor (Roche Diagnostics). To solubilize protein and ensure complete lysis,

samples were sonicated three times for 15 seconds with 30 second pauses. Total

protein was then quantified using a BCA protein assay kit (Thermo Scientific Pierce).

Isobaric Label Sample Preparation. For analysis, 250 µg of protein from each

sample was reduced by adding DTT to a final concentration of 5 mM, and alkylated
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with 15 mM iodoacetamide before final capping with 5 mM DTT. Digestion was

carried out by adding LysC (Wako Chemicals) at a 1:100 enzyme-to-protein ratio

and incubating at 37◦C for 2 hours. At this time, the lysate was diluted with 25

mM tris (pH 8) to a final urea concentration of 1.5 M and further digested for 12

hours at 37◦C with trypsin (Promega) at a 1:100 enzyme to protein ratio. Peptides

were then acidified with TFA to quench the reaction and de-salted using C-18

solid phase extraction (SPE) columns (Waters). TMT labeling was carried out per

manufacturer’s directions (Thermo Scientific Pierce). Samples were mixed in a

1:1:1:1:1:1 ratio before analysis.

SILAC Sample Preparation. Protein from the light and heavy embryonic stem

cell cultures was mixed in a 5:1 ratio (light:heavy) by pooling 2.5 mg of light protein

and 0.5 mg of heavy protein. The sample was reduced by adding DTT to a final con-

centration of 5 mM, and alkylated with 15 mM iodoacetamide before final capping

with 5 mM DTT. Digestion was carried out by adding LysC (Wako Chemicals) at a

1:100 enzyme-to-protein ratio and incubating at 37◦C overnight. Peptides were then

acidified with TFA to quench the reaction and de-salted using C-18 solid phase

extraction (SPE) columns (Waters).
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Phosphopeptide Sample Preparation. From an embryonic stem cell culture, 1 mg

of protein was reduced by adding DTT to a final concentration of 5 mM, and alky-

lated with 15 mM iodoacetamide before final capping with 5 mM DTT. Digestion

was carried out by adding LysC (Wako Chemicals) at a 1:100 enzyme-to-protein

ratio and incubating at 37◦C for 2 hours. At this time, the lysate was diluted with

25 mM tris (pH 8) to a final urea concentration of 1.5 M and further digested for 12

hours at 37◦C with trypsin (Promega) at a 1:100 enzyme to protein ratio. Peptides

were then acidified with TFA to quench the reaction and de-salted using C-18

solid phase extraction (SPE) columns (Waters). Phosphopeptides were enriched

via immobilized metal affinity chromatography (IMAC) using magnetic beads (Qi-

agen). Following equilibration with water, the beads were treated with 40 mM

EDTA (pH 8.0) for 30 minutes with shaking, and washed 3X with water again.

The beads were then incubated with 100 mM FeCl3 for 30 minutes with shaking

and finally were washed 3 times with 80% acetonitrile/0.1% TFA. Samples were

likewise resuspended in 8% acetonitrile/0.15% TFA and incubated with beads

for 45 minutes with shaking. The resultant mixture was washed 3 times with 1

mL 80% acetonitrile/0.1% TFA, and eluted using 1:1 acetonitrile:0.7% NH4OH in

water. Eluted phosphopeptides were acidified immediately with 4% formic acid

and lyophilized to ~5 µL.
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nano-High Performance Liquid Chromatography. For all samples online reverse-

phase chromatography was performed using a nanoACQUITY UPLC system (Wa-

ters). Peptides were loaded onto a pre-column (75 µm ID, packed with 7 cm C18

particles, Alltech) for 10 min at a flow rate of 1 µL/min. Samples were then eluted

over an analytical column (50 µm ID, packed with 15 cm C18 particles, Alltech)

using either a 60 or 120 min linear gradient from 2% to 35% acetonitrile with 0.2%

formic acid and a flow rate of 300 nL/min.

Target List Construction and inSeq Setup. For all experiments, the monoisotopic

mass, charge state, and previously determined retention time of target peptides

was included for use by the inSeq algorithm. In addition, peptides modified on

methionines or tyrosines were omitted from all target lists. For peptide elution

and isobaric label quantitation inSeq experiments, a target list of 4,000 peptides

was constructed from a previous nHPLC-MS/MS experiment employing a 90 min

nHPLC gradient. For SILAC inSeq experiments, peptides identified at 1% FDR in a

discovery nHPLC-MS/MS experiment were analyzed to determine the light:heavy

partner ratio. A target list of 2,000 peptide pairs (4,000 total peptides) whose ratio

deviated from the expected value of 5 by at least 25% was constructed. This subset

of peptides included many measurements in which the signal to noise was low, or

a partner was missing. For phosphorylation inSeq experiments, phosphopeptides
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identified at 1% FDR in a discovery nHPLC-MS/MS experiment were analyzed by

the Phosphinator localization software to assign phosphosite locations. A target list

comprising 2,174 phosphopeptides was constructed and used for both ETD only

and decision tree (DT) inSeq methods.

Target lists were loaded into the instrument’s firmware for instant access during

acquisition. Peptide lists were stored in an internal database and sorted based on

their precursor mass for fast look ups using a binary search algorithm. A parameter

file was preloaded into the firmware prior to each experiment to specific scan

sequences and instrument parameters needed for the intended experiment.

Mass Spectrometry. All experiments were performed on Thermo LTQ Orbitrap

Velos and Q Exactive mass spectrometers. The LTQ Orbitrap Velos used firmware

version 2.6.0.1065 SP3 with additional ion trap control language (ITCL) modifica-

tions to enable inSeq operation. MS scans were performed in the Orbitrap at 30,000

resolution at a max injection time of 500 ms and a target value of 1e6. MS/MS

scans were also performed in the Orbitrap at a resolution of 7,500 and with HCD

normalize collision energy (NCE) of 27%, for a max fill time of 500 ms. The Q

Exactive was operated using version 2.0 Build 142800 with a modified python code

base for inSeq data acquisition control. Q Exactive MS scans were collected at 70,000

resolution for a max injection time of 120 ms or if the 1e6 AGC target value was
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reached. MS/MS events were measured at 17,500 resolution at a target value of

1e5, 120 ms max injection time and 26% NCE. Instrument methods for both the

LTQ Orbitrap Velos and Q Exactive were overridden during acquisition by the

instrument’s firmware to provide for dynamic inSeq operation. Processing times for

inSeq were similar on the older Velos-Orbitrap system with the newer Q Exactive;

however, a ~100 ms overhead was included because complete collection of the

Orbitrap transient signal is necessary before the spectrum can be examined.

Database searching and FDR estimation. MS/MS data was analyzed using the

Coon OMSSA Proteomics Software Suite (COMPASS).42 The Open Mass Spectrome-

try Search Algorithm (OMSSA; version 2.1.8) was used to search spectra against the

International Protein Index(IPI) human database version 3.85.7 For all experiments,

carbamidomethylation of cysteines was included as a fixed modification, while

oxidation of methionines was set as a variable modification. For TMT experiments,

TMT on the N-terminus and TMT on lysines were included as fixed modifications

and TMT on tyrosines was added as a variable modification. For SILAC experiments

heavy lysine was added as a variable modification. Precursor mass tolerance was

set to ±4.5 Da and monoisotopic mass tolerance was set to ±0.015 Da for fragment

ions. Results were filtered to a 1% FDR at both the peptide and protein level with a

maximum precursor mass error of 50 ppm. For phosphopeptides, the Phosphinator
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software was used to localize phosphorylation sites.30

Protein and Peptide Quantification. TMT quantification was performed using

TagQuant within COMPASS. This program extracts reporter ion intensities and

multiplies them by injection times to determine counts. Purity correction was

performed as previously described.43 Tag intensities were normalized to ensure that

the total signal from each channel was equal. For evaluation of multiple QuantMode

(QM) scans, data was analyzed at the peptide level by only quantifying the first, the

sum of first and second, or the sum of the first, second, and third QM scans using

TagQuant. Peptides were then combined into protein groups (ProteinHerder) and

quantified at the protein level (ProteinTagQuant) within COMPASS. Experimental

ratios and p-values (Student’s t-test assuming equal variance) were determined

using Microsoft Excel. To correct for multiple hypothesis testing, we applied Storey

correction using the freely available program QVALUE.37 SILAC quantification was

performed with in-house software that retrieved the peak intensities of both SILAC

partners from either a single inSeq-triggered SIM scan (monoisotopic peak) or

performed an extracted ion chromatogram (30 sec window) of identified precursor.

A ratio of partner abundance was only calculated if both SILAC partners had an

intensity at least twice that of the noise.
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Chapter 3

intelligent data acquisition blends targeted and

discovery methods

Summary

A MS method is described here that can reproducibly identify hundreds of peptides

across multiple experiments. The method uses intelligent data acquisition (IDA) to

precisely target peptides while simultaneously identifying thousands of other, non-

targeted peptides in a single nano-LC-MS/MS experiment. We introduce an online

peptide elution order alignment (EOA) algorithm that targets peptides based on

their relative elution order, eliminating the need for retention time-based scheduling.

We have applied this method to target 500 mouse peptides across six technical

replicate nano-LC-MS/MS experiments and were able to identify 440 of these in all

six, compared to only 201 peptides using data-dependent acquisition (DDA). A total

of 3,757 other peptides were also identified within the same experiment, illustrating

that this hybrid method does not eliminate the novel discovery advantages of

DDA. The method was also tested on a set of mice in biological quadruplicate and

increased the number of identified target peptides in all four mice by over 80% (826
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vs. 459) compared with the standard DDA method. We envision real-time data

analysis as a powerful tool to improve the quality and reproducibility of proteomic

datasets.

Introduction

Large-scale proteomic studies make use of a variety of tools and techniques to

achieve depth and wide coverage of proteomes. The most popular method for

sequencing proteomes is shotgun sequencing where peptides are digested from

extracted proteins, separated with chromatography (HPLC), and then mass ana-

lyzed using mass spectrometry (MS).1,2 Since complex proteomes can encompass

thousands of proteins, leading to millions of peptides, deciding how to allocate

the limited mass spectrometer bandwidth is key to successful analysis.3 By far the

most successful method for this time management is data dependent acquisition

(DDA), where intact peptide precursors are first mass analyzed (MS), specific m/z

features are then selected to undergo fragmentation, and finally the fragment ions

are mass analyzed again (MS/MS). This process is repeated throughout the LC

separation, resulting in a large collection of MS and MS/MS spectra. Peptides are

eventually identified from the fragmentation spectra and then assembled together

back into protein groups.4–8 This approach has produced outstanding results in
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the past decade, but, due to variety of reasons (e.g., large protein dynamic range,

speed of MS instrumentation, separation efficiency, etc.) undersampling of pro-

teomes is very common. In other words, not every peptide is identified in every

LC-MS/MS experiment. Incomplete datasets limit the questions researchers can

answer; especially when biological replication is used to increase statistical power,

many measurements become worthless if they cannot be measured reproducibly.9

As proteomics seeks to answer global biological questions, reproducible peptide

identification between datasets is mandated.10–12

Many studies have outlined the problem of poor peptide reproducibility.13–17

Aebersold succinctly summarized that irreproducibility is a multifaceted issue,

depending on user experience, equipment, and data analysis, among others.18 He

outlines that there are two main approaches in tackling irreproducibility. First,

exhaustively identify every peptide in a sample—an approach that is becoming

more feasible as technology improves.19–21 The more common approach, as many

other researchers have embarked on, is to focus on a smaller subset of peptides

and to thoroughly identify and quantify those using targeted methods.22 Methods

such as selected reaction monitoring (SRM) are powerful and reproducible, but

are low throughput, targeting a few hundred peptides at most.23–27 To improve

identification reproducibility and throughput, targeted methods almost exclusively



72

rely on retention time-based scheduling, segmenting the MS duty cycle among the

target peptides. In SRM methods, a series of MS/MS transitions for each targeted

peptide is automatically collected at the appropriate retention time (RT), removing

the dependence on MS detection. This requires precise knowledge of the peptide

retention time for the LC-MS system and is low throughput as only one set of

transitions are monitored at a given point in time. Recent work on intelligent SRM

(iSRM) increases throughput by monitoring only a subset of transitions for each

target, switching to normal SRM when these transitions are detected.28 We sought to

expand upon the idea of intelligent real-time switching of methods by combining the

enhanced reproducibility of targeted scheduled methods with the novel discovery

advantages of DDA in a single hybrid method. Our goals were three-fold: first, to

develop a method that increases the throughput of targeting; second, to replace

retention-time based scheduling and its laborious method development with a

more robust and straightforward peptide elution ordering; and last, to maintain

the discovery aspect of DDA sampling while simultaneously targeting a subset of

peptides.

In the last decade, a few computational approaches have been aimed at solving

the problem of poor reproducibility. The concept of accurate mass tags (AMT)

was first introduced by Smith et. al. as a means to identify peptides in multiple
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runs based on accurate mass and retention time.29 This concept was further ex-

panded with PepMiner and PEPPeR, tools for clustering features among multiple

datasets.30,31 Most notably, Prakash et. al. introduce the concept of aligning multi-

ple MS datasets based on peptide relative elution order into signal maps.32 To date,

these and other computational methods33–38 have been performed post-acquisition,

attempting to improve already collected data. We seek to improve the reproducibil-

ity at the source by improving the algorithms the MS uses to select precursors to

fragment. We and others have proposed using real-time data analysis and dynamic

MS control as a means for improving the quality of acquired spectra.39–41 Here we

present our findings on combining accurate mass, elution orders, and real-time

data analysis to improve the sampling reproducibility of the MS.

Results and Discussion

Irreproducible Peptide Identification. In data dependent acquisition (DDA) pep-

tide precursors are selected for fragmentation based on intensity in a MS survey

scan. This straightforward approach has proven to be a simple and powerful tech-

nique. However, it is pestered with inconsistent sampling, and therefore, irregular

peptide identification between experiments. The DDA method is inherently stochas-

tic in nature, depending heavily on the consistency of the input data (MS) to deliver
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reproducible peptide identification (MS/MS). Even the slightest change in the

chromatography or ionization efficiencies will have repercussions on the collection

of the whole dataset (e.g., the butterfly effect). To characterize the extent these

minor changes have on the reproducibility of peptide identifications, six replicate

injections of a tryptic digest of yeast whole cell lysate were analyzed using DDA on

the same nano-LC-MS/MS system over a span of ten days. On average, each experi-

ment identified 13,289 ±340 unique peptide sequences (I/L ambiguity removed) at

a 1% FDR, indicating a highly consistent separation and nearly identical instrument

performance. Of the 23,919 unique peptides identified in total, only 5,404 (22.6%)

of those peptide were identified in all six experiments (Figure 3.1). A significant

portion were only identified once (7,474 31.2%) while the remaining peptides were

divided between two and five experiments. This clearly demonstrates the irrepro-

ducibility of DDA sampling on the same peptide solution. The reproducibility of

identified protein groups fares better; 1,708 of 3,054 (56%) protein groups were

identified in every experiment. The higher overlap percentage is because many

different peptides can make up one protein group, minimizing the importance

of identifying the same peptides in all experiments. However, post translational

modification (PTM) analysis requires identification of the same sites to compare

between experiments, demanding the need for high peptide overlap. PTM analysis
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and quantitation is becoming more prominent in the literature, thus making this

a growing problem in the field. Two reasons can be attributed to the poor repro-

ducibility of stochastic DDA sampling. First, precursors having low signal-to-noise

(S/N) are affected first by changes in chromatography and ionization. For example,

a precursor with a maximal S/N of 4 may have been sampled and identified in

one experiment, but in the next experiment the S/N may have dropped below

the detection threshold and excluded from being sampled. This is evident when

8,883 MS features from peptides identified in one or all of the six experiments were

examined for their maximal S/N (Figure 3.2). For peptides identified once 2,707

(30.5%) had a maximal S/N 6 4 while only 814 (9.2%) precursors identified in

every experiment had similar maximum S/N. The other reason for inconsistent

peptide identification is increased MS spectral complexity, specifically its effect on

charge-state assignment. In proteomic MS/MS workflows, precursors are often

only selected when they exhibit a well-defined charge state—usually where z > 1, as

singly charged precursors fragment poorly and usually do not lead to positive iden-

tifications. Increases in spectral complexity hinder the charge-state determination

algorithms, especially for low S/N precursors. This results in skipping precursors

even if its signal-to-noise is above the sampling threshold.
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Retention Time Based Targeting. When good peptide identification reproducibil-

ity is needed, retention time (RT) based targeting, i.e., scheduling, has been the

method of choice. Here, peptides of interest are assigned an expected elution time

and MS/MS are triggered, regardless of MS detection, during the appropriate time

range. This avoids the two issues with DDA sampling described above and enables

much higher reproducibility. However, such methods are laborious to construct

and maintain; identical LC and MS parameters must be kept between experiments

to minimize any variances in retention times of the peptides.

To assess the degree of variance in peptide retention times that occur in nor-

mal nano-LC-MS/MS experiments, two of the yeast DDA experiments described

above, performed ten days apart, were compared. The first experiment (July 22nd,

D0) produced 13,529 unique peptides and the second experiment (July 31st, D9)

identified 13,433 yeast peptides. Together, 7,589 peptides were in common and the

apex of their retention time in each experiment is plotted in Figure 3.3A.

The relationship between retention times of matched peptides is highly linear

(R2 = 0.9989) but has a non-unity slope and non-zero intercept (m = 1.033; b = -0.647).

While the slope is very close to 1, even the slightest deviation (0.033), compounded

over time, leads to large RT differences late in the separation (e.g., ~1.6 min shift at

70 min). On the whole, the average RT deviation was nearly a minute (µ = -0.805
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Figure 3.3: Retention time deviation between matched LC-MS/MS experiments.
To assess the deviation in retention times for matched samples two identical nano-
LC-MS/MS experiments were run ten days apart on the same LC-MS system. (A)
The relationship between apex retention times of the 7,589 unique peptides common
between experiments display a high degree of linearity (R2 = 0.9989) but a skewed
slope and non-zero intercept (m = 1.033; b = -0.647). (B) The average deviation from
unity was nearly a minute off (µ = -0.805 min), with a broad distribution over 2
minutes wide. (C) Peptides ranked by their relative elution order exhibit a normal
distribution around zero (µ =-1.097).
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min) with a broad distribution over a two minute range (Figure 3.3B). Typically, the

assigned peptide elution times must be corrected to encompass this shift.

We hypothesize that—due to the degree of linearity in peptide retention times,we

could avoid these corrections by scheduling peptides based on their relative elution

order (EO), opposed to their absolute retention time. Under similar LC conditions

(i.e., same particles, temperature, column length, phase, etc.) peptides elute in

the same relative order regardless of separation duration or slope. For example, if

peptide ’A’ elutes before peptide ’B’ in a 30 minute LC gradient, the same ordering

is preserved with a 60 minute LC gradient, even if the absolute retention times vary

greatly. When many peptides’ elution orders are taken into account (e.g., 1000s of

peptides) they provide a simple way to correct for elution variation dynamically.

This is evident when we took the 7,589 peptides and rank ordered them based on

their apex retention times for both the D0 and D9 experiments and plotted the

difference between matched peptides (Figure 3.3C). Here the values are normally

distributed around zero (µ =-1.097) with a full width at half maximum (FWHM) of

only ~100.

Elution order can be useful even under extreme differences in chromatographic

conditions as well. To simulate dynamic chromatographic conditions, we separated

yeast peptides under two different LC gradient profiles. The resulting peptide iden-
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Figure 3.4: Two technical replicates of a yeast DDA top-15 method using two
different LC gradients. (A) Retention times for matched peptides between the two
gradients is linear but not 1:1. (B) An average deviation of 10 min exists between
the two experiments. (C) Rank elution orderings of matched peptides between the
two gradients show a highly linear relationship that is exactly 1:1. (D) The average
deviation in elution order for matched peptides is symmetric around 0.
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tifications were again matched between the runs and the retention time difference

was plotted (Figure 3.4A). These data show an average deviation of ten minutes

between the two gradients (Figure 3.4B), but when ranked by their elution orders,

the two experiments show a linear slope of 1 with a normal distribution of ranked

elution orders around zero (Figure 3.4C&D).

Real-time Elution Ordering Alignment. We reasoned that using elution order

could improve the irreproducible sampling of DDA—similarly to scheduled meth-

ods, but on a larger scale and more robustly. The question shifts from ”What

retention time is it?” as scheduled methods ask, to ”What is the current elution

order?” By knowing which peptides are currently eluting from the LC, combined

with the a priori knowledge of their elution order, we predict with high fidelity

which peptides are going to subsequently elute.

Prior knowledge is needed of the sample to adequately calculate the elution

orders of the peptides in the sample. With time-based scheduled methods, many

cursory experiments are performed to optimize the retention times of the targeted

peptides. To reduce variances in retention times, it’s vital that these initial ex-

periments are conducted exactly the same as the targeted experiments. In stark

contrast, elution orders can be determined using a variety of methods. First, much

work has been devoted to determining peptide hydrophobicities from theoretical
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calculations of the amino acid sequence.42–45 A simple list of peptides, ordered

by their hydrophobicities, can produce a highly linear elution ordering. Second,

previously collected data of the sample can produce an accurate elution ordering

as long as the LC conditions are similar enough. This enables the combination of

multiple datasets to produce a single elution order vs. m/z map (elution order map,

EOM), regardless of their individual separation durations. This is accomplished by

rank ordering all the peptide identifications in a given run and normalizing their

orderings between 0 and 100 (where 100 represents the last eluting peptide). These

normalized values are then matched between experiments and aligned using a

simple algorithm to produce the final EOM as shown in Figure 3.5A. Lastly, the

most robust method for determining peptide elution orders is to perform a discov-

ery experiment right before the targeted experiment. Regardless of how elution

order is determined, the final EOM is uploaded onto the instrument and is accessed

throughout the course of the subsequent analyses.

Prior to targeted analysis, a list of peptide targets, along with their relative elu-

tion orders are also uploaded to the instrument (Figure 3.6B). Each target is assigned

an elution order range depending on how long it was identified in the discovery

experiments (see Figure 3.6C for zoom in). During the targeted analysis, instead

of relying on absolute retention time to trigger targeted MS/MS, determining the
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current elution order becomes the main goal of the method. We have designed

an online peptide elution order alignment (EOA) algorithm that takes a single MS

spectrum and computes the current elution order therefrom. In brief, following

MS acquisition, the EOA algorithm takes the most intense m/z feature and extracts

all the elution order values from the uploaded EOM at a narrow m/z tolerance (e.g.,

10 ppm) (Figure 3.5A). Each m/z feature is matched in a similar fashion and the

resulting EO values are stored in a separate array (Figure 3B). In this example MS,

21 m/z features matched a total of 80 EO values. When analyzed, 41 of these values

are contained within a single 1 EO-wide bin. This indicates with high confidence

that the current elution order is near this maximum. To determine the elution

order precisely, the algorithm then calculates the 95% confidence interval around

the max EO bin and stores the minimum (50.02) and maximum (51.64) elution

order. This process is repeated for each MS and over time the calculated elution

order range constructs a rolling-average as shown in Figure 3C. The EOA algorithm

is expedient, taking on average 26 ms per MS to execute and does not induce a

statistically significant change in the total number of MS/MS scans performed

(Figure 3.7).

Once the current elution order range is determined, peptides sharing a similar

elution order are selected for MS/MS analysis. Briefly, the current elution order
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Figure 3.7: Duty cycle of elution order alignment algorithm. (A) The elution
order alignment (EOA) algorithm is expedient and induces only a slight increase in
the MS duty cycle compared to normal DDA method (~26 ms). (B) The distributions
of scan times for IDA is bimodal because the EOA algorithm can be triggered
every other MS, because the current elution order changes only slightly between
consecutive MS scans.
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range is intersected with the target peptides already uploaded on the instrument

(Figure 3.6B) and overlapping peptides are stored as potential targets (Figure 3.6C).

These peptides have a high probability of eluting next since they share very similar

EO values with the current overall EO value. Since there can be many potential

targets at any given time, they are filtered based on how long since they were

last sampled, this is to prevent oversampling of any one target. Peptides that

have been waiting the longest (i.e., > 5s) are automatically triggered for MS/MS

analysis regardless of MS detection. Unfilled MS/MS events are then populated

using normal DDA top-N approaches, excluding any m/z previously selected to be

targeted (Figure 3.6D). This data collection scheme enables repetitive, consistent

targeting of multiple peptides over their elution, while allowing DDA scans to

facilitate discovery. The EOA algorithm is compatible with other quantitative

strategies such as parallel reaction monitoring (PRM) where peptide targets are

repeatedly sampled (MS/MS) over their elution, and the resulting fragment ions

are extracted to provide quantitative information (Figure 3.8).46,47

Improving Peptide Identification in Multiple Experiments. We reasoned that

the EOA algorithm would improve the reproducibility of peptide identification

across multiple runs. Additionally, we increased the proteomic complexity by using

a mammalian system (mouse) to determine how complexity affects the algorithm.



89

Figure 3.8: Parallel reaction monitoring (PRM) scan sequences obtainable using
the IDA method. (A) The peptide FLTTNFLK was MS/MS sampled approximately
every 6 seconds over its elution profile. The b- and y-ions intensities were tracked
over time to provide quantitative results.
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To test its effectiveness, 500 mouse peptides—identified in only three of six previous

discovery experiments, were randomly selected to serve as peptide targets. Each

peptide’s elution order was calculated from the discovery experiments they were

identified in, combined into a single EOM, and then uploaded to the instrument

(Figure 3.6B). The same vial of peptides was then repeatedly injected and succes-

sively analyzed using DDA, an inclusion list (INC), and intelligent data acquisition

(IDA) in hexplicate. On average, only 251 (50%) peptides were identified using

DDA (Figure 3.9A, 1% FDR, error bars represent one σ). This is consistent with

the discovery data where the selected target peptides originated from three of six

experiments (50%). The accurate mass inclusion list modestly increases identifica-

tions to 280 (56%) but the biggest improvement is realized with IDA, where 440

of 500 targets (88%) were identified on average. Since the IDA method enables

simultaneous un-targeted MS/MS sampling, comparisons of the total number of

peptide identifications between the three acquisition methods can be made (Figure

3.9B). Each method produced nearly the same number of peptide spectral matches

(PSMs). A difference appears at the unique PSMs level (i.e., peptides) where both

DDA and INC produced similar number of identifications (~5,800 peptides) but

dropped to ~3,700 using IDA. We attributed this decline primarily to the redundant

sampling of target peptides with the IDA method compared to the other methods.
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Figure 3.9: Reproducibility improvements using intelligent data acquisition. A
subset of 500 mouse peptides were targeted with DDA, an accurate mass inclusion
list (INC), and our intelligent data acquisition (IDA) method in hexplicate. (A) IDA
identified the most target peptides of the three methods (error bars represent 1 σ).
(B) Discovery identifications by three methods show only a slight decline in the
total number of peptides identified using IDA. (C) 74% of the targets were observed
in all six technical replicates when IDA was used compared to less than 20% for the
inclusion list or data dependent acquisition.
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IDA identified each target 4.3 times on average, compared to 0.59 and 0.63 for DDA

and INC respectively, a ~7:1 ratio. This is in agreement with the ratio of dynamic

exclusion times between methods; IDA uses 5 seconds for each target, compared to

the longer dynamic exclusion time (35 s, 1:7) used in the DDA and INC methods.

The oversampling of target peptides in IDA increases the likelihood of identification.

We feel that it is an acceptable tradeoff between maximizing reproducibility for a

subset of peptides and a slight decline in total identified peptides. The increased

reproducibility is demonstrated in Figure 5C; the IDA method identified 370 (74%)

of the same peptides in all six experiments. The same cannot be said for DDA or

INC, which only managed to identify 69 and 84 peptides in all six experiments,

respectively. This represents an increase of over 340% in the number of peptide

targets that were seen in all replicates.

Improved Reproducibility in Biological Systems. All data described above have

consisted of technical replicates of the same sample, injected with the same HPLC,

and analyzed using the same MS. These technical replicates are ideal to develop

acquisitions methods on, primarily because the same peptides should exist in each

injection, which removes sample variability from obfuscating the results. However,

biological replication in proteomic studies is becoming more prevalent, due to the

increase in statistical power it affords. To test whether intelligent data acquisition
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improves reproducibility in biological systems, four male C57BL/B6 mice were

sacrificed at ten weeks, eight organs were harvested, and peptides from a tryptic

digestion of each organ was labeled with a TMT 8-plex tag (Figure 3.10A&B). The

tagged peptides from each mouse were mixed together and separated over a 165

minute gradient and sampled using a DDA top-15 method to generate a list of

peptide targets. An average of 8,683 ±313 peptide sequences were identified in each

mouse for a total of 13,502 unique sequences. Of these, only 3,969 (29.4%) peptides

were identified in every mouse (Figure 3.10C). A subset of 1,500 peptides were

selected from the peptides detected in either two or three of four mice and sorted

based on their assigned elution orders (Figure 3.10D). Here, peptide targets were

chosen to be evenly distributed in the elution order dimension to limit the number

of coeluting peptides at a given point. In subsequent targeting experiments, each

mouse sample was analyzed twice, once using DDA and the other IDA, for a total

of eight experiments. When the DDA targeting experiments were analyzed, an

average of 810 (54%) target peptides were identified (Figure 3.11A, 1% FDR, error

bars represent one σ). Using IDA, this number increases to 1,072 (71.5%).

In total, over half of the targeted peptides (826, 55.1%) were identified in all four

mice when using IDA compared to only 30.6% (459) using DDA (Figure 3.11B). The

IDA method represents a nearly 80% improvement over DDA in the number of



94

Figure 3.10: Peptide targets of biologicial replicates of mice. (A) Four C57BL/6
mice were sacrificed at 10 weeks of age and eight organs were harvested from each
mouse. (B) Peptides resulting from a tryptic digestion of lysates from each organism
were labeled with TMT 8-plex tags in a randomized order. (C) The breakdown of
peptides identified in the four mice using DDA top-15 method. A small percentage
(29.4%) were only seen in all four mice. (D) A subset of 1,500 peptide targets were
selected from peptides only detected in 2 or 3 of all 4 mice.
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peptide targets it identifies in all mice. This increase in reproducible identification

improves the quantitative results as well. When each tissue is compared to liver,

the number of peptides that could be statistically quantified (p-value < 0.05) is

on average 227 greater with IDA compared to DDA (Figure 3.11C). For example,

when the quantitative data for muscle is compared to liver (Figure 3.11D), IDA

produced 826 significantly different peptides while only 531 were significant for

DDA, a 56% increase. This can be directly attributed to increased reproducibility in

identification across biological samples.

Conclusion

The ability to identify the same peptides in multiple experiments reproducibly

is increasingly important in proteomic analysis as increased statistical power is

demanded. Historically—the most common acquisition method, data-dependent

acquisition (DDA) has been used to sample large portions of proteomes, but lacks

adequate peptide identification reproducibility. In this manuscript, we expand

upon our previous intelligent data acquisition (IDA) work and introduce the con-

cept of using elution order as a way to schedule and target peptides. Here we have

described an online elution order alignment (EOA) algorithm that automatically

adjusts to different chromatographic conditions to deliver consistent scheduling
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and robust reproducibility. The method is capable of targeting large numbers of

peptides (>500) in a single run with minimal upfront preparation and effort. Using

this method, we have shown great improvements in peptide identification overlap

among multiple experiments compared to DDA (88% compared to 50% identifi-

cation overlap in six experiments). The EOA algorithm is capable of improving

reproducibility even for highly variable samples. In four mice, our method was able

to identify 806 target peptides compared to only 459 using normal DDA sampling.

We believe that such technologies can now be applied to traditional SRM meth-

ods that use triple quadrupole mass spectrometers. Here, periodic full MS scans

could be performed and analyzed to calculate the current elution order and adjust

the timing of the SRM transitions. One challenge would be the decreased speci-

ficity in determining elution order from low resolution scans. However, using a

more adaptable metric for scheduling (elution ordering vs. retention time) could

potentially increase the portability and robustness of SRM methods while reducing

development time.

A novel aspect of our method is the combination of discovery and targeted

analysis in a single method. The MS intelligently switches between targeted and

discovery modes depending on what is currently eluting, without any human

intervention. In one experiment, over 3,700 unique mouse peptides were discovered
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using DDA while simultaneously targeting 500 peptides. Such hybrid MS methods

enable both a focused and holistic view on the same sample, something that is

welcomed when sample-limited.

Until comprehensive proteomic coverage is routinely obtained, targeted meth-

ods will be heavily used and developed. We have explored increasing the intelli-

gence of MS methods as a means to improve the throughput and power of peptide

targeting, without sacrificing the novel discovery aspect of DDA sampling. Future

work includes improvements to the determination of elution orders, increasing the

success rate of target identification, and maximizing the throughput to target larger

portions of the proteome without laborious upfront work.

Experimental Methods

Yeast Culture. Saccharomyces cerevisiae strain BY4741 was grown in yeast extract

peptone dextrose media (YPD) (1% yeast extract, 2% peptone, 2% dextrose). A

starter culture was added to 2 L of media and was propagated for ~12 generations

(20 hours) to a total OD600 of ~2. The cells were pelleted with centrifugation at 5,000

rpm for 5 min, supernatant decanted, and re-suspended in chilled NanoPure water.

Washing with water was repeated twice and the final pelleting was performed

at 5,000 rpm for 10 min. The pellet was resuspended in lysis buffer composed of
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50 mM Tris pH8, 8 M urea, 75 mM sodium chloride, 100 mM sodium butyrate,

protease and phosphatase inhibitor tablet (Roche). Cell lysing was performed

with glass bead milling in a stainless steel container (Retsch). A 2.5 mL aliquot of

resuspended yeast were shaken with 2 mL of acid-washed glass beads at 30 Hz for

4 min, followed with 1 min rest, for eight cycles.

Mouse Handling and Tissue Isolation. Four male C57BL/B6 mice were bred

from in-house colonies and housed in an environmentally controlled facility with

free access to water and standard rodent chow (Purina #5008). Mice were kept in

accordance to the University of Wisconsin-Madison Research Animals Resource

Center and NIH guidelines for care and use of laboratory animals. At 10 weeks of

age, mice were sacrificed by decapitation after a four hour fast. Eight tissues were

dissected from the mice (cerebellum, cerebrum, kidney, heart, liver, lung, extensor

digitorum longus, and spleen), flash frozen in liquid nitrogen and stored at -80◦C.

Tissues were homogenized in 1 mL lysis buffer/100 mg tissue (8 M Urea, 50 mM

Tris, 100 mM NaCl, 1 mM CaCl2, 100 mM sodium butyrate, 5 µM MS-275, 0.2 µM

SAHA, Roche protease and phosphatase inhibitor tablets).

Sample Preparation. Protein was quantified by BCA (Pierce) and reduced with 5

mM dithiothreitol and incubated for 45 minutes at 55◦C. Alkylation was performed
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with 15 mM iodoacetamide for 30 minutes in the dark and quenched with 5 mM

dithiothreitol. Urea concentration was diluted to 1.5 M with 50 mM Tris pH 8.0.

Proteolytic digestion was performed by addition of Trypsin (Promega), 1:50 enzyme

to protein ratio, and incubated at ambient temperature overnight. For quantitative

studies, the resulting peptides were labeled with TMT 8-plex (Pierce) isobaric tag,

and mixed.48,49 All samples were desalted using C-18 solid phase extraction (SPE)

columns (Waters, Milford, MA) prior to nano-LC-MS/MS analysis.

Nano LC-MS/MS analysis. Peptides were separated with online reverse-phase

chromatography using a nanoACQUITY UPLC system (Waters, Milford, MA).

Peptides were first loaded onto a precolumn (75 µm ID, 5 cm Magic C18 particles,

Bruker, Michrom) for 10 min at 1 µl/min flow rates. Peptides were then separated

on a 30 cm analytical column (75 µm ID, 5 cm Magic C18 particles) for either 100

or 160 min over a linear gradient from 8% to 35% acetonitrile at 300 nl/min. Mass

analysis was performed on an LTQ Orbitrap Elite mass spectrometer (Thermo

Fisher Scientific, San Jose, CA) using 60,000 resolving power (RP) MS scans.50

Peptides selected for MS/MS analysis used a 2 Th isolation width, fragmented

with HCD (NCE = 35), and analyzed in the Orbitrap at 15,000 RP or 30,000 RP

for quantitative experiments. Unless otherwise noted, data-dependent analysis

was performed selecting the top 15 most intense m/z features (charge state >1)
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for MS/MS analysis. Dynamic exclusion settings were enabled for 35 s at ±10

ppm mass window, 1 occurrence with a maximum of 500 exclusions at any given

point in time. Automatic Gain Control (AGC) was enabled and MS targets were

set to 1×106 and MS/MS targets were set to 5×104. Accurate mass inclusion list

experiments would prioritize MS/MS sampling from a list of targets at ±10 ppm

mass tolerances. Remaining MS/MS events were filled with normal top-N DDA

approaches. Intelligent data acquisition control was implemented using the ion trap

control language (ITCL, Thermo Fisher Scientific). Briefly, following MS analysis,

the spectra was analyzed using algorithms written in ITCL to select targets for

MS/MS analysis (described herein). Any remaining MS/MS slots would be filled

by the unmodified DDA firmware code.

Data Analysis. Thermo .raw files were processed using the Coon OMSSA Pro-

teomic Analysis Software Suite (COMPASS) and in-house software.51 Briefly, raw

files were converted to the dta file format (DTA Generator) and were searched using

the Open Mass Spectrometry Search Algorithm (OMSSA, v 2.1.9).52 Yeast data was

searched against a target-decoy database of yeast ORFs (www.yeastgenome.com,

February 3, 2011) and mouse data from UniProt canonical database.53 Peptides

were generated from a tryptic digestion with up to three missed cleavages, car-

bamidomethylation of cysteines as fixed modifications, and oxidation of methion-
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ines as variable modifications. For quantitative experiments, a fixed modification

of 8-plex TMT tag was added to lysines and peptide n-terminus, with a variable

modification of 8-plex TMT tag on tyrosines. Precursor mass tolerance was 100

ppm using the multiisotope function (-tem 4 -ti 4) and product ions were searched

at 0.015 Da tolerances. Peptide spectral matches (PSM) were validated using FDR

Optimizer based on q-values at a 1% false discovery rate (FDR). Protein groups

were constructed from peptide identifications according to the law of parsimony

and filtered to a 1% FDR (Protein Hoarder). For quantitative datasets, peptides

were quantified with TagQuant (v1.4) using the generated TMT 8-plex reporter ions,

corrected for isotopic impurities, and normalized to total protein abundance. Pep-

tide Elution orders determination algorithms were performed by custom software

developed in C# with the Microsoft .NET Framework version 4.5.
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Chapter 4

software frameworks for proteomic data analysis

Summary

Proteomic research can be divided into three major parts: 1) sample generation

and preparation, 2) mass spectra collection, and 3) data interpretation and analysis.

While improvements in both sample preparation and instrumentation have greatly

propelled the field forward, data analysis software has developed at a slower rate.

This may be a result of competing standards of data storage and access, the shear

complexity of large-scale data, or the simple fact that a majority of scientists are

not programmers. Whatever the case may be, automatic data analysis is needed to

help answer large and meaningful biological problems. The existence of software

is not the final goal; the tools must be simple to use yet powerful, flexible yet robust,

accessible yet timely in order to gain traction and be impactful to the field. To

meet these demands, the following chapter describes the development of two open-

source software packages used in proteomic data analysis. The first package is the

Coon OMSSA Proteomic Analysis Software Suite (COMPASS), a graphical interface

program used to analyze proteomic data from initial spectral processing all the

way to protein quantitation. It is geared for the end user to process their data in a
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straightforward, but flexible manner. The second package is devoted to developing

new software tools in a timely fashion and is called C# Mass Spectrometry Library

(CSMSL). This programming toolbox offers a wide range of proteomic and mass

spectrometry tools and methods for developing new software analysis tools quickly.

It is powerful to handle the most complex data, but approachable that even novice

programmers can use it with minimal training. These two software tools are still in

their infancy, but are constantly being updated and maintained to meet the needs

of the ever-changing proteomic landscape.

Introduction

In many scientific disciplines, as the complexity of the problems grow, so to do

the informatic resources to keep pace. Proteomics and mass spectrometry are no

exception. As researchers aim to answer larger biological problems on grander

scales, proteomic data analysis needs to keep up. The mass spectrometers used

to collect the data are becoming faster and more sensitive (i.e., more data) with

each passing year. Acquiring 20 MS/MS spectra per second is now possible. These

mass spectrometers are also becoming more robust and powerful, enabling them

to be continually run for several consecutive days with very little down time. In

the end, hundred of thousands of spectra are collect per instrument in an average
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day, totaling millions over a week. Keeping up with this volume of data requires

sophisticated software and data management tools. These tools must be powerful

to handle the complexity of the data, flexible to changes and updates in how data

is analyzed, and simple to use that non-programmers can effectively use them.

To meet these requirements, I have developed a range of software tools to analyze

mass spectrometry data. First, the Coon Research group has previously published

a suite of software tools called Coon OMSSA (Open Mass Spectrometry Search

Algorithm) Proteomic Analysis Software Suite (COMPASS). The suite encompasses

all the basic tools for analyzing mass spectrometry-based proteomic data. It handles

the spectral cleaning and conversion, and supports MS/MS searching (via OMSSA)1,

false discovery analysis, protein grouping, various types of quantitation, post-

translational modification localization, and protein quantitation, among others. To

handle the massive number of spectra collected by a host of users per day, I have

utilized the High Throughput Condor (HTCondor) system—developed here at

the University of Wisconsin-Madison, to greatly speed up the database searching

program by simultaneously using hundreds of computers across campus. Since its

initial publication, COMPASS has been heavily upgraded and expanded to meet

the changing needs of the group. This chapter summarizes the different programs

of COMPASS and the changes and updates made to them since the publication of
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the software.

The second software tool I have developed is an open source programming

library specifically designed for proteomic data analysis called C# Mass Spectrom-

etry Library (CSMSL). This library speeds up the development of new software,

providing many common functions and concepts needed for data analysis (e.g.,

peptides, chemical formulas, spectral searching, etc.). This removes the burden

from the programmer to reinvent the wheel each time data needs to be analyzed.

Each of its features have been carefully designed and tested to provide a powerful,

flexible, and robust set of tools for programmers to use. We kept the design of

the library as simple as possible, enabling even novice programmers to quickly

analyze their data in unique fashions with little training. Given the complexity

of proteomics and mass spectrometry, this allows the user to focus more on the

scientific data than the management and construction of complex software. In

this chapter, the concept and design of CSMSL will be outlined and a few coding

examples are provided to show the simplicity of the library. CSMSL is an ongoing

work, the version at the time of this publication (v0.2.1) is far from its final form.
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COMPASS: Coon OMSSA Proteomic Analysis Software Suite

The COMPASS program is a complete, standalone data analysis platform for pro-

teomic mass spectrometry. It is based around the Open Mass Spectrometry Search

Algorithm (OMSSA) as the primary MS/MS search engine, but has been partially

adapted to handle inputs from other proteomic search engines (e.g., SEQUEST

and Proteome Discoverer).2 It is written for the Windows operating system using

their .NET Framework (v3.5 and above) in the C# programming language. The

complete source code is available at https://github.com/dbaileychess/Compass

and the version is v1.2.12 at the time of this publication. The application contains a

graphical user interface (GUI), making it very intuitive and easy to use. COMPASS

contains several other GUI programs, each corresponding to a separate step in the

analysis. Users process data files through each individual program, which typically

writes the result of the analysis to different files and folders on the computer. Other

programs then process those result files to add additional analyses and outputs.

This design enables customized analysis workflows to handle the various types of

analyses commonly used (Figure 4.1).

COMPASS was first published in 2011, but has been substantially upgraded

to improve the user experience, fix bugs, introduce new features, and speed up

its execution. The program was also heavily refactored (code reorganization) to

https://github.com/dbaileychess/Compass
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Figure 4.1: Analysis workflow of COMPASS. Database Maker generates BLAST-
formatted protein databases for OMSSA. DTA Generator converts raw instrument
data to text files for searching with OMSSA. FDR Optimizer performs FDR analysis at
the spectrum/peptide level, followed by protein parsimony and FDR analysis at the
protein level with Protein Herder. For quantitation, the workflow is supplemented
by TagQuant, which performs spectrum/peptide-level quantitation, and Protein
TagQuant, which performs protein-level quantitation. Since publication, Protein
Herder and Protein TagQuant have been combined into a new program called
Protein Hoarder.
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ease future maintenance. The following sections summarize the different parts of

COMPASS and the improvements made to them since the initial publication.

Database Maker. Database Maker creates protein databases for target-decoy search-

ing of MS/MS spectra. Text files containing each protein sequence, in the FASTA

format, are converted to a decoy version of the same length by reversing, shuffling,

or generating random amino acids.3–5 The decoy sequences are then concatenated

to the input file and exported to another FASTA file. Additionally, protein sequences

can be converted to the basic local alignment search tool (BLAST) format for use

with OMSSA.6 The GUI portion of the program (Figure 4.2) has been restructured

to enable multiple database files at the same time. Internally, Database Maker

now uses the makeblastdb program to generate BLAST databases instead of the

now depreciated formatdb, both of which are provided by the National Center for

Biotechnology Information (NCBI).

DTA Generator. The second program in the COMPASS workflow is DTA Generator,

which reduces LC-MS/MS spectra data to .txt files for database searching (Figure

4.3). Various peak cleaning algorithms are used to simplify spectral data prior to

searching; these include removal of unreacted precursors, electron-transfer dis-

sociation (ETD) pre-processing to remove precursors, charge-reduced precursors,
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Figure 4.2: Database Maker. The GUI program used to manage, construct, and
modify protein databases in the FASTA format. It is capable of constructing various
forms of decoy databases used for false discovery analysis. An optional BLAST
database can be produced for compatibility with OMSSA searching.
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and neutral losses from charge-reduced precursors.7 The outputs generated by the

software are also usable by several other search algorithms. Although OMSSA is

the focus, individual .dta files for SEQUEST or .mgf files for MASCOT are possible

outputs.2,8

Since the initial publication, additional spectral filters have been added to allow

the user more freedom in how the spectra are processed. These include specifying

neutral loss products and isobaric labels for cleaning. The most significant improve-

ment to DTA Generator since publication was a dramatic decreased in execution

time (~50X). This was accomplished by converting the code to utilize multiple

processor threads, as well as algorithmic improvements to spectral cleaning.

Open Mass Spectrometry Search Algorithm. OMSSA is a database search algo-

rithm for proteomic datasets developed at the NCBI by Lewis Geer.1 It uses a

probabilistic scoring to associate a specific peptide sequence to an experimental

spectrum. The program assigns an expectation value (e-value) to each peptide spec-

trum match (PSM) generated, stating the probability of matching that sequence to

the spectrum by random chance. The smaller the e-value, the higher the confidence

that peptide sequence produced the MS/MS spectrum. Further statistical analysis

is performed in the FDR Optimizer program, discussed below. OMSSA provides

the option to produce a .csv output of all the PSMs generated. This format is the
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Figure 4.3: DTA Generator. The program takes spectral data in Thermo’s .raw
format and generates a .txt of the processed spectra. Processing includes removing
peaks that do not provide sequence-informative results (i.e., neutral loss). The
program is capable of producing outputs for OMSSA, SEQUEST and Mascot search
algorithms.
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basis for all the other programs in COMPASS. It is easily opened and manipulated

by spreadsheet programs (e.g., Microsoft Excel) and is human readable. This is

in contrast to a majority of other proteomic software, where .xml or a proprietary

format are used. Those formats make modifying and parsing the data more difficult

than a .csv file.

High Throughput Condor for OMSSA. Arguably the biggest improvement to

COMPASS since publication is the addition of the High Throughput Condor (HT-

Condor) system for improving OMSSA searching times. In brief, HTCondor is a

computational management system for scheduling processing jobs across a dis-

tributed network of computers. Computers voluntary join a HTCondor network

which enables them to donate their free CPU cycles to other processes, increasing

the overall processing power of the network. This is ideal for large universities,

where there is a large number of computers on a common network, and a majority

of those computers (e.g., computer labs, servers, kiosks, office computers) are not in

use twenty-four-seven. The HTCondor system intelligently monitors CPU activity

on each attached computer, and given a certain amount of inactivity, reassigns its

CPU to process jobs waiting in a global queue. If HTCondor detects new local

activity on that computer (e.g., keyboard or mouse movement, a local processing

job, etc.), it will either pause the global job, or automatically transfers it to another
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inactive computer. Given the large size of the HTCondor network on the Univer-

sity of Wisconsin-Madison campus (~7,000 CPUs) there is a high probability that

there will always be multiple computers available for analysis. This large network

provides million of CPU hours to researches all across campus. From the HTCon-

dor website, they state that ”from July 2011 to June 2012, the [Center for High

Throughput Computing] provided 70 Million CPU hours to campus researchers

and off-campus collaborators.”

Shortly after COMPASS was published, I developed a GUI program called

Coondornator to provide a method for searching MS/MS data via OMSSA over the

University of Wisconsin-Madison’s HTCondor network. The program first transfers

.dta files (generated by DTA Generator) from a user’s computer to the Coon Group

computer cluster, which is its own 17-CPU HTCondor network. If these computers

are idle, they automatically start processing each submitted OMSSA job. If more

than 17 OMSSA searches are submitted at once, overflow jobs are automatically

routed to the Center of High Throughput Computer (CHTC) HTCondor cluster

(~6,800 CPUS) for analysis. It is common to have 50-100 OMSSA searches going at

any give time. When the OMSSA searches are completed, the resulting .csv file

containing all the PSMs are transferred back to the Coon Group computer cluster

for storage. This program provides a seamless integration between the HTCondor
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network and an end user’s computer, making high throughput computing no harder

than running a program on their computer. The Coon Group routinely searches

thousands of .dta files containing million of spectra on the HTCondor network

each week.

Previously, users would search all the MS/MS spectra from a single LC-MS/MS

experiment on their desktop computers. Now with Coondornator and HTCondor,

a single LC-MS/MS experiment is broken up into smaller sets of spectra (e.g.,

1000 spectra per set), searched individually, and then recombined when all the

searches are complete. This represents a significant throughput gain compared to

searching files on individual desktop computers. With execution times decreasing

on average about 30-50X. For example, it would take about 30-40 minutes on a

desktop computer to search all the MS/MS spectra from a one hour LC-MS/MS

experiment of a tryptic digestion of whole-cell yeast cells. In contrast, if all the

MS/MS spectra were split into groups of 1000 spectra each, and searched using

Coondornator over the distributed HTCondor network, the same results could be

generated in ~1 minute, a 30X decrease in execution time.

FDR Optimizer. FDR Optimizer filters PSMs generated from OMSSA to control

for false identifications (Figure 4.4). The program maximizes the number of true

positive identifications at a given false discovery rate (FDR), typically set to under
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1%. FDR Optimizer can work on either low-resolution MS data with a simple

e-value filter, or on high-resolution MS data with a two dimensional filter on

precursor mass error and e-value. To use FDR Optimizer, both target and decoy

protein sequences have to be searched with OMSSA on the same set of spectra for

adequate false discovery filtering.

For low-resolution datasets, PSMs are first loaded into the program and the best

scoring PSM (i.e., lowest e-value) for each spectrum is saved and all other PSMs

are discarded. The remaining PSMs are then sorted on their e-value, from smallest

to largest. Each PSM also has a flag to indicate whether it resulted from a target

protein or a decoy protein. A counter for both the number of targets (T ) and decoy

(D) peptides identified is kept as the program iterates over the sorted PSMs. When

the false discovery rate (Equation 4.1) increases over some specified value (e.g., 1%),

the program stops the iteration.

FDR =
D

T +D
(4.1)

The PSMs that represent the true identifications and which have already been

processed are then outputted to a .csv file. Known decoy peptides that pass this

filter are exported to a decoy-specific .csv file that is used later for protein-level

FDR analysis.
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Figure 4.4: FDR Optimizer. The new GUI for FDR Optimizer, this version com-
bines all four versions into one program for a simplified user experience.
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High-resolution MS datasets can be processed with an additional filter to in-

crease the number of identifications. First each PSM is read into the program and

its precursor mass error is determined from the MS spectrum that triggered the

MS/MS event. The median precursor mass error of all PSMs is then computed

and each PSM is corrected by this value. This process corrects any systematic mass

error the mass spectrometer had, and usually reduces the mass errors to <5 ppm.

FDR Optimizer then iteratively sets a maximal ppm error allowed (i.e., from 1 to

100 ppm), and filters the PSMs to contain only precursor mass errors lower than the

maximum. These filtered PSMs are then processed identically to the low-resolution

analysis described above. This whole process is then repeated with a slightly larger

maximal ppm error, and the number of identifications is recorded. The program

tries all possible maximal ppm errors and reports the ppm error that produced

the most true identifications at the end. This maximizing algorithm increases the

number of true identifications produced over the simple low-resolution filter by

roughly 10-15%.

Since publication, FDR Optimizer has been completely rewritten. Previously,

four separate programs were used and maintained: Low-Resolution FDR Optimizer,

FDR Optimizer, Batch Low-Resolution FDR Optimizer, and Batch FDR Optimizer.

The current version simplifies the user experience by combining all four programs
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into one, with simple option check-boxes to indicate the desired analysis (Figure

4.4). Improvements to the FDR analysis and maximizing algorithms have also lead

to large decreases in execution times (~10-20X).

TagQuant. The TaqQuant program extracts and processes isobaric labeling quan-

titative information from MS/MS spectra (Figure 4.5). It is compatible with both

common types of isobaric labels, TMT and iTRAQ.9,10 TagQuant obtains intensities

of the reporter ions of interest from the raw data. These intensity values are subse-

quently denormalized by multiplying by the ion injection time to yield the number

of ion counts detected, a quantity which can be fairly compared across different

spectra and analyses. Purity correction is then applied using user-specified purity

data provided by the manufacturer.11 Finally, normalization is performed such that

the total intensity of each tag is equal, accounting for differences that arise when

samples are mixed.

Numerous improvements have been made to the publication version of TaqQuant.

With the advent of high-resolution TMT tags, where two quantiation channels are

separated by a very small mass difference (6.32 mDa), additional logic had to be

added to handle it.12,13 Users also started to mix and match channels between dif-

ferent manufacturing lots, resulting in non-standard purity values. This, and other

issues, were corrected by providing the user full control over which labels they
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Figure 4.5: TagQuant. The updated GUI for TagQuant allows users to specify the
exact labels used and their relative purities. Options for noise-band capping missing
channel and quantifying from an MS3 scan are also included.
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used to quantify and their respective purities. This change also enables TagQuant

to handle any type of isobaric label later developed without making changes to the

program itself.

Another heavily used feature that was added was capping missing channels with

the noise-band intensity. Sometimes a peak at an expected isobaric tag m/z is not

present in the MS/MS spectra. Before, this missing value was set to 0, which would

drastically distort the ratio between quantitation channels. In the updated version,

TagQuant assigns the missing value to the noise level at the m/z. This conservative

approach mitigates the distortion of ratios between quantitative channels. An

additional feature that was added was enabling quantitation from MS3 spectra.

This is the result of purification methods for improving the interference problem of

isobaric labels, such as QuantMode and the MS3 methods.14,15

Protein Hoarder. Protein Hoarder infers the most likely proteins identified based

on the peptides validated by FDR Optimizer (Figure 4.6). The program was initially

called Protein Herder, but the program was completely rewritten after publication,

and the name was changed to indicate that it is a new program. In this program,

peptides are assembled into protein groups based on the law of parsimony, i.e.,

minimizing the number of protein groups while accounting for all the identified

peptides. False discovery analysis is also performed at the protein-level, along with
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Figure 4.6: Protein Hoarder. The new version of Protein Herder which assembles
peptide identifications into protein groups. This version also performs protein
quantitation at the same time the protien groups are being assembled.
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quantitative analysis if requested. The outputs of the program include a .csv file

containing all the identified protein groups, along with which peptides are mapped

to the groups.

The biggest change between the original and current version is how the peptides

are found within the candidate proteins. Previously, each peptide sequence was

searched against the whole protein database using brute force. For large databases

such as the human proteome, the number of proteins could reach over 150,000

when isoforms and both target and decoy proteins are considered. Even if only

20,000 PSMs were identified, that means 30 billion string comparisons must be

made (20,000 x 150,000). This made the original program very slow, and could

take up to half a day to assemble protein groups for a human sample. The new

algorithm forgoes the string search and uses enzymatic cleavage of the proteins to

find the associated peptides. The program preforms an in silico digestion of all the

proteins and if a generated peptide matches one of the input PSMs, that protein is

saved. This process greatly speeds up the whole program, and the same human

sample that took half a day to assemble now takes less than 2 minutes.

Assembled protein groups are further filtered for false discovery using a similar

method to FDR Optimizer. Here, the p-value of the protein group (which is the

product of all the peptide’s e-values) is the ordering metric and the groups are
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filtered to a specified FDR (e.g., 1%). In the publication version of COMPASS, there

was another program that handled protein quantitation (Protein TagQuant) by

summing up all the peptide quantitation for a individual protein group. Peptides

that are not shared between protein groups (i.e., a unique peptide to the protein

group) have their quantitation summed and reported for the protein group. This

program was embedded into Protein Hoarder since all the required information

for quantitation was already present in the program. This removed the need for

using Protein TagQuant altogether, and it was removed from COMPASS.

LoToR. The final program in COMPASS was not present in the initial version. This

program is called LoToR (Localize To Residue) and improves the localization of post

translational modifications to specific residues on peptides and proteins. Although

OMSSA, and other search algorithms, are capable of identifying modification events

on peptides, it often does not place the PTM on the correct residue. To address

this, LoToR was created to add more rigorous statistical power in localizing PTMs

to specific sites.

LoToR is uses the AScore algorithm as the primarily metric for assigning statisti-

cal confidence.16 In brief, for each PSM that contains a PTM, all possible peptide

isoforms are generated. Each of these isoforms represents the unique combina-

tion of PTMs applied to every possible site on the peptide. Then each isoform is
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fragmented in silico and matched to the MS/MS spectrum. After matching, each

isoform is compared to every other isoform generated, and the set of fragments

that can distinguish them apart are called ’site-determining fragments’ (SDFs). The

number of identified SDFs for each isoform is then compared, and the two isoforms

that have the biggest difference in the number of identified SDFs is declared the

best possible isoform. The AScore for this pair of isoforms is then computed, and

if the value is above some defined value (typically 13), it is declared localized.

LoToR is capable of handling any modification (e.g., phosphorylation, acetylation,

ubiquitination, etc.).

CSMSL: C# Mass Spectrometry Library

Mass spectrometry-based proteomics is a relatively young field that is rapidly

evolving and new techniques and technologies are consistently being developed,

prompting the need for custom software tools to analyze the data. There are

typically three ways to analyze a proteomic dataset: 1) process it through a full-

fledged GUI program that has already been developed, 2) manually process the

data, or 3) extract data with software tools and analyze with other software (e.g.,

Microsoft Excel). Often a mixture of these three processes are needed to fully

analyze a dataset. However, sometimes a complete GUI program is not available for
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a specific type of data analysis, or, due to the complexity of the data, manual analysis

of a dataset in Excel or through a spectrum browser (e.g., Thermo XCalibur) is a

daunting and time-consuming task. These situations are ideal for a custom analysis

program that could facilitate the analysis. Unfortunately, creating custom programs

is not straightforward: 1) not every researcher knows how to program, and 2) there

isn’t a free, simple programming environment for accessing and manipulating

such complex data. The first problem is not easily addressed, but the second one

is. Although there are many tools available for MS analysis on the internet, most

are difficult for novice programmers and are challenging to adapt to a specific

need. To fill the gap, I have designed a large proteomic programming library to

simplify the data management and manipulation of large-scale proteomic data. It

is written for Windows using the .NET Framework V4.0 in the C# programming

language. It is called C# Mass Spectrometry Library (CSMSL) and is freely available

at https://github.com/dbaileychess/CSMSL.

The goals of CSMSL are to provide an easy-to-use, powerful, feature-rich library

of .NET C# objects and methods to enable even novice programmers the ability

to analyze proteomic data quickly. Simplicity is key. Calculating the mass of the

peptide sequence ’CSMSL’ only requires the following two lines:

1 Peptide peptideA = new Peptide ( "CSMSL" ) ;

https://github.com/dbaileychess/CSMSL
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2 Console . WriteLine ( peptideA . MonoisotopicMass ) ;

3 / / o u t p u t s : 539.20835516707

In addition to simple syntax, CSMSL is designed with performance in mind, al-

lowing even computationally intensive calculations to be completed quickly. For

example, a complete yeast database (6,627 proteins) can be loaded from a FASTA

file, digested with trypsin (up to 3 missed cleavages, 5 to 35 amino acids in length)

in under 2 seconds. If the calculation for the [M+H]+ m/z of each of the 913,740

resulting peptides is included, the total time only goes up to 4 seconds (this in-

cludes full chemical formula determination). While CSMSL is not expected to meet

the performance of advanced compiled languages (e.g., C/C++, Fortran, etc.), its

adequate performance plus simplicity of use are sure to be helpful in analyzing

data in new and creative ways without significant overhead.

The following sections will succinctly 1) describe the design of the library, 2)

show a few example code segments indicating its use, and 3) highlight various

features and abilities of the library.

CSMSL Design. The CSMSL package is divided into three projects. The main

project is the library itself (CSMSL.csproj) which contains all the code and objects

to program with. This project will be described in greater detail in the sections to
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follow. The other two projects are primarily used for teaching and development

purposes, and will be described here.

The teaching project is CSMSL.Examples.csproj, which contains short segments

of code to show the intended use of the library. It is written to aid novice program-

mers in learning how to program better and how to use the library. It covers a

series of example code to demonstrate how to create peptides and proteins, digest

proteins, fragment peptides, read in spectral data, among many others. This project

is completely separate from CSMSL and is only used to demonstrate the features of

the main library.

The development project is CSMSL.Tests.csproj, which hosts all the unit tests

for the library. A unit test is a short piece of code that tests one, and only one

aspect of the library, hence the term ’unit’. In brief, a short segment of code is

written to preform some action (e.g., digest a protein), and the final line contains

an assertion statement, declaring that some value needs to possess some trait (e.g.,

that 5 peptides are produced from a digestion of a certain protein). These assertions

can be as simple as an equality (numOfPeptides == 5), a comparative condition

(numOfPeptides < 5), or much more advanced comparisons. Regardless, the

point of unit tests is to provide fine grain support and testing for the main project. If

any source code is added to the project or a portion of code is changed, all the unit
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tests report back to the developer if their one piece of functionality is still producing

the same result. If not, the developer has a good idea of where the new bug is

introduced as only certain unit tests will fail. This helps ensures that new features

do not affect other parts of the library or produce unintended bugs. CSMSL is

heavily tested, especially on the components that are most commonly used.

There also exists a handful of other projects that supply support for third-party

tools and access to raw spectral data from different MS vendors. These are located

under the CSMSL/IO directory and can be added to a project when needed. The

projects that support reading in raw spectral data will be discussed in the features

section below. Since CSMSL has been developed, it has been heavily incorporated

into the source code of COMPASS. This helps simplify every program within

COMPASS, as many redundant sections of code were replaced by objects from

CSMSL. It also helps speed up bug fixes and feature additions, as all programs that

use CSMSL will benefit from improvements in its code.

CSMSL Examples. Functional coding examples are a great way to dive into any

programming language/library. CSMSL provides a number of example programs,

contained within the CSMSL.Examples project, so that people can learn the tools

and experiment with different features. Below are a series of examples showing

the simplicity and power CSMSL offers. All of the examples are written in the
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C# language and should be straightforward enough that even non-programmers

should be able to follow them.

We will start with the most basic, but most commonly used features: proteins

and peptides. The following code first constructs a new peptide object in memory,

labels it as ’peptideA’ and then prints its monoisotopic mass to the console window.

1 Peptide peptideA = new Peptide ( "FLTTSNALKEN" ) ;

2 Console . Write ( peptideA . MonoisotopicMass ) ;

3 / / o u t p u t s : 1236.635016661

Of course there are a plethora of tools and websites that could calculate the monoiso-

topic mass of a peptide sequence, but the novel aspect is its simplicity and the ability

to programmatically control it.

Peptides and proteins can be modified post transitionally and CSMSL enables

easy methods for modifying peptides. Taking the previous example further, to

modified the serine residue (’S’) with a phosphorylation is easy:

1 Peptide peptideA = new Peptide ( "FLTTSNALKEN" ) ;

2 ChemicalFormula phospho = new ChemicalFormula ( "HPO3" ) ;

3 peptideA . Se tModi f i ca t ion ( phospho , ’ S ’ ) ;

4 Console . Write ( peptideA . MonoisotopicMass ) ;

5 / / o u t p u t s : 1316.60134718175
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Only two new lines are inserted. Line 2 creates the phosphorylation modification (la-

beled as ’phospho’), and introduces another CSMSL object called ChemicalFormula,

which represents a chemical structure. The third line sets the ’phospho’ chemical for-

mula to modified all the serine residues in peptideA. Since there is only one serine

in peptideA, only one phosphorylation is added, resulting in a mass of 1316.601347.

Another important feature often used is protein digestion. In nature, peptides

often arise from the proteolyic digestion of intact proteins by proteases, such as

trypsin. CSMSL can do the same thing in silico that is done in a test tube. Below is

an example of a tryptic digestion of a single protein. It produces a list of Peptide

objects which are then printed to the screen.

1 Prote in proteinA = new Prote in ( "MMGFKQLITTGSSSRSSSSKDTSST" ) ;

2 Lis t <Peptide > peptides = proteinA . Digest ( Protease . Trypsin ) ;

3 Console . Write ( pept ides ) ;

4 / / o u t p u t s : MMGFK, QLITTGSSS , SSSSK , e t c . . .

The first line creates a new protein object in memory, just like the peptide example

above. The second line takes the created protein (proteinA) and performs a diges-

tion with trypsin. The result (the left hand side of the equation) is a list of Peptide

objects. The final line then takes all those peptide sequences and prints them to

the screen. This is a simple digestion, but there exist many more options, such as
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maximum and minimum peptide length, max missed cleavages, partial digestion,

etc. All these options will not be explored here, but almost anything you could do

on a physical protein/peptide, can be performed in silico using CSMSL.

Full Proteome Tryptic Digestion Example. The code section shows a complete

example of a tryptic digestion of a yeast proteome. Its inclusion here is to demon-

strate that a fairly complicated task can be performed with only a few lines of code

that should be easily understandable to a novice programmer.

1 using ( FastaReader reader = new FastaReader ( " yeas t . f a s t a " ) )

2 {

3 Protease t r y p s i n = Proteases . Trypsin ;

4 i n t max = 3 ; / / Maximum number o f mi s s ed c l e a v a g e s

5 foreach ( Prote in prote in in reader . ReadNextProtein ( ) )

6 {

7 foreach ( Peptide peptide in prote in . Digest ( t rypsin , max ) )

8 {

9 Console . WriteLine ( peptide . MonoisotopicMass ) ;

10 }

11 }

12 }
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Line 1 opens up a connection to a protein database file named ”yeast.fasta” lo-

cated on the computer. The FastaReader object provides methods for reading and

accessing proteins contained in a FASTA-formatted file. The third line sets up a

variable that represents the typsin protease. Line 4 sets another variable defining

the maximum number of missed cleavages allowed for the digestion. The fifth line

iterates over each Protein within the FASTA file, by calling the ReadNextProtein()

method. The lines 6 through 11 are then performed for each protein read in by line

5. Line 7 iterates over every peptide generated from the digestion of the protein by

trypsin and a maximum missed cleavage of three. Again, lines 8 through 10 are

repeated for every generated peptide. The last important line is line 9, where the

peptide’s monoisotopic mass is written to the console window on the computer.

In only 12 lines of code, a complicated task is accomplished using CSMSL objects

and methods. Similarly, other proteomic analysis and computations can be expedi-

ently coded and performed. These examples can be found in more details in the

CSMSL.Examples.csproj project file.

CSMSL Features and Objects. The CSMSL library has too many features to list

in full, so only a few of the most important features will be highlighted here. Since

this is primarily a proteomic library, it will start off with proteins and chemicals

and then transition to spectral classes.
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Starting from the smallest object and growing bigger, elemental isotopes rep-

resent the basic building block of everything else that has mass. Each isotope has

a few intrinsic properties, most importantly its mass and the element it belongs

to. A single element may contain a set of different isotopes (e.g., 12C, 13C, and 14C),

and the naturally most-abundant isotope is declared the principal isotope of the

element. Thus elements and their most abundant isotopes are interchangeable with

each other (i.e., 12C and C refer to the same object). When other isotopes are needed,

you need to specify which isotope you want to use (e.g., C{13} mean you want

13C instead of 12C). This feature is important because stable isotope quantitative

labeling is a very common analysis, and I wanted to design the library with it in

mind. All the elements, and thus isotopes, are assembled into the periodic table of

elements for easy access.

In CSMSL, chemical formulas are represented as a set of isotopes without any

spatial connectivity. Keeping the three dimensional structure of molecules is not

an important aspect of most proteomic work, and I purposefully left this out in

favor of speed and memory savings. Additionally, a chemical formula generator

is available to list all possible chemical formulas when given an exact mass. Such

features are used to indentify unknown peaks in high-resolution mass spectra. The

mass of a chemical formula is the simple summation of all of its isotopes. Almost
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every other object in this library is a chemical formula (e.g., proteins, peptides,

amino acids, modifications, etc.) with additional properties of its own. Amino

acids are simply a chemical formula with a character symbol to represent which

one it is. The 20 common amino acids are prebuilt by the library and ready to use,

but custom amino acids can be added easily.

Probably the most important classes in the library are the protein and peptide

classes. Since both a protein and peptide can be thought of as a string of amino

acids, both classes are modeled off a single base class called AminoAcidPolymer.

This class can be thought of as an fancy array of amino acids, spanning from the

N-terminus to the C-terminus. Each location on this array (i.e., amino acids or

termini) can be modified by a chemical formula. The mass of the AminoAcidPolymer

is again the summation of all its amino acids and modifications. Peptides have

special methods for producing fragments ions (e.g., a, b, c, x, y, z-type, as well as

others). Fragment ions are also chemical formulas, but they keep track of what

amino acids and modifications are contain in each fragment. This is particularly

useful when matching fragment ions against a mass spectrum, as it fully annotates

the spectrum during the matching steps. Proteins have methods for proteolytic

digestion by any enzyme. Users can also define their own proteases to use, and

they will be compatible with all the features of digestion (e.g., missed cleavages,
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min/max lengths, semi-digestions, etc.).

Finally, a set of spectral-related classes are included to provide easy access to

spectral data. In CSMSL spectra are comprised of a ordered list of Peaks, which

represents the m/z and intensity of the peak. These Peaks objects can be extended to

contain additional information (e.g., charge, noise, baseline intensity, etc.) provided

by the instrument. The Spectrum class contains the data of a specific spectrum and

provides a series of methods for easy data access. Since a large part of proteomic

analysis is looking for peaks within a spectrum, probably the most important

method is the GetClosestPeak() method. This uses a binary-search algorithm

to quickly find the closest peak to a given m/z value, and this operation takes on

averageO(logN) time, whereN is the number of peaks in the spectrum. Even with

complex spectrum of 1,000 peaks, it only takes about 7 comparisons to locate a

peak.

Spectral Data Access. A very useful feature CSMSL provides is access to raw

spectral data collected by the MS. Instrument vendors usually offer an application

programming interface (API) for accessing data from their propriety data formats

(e.g., .raw for Thermo, .d for Agilent, etc.). While it is possible to use them on

own, a few factors make them difficult to implement. First, they are geared to more

advanced programmers and often have incomplete documentation. This makes
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learning how to access the data difficult, even for good programmers. For people

who don’t know how to program at all, it would be very difficult to understand

and make work. Secondly, each instrument vendor creates their own API which is

incompatible with everyone else’s. Thus if you desire to analyze two different types

of data with your program, you’ll have to use both APIs to achieve the same result.

This additional code can often lead to bugs and frustration. Lastly, you have to be

an expert in each API in order to fully use their capabilities. CSMSL solves these

issues by having a single and simple interface for accessing the data, no matter

where or how the data was produced.

The following example shows how to read in every MS spectra from a .raw file

generated from a Thermo mass spectrometer.

1 MSDataFile d a t a F i l e = new ThermoRawFile ( " somerawfile . raw " )

2 d a t a F i l e . Open ( ) ;

3 foreach ( MSDataScan scan in d a t a F i l e )

4 {

5 Console . WriteLine ( ’ Number of Peaks : ’+ scan . PeakCount ) ;

6 }

7 \\ outputs :

8 \\ Number of Peaks : 1052
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9 \\ Number of Peaks : 523

10 \\ e t c . .

First, in line 1 a mass spectrum data file is constructed from a file on the computer,

named ”somerawfile.raw”. The second line opens a connection to the file, and

the third line iterates over each MS scan within that file. The number of peaks

contained within that scan is then printed to the screen. The beauty of this example

is that the first line could be changed to:

1 / / MSDataFile d a t a F i l e = new ThermoRawFile (" s o m e r a w f i l e . raw ")

2 MSDataFile d a t a F i l e = new AgilentDDirectory ( " somerawfile . d" )

and the program would continue to work, even though it is now accessing MS data

collected by an Agilent mass spectrometer. Having this sort of flexibility built in

from the start enables programmers to program their tools once and have it work

with data from any source supported. As of this publication, only Thermo .raw,

Agilent .d and .mzML formats are supported. However, other vendors could be

added in the future without breaking code. While there are too many features to be

fully explained here, the concept of a simple and consistent way to access spectral

data is a key component of CSMSL.
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Chapter 5

the future of intelligent data acquisition methods

Summary

Intelligent data acquisition methods are technologies on the forefront of mass spec-

trometry. These methods utilize data analysis algorithms—typically performed

after acquisition, during the acquisition of MS spectra to improve data quality.

The ability to immediately analyze spectra and then make informed decisions on

how to proceed is important in separation-based analyses, where an analyte is

only accessible for a short time period. This document has looked at the history

of MS acquisition methods and began with a discussion on data-dependent acqui-

sition and other acquisition methods. The second chapter described our work on

intelligent data acquisition (IDA) methods; we developed the first online spectral

database search (inSeq) to improve multiple aspects of data acquisition. The follow-

ing chapter continued on this theme and focused on improving the reproducibility

of peptide identification by using real-time elution ordering scheduling. The fourth

chapter took a behind-the-scenes look on the programming environments used

and developed to enable IDA methods. In this chapter, various challenges that

confront intelligent data acquisition—both scientific and practical, are discussed
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and possible solutions are proposed.

Introduction

Data-acquisition methods are an important part of mass spectrometry analysis. This

is especially true when the MS is coupled to a separation technique such as liquid or

gas chromatography (LC-, GC-MS). Here a complex sample is separated over time

and only a small subset is analyzed at any point in time. In LC-MS, analytes may

only elute for 15-30 seconds and in GC-MS times are even shorter (5-10 seconds); in

either case the MS has a limited amount of time to detect them. For proteomic work,

to identify the analytes (e.g., peptides and proteins) a MS/MS spectra must also be

collected to determine the amino acid sequence. Thus it is not only important to

detect the precusor in a MS scan, but it also has to be isolated, fragmented and mass

analyzed again (MS/MS) to determine its identity, all of which takes time. Given

the complexity of proteomic samples (thousands of proteins digested into hundreds

of thousands of peptides) the main challenge becomes one of time-management,

i.e., how should the mass spectrometer use its time?

The most straightforward answer is to speed things up, make the mass spectrom-

eter faster and more sensitive so it can spend less time per analyte, and therefore

gain access to more of the proteome. The fastest mass spectrometers can achieve
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nearly 20 Hz scan rates while still being sensitive and selective enough to identify

peptides. But increased speed can only solve so much of the time-management

problem. Take yeast for example, with approximately 6,600 proteins that produce

half a million peptides when digested with trypsin (1 missed cleavage). How long

would it take to sample each peptide? Assuming a 20 Hz acquisition rate, an 100%

identification rate, and a perfect LC separation, it would take at least 7 hours of

constitutive operation to identify each once. Of course identifying every peptide in

a solution isn’t required to learn about the proteins in the sample, but this illustrates

that speed alone will not immediately solve the challenge. The other factors, like

perfect separations and high identification rates, represent greater challenges to

solve.

Another approach in solving the time-management challenge is to better allocate

the mass spectrometer resources to identify the ”most useful” parts of the samples.

Effective allocation requires information, and our approach provides the mass

spectrometer with more options and information through software modifications

and real-time data analysis. Here, the mass spectrometer can gain information

about the sample in an automatic and dynamic fashion, and can change course

when it sees fit. Software improvements are ideal, since they cost nothing to deploy

and can modify existing instruments without hardware upgrades. However, since
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intelligent methods are still in their infancy, much work needs to be done. The

following sections outline the two largest hurdles preventing widespread use of

IDA methods. First, there must be improvements made to how the analysis is

conducted and how to respond to the results. Little has been done in this regard.

IDA methods need to demonstrate substantial improvements over other techniques

before more researchers will use them. The other challenge for IDA methods is

that they lack general accessibility. It is difficult to implement such methods on

your own, and instrument vendors have been reluctant to distribute them. Changes

need to be made on how instrument vendors provide access to new methods before

they see wider use.

Improving Decision Making in Intelligent Data Acquisition

Increasing the use of IDA requires proving and improving its usefulness to other

researchers. If some other method can accomplish the same task, or do it better,

then IDA methods will not be used. We have demonstrated that IDA methods

can improve certain aspects of data collection. In chapter 2, several types of im-

provements made by IDA were outlined, such as improved quantitation for isobaric

labels and SILAC, as well better PTM localization. Chapter 3 discussed increases

in run-to-run reproducibility of peptide identification. We believe that IDA meth-
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ods are capable of improving data quality and throughput in other areas as well.

However, additional work needs to be done to 1) make IDA methods even better

than traditional methods (e.g., DDA and DIA), 2) improve the algorithms used to

analyze spectra and 3) make smarter real-time decisions.

To allocate resources efficiently and maximize data quality, the mass spectrome-

ter needs the best available information in the shortest amount of time. This involves

designing algorithms to analyze spectra quicker and more accurately. Any delay

caused by data-analysis further hinders IDA methods compared to more traditional

methods—which due to their simple construction take minimal time to execute.

Unfortunately, the methods described in this document were developed using the

ion-trap control language (ITCL) which lacks many features. One missing feature

that greatly hinders IDA methods is the lack of asynchrony—only one thing can be

done at a time. The MS could not set variables for the next scan while analyzing the

previous spectrum, and it would have to wait till the analysis step was complete to

start the next scan. This considerably slows down the instrument acquisition rate.

Developing a system where the instrument duty-cycle is not negatively affected by

the real-time data analysis is a very important step to improve the results.

Improvements must also be made to the decision making steps that follow

real-time analysis. There is no benefit in analyzing a MS spectrum in real-time if
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there is no response to the results. Appropriate responsive action is necessary to

improve data quality. Deciding what to do and when to do it becomes one of the

biggest challenges to IDA methods. For example, in the middle of a LC-MS/MS

experiment, inSeq identified a peptide with a post-transitional modification from a

MS/MS spectra. However, the spectral quality was not good enough to localize the

PTM. What should the mass spectrometer do next? Resample it with a different

dissociation technique? Increase the resolution? Finding the answer to this and

other possible scenarios is an important part of IDA and needs to be more fully

explored. The work described in this document only briefly explored possible

actions and a lot more work can be devoted to increasing this aspect. The responses

also may be dependent on the sample, or the type of analysis being performed, and

may change from experiment to experiment. So providing a robust set of options

that can cover a multitude of experimental conditions is challenging.

Accessibility of Intelligent Mass Spectrometers

The other issue that faces intelligent data acquisition methods is the lack of gen-

eral availability to researchers. Enabling new methods requires modification of

the instrument control logic, which is not always straightforward to implement.

There are two ways for increasing the intelligence of mass spectrometers. The first
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would be to modify a home built mass spectrometer, where the researcher has full

access over the control logic. The other way is to modify and extend commercially

available mass spectrometers with the desired abilities. For large-scale proteomic

work, the former approach is not straightforward, as a vast majority of publications

use commercial instruments for data acquisition. Custom built mass spectrometers

often focus on a very specific task (e.g., mass analyzer development, new disso-

ciation techniques, etc.) and are rarely geared for high-performance, large-scale

LC-MS protein experiments. Even if a researcher built a mass spectrometer capable

of these types of experiments, there is no easy way to disseminate the technology,

short of starting a company themselves and selling their work. On the other hand,

commercial instruments are primarily developed to take the best technologies avail-

able and combine them into one unified package. This results in a powerful and

stable instrument that can handle the largest experiments. However, in order to

protect their intellectual property (IP), instrument vendors are usually highly re-

strictive in how their instruments are used and modified. This makes implementing

novel acquisition methods very difficult, and therefore general acceptance of these

methods is slow. Thus, increasing the accessibility and availability of IDA methods

is the a very important factor in its future use.

Probably the best way to propel the development of intelligent acquisition meth-
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ods forward is to increase its accessibility and availability to researchers. This is

challenging since instrument vendors are highly protective of their products; they

have to protect their intellectual property and public imagine while providing

state-of-the-art technologies to consumers. They are wary of providing access to

their control logic for fear of competition. They also worry that supporting third-

party programs for their instruments could damage their reputation if things go

wrong. Our lab, which has developed multiple technologies now commercialized,

knows first hand the care instrument vendors take in releasing third-party tech-

nologies to the general consumer. The following section will briefly discuss how

new technologies are currently developed and suggests improvements to facilitate

the dissemination of intelligent mass spectrometers.

Instrument Programming. To develop new MS instrument methods, researchers

are typically given special access to the instrument’s firmware by a vendor. This

allows them direct control of the instrument and gives them the ability to alter the

methods as they see fit. This is a burdensome process, as developing software in

the firmware of a MS instrument is difficult to do and test. The programmer has

to spend a good deal of time understanding the firmware code that controls the

MS before development on new methods can begin, often without documentation.

Also, firmware modifications is notoriously difficult to test and debug, especially



162

on the LC-time scale. With no way to debug, samples and experiments must be

conducted in full to test the change of a single variable; this is a very slow process

of programming. If there are any bugs in the code, hours could be wasted trying to

detect and locate them. Improvements in how new methods are made are needed

to make developing a faster and more productive process.

Distributing the instrument’s firmware is also not an ideal way of providing

access and is more of temporary fix than a real solution. Most instrument vendors

never developed a system to support third-party methods, so when the first re-

searchers wanted to extend the instrument capabilities, the quickest solution was

to give them access to the source code, just like they were an internal developer.

After they have developed their technologies, in order for other research groups

to use them, the developers had to work with the vendors to commercialize their

products. This process is ineffective and slow, and prohibits mass distribution.

A better model of development would be to develop and deploy an application

programming interface (API) to control the instrument. Here, the vendor would

provide a set of software tools and objects to enable access to different parts of the

instrument. They would have fine-grain support on what they make available to

the end user and what they keep hidden, thus alleviating some IP concerns. This

technique also could provide error checking, preventing the user from setting some
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value that could potentially damage the instrument or injure someone. In fact, some

instrument vendors have started down this path. Thermo has recently released

an API for their Q Exactive mass spectrometer to enable third-party support. This

allows the user to program in an more advanced language than is used on the

instrument itself. For example, the Q Exactive’s firmware is written in Python (a

scripting language), while the API is written in C# (a compiled, and generally a more

powerful language). This also makes programming the instrument compatible with

libraries such as CSMSL discussed in Chapter 4. An API model also allows users

to share their code without IP issues, and could greatly improve the code when

multiple developers are working together.

The biggest challenge is convincing the instrument vendors to support such

a technology, as it requires time and resources to develop and maintain. But if

anything can be learned from community-developed applications on the internet

(i.e., crowd sourcing), much can be gained when many people are working on a

common problem. It may well behoove vendors to provide such access to potentially

gain dozens of developers. The other issue is the distribution of software to other

researchers. An ideal solution would again mimic the internet, by constructing a

central marketplace to download and install methods. This would greatly facilitate

the distribution aspect and improve accessibility.
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