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“Why seek answers when we do not know the question?”

Siebren de Kuiper
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Abstract
Department of Medical Physics

Improving the efficacy of functional lung avoidance radiation therapy

Eric M. Wallat

Functional lung avoidance radiation therapy (RT) is a technique being investigated to

avoid specific regions of the lung that are more susceptible to radiation-induced dam-

age. Reducing dose delivered to high functioning regions may reduce the occurrence

of radiation-induced lung toxicities. There is a need to improve current approaches to

functional avoidance RT by accounting for irradiating the airways, and developing more

accurate models of post-RT ventilation change. The purpose of this work was to develop

dose-response models for ventilation changes, investigate indirect ventilation decline due

to airway irradiation, and incorporate functional information into the treatment planning

process.

Analysis was performed in swine to investigate the effect of irradiating airways and re-

gional ventilation change. A dose-response relationship was observed with reduction in

luminal area of the airways. Regions supplied by irradiated airways experienced larger

loss in ventilation post-RT compared to regions supplied by unirradiated airways. Addi-

tional analysis was performed on human subjects and quantified the relationship between

airway resistance and 4DCT-based ventilation changes. Increased cumulative airway re-

sistance was significantly associated with decreases in ventilation function for the region
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those airways supplied. A normal tissue complication probability model was built to

predict bronchial stenosis.

A polynomial regression model was built to predict change in ventilation based on pre-

RT ventilation and dose. This model accounted for out-of-phase ventilation by using a

new methodology to derive ventilation maps using multiple phases of the 4DCT, and

improved a previously developed model in accuracy and gamma pass rates. Additionally,

a conditional generative adversarial network model was developed, and improved upon

the polynomial regression model in predicting regions of ventilation decline.

Lastly, a new methodology was developed to incorporate functional information into the

treatment planning process. This approach utilized dose-painting-by-numbers to create

voxelized dose objectives within the lung based on predictions from the cGAN model.

The model developed for airway toxicities was used to include dose objectives to limit the

occurrence of bronchial stenosis. The new workflow resulted in more spared lung function

compared to standard of care as well as the currently used method for functional avoidance

plans.
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Chapter 1

Introduction

Lung cancer is estimated to be one of the most common and deadly cancers in the

United States in 2023, and radiation therapy (RT) remains one of the primary treat-

ment techniques, especially for cases deemed inoperable [1]. However, of lung cancer

patients treated with RT, approximately 20% will experience a radiation-induced lung

injury (RILI), which can range from short term effects, such as pnuemonitis, to long term

effects, such as fibrosis [2–4]. The severity of RILIs can also vary, and in some cases can

be life-threatening. Functional avoidance RT is currently being investigated in multi-

ple clinical trials (NCT02843568, NCT02528942, NCT02308709, NCT02002052)[5–8] as

a method to alter a treatment plan in order to spare higher functioning lung tissue and

reduce the occurrence of RILI in patients post-RT.

The main objective of functional avoidance RT is to maintain disease control while mini-

mizing the normal tissue toxicities that can occur as a result of treatment. The standard

of care (SOC) for lung cancer includes using volumetric measurements, such as the volume

of the lung receiving 20 Gy or more (V20), to guide treatment plans in order to reduce

lung toxicities. One issue with this approach is that it assumes the function of the lung is

homogeneous. Previous studies have shown that functional-guided RT may be effective

in preserving functional lung by preferentially avoiding higher functioning regions [9–15].
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Current methods of determining ventilation via four-dimensional computed tomography

(4DCT) image processing only consider one part of a complex biomechanical process.

Treating patients using functional information based solely on ventilation metrics could

result in irreparable damage to pulmonary vasculature and airway structures [16–19].

Incorporating additional functional information into treatment plans is essential to limit

the toxicities patients experience following RT. Few studies have been published on the

indirect effects of irradiating other important structures, such as airways and vasculature,

and their role in ventilation post-RT. Consequently, the combination of direct and indirect

ventilation damage has not been used to determine post-RT function or guide functional

avoidance treatment plans.

1.1 Organization of Dissertation

The goal of this thesis is to improve the efficacy of pulmonary functional avoidance radi-

ation therapy through more accurate dose-response modeling and consistent incorporation

of relevant information into the treatment planning process. This work is organized into

five parts:

1. Preliminary investigation of radiation-induced airway toxicities in a novel swine

model and the impact on downstream ventilation change.

2. Retrospective analysis of radiation-induced bronchial stenosis in human subjects

and subsequent indirect ventilation damage.

3. Expansion of a polynomial dose-response model to incorporate out-of-phase venti-

lation.

4. Development of deep learning-based dose-response models for predicting post-RT

ventilation change.
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5. Comparison of various treatment planning methods and development of a voxel-

wise dose-painting-by-numbers approach for functional avoidance radiation therapy

treatment planning.

1.2 Chapter Descriptions

Chapter 2 provides background information on pulmonary function and anatomy, the dif-

ferent techniques through which pulmonary function is measured and quantified, and how

that information can be used in radiation therapy treatment planning. Chapter 3 per-

forms a preliminary investigation of radiation-induced airway toxicities and downstream

ventilation changes in a swine model, and retrospectively analyzes airway toxicities in

human subjects and the correlations to regional downstream ventilation decline. Chapter

4 develops a polynomial regression model to predict post-RT ventilation change based on

pre-RT ventilation and radiation dose, while accounting for effects of out-of-phase venti-

lation, and develops and investigates multiple machine learning-based models to predict

post-RT ventilation change while maintaining spatial relationships and preserving global

context. Chapter 5 combines functional information from the airway analysis and pre-

dictive models to develop a comprehensive approach to generating functional avoidance

treatment plans. Finally, Chapter 6 summarizes the major conclusions and future direc-

tion of this work.
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Chapter 2

Background and motivation

2.1 Introduction

As radiation therapy (RT) treatments have become more advanced in their ability to be

more conformal to the target, additional care can be taken to reduce radiation dose to

normal tissues. Additionally, advancements in computers have led to faster and more

accurate estimations of dose distributions and the development of radiation treatment

plans. These advancements have resulted in the ability to create highly conformal and

patient-specific treatment plans that provide better tumor control and normal tissue

sparing. Functional avoidance RT pushes further to include functional information into

the treatment planning process to avoid specific regions of the lung based on pre-RT image

analysis. This work focuses on methods to improve the modeling of ventilation response

to radiation dose and incorporation of those metrics in the treatment plan. However, it is

essential to understand the basic lung mechanics that are at the foundation of predictive

models as well as the techniques used to derive lung function metrics. This chapter

includes an overview of pulmonary physiology and anatomy, radiation-induced pulmonary
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toxicities, techniques to acquire pulmonary functional information, and approaches to

modeling pulmonary toxicities.

2.2 Pulmonary Physiology/Anatomy and Lung Tox-

icities

2.2.1 Pulmonary Function

The main role of the respiratory system is to provide a means for gas exchange, and

the main organ of this system is the lung. Oxygen is brought into the body and carbon

dioxide is expelled through the act of breathing, which is largely a mechanical process in

which the thoracic and abdominal muscles expand or contract the lungs to create pressure

gradients. During inspiration, negative pressure is created (relative to the atmosphere)

around the lungs, which causes air to be forced into the airways. The air makes its way

through the airways until it reaches the terminal bronchioles. Each of these terminal

bronchioles ends in an acinus, a structure containing alveolar sacs branching off of the

respiratory bronchioles [20]. The alveolar sacs each contain 20-30 alveoli, which are small

air sacs at the end of bronchioles that allow for gas exchange through a thin blood-gas

barrier [20]. There are approximately 200-500 million alveoli in the average adult human

lungs, resulting in an average internal surface area of 75 m2 despite the average lung

volume being 6 liters [21]. Because of the large internal surface area, this process is

sufficient to provide the body with the oxygen it needs to survive.

Figure 2.1 shows the pathway of respiration starting from the trachea and continuing

through the airways until the terminal bronchioles and alveoli, where gas exchange oc-

curs with blood during pulmonary circulation. As can be seen in Figure 2.1 and due to
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the branching of the bronchi, if one region of gas exchange is damaged or nonfunctional,

other surrounding regions may be relatively unaffected. This parallel nature of the lungs

is partially why functional avoidance radiotherapy has been proposed, as it can poten-

tially avoid specific regions of the lung deemed to be most at risk for damage leading to

pulmonary injuries or toxicities, which are discussed in Section 2.2.2.

Figure 2.1: Respiratory tract pathway from OpenStax[22]

The pressure gradients created due to the difference in pressure between the atmosphere
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and the alveoli are what help the gas exchange process at the blood-gas barrier. At the

blood-gas barrier, the walls of the alveoli are thin enough to allow passive diffusion of

oxygen and carbon dioxide due to partial pressure differences. These partial pressure

differences favor transport of oxygen into the bloodstream and carbon dioxide into the

alveoli [20]. The act of replenishing the blood supply in the lungs is commonly known

as perfusion, and the act of replenishing the air within the lungs is commonly known as

ventilation. As both processes are crucial to the pulmonary and cardiovascular systems,

there exist many metrics to quantify their function, which are discussed in Section 2.3.

2.2.2 Radiation-Induced Lung Toxicities

It is estimated for 2023 that lung cancer will be the third most diagnosed cancer (approx.

240,000 cases) and account for the most mortalities of any cancer in the United States

(approx. 130,000 deaths), in both sexes combined [1]. Approximately one-fourth of all

cancer deaths are due to lung cancer, and cigarette smoking is directly linked to 82% of

those cases [1]. Typically, lung cancer is asymptomatic, which can lead to later diagnosis

and lower survival [1]. For disease that is diagnosed early, surgical resection offers the

best chance of survival and prevention of recurrence [23]. For patients who have a later

diagnosis, radiotherapy with or without concurrent chemotherapy is the most common

form of treatment [24].

A major complication of using radiation therapy (RT) to treat lung cancer are radiation-

induced lung injuries (RILIs), which includes any lung damage due to exposure of lung

tissue to ionizing radiation [3]. RILIs are classified into two main groups: an acute stage

(hours to days post treatment) known as radiation pneumonitis, a typically reversible

inflammatory state of the lung tissue; and a late stage (months to years post treatment)
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known as radiation fibrosis, an irreversible scarring and stiffening of the lung tissue [2–

4]. Furthermore, this work describes two different types of radiation damage that are

dependent on the spatial location of the radiation dose delivered within the lungs: direct

ventilation damage and indirect ventilation damage.

Direct ventilation damage refers to the direct ventilation decline caused by irradiation of

the lung parenchyma. Almost all published literature on radiation-induced pulmonary

damage refers to direct ventilation damage. Ding et al. [25] reported a correlation between

radiation dose and pulmonary function change as measured using 4DCT. An example of

the pulmonary function change induced by the delivered radiation dose is shown in Figure

2.2 from Ding et al. [25]. Palma et al. [26] investigated post-RT lung density changes and

found that increased CT density, which has been associated with histologic findings of

lung tissue inflammation [27], was correlated with higher radiation dose. O’Reilly et al.

[28] also found that the high ventilation volume, considered to be the regions with the

highest 45% to 60% ventilation values, receiving ≥20 Gy, was a significant predictor of

radiation pneumonitis.
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Figure 2.2: Radiation-induced pulmonary function change from Ding et al. [25]. The
first column is the pre-RT pulmonary function. The second column is the post-RT
pulmonary function. The third column is the pulmonary function change between the
images from the first two columns. The last column is the delivered radiation dose.

While functional avoidance RT has mainly focused on the direct results of irradiating

healthy, normal lung tissue, few studies have been published on the indirect effects of irra-

diating airways and their role in ventilation change post-RT. Indirect ventilation damage

is defined as the decline in ventilation in a region due to irradiated airways upstream that

supply the particular region.
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Characterizing the effect of radiation on the airways and resulting lung function remains

an important area of development for improving functional avoidance RT. Previous stud-

ies have investigated the relationship between dose and atelectasis in patients who re-

ceived stereotactic body radiation therapy (SBRT). Kazemzadeh et al. [29] investigated

and created a risk model of airway collapse based on the maximum dose and diameter

of a bronchial segment. Vicente et al. [30] continued this work to create a functional

weighted airway sparing (FWAS) map, as seen in Figure 2.3, to avoid specific airways

based on the function of the sub-volume they supplied. While atelectasis is an important

clinical endpoint, it is hypothesized that there are imaging biomarkers as precursors to

atelectasis that have an impact on post-RT ventilation and lung function. Prior to total

collapse of an entire lobe or sub-lobe, there may be subtle changes in the airways, such

as bronchial stenosis, that could contribute to losses in pulmonary function in regions

“downstream” from the affected airways. No work has provided evidence of functional

decline in regions supplied by irradiated airways.

Figure 2.3: Functional weighted airway sparing (FWAS) map developed by Vicente
et al. [30]. The contribution of ventilation to each sublobar volume is assigned to the
terminal airways and cumulatively summed at each branch point up to the trachea.
The FWAS map gives weighted importance to each bronchial segment for functional
avoidance treatment planning.

There is limited work published on radiation-induced airway changes and recommended
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dose parameters to be used in treatment planning. Miller et al. [16] reported a dose-

response effect with external beam radiotherapy-induced stenosis, but focused only on

rate of incidence and symptomatic stenosis. The results of Wang et al. [31] provided a

recommended dosimetric parameter, but only for the proximal bronchial tree (PBT) and

subjects treated with conventionally fractionated thoracic three-dimensional conformal

radiation therapy (3DCRT). Additionally, Manyam et al. [32] investigated the results of

NRG Oncology/Radiation Therapy Oncology Group (RTOG) 0813 and performed clini-

cal validation of the PBT constraints for 5-fraction SBRT. It was found that a maximum

point dose PBT constraint of D0.03cc ≤ 50 Gy had the best sensitivity and specificity

for predicting grade 2 to 5 non-pneumonitis toxicity (NPT). However, little work has

been done to quantify dose constraints for airway segments beyond the PBT to limit

airway toxicities or develop a quantitative relationship between dose and bronchial steno-

sis or other radiation-induced changes. The lack of work investigating the dose-response

relationship with airway toxicities and their correlation with ventilation damage is the

motivation for the airway analysis and dose-response modeling discussed in Chapter 3.

2.3 Quantification of Pulmonary Function

There are many metrics and methods for quantifying pulmonary function, including pul-

monary function tests (PFTs), hyperpolarized gas MRI, SPECT/PET, and 4DCT. PFTs

can be considered the gold clinical standard as they are simple, widely available to admin-

ister, and effective at aiding in diagnosing or monitoring disease. However, PFTs provide

a global measurement of lung function and have no ability to provide local/regional infor-

mation of pulmonary function. Furthermore, PFTs can vary widely for a single patient

based on patient effort during the test.
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Hyperpolarized gas (HP) MRI is a relatively new method of determining pulmonary

function and is able to study ventilation and gas exchange at a regional level. However,

this technique is not widely available due to special equipment needed to create the

hyperpolarized gas for patients to inhale before the procedure.

SPECT imaging can be considered the clinical standard of ventilation imaging and has

been studied for the longest of the ventilation imaging techniques. SPECT imaging

allows for imaging of both perfusion and ventilation regionally. For ventilation imaging,

a radioactive agent is inhaled by the patient, and for perfusion imaging, a radioactive

agent is injected into the patient’s bloodstream. Typically, both ventilation and perfusion

imaging are done within the same visit, allowing for comparison of the two metrics, known

as V/Q matching. Very similar types of studies can also be performed using a PET

scanner and positron emitters as the radioactive agent.

Lastly, 4DCTs can be used to estimate ventilation function by calculating the deformation

between different phases of the breathing cycle. This technique calculates the deforma-

tions using image registration and creates the resultant image transformation. The image

transformation is then used to compute the changes in Hounsfield units (HU) due to den-

sity changes in the lung from ventilation or to calculate the tissue expansion directly.

This section will further describe these methods and the advantages and disadvantages

of using each technique to measure pulmonary function.

2.3.1 Pulmonary Function Tests

Pulmonary function tests (PFTs) have been used to quantify pulmonary function on a

global scale and include tests such as spirometry and lung volume tests. Other tests

can also measure how well oxygen is exchanged into the bloodstream, known as pulse

oximetry, or measure levels of fractional exhaled nitric oxide (FeNO), which is an indicator



13

of inflammation in the lungs [33]. Normal ranges of values for each test are gathered from

a large population of healthy subjects to set standards based on age, sex, race, and height

[34]. Based on an individual’s test value and how it compares to the population mean,

the physician can determine whether or not the patient’s lung function is normal.

Spirometry is the most common form of PFT used, and it measures lung volume against

time [34]. Patients are instructed to take in a maximum inspiration and exhale air as long

and as quickly as possible. Metrics from the spirometry test include forced expiratory

volume in one second (FEV1), forced vital capacity (FVC), and the ratio of those two

volumes (FEV1/FVC). For example, patients with emphysema will have a reduced FEV1

due to a loss in lung elasticity and an inability to forcefully expire. Furthermore, the ratio

between the two volumes, FEV1/FVC, can help identify if an obstructive or restrictive

ventilation defect exists. These defects are commonly found in patients with asthma or

chronic obstructive pulmonary disorder (COPD) [34]. Radiation fibrosis can also cause

a decrease in the FEV1/FVC ratio due to the stiffening of the lungs, forcing the lungs

to return to a state of exhalation. The ratio of FEV1/FVC may not always be accurate,

however, because if a patient is unable to fully inhale or exhale, the measures of FEV1

and FVC may be similar, leading to a ratio near unity.

Another PFT commonly performed measures the diffusing capacity of carbon monoxide

(DLCO). This test requires the patient to inhale a gas mixture containing 0.3% carbon

monoxide and a low concentration of an inert gas, usually neon, methane, or helium, and

then hold their breath for approximately 10 seconds [35]. While the patient is holding

their breath, the carbon monoxide enters the bloodstream. The more carbon monoxide

that enters the bloodstream in 10 seconds, the greater the diffusing capacity [35]. A

decrease in DLCO is typically associated with emphysema or any other disease that

thickens or destroys the alveoli, such as radiation fibrosis.
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Lung volume tests are another effective measurement of global lung function and provide

measurements of lung volumes at various lung capacities. These different volumes and

capacities are shown in Figure 2.4. Lung volumes measure the amount of air for one

function (i.e., inhalation or exhalation), and lung capacity is any two or more volumes.

Figure 2.4 contains four lung volumes and four lung capacities. The capacities are: (1)

total lung capacity (TLC), the volume of gas contained inside the lung after a maximum

inspiration; (2) inspiratory capacity (IC), the maximum volume of gas inhaled from the

resting expiratory level; (3) functional residual capacity (FRC), the volume of gas in

the lungs at the resting expiratory level; and (4) vital capacity (VC), the maximum

volume of gas that can be exhaled following maximum inspiration. The volumes are: (1)

tidal volume (VT ), the volume of gas inhaled or exhaled during an unforced or normal

respiratory cycle; (2) inspiratory reserve volume (IRV), the maximum volume of gas

inspired from the end of normal inspiration; (3) expiratory reserve volume (ERV), the

maximum volume of gas expired from the end of normal expiration; and (4) residual

volume (RV), the volume of gas remaining in the lungs after maximum exhalation.
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Figure 2.4: Lung volume and capacity from Gold and Koth [35].

PFTs and their measurements have been used to quantify the changes in pulmonary

function as a result of radiation therapy in lung cancer patients. Henderson et al. [36]

studied the effects of baseline FEV1 and DLCO on post-treatment survival and pulmonary

function decrease. They found that patients with lower than baseline values for FEV1 and

DLCO had no significant decrease in survival; however, patients with baseline FEV1 in the

highest quartile had significantly inferior survival [36]. This result suggests that patients

with higher lung function prior to receiving radiation therapy have a lower survival rate.

Furthermore, they found a significant decrease in DLCO following radiation therapy.

Binkley et al. [37] supported the findings of Henderson et al. [36]: radiation therapy

delivered to normal and high functioning regions of the lung predicted worse pulmonary

function post-RT, while RT delivered to emphysematic regions of the lung predicted

improvement in pulmonary function post-RT. Another study found reduced FEV1 and

DLCO 20 weeks post-RT, but these results were not found to be significantly correlated
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with pulmonary toxicities [38]. Additionally, Ferrero et al. [38] found that baseline PFTs

were not associated with survival, contradicting the results of Henderson et al. [36] and

Binkley et al. [37]. One possible reason for this discrepancy was that survival rate was

not necessarily dependent on pulmonary function but rather on other factors, including

cardiac disease [38]. Stone et al. [39] found similar results supporting the conclusions of

Ferrero et al. [38]: neither baseline PFT nor post-RT pulmonary function are associated

with worse overall survival. They found that there were declines in FEV1 and forced vital

capacity (FVC) at 12 and 24 months post-RT; however, these declines in PFTs did not

predict worse overall survival [39].

One thing to note from the studies of Binkley et al. [37], Henderson et al. [36], Fer-

rero et al. [38], and Stone et al. [39] is that all radiation treatments delivered were

stereotactic body radiation therapy (SBRT)/ stereotactic ablative radiotherapy (SABR).

SBRT/SABR treatments are typically used for smaller lung lesions that are located more

peripherally in the lung, as the treatments are typically delivered in five fractions. Such

types of treatments would not be well tolerated near the mediastinum, where critical

structures like the heart and mainstem bronchi exist. With SBRT/SABR treatments,

due to the smaller volume of lung irradiated, it can be hypothesized there may be less

pulmonary decline post-RT. This effect may account for the differences in results amongst

the aforementioned studies and is a reason to create more regional and higher sensitivity

measurements of pulmonary function. While PFTs are good for initial diagnosis or mon-

itoring of disease, they are global measurements of lung function and have no ability to

provide a local/regional analysis of lung function.



17

2.3.2 SPECT/PET

Lung scintigraphy, which was introduced in the 1960s, was one of the first developed

imaging techniques that allowed for assessment of patients with known or suspected

pulmonary embolisms (PE) [40]. Wagner et al. [40] used 51Cr and 131I labelled macro-

aggregated albumin (MAA) to image pulmonary perfusion in humans and animals (dogs

and rats) using a single detector NaI(Tl) rectilinear scanner [40, 41]. The radioactive

isotopes used emit gamma rays, which can then be detected by the scintillating detector.

Further development of radioisotope imaging used multiple detectors known as gamma

cameras. A gamma camera consists of a scintillation crystal (typically NaI(Tl)), a light

guide, and multiple photomultiplier tubes (PMTs). The emitted gamma rays from the

radioisotope interact with the scintillation crystal which causes the crystal to give off

visible light that is proportional to the energy of the interacting gamma ray. Light

guides channel the visible light away from the gaps between individual PMTs to increase

collection efficiency before finally entering the PMT. The PMTs then collect the visible

light and output an electrical pulse with a current that is proportional to the energy of

the original gamma ray. The signals from the PMTs are then fed into a position logic

system which determines the 2D positions of the scintilation events. This use of gamma

cameras, as seen in Figure 2.5, to determine the 2D distribution of a radioisotope within

the body sets the basis for single photon emission computed tomography (SPECT).
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Figure 2.5: Modern gamma camera components showing collection of gamma rays
emitted from a patient. Image from Cherry et al. [42]

SPECT imaging uses the same concepts of planar imaging using gamma cameras, but

instead rotates the detectors around the patient to develop a 3D distribution of the

acquired signal. This technique is known as computed tomography and allows for data to
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be captured at all angles around the patient. The collected data can then be reconstructed

into the 3D distribution using techniques like simple or filtered backprojection.

In SPECT imaging today, 99mTc is the most commonly used radionuclide, in part due

to its emission of gamma rays with an energy of 140 keV [42]. 99mTc is the metastable

product of 99Mo, which is a by-product of nuclear reactors, and can be harvested via a

generator containing 99Mo by “milking” the produced 99mTc around every 24 hours when

needed for a procedure. The 99mTc can then be labeled to a variety of compounds based

on the area of the body to be imaged. For perfusion imaging, 99mTc can be attached

to MAA, and, due to its large size, will get trapped within the smaller pulmonary cap-

illaries causing temporary “micro-embolisms” [43, 44]. The 99mTc within the capillaries

will emit gammas which can then be detected and serve as a surrogate for pulmonary

perfusion function. For ventilation imaging, 99mTc can be attached to diethylenetriamine-

pentaacetate (DTPA) to create an aerosol which can then be inhaled. Once inhaled, the

99mTc-DTPA travels through the bronchi, condensates, and attaches to the alveoli. The

distribution of 99mTc-DTPA can be imaged and ventilation defects, such as PEs, can

be seen [45]. Technegas, first developed by Burch et al. [46], is another commonly used

aerosol that can be inhaled and used for SPECT-based ventilation imaging. Compared to

99mTc-DTPA, Technegas particles are approximately 100 time smaller which allows for a

more homogenous distribution throughout the lungs without the hotspots and clumping

commonly seen when using 99mTc-DTPA [46, 47]. While SPECT imaging of perfusion

and ventilation have been proven to have high sensitivity and specificity in diagnosing

PEs, it is not without its limitations [48, 49]. SPECT imaging using 99mTc has a spatial

resolution on the order of 1cm full width at half maximum. Additionally, in order to ac-

quire 3D images, the gamma camera is required to rotate around the patient which takes

multiple minutes to complete. The long scan times introduce errors due to breathing

motion which result in a blurred image [50].
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Positron emission tomography (PET) works in a similar fashion to SPECT imaging, where

a radioactive tracer is injected into or inhaled by a patient and the emitted radiation is

detected by the system. For PET, positron emitters are used, which emit positrons

that then eventually interacts with an electron. The most likely interaction between the

electron and positron is electron-positron annihilation that produces two 511 keV photons

emitted at nearly 180 degrees to each other. The PET system, consisting of a ring of

scintillating detectors, detects the two photons nearly simultaneously, which allows the

system to localize the photons’ origin along a line between the two detectors. Most PET

systems are joined with a CT scanner (PET/CT) so that the activity detected by the

PET imaging can be overlaid with the CT image acquired in the same setup position

and at the same time. For ventilation imaging, 68Ga, in the form of gallium-chloride,

can be placed in already existing 99mTc generators to produce “Galligas”. Galligas is

the 68Ga-equivalent of the previously mentioned Technegas, and an example ventilation

image produced using Galligas is shown in Figure 2.6. For perfusion imaging, 68Ga is

attached to MAA, however this process is more labor intensive compared to the 99mTc

process.

Figure 2.6: Galligas ventilation image showing the distribution of the inhaled gas.
Image from Bailey et al. [50]
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Le Roux et al. [51] investigated the correlation between Gallium-68 ventilation-perfusion

(V/Q) PET/CT and PFTs. With V/Q imaging, ventilation and perfusion were compared

to each other to find where they match and where they differ. Four distinct regions were

analyzed: normal perfusion and ventilation, abnormal ventilation and perfusion (matched

defects), normal ventilation and abnormal perfusion (mismatched defects), and abnormal

ventilation and normal perfusion (reverse mismatched defects). They found strong cor-

relations between the percentage of volume of lung with normal V/Q and FEV1/FVC,

suggesting the future use of PET/CT for assessing local lung function. Siva et al. [15]

investigated using V/Q PET/CT for functionally adapted IMRT plans. Functional avoid-

ance plans were created using either highly-perfused lung or highly-ventilated lung vol-

umes, and were compared to the standard-of-care treatment plans. It was found that the

functional avoidance plans created using the highly-perfused volumes resulted in a dose

reduction to functional lung, whereas plans created using the highly-ventilated volumes

did not show improvement over standard-of-care. The authors contributed this to the

image quality and noise levels of the ventilation images compared to the perfusion images

due to lower activity and signal in the lungs for ventilation.

2.3.3 Hyperpolarized Gas MRI

Magnetic resonance imaging (MRI) is a form of non-ionizing diagnostic imaging, and is

generally used for its excellent soft tissue contrast. MR images are formed by detecting

hydrogen atoms after being perturbed within a magnetic field. The main magnetic field

of the MRI machine is produced by the large, superconducting magnet that surrounds

the bore and typically has a magnetic field strength of 1.5-3.0 T [52]. The main magnetic

field causes protons in the body (or material of interest) to either align with or against

the magnetic field, with most of the magnetic fields from the protons canceling. However,

there is a slight excess of protons that align in the direction of the main magnetic field,
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referred to as the net magnetization, which becomes the source of the MR signal used

to produce images. The protons that are specifically imaged in typical MR imaging

come from hydrogen atoms as they are the most abundant in the human body, and

are positively charged, allowing for interaction with the main magnetic field. Once in

the magnetic field, the protons will begin to precess at a precessional frequency that is

dependent on the specific type of nuclei and the main magnetic field strength, which is

about 64 MHz for a hydrogen proton in a 1.5 T magnetic field. A radiofrequency (RF)

pulse is then transmitted, through a separate RF coil, at the same precessional frequency

in order to transmit the RF energy to the protons. The absorbed RF energy causes

the protons to tip away from the longitudinal direction and into the transverse plane.

Using receiver coils, the amount of transverse magnetization can be detected and used to

reconstruct images.

MR imaging can be used to image the lungs, but suffers from low signal due to the lung

being a low-density material. To overcome this, other types of nuclei can be imaged,

such as Xenon-129 and Helium-3, but requires specialized equipment to do so. A method

known as spin exchange optical pumping, or hyperpolarization, can boost the MR signal

of noble gases by up to five orders of magnitude [53], and allows the gases to be imaged

within the lung. The patient will inhale the hyperpolarized gas and will be imaged by the

MR scanner. Following image post-processing techniques, the distribution of gas can then

be visualized within the lungs and is assumed to be the regional ventilation. From these

images, ventilation defects, caused by regional airway obstruction and air trapping [54],

can be observed, and quantities such as ventilation defect volume, ventilation volume, and

coefficient of variation can be determined. These quantities can be used to show regional

ventilation heterogeneity for various obstructive pulmonary diseases [54]. While Helium-3

was the first hyperpolarized gas to be developed and used [55], Xenon-129 has been a

popular choice for researchers due to a recent global shortage of helium and its unique
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properties within the pulmonary system. Xenon is soluble in blood and tissue barriers,

and undergoes frequency shifts as it passes through, allowing it to be distinguished in

each unique compartment [56]. This allows for ventilation and gas exchange to be imaged

simultaneously as seen in Figure 2.7. Figure 2.8 shows the signal distribution for Xenon-

129 in different pulmonary tissues. By thresholding the signal at different frequencies the

distribution in the airspace provides information about ventilation, while the distribution

in the tissue is a surrogate for how much oxygen can be exchanged through the alveoli

into the bloodstream.

Figure 2.7: Hyperpolarized Xenon-129 ventilation images of a healthy subject, aging
subject, smoker, and COPD, asthma, and idiopathic pulmonary fibrosis patients. Image
from Roos et al. [57]
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Figure 2.8: Xenon-129 MR spectrum with peaks corresponding to blood, blood-tissue
interface, and gas. Figure from Ebner et al. [56].

Multiple studies have investigated using HP-MRI for guiding functional avoidance radia-

tion therapy treatment planning. Ding et al. [58] performed a pilot study using Xenon-129

HP-MR imaging to create ventilation-based segmentation for the purposes of developing

a functional avoidance treatment plan. They delineated the HP-MR images into four

classifications: well-ventilated, ventilated, hypo-ventilated, and poorly ventilated. One

standard-of-care plan was created and compared to a functional avoidance plan where

the dose to the well-ventilated lung regions was minimized, and it was found that they

were able to significantly reduce the V10Gy and V20Gy for the well-ventilated regions in

the experimental plans. Rankine et al. [59] investigated the clinical feasibility of Xenon-

129-based HP-MRI for use in functional avoidance treatment plans. Two different func-

tional avoidance plans were created, a gas exchanged-guided plan and a ventilation-guided
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plan, and were compared to the standard-of-care clinical plan. They found that the gas

exchange-guided planning reduced dose to high functioning regions of the lung while still

maintaining standard-of-care dose limits and plan quality. It was also found that the

ventilation-guided plans reduced dose to higher gas-exchange regions, suggesting that

ventilation-based plans may be clinically useful.

A major drawback to implementing HP-MRI for functional avoidance treatment planning

is the need for specialized equipment. Special commercial systems are required in order

to perform the necessary spin-exchange optical pumping to produce hyperpolarized gases.

Not every institution has the necessary funds or trained staff to implement this type of

system and workflow. An additional drawback is the need for the patient to undergo an

additional procedure. Even though there is no radiation dose accumulated during the

HP-MR scan, it puts an additional time burden on the patient.

2.4 4DCT Ventilation Imaging

Four-dimensional computed tomography (4DCT) has also been a modality used to esti-

mate pulmonary function and ventilation. It is of great interest due to its minimal impact

on the clinical workflow during a typical treatment for a patient undergoing radiation

therapy as a 4DCT is collected during the simulation and planning process. This section

will review 4DCT and CT fundamentals, as well as image registration and ventilation

measurement derivation.

2.4.1 4DCT Basics

Computed tomography (CT) is a form of diagnostic imaging that uses ionizing radiation,

in the form of x-rays, to create images. Images are formed by passing x-rays through the
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body while the x-ray tube rotates around the patient in order to collect information from

many different angles. A detector array opposite to the x-ray tube detects the x-rays

that are transmitted through the body. The attenuation of the x-rays at each gantry

angle is measured and produces a projection of the anatomy which can be used to create

3D images. To create 3D volumetric images, the couch is translated through the bore

of the CT scanner all while the x-ray tube is rotating. The pitch of the CT scanner

describes the table distance traveled per one rotation of the gantry divided by the beam

width. A pitch less than 1 results in oversampling/overscanning and a pitch greater

than 1 will undersample as seen in Figure 2.9. CT image pixels/voxels have intensity

values that use Hounsfield Units (HU). HU can be calculated from the determined linear

attenuation value of the specific voxel and applying a linear transform referenced to the

linear attenuation value of water as shown in Equation 2.1. Material with a high linear

attenuation, such as bone, will have larger HU values and show bright in images, while

material with low linear attenuation, such as air, will have low HU values and show up

dark in images.

HU = 1000 ∗ µ− µwater

µwater

(2.1)
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Figure 2.9: Examples of different CT pitch. Image from Elangovan [60].

A more recent advancement of CT is the ability to collect four-dimensional (4D) informa-

tion during scanning. A 4DCT collects 3D image volumes during different time periods,

typically different phases of the respiratory cycle, allowing for visualization of motion

throughout the specified time period. This is commonly used during the simulation and

treatment planning process for lung cancer patients undergoing radiation therapy. The

4DCT allows physicians to determine the extent of tumor motion during the patient’s

respiratory cycle. This helps define target boundaries and margins to use for treatment,

and to make sure there is adequate tumor coverage as well as minimal healthy tissue

overlap. In order to produce 4DCT images that align with the correct respiratory phases,

breathing motion must be monitored and recorded during the collection of the 4DCT.

A respiratory surrogate [61, 62], such as a strain-gauge belt or infrared reflective box,

is placed on or around the patient’s abdomen. As the patient breathes the respiratory

surrogate will also move with the chest motion in phase with the breathing motion. Once
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the scan is over, the breathing trace will be used to determine when each phase of the

respiratory cycle occurred relative to the projection data collected by the CT scanner.

The projection data is then sorted into each of the respective respiratory phases and the

3D volume for each phase can then be reconstructed as shown in Figure 2.10. Because

each slice of the volume of interest needs to be imaged at least once during an entire

respiratory cycle, the pitch is reduced by about a factor of 10 in order to capture all the

necessary information for proper reconstruction.

Figure 2.10: Diagram of phase binning for 4DCT reconstruction. This example shows
4 discrete phases, however it is common for 4DCT images to be reconstructed into 10
different respiratory phases.

There are a few disadvantages to working with 4DCT. The first of which is increased

radiation dose. Due to the need to oversample in order to collect anatomical information

from every respiratory phase, overall imaging time increases along with the radiation dose.

While the increase in dose is almost negligible compared to the amount of dose received

during a course of radiation therapy, it cannot be completely ignored. The effective

dose from 4DCT can be 2-4 times higher than the effective dose received from a regular
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helical 3DCT scan [63, 64]. However, there are efforts to reduce the amount of effective

dose from 4DCT scans through iterative reconstruction techniques which can reconstruct

4DCT images of similar image quality using less imaging dose [65]. Another disadvantage

of 4DCT is the occurrence of image artifacts. Yamamoto et al. [66] identified four main

types of 4DCT image artifacts: blurring, duplicate structure, overlapping structure, and

incomplete structure, as shown in Figure 2.11. Blurring artifacts occur due to motion

that is faster than the CT gantry rotation speed and happens during a specific couch

position. The other three structural artifacts occur at the interface between two adjacent

couch positions, which can be caused by projection data being binned to the incorrect

respiratory phase or abdominal displacement.

Figure 2.11: Examples of four main types of 4DCT artifacts. Image from Yamamoto
et al. [66].
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2.4.2 Image Registration

A critical step in deriving ventilation measurements from 4DCT scans is image regis-

tration. Image registration in medical imaging is the process of calculating a geometric

transformation between a reference (stationary) scan and a moving scan. A generic image

registration process can be seen in Figure 2.12. The image registration process is iterative

as the algorithm improves the previous transformation iteration based on the information

received from an optimizer which is used to guide the image registration algorithm to find

the best result of a specified image metric. Image metrics used for image registration can

be broken up into two distinct classes: voxel intensity-based and feature-based. Voxel

intensity-based metrics use image voxel data directly and include metrics such as correla-

tion coefficient (CC) and sum of the squared difference (SSD). Feature-based metrics use

features (anatomical landmarks and organ boundaries) extracted from image data and

include metrics such as mutual information (MI) and contour-based comparisons.

Specifically in radiotherapy, image registration has multiple uses including transfer of

anatomical segmentations (either from an atlas or prior patient imaging), multi-modality

treatment planning (MR, SPECT/PET tumor delineation, etc.), image-guided radio-

therapy, and treatment response assessment. Treatment response assessment can include

more simple evaluations such as tumor measurements, which requires a rough registra-

tion between the two scans, however for assessing pulmonary function change following

radiotherapy more precise registration techniques are needed in order to evaluate function

at the voxel level. Specifically for pulmonary function assessment, image registration is

used to map the deformations that occur between different phases of the 4DCT for each

voxel, and can be used to assess lung motion and mechanics. Ultimately, the result of

image registration is a transformation matrix consisting of the mappings from the moving

image to the reference image.
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Figure 2.12: Typical workflow of registration algorithms. Image from Brock et al.
[67]

This work utilizes an image registration algorithm with multi-resolution cubic B-spline

parameterization and uses the sum of squared tissue volume difference (SSTVD) as the

similarity metric. The spatial multi-resolution procedure from coarse to fine is used to

improve speed, accuracy, and robustness [68]. The initial registration is performed at a

downsampled lower resolution image, and once the correspondence is found between the

two images, the algorithm uses the transformation produced as a first guess on the next

higher resolution image. This process is repeated at multiple resolution levels until a

transformation is produced for the original image resolution. Cubic B-spline parameter-

izations are used to represent the transformation as they are commonly used for shape

modeling and arer efficient for nonrigid motion transformations [68]. The SSTVD similar-

ity metric is used in this work because of its specific advantages over the regular SSD for

lung image registration. SSTVD accounts for CT intensity change as the lungs expand

and fill with air. When the lung tissue fills with air, the HU value of the lung tissue

decreases, and during expiration/contraction, the HU value of the lung tissue increases.

The volume of tissue V (x) at voxel location x is determined by:
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V (x) = v(x)
HU(x)−HUair

HUtissue −HUair

(2.2)

The cost function using the SSTVD metric uses the difference between the tissue volumes

for each image and is defined as:

CSSTV D =

∫
Ω

[V2(x)− V1(h(x))]
2dx (2.3)

where h(x) is the optimized correspondence mapping that maps the moving image (I1)

to the reference image (I2).

2.4.3 Deriving Ventilation Measurements From 4DCT

Unlike ventilation measurements that can be produced through SPECT/PET or MR

techniques, ventilation estimates derived from 4DCT images do not require the patient

to inhale gases or undergo additional procedures. Today, there are currently two primary

methods of deriving ventilation estimates from 4DCTs, both of which rely on accurate

image registration. The first method estimates ventilation based on changes in HU values

at the voxel-level between the maximum-inspiration and maximum-expiration CT images

[69, 70]. First, the maximum inspiration and expiration images are registered to each

other through deformable image registration. Then the fraction of air in each voxel, Fair,

is calculated using the method first introduced by Simon [70] where

Fair = − HU

1000
(2.4)
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This method assumes that HU values for voxels within the lung are composed of a linear

combination of only air (HU=-1000) and tissue (HU=0). Another assumption is that the

volume of tissue does not change between the expiration and inspiration images, meaning

that any volumetric and/or HU changes between the two images must be due to addition

or subtraction of air. This change in air volume is assumed to be directly correlated

with ventilation, and is typically reported as the local volume change due to inspiration

(compared to expiration), ∆V
Vex

. Using this assumption, ventilation using the HU method

can be given as

∆V

Vex

=
Fex − Fin

Fex(1− Fin)
(2.5)

Lastly, using Equation 2.4 to make a substitution, the final form becomes

∆V

Vex

= 1000
HUin −HUex

HUex(1000 +HUin)
(2.6)

One of the main disadvantages of the HU-based ventilation metric is that it is susceptible

to image quality and noise, which can vary based on scan acquisition parameters and

image artifacts. Image noise has an inverse relationship with tube current time product

(mAs) where

Noise ∝ (mAs)0.5 (2.7)

The second primary method, and is the method used throughout this work, uses the

Jacobian determinant of the image transformation matrix produced from the registration

between the inspiration and expiration images, as first proposed by Reinhardt et al. [71].

This method assumes that the expansion that a voxel undergoes between the inspiration
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and expiration images is due to the addition of air during ventilation, and thus serves as

a surrogate ventilation measurement. First, deformable image registration is performed

to register the inspiration image to the expiration image, resulting in a transformation

matrix, T. The ventilation metric at each voxel is then the Jacobian determinant of T for

that specific voxel, where the Jacobian determinant is the determinant of the Jacobian

matrix. The Jacobian matrix is a matrix of all first-order partial derivatives in each of

the 3 image dimensions, and is given as

VJac = det Jac(T ) =

∣∣∣∣∣∣∣∣∣∣
∂T1

∂x1

∂T1

∂x2

∂T1

∂x3

∂T2

∂x1

∂T2

∂x2

∂T2

∂x3

∂T3

∂x1

∂T3

∂x2

∂T3

∂x3

∣∣∣∣∣∣∣∣∣∣
It is apparent, however, that Jacobian-based ventilation measurements are completely

reliant on the accuracy of the image registration algorithm used. Previous work by Cao

et al. [68] has shown the B-spline method described in Section 2.4.2 to have a mean

landmark error on the order of 1mm, which is the same resolution of the 4DCT scans

used throughout this work.

The two ventilation derivation techniques described calculate the local lung expansion

ratio (LER) from an end-inhale phase (100IN) and end-exhale phase (0EX), which is

defined as 2-phase LER (LER-2) [72]. However, this can lead to errors in the ventilation

map due to out-of-phase ventilation. Out-of-phase ventilation can be defined as local lung

volume change that is out-of-phase with respect to global lung contraction and expansion,

and on average 21.3% of the lung is considered out-of-phase [73]. To correct for out-of-

phase ventilation, LER can be calculated from the ratio of the maximum and minimum

local lung volume over the entire breathing cycle, defined as LER-N, as proposed by Shao

et al. [73]. The LER-N is determined for a voxel by taking the ratio of the maximum to

the minimum local lung volume:



35

LER-N(x) = max
i∈{1...N}

Ji(x)/ min
i∈{1...N}

Ji(x) (2.8)

In Eq. 2.8, x is the location of the voxel, Ji is the Jacobian image of the ith phase, and

N represents the number of phases used in the LER-N calculation and can change for

a single subject longitudinally to account for effort correction. The number of phases

used for each LER-N calculation is determined based on a 100 cc tidal volume criteria

between all scans for a given subject. Selecting volumes that have an equivalent tidal

volume (ETV) within 100 cc of each other has been shown to improve reproducibility of

ventilation measurements [74]. For example, when calculating the LER-N for two scans

from a given subject, one scan may have a tidal volume of 1L at the 100IN phase while the

second scan may have a tidal volume of 1.2L at the 100IN phase. In this case, the second

scan has a tidal volume closer to 1L at the 80IN phase. To account for this difference in

tidal volumes, the first scan would use N=9 phases and the second scan would use N=8

phases (i.e. not using 100IN) to calculate their respective LER-N. This example is also

illustrated in Figure 2.13.
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SCAN1 TV = 1L

SCAN2 TV = 1.2L

SCAN2 100IN

SCAN2 80IN

SCAN1 100IN

Figure 2.13: Illustration of two scans of one subject where each scan has a different
tidal volume at 100IN. For the calculation of LER-N, SCAN1 would use N=10 phases
and SCAN2 would use N=9 phases to account for its larger tidal volume. This technique
is used as an effort correction strategy to allow for comparison of scans independent of
tidal volume. Image from Wallat et al. [75].

Figure 2.14 is a diagram representing two independent voxels and their percentage of rel-

ative expansion and contraction throughout the respiration cycle. One voxel experiences

out-of-phase ventilation where its maximum expansion does not occur at the maximum

breathing phase (100IN) as indicated by the external surrogate. The LER-N calculation

corrects for this by taking the maximum and minimum Jacobian values (i.e. amount the

voxel expanded) for each voxel from the N phases of the breathing cycle.
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Figure 2.14: Diagram of out-of-phase ventilation. The voxel represented on the left
exhibits in-phase behavior as it reaches its own local maximum expansion (2.0cc) at the
global maximum expansion (2.0L) The voxel represented on the right exhibits out-of-
phase behavior as it reaches its own local maximum expansion (2.0cc) at a tidal volume
that is not the global maximum (1.8L). Image from Wallat et al. [75].

One disadvantage of the LER-N method is that it is computationally more expensive

compared to the other previously described ventilation derivation methods. Because

LER-N uses the maximum and minimum local lung volumes, N (typically N>6, with a

max of 9 phases) separate registrations must be made from each of the N 3DCT images

to the reference phase 3DCT image (0EX). A depiction of this pairwise registration for

LER-N is shown in Figure 2.15 from Shao et al. [73].
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Figure 2.15: Depiction of necessary pairwise registrations for calculation of N-phase
local expansion ratio (LER-N). Image from Shao et al. [73] ©2020 IEEE.

2.5 Modeling Pulmonary Functional Damage

Most approaches to functional avoidance RT use a map of a patient’s lung function pre-

RT to guide the treatment planning process and avoid regions of the lung deemed as

high functioning. Lee et al. [76] used 99mTc-labeled macro-aggregated albumin (MAA)

perfusion single photon emission computed tomography (SPECT) imaging to create high

perfused lung regions of interest (ROI) that were used as avoidance structures in the

treatment planning optimization process. Similarly, Vinogradskiy et al. [77] created

avoidance ROIs based on four-dimensional computed tomography (4DCT) ventilation

images. Vicente et al. [78] combined serial and parallel functionality by considering

dose to airways in addition to parenchymal dose in order to further improve functional
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sparing. Previous work by Patton et al. [79] showed a dose-response relationship with

post-RT ventilation change, and is the current method used to guide functional avoidance

treatment planning in NCT02843568 [5]. Instead of relying solely on pre-RT ventilation,

Patton’s [79] regression model predicts post-RT ventilation change based on delivered

radiation dose and pre-RT ventilation at the voxel level. However, this model struggles

to accurately predict ventilation decline; particularly in regions receiving low radiation

doses. This is most likely due to the complex nature of pulmonary biomechanics and

the resulting changes in ventilation following RT. In this section, pulmonary function

modeling and prediction techniques are described.

2.5.1 NTCP Modeling

Radiation therapy is a commonly used treatment modality for cancer, but it can lead

to significant toxicity to normal tissues. Normal tissue complication probability (NTCP)

models have been developed to predict the likelihood of developing radiation-induced

toxicities in various normal tissues. Some commonly utilized NTCP models will be briefly

described in this section.

One of the most commonly used models for radiation pneumonitis is the Lyman-Kutcher-

Burman (LKB) model [80], which uses a probit function to estimate the probability of

a complication based on the dose and volume of irradiated lung tissue. The LKB model

can be described in Equations 2.9-2.11, where Di is the dose and vi is the relative volume

of the i -ith bin of the differential DVH, n is a parameter that describes the volume

dependence of the tissue, m is the slope of the model fit, and D50 is the uniform dose

given to the organ of interest that results in a complication probability of 50% [80]. A

model was built by Kwa et al. [81] on data from 540 patients and they found that mean

lung dose is a useful predictor of radiation pneumonitis. Although this model was simple,
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it as been shown to perform as well as other complex models [82]. However, the LKB

assumes a normal distribution of lung sensitivity and has a lack of consideration of the

spatial distribution of radiation dose.

NTCPLKB =
1√
2π

∫ t

−∞
e−

x2

2 dx (2.9)

t =
Deff −D50

mD50

(2.10)

Deff = (
∑
i

viD
1
n
i )

n (2.11)

The critical volume model developed by Niemierko and Goitein [83] is a mathematical

model based on the binomial distribution of the dose-response curve, and uses the concept

of “functional subunits” (FSUs). The fraction of surviving FSUs following irradiation

determines the probability of normal tissue complications. V̊agane and Olsen [84] modeled

radiation pneumonitis in mice using a critical volume model and found spatial variation

in the irradiation of partial lung volumes, supporting the hypothesis that lung function

(and radiation-induced damage) may be regionally dependent.

Lastly, logistic regression is a simple but effective modeling approach to calculate prob-

abilities of a binary outcome based on one or more predictive variables. In general, the

probability of a toxicity based on a logistic regression model can be described by Equa-

tion 2.12 where β0 and β1 are the constant and regression coefficients, respectively. This

model can be expanded to include additional regression coefficients depending on the

number of significant predictor variables that are included. Logistic regression has been
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used to determine significant predictors of radiation pneumonitis using irradiated volume

of highly-functional lung [28], airway dose [85], and functional mean lung dose [86].

NTCPlogistic =
1

1 + e−(β0+β1x1+...)
(2.12)

Despite the progress that has been made in developing NTCP models for lung toxicity,

there are still challenges that need to be addressed. For example, the models need to be

validated in larger and more diverse patient populations, and there is a need to develop

models that can predict other types of lung toxicities, such as radiation-induced fibrosis

and airway toxicities. Additionally, these statistical models require the breakdown of dose

distributions into DVHs, losing spatial relationships and global context of surrounding

tissues. As machine learning has grown exponentially over the past decade, radiation-

induced toxicities can be modeled in a more comprehensive and precise manner.

2.5.2 Machine Learning

The beginning of modern artificial intelligence (AI) can be traced back to Alan Tur-

ing when he published his work titled “Computing Machinery and Intelligence” in 1950

[87, 88]. At the time of his publication, computer hardware and capabilities were still

years behind the theory, and it wasn’t until the 1960s and 1970s that AI flourished.

This increased activity in the field is depicted in Figure 2.16. More recently, AI and

machine learning (ML) have been utilized to develop models that are able to recognize

and diagnose different diseases using diagnostic imaging [89, 90]. By leveraging the data-

driven techniques of AI/ML to solve problems within healthcare, patient outcomes may

be improved beyond the capabilities of human-driven analysis and computation.
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Machine learning lends itself very well to functional lung imaging research as the bio-

physiological processes that occur within the lung are difficult to model, and newer deep

learning -based approaches may be robust enough to exceed currently existing techniques

and technologies. Currently, functional lung imaging and research is based on physical

properties of the image such as calculating local CT density changes [91], calculating re-

gional volume changes using the Jacobian from deformable image registration (DIR) [71],

or any of the other various techniques discussed in Section 2.3. Recently there have been

works published that use machine learning to predict radiation-induced pneumonitis [92–

95], ventilation maps [96–100], perfusion maps [101–104], segmentations [105–108], and

DIR [109–112]. While machine learning is a broad category that describes many different

types of architectures and networks, medical image analysis, including techniques used

specifically for functional lung imaging, mainly rely on deep learning. This section will

introduce deep learning, including popular architectures and networks used in medical

image analysis, as well as an overview of model training. Note: for the purposes of de-

scribing image sizes and dimensions, a “channels last” notation will be used. For example,

an image with dimensions of 128x128x128x3 refers to a 3D multi-channel image with a

height, width, and depth of 128 voxels and 3 channels (h x w x d x c).

Figure 2.16: Timeline of the evolution of artificial intelligence (AI). Image from Any-
oha [87].
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2.5.2.1 Deep Learning

Convolutional neural networks (CNNs) are a subset of artificial neural networks (ANNs),

which all fall under the category of deep learning. Deep learning is a specific type of

machine learning algorithm which integrates feature extraction and output prediction into

one combined architecture. Convolutional neural networks are commonly used for image

and video analyzation tasks due to its ability to learn patterns in spatially correlated

data. Typical input to a CNN is a multidimensional tensor or array (i.e. a 3D image

stack), containing data that is spatially correlated. A CNN will have multiple layers,

i, with each layer taking an input Ii and transforming it to an output Ii+1. Through

each transformation and layer, the spatial relationships within the data is preserved. The

most common types of transformation used in a layer include convolutional, transposed

convolution, pooling, and nonlinearity. Each layer has a set of parameters that are learned

and updated throughout the training process using a specified optimizer.

Convolutional layers perform a convolution operation using the input image and a speci-

fied kernel. Figure 2.17 depicts how basic 2D convolution works. For each convolutional

layer, the amount of filters, F, is set by the user and specifies the amount of times the

convolution is performed. The layer then outputs F number of convolutions which are

concatenated along the channel dimension creating an activation map. The model learns

and updates the kernels throughout the optimization process.



44

Figure 2.17: Convolutional filter applied to data. Image from LENDAVE [113].

Another common layer used is a pooling layer. A pooling layer is used to reduce the

spatial size of the input. For example, a pooling layer with a pooling size of 2 and an

input image with a size of 30x30x30x3 outputs an image with size 15x15x15x3. Pooling

layers do not have any learnable parameters, however they are useful as they reduce the

spatial dimensions of the images which reduces the amount of parameters and memory

needed to train. This is especially useful when using large images and/or filters.

Lastly, an essential part of deep learning architectures is the nonlinearity layer. These

layers are typically used following a convolutional layer to introduce nonlinearity into

the feature maps. Similar to the pooling layer, there are no learnable parameters in the

nonlinearity layers, however they allow the model to develop complex mappings between

the inputs and outputs. Common nonlinearity functions include hyperbolic tangent,

sigmoid, and rectified linear units (ReLU), and are shown in plots in Figure 2.18.
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Figure 2.18: Common nonlinearity functions used in deep learning networks: (a)
hyperbolic tangent, (b) sigmoid, and (c) rectified linear units (ReLU).

2.5.2.2 Common Architectures

In deep learning, there are various types of architectures that have been developed to bet-

ter solve specific types of problems. As it pertains to medical imaging, these tasks that

can be solved by deep learning include segmentation, classification, image regression/-

translation, etc. Certain types of architectures are better suited to solve a particular

problem than others, which has led to an explosion of different machine learning net-

works. This section will discuss a few of those networks most relevant to the content

presented in this work.

As machine learning problems became more complex, additional layers were added to

networks to create a deeper architecture. It was hypothesized that deeper networks have

the ability to integrate information from low to high level features [114], and the levels

of features can be increased by adding more depth to the network. However in a network

with increasing depth, accuracy becomes saturated which then leads to degradation of

the model [115]. He et al. [115] proposed solution to solve this problem was to use residual

blocks which contain skip connections. Skip connections, as seen in Figure 2.19, allow

for the input to skip one or more layers which is then concatenated with the output

from the layers. Specifically in the first ResNet architecture, known as Resnet-34, the
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skip connection performs an identity mapping which is then added to the output [115].

Using residual blocks with skip connections allows for deeper networks without increasing

complexity. When compared to the VGG net [116] and other similar very “deep” neural

networks that performed well on the popular ImageNet dataset [117], the Resnet-34

network won the ILSVRC 2015 classification challenge [118] while having more layers

and less complexity that its competitors.

Figure 2.19: Diagram of a residual block. Image from He et al. [115] ©2016 IEEE.

Another popular network, especially in the field of image segmentation, is the U-Net,

developed by Ronneberger et al. [119]. U-Net was specifically designed for semantic

segmentation, which is the labeling of each voxel or pixel to its corresponding class. The

structure of the U-Net architecture consists of two main parts: the encoder and the

decoder. The encoder, also known as the contracting path, follows a similar pattern to

typical convolutional networks. At each level of the encoder, the input will go through

two convolutions, each followed by a nonlinear activation (typically ReLU) and a pooling

operation with a stride of 2 for downsampling. At each of the downsampling steps the
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number of features in the map is doubled. In the decoder path, also known as the

expansive path, upsampling occurs through a transposed convolution with a stride of 2.

The upsampled output is then concatenated with the output from the encoder path of

the same level, which is followed by two convolutions with ReLU activation. This process

is repeated for each level until the output is back to the original input image dimensions

where a final convolution is performed to map each voxel/pixel to the desired number of

classes. Overall, the architecture follows a mostly symmetrical style, which can be seen

in Figure 2.20, and is the reason it is referred to as U-Net.

Figure 2.20: Diagram of the U-Net architecture. Image from Ronneberger et al. [119].

Lastly, generative adversarial networks (GANs) have become a popular tool for image

generation and image translation tasks, and originally proposed by Goodfellow et al.

[120]. A GAN is typically made up of two networks: a generator and a discriminator.
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The generator used in a GAN is usually chosen based on the problem to be solved. In

image segmentation or regression tasks, it is common to use the U-Net architecture as

the generator network. The discriminator usually follows a typical convolutional network

style used for classification. While a CNN, like U-Net, aims to optimize its solution by

comparing its output to a ground truth, a GAN network has the generator and discrimi-

nator networks work towards opposite goals. The generator tries to fool the discriminator

network by minimizing the error between the ground truth and generated image. The

discriminator tries to identify fake data from ground truth data by minimizing the error

between ground truth and fake generated data. A diagram of a general GAN architecture

is depicted in Figure 2.21.

Figure 2.21: Diagram of a general GAN architecture. Image from Silva [121].

2.6 Discussion

The aims in this work were developed to address specific issues that affect the efficacy in

which pulmonary functional information can be applied to lung cancer RT. First, there is

a need to characterize the effects of radiation on the lower respiratory tract and resulting
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lung function. Kazemzadeh et al. [29] investigated and created a risk model of airway

collapse based on the maximum dose and diameter of a bronchial segment. Vicente et

al. [30] continued this work to create a functional weighted airway sparing (FWAS) map

to avoid specific airways based on the function of the sub-volume they supplied. While

these studies looked at maximum doses to airway structures that ended in collapse, airway

structural changes that occur prior to atelectasis and the subsequent effect on ventilation

have not been thoroughly studied. Additionally, Manyam et al. [32] investigated the re-

sults of NRG Oncology/Radiation Therapy Oncology Group (RTOG) 0813 and performed

clinical validation of the proximal bronchial tree (PBT) constraints for 5-fraction SBRT.

It was found that a maximum point dose PBT constraint of D0.03cc ≤50 Gy had the best

sensitivity and specificity for predicting grade 2 to 5 non-pneumonitis toxicity (NPT).

However, no work has been done to quantify dose constraints for airway segments beyond

the PBT to limit NPT. The purpose of this work’s first aim is to investigate changes

in imaging biomarkers as precursors to atelectasis post-RT, and develop a normal tissue

complication probability (NTCP) model based on these results.

Second, there is a need for a volumetric dose-response model that more accurately predicts

direct damage to the lung parenchyma and indirect effects of dose to airways that supply

regions outside of the main dose distribution. Previous works have developed models to

predict toxicity outcomes, such as radiation pneumonitis and fibrosis, as a result of dose to

functional lung; however, they all fail to include specific regional predictions of functional

decline [28, 92, 94, 122]. An additional work has created a predictive dose-response

model, but only considered the relationship with dose to a voxel within the lung [123].

These studies did not include changes in ventilation that might occur due to bronchial

damage. Additionally, these predictive models were limited because they lost any spatial

relationship between neighboring voxels and did not account for out-of-phase ventilation.

The purpose of the second aim of this work is to develop a dose-response model that more
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accurately predicts direct and indirect ventilation damage, preserves spatial relationships

between neighboring voxels, and accounts for out-of-phase ventilation.

Once accurate predictions of post-RT ventilation are produced, that information still

must be incorporated into treatment plans in order to preserve lung function and lower

the probability of toxicities occurring. Currently, discrete regions of interest (ROI) are

created based on 10 Gy dose bins from 10 to 60 Gy using the information from the

predictive dose-response model created by Patton [123]. There is a need to develop a

method in which the functional information can be applied to the treatment plan in

a continuous fashion, rather than discrete ROIs. It is hypothesized that the results of

the new functional avoidance plans will predict significantly better pulmonary function

preservation than the current approach. Furthermore, implementing a feedback system

into the workflow will be advantageous for comparing the potential amount of functional

lung spared between SOC and optimized plans. The goal of this third aim is to improve

the efficiency and consistency in which functional avoidance information is applied to

treatment plans through the development of a functional avoidance treatment planning

workflow.
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Chapter 3

Investigation of radiation-induced

airway changes and downstream

ventilation decline 1

3.1 Introduction

Functional avoidance radiation therapy (RT) has mainly focused on the direct results of

irradiating healthy, normal lung tissue, however there has been little work describing the

impact of irradiating the airways and potential disruption to ventilation function in the

regions those airways supply.

1Portions of this work have been published [124]
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3.1.1 Radiation-induced airway toxicity

The mechanisms and impact of radiation-induced airway toxicities and the subsequent

change in downstream ventilation function are still not well understood in the context

of pulmonary functional avoidance radiotherapy. There have been a few previous studies

that have investigated the relationship between dose and atelectasis in patients who re-

ceived stereotactic body radiation therapy (SBRT). Kazemzadeh et al. [29] investigated

complete airway collapse based on airway metrics collected through virtual bronchoscopy.

They found through logistic regression that airway segmental diameter (p=0.014) and

maximum dose (p=0.007) were significant predictors of airway segment collapse. Fur-

thermore, they found that there was a 1.07 times higher chance of airway collapse for

every 1 Gy increase in maximum dose after controlling for airway caliber [29]. Vicente

et al. [30] used the toxicity model developed by Kazemzadeh et al. [29] in order to create

a way in which to account for the relative functional value of each terminal airway. This

led to what Vicente et al. [30] referred to as a functional weighted airway sparing (FWAS)

map. Each bronchial pathway was mapped to a functional sub-lobar lung volume which

determined the relative ventilation contribution of that particular sub-volume/bronchial

pathway pair. Using the toxicity model from Kazemzadeh et al. [29], treatment plans were

created to avoid a predicted threshold of airway collapse and it was found that treatment

plans created using the FWAS resulted in superior ventilation preservation compared to

a clinical standard-of-care treatment plan [30]. Atelectasis is an extreme endpoint for

airway toxicity, however, and it is hypothesized there are precursors to atelectasis, such

as bronchial stenosis, that may have negative effects for downstream ventilation function

post-RT.

Additionally, there has been limited work focused on radiation-induced airway remodel-

ing and toxicity models to use for radiation treatment planning. Miller et al. [16] assessed

bronchial stenosis in patients treated with high dose (> 70 Gy) twice-daily radiotherapy
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and found bronchial stenosis to be a significant clinical complication. They addition-

ally acknowledged there seemed to be a dose-response relationship to the development of

bronchial stenosis, but were not sufficiently powered in their analysis to make any con-

clusions or conduct proper analysis. Wang et al. [31] focused on central airway toxicites

within the proximal bronchial tree (PBT) for subjects treated with conventionally frac-

tionated thoracic three-dimensional conformal radiation therapy (3DCRT). They found

that 17% of their patients developed PBT toxicities and that V75Gy was a significant

predictor for both grade 1+ and 2+ PBT toxicities [31]. The recommended thresholds

for V75 of the PBT were 6.8% and 11.9% for grade 1+ and grade 2+ PBT toxicity, re-

spectively [31]. Lastly, Manyam et al. [32] performed validation of the results from the

NRG Oncology/Radiation Therapy Oncology Group (RTOG) 0813 report. They consid-

ered multiple nonpneumonitis toxicities (NPT) which included stenosis, necrosis, fistula,

hemoptysis, and clinically significant pleural effusion [32]. They validated the current

RTOG PBT constraints and suggested a slightly lower maximum point dose to the PBT

of D0.03cc ≤ 50 Gy [32].

The purpose of the work presented in this chapter is to retrospectively analyze radiation-

induced changes in airways as precursors to atelectasis post-RT. This work presents

quantitative relationships between airway dose and airway structural changes, as well

as indirect local changes in ventilation in regions supplied by irradiated airways. The

first section will perform a preliminary retrospective analysis in a novel swine model, and

the second section investigates these mechanisms and responses within a human subject

cohort.
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3.2 Radiation-induced airway changes and

downstream ventilation decline in a swine model

3.2.1 Materials and Methods

3.2.1.1 Animal Model and Setup

Collecting data and characterizing dose-response relationships is a current challenge in

studying functional avoidance RT in humans. There is a lack of consistency between

4DCT scans in humans due to irregular breathing, which leads to unreliable function

maps. Additionally, the treatment plan, dose distribution, and anatomy for each pa-

tient is vastly different, making it difficult to observe subtle changes in anatomy due to

irradiation. The use of swine in radiotherapy research has been favorable due to their

physiological similarity to humans [125–127]. Pitfalls of using conventional swine in-

clude their larger size and growth rates, which can prohibit longitudinal investigations

of biomarker changes. This work uses the Wisconsin Miniature Swine (WMS™) [128], a

breed specifically developed to have greater physiological and size similarity to humans

compared to conventional swine. At full maturity mini-swine weigh 68-91 kg, which is

comparable to the size of an average human male whereas conventional swine can weigh as

much as 300 kg. This allows for more accurate development and validation of techniques

to be eventually used with human subjects.

A total of three WMS™ from a previous experiment focused on perfusion [129] were

retrospectively analyzed. The WMS™ were mechanically ventilated to have a respiratory

rate of 15 breaths per minute and a consistent tidal volume of 1 L in order to match the

average respiratory rate and tidal volume of human subjects. All subjects were sedated

to eliminate possibilities of motion artifacts during imaging and uncertainties during
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treatment delivery. Details regarding animal care and drugs administered can be found

in Appendix A. All procedures as well as animal care practices were approved by an

Institutional Animal Care and Use Committee (IACUC).

3.2.1.2 Treatment Scheme

Each WMS™ was prescribed a research course of 60 Gy to 95% of the planning target vol-

ume (PTV) in 5 fractions approved by IACUC. Treatments used a 6 MV flattening filter

free (FFF) beam, with each fraction consisting of 10-13 beams at various gantry angles

ranging from 0 to 200 degrees. Treatments were performed on the ViewRay (ViewRay

Inc., Cleveland, OH) treatment system in order to maximize dose conformity and reduce

the uncertainty of dose delivery due to respiratory motion. Using ViewRay’s integrated

0.35T MR imaging capabilities, subjects were imaged at four frames per second in the

sagittal plane to track adjacent pulmonary vasculature and target in order to restrict

beam delivery to the centroid of the target. ViewRay treatments use a step-and-shoot in-

tensity modulated radiation therapy dose delivery technique. Beam-on time ranged from

7-12 minutes per fraction, and the duty-cycle was approximately 60%. These fractions

were delivered following a standard clinical SBRT schedule receiving fractions with a day

in between each delivery during weekdays and 2 days over the weekend. The PTV was

designated as the bifurcation of a vessel in the left inferior lung and the right lung was

left unirradiated (max point dose <5 Gy). Since this experiment was not designed to

study the effects of airway irradiation on downstream lung function, there was approx-

imately 100cc of lung volume inferior to the PTV that received less than 5 Gy. Figure

3.1 shows the sagittal and axial view of a treatment plan for one WMS™ subject, and is

representative of what each subject received.
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(a) Sagittal View (b) Axial View

Figure 3.1: Representative treatment plan from one of the WMS™ subjects.

3.2.1.3 4DCT Acquisition

Each swine underwent two 4DCT scans pre-RT and two additional 4DCT scans 3 months

post-RT. All scans were acquired on a Siemens SOMATOM Definition Edge 128 slice CT

scanner with a 0.6 mm slice thickness, 0.5 second tube rotation time, 0.09 pitch, 120

kVp, and 100 mAs/rotation. Respiration induced movement was monitored using Varian

Real-Time Position Management (RPM) (Varian Medical Systems Inc., Palo Alto, CA),

which captured the respiratory traces from the swine for the 4D reconstructions. Images

were reconstructed using a sharp reconstruction kernel and with a 0.6 mm x 0.6 mm x

0.6 mm voxel size. Each 4DCT was reconstructed into 10 discrete phases of the breathing

cycle.
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3.2.1.4 4DCT-derived Ventilation & Analysis

Ventilation maps were calculated for each of the swine and for the two timepoints (pre-

and post-RT). In this work, the lung ventilation maps were derived using the Jacobian

method as described by Shao et al. [73] and in Section 2.4.3. This method of calculating

the local lung expansion, referred to as N-phase local expansion ratio (LER-N), uses N

phases of the 4DCT to account for out-of-phase ventilation. The total change in lung

volume over the breathing cycle was very consistent across all scans and subjects since the

miniature swine were mechanically ventilated. Due to this consistency, N=10 phases were

used for the calculation of the ventilation maps. Jacobian maps for the two scans at each

time point were geometrically averaged to reduce noise within the map. Lastly, Jacobian

ratios were calculated by taking the post-RT map divided by the pre-RT map, meaning

values less than one describe regions that experienced a decline in ventilation/function

post-RT. The regions of ventilation investigated were the inferior left lung that received

less than 5 Gy (ILL), the superior left lung that received less than 5 Gy (SLL), and the

contralateral right lung (RL). The 5 Gy limit for the regions was a max point dose. All

regions analyzed had a mean dose near 1 Gy or less. It was assumed that the ILL region

was supplied by irradiated airways, which is hypothesized to have a decrease in function

due to a downstream effect of damaging the supplying airways.The SLL and RL airways

were relatively unirradiated (< 5 Gy max point dose), and are hypothesized to be regions

that show little to no change in function.

3.2.1.5 Airway Analysis

Airway segmentation was performed using 3DSlicer [130] and the Chest Imaging Platform

(CIP) module (Applied Chest Imaging Laboratory, Boston, MA) on the maximum inhale

phase from the pre- and post-RT 4DCTs. The single kernel phase congruency (SKPC)
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method was used to segment all airways as this has been shown to give a better localization

of the airway wall compared to the full width at half max (FWHM) method and is less

sensitive to variations in reconstruction kernels and imaging dose [131]. Airways with

inner major diameters between 4-16 mm were segmented in each lung for each swine,

resulting in a total of 53 airways that were analyzed. A total of four segmentations

(two scans pre-RT and two scans three months post-RT) were created for each airway to

characterize the uncertainty in the measurements. Longitudinal changes from the pre- and

post-RT scans were then compared by calculating the percent difference from the averaged

metrics. The luminal area (Ai) and square root of wall area (
√
WA) for each airway were

investigated as they have been shown previously to correlate with pulmonary function

[132–134]. Airway segmentations were performed on 2D axial slices along the airway

tree centerline, which allows for measurements of Ai and WA at that particular location.

Figure 3.2b shows an example of one segmentation that was performed, where the inner

and outer luminal contours are indicated in orange and yellow, respectively. The inner

and outer luminal contours of the airway without reformatting along the airway axis to

obtain an orthogonal slice view of the airway are indicated in red and green, respectively.

Dependence of airway size was also investigated by examining the relationship between

pre- and post-RT Ai sizes for a 30±5 Gy dose bin. Figure 3.2a shows a diagram of Ai

and wall area in relation to a bronchial segment. WA% is calculated by taking the WA

divided by the total airway area (TA). All calculations were performed automatically by

the CIP module. The dose to an airway was calculated as the near-maximum dose, or the

dose to the highest 2% (D2%), at the axial slice the airway segmentation was performed.
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(a) Diagram of the airway metrics in re-
lation to a bronchial segment

(b) Example 2D segmentation of an air-
way, where the inner and outer luminal
contours are indicated in orange and yel-
low, respectively.

Figure 3.2: Diagram and segmentation of airway

All statistical analysis was conducted in R [135]. Repeatability of airway segmentations

and metrics were assessed by Bland-Altman analysis [136] with limits of agreement set

at a 95% level. The Pearson correlation coefficient was used to determine the correlation

between airway metrics and dose. The Shapiro-Wilk test was used to test data for nor-

mality. Assuming a normal distribution, correlations and percent changes were tested for

significance using t-tests.

3.2.2 Results

The results of the Shapiro-Wilk test for normality for both Ai and
√
WA measurements

rejected the null hypothesis (p>0.1), meaning the data is normally-distributed. Bland-

Altman plots for repeatability measurements of Ai and
√
WA are shown in Figure 3.3.

Both figures use measurements from pre- and post-RT airway measurements. Figure
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3.3a shows Ai had excellent repeatability across all segmentations and metrics for both

timepoints. Figure 3.3a shows no discernible trend in the data. Figure 3.3b shows larger

differences in
√
WA which may be due to the segmentation tool’s ability to discern the

edges of the airway wall, which may be especially variable in regions of fibrosis. In

addition, some of the variability of the
√
WA is due to measurement error of the airways

which have wall thickness smaller than the image reconstruction resolution.
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(a) Luminal area Bland-Altman plot

(b)
√
WA Bland-Altman plot

Figure 3.3: Repeatability of luminal area and
√
WA measurements using repeat scans

from both pre- and post-RT. Scatter plots shows variation in measurement with Bland-
Altman analysis. Top and bottom dashed lines represent the 95% limits of agreement.
The middle dashed line represents the mean difference.

Figure 3.4 represents Ai percent change as a function of airway dose for the airways of the

left irradiated lung for the three swine subjects, and shows Ai decreases with dose and
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that percent change increases linearly with dose. The airway measurements of the right

lung were not included in this plot as to not bias the fit with a majority of points located

near the origin. This was due to the right lung/airways not receiving doses larger than

5 Gy or experiencing significant changes in Ai. The airways in the right (unirradiated)

lung for all swine showed no significant change (p=0.48) in Ai post-RT compared to pre-

RT, with a mean fractional change of 0.0072 ± 0.028. The airways in the inferior left

(irradiated) lung of all swine were found to have a decreased Ai post-RT compared to

pre-RT, and was significantly (p<0.001), negatively correlated (Pearson R = -0.98) with

radiation dose.

Figure 3.4: Ai percent change as a function of airway dose for airways in the inferior
left (irradiated) lung across three WMS™ subjects.

Figure 3.5 shows the Jacobian ratios (post-RT/pre-RT) for three locations within the

swine lungs. All regions received mean doses near 1 Gy or less, however the ILL region

was downstream and supplied by airways from the highly irradiated region of the PTV.
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The SLL and RL supplying airways were unirradiated (less than 1 Gy max point dose).

A decrease in both the mean Jacobian ratio across all subjects and the Jacobian ratio of

each individual subject of the ILL (µ=0.883) compared to the SLL (µ=0.932) and the

RL (µ=0.955) was observed, however this difference was not found to be significant. This

change in the ventilation of the inferior left lung for all three subjects suggests that, while

on average it received less than 1 Gy, the decrease in Jacobian may be due to irradiation

of the region’s supplying airways. Furthermore, as shown by Patton et al. [79], a model

was produced to predict Jacobian changes following irradiation of the lung. This model

predicts that in order to produce a Jacobian ratio of 0.9 that is seen in the inferior left

lung of the swine subjects, the regions would have had to receive at least 30 Gy, regardless

of pre-RT function.

Figure 3.5: Evidence of indirect damage due to irradiation of airways. All regions
received mean doses near 1 Gy or less, however the ILL region was downstream and
supplied by airways from the highly irradiated region of the PTV. The SLL and RL
supplying airways were unirradiated (less than 5 Gy max point dose). The average dose
to the three regions across the three subjects is indicated in parentheses next to the
corresponding region.
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Figure 3.6 shows that post-RT Ai decreased by approximately 27% compared to pre-

RT and that this decrease was constant across pre-RT Ai from 15-80 mm2. These results

analyzed airways that received a dose between 25 and 35 Gy since this dose bin contained

the largest number of samples. A linear regression line was fit to this data and forced

through the origin resulting in a slope of 0.729 (Pearson R = 0.998). The linear regression

line was forced through the origin because this work considered only stenosis and not total

collapse of the airways.

Figure 3.6: Post-RT Ai vs pre-RT Ai for a 30±5 Gy dose bin with linear regression
fit.

Figure 3.7 show that there was a significant (p<0.001) negative correlation (Pearson R

= -0.66) between the percent change in
√
WA and airway dose. This correlation may be

worse due to the limitation of the reconstruction resolution (0.6mm isotropic), which is

on the order of the change in
√
WA for smaller airways.
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Figure 3.7: Scatter plot of
√
WA change vs airway dose. Note that the correlation

with airway dose is worse compared to the luminal area in Figure 3.4. The airway wall
thickness is approaching the voxel size and resolution of the scan, increasing measure-
ment noise when computing

√
WA.

Figure 3.8 shows the WA, Ai, and D2% for each airway and subject pre- and post-RT.

Each figure is ordered by increasing D2%. Although the absolute TA decreased for almost

every irradiated airway, the WA% increased for a majority of the airways since Ai (gray

bars) decreased more relative to the decrease in WA (black bars).
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Figure 3.8: WA and Ai for each airway and subject, ordered by increasing D2%. D2%

is the dose to the highest 2% of the airway.
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3.2.3 Discussion

This study demonstrated a strong linear relationship between radiation dose and change

in Ai. In particular, that for every 10 Gy increase in dose to a particular airway, there

was an additional 9.1% reduction in Ai of that airway. Additionally, no threshold dose

level was identified for doses as low as 2.5 Gy for this effect to appear since there was

a constant decrease in Ai with increasing airway dose from 2.5 to 70 Gy. Freitag et al.

[137] established grading levels of bronchial stenosis based on changes in Ai, defining a

decrease of greater than 25% as Grade 2 bronchial stenosis. Figure 3.4 shows that airways

that were considered Grade 2 or worse post-RT received a D2% of approximately 25 Gy or

greater. Compared to the findings of Manyam et al. [32], these results suggest a maximum

bronchial dose much lower than the suggested D0.03cc ≤50 Gy may be needed to minimize

the occurrence of non-pneumonitis toxicities. The strong negative correlation between Ai

change and radiation dose demonstrates structural changes occurring in airways beyond

the PBT, and may be of clinical relevance as it pertains to pulmonary toxicities and

function. Additionally, these changes are occurring at doses that are nearly half of the

current dose constraint recommendations for bronchial structures.

The results shown in Figure 3.5 supports the hypothesis that regions of the lung supplied

by irradiated airways, even though the region itself was relatively unirradiated, experi-

ences a greater decline in function than unirradiated regions supplied by unirradiated

airways. While this decrease was not significant, most likely due to a small sample size

of n=3, there appears to be a mechanism of indirect damage that is causing the ILL

to decrease in function. This decrease in function is seen despite that region receiving

less than a mean dose of 1 Gy or a max dose of 5 Gy, a dose level at which little to no

damage is expected. Patton et al. [79] modeled post-RT ventilation change as a function

of radiation dose and found that the model did not perform well in regions downstream of

irradiated regions. This model also predicts that to see a Jacobian ratio of 0.9, the region
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would have to receive at least 30 Gy, regardless of pre-RT function. The hypothesis of

downstream effects is further supported by the results presented in this work that the

RL and SLL, whose airways were unirradiated (< 5 Gy), had higher Jacobian ratios than

the ILL. It should be noted that Subject 1 appears to have a lower Jacobian ratio overall

compared to the other two subjects and may be skewing the average. However, when

excluding Subject 1 there is a decrease in the Jacobian ratio across the three regions

evaluated. Patton et al. [79] considered a Jacobian ratio less than 0.94 as damaged lung,

which is seen across all three subjects in the ILL.

When examining the 30 Gy dose bin (25-35 Gy), no dependence on Ai was found as

the decrease in size from pre- to post-RT was nearly constant. However, the sample size

of airways that met the criteria of this dose bin was small (n=9). Further experiments

with a larger sample size, of both subjects and airways of varying doses, are needed to

validate this result across a large dose range through a multi-variate analysis. This result

is imperative to lung RT planning since airway dose to structures beyond the PBT are

not typically considered, nor is the dose to the PBT (as long as it is within specified

limits). As previously suggested, recommended dose constraints may not be accurate for

PBT structures or applicable for more distal airway generations. These results suggest

that there may be no threshold airway size for radiation-induced bronchial stenosis, which

may potentially lead to pulmonary functional decline.

Figures 3.7 and 3.8 show that
√
WA significantly decreases with airway dose. This

suggests that while there is an overall shrinkage of the airway with dose, Ai decreases

more in proportion to the thickness of airway wall. In other words, while the airway

reduced in size, the relative thickness of the airway wall increased, resulting in increased

stenosis of the airway. It has been previously shown that airway-wall thickening tends

to encroach on the inner lumen through a remodeling and inflammatory process, rather

than expand into surrounding lung parenchyma Hasegawa et al. [138]. Nakano et al. [132]
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found that WA% was greater and Ai was smaller as the forced expiratory volume in one

second (% predicted) (FEV1%P) decreased in a cohort of patients with COPD. Hasegawa

et al. [138] performed a similar study, but specifically focused on third through sixth

generation airways in COPD patients. Their study found WA% and Ai to be significant

predictors of FEV1%P, and that correlation strength increased in further generations

(i.e., as airways became smaller). Further studies have shown that more distal airways

are better predictors of lung function compared to those airways located near or within the

PBT [133, 134]. Kelsey et al. [17] compared the flow of airways to laminar flow through

Poiseuille’s law, which states that the resistance to airflow is inversely proportional to the

fourth power of the radius. The hypothesis that radiation-induced bronchial stenosis is

an important factor in pulmonary function and functional avoidance RT is supported by

the evidence presented in the strong dose-response relationship with stenosis in Figure

3.4, coupled with the decrease in function of downstream regions in Figure 3.5.

This study was limited due to the small sample size and retrospective nature of the analy-

sis. The radiation treatment that was delivered was not designed to study indirect effects

of the radiation dose on the airways and subsequent ventilation changes downstream. As

all the swine were irradiated in the inferior left lung, there was not much volume of lung

downstream from the irradiated airways to study using 4DCT derived ventilation maps.

A second limitation of this work was the small (n=3) sample size of subjects. While over

50 airways were segmented as part of this analysis, it would be advantageous to perform

the aforementioned improvements in a larger sample. One consideration when applying

this result to human subjects, is the difference in the anatomical structure of the airways

in the miniature swine compared to that of humans. Human airways exhibit a bipodial

branching pattern where each airway has a bifurcation point and splits into two airways.

In contrast to human airways, swine airways exhibit a monopodial branching pattern

where the left and right main stem bronchi extend far inferiorly, with further generations
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branching off asymmetrically. This difference in airway structure between swine and

humans may result in differences in the effect of airway damage on pulmonary function.

This further emphasizes the need to investigate radiation-induced airways changes in a

human cohort, along with pulmonary function analysis.

3.3 A Risk Model for Radiation-Induced Bronchial

Stenosis and Indirect Ventilation Damage

3.3.1 Methods

3.3.1.1 Patient Characteristics

The images used in this study were collected from 10 lung cancer patients that partici-

pated in a University of Wisconsin-Madison IRB-approved prospective study

(NCT02843568) who underwent RT for non-small cell lung cancer (NSCLC). Exclusion

criteria for this study included prior or future planned surgery for the existing lung can-

cer, prior thoracic radiotherapy, severe COPD, oxygen dependence, known underlying

collagen vascular disease, under 18 years of age, and a Karnofsky score < 60%. Subjects

received a standard fractionation course of 2 Gy x 30 fractions. The patient information

for this study cohort is summarized in Table 3.1.
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Table 3.1: Study cohort characteristics

Number of Patients 10

Mean age (range) 71 y (64-89)

Gender (male/female) 6/4

Tumor location

Right Upper 3

Right Middle 2

Right Lower 1

Left Upper 2

Left Lower 1

Mediastinum 1

Mean PTV Volume (range) 468 cc (70 - 1935)

3.3.1.2 4DCT Acquisition

The 4DCT scans used in this work were acquired pre-RT and 12 months following

treatment. The post-RT timepoint of 12 months was chosen for this study as the me-

dian onset of radiation-induced bronchial stenosis has been reported to be 6-10 months

[16, 19, 31, 32, 139, 140]. All scans were acquired on a Siemens SOMATOM Definition

Edge 128 slice CT scanner (Siemens Healthineers AG, Erlangen, Germany) with a 0.6

mm slice thickness, 0.5 second tube rotation time, 0.09 pitch, 120 kVp, and 100 mAs/ro-

tation. The Varian Real-Time Position Management (RPM) (Varian Medical Systems

Inc., Palo Alto, CA) system monitored respiration-induced movement and captured res-

piratory traces used for the 4DCT reconstructions. Melodic breathing instructions were

played at a rate of 15 breaths per minute during each image acquisition which has been

demonstrated to increase the repeatability between scans and reduce the occurrence of
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artifacts [141]. The phase of the scans used for both the 4DCT-derived ventilation map

and the airway segmentation was determined by selecting the phase which minimized the

difference in tidal volumes between the two timepoints. Tissue expansion using images

with tidal volumes within 100cc of each other has been shown to increase the repeatability

of the ventilation measurement [142].

3.3.1.3 4DCT-derived Ventilation

This work utilized an image registration algorithm with multi-resolution cubic B-spline

parameterization and used the sum of squared tissue volume difference (SSTVD) as the

similarity metric as described in Section 2.4.2. The Jacobian-based method described by

Shao et al. [73] and Section 2.4.3 was used to generate ventilation maps for each subject

at both timepoints (pre- and post-RT). Ventilation change maps (Jratio) were calculated

by taking the voxel-wise ratio of the post-RT and pre-RT LER-N ventilation maps.

3.3.1.4 Airway Segmentation & Analysis

Airway segmentation was performed using a commercial virtual bronchoscopy software

(VIDA Diagnostics Inc., Coralville, IA). Airway measurements and segmentations up to

the 11th airway generation on average were generated for the entire lung. To generate

the airway segmentations, an initial segmentation was performed automatically by the

software. The automatic segmentations were then visually inspected, and corrected if

required. Airway measurements that were collected included luminal diameter and cross-

sectional area (Ai), wall thickness (WT), and wall area percentage (WA%). Measurements

were made perpendicular to the long axis of the airway and averaged along the middle

third of the segment. All airway measurements were exported from VIDA into XML
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datasets where they could be pulled from. The reproducibility of airway measurements

produced using this software has been previously reported by Smith et al. [143].

A nearest neighbor search was performed to connect each terminal airway in the pre-RT

airway tree to its nearest voxels in the LER-N ventilation map. It was assumed that

each terminal airway was responsible for the ventilation to those nearest voxels. Only

voxels that received less than 5 Gy were included in the analysis to ensure that any

changes in ventilation were due to changes in the airways and not direct irradiation of

the lung parenchyma. The post-RT airway tree was warped to the pre-RT reference

frame using deformable image registration from Section 2.4.2 in order to determine the

correspondence between the post- and pre-RT airway tree labels. Label pairs were used to

extract airway measurements from the XML datasets as well as map to the terminal Jratio

regions. Airways that were within the planning target volume (PTV) were excluded from

analysis due to these airways being surrounded by disease/tumor. Airways surrounded

by disease may be compressed or infiltrated by the tumor making it difficult to measure

the true changes in the airways post-RT due to radiation treatment.

Cumulative airway resistance for a terminal airway pathway was determined by summing

all airways in series within the path. Resistance was calculated using Poiseuille’s Law:

R =
8ηl

πr4
(3.1)

where η is the viscosity, l is the length of the airway, and r is the radius of the airway.

The viscosity was assumed to be constant at 1.7x10−5 m2/s. Airway resistance change

was defined as the ratio between the post- and pre-RT cumulative airway resistances

for each terminal airway path. Lastly, the maximum point dose for each airway was

defined as D0.03cc as this was found by Manyam et al. [32] to be a significant predictor of

non-pneumonitis toxicities in SBRT patients.
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3.3.1.5 Statistical Analysis

RStudio (version 2022.07.2; Posit Software, Boston, MA) was used for calculation of all

statistics. Pearson correlation coefficients were first determined for correlations between

changes in airway metrics, including wall area fraction ratio, luminal area ratio, and

wall area ratio, and maximum dose received. The ratio was defined as the post-RT

divided by the pre-RT airway metric. Wall fraction was defined as the area of the airway

wall divided by the entire airway area. Logistic regression was used to calculate the

normal tissue complication probability (NTCP). The toxicities of interest in this work

included bronchial stenosis, which was defined as a reduction in the cross-sectional area

of a bronchial segment, and regional ventilation decline, which was defined as a regional

average Jratio < 0.94. Univariate logistic regression was first used to determine the clinical

and dosimetric predictors for these two endpoints. Any variables from the univariate

analysis that had a p-value < 0.05 were included in the multivariate logistic regression for

that endpoint. Predictors that were considered significant from univariate analysis were

compared to each other to test for correlations. For variables with a strong correlation

between each other the predictor with the lower p-value was selected to be included in

the multivariate analysis.

Receiver operating characteristic (ROC) analysis was used to analyze the power of the

selected predictors. Bootstrapping with replacement was performed with 2000 random

samplings to calculate the 95% confidence intervals (CI) for the area under the ROC

curves (AUC) and the coefficients of the predictors in the logistic regression models.

Data was randomly split into training and testing datasets with an 80/20 train/test split.

Lastly, Welch t-tests were used to compare differences in the means of airway resistances

and Jacobian ratios of the fed regions.
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3.3.2 Results

3.3.2.1 Bronchial Stenosis Dose-Response

The total number of pre/post airway segment pairs analyzed for dose-response with

bronchial stenosis was 679. There were 79 airways excluded from analysis as they were

within the PTV. Pearson correlation coefficients for maximum dose and the changes in

airway metrics were calculated for wall area fraction (WAF), wall area (WA), and lumi-

nal area (Ai) ratios. All three metrics were significantly correlated with maximum dose

(WAF: r=0.13, P<0.001; WA: r=-0.10, P=0.02; Ai: r=-0.15, P<0.001). Additionally,

bronchial segments that received less than 10 Gy had mean and median Ai ratios of 1.21

and 1.14, respectively. Segments that received greater than 10 Gy had mean and median

Ai ratios of 1.07 and 1.03, respectively. The difference between the means of the two dose

groups was statistically significant (p<0.001).

Airways were considered stenosed when the ratio of post- to pre-RT Ai was less than

unity. Of the 679 airway segments analyzed, 261 (38.4%) were stenosed following radiation

therapy. Univariate logistic regression was performed in order to determine significant

predictors of bronchial stenosis for the purposes of an NTCP model. All analyzed airway

metrics and dosimetric parameters were significantly associated with bronchial stenosis,

and the pre-RT wall thickness had the highest OR (OR 3.98; 95% CI 1.67-5.63; P <

0.001). The maximum and average dose delivered to a bronchial segment had the same

OR (OR 1.02), however the maximum dose had a lower p-value (P = 0.004). Table 3.2

summarizes the results of the univariate logistic regression, including the odds ratio (OR)

and AUC for each variable.
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Table 3.2: Univariate logistic regression analyses of dosimetric and airway parameters
for airway stenosis. Confidence intervals (CI) for the odds ratio (OR) and area under
the curve (AUC) were determined by bootstrapping with 2000 random samplings.

Feature OR (95% CI) P-value AUC (95% CI)

Max Dose 1.02 (1.01-1.03) 0.004 0.57 (0.46-0.67)

Avg. Dose 1.02 (1.00-1.04) 0.01 0.56 (0.46-0.66)

Pre-RT Di 1.16 (1.06-1.27) < 0.001 0.62 (0.53-0.71)

Pre-RT Ai 1.01 (1.00-1.02) 0.01 0.62 (0.52-0.71)

Pre-RT Ao 1.01 (1.00-1.01) 0.004 0.61 (0.52-0.70)

Pre-RT WT 3.09 (1.67-5.63) < 0.001 0.56 (0.46-0.65)

Pre-RT WA 1.02 (1.00-1.03) 0.002 0.60 (0.50-0.69)

Abbreviations: Di = inner diameter; Ai = luminal area; Ao = outer

area; WT = wall thickness; WA = wall area.

From the results of the univariate logistic regression analysis, the maximum dose and pre-

RTWT were selected for multivariate logistic regression analysis as they each had stronger

p-values than the other variables they were found to be correlated with. Maximum dose

delivered to a bronchial segment (OR 1.01; 95% CI 1.00-1.03; P = 0.03) and pre-RT WT

(OR 2.61; 95% CI 1.42-4.73; P = 0.002) were found to be significantly correlated with

bronchial stenosis using multivariate analysis. The results of the multivariate logistic

regression analysis are summarized in Table 3.3. Figure 3.9 shows the ROC curve from

the multivariate logistic regression model using the testing dataset, and has an AUC of

0.61.
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Table 3.3: Multivariate logistic regression analyses using max dose and pre-RT wall
thickness as the predictors for airway stenosis.

Feature OR (95% CI) P-value AUC (95% CI)

Max Dose 1.01 (1.00-1.03) 0.03
0.61 (0.51-0.71)

Pre-RT WT 2.61 (1.42-4.73) 0.002

Figure 3.9: Receiver operating characteristic (ROC) curve from the multivariate lo-
gistic regression for airway stenosis. Overlaid on the plot is the area under the ROC
curve (AUC) of 0.61.

3.3.2.2 Airway Resistance and Ventilation Change

A total of 328 terminal airway paths were analyzed to investigate the relationship between

airway resistance change and ventilation change following radiation therapy. Of the 328

airways paths, 129 fed regions that declined in ventilation post-RT (Jratio < 0.94) and

199 fed regions that did not decline in ventilation post-RT. Of the 129 airway paths that
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fed regions of ventilation decline, 74 (57%) increased in resistance post-RT compared to

the pre-RT airway path resistance. Of the 199 airway paths that did not feed regions

of ventilation decline, 72 (36%) increased in resistance post-RT compared to the pre-

RT airway path resistance. There was a significantly (P < 0.001) greater proportion of

airways that increased in resistance post-RT that fed regions that experienced ventilation

decline compared to those that fed regions that experienced no change or increased in

ventilation. Furthermore, as shown in Figure 3.10, the average resistance ratio (post-

RT/pre-RT cumulative airway path resistances) was significantly (P = 0.004) greater for

the airways that fed regions of ventilation decline (average R-Ratio = 1.72) compared

to the airways that fed regions of ventilation increase (average R-Ratio = 1.20). Lastly,

as seen in Figure 3.11, the average Jratio was significantly (P < 0.001) greater in regions

that were fed by airways that decreased in resistance post-RT (Jratio = 0.98) compared

to regions that were fed by airways that increased in resistance post-RT (Jratio = 0.95).
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Figure 3.10: Boxplots showing the resistance ratios (post-RT/pre-RT cumulative
airway resistances) of airways that fed regions that had a Jacobian ratio greater or less
than 0.94. There was a significant (P = 0.004) difference between the average resistance
ratio of the two groups.
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Figure 3.11: Boxplots showing the Jacobian ratios of regions fed by airways that
either decreased or increased in cumulative resistance post-RT. There was a significant
(P < 0.001) difference between the average Jacobian ratios of the two groups.

Univariate analysis was performed and it was found that the resistance ratio (OR 1.20;

95% CI 1.01-1.43; P = 0.03) was significantly correlated with regional ventilation decline.

Results of the univariate logistic regression analysis are summarized in Table 3.4, and the

ROC curve is shown in Figure 3.12 with an AUC of 0.69.

Table 3.4: Univariate logistic regression analysis using the resistance ratio (post-
RT/pre-RT resistances) as the predictor for ventilation decline, where ventilation de-
cline was defined as a Jacobian ratio < 0.94.

Feature OR (95% CI) P-value AUC (95% CI)

R-Ratio 1.20 (1.01-1.43) 0.03 0.69 (0.54-0.82)
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Figure 3.12: Receiver operating characteristic (ROC) curve from the univariate logis-
tic regression for ventilation decline. Overlaid on the plot is the area under the ROC
curve (AUC) of 0.69.

Figure 3.13 is an example that shows one subject with the delivered dose distribution

(1A), pre-RT airway segmentation (1B), and the Jacobian ratio map thresholded to only

show voxels that received less than 5 Gy and had a Jacobian Ratio less than 0.94. (1C).

Figure 3.13: One subject showing a coronal view of the (A) delivered dose distribution,
(B) segmented airways, and (C) Jacobian Ratio thresholded to only show voxels that
received less than 5 Gy and had a Jacobian Ratio less than 0.94.
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3.3.3 Discussion

Other studies have reported airway toxicity dose constraints for SBRT fractionated pa-

tients [29, 32, 85, 140], however this is the first study to analyze the dose-response relation-

ship between bronchial stenosis and radiation dose for standard fractionation patients. It

is also the first work to quantify the relationship between airway resistance changes and

4DCT-based ventilation changes from baseline (pre-RT) and 12-months post-RT. The re-

sults shown demonstrate that airway toxicity, specifically bronchial stenosis, is prevalent

beyond the proximal bronchial tree, and that this increases airway resistance and de-

creases ventilation function in the regions supplied by the affected airways. It was found

through multivariate analysis that the maximum dose delivered to a bronchial segment

and the pre-RT wall thickness of that segment are significant predictors of bronchial steno-

sis following radiation therapy. Additionally, it was found that an increase in cumulative

airway resistance was significantly associated with a decrease in ventilation function in

the region of the lungs supplied by that airway branch.

There were significant correlations between maximum dose and the post- to pre-RT ratios

of wall area fraction, wall area, and luminal area. Both the wall area ratio and luminal

area ratio were weakly, negatively correlated with maximum dose, and the wall area

fraction was weakly, positively correlated with maximum dose. This means that the wall

area, while it decreased overall, made up a larger fraction of the total airway area post-RT

compared to pre-RT. Coxson et al. [144] found that the forced expiratory volume in one

second (FEV1) decreased as wall area fraction increased. The results presented in this

work suggest that increased radiation dose to a bronchial structure increases the wall area

fraction, which can lead to decreased global lung function. These results are particularly

important to pulmonary functional avoidance radiation therapy as most clinical trials in

this space largely ignore the effects of irradiating the airways, especially those beyond the

proximal bronchial tree. Based on the results shown, it is imperative that bronchial dose
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is considered and minimized when developing a treatment plan to reduce the amount of

indirect ventilation damage that occurs.

From the example subject shown in Figure 3.13, it can be seen that lower right lobe

experiences a decline in ventilation post-RT while receiving radiation dose less than 5 Gy.

As seen in the work by Patton et al. [79], doses below 5 Gy are not predicted to cause

direct ventilation damage. The cumulative airway resistances of the airway branches

feeding this region were found to have increased in resistance post-RT compared to pre-

RT, and it is hypothesized that the increased resistance is responsible for the decrease

in ventilation seen. This hypothesis is further supported by the significant association

between regional ventilation decline and cumulative airway resistance from the univariate

logistic regression analysis. The univariate analysis showed that the resistance ratio had

an OR of 1.20 (95% CI 1.01-1.43) and an AUC of 0.69. By combining this result with

the results of the multivariate analysis for bronchial stenosis, it is a reasonable conclusion

that radiation dose to a bronchial segment can cause stenosis, leading to increased airway

resistance and a decline in ventilation in the region fed by those airways.

While this work was successful in showing a relationship between bronchial stenosis,

radiation dose, and ventilation change, there were a few limitations. First, this study

was performed on only 10 subjects. By performing the methodology on a larger cohort

of subjects there may be additional information that can be determined from the dose-

response of the airway metrics. Another limiting factor was that all subjects analyzed were

treated with a standard fractionation of 2 Gy x 30 fractions. This type of fractionation

schedule was selected for this study as it maximized the number of airways receiving

radiation dose and airways that fed regions distal to the main volume of irradiation. SBRT

fractionation treatments (10 Gy x 5 fractions) are typically prescribed for tumors not near

the mediastinum due to previous reports of central airway toxicities as well as concerns

due to high biological radiation dose to the heart. Due to the regions of irradiation
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for SBRT treatments, there will be less airways and lung parenchyma “downstream”

from the PTV, however the response due to irradiation and the effect on ventilation

may differ from the results provided here. Additionally, due to only analyzing standard

fractionation subjects, there is a significant correlation between airway caliber and dose

received. All the PTVs analyzed were centrally located meaning that the larger airways

were generally closer to the highest regions of the dose distribution. The results of the

multivariate analysis showed that the pre-RT wall thickness was a significant predictor

of bronchial stenosis, however there is a significant (p<0.001) correlation with maximum

dose. It may be necessary to only use the results of the univariate analysis as a way

to predict bronchial stenosis until further analysis can be performed on a wider variety

of dose distributions. A third limitation is the resolution of the CT images as well

as the resolution of the airway segmentation software and its ability to segment small

airways. The image resolution used for this work was 0.6mm isotropic voxels, however,

the smallest airways segmented experienced changes in metrics, such as wall thickness

and inner diameter, that were on the order of the imaging resolution. Additionally, the

software is only able to automatically segment airways down to a certain size before it

labels non-airway tissues as airway. At this point, manual intervention is required which

may lead to missed or incorrectly segmented airways. Lastly, the use of Poiseuille’s Law

assumes laminar flow, which occurs throughout most of the airway tree. However, this

is a simplification as both laminar and turbulent flow occur within the airways and the

calculation of resistance where turbulent flow exists depends on the density of the gas

instead of the viscosity.
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3.4 Chapter Summary

While there have been previous studies that have shown a dose-response relationship with

bronchial stenosis, no work has provided a quantitative relationship between airway dose

and stenosis, nor considered these effects in conjunction with ventilation change. The

results of this work support the hypothesis that airway dose beyond the PBT should

be considered during functional avoidance treatment planning to avoid radiation-induced

bronchial stenosis and potentially pulmonary function decline. Additionally, significant

correlations were found between the maximum dose delivered to a bronchial segment, the

pre-RT wall thickness, and the occurrence of bronchial stenosis. Furthermore, significant

associations were found between increased cumulative airway resistance and regional ven-

tilation decline, supporting the hypothesis that radiation-induced bronchial stenosis has

an indirect effect on ventilation function. The results from this work should be considered

for future clinical trials involving functional lung sparing as dose to bronchial structures

may impact regional ventilation function in addition to the direct effects already seen

from irradiation of lung parenchyma.



86

Chapter 4

Modeling normal lung tissue

response to radiation dose 1

4.1 Introduction

4DCT-derived ventilation maps are assumed to be a surrogate for lung ventilation and

can be calculated using various techniques. Kipritidis et al. [146] estimated lung function

directly using Hounsfield unit values of the time-averaged 4DCT. Reinhardt et al. [147]

used the Jacobian determinant of the transformation computed from image registration

and is the method used in this work. The Jacobian determinant method works on the

assumption that the expansion of a voxel is caused by the addition of air from ventilation.

Previous works have calculated the local lung expansion ratio (LER) from the end inhale

phase (100IN) and the end exhale phase (0EX), which is defined as 2-phase LER (LER-

2) [72]. However, this can lead to errors in the ventilation map due to out-of-phase

ventilation. Out-of-phase ventilation can be defined as local lung volume change that is

1Portions of this work have been published [75, 145]
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out-of-phase with respect to global lung contraction and expansion [72]. To correct for

out-of-phase ventilation, the LER can be calculated from the ratio of the maximum and

minimum local lung volume over the entire breathing cycle, as proposed by Shao et al.

[72]. This calculation of LER is defined as N-phase LER (LER-N).

Vinogradskiy et al. [86] suggested that incorporating ventilation-based functional imaging

could help improve prediction of radiation pneumonitis. Through logistic regression they

found that dose-function metrics had on average greater AUC values than their tradi-

tional dose-volume equivalents [86]. Faught et al. [13] found that including a variety of

functional information resulted in a higher predictive power than using strictly total lung

dose. Additionally, by using CT ventilation-based functional lung metrics to guide treat-

ment planning, they observed predicted reductions in grades 2+ and 3+ pneumonitis of

7.1% and 4.7%, respectively [13]. A previous regression-based model has been developed

by Patton [123] to predict changes in post-RT ventilation based on pre-RT ventilation

measurements and the dose delivered. One of the issues with this approach was that ven-

tilation measurements were calculated using only the end-inhale and end-exhale phases

of the 4DCT, which does not account for out-of-phase ventilation.

More recently, machine learning-based models have grown in popularity due to their

higher predictive accuracy. Katsuta et al. [95] trained a kernel-based support vector

machine (SVM) to predict radiation pneumonitis and found that their predictive power,

via the AUC, significantly improved when Jacobian-based dose-function features were

added. Huang et al. [93] used a fuzzy clustering neural network to predict radiation-

induced pneumonitis based on ventilation imaging-based dose-function metrics. However,

to date there has been no work attempting to predict regional ventilation change following

radiation therapy.

The first section of work in this chapter develops and quantifies the accuracy of a dose-

response model using ventilation measurements calculated from all phases of the 4DCT
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(LER-N). Through using a “simpler” modeling approach using polynomial regression, it

is possible to obtain physical values associated with the predicted outcomes, compared to

the more black box nature of deep learning solutions. The second section of this chapter

trains, validates, and compares multiple deep learning-based models to predict regional

pulmonary ventilation changes. It is hypothesized that training a deep learning model

on volumetric images will result in a higher model sensitivity in predicting regions of

ventilation decline.

4.2 Modeling the impact of out-of-phase ventilation

on normal lung tissue response to radiation dose

4.2.1 Methods

4.2.1.1 4DCT Acquisition and Datasets

34 human subjects from a University of Wisconsin-Madison (UW) IRB-approved prospec-

tive study (NCT02843568) and an additional 8 human subjects from a University of Iowa

(UI) IRB-approved trial (NCT01039649) who underwent RT were used in this study. Ex-

clusion criteria for this study included prior or future planned surgery for the existing

lung cancer, prior thoracic radiotherapy, severe COPD, oxygen dependence, known un-

derlying collagen vascular disease, under 18 years of age, and a Karnofsky score < 60%.

Each subject had two 4DCT scans separated by five minutes acquired pre-RT and three

months post-RT for a total of four scans. The patient information for this study cohort

is summarized in Table 4.1.
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Table 4.1: UW and UI cohort characteristics. Note that one subject did not have a
tumor stage recorded during their study enrollment.

Number of Patients 42

Mean age (range) 68 y (30-88)

Gender (male/female) 26/16

Tumor type

Adenocarcinoma 20

Squamous Cell Carcinoma 10

NSCLC 7

Others 5

Tumor location

Right Upper 13

Right Middle 4

Right Lower 9

Left Upper 11

Left Lower 5

Mean PTV Volume (range) 354.2 cc (13.7-1447.1)

Mean Prescription Dose (range) 56 Gy (36-70)

Karnofsky (range) 90 (70-100)

SBRT/Standard Fractionation 19/23

Tumor Stage

I 20

II 0

III 17

IV 4

All scans for the UI dataset were acquired on a Siemens Biograph 30-slice CT scanner
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(Siemens AG, Munich, Germany) with a 2 mm slice thickness, 0.5 second tube rotation

time, 0.1 pitch, 120 kVp, and 700 mAs. The scanner used an Anzai AZ-773V (Anzai

Medical Co., Tokyo, Japan) with a strain gauge belt and audible timing cues were played

throughout the scan to increase the repeatability of respiration (RESP@RATE, Intercure

Ltd., Lod, Israel).

All scans for the UW datasets were acquired on a Siemens SOMATOM Definition Edge

128 slice CT scanner with a 0.6 mm slice thickness, 0.5 second tube rotation time, 0.09

pitch, 120 kVp, and 100 mAs/rotation. Respiration induced movement was monitored

using the Varian Real-Time Position Management (RPM) (Varian Medical Systems Inc.,

Palo Alto, CA), which captured the respiratory traces from the patients for the 4D

reconstructions. Additionally during each 4DCT acquisition, breathing instructions were

played to increase the repeatability between scans and reduce the occurrence of artifacts.

Breathing instructions were played at a rate of 15 breaths per minute.

4.2.1.2 Image Registration and Data Preprocessing

Each 4DCT was reconstructed into 10 discrete phases of the breathing cycle, with 20%

(20IN), 40% (40IN), 60% (60IN), 80% (80IN) and 100% (100IN) inspiration phases and

80% (80EX), 60% (60EX), 40% (40EX), 20% (20EX) and 0% (0EX) expiration phases.

Han et al. [148] describes more in-depth the respiration cycle as it pertains to 4DCT

imaging.

Deformable image registration was used to register each of the 9 phases (20-100) to the

0EX phase. The registration algorithm uses a multi-resolution B-spline parameterization

as described in Section 2.4.2 [149]. Additionally, to account for HU variation with lung

density change, a sum of squared tissue volume difference (SSTVD) similarity metric is

used. By using the method proposed by Reinhardt et al.[147], the LER of each voxel is
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estimated by calculating the Jacobian determinant of the transformation. This method of

calculating ventilation has also been shown to result in more reproducible results versus

CT intensity-based methods [150].

4.2.1.3 Local Expansion Ratio From Multiple 4DCT Phases

According to Shao et al.[72][151], only calculating the LER from two phases of the breath-

ing cycle will underestimate LER when there is out-of-phase ventilation. To account for

this, the LER is calculated using multiple phases of the breathing cycle (LER-N) as

describe in Section 2.4.3.

4.2.2 Model Training & Cross-Validation

The method for building the predictive model was similar to the method described by

Patton [123]. The predictive model was built using polynomial regression based on the

delivered dose distribution and the change in ventilation. From the pre-RT Jacobian

value and the dose of a voxel, the model was designed to predict the change in ventilation

of the voxel. To train the model, 27 of the 34 subjects from the UW dataset were used.

For subjects who had multiple scans at a single timepoint that were deemed acceptable

(i.e. no excessive artifacts), the Jacobian maps for the scans were averaged using the

geometric mean. The training data consisted of the average post-RT Jacobian to pre-

RT Jacobian ratio, JpostRT/preRT , and were binned based on dose and pre-RT Jacobian

values. Dose bins ranged from 0 Gy to 60 Gy in 5 Gy increments and pre-RT Jacobian

bins ranged from 1.0 to 1.6 in increments of 0.05. The average JpostRT/preRT for all voxels

were then calculated for each bin. 3D polynomial regression was performed using the

dose distribution and pre-RT Jacobian as the independent variables and the average

JpostRT/preRT as the dependent variable. Twenty-five regression models ranging from first
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to fifth order polynomials in both dose and pre-RT Jacobian domains were created for

each iteration of the cross validation. This means that there were 27 models created for

each of the 25 different combinations of polynomial orders. The polynomial models are

referred to as polyXY, where X is the order of the polynomial for dose and Y is the

order of the polynomial for pre-RT Jacobian. The fits of each model were calculated

using the method of least-squares and the adjusted coefficient of determination (R2
adj)

was calculated for each fit. R2
adj is a metric that informs how well the model fits the

data, but also penalizes for overfitting when higher-order terms are used. This allows for

fair comparison between the fits of models that have different ordered polynomials[152].

For each polynomial regression model a predicted post-RT ventilation map was created.

Normalization was achieved by multiplying the Jpredict map by the ratio of JpreRT to

Jpredict, resulting in the predicted ventilation map having the same tidal volume as the

pre-RT map.

4.2.2.1 Validation

Validation of the model was initially performed using a leave-one-out cross-validation as

described by Patton [123]. Cross-validation was performed in order to determine the

degree of polynomial fit for dose and JpreRT . The various models were assessed using the

gamma pass rate with a distance-to-agreement term of 2mm and an intensity difference

term of 6%, which is equal to the standard deviation of the Jacobian values between

repeat scans[153]. The gamma analysis was performed by comparing JpostRT and Jpredict

to test the accuracy of each model’s predictive ability. The models were also compared

using R2
adj. From the results of the cross-validation, the best model of the 25 various

polyXY models was determined by choosing the model that had the highest quadratic

sum of the gamma pass rates and R2
adj.
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Additional validation was performed on the model determined from cross-validation using

the remaining 7 subjects from the UW dataset and the 8 subjects from the UI dataset.

The inclusion of the UI dataset provided data that was acquired on a different scanner,

at a different institution, with different treatment planning parameters, and was collected

almost 15 years prior to the UW dataset. Using the UI dataset tested the robustness and

flexibility of the model. Gamma pass rate was used again to determine the similarity

between the predicted and actual post-RT ventilation maps. A Student’s t-test com-

pared the similarity of the N-phase model and 2-phase model gamma pass rates, positive

predictive value (PPV), true positive rate (TPR), true negative rate (TNR), and accu-

racy (ACC). PPV, TPR, TNR, and ACC are calculated from true positives (TP), false

positives (FP), true negatives (TN), and false negatives (FN). A TP is when the model

correctly predicts a decrease in function of 6% or greater, a FP is when the model incor-

rectly predicts a decrease in function of 6% or greater, a TN is when the model correctly

predicts no decline in function, and a FN is when the model incorrectly predicts no de-

cline in function. The threshold value of 6% was used due to the Jacobian ratio of repeat

scans having a standard deviation near 6%. PPV, TPR, TNR, and ACC were calculated

at the voxel level and then averaged for each subject. The final values given for each

of the metrics is the average of all the additional validation subjects for the polynomial

model that was determined from cross-validation. P-values reported were calculated on

the patient level (i.e. n=15). The equations for PPV, TPR, TNR, and ACC are given in

Equation 4.1, Equation 4.2, Equation 4.3, and Equation 4.4, respectively.

PPV =
TP

TP + FP
(4.1)

TPR =
TP

TP + FN
(4.2)
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TNR =
TN

TN + FP
(4.3)

ACC =
TP + TN

P +N
(4.4)

P and N in the equation for ACC represent the total number of positives and negatives

observed in the ground truth JpostRT data, respectively.

All metrics used to validate the predictive model were calculated using voxels in the lung

that received doses of 20 Gy or higher. A mean lung dose of 20 Gy and percent volume of

the lung receiving 20 Gy (V20) have been shown to be predictors of when lung toxicities

begin to occur and are used commonly in treatment planning [154, 155]. Additionally, it

has been shown that regions of the lung that receive greater than 20 Gy show a greater

decline in ventilation post-RT than regions that receive less than 20 Gy [123].

To investigate the N-phase model’s ability to predict post-RT ventilation in regions of

out-of-phase ventilation in the pre-RT ventilation map, the Jacobian ratio of post-RT to

predicted Jacobian values (JpostRT/predict) were calculated for both models and compared.

Ideally, this ratio should be unity which would indicate that the predicted post-RT Ja-

cobian value is equal to the actual post-RT Jacobian value for a particular voxel. For

this analysis, only voxels that were determined as out-of-phase pre-RT were analyzed and

included voxels receiving all dose values.

As previously shown by Patton et al. [156], regions of the lung labeled as high function

prior to RT (JpreRT >1.1) have a greater reduction in ventilation compared to those re-

gions considered low function pre-RT. Voxels that received 20 Gy or more, were predicted

to decline in function by more than 6%, and were identified as high function pre-RT were
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analyzed using the LER-N model to determine the model’s ability to predict regions of

the lung that have the largest impact on post-RT ventilation.

4.2.3 Results

Figure 4.1 shows the results for the subject with the greatest amount of lung considered

out-of-phase, with approximately 50% of the lung, mostly in the inferior regions, out-

of-phase. Consequently, the 2-phase model provides a poor prediction of the ventilation

map post-RT. By incorporating information from multiple phases of the breathing cycle,

the out-of-phase ventilation was accounted for and a more accurate prediction of the

ventilation map was produced. This is an extreme case for out-of-phase ventilation as it

was determined for this cohort that an average of 14% of the lung is out-of-phase, but

this shows the usefulness of including N-phase data in the model.
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Figure 4.1: Images from one subject with severe out-of-phase ventilation. A) Dose
distribution overlaid on pre-RT CT B) LER-N pre-RT Jacobian map C) LER-N actual
post-RT Jacobian map D) LER-N predicted post-RT Jacobian map E) LER-2 pre-RT
Jacobian map F) LER-2 actual post-RT Jacobian map G) LER-2 predicted post-RT
Jacobian map. The inferior portions of the lungs in the LER-2 maps are largely out-
of-phase, which is corrected by LER-N.

Figure 4.2 shows the cumulative 2D histogram of LER-N vs LER-2 Jacobian values for

all voxels for all subjects used in validation. A logarithmic scale is used for better visual-

ization. The area labeled as A lays between the line y = x and y = 1.06x and represents

voxels considered in-phase ventilation, which constitute 86.1% of all the voxels. Region

B is considered out-of-phase ventilation where LER-N and LER-2 calculated the voxel as

low function (J < 1.1). Region C is out-of-phase ventilation where LER-N calculated the

voxel as high function (J > 1.1) and LER-2 calculated the voxel as low function. Lastly,

region D is out-of-phase ventilation where LER-N and LER-2 calculated the voxel as high
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function. P(A), P(B), P(C), and P(D) are the percent of voxels in each region as noted

in Figure 4.2.

C

D
A

B

P(A)=86.1%

P(B)=1.4%

P(C)=7.9%

P(D)=4.6%

Figure 4.2: 2D cumulative histogram of LER-N vs LER-2 Jacobian values. Region A
lies between the lines y=x and y=1.06x and is considered in-phase ventilation. Regions
B, C, and D are considered out-of-phase.

The calculation of out-of-phase ventilation determined by using LER-N matches well with

the findings of Shao et al. [72]. In this study it was determined that 13.9% of all voxels

were considered out-of-phase compared to 19.3% from Shao et al. [72], which included a

different cohort of subjects. Note that Shao et al. [72] considered voxels out-of-phase if

the LER-N>1.05*LER-2, while this work considers voxels out-of-phase when the LER-

N>1.06*LER-2. The value 1.06 was selected as it is the maximum intensity difference

term in the gamma pass rate.
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4.2.3.1 Cross-validation

Cross-validation showed that the gamma pass rate of the 25 models ranged between

57.45% and 58.29%, with the average gamma pass rate being 57.95%. The gamma pass

rates and R2
adj for the 25 different polynomial models are summarized in Tables 4.2 and

4.3.

Table 4.2: Average gamma pass rates for each polynomial model.

Dose Polynomial Order

JpreRT Polynomial Order 1 2 3 4 5

1 58.29% 58.23% 57.64% 58.22% 58.25%

2 58.19% 58.17% 57.48% 57.99% 57.94%

3 58.01% 58.03% 57.45% 58.00% 57.95%

4 57.98% 57.81% 58.09% 58.00% 57.95%

5 58.14% 57.97% 58.02% 57.89% 57.95%

Table 4.3: Average R2
adj for each polynomial model.

Dose Polynomial Order

JpreRT Polynomial Order 1 2 3 4 5

1 84.93% 92.56% 95.94% 97.50% 97.49%

2 92.25% 92.57% 96.05% 97.75% 97.75%

3 92.27% 92.63% 96.04% 97.78% 97.76%

4 92.24% 92.69% 97.81% 97.82% 97.97%

5 92.31% 92.72% 97.96% 97.97% 97.97%

The gamma pass rates and R2
adj values for each model were summed in quadrature,

choosing the highest value as the model to continue analysis with. It was determined



99

that a polynomial fit using third order for dose and fifth order for pre-RT Jacobian value

(poly35) best modeled the input data.

The polynomial surface fits for the LER-N and the LER-2 for poly35 are represented in

Figures 4.3 and 4.4, respectively.

Figure 4.3: Predicted Jacobian ratio polynomial fit (shaded surface) using the LER-
N training dataset (points). Polynomial with third order for dose and fifth order for
pre-RT ventilation.
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Figure 4.4: Predicted Jacobian ratio polynomial fit (shaded surface) using the LER-2
training dataset (points). Polynomial with third order for dose and fifth order for pre-
RT ventilation.

The equation corresponding to the poly35 model fit for the LER-N model is given as

z = − 33.2 + 0.6x+ 123.5y + 0.002x2 − 2.1xy

− 174.6y2 − 2.4× 10−6x3 − 0.004x2y + 2.5xy2

+ 120.5y3 − 2.6e× 10−6x3y + 0.003x2y2

− 1.4xy3 − 40.3y4 + 4.9× 10−6x3y2 − 0.001x2y3 + 0.3xy4 + 5.2y5

(4.5)

where x is the dose in Gray, y is the JPreRT , and z is the predicted Jacobian ratio.

The equation corresponding to the poly35 model fit for the LER-2 model is given as
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z = 36.8− 0.03x− 134.4y + 1.7× 10−5x2 + 0.07xy

+ 200.2y2 − 5.8× 10−6x3 + 6.4× 10−4x2y − 0.06xy2

− 147.9y3 + 6.6× 10−6x3y − 9.3× 10−4x2y2

+ 0.03xy3 + 54.1y4 − 1.2× 10−7x3y2 + 2.2× 10−4x2y3

−0.003xy4 − 7.9y5

(4.6)

where x is the dose in Gray, y is the JPreRT , and z is the predicted Jacobian ratio.

The poly35 model was then used for additional validation using the remaining UW sub-

jects and UI subjects.

4.2.3.2 Additional Validation

Using the additional UW subjects and the UI subjects for further validation, it was

found that for voxels that received 20 Gy or greater, there was a significant increase

from 52% to 59% (p=0.03) in the gamma pass rates of the LER-N model predicted post-

RT Jacobian maps to the actual post-RT Jacobian maps, relative to the LER-2 model.

Additionally, the accuracy significantly increased from 68% to 75% (p=0.03) using the

LER-N model, relative to the LER-2 model. Table 4.4 summarizes the mean, variance,

Pearson Correlation, and p-value for PPV, TPR, TNR, ACC, and gamma pass rate for

both models.

The voxels labeled as out-of-phase pre-RT were analyzed for both LER-N and LER-2

models to observe the effect of out-of-phase ventilation on the model’s ability to predict

post-RT ventilation. Figure 4.5 is a histogram of JpostRT/predict for the LER-2 and LER-

N models. Using the LER-N model to predict post-RT Jacobian values for each voxel
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Table 4.4: Mean, variance, Pearson Correlation, and p-value for PPV, TPR, TNR,
ACC, and gamma pass rate for both models.

Mean Variance Pearson
Correlation

P(T<=t)
two-tail

PPV (LER-2) 64.05% 10.67%
89.37% 0.51

PPV (LER-N) 67.26% 11.72%
TPR (LER-2) 23.33% 4.60%

66.10% 0.069
TPR (LER-N) 15.13% 1.72%
TNR (LER-2) 91.79% 2.15%

31.44% 0.24
TNR (LER-N) 96.08% 0.35%
ACC (LER-2) 67.69% 1.42%

47.36% 0.026
ACC (LER-N) 74.62% 1.20%
Gamma (LER-2) 51.90% 2.78%

82.87% 0.026
Gamma (LER-N) 58.63% 3.94%

resulted in a mean JpostRT/predict of 1.002 (SD=0.094), which is closer to the desired value

of unity and significantly different (p<< 0.001) from the LER-2 mean of 1.061 (SD=0.12).



103

0.6 0.8 1 1.2 1.4 1.6

PostRT/Predict Jacobian Ratio

0

2

4

6

8

10

12
F

re
q

u
e

n
c
y

10
4

LER
2

LER
N

Figure 4.5: Histogram of JpostRT/predict for voxels determined as out-of-phase. The
dashed outline represents LER values calculated using LER-2 and the solid outline
represents LER values calculated using LER-N.

Figure 4.6 is a histogram of JpostRT/predict for all voxels that received 20 Gy or more, were

predicted to decline in function by more than 6%, and were identified as high-function

pre-RT (JpreRT > 1.1), using LER-N. 66% of the voxels had a JpostRT smaller than Jpredict

indicating lung damage occurred in regions not predicted by the LER-N model.
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Figure 4.6: Histogram of JpostRT/predict for all voxels that received 20 Gy or more,
were predicted to decline in function by more than 6%, and were identified as high-
function pre-RT (JpreRT > 1.1). Jacobian values were calculated using LER-N.

4.2.4 Discussion

It was found that when calculating LER using multiple phases, the dose response poly-

nomial regression model is able to significantly improve the accuracy of the predicted

post-RT ventilation map compared to the dose response model based on LER-2. This is

due to the LER-N maps being less noisy and less dependent on anomalies that may occur

at any given phase, and accounting for out-of-phase ventilation. This is the first study to

use LER-N to build a dose response model to predict post-RT ventilation change on the

voxel level.

The subject shown in Figure 4.1 has extreme out-of-phase breathing. It is hypothesized

that this is due to the subject modifying their method of breathing during the scan,

switching between abdominal breathing and thoracic breathing. Abdominal breathing

can cause the external surrogate to be out-of-phase in relation to the internal respira-

tory cycle. This is mostly mitigated by providing the audio breathing instructions, but
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additional studies to improve repeatability in ventilation measurements are needed to

more accurately model response to radiation therapy [157]. Additional coaching may be

required to ensure patients do not switch between abdominal and thoracic breathing.

From Table 4.4, it can be seen that the variance for the metrics calculated are relatively

low. This is due to the regions analyzed being restricted to the 20 Gy isodose line and

the amount of voxels inside that region that exhibit a change in ventilation larger than

the 6% threshold is relatively low. Within this region there are approximately 10 times

more voxels that experience no change compared to those that do change post-RT.

When only the voxels that were labeled as out-of-phase pre-RT were examined, the LER-N

model was significantly better at predicting post-RT ventilation change compared to the

LER-2 model. However, while the LER-N model resulted in a more accurate prediction of

the post-RT ventilation maps than the LER-2, there was a reduction in TPR and room to

further improve the predictive power of the model. From Figure 4.6, JpostRT tends to be

smaller than Jpredict. 66% of the voxels had JpostRT smaller than Jpredict, meaning that the

model underestimates the decline in function a voxel will undergo due to dose, possibly

due to lung damage in regions “upstream” of those directly receiving the radiation dose.

There are likely additional parameters that need to be incorporated into the model in

order to more accurately predict post-RT ventilation change. The current model fails

to identify all damage such as pulmonary vasculature damage and airway damage [29],

and changes in pressure within the lung due to inflammation and edema. This lack of

variables may be the reason for the model underestimating the reduction in ventilation

observed post-RT. Additionally, there may not be large improvements in the accuracy of

the N-phase post-RT predictions for some subjects depending on the amount of out-of-

phase ventilation for the scan. The amount of out-of-phase voxels compared to in-phase

voxels are relatively low, making it less likely that the out-of-phase voxels lie within the

dose distribution or 20 Gy cutoff. The difference in the predicted post-RT ventilation



106

maps produced by the two models would be small for regions with small amounts of

out-of-phase voxels. However, using LER-N to calculate ventilation is most useful for

patients who exhibit out-of-phase breathing as this can drastically affect the ventilation

maps, and thus affect the functional avoidance plan.

4.3 Predicting Pulmonary Ventilation Damage Af-

ter Radiation Therapy for Non-Small Cell Lung

Cancer Using Deep Learning

The polynomial regression model was developed to predict ventilation changes following

radiation therapy, however the predictive accuracy of this model suggested that there

were additional damage mechanisms that were not properly incorporated. The previous

model had only considered dose to regions of the lung and pre-RT ventilation, and were fit

to fifth-order polynomials. Additionally, this model was created at a voxel level and lost

any spatial relationship between adjacent voxels. In this section, various machine learn-

ing models were developed to predict pulmonary ventilation change maps as a result of

pre-RT ventilation and the delivered dose distribution. Predictions from the ML models

were compared using 8-fold cross-validation to predictions from the polynomial regres-

sion model described in the previous section, with a focus on improvement of properly

identifying regions or voxels that experienced a decline in ventilation post-RT. Accurate

predictions of post-RT pulmonary ventilation change as a result of RT can improve the

clinical utility of functional avoidance RT and can be delivered with more confidence that

the intended function sparing will occur.
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4.3.1 Methods

4.3.2 4DCT Acquisition & Datasets

The images used in this study were collected from 82 lung cancer patients that partici-

pated in a University of Wisconsin-Madison IRB-approved prospective study

(NCT02843568) who underwent RT for non-small cell lung cancer (NSCLC). Exclusion

criteria for this study included prior or future planned surgery for the existing lung can-

cer, prior thoracic radiotherapy, severe COPD, oxygen dependence, known underlying

collagen vascular disease, under 18 years of age, and a Karnofsky score < 60%. Each sub-

ject had two 4DCT scans separated by five minutes acquired pre-RT and three months

post-RT for a total of four scans. Subjects either received a standard fractionation course

of 2-2.2 Gy x 30 fractions or a stereotactic body radiation therapy (SBRT) course of

10-12 Gy x 5 fractions. One subject received an SBRT course of treatment with 8 Gy x

5 fractions. The patient information for this study cohort is summarized in Table 4.5.
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Table 4.5: Study cohort characteristics

Number of Patients 82

Mean age (range) 74 y (50-94)

Gender (male/female) 43/39

Tumor location

Right Upper 33

Right Middle 9

Right Lower 12

Left Upper 18

Left Lower 10

Mean PTV Volume (range) 220.2 cc (8.5-1935.1)

Mean Prescription Dose (range) 54.6 Gy (40-66)

SBRT/Standard Fractionation 48/34

All scans were acquired on a Siemens SOMATOM Definition Edge 128 slice CT scan-

ner (Siemens Healthineers AG, Erlangen, Germany) with a 0.6 mm slice thickness, 0.5

second tube rotation time, 0.09 pitch, 120 kVp, and 100 mAs/rotation. The Varian

Real-Time Position Management (RPM) (Varian Medical Systems Inc., Palo Alto, CA)

system monitored respiration-induced movement and captured respiratory traces used

for the 4DCT reconstructions. Images were reconstructed using a ‘sharp’ reconstruction

kernel (Siemens B50f). Melodic breathing instructions were played at a rate of 15 breaths

per minute during each image acquisition which has been demonstrated to increase the

repeatability between scans and reduce the occurrence of artifacts [141].
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4.3.2.1 4DCT-derived Ventilation

This work utilized an image registration algorithm with multi-resolution cubic B-spline

parameterization and used the sum of squared tissue volume difference (SSTVD) as the

similarity metric as described in Section 2.4.2. The Jacobian-based method described by

Shao et al. [73] and Section 2.4.3 was used to generate ventilation maps for each subject

at both timepoints (pre- and post-RT). LER-N maps for the two scans at each time

point were geometrically averaged to reduce noise within the map introduced by random

changes in patient respiratory patterns between scans.

4.3.2.2 Data Preprocessing

As the total number of subjects available in the training dataset was relatively small

(n=82), data augmentation was performed to increase the dataset size and training per-

formance. The augmentation was performed to include various LER-N ventilation maps

created at different tidal volumes (i.e., changing the number of phases used, N). For each

subject, the tidal volume at each discrete breathing phase was calculated, and up to

4 (40% - 100% inspiration, in increments of 20%) separate LER-N maps were created

at each timepoint and the breathing phases that had tidal volumes within 100cc had

their LER-N maps paired together. Tissue expansion using images with tidal volumes

within 100cc of each other has been shown to increase the repeatability of the ventilation

measurement [142]. This increased the size of the dataset from 82 to 242.

All images were downsampled to 3 mm isotropic voxels for training due to memory

constraints. For each subject, a bounding box was calculated using a lung mask [158, 159]

and was used to crop all images for the subject to both reduce image size and remove

irrelevant input voxels (i.e. anatomy outside of the lungs). Ventilation maps were clipped

to a range of 1 to 2 and normalized by the max. Lastly, dose images were clipped to
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a range of 0 to 75 and normalized by the max. The maximum threshold values used

for clipping were determined by calculating the 99.7 percentile (3 standard deviations).

Values greater than the thresholds were considered extreme outliers and were clipped.

4.3.3 Deep Learning Models

Several different types of network architectures were investigated to determine the optimal

model for predicting ventilation decline. Specifically, three types of machine learning

networks were investigated: Seg3DNet, a variation on the classical U-Net, ResNet3D, a

residual neural network, and a conditional generative adversarial network (cGAN).

4.3.3.1 Network Architectures

The Seg3DNet network architecture has been successfully used for directly estimating the

local tissue expansion between lungs imaged at two lung volumes as well as pulmonary

fissure detection [96, 106–108]. The Seg3DNet architecture is well suited for this work

as it is designed to be less memory-intensive compared to SegNet and U-Net [119, 160].

This allows the network to learn information from entire stacks of images instead of

cropped ROIs which might lose important spatial information from regions surrounding

the ROIs. This method sacrifices image resolution in order to preserve global context,

which is crucial for properly modeling local expansion. Figure 4.7 shows the Seg3DNet

architecture as described by Gerard et al. [106]. He variance scaling initialization [161]

was used for convolutional filter parameters and the final activation layer was a sigmoid

function. The network used the Nadam optimizer with an initial learning rate of 10E-

5. For this work, the input to the network was a 4D tensor with two 3D volumetric

images stacked along the channel dimension corresponding to the dose distribution and

pre-RT ventilation map. The output of the model was the voxel-wise ratio of the post-RT
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ventilation map divided by the pre-RT ventilation map, referred to as the Jacobian ratio

(Jratio). The Jratio map represents local ventilation change where voxels with a Jratio less

than 0.94 constitutes ventilation decline, as defined in previous studies [79, 142].

Figure 4.7: Seg3DNet architecture for the dose-response model. Four resolution levels
(L=4) are proposed, with the number of activation maps designated as Ni = 2i+5 for
i = 0,..,L. At each resolution level the spatial resolution of the image representation
is downsampled by a factor of 2. Reprinted from “FissureNet: A Deep Learning Ap-
proach For Pulmonary Fissure Detection in CT Images”, Gerard, S.E., Patton, T.J.,
Christensen, G.E., et al. Figure 2 (IEEE Trans Med Imaging 2019;38(1):156-166)[106].
© 2019 IEEE.

The ResNet3D network was based on the High-Res3DNet [162] and the 3D ResNet [103].

The model architecture, as seen in Figure 4.8, consisted of three groups of residual blocks

(ResBlocks). Each ResBlock contained a pair of atrous convolutions where the output

was added to the skip connection, and the size of the dilation (one, two, and four) and

number of filters, F, (16, 32, and 64) increased in each of the three groups. He variance

scaling initialization [161] was used for convolutional filter parameters and dropout layers

were implemented in the second and third groups with a rate of 0.25. The final activation

layer used a sigmoid function. The network used the Nadam optimizer with an initial

learning rate of 10E-5. The input was a concatenation along the channel dimension of
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the source image tensor (pre-RT ventilation map and dose distribution), and the output

image was the Jratio.

Figure 4.8: Diagram of residual neural network architecture used in this work. Input
to the model was a 2 channel, 4D tensor, and was trained to output the voxel-wise ratio
of post-RT to pre-RT ventilation maps (Jratio). The number of filters, F, used in each
convolution is labeled in the top right corner of each block.

A generative adversarial network (GAN) is a specific type of machine learning architecture

that simultaneously trains a generator network and a discriminator network to produce

plausible synthetic images [120]. This work utilized a conditional GAN (cGAN) similar

to the Pix2Pix architecture, a network specifically designed for image-to-image transla-

tion through which generated output images are conditional on the input source image

[163]. The network consisted of one generator network, whose purpose was to generate

plausible images in the target domain, and one discriminator network, whose purpose

was to distinguish between real images in the target domain and images produced by the

generator network. The generator takes in the image input, which in this work was a 4D
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tensor consisting of two 3D volumetric images stacked along the channel dimension, and

translates it to the output domain via voxel-to-voxel transformation. The target image

in this work is the Jratio.

The discriminator network was a deep convolutional neural network (DCNN) designed

for image classification. Specifically, this work implemented the PatchGAN discriminator

which classifies patches as either fake or real, and runs convolutionally across the entire

input image before averaging the result of each patch to give an overall classification score.

The network consisted of four layers of strided convolutions (stride = 2) with increasing

number of filters (64, 128, 256, 512) and kernel size of 4 voxels. Each strided convolution

was followed by batch normalization and LeakyRelu activation with a slope of 0.2. The

last 2 layers had a stride of one, with the final convolutional layer mapping to a single

channel output followed by a sigmoid activation layer. The discriminator network used

the Adam optimizer with Nesterov momentum (Nadam) with an initial learning rate of

1E-5. The loss was weighted by 0.5 for every discriminator update in order to slow down

the discriminator training process. The input to the discriminator was a concatenation

along the channel dimension of the source image tensor (pre-RT ventilation map and dose

distribution) and the target image (Jratio = post-RT/pre-RT ratio map), resulting in a

4D tensor with 3 channels.

Figure 4.9: Diagram of the discriminator network architecture used in this work.
Input to the discriminator was a 3 channel, 4D tensor, resulting in an image patch of
size 8x8x8. The number of filters, F, used in each convolutions is labeled in the top
right corner of each block.
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The generator network used the same ResNet3D architecture as previously described.

The generator network used the Nadam optimizer with an initial learning rate of 0.01.

The input to the generator was a concatenation along the channel dimension of the source

image tensor (pre-RT ventilation map and dose distribution), and the output image was

the Jratio.

Eight separate models were trained in order to perform 8-fold cross-validation for model

evaluation, with 6 folds leaving out 10 subjects each and two folds leaving out 11 subjects

each. All work was implemented in Tensorflow v2.6.0. The Seg3DNet and ResNet3D

models were trained for 1000 epochs and employed early stopping which stopped training

when the validation loss did not improve over 50 epochs to prevent the models from

overfitting to the data. The cGAN models were trained for 1000 epochs, and models were

saved every 10 epochs resulting in a total of 100 different models for each fold. All models

for all architectures were trained on a NVIDIA A100 80GB GPU and implemented in

Tensorflow v2.6.0. The Seg3DNet, ResNet3D, and cGAN training time per fold took 25

hours, 12 hours, and 56 hours, respectively.

4.3.3.2 Loss Function

The loss function used in this work for the cGAN models followed a similar method to the

loss function that was used in the original Pix2Pix GAN [163], where the discriminator

was trained in a standalone manner minimizing the negative log likelihood of discrimi-

nating between real and fake images (adversarial loss). The generator was trained using

a composite loss function of both the adversarial loss for the discriminator model and

an image quality loss to encourage the generator to output images that are plausible

translations of the input. The adversarial loss can be defined as
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Ladversarial = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (4.7)

where x is the observed image, y is output, and z is a random noise vector. In this work,

random noise was introduced both through the variability in the input images as well as

the dropout layers within the generator as proposed by Isola et al. [163].

An asymmetrical structural similarity index measure (SSIM) was used as the secondary

loss function for the generator, which was based on the work of Porter et al. [103], who

used an asymmetrical mean absolute error (AMAE) for predicting perfusion defects. Ger-

ard et al. [96] used SSIM as the loss function to train a CNN to estimate local tissue

expansion as it has been shown to improve perceptual image quality. The purpose of

using an asymmetrical loss is to increase penalization for predictions that under-estimate

ventilation decline. In general, SSIM is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c2)(σ2
x + σ2

y + c2)
(4.8)

where x and y are windows with size 11×11×11 voxels from the predicted image (JcGAN)

and ground truth image (JLER−N), respectively; µx and µy are corresponding averages,

σx and σy are the variances of x and y, σxy is the covariance of x and y, and c1 and

c2 are constants. A sliding window was used to generate a SSIM map for the entire

image, which was implemented as a convolutional layer with fixed filters. To determine

the asymmetrical loss (aSSIM), the SSIM was multiplied by a factor α, defined as

α =
ln(2)

ln(2 + δ + ϵ)
(4.9)
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where δ is the voxel-wise difference between the ground truth and predicted image, and ϵ

is a pre-determined parameter that determines the weight of the penalization for under-

estimating damage. As epsilon approaches zero, the higher the penalty, and was set at

ϵ = 0.001. The loss for each image was taken as the mean aSSIM within the lung mask.

The total composite loss can then be defined as:

Ltotal = 0.5 ∗ Ladversarial + 50 ∗ aSSIM (4.10)

The weights for each of the loss terms (0.5 for the adversarial loss and 50 for the aSSIM

loss) were set with a 1:100 ratio as was used by Isola et al. [163].

The aSSIM loss function was used for both the ResNet3D and Seg3DNet models.

4.3.3.3 Performance and Statistics

Cross-validation was performed on the 8 different models for each network architecture

for evaluation. The group of subjects in each fold that was left out only had one LER-N

ventilation map as to not skew the validation results by including datasets with similar

data. Additionally, the data used for validation was not downsampled or cropped, with

the only preprocessing step being min-max normalization. The cGAN model used for

evaluation from each fold was determined by selecting the model which had the mini-

mum generator loss, while the best models saved from early stopping were used for the

Seg3Dnet and ResNet3D models. The full-sized image was used for testing as this is

what would be used in a clinical application of the model in order to provide avoidance

ROIs for treatment planning. Additional testing was performed using data that under-

went the same preprocessing steps as the training set (i.e. cropping and downsampling)

and found no statistically significant differences between results of the full-sized images
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and cropped/downsampled images. The results presented are thus from testing using the

full-sized images.

Model performance was assessed by receiver operating characteristic (ROC) metrics such

as true positive rate (TPR), true negative rate (TNR), accuracy (ACC), and Dice similar-

ity coefficient (DSC). In this work, a true positive is defined as a voxel that was correctly

predicted to have ventilation damage, corresponding to Jratio ≤ 0.94 (i.e., a decline in

ventilation of greater than 6%), whereas a false positive was a voxel that was incorrectly

predicted to have a Jratio ≤ 0.94 when the ground truth voxel had a Jratio that was > 0.94.

Ground truth and predicted images were masked such that the metrics only considered

voxels inside the lung mask and ignored voxels in other anatomical regions. Youden’s

index (J) [164] was an additional metric used to evaluate the models’ balance between

sensitivity and specificity, and is defined as

J = sensitivity + specificity − 1 (4.11)

J corresponds to the height above the chance line on a ROC curve and serves as the

probability of an informed decision.

Furthermore, model performance and metrics were compared to the results of a previously

developed polynomial regression model described in Chapter 5, subsequently referred

to as POLY. The paired samples t-test was used to compare the metrics between the

Seg3DNet, ResNet3D, cGAN, and POLY models. Results were considered statistically

significant when p<0.05.
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4.3.4 Results

Results of the 8-fold cross validation across each fold, as well as the average of all folds,

are summarized in Table 4.6 and 4.7.

Table 4.6: 8-fold cross validation results for the cGAN and POLY models in the form
of mean (SD).

cGAN POLY

Fold no. TPR TNR ACC DSC J TPR TNR ACC DSC J

1 0.77 0.61 0.65 0.48 0.38 0.05 1.00 0.80 0.08 0.04
(0.10) (0.18) (0.13) (0.15) (0.11) (0.03) (0.01) (0.11) (0.06) (0.03)

2 0.84 0.63 0.67 0.50 0.45 0.08 0.99 0.80 0.13 0.07
(0.08) (0.13) (0.10) (0.10) (0.08) (0.08) (0.02) (0.07) (0.11) (0.07)

3 0.70 0.59 0.66 0.45 0.29 0.14 0.97 0.80 0.19 0.11
(0.24) (0.25) (0.13) (0.16) (0.09) (0.19) (0.05) (0.11) (0.22) (0.15)

4 0.89 0.36 0.49 0.46 0.28 0.28 0.92 0.76 0.32 0.20
(0.08) (0.20) (0.16) (0.14) (0.14) (0.20) (0.10) (0.07) (0.18) (0.13)

5 0.77 0.58 0.64 0.48 0.37 0.17 0.97 0.79 0.23 0.13
(0.21) (0.23) (0.16) (0.16) (0.20) (0.14) (0.05) (0.06) (0.19) (0.13)

6 0.48 0.82 0.76 0.41 0.31 0.09 0.98 0.80 0.14 0.07
(0.23) (0.13) (0.10) (0.13) (0.12) (0.08) (0.02) (0.11) (0.11) (0.06)

7 0.66 0.68 0.67 0.41 0.34 0.17 0.96 0.81 0.20 0.12
(0.22) (0.19) (0.11) (0.17) (0.15) (0.18) (0.06) (0.08) (0.17) (0.13)

8 0.70 0.65 0.66 0.47 0.35 0.15 0.97 0.78 0.22 0.10
(0.19) (0.16) (0.11) (0.13) (0.10) (0.13) (0.05) (0.06) (0.13) (0.09)

Average 0.72 0.62 0.65 0.46 0.34 0.14 0.97 0.79 0.19 0.11
(0.21) (0.21) (0.14) (0.14) (0.14) (0.15) (0.05) (0.08) (0.16) (0.11)

Box plots of TPR, TNR, ACC, and DSC for the cGAN, ResNet3D, Seg3DNet, and POLY

models, averaged across all cross-validation folds, are shown in Figure 4.10. There was

a statistically significant difference in the means of all four metrics. The average true

positive volume increased from 104±119 cc in the POLY model to 565±332 cc in the
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Table 4.7: 8-fold cross validation results for the ResNet3D and Seg3DNet models in
the form of mean (SD).

ResNed3D Seg3DNet

Fold no. TPR TNR ACC DSC J TPR TNR ACC DSC J

1 0.21 0.91 0.75 0.26 0.12 0.00 1.00 0.78 0.00 0.00
(0.07) (0.02) (0.09) (0.06) (0.06) (0.00) (0.00) (0.12) (0.00) (0.00)

2 0.25 0.90 0.77 0.30 0.16 0.00 1.00 0.79 0.00 0.00
(0.08) (0.02) (0.07) (0.07) (0.08) (0.00) (0.00) (0.08) (0.00) (0.00)

3 0.29 0.83 0.72 0.30 0.12 0.25 0.79 0.70 0.23 0.04
(0.15) (0.06) (0.08) (0.15) (0.11) (0.23) (0.16) (0.10) (0.18) (0.09)

4 0.45 0.78 0.71 0.39 0.23 0.14 0.86 0.68 0.17 0.00
(0.25) (0.12) (0.05) (0.16) (0.15) (0.08) (0.03) (0.09) (0.05) (0.07)

5 0.32 0.83 0.72 0.32 0.15 0.48 0.57 0.56 0.32 0.06
(0.17) (0.07) (0.06) (0.16) (0.13) (0.13) (0.09) (0.08) (0.13) (0.16)

6 0.33 0.84 0.74 0.31 0.17 0.09 0.94 0.77 0.13 0.03
(0.11) (0.04) (0.09) (0.10) (0.08) (0.04) (0.03) (0.11) (0.05) (0.04)

7 0.32 0.85 0.74 0.28 0.17 0.00 1.00 0.81 0.00 0.00
(0.21) (0.06) (0.06) (0.12) (0.16) (0.00) (0.00) (0.08) (0.00) (0.00)

8 0.24 0.89 0.75 0.28 0.13 0.85 0.12 0.28 0.34 0.03
(0.12) (0.03) (0.06) (0.10) (0.11) (0.12) (0.11) (0.09) (0.09) (0.07)

Average 0.30 0.86 0.74 0.30 0.16 0.23 0.78 0.67 0.15 0.01
(0.16) (0.07) (0.07) (12) (0.12) (0.31) (0.31) (0.20) (0.16) (0.08)

cGAN model, and the average false negative volume decreased from 654±361 cc in the

POLY model to 193±163 cc in the cGAN model. Additionally, the average false positive

volume increased from 66±103 cc in the POLY model to 995±534 cc in the cGAN model,

and the average true negative volume decreased from 2758±1109 cc in the POLY model

to 1829±1119 cc in the cGAN model. All volume changes were statistically significant

and are summarized in Table 4.8.
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Figure 4.10: Box plots of true positive rate (TPR), true negative rate (TNR), Dice
similarity coefficient (DSC), and accuracy (ACC) for the cGAN, ResNet3D, Seg3DNet,
and POLY models, averaged across all subjects from the cross-validation folds. There
was a significant difference between the means for all metrics between the two models.

Table 4.8: Average volumes of true positives, false negatives, false positives, and true
negatives for the cGAN and POLY models in the form of mean±SD, averaged across
all subjects from the cross-validation folds.

Volumes (cc) cGAN POLY

True Positives 565±332 104±119

False Negatives 193±163 654±361

False Positives 995±534 66±103

True Negatives 1829±1119 2758±1109

Figures 4.11-4.13 show the coronal views of subjects from the testing dataset that rep-

resent the mean model performance, the best performing standard fractionation dataset,

and best performing SBRT dataset, respectively, with the delivered dose distribution,
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ground truth Jratio, POLY model predicted Jratio, and cGAN model predicted Jratio. The

first row of images (B-D) in Figures 4.11-4.13 shows the entire range of Jratio values, and

the second row of images (E-G) shows Jratio maps thresholded to only show voxels with

a Jratio ≤0.94.

Figure 4.11: Coronal view of one subject from the testing dataset that represents the
mean model performance with a true positive rate of 0.70 and true negative rate of 0.68.
(A) the delivered dose distribution, (B) pre-RT LER-N, (C-E) cGAN, ground truth, and
POLY Jratio, respectively, (F-H) cGAN, ground truth, and POLY Jratio, respectively,
thresholded to only show damaged (Jratio ≤0.94) voxels. The arrows in B-G highlight
a region of ventilation decline, downstream from the main dose distribution, correctly
predicted by the cGAN model and missed by the POLY model.
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Figure 4.12: Coronal view of the best performing conventional fractionation subject
from the testing dataset with a true positive rate of 0.82 and true negative rate of 0.64.
(A) the delivered dose distribution, (B) pre-RT LER-N, (C-E) cGAN, ground truth, and
POLY Jratio, respectively, (F-H) cGAN, ground truth, and POLY Jratio, respectively,
thresholded to only show damaged (Jratio ≤0.94) voxels. The arrows pointing to the
region in the superior right lung are where the cGAN model was able to properly predict
ventilation damage. The arrows pointing to the inferior region of the left lung shows the
cGAN model failed to predict increases in ventilation and instead predicted ventilation
decline.

Figure 4.13: Coronal view of the best performing SBRT subject from the testing
dataset with a true positive rate of 0.64 and true negative rate of 0.79. (A) the de-
livered dose distribution, (B) pre-RT LER-N, (C-E) cGAN, ground truth, and POLY
Jratio, respectively, (F-H) cGAN, ground truth, and POLY Jratio, respectively, thresh-
olded to only show damaged (Jratio ≤0.94) voxels. The cGAN model correctly predicted
ventilation decline, indicated by arrows pointing to the superior left lung, and ventila-
tion increase/preservation, indicated by the arrows pointing to the middle left lung.
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4.3.5 Discussion

In this study, a DL-based framework that predicts ventilation change following radio-

therapy at the voxel level was evaluated. This DL-based model was able to successfully

predict ventilation decline, and outperform the previously developed polynomial regres-

sion model from Section 4.2. This is the first study to develop a DL-based approach for

predicting local ventilation change resulting from radiotherapy treatment for NSCLC.

In the context of functional avoidance lung radiotherapy, it is desirable to identify more

regions of the lung that may experience a decline in ventilation due to irradiation rather

than correctly predicting regions that will not change or have an increase in ventilation

post-RT. By increasing the sensitivity of the model, larger volumes of functional lung

can be spared and decrease the probability of the patient developing RILIs. Therefore,

while the cGAN model had a significantly lower TNR and ACC, the results show that

the cGAN model had a significantly higher TPR and DSC, which is more relevant for the

model’s clinical utility of predicting radiation-induced ventilation decline in functional

lung avoidance treatment planning. Using the output of the model, the predicted Jratio,

ROIs can be produced and included in the treatment planning system where the treatment

plan can be further optimized to reduce dose to regions predicted to decline in ventilation.

It should be noted that the optimization may result in a dose distribution that would push

dose into regions that were predicted to not change and/or increase in ventilation, making

it necessary to perform a secondary check with the model and the newly optimized dose

distribution to verify functional sparing. Additionally, the cGAN model had an average

Youden’s index (TPR+TNR-1) of 0.34, over three times the Youden’s index of 0.11 from

the POLY model, indicating a more balanced model and further from the random chance

line. Finally, the cGAN model significantly increased the average true positive volume and

reduced the average false negative volume which will help create more effective functional

avoidance RT plans.
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From Figures 4.11-4.13, it can be seen that the POLY model predicts little to no change

(i.e., voxels with values near 1.0 and shaded white) while the cGAN model overestimates

ventilation decline (i.e., voxels with values < 0.94 and shaded blue). Across the three

example subjects shown, the cGAN model generally underestimates both the intensity

and volume of voxels that increase or are preserved in ventilation post-RT (Jratio >1).

In the first row (C-E) of Figures 4.11-4.13, the cGAN model does not predict many

voxels to have Jratio >1 (i.e., regions of ventilation increase/preservation and shaded

red). However, the cGAN model, relative to the POLY model, correctly predicts more

ventilation decline. It is hypothesized that the decrease in ventilation, indicated by the

arrow in the right inferior lobe, in Figure 4.11 is due to the high dose delivered to the

right mainstem bronchus and the subsequent generation of bronchi. The cGAN model

did well in this subject in correctly identifying this region of ventilation decrease while

the POLY model predicted no change. Figure 4.12 shows the best performing standard

fractionation subject where the cGAN model correctly predicted ventilation damage, as

indicated by the arrow pointing to the region in the superior right lung. Figure 4.12

also shows the cGAN model failed to predict increases in ventilation, indicated by arrows

pointing to the inferior region of the left lung, and instead predicted ventilation decline.

Figure 4.13 shows the best performing SBRT subject where the cGAN model correctly

predicted ventilation decline, indicated by arrows pointing to the superior left lung, and

ventilation increase/preservation, indicated by the arrows pointing to the middle left lung.

While almost all folds of the cross-validation resulted in a TPR greater than 0.65, there

was one fold (fold 6) that had a lower TPR and higher TNR than the other folds. For two

subjects within fold 6 that performed poorly in TPR (TPR < 0.20), it was found that the

volume of positives (i.e. declined in function post-RT; Jratio < 0.94) was less than half of

the average volume of positives across all folds. Additionally, it appears the model was

unable to correctly predict voxels that declined in function that were in the contralateral
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lung, received less than 1 Gy, and were not downstream from any irradiated airways. One

possible explanation could be that these two subjects did not breath consistently during

one of the 4DCT acquisitions, however the exact source of this discrepancy was unable

to be determined and should be a focus of future research.

In patients with mediastinal or bronchial tumors, ventilation may increase following RT

in regions that are ventilated by airways that were previously blocked by the mass. This

phenomena may explain the increases (dark red regions) in ventilation seen in Figure

4.11C, where in the middle right lung it would be expected to observe a decrease in

ventilation due to the region receiving 20-30 Gy. Irradiating airways has also been shown

to affect ventilation in regions downstream from the irradiated region. Vicente et al. [78]

found an increase in ventilation preservation when airways were included in functional

lung avoidance radiotherapy planning, and Chapter 3 found a decrease in lung ventilation

in the regions of the lung supplied by irradiated airways. Future work to improve this

model and functional lung avoidance treatment planning should further investigate the

impact of ‘indirect’ ventilation damage due to irradiation of the airways.

This work used both SBRT (5 fraction) and standard fractionation (30 fraction) subjects

within the training and testing datasets. When the results were stratified by fractiona-

tion cohort, there was a statistically significant difference in the average TPR (5 fraction:

0.65, 30 fraction: 0.82) and TNR (5 fraction: 0.66, 30 fraction: 0.55) between the two

cohorts. To investigate this difference between cohorts new models were trained follow-

ing the same methodology as previously stated. First, a model was trained completely

from scratch where the only difference was that the dose distributions were first con-

verted into biologically effective doses (BED) with an α/β = 3. The model trained with

BED dose distributions performed significantly worse than the original cGAN model. An

additional four models were created through transfer learning from the worst and best

performing cross-validation folds (folds 4 and 6) from the original model. The worst and
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best performing models were fine tuned and tested using either the SBRT or standard

fractionation subjects corresponding to that fold. It was found that for all fine-tuned

models there was no statistically significant improvement on the original cGAN model.

This shows that the original model with both fractionation cohorts combined results in

the best performing model.

While a DL-based model was successfully built to predict ventilation decline from radio-

therapy, there are a few limitations to this study. First, the training of the model may

have been limited by the size of the training dataset. Many other medical image-based

DL studies use 2D images for the purposes of training as splitting up volumetric images

into separate 2D slices greatly increases the size of the dataset. In this study the network

was trained using 3D volumes, allowing the network to model local expansion changes as

well as ventilation changes occurring distally from the target, which would not be possible

using 2D slices or extracted patches. Due to this constraint, image resolution and training

size were sacrificed. Ventilation maps are inherently noisy, making downsampling of the

training images less important; however, the small training size makes it difficult for the

model to learn complex or uncommon relationships in the data. Second, the asymmet-

rical loss function appeared to have over-predicted damage in most cases. This is partly

due to using SSIM as the main loss function, which optimizes local structure similarity

and not intensity of the values. Further tuning the asymmetrical factor as well as adding

an additional term to account for intensity differences could potentially alleviate this is-

sue. Another limitation of this study is that all data used in this work originated from

a single clinic. Patients that participated in this clinical trial received audio guidance

during 4DCT acquisition to minimize the potential for artifacts. Deriving ventilation

maps from 4DCTs without audio guidance may lead to artifacts that would impact the

training or prediction of the model. Further, different institutions may have variation in
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the treatment plans created and use different algorithms/processing techniques to cre-

ate 4DCT-derived ventilation maps. Lastly, the dose distributions and ventilation maps

used were deformed to the end-exhale (0EX) breathing phase, however, patients were

free breathing during actual treatment delivery. Depending on the location and motion

of the target during treatment, the actual dose delivered to the surrounding lung tissue

may differ from the dose distribution used to train and evaluate the model. A future

iteration of the model should account for breathing motion by incorporating ventilation

maps deformed to various phases throughout the breathing cycle.

While it was not in the scope of this study to develop new functional lung avoidance

treatment plans using the predictions from the cGAN model, future work should analyze

these new treatment plans to determine whether it results in better lung function spar-

ing. Ultimately, the purpose of developing a model that can predict post-RT pulmonary

ventilation change is to utilize it in the creation of functional lung avoidance treatment

plans that will spare healthy lung tissue and decrease the risk of the patient developing

RILIs following treatment. The increase in the true positive volume in the cGAN model

was quantified, however this does not directly translate to the volume of functional lung

that will be spared during treatment. Factors such as target coverage and other organs

at risk dose constraints heavily influence the amount in which the treatment plan can be

modified to account for functional lung sparing.

4.4 Chapter Summary

In the first section of this chapter, a polynomial regression model was created by using

ventilation images derived using the LER-N method. The LER-N model produced more

repeatable ventilation maps allowing for potentially better normal tissue sparing, and

improved upon a previously developed polynomial regression model. This new model
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also gives insight into the importance of both pre-RT ventilation function and the deliv-

ered dose to that particular voxel in predicting post-RT ventilation change. The second

section of this chapter developed multiple DL-based models designed to predict post-RT

pulmonary ventilation changes resulting from radiotherapy was developed and evaluated.

The results show that compared to the LER-N polynomial regression model, a cGAN

was able to increase the sensitivity of detecting ventilation damage following radiother-

apy. The new DL-based model can be used to create more sensitive functional lung

avoidance treatment plans that potentially result in superior lung sparing.
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Chapter 5

Integrating Functional Avoidance

Information Into Treatment

Planning

5.1 Introduction

Currently, functional avoidance treatment plans are created by using discrete avoidance

structures that are based on the functional information derived from pre-RT 4DCTs or

various other functional lung imaging modalities. Some potential failures of this approach

are the discretization of the avoidance structures and the differing approaches to manip-

ulating dose out of the avoidance structures by dosimetrists. Additionally, there is no

secondary check with the dose-response model to verify that the optimized plan achieves

the desired functional lung sparing.
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Some previous studies have investigated the incorporation of pulmonary functional infor-

mation into the treatment planning process. St-Hilaire et al. [165] implemented SPECT-

based optimization for functional avoidance of the lung and found that the perfusion-

weighted volume receiving 10 Gy was reduced by 2.2%. They also found that this tech-

nique would occasionally cause overdosage regions in the target volume [165]. However,

follow-up predictions were not conducted to determine the predicted functional sparing

that would occur between the various plans they created. Ding et al. [58] investigated

using hyperpolarized xenon-129 MR images to guide treatment planning in a small (n=10

patients) pilot study. For well-ventilated lung areas it was found that the function-based

treatment plan significantly reduced V5Gy, V10Gy, and V20Gy compared to the clinical

standard-of-care plan [58]. Again, this study did not include follow-up data nor pre-

dicted pulmonary function sparing. Functional regions were also discretely segmented

from the HP MR images by designating four separate ROIs: well-ventilated, ventilated,

hypo-ventilated, and poorly ventilated.

In this chapter, functional avoidance information and models developed in Chapter 4 will

be integrated into a treatment planning system for efficient creation and optimization

of functional avoidance radiotherapy treatment plans. Overall, four different functional

avoidance treatment plans will be compared to the clinical SOC treatment plan to evaluate

differences in OAR doses, PTV coverage, and functional lung and airway sparing. Lastly,

the cGAN model developed in Chapter 4 will be utilized to compare predicted ventilation

damage across all five treatment plans.
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5.2 Methods

5.2.1 Patient Characteristics

The data used in this study was collected from 6 lung cancer patients that participated

in a University of Wisconsin-Madison IRB-approved prospective study (NCT02843568)

who underwent RT for non-small cell lung cancer (NSCLC). Exclusion criteria for this

study included prior or future planned surgery for the existing lung cancer, prior thoracic

radiotherapy, severe COPD, oxygen dependence, known underlying collagen vascular dis-

ease, under 18 years of age, and a Karnofsky score < 60%. Each subject had two 4DCT

scans separated by five minutes acquired pre-RT and three months post-RT for a total of

four scans. Subjects received a standard fractionation course of 2 Gy x 30 fractions. The

patient information for this study cohort is summarized in Table 5.1.

Table 5.1: Study cohort characteristics

Number of Patients 6

Mean age (range) 70 y (64-76)

Gender (male/female) 3/3

Tumor location

Right Upper 1

Right Middle 1

Right Lower 1

Left Upper 1

Left Lower 1

Mediastinum 1

Mean PTV Volume (range) 327.5 cc (118.7-780.3)

Prescription Dose 60 Gy
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All scans were acquired on a Siemens SOMATOM Definition Edge 128 slice CT scanner

(Siemens Healthineers AG, Erlangen, Germany) with a 0.6 mm slice thickness, 0.5 second

tube rotation time, 0.09 pitch, 120 kVp, and 100 mAs/rotation. The Varian Real-Time

Position Management (RPM) (Varian Medical Systems Inc., Palo Alto, CA) system mon-

itored respiration-induced movement and captured respiratory traces used for the 4DCT

reconstructions. Melodic breathing instructions were played at a rate of 15 breaths per

minute during each image acquisition which has been demonstrated to increase the re-

peatability between scans and reduce the occurrence of artifacts [141]. The averaged

pre-RT 4DCT was used for the purposes of treatment planning.

5.2.2 4DCT-derived Ventilation

This work utilized an image registration algorithm with multi-resolution cubic B-spline

parameterization and used the sum of squared tissue volume difference (SSTVD) as the

similarity metric as described in Section 2.4.2. The Jacobian-based method described by

Shao et al. [73] and Section 2.4.3 was used to generate ventilation maps for each subject

at both timepoints (pre- and post-RT). LER-N maps for the two scans at each time

point were geometrically averaged to reduce noise within the map introduced by random

changes in patient respiratory patterns between scans.

5.2.3 Dose-painting-by-numbers

Dose-painting-by-numbers (DPBN) is a technique for radiotherapy treatment planning

where radiation dose is prescribed at the voxel level. It is then the job of the optimizer to

recreate the idealized dose distribution as closely as possible while still producing a physi-

cally deliverable plan. Almost all previous uses of dose-painting-by-numbers in treatment

planning have been for prescribing non-uniform radiation dose distributions to the target
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volume. Multiple clinical trials (NCT01168479 [166], NCT04910308[90], NCT01024829

[167]) have investigated the use of dose-painting-by-numbers to escalate dose to tumors

based on imaging biomarkers. Prior to creating the treatment plan, imaging of the tu-

mor site is performed and imaging biomarkers are extracted. van Diessen et al. [167]

used FDG PET scans to locate regions of high pre-treatment FDG-uptake in non-small

cell lung cancer tumors, and redistributed more dose to those specific regions of the tu-

mor. Petit et al. [168] used dose-painting-by-numbers to redistribute tumor dose based

on differences in oxygen levels determined from oxygen diffusion-consumption modeling.

However, no studies have applied dose-painting-by-numbers to achieve normal/functional

lung tissue sparing.

In this chapter, DPBN is utilized in three different ways. First, minimum dose values for

voxels within the PTV from the standard-of-care (SOC) plan are utilized as a reference

for the functional avoidance plans to encourage similar PTV coverage. Second, maximum

dose values for voxels in regions outside of the lungs from the SOC plan are utilized as

a reference for the functional avoidance plans to limit doses to OARs. Lastly, maximum

dose values for voxels within the lung are derived from one of the predictive models from

Chapter 4 in order to reduce dose to regions of the lung that are predicted to decline

in ventilation. In summary, all voxels within the lung ROI were assigned individual

maximum dose objectives to limit each voxel to a specific dose value based on the predicted

ventilation decline due to parenchymal dose, the PTV voxels were assigned individual

minimum dose objectives to mimic the same coverage and dose as was achieved in the

SOC plan, and voxels outside both the PTV and lungs were assigned dose values to

minimize dose to OARs.
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5.2.4 Treatment Plan Creation

Five treatment plans were created for each subject, comprising of the clinical SOC treat-

ment plan and four functional avoidance treatment plans. The clinical SOC treatment

plans were developed to meet institutional clinical goals and follow standards as set by

OAR recommendations from the Radiation Therapy Oncology Group (RTOG) report

0617, and were previously created by a certified medical dosimetrist. Functional avoid-

ance optimized plans were to follow and meet the same clinical goals as the SOC plans.

The following sections will explain the methods used to create each of the four functional

avoidance treatment plans.

5.2.4.1 Functional Avoidance Treatment Plan 1 (Opt1)

The Opt1 plans used 6 discrete ROIs generated from the polynomial regression model

developed in Section 4.2 to avoid functional regions of the lung. For each subject, the pre-

RT ventilation map was flattened into a one-dimensional array and an array of equivalent

length was created representing a uniform dose (i.e., every value assigned 10 Gy). The

two arrays were used as inputs for the model which then produced a voxelized ventilation

change (i.e. Jacobian ratio (Jratio)) array. This was performed 6 times, where a different

uniform dose was used (10-60 Gy, in 10 Gy intervals) to create 6 different arrays corre-

sponding to the Jratio that would occur to each voxel at 6 discrete dose levels. The arrays

were reshaped to the original image size and masked to only consider voxels within the

lungs. The Jratio maps for each dose-level were thresholded to consider only the voxels

that were predicted to have a Jratio less than 0.90. The 6 thresholded Jratio maps were

then imported into RayStation (RaySearch Laboratories, Stockholm, Sweden) and the

threshold ROI tool was used to create ROIs from the 6 different thresholded Jratio maps.

The SOC plan, beamsets, and objective functions for optimization were copied to create
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the starting point for the Opt1 plan. From the 6 functional ROIs, 6 objective functions

were added to the optimization to influence the optimizer to reduce dose to the functional

regions defined. Optimization is not reset for the creation of the Opt1 plan, but rather

continued in order to maintain a similar level of PTV coverage and OAR doses. Figure 5.1

shows an example subject with the six ROIs generated that are used for the optimization

process.

Figure 5.1: Example of the six ROIs created from the polynomial regression model
predictions for creating regions of avoidance. Optimization objectives are generated for
each ROI to create the Opt1 treatment plan.
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5.2.4.2 Functional Avoidance Treatment Plan 2 (Opt2)

The Opt2 plans were generated using a method similar to simulated annealing to de-

termine the maximum dose to each voxel. First, 80% of the maximum dose value from

the SOC plan was assigned to each voxel within an ROI defined as the lungs minus a 5

mm expansion of the PTV (PTV+5mm), while the dose within the PTV+5mm ROI was

set to the same values as the SOC plan. The 5 mm expansion was to ensure that the

treatment planning system optimizer was not given a steep dose gradient off of the target

that it was unable to achieve. Second, this initial ‘dose distribution’ and the pre-RT

ventilation map were input to the polynomial regression model from Chapter 4 in the

same manner as was performed for the Opt1 plan. The output from the model was the

Jratio, and for voxels within the lung where Jratio < 0.90, the dose value (in the case of

the 1st iteration, 80% of the SOC maximum dose) was assigned to that voxel location in

the dose array. In each subsequent iteration, the dose values to voxels with a predicted

Jratio < 0.90 were decremented by 1 Gy and re-input into the polynomial regression model

with the same pre-RT ventilation array. Voxels with a Jratio < 0.90 had the new dose

value updated to their voxel location in the dose map. This process repeated itself until

dose had been decremented down to 1 Gy. The end result was a dose map masked to

the lungs, where each voxel value represents the maximum dose that voxel can receive in

order to prevent a decline in ventilation of greater than 10% post-RT. For some subjects,

there were voxels that still had a predicted Jratio < 0.90 with a maximum dose of 1 Gy

due to this technique. The procedure to create the reference dose distribution is depicted

in Figure 5.2.

This reference dose distribution was imported back into RayStation as a new treatment

plan referred to as ‘Reference’. The SOC beamsets were copied, and three DPBN opti-

mization objectives were created based on the imported ‘Reference’ dose map as described

previously. Although the SOC beamsets were copied to the Opt2 plan, optimization was
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reset in order to develop a dose distribution that relied on the new optimization objectives.

Additional optimization objectives, such as maximum dose constraints to spinal cord or

esophagus, were added when necessary in order to meet OAR clinical goals. Lastly, the

DPBN method as previously described was used to create the voxelized dose objectives

for the PTV, lungs, and other OARs referenced from the imported ‘Reference’ plan.

Figure 5.2: Workflow for creating the reference dose distribution for the Opt2 treat-
ment plan. The resultant reference dose distribution can then be imported into the
treatment planning system where voxelized dose objectives can be derived from.

5.2.4.3 Functional Avoidance Treatment Plan 3 (Opt3)

The Opt3 plans were created using the cGAN model developed in Chapter 6 to predict

the ventilation change post-RT as a result of the delivered dose distribution. Due to the

nature of the machine learning model, there was not a direct correspondence between

decreasing dose to a voxel and the minimization of the Jratio. Therefore, decreasing the

dose and iterating through various dose levels as was done for the Opt2 plan was not

effective for developing an optimized plan using the cGAN model. Alternatively, an

optimizer, PyGAD[169], was used to generate a voxelized dose map which utilized a loss
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function designed to minimize the volume of voxels with a Jratio < 0.90. The optimizer

was initialized with the SOC dose distribution as a starting point and was run for 500

iterations. Additional optimizer parameters can be found in Table 5.2. The output of

the optimizer was a dose map corresponding to the maximum dose values for each voxel

within the lungs that minimized the predicted volume of voxels with a Jratio < 0.90.

Dose values within the PTV+5mm ROI and outside the lungs remained the same from

the SOC plan. Similarly to the Opt2 plan, this dose map was imported into the treatment

planning system as a new ‘Reference’ dose distribution, and the original SOC beamsets

were again copied. The voxelized dose objectives were generated using the new reference

dose map and a new dose distribution was created after restarting optimization using the

new optimization objectives. Figure 5.3 shows the workflow for generating the reference

dose map using the cGAN model and PyGAD optimizer.

Figure 5.3: Workflow for creating the reference dose distribution for the Opt3 treat-
ment plan. The PyGAD optimizer alters the dose map every iteration in order to
minimize the volume of voxels with a Jratio < 0.90.
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Table 5.2: PyGAD optimizer parameters

Number of Generations 500

Number of Parents Mating 10

Solutions per Population 20

Mutation Type Random

Mutation Percent 5

Mutation by Replacement True

5.2.4.4 Functional Avoidance Treatment Plan 4 (Opt4)

The last functional avoidance treatment plan generated, Opt4, used the Opt3 as an initial

dose distribution. Airway dose objectives were created using airway segmentations and

the results of the toxicity model for bronchial stenosis developed in Chapter 3. Airway

segmentations were subtracted from the lung segmentations to ensure that dose objectives

relating to those structures did not overlap and cause conflicts in optimization. Five dose

objectives were created for 10 Gy intervals between 10-50 Gy inclusive, specifying the

specific airway segments and the maximum dose they each should receive to keep the

probability of bronchial stenosis under 37%. This cutoff threshold of 37% was selected

as it was the threshold at which the logistic regression model had the largest J-index,

maximizing both sensitivity and specificity of the model prediction. The Opt3 plan was

copied, the airway dose objectives were added, and optimization was continued to spare

dose delivered to the airway structures.
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5.2.5 Analysis

The functional avoidance and SOC plans were compared using several metrics. First,

target coverage for each plan was normalized to the prescription coverage to allow for

comparison across the various ROIs. Additional PTV coverage was evaluated by the

following metrics: D98% ≥ 54 Gy, D99.5% ≥ 42 Gy, and D0.03% ≤ 66 Gy. To compare

functional lung sparing between plans the dose to highly functional lung, defined as voxels

with a pre-RT LER-N value greater than 1.20, and maximum airway segment doses were

evaluated. The airways were evaluated for the five dose bins (10-50 Gy) as specified in the

methods for the development of treatment plan Opt4. Additionally, the dose distributions

created for each plan were used as input with the pre-RT ventilation map to generate

predicted Jratio maps using the cGAN model developed in Chapter 4. The predicted

volume of damaged lung was compared across all plans and subjects. Organs at risk

(OAR) dose was assessed for heart, esophagus, and spinal cord, and the dose limits are

summarized in Table 5.3.

Table 5.3: Organs at risk dose limits for conventional fractionation radiotherapy.

Organs At Risk Dose Limits

Heart

V60Gy < 30%

Mean Dose < 30 Gy

V45Gy < 60%

V40Gy < 80%

Esophagus
Mean Dose < 34 Gy

D0.1cc < 63 Gy

Spinal Cord D0.1cc < 50 Gy
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Lastly, plan modulation was assessed by comparing planned monitor units (MU) between

each plan. Plan deliverability was not explicitly assessed through phantom measurements.

5.2.6 Statistical Analysis

RStudio (version 2022.07.2; Posit Software, Boston, MA) was used for calculation of all

statistics. Paired-sample t-tests were conducted to evaluate whether there was a signifi-

cant difference of the volume of predicted damaged lung between each of the functional

avoidance plans and the SOC plan. T-tests were also used to compare the planned MUs

between plans. Tukey’s range test was used to test for significant differences between the

various maximum dose levels delivered to the bronchial segments across all the treatment

plans.

5.3 Results

All functional avoidance plans met the dose constraints for OARs as listed in Table 5.3,

but failed to meet the PTV goal of D0.03% ≤ 66 Gy. The remaining PTV coverage goals

were met. The dose-volume histograms (DVH) for each of the 5 treatment plans were

averaged over the six subjects and are shown in Figure 5.4. In general, the PTVs for all

functional avoidance plans showed greater hotspots compared to the SOC plans, however

all functional avoidance plans achieved a reduction in dose to highly functional lung.
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(a) DVH for the esophagus (b) DVH for the heart

(c) DVH for the spinal cord (d) DVH for high functioning lung

(e) DVH for the PTV

Figure 5.4: Dose-volume histograms (DVH) for the esophagus, heart, spinal cord,
high functioning lung, and the planning target volume (PTV). DVHs for each of the
five plans (standard-of-care (SOC), Opt1, Opt2, Opt3, Opt4) are shown. Each DVH
was averaged across the 6 subjects.
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Table 5.4: Treatment planning dose-volume metrics for the standard-of-care (SOC), Opt1, Opt2, Opt3, and Opt4 plans.

SOC Opt1 Opt2 Opt3 Opt4

Structure Planning metric Absolute
values

Absolute
values

Relative
∆ from
SOC

Absolute
values

Relative
∆ from
SOC

Absolute
values

Relative
∆ from
SOC

Absolute
values

Relative
∆ from
SOC

Cord D0.01cc,Gy 34.3±5.1 38.8±9.4 4.5±4.9 40.7±10.4 6.4±6.8 43.6±8.1 9.4±3.3 43.4±7.4 9.1±4.9

Esophagus D0.01cc,Gy 59.5±4.0 54.6±11.2 -4.9±8.1 57.4±4.2 -2.0±1.3 54.2±11.8 -5.3±7.9 53.5±13.2 -6.0±9.3
Davg,Gy 20.9±8.8 18.2±13.0 -2.7±5.4 18.8±10.2 -2.1±3.7 19.0±12.2 -1.9±3.9 16.9±12.2 -4.0±4.2

Heart V45Gy,% 4.9±6.4 4.1±6.0 -0.8±2.2 4.3±6.8 -0.7±1.9 5.4±7.1 0.5±2.1 6.4±9.2 1.5±3.9
Davg,Gy 10.1±8.4 9.3±8.4 -0.8±2.1 9.1±9.0 -1.0±1.3 9.6±9.3 -0.5±1.3 9.6±10.5 -0.5±2.9

Lungs V20Gy,% 24.0±9.5 17.0±7.7 -6.9±4.7 22.1±11.4 -1.8±5.1 15.5±7.7 -8.5±3.9 16.3±7.6 -7.7±3.8
V5Gy,% 53.5±21.2 53.9±24.7 0.4±6.0 53.5±27.2 -0.1±8.8 55.7±29.2 2.3±11.3 55.8±27.3 2.4±11.0
MLD,Gy 10.4±4.9 8.6±4.2 -1.8±1.1 9.5±5.6 -0.9±0.9 8.2±4.6 -2.2±1.0 8.5±4.4 -1.9±1.5

Functional Lung fMLD,Gy 13.3±4.2 11.2±3.6 -2.2±1.5 12.2±4.9 -1.1±1.1 10.8±4.0 -2.6±1.1 11.0±3.8 -2.3±1.5
fV10Gy,% 41.9±16.0 33.8±11.7 -8.0±7.0 40.4±20.1 -1.5±5.8 41.1±17.7 -0.7±6.7 41.2±15.9 -0.7±8.6
fV20Gy,% 25.4±9.1 18.6±7.1 -6.8±5.0 23.4±11.7 -1.9±4.9 16.8±8.3 -8.5±3.7 17.8±8.0 -7.5±4.0
fV30Gy,% 15.8±6.1 11.2±4.9 -4.7±3.0 12.5±6.9 -3.3±3.9 8.1±4.6 -7.8±2.6 8.6±4.7 -7.2±2.7
fV40Gy,% 9.7±5.3 7.5±3.6 -2.2±2.1 7.5±±4.4 -2.2±2.4 4.7±±2.9 -5.0±2.6 4.9±3.0 -4.7±2.4
fV50Gy,% 5.9±±3.5 4.9±2.8 -1.0±1.0 4.7±3.0 -1.3±0.9 3.2±2.0 -2.7±1.6 3.3±2.1 -2.6±1.6
fV60Gy,% 3.1±1.9 2.7±2.0 -0.3±0.4 2.7±2.0 -0.4±0.4 2.2±1.5 -0.9±0.8 2.3±1.5 -0.8±0.8

Airways 10GyMax,Gy 58.2±2.6 52.5±8.3 -5.7±7.6 58.4±5.9 0.2±4.7 48.2±10.7 -10.0±8.6 30.7±7.4 -27.4±7.4
20GyMax,Gy 49.8±5.7 50.1±11.4 0.3±11.4 49.6±6.9 -0.3±3.9 36.6±8.3 -13.2±6.2 30.2±6.1 -19.7±4.3
30GyMax,Gy 39.8±14.5 37.3±19.4 -2.5±10.1 36.0±14.4 -3.8±10.5 28.8±14.3 -10.9±6.3 26.2±12.1 -13.6±3.8
40GyMax,Gy 32.1±16.9 27.4±15.4 -4.8±7.6 32.2±15.4 0.1±5.0 25.8±8.3 -6.4±9.8 23.5±6.7 -8.6±13.5
50GyMax,Gy 3.3±3.0 4.0±4.4 0.5±1.2 3.5±3.8 0.1±2.2 3.6±3.7 0.2±0.6 3.9±4.1 0.4±0.9

Abbreviations: fV20Gy = volume of functional lung (pre-RT LER-N≥1.2) ≥ 20 Gy; MLD = mean lung dose; fMLD = functional mean lung dose;
20GyMax = maximum dose to 20 Gy max dose airway segments.
All results are presented as the mean ± standard deviation. Absolute values in bold font were significantly (p<0.05) different compared to the
SOC plan.



144

Table 5.5 shows the predicted volumes of damaged lung (Jratio <0.90) for each subject

and plan. On average across all 6 subjects, the Opt4 plan significantly (p=0.04) reduced

the predicted volume of damaged lung by 1.5%.

Table 5.5: Predicted volumes of damaged lung for each subject and treatment plan.
P-values are from paired-sample t-tests between each of the functional avoidance plans
and the standard-of-care (SOC) plan.

Predicted Damaged Lung Volume (cc)

Subject No. SOC Opt1 Opt2 Opt3 Opt4

1 2537 2537 2529 2528 2540
2 3669 3642 3659 3614 3615
3 2828 2788 2802 2784 2782
4 1709 1706 1712 1708 1707
5 2479 2444 2497 2441 2437
6 2722 2671 2678 2638 2633

Average 2658 2632 2647 2619 2619
p=0.02 p=0.27 p=0.03 p=0.04

Figure 5.5 shows the boxplots for each treatment plan, separated by the maximum airway

dose bins. There was a significant (p<<0.001) difference in the average dose for the 10

Gy max dose bin between the Opt4 treatment plan and all other plans. Additionally,

there was a significant (p<<0.001) difference in the average dose for the 20 Gy max

dose bin between the Opt4 treatment plan and the SOC, Opt1, and Opt2 plans. For

the 30 Gy and 40 Gy dose bins, the Opt4 plan showed dose reductions compared to the

other treatment plans, but these differences were insignificant. Lastly, the 50 Gy dose

bin showed no differences across all plans, however the airways within this dose bin were

well below the maximum dose of 50 Gy.
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Figure 5.5: Boxplots for each of the five treatment plans and for each of the five
maximum airway dose bins (10-50 Gy). There was a significant difference in the average
dose for the 10 Gy max dose bin between the Opt4 treatment plan and all other plans.
Additionally, there was a significant difference in the average dose for the 20 Gy max
dose bin between the Opt4 treatment plan and the SOC, Opt1, and Opt2 plans.

Figure 5.6 summarizes the planned MUs for each plan and subject. The Opt1 (p=0.04)

and Opt4 (p=0.008) plans showed significantly greater planned MUs compared to the

SOC plan.
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Table 5.6: Planned monitor units (MUs) for each plan and subject. There was a
significant increase in MUs between the standard-of-care (SOC) plan and the Opt1
(p=0.04) and Opt4 (p=0.008) plans.

Planned MU

Subject No. SOC Opt1 Opt2 Opt3 Opt4

1 457 984 505 661 993

2 373 699 624 634 705

3 352 584 454 532 648

4 538 748 754 769 854

5 765 765 759 844 905

6 674 868 752 840 864

Average 527 775 641 713 828

p=0.04 p=0.62 p=0.17 p=0.008

Figure 5.6 shows one subject’s various treatment plans and the pre-RT LER-N map. The

SOC plan for this subject resulted in greater dose deposited to the anterior right lung,

near regions of high function as designated in the pre-RT LER-N map. The Opt3 and

Opt4 plans reduced dose to the anterior right lung as well as portions of the posterior

right lung. The left main bronchus, in addition to other airway segments not seen in the

shown axial slice, also showed a dose reduction in the Opt3 and Opt4 plans, compared

to the SOC plan.
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Figure 5.6: One subject showing the five different treatment plans created and the
pre-RT LER-N map. A) Standard-of-care dose distribution, B) pre-RT LER-N map,
C) Opt1 dose distribution, D) Opt2 dose distribution, E) Opt3 dose distribution, and
F) Opt4 dose distribution.

5.4 Discussion

This work demonstrates that the use of 4DCT-derived ventilation information across dif-

ferent treatment planning techniques resulted in clinically-acceptable plans that achieved

superior functional lung sparing compared to the clinical SOC plans. While other studies

[8, 10, 11, 165, 170–172] have investigated the efficacy and feasibility of functional avoid-

ance treatment plans, no studies to date have used predictive modeling or the DPBN

approach used in this work. Additionally, this is the first work to consider airway dose

reduction for bronchial stenosis. Vicente et al. [78] investigated functionally weighted

airway sparing (FWAS) in combination with regional functional avoidance objectives,

however the main endpoint for airway toxicity was complete airway collapse and it was

assumed that an airway was considered collapsed if it had a predicted probability of

collapse ≥5%.
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Overall, each of the functional avoidance plans generated were able to meet clinical OAR

goals and maintain PTV coverage while reducing dose to highly functional lung. It can

be seen in the DVHs in Figure 5.4 that the doses to the esophagus, heart, and spinal cord

are similar or better across all functional avoidance plans compared to the SOC plan.

The maximum spinal cord dose increased for all functional avoidance plans compared

to the SOC treatment plan, however all doses remained within recommended dose con-

straints. Esophagus maximum and average dose was slightly reduced across all functional

avoidance treatment plans compared to the SOC plan. Depending on risk tolerance de-

termined by the physician for the patient, it is possible additional dose could be given

to the esophagus in the functional avoidance plans in order to spare further functional

lung. The standard dose constraints for lung (V20Gy and MLD) were reduced for all

functional avoidance treatment plans, while V5Gy slightly increased. Lastly, while all

functional plans reduced the volume of functional lung (pre-RT LER-N ≥1.2) that re-

ceived 10-60 Gy, these differences were not significant compared to the SOC treatment

plan. This is further seen in Table 5.5 where there is a significant reduction in the pre-

dicted volume of damaged lung in the Opt4 plan compared to the SOC plan, however

this reduction was only an average of 39 cc. These results suggest that further optimiza-

tion must be done on the functional avoidance plans in order to have a larger impact on

functional lung sparing.

Airway doses were significantly reduced between the SOC and Opt4 treatment plans. For

airway segments that were in the 10 Gy max dose bin, the average maximum dose reduced

significantly (p<<0.001) from 58.2±2.6 Gy in the SOC treatment plan to 30.7±7.4 Gy

in the Opt4 treatment plan. Additionally, for airway segments in the 20 Gy max dose

bin, the average maximum dose reduced significantly (p<<0.001) from 49.8±5.7 Gy to

30.2±6.1 Gy in the SOC and Opt4 treatment plans, respectively. There was little change

across all five treatment plans in the 50 Gy max dose bin, however all plans were well
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below 50 Gy resulting in little to no weight given to these structures during treatment

plan optimization. Similarly, the 40 Gy max dose bin airways received doses less than 40

Gy on average across all five treatment plans. Lastly, while the difference in airway doses

for the 30 Gy max dose bin was not significant between the SOC and Opt4 treatment

plans, it should be noted that the Opt4 plan was able to successfully reduce dose to below

30 Gy on average to those airway structures. Overall, there was a significant (p<<0.001)

reduction in the predicted probability of bronchial stenosis across all airways of 1.2%

between the SOC and Opt4 treatment plans.

There were multiple limitations of the work presented in this chapter. First, the number

of subjects (6) analyzed was small and may have contributed to finding few significant

changes between the functional avoidance plans and the SOC treatment plan. For ex-

ample, conducting power analysis for the fV20Gy metric with a significance level of 0.05

and power of 80%, at least 22 subjects would be required to show significant differences

between the SOC and Opt4 plans. A second limitation of this work was the inability to

incorporate the machine learning model into the treatment planning system in order to

use the predictions from the model to further optimize the functional avoidance treat-

ment plan. Currently, dose must be exported to another machine in order to generate the

predicted lung ventilation change, create a new reference dose distribution, re-import this

data back into the treatment planning system, and re-optimize. This is a time consum-

ing process that makes this technique incompatible in a clinical workflow. Future work

should consider a more seamless integration between the treatment planning system, the

predictive models, and the optimization of the reference dose. Another limitation was

treatment planning expertise as the SOC and Opt1 plans were created by professional

dosimetrists, however the Opt2-Opt4 plans were not. Although the Opt2-Opt4 plans were

clinically acceptable plans, there was most likely improvements that could be made to

them to increase functional lung sparing, reduce OAR doses, and improve PTV coverage.
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Lastly, while this work showed some improvements in the Opt4 functional lung sparing

compared to the other functional avoidance treatment plans there is still not a consistent

methodology for pushing dose out of regions susceptible to ventilation damage. As with

other OARs, further dose sparing can be achieved through additional re-optimization and

manipulation of dose objectives. This process can be time consuming and is not neces-

sarily practical in a clinical environment. Improvements should be made to minimize the

amount of time needed to maximize functional lung sparing. Approaches such as multi

criteria optimization (MCO)[173] and machine learning [174] are currently being investi-

gated as tools to dynamically create dose distributions that can be adjusted in real time,

and should be considered for the development of functional avoidance treatment plans.

5.5 Chapter Summary

In this chapter multiple methods for creating pulmonary functional avoidance treatment

plans for ventilation sparing were generated and compared. On average it was found

that the DPBN method combined with airway sparing (Opt4) resulted in the greatest

reduction in predicted damaged lung volume. Additionally it was found that the airway

sparing plan (Opt4) was able to significantly reduce the average maximum dose to airway

structures in the 10 and 20 Gy max dose bins, showing potential for this method to be

used clinically to reduce potential for airway toxicities. In general all functional avoidance

plans increased the plan complexity as seen from the increase in the planned MUs per

fraction. Overall this work showed the efficacy of new voxelwise dose objectives for

achieving clinically-acceptable ventilation sparing plans. Future work should focus on

integration of the predictive models into the treatment planning system to reduce the

need for data transfer between systems, and minimize the potential for errors that may

arise as a result of transferring data. Furthermore, by integrating the predictive models
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into the treatment planning systems it will be easier for adjustments to be made to

functional avoidance plans in real-time.
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Chapter 6

Conclusions & Future Work

6.1 Summary and Limitations

In this work, techniques and methods to improve the efficacy of pulmonary functional

avoidance radiotherapy were investigated. Changes in airway structures were analyzed

before and after radiotherapy to quantify the relationship between radiation-induced

bronchial stenosis and ventilation changes downstream. Airway remodeling was observed

in both a novel swine model and in a human subject cohort. Additionally, multiple

predictive models were developed, trained, and validated to predict post-RT ventilation

changes. The first model was a polynomial regression model that used the LER-N method

to derive ventilation maps instead of the previously utilized LER-2 method. Multiple deep

learning models were created to predict post-RT ventilation change using volumetric im-

ages as input to preserve global context across the entire lung volume. Finally, the results

of the airway toxicity analysis and ventilation change predictive models were used to de-

velop a new method in creating functional avoidance treatment plans. This new approach
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was compared with previously used methods and the standard-of-care treatment plans to

investigate the potential for lung ventilation sparing.

6.1.1 Investigation of radiation-induced airway remodeling

and regional ventilation changes

6.1.1.1 Radiation-induced airway changes and downstream

ventilation decline in a swine model

Section 3.2 performed a retrospective analysis of radiation-induced changes in airways in a

novel miniature swine model to quantify the relationships between airway dose and airway

structural changes, as well as regional changes in ventilation function. A strong linear

relationship was found between radiation dose and the change in the luminal area of a

bronchial segment. Furthermore, it was found that the dose level causing Grade 2 or worse

bronchial stenosis was approximately 25 Gy, which is half the recommended maximum

dose to prevent non-pneumonitis toxicities recommended by RTOG 0813 and validated

by Manyam et al. [32]. It was also observed that there was a greater decline in ventilation

function in unirradiated regions that were supplied by irradiated airways, compared to

unirradiated regions supplied by unirradiated airways. This supports the hypothesis that

there is “downstream” ventilation damage caused by irradiating the supplying airways.

Part of the limitations in this study was due to the small sample size of swine studied

(n=3). Significant changes were unable to be observed for the downstream ventilation

changes. A further limitation was that while the swine were mechanically ventilated

and were imaged and treated within a relatively controlled environment, there were still

inter-subject variabilities that existed that prevent strong conclusions to be drawn from

the results. Additionally for this cohort of swine, the radiation treatment plan that
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was delivered was not specifically planned prospectively to study downstream effects of

irradiating the airways. The delivered dose distribution was placed relatively inferiorly

in the left lung, reducing the volume of lung to analyze that was supplied by irradiated

airways that also did not receive substantial levels of dose. Lastly, while swine and human

lungs have some anatomical similarities, the airways are quite different. Swine airways

exhibit a monopodial branching pattern, meaning the left and right main stem bronchi

extend the length of the lungs, with smaller branches and generations branching off

asymmetrically throughout the lung. Human airways have a bipodial branching pattern

with each airway segment containing a bifurcation point, splitting into two separate

airways of the same generation. This key difference in airway structures between swine

and humans may cause dissimilar responses to radiation dose and regional ventilation

changes as a result of bronchial stenosis. These limitations described in the swine study

were a key motivating factor for extending the airway analysis to a human subject cohort.

6.1.1.2 A Risk Model for Radiation-Induced Bronchial Stenosis and Indirect

Ventilation Damage

In Section 3.3 additional analysis was performed retrospectively on human subject imag-

ing data to further examine the relationship between airway structure changes and down-

stream ventilation change. A similar but weaker dose-response relationship was observed

between radiation dose and bronchial stenosis. A commercial virtual bronchoscopy soft-

ware was used to calculate metrics for each airway segment out to the 11th generation of

airways, allowing for comparison of resistance changes between the pre-RT and post-RT

images. Through this analysis it was found there was a significant relationship between

the change in resistance of an airway path and the ventilation change in the region those

airways supplied. From these results, a toxicity model was developed to predict the prob-

ability of an individual bronchial segment to experience stenosis based on the delivered
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maximum dose and the initial wall thickness. This toxicity model can be utilized in treat-

ment planning by creating ROIs for various maximum dose thresholds, which can then be

used as dose objectives when planning to avoid exceeding those dose tolerances to each

airway segment. By creating a treatment plan which meets these dose objectives, the

probability of bronchial stenosis and the resultant loss in ventilation will be minimized.

Multiple limitation existed in the analysis of human airways. First, due to the time inten-

sive nature of segmenting airway trees out to the resolution of the image, only 10 human

subjects were included for analysis. While the commercial bronchoscopy software used

was able to automatically segment most airway trees, it failed to provide accurate segmen-

tations in regions of advanced disease and dense, fibrotic tissue. As the human subjects

in this study are patients receiving radiotherapy for lung cancer, both of these issues

were highly prevalent. There is a need for improved tools and segmentation techniques

that are able to overcome the issue of accurate automatic segmentation in these partic-

ular regions. Another limitation was that all the subjects analyzed received standard

fractionation radiotherapy across 30 fractions. Because these treatments are typically re-

served for diseases near the mediastinum that can not tolerate the higher biological doses

associated with SBRT fractionated treatments, there may be a slight bias in the model.

The bias that exists shows a weak correlation between maximum dose and airway caliber;

this is due to the fact that larger airways exist closer to the mediastinum and therefore

they tend to receive higher doses during standard fractionation treatments. This factor

should be kept in mind when applying this model for functional avoidance purposes as

well as future studies to validate the findings. Lastly, simplifying assumptions were made

for airflow within the airways in order to calculate resistance. These assumptions should

again be considered when making clinical decisions using these toxicities models, and

should be investigated further using more sophisticated techniques.
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6.1.2 Modeling normal lung tissue response to radiation dose

6.1.2.1 Modeling the impact of out-of-phase ventilation on normal lung tissue

response to radiation dose

The polynomial regression model presented in Section 4.2 improved in gamma pass rates

and accuracy compared to a previously developed model by Patton [123]. Specifically

in regions considered out-of-phase, the LER-N model was significantly more accurate at

predicting post-RT ventilation compared to the LER-2 model. One weakness of the LER-

N model was that it decreased in sensitivity to regions of ventilation decline. In general,

the predicted post-RT ventilation values tended to under predict ventilation damage.

It was found that for highly functional voxels that received 20 Gy or more and were

predicted to decline in ventilation post-RT, 66% had a ground truth post-RT ventilation

value smaller than the predicted value. This indicates that greater lung damage was

occurring than the model was able to predict.

One of the largest limitations of the LER-N model was that the values the model was

trained on were flattened into one-dimensional arrays and lost all global context and vol-

umetric information. It should be apparent that lung ventilation changes are dependent

on more than the dose delivered to one particular voxel and may be the reason for the

model performing poorly in identifying regions of ventilation decline. This also means

that pulmonary vasculature and airway damage is unaccounted for within this model.

An additional limitation of the model compared to the LER-2 model is that for patients

who do not experience long periods of out-of-phase breathing, the added benefit of the

LER-N method may not substantially impact predicted ventilation decline. These two

majors issues with the polynomial regression model provide motivation to develop more

complex models that are able to overcome these limitations.
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6.1.2.2 Predicting Pulmonary Ventilation Damage After Radiation Therapy

for Non-Small Cell Lung Cancer Using Deep Learning

Section 4.3 presented multiple deep learning-based models for predicting radiation-induced

pulmonary ventilation changes. Three different models were investigated including the

Seg3DNet, ResNet3D, and a conditional generative adversarial network (cGAN). Each

model was validated using 8-fold cross-validation and compared to the previously devel-

oped polynomial regression model. All three deep-learning -based models were able to

improve in sensitivity compared to the POLY model, however the cGAN significantly out-

performed all other models. Compared to the POLY model, the cGAN had a three-fold

improvement in the average Youden’s index (TPR+TNR-1) and over a five-fold improve-

ment in average true positive rate. One of the consequences in the asymmetrical loss

function designed to heavily penalize under-prediction of ventilation damage was that

the cGAN model then over-predicted regions of ventilation decline. In general the cGAN

model had a higher rate of false positives, predicting regions of ventilation decline that

did not exist within the ground truth images.

A limitation of this work was due to the limited availability of data to use for training and

validation. This was partly addressed by pre-processing techniques that were employed

as well as using cross-validation, however the size of the dataset used was relatively small

compared to typical dataset sizes used for deep learning tasks. One potential way to

address this issue is to utilize open-source datasets to pre-train models to be used for

transfer learning. Most open-source datasets containing 4DCTs rarely contain radiother-

apy data such as dose distributions, and none to date outside of the data collected in

this clinical trial provide 4DCTs that have been collected post-RT. Additionally, utilizing

datasets from other institutions will increase the variety of the training data and make

for a more generalizable model. Another limitation of this work is lack of explainability

in the models’ ability to predict post-RT ventilation change. There has been recent work
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on developing explainable GAN models in an attempt to understand the decision making

process and reasoning for predictions made by deep learning models. Wu et al. [175] has

investigated creating an explainable GAN network for CT angiography images, which is

important for clinical translation of these models.

6.1.3 Integrating Functional Avoidance Information Into Treat-

ment Planning

Lastly, Section 5.1 compared multiple methods of creating functional avoidance treatment

plans to a clinical standard-of-care plan. Four different functional avoidance methods were

tested including an ROI-based approach using the polynomial regression model, a DBPN

method using the polynomial regression model, a DBPN method using the cGAN model,

and a method that also included airway avoidance structures. The method using the

DPBN approach with the cGAN model and airway avoidance structures resulted in the

greatest reduction in predicted damaged lung volume. This method also significantly re-

duced dose to airway structures to minimize the probability of stenosis. However, a trend

seen across all functional avoidance plans was a significant increase in the planned MUs

compared to the standard-of-care plan, indicating greater plan complexity and modula-

tion.

A limitation of this work was the lack of integration of the predictive models into the

treatment planning system. While the workflow is possible without this integration, it

makes the entire process more cumbersome and time consuming, making it less feasible

in a clinical environment. Additionally, a more seamless integration with the treatment

planning system would allow for better “on the fly” adaptation to treatment plans based

on the predicted ventilation change for a given dose distribution during the optimiza-

tion process. Another limitation of this work was again a small sample size of subjects
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analyzed. Power analysis suggested at least 22 subjects would be required to show signif-

icant differences between plans. However, the preliminary work shown here suggests the

methodologies proposed may be feasible in producing clinically acceptable plans that bet-

ter spare lung ventilation compared to standard-of-care and currently utilized functional

avoidance treatment planning methods.

6.2 Future Work

While the methods, models, and analysis presented in this work improve the efficacy in

which functional avoidance information can be utilized for lung cancer radiotherapy, there

is additional work to be done to validate results and further improve clinical integration.

First, additional swine studies should be performed in order to further validate the dose-

response relationship as well as the pathology of radiation-induced bronchial stenosis.

While the results presented suggested a strong, linear dose-response relationship with

bronchial stenosis, the mechanisms are not well understood. Hasegawa et al. [138] sug-

gested that airway-wall thickening encroaches on the inner lumen of the airway, however

it was seen that both airway wall thickness and airway caliber decreased as a function of

radiation dose. Additionally, the pathology of downstream ventilation decline should be

studied to understand the inflammatory response that occurs as a result of irradiating

the airways. Performing these additional experiments within the swine models allows

for the pathology studies and provides a controlled environment for analyzing the airway

responses further. Within the human subject cohort, additional segmentations should be

made across a larger group of subjects to further validate the toxicities models developed.

Additionally, these toxicities models should be trained and tested using a greater variety

of dose distributions; both in location and fractionation.
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Future work in regards to post-RT ventilation modeling should focus on the creation of

explainable models. Explainable models will provide a better basis for decision making

when using the deep learning models in the treatment planning process for functional

avoidance plans. An additional helpful change to the cGAN model would be to develop

a cycle GAN model, which is a specific type of GAN that learns to map images from

domain A to domain B and vice versa, while also ensuring that the mapping is bijective

and invertible. To achieve this, a cycle GAN consists of two GANs, one for each domain,

and the cycle consistency loss is calculated by comparing the original image and the image

reconstructed after going through both generators. This loss encourages the generators

to learn a more meaningful mapping between the two domains, and also helps to pre-

vent mode collapse. Applying the cycle GAN to the ventilation model could potentially

allow for the mapping and prediction of an “ideal” dose distribution based on a desired

ventilation map.

Lastly, future work to improve the integration of functional information into the treatment

planning process should focus on the use of the predictive models directly within the

treatment planning system to avoid multiple time consuming data transfers. As stated

before, this would also aid in real time decision making by being able to view the dose

distribution and the predicted ventilation change. Additionally, expanding this work to

include perfusion-based metrics will further enhance the ability to create treatment plans

that consider all facets of lung function.

6.3 Conclusion

This work presents multiple improvements to pulmonary functional avoidance radiother-

apy through the development of an airway toxicity model and subsequent analysis of

downstream ventilation changes, a deep-learning based predictive dose-response model
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for regional ventilation change, and new methods for the integration of functional infor-

mation into the treatment planning process. Future work is needed to further validate

the results presented, however this work improved upon previous methods and models

that are currently used in a clinical trial and should be considered for use in future trials.
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Appendix A

Details Regarding the use of

Wisconsin Miniature Swine in

Airway Results

A.1 Methods Regarding Care and Use of Wisconsin

Miniature Swine

A.1.1 Indwelling Catheter Placement

Dantrolene was administered prophylactically (5.9 mg/kg) in a small amount of feed to

prevent against malignant hyperthermia. Anesthesia was administered using an injectable

Telazol/Xylazine cocktail (3 mg/kg of Telazol and 1.5 mg/kg of Xylazine). Gas anesthesia

was then administered via a nose cone (isoflurane at 2%). The subjects’ necks were

shaved and scrubbed bilaterally. Surgical depth of anesthesia was confirmed by testing

toe pinch response and palpebral reflex. An indwelling central venous catheter was placed
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percutaneously in the vena cava (placement confirmed by fluoroscopy) and secured in

place with suture. The catheter was sutured to the skin twice using finger-trap suture

technique as well as using 2 butterfly clamps. The subject was outfitted with a pocketed

catheter jacked, placed over a spandex shirt.

Prior to catheter placement 20 mL of blood was collected for serum and plasma samples.

A 30 mL 0.9% saline flush was administered and anesthesia was discontinued. The subject

was moved to the recovery pen for 2.5 hours before being returned to housing and given

a feed ration.

A.1.2 Imaging and fraction delivery sessions

Dantrolene was administered prophylactically (5.9 mg/kg) in a small amount of feed to

prevent against malignant hyperthermia. Anesthesia was administered using an injectable

Telazol/Xylazine cocktail (3 mg/kg of Telazol and 1.5 mg/kg of Xylazine). Gas anesthesia

was then administered via a nose cone (isoflurane at 2%). The subject was intubated and

placed in a transport cart to be transported to the CT suite.

Once in the CT suite, Propofol was administered again (2.4 mg/kg) and Telazol (1.2

mg/kg) was administered in the left hind leg. The subject was mechanically ventilated

at 15 breaths per minute and 1000 mL/breath. Mechanical ventilation of subject was

periodically adjusted to appropriately maintain SPO2 and ETCO2 while allowing for

desired image acquisition and irradiation. For all 4DCTs, ventilation was reduced to

8 breaths per minute and for all contrast enhanced CTs the subject was placed in an

inspiration breath hold with a 1000 mL tidal volume. Two contrast-enhanced scans were

performed. Each contrast scan involved injection of 80 mL of Omnipaque 300 followed

by 50 mL of saline administered intravenously.
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Once imaging was complete, ventilation, gas anesthesia, and saline administration were

discontinued while the subject was transported from the CT suite to the MRI-Guided

LINAC vault. Once there, ventilation was resumed at 750 mL/breath and 8 breaths per

minute with an inspiratory: expiratory ratio of 2:1. Irradiation treatment of the lung was

performed to deliver 12 Gy to the left lobe targeted at a vessel bifurcation.

Once irradiation was complete, anesthesia was discontinued and the subjects were weaned

of mechanical ventilation. The subjects were transported to housing where they were

extubated.

A.1.3 Animal Care During Study

All Wisconsin Miniature Swine were housed onsite in facilities managed by the Biomedical

Research Model Services group at the University of Wisconsin. Facilities undergo frequent

inspection by the university Animal Care and Use Committee (ACUC) to ensure ethical

treatment of animal subjects.
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