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ABSTRACT

The research described in this dissertation presents novel computational algorithms
and strategies for (1) improving the assignment of molecular identities to analytes
profiled by high-resolution gas chromatography-mass spectrometry (GC/MS), (2)
performing relative quantitation of large sets of metabolites across expansive sets
of mass spectrometry data files, (3) disseminating processed mass spectrometry
data and post hoc statistical results in web-based platforms, and (4) monitoring
mass spectrometer performance via a web-based data processing and analysis
tool. An overview of the aforementioned computational strategies and developed
software tools is presented in Chapter 1. A novel algorithm for leveraging accurate
mass—afforded by high-resolution GC/MS systems—to discriminate between pu-
tative identifications assigned to profiled small molecules is described in Chapter
2. In Chapter 3, an algorithm and accompanying software suite designed to enable
untargeted quantitation of small molecules across expansive sets of raw GC/MS
data files is described. In Chapter 4, these algorithms are employed as part of a
larger study wherein 174 single gene deletion strains of yeast were comprehensively
profiled at the proteomic, metabolomic, and lipidomic levels. These multi-omic data
were then integrated through various analysis planes in order to define functions

of uncharacterized mitochondrial proteins. Chapter 5 details numerous web-based



XX

data visualization utilities developed for various projects designed to enable re-
searchers to more rapidly interrogate MS data sets at depth. In Chapter 6, the
development of a web-based mass spectrometry data deposition, processing, and

visualization tool for automated quality control analysis is described.



Chapter 1

INTRODUCTION AND BACKGROUND



Mass Spectrometry

Mass spectrometry (MS) is a premier analytical technique for qualitative and quanti-
tative molecular profiling. This technology has had widespread utility in numerous
biological applications as it uniquely enables comprehensive protein, metabolite,
and lipid analysis on a grand scale. Mass spectrometers are instruments used to
generate these global molecular profiles. The primary function of a MS instrument
is to ionize and measure the mass-to-charge (1/z) ratio of individual molecules.
Instrument readouts are produced in the form of mass spectra, which inform both
the chemical identity and relative abundance of analyzed entities. These MS data
can provide researchers with an up-close look at the molecular composition of their
system of interest—a perspective which few other analytical technologies can pro-
vide. Here, we will describe the fundamental processes which a mass spectrometer

performs to generate these data—namely, ionization, mass analysis, and detection.

Ionization. Ionization is the process wherein charge is imparted to analyte molecules
usually existing in either the liquid or gas phase. The choice of ionization technique
is largely application dependent, and is often dictated by how a sample is deliv-
ered to the MS instrument. For the analysis of complex mixtures (i.e., complete

proteomes, metabolomes, lipidomes, etc.) it is often advantageous to employ a



front-end chromatographic separation using either a gas or liquid chromatograph
(GC/LC, respectively). GC is a useful technique for separating complex mixtures of
volatile small molecules, such as metabolites. This mode of chromatography inter-
faces well with MS instrumentation and can be used in conjunction with electron
ionization (EI) and chemical ionization (CI) techniques.

EI was one of the oldest ionization techniques to be used for MS analysis, dating
back to the early 1900’s?. In GC, a column is interfaced with an EI source, and
eluting analyte molecules are bombarded with a beam of high-energy electrons.
This process induces molecular fragmentation and formation of radical cations,
which are then subjected to mass analysis. It is noteworthy, that these fragmentation
processes are highly reproducible. Individual molecules give rise to characteristic
sets of fragments across repeat experiments. Given that EI causes extensive frag-
mentation, this technique is considered a “hard” ionization process. Often it is
desirable to analyze intact precursor molecules, which can be achieved using by
alternative “soft” ionization techniques.

Clis a “soft” mode of ionization which is similarly amenable to GC/MS appli-
cations®. Here, a neutral reagent gas—often methane—is introduced to the MS at a
concentration much higher than that of analyte molecules (10°-10*x). The reagent

gas is ionized via interactions with high-energy electrons, and secondary reactions



cause formation of protonated species. Analyte molecules are then introduced
to the MS, and are subsequently ionized via interactions with charged reagent
gas molecules. The high concentration of reagent gas effectively shields analyte
molecules from competing EI processes, making CI the preferred mode of ion-
ization. CI processes provide a benefit over EI in that they often yield an intact
pseudomolecular ion ([M+H]"), albeit with less complementary fragmentation in-
formation. Both EI and CI techniques are useful for the analysis of small molecules,
but lose efficacy for analytes >1000 Da.

For front-end LC separations, electrospray ionization (ESI) is the most popular
and commonly employed ionization technique*. Here, a high voltage is applied
to the tip of an LC column. This causes the eluent from the column to aerosolize
and disperse in the form of highly charged droplets. These droplets are introduced
into a vacuum region of a mass spectrometer where they gradually desorb until
only charged molecules are left. The ionized molecules are then available for mass
analysis inside the instrument. ESI is amenable for ionization of molecules of all
sizes—from small molecule metabolites (<500 Da), to large macro protein complexes
(800 kDa+)°>—which has contributed to its extensive use in MS labs around the
world.

Matrix-assisted laser desorption/ionization (MALDI)® and fast atom bombard-



ment (FAB)” are alternative ionization techniques, designed to be used in applica-
tions where samples exist in the solid phase. In MALDI, samples are mixed with
a chemical matrix and deposited onto a metal plate, which is then injected into
a MS under vacuum. A pulsed laser irradiates the surface of the plate causing
desorption and ionization of molecules. This technique has been highly useful for
MS imaging applications aiming to elucidate spatial molecular compositions of
biological tissues. FAB is similar to MALDI with respect to sample preparation
and delivery to the MS. However, in FAB molecular desorption and ionization is
induced by firing a high energy beam of inert gas atoms (typically argon or xenon)

at the sample surface.

Mass Analysis. Following ionization, mass analysis is the process wherein a MS
separates molecules on the basis of m/z. Various mass analyzers are employed in
commercial MS systems today, each of which affords different advantages with
regards to resolution, mass accuracy, mass range, and speed of acquisition. The
simplest mass analyzer is the time-of-flight (TOF)®, which separates molecules
longitudinally. Here, packets of ions are injected into and accelerated through an
electric field of uniform strength, which imparts an equivalent amount of kinetic
energy to each molecule. Each molecule’s velocity is a function of its m/z ratio,

which results in lighter molecules—of the same charge— travelling faster through



the field. By the same effect, molecules of equivalent mass, but higher charge, will
also traverse the field more quickly. TOF analyzers are among the fastest scanning of
all mass analyzers, and can afford relatively high resolving powers with sufficiently
long flight tubes.

Quadrupole (Q)? mass analyzers consist of four parallel metal rods, arranged in
asquare, which form an open channel for ions to pass through. A direct current (DC)
offset voltage is applied to two opposing rods, and an alternating current (AC) offset
voltage is applied to the remaining two rods. Modulation of the voltages applied to
the rod pairs allows selective transmission of ions and will selectively discriminate
towards molecules having a specific m/z ratio. All other molecule’s trajectories will
become unstable and they will be ejected from the flight path. Quadrupole ion
trap (QIT)'? analyzers operate on similar principles. Here, electrodes are arranged
to create a cell such that the electric field created by each can be used to trap
ions. By modulating the potential across each electrode, ions of specific m/z can be
selectively ejected and sent to a detector. Both Q and QIT analyzers are sensitive
and fast-scanning, but do not match other analyzers in terms of resolving power.

Fourier transform ion cyclotron resonance (FTICR)!! and Orbitrap'? offer the
highest resolution of all analyzers. Here, ions are injected tangentially into a mag-

netic or electrostatic field and excited to their cyclotron radius. Within an Orbitrap



mass analyzer, packets of ions having the same m/z will oscillate axially in phase.
These measurements generate an image current—composed of sine waves from
each discrete packet of ions—on the outer electrodes which can be converted into a
mass spectrum by performing a Fourier transform. Alternative FTICR instrumenta-
tion operates on similar principles. Resolving power is a function of acquisition time
in FTICR analyzers and increases in transient acquisition time lead to improved
resolution.

Granted that analyzers afford different benefits in terms of resolving power,
mass accuracy, mass range, and rate of acquisition, many instruments incorporate
multiple analyzers in sequence, and are referred to as ‘hybrids.” The advantage
here, is that ions can be analyzed in different ways during the course of a single ex-
periment. Tandem mass analysis (MS?) is a technique wherein precursor molecules
are isolated and fragmented, and those fragments are subsequently analyzed. Tan-
dem mass analysis is useful for identification purposes as molecular fragmentation

patterns serve as a characteristic signature of chemical identity.

Detection. Following ionization and mass analysis, a detector operates to register
individual ions as electrical signals which can be converted into mass spectra. As
previously mentioned, FTICR analyzers perform both mass analysis and detection

simultaneously. Ion oscillations within the FTICR cell induce charges on internal



electrodes which are registered in an interferogram. Longer acquisition times
increase both resolution and signal-to-noise (S/N) of individual peaks in the Fourier-
transformed mass spectrum. For TOF, Q, and QIT mass analyzers, which separate
molecules on the basis of m/z, a separate device must be employed to register
ion signals. Faraday cups and electron multipliers are frequently used in mass
spectrometers for this purpose. Faraday cups are simple detectors wherein ions
strike a dynode surface causing an emission of electrons which induce a current that
can be measured and recorded. No signal amplification is employed here which
makes detection of low abundance ions challenging. Electron multipliers operate
on similar principles, but these devices position multiple dynode surfaces in series
to achieve amplification of signal. Ions strike the first dynode surface causing
emittance of electrons directed towards a secondary dynode. These electrons
strike the secondary surface causing emittance of an increased number of electrons
directed towards a third dynode. This cascading process continues, and more
electrons are released with each successive step. Eventually the electrons emitted
from the final dynode are registered as a current and stored. Typically, electron

multipliers can achieve an amplification of signal on the order of ~100.



MS-Based “Omic” Profiling

“Omics” is a neologism used to refer to the biological fields of study devoted to com-
prehensively characterizing a specific class of biomolecules in a system. For instance,
genomics—the study of an organism’s genetic material—focuses on determining
which DNA molecules are present in a particular sample, and at what abundances.
By comparing genomic maps between samples exposed to different treatments,
researchers can identify deviations in molecular profiles. These characteristic de-
viations can then be leveraged to drive hypothesis generation and biochemical
discovery. The central dogma of biology states that genetic information is coded
into DNA, which is subsequently transcribed into RNA, and finally translated into
functional protein units. Proteins carry out myriad biochemical reactions in the cell
that yield smaller metabolic byproduct molecules called metabolites. Lipids are
yet another class of essential biomolecules, and are synthesized for the purpose of
signaling, storing energy, and maintaining cell membranes. Proteins, metabolites,
and lipids are all amenable to analysis by MS, which has rapidly established itself

as the leading analytical tool for proteomic, metabolomic, and lipidomic study.

Proteomics. MS-based proteomic analyses are typically carried out using a bottom-

up approach. In a traditional discovery-oriented, bottom-up experiment, proteins



10

are first extracted from a sample of interest and then digested into smaller peptide

subunits via proteolytic enzymes. The digestion of proteins into smaller pieces

improves chromatographic separations—as compared to analysis of intact proteins—
and simplifies downstream data processing. These complex mixtures of peptide

species are loaded onto a front-end LC column, chromatographically separated,
and sprayed into a MS. Throughout this LC gradient, peptides are analyzed in MS'

survey scans and precursors are selected for subsequent MS? analysis in a data de-
pendent (DDA) fashion. DDA strategies employ algorithms which select precursors

on the basis of abundance and observed isotope pattern—a signature of peptidic

species. Peptides selected for MS? analysis are isolated, fragmented—typically via a

collisional (collision induced dissociation [CID] ", higher-energy c-trap dissociation

[HCD] ™), photodissociative (infrared multiphoton photodissociation [IRMPD] ",
ultraviolet photodissociation [UVPD]!®), or electron-based (electron transfer dis-
sociation [ETD]", electron capture dissociation [ECD]'®) dissociation technique,
and then analyzed. Following MS? analysis, all selected precursors are placed on

a timed exclusion list to avoid resampling of the same peptides. This procedure

enables the MS to efficiently allocate scan time such that the largest possible pool

of distinct precursor molecules can be analyzed per experiment.

Following data acquisition, acquired MS? spectra are compared against an in sil-
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ico digest of a protein sequence database to assign identifications. Given the repeat
polymeric structure of peptides, fragmentation patterns are easy to predict compu-
tationally. This in silico fragmentation information, coupled with a measurement
of precursor mass, can be leveraged to assign an amino acid sequence to analyzed
peptides!. False discovery rate (FDR) can automatically be controlled here by con-
ducting searches against a concatenated target-decoy (forward and reverse-sense
sequence) database®. Each identified peptide can be quantified by summing the
total abundance of MS'! peaks measured at that particular m/z; this quantitation
approach is referred to as ‘label-free’. Alternative quantitative approaches which
make use of isotopically heavy amino acid labels (stable isotope labeling with amino
acids in cell culture [SILAC]?!, neutron encoded mass signatures [NeuCode]?*), or
isobaric mass tags (tandem mass tags [TMT]?, isobaric tags for relative and abso-
lute quantitation [iTRAQ]?*!) can also be used for peptide quantitation, although
these typically require modified data acquisition routines. In all cases, quantified
peptides are aggregated to form consensus protein abundances, which can then be

used for comparative proteomic analyses.

Metabolomics and Lipidomics. Although metabolites and lipids are chemically
distinct classes of molecules, the approaches used for global profiling—analysis of

as many chemical entities as possible—of these species are fundamentally similar.
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In these paradigms, a front-end chromatograph—either GC or LC for metabolomics,
and typically LC for lipidomics—is used to resolve complex mixtures of extracted
metabolites and lipids. Eluting species are then sprayed into a MS instrument
for subsequent analysis. For LC/MS experiments, a DDA-like approach is often
employed wherein all molecules are measured in an MS! survey scan, and abun-
dant precursors are selected for MS? analysis. In GC/MS applications, EI is the
most commonly employed ionization technique. Given that EI induces molecu-
lar fragmentation upon ionization, typically only MS! survey scans are acquired
during these experiments. Following data acquisition, spectral deconvolution algo-
rithms can be employed to extract spectra containing fragments derived exclusively
from a singular precursor. In both cases, fragmentation spectra can be used for
identification purposes.

Unlike peptides, metabolites do not have repeat polymeric structures which
readily lend themselves to in silico fragment generation. For metabolomic analyses,
experimentally-derived fragmentation spectra are often compared against libraries
of reference spectra for identification purposes. The majority of publicly available
metabolite reference libraries contain spectra from the analysis of pure reference
standards (NIST%, Wiley?®). Lipid fragmentation patterns are slightly more pre-

dictable, and extensive databases of theoretical fragmentation spectra have recently
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been published?. For both metabolomic and lipidomic analyses, quantitative in-
formation can be obtained by extracting MS! chromatographic features, as is done

in the previously described ‘label-free” approach.

Challenges in MS-Based “Omic” Profiling

Given the depth and breadth of molecular coverage it can provide, mass spec-
trometry has positioned itself as the analytical tool of choice for “omic” profiling
studies of small effector biomolecules. Recent advances in MS have enabled un-
precedented throughput and have placed data acquisition speeds on a timescale
commensurate with orthogonal genomic and transcriptomic profiling technologies.
Despite these rapid advances in MS profiling capabilities, a number of challenges
to routine profiling persist—particularly with regards to computational analysis.
Assignment of confident identifications to profiled metabolite species has proven
difficult, with many studies reporting identification of only a fraction of all profiled
species. Streamlined metabolite quantitation software tools remain underdevel-
oped, particularly for GC/MS applications. The generation of increasingly large
MS data sets creates a burden to data exploration and interpretation, and functional
analysis tools are similarly underdeveloped. Finally, unified tools for monitoring

MS instrument performance and assisting in troubleshooting are limited, and the
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larger community lacks a standard solution to this widespread problem. The work

described in this dissertation has been directed to address each of these issues.

Identification of Metabolites. Metabolomics in general suffers from a relatively
low rate of compound identification. In a typical discovery experiment, an average
of only ~30% of monitored species are assigned a confident identification®®. This is
greatly reduced from a typical proteomics experiment where we note (empirically)
that ~50% of analyzed peptides or more are routinely identified. Metabolite identi-
fications are assigned based on comparisons to spectral libraries (NIST®, Wiley2°)
which, while expansive, are incomplete. Often, the absence of an appropriate ref-
erence spectrum in a library precludes identification altogether. Furthermore, we
note that most reference libraries consist of spectra acquired exclusively on unit
resolution mass spectrometers. The advent of high-resolution Orbitrap and FTICR
mass spectrometry systems provides metabolomic analysts with a new dimension
of information in accurate mass. Researchers were quick to leverage this in LC/MS
applications wherein molecular assignments are based in part upon intact precursor
mass. This increase in mass accuracy affords a substantial reduction in putative
precursors considered, which generally translates to a higher overall identifica-
tion rate. Conversely, there was not an obvious way to integrate this information

into traditional GC/MS workflows, where identifications are assigned based on
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comparisons to unit resolution reference spectra.

We note that the mass accuracy afforded by high-resolution GC/MS systems—
such as the GC-Orbitrap®**'—yields measurements which are precise enough to
be annotated with an exact chemical formula. We expanded upon this concept
and developed an approach for leveraging accurate mass to discriminate against
false matches, when used in conjunction with traditional spectral matching. In our
approach—called High-Resolution Filtering (HRF)**—we extract fragmentation
spectra from high-resolution GC-Orbitrap raw data files, and submit these spectra
for matching against unit resolution reference libraries. Each submitted spectrum
is returned with a set of putative identifications, complete with associated chem-
ical formulas. We then generate all non-repeating combinations of atoms from
these formulas and attempt to match these sub-formulas (theoretical fragments)
to our spectrum using exact mass. The proportion of measured signal that can be
annotated with a sub-formula is then reported as a metric of plausibility of the
assigned identification. This approach is desirable as it capitalizes on the expansive
reference libraries currently in existence. Furthermore, it exploits the richness of
acquired GC-Orbitrap data to discriminate between true and false matches with
higher fidelity. We also note that while the current implementation of HRF is built

around spectral matching, this metric can be used independently to test the plausi-
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bility of formula-spectrum matches in a non-biased manner. The HRF algorithm is

described in detail in Chapter 2.

Untargeted Metabolite Profiling. Considering all MS-based “omic” profiling tech-
nologies, quantitation routines are most well-developed for proteomic analyses.
Researchers can utilize a variety of techniques from label-free, to metabolic or
chemical tagging, to acquire quantitative protein information. Furthermore, a
panel of software tools is available to assist in extracting abundance measure-
ments®°. In most of these quantitation packages, identifications are required in
order for quantitative information to be reported. This paradigm is challenging
for metabolomic applications where often many biologically-relevant features go
unidentified. Independent of identifications, profiling conserved sets of metabolites
across experiments can be useful for elucidation of phenotypic similarities. We
note that software solutions which enable untargeted metabolomic quantitation
remain under-developed, notably for high-resolution GC/MS applications.
EI-GC/MS analysis is challenging in general as many signals arise from singular
chemical entities. Additionally, most sample preparation procedures utilize sol-
vents and a derivatization reagent—to increase molecular volatility—which adds
unwanted background chemicals to already complex mixtures®®. Quantitative

profiling of phenotypes here requires aggregation of signals derived from singular
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precursors, in addition to selection against those signals arising from background
chemical noise. These operations collectively enable the isolation of a representative
set of biologically-meaningful signals that can be quantified and compared across
samples. Ideal software tools would perform all necessary feature extraction and
background subtraction steps to identify this set of “targets,” in addition to quanti-
tation and normalization of features detected across MS data files. Furthermore, it
is desirable that these results be packaged in a format which lends itself to rapid
data visualization in order to expedite downstream data analysis. In Chapter 3
we describe work on a suite of software tools designed to perform all of the steps

required for untargeted GC/MS metabolomic profiling.

Interpretation of Large MS data sets. Over the past twenty years, mass spectrom-
etry has experienced massive technological advances which are reflected in “omic”
profiling studies of the day. In 1996, the Mann group sequenced ~150 yeast pro-
teins using a 2D gel electrophoretic separation (2DE), followed by joint MALDI
and LC/MS analysis®. In 2001, Yates and colleagues identified 1483 yeast pro-
teins in 68 hours of LC/MS analysis®. In 2006, the Mann group again pushed the
needle, and identified 2003 yeast proteins in only 48 hours®. In 2013, Zubarev

and colleagues reported detection of ~5,000 proteins in human cell lines in only

four hours of MS analysis time*’. One year later in 2014, the Coon research group
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published a groundbreaking study where the complete yeast proteome (~4000
proteins) was sequenced in just over one hour of MS analysis time*!'. Collectively,
these recent studies have signaled a paradigm shift for proteomics. Now, compre-
hensive profiling of proteomes is possible in hours, not days, which opens the door
to systems-level studies where the analysis of hundreds, or even thousands, of
samples is considered routine.

The rapid expansion of MS data sets has been met with enthusiasm by the larger
biochemical research community. However, the increased flux of data presents new
challenges in dissemination, analysis, and interpretation of processed results. Tools
for visualization, exploration, and sharing of large-scale MS data sets—particularly
multi-omic data sets—remain underdeveloped. Web-based data exploration solu-
tions have become popular in other areas of science and have helped to alleviate
the burden of manual data analysis and file sharing. The UCSC Genome Browser
is an online tool, (hosted by the University of California—Santa Cruz) which pro-
vides visualization of data from numerous large-scale genomic profiling studies*.
This utility also supports functionality for users to upload their own data, compare
against other data sets, and share results with collaborators. Tools such as the UCSC
Genome Browser are ideal as they enable non-programmers to perform systems-

level computational analyses without having to write any code. Furthermore, these
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tools can be accessed from any web browser without the need for additional data
or software downloads.

Web-based data exploration solutions are likely the wave of the future for the
reasons mentioned above. However, the appearance of online analysis tools for MS-
based “omic” applications in the literature remains limited. Construction of web
portals requires computer programming and web development expertise—which
many researchers lack—that creates a barrier to construction of these utilities. We
contend that development of software tools which can convert MS-based “omics”
data sets into interactive web portals are both critical and timely. In Chapter 5 we
discuss the creation and publication of two interactive web resources for exploration
of large-scale “omics” data sets developed in-house***. Additionally, we describe
the development of a prototype web-based platform, which facilitates the codeless

generation of interactive web portals using MS peak tables as inputs.

Quality Control Monitoring Solutions. One of the largest practical challenges in
MS-based “omic” profiling is the routine collection of high quality data. Mass
spectrometers are complex and sensitive instruments comprised of numerous
mechanical components. All of these integral pieces must perform specific functions,
in concert, in order to acquire measurements. The loss of function in any singular

component can diminish MS performance and dramatically influence data quality.
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As such, it is critical that MS performance be routinely monitored so that lapses in
expected operation can be corrected for. Within the larger proteomic, metabolomic,
and lipidomic communities, there is not a widely accepted quality control (QC)
analysis routine. Rather, individual labs often develop their own QC procedures,
which are used to inform instrument maintenance needs.

In our own lab we employ a QC protocol for monitoring performance of LC/MS
systems—dedicated to proteomic analysis—where tryptic digests of whole cell
yeast lysates are analyzed on a weekly basis. From these experiments, the number
of uniquely identified peptides is reported as a metric of performance. Granted
that sampling of as many peptide species as possible is one of the overarching
goals of proteomic analysis, this simple metric is a useful proxy for overall system
performance. However, during times of subpar instrument operation, this metric
does little to inform the root cause of instrument issues.

Optimal QC procedures—both data acquisition and analysis—are routinely
executed in exactly the same manner in an effort to diminish variation. Static pro-
cedures, such as our own QC, often lend themselves to automation. We recognized
that by developing completely automated computer scripts, we could rapidly ex-
tract unique peptide counts from each QC data file and reduce the workload for

QC data analysts. Furthermore, automated data analysis afforded the opportunity
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to extract additional orthogonal metrics of performance, which could be reported
and stored in a historical record. These added metrics can also be used during
troubleshooting to help localize the source of performance issues. In Chapter 6
we describe the development of a web-based quality control analysis and moni-
toring tool—The Yeast Controller—which supports automated QC data upload,

processing, and visualization.

References

[1] a. Dempster, “A new Method of Positive Ray Analysis,” 1918.

[2] W. Bleakney, “A new method of positive ray analysis and its application to
the measurement of ionization potentials in mercury vapor,” Physical Review,

vol. 34, pp. 157-160, 1929.

[3] M.S.B. Munson and F. H. Field, “Chemical Ionization Mass Spectrometry. 1.
General Introduction,” Journal of the American Chemical Society, vol. 88, pp. 2621-

2630, 1966.

[4] ].B.Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, “Electro-
spray ionization for mass spectrometry of large biomolecules,” Science, vol. 246,

pp- 6471, 1989.



[11]

22

R. J. Rose, E. Damoc, E. Denisov, A. Makarov, and A. J. R. Heck, “High-
sensitivity Orbitrap mass analysis of intact macromolecular assemblies.,” Na-

ture methods, vol. 9, pp. 1084-6, 2012.

M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp, “Matrix-assisted ultravi-
olet laser desorption of non-volatile compounds,” International Journal of Mass

Spectrometry and Ion Processes, vol. 78, pp. 53-68, 1987.

M. Barber, R. S. Bordoli, R. D. Sedgwick, and A. N. Tyler, “Fast atom bombard-
ment of solids (F.A.B.): a new ion source for mass spectrometry,” Journal of the

Chemical Society, Chemical Communications, p. 325, 1981.

W. E. Stephens, “A Pulsed Mass Spectrometer with Time Dispersion,” Proceed-

ings of the American Physical Society, vol. 69, no. 11,12, p. 691, 1946.

W. Paul and H. Steinwedel, “Ein neues Massenspektrometer ohne Magnetfeld,”

1953.

G. Stafford, P. Kelley, ]. Syka, W. Reynolds, and ]. Todd, “Recent improvements
in and analytical applications of advanced ion trap technology,” International

Journal of Mass Spectrometry and Ion Processes, vol. 60, pp. 85-98, 1984.

M. Comisarow and A. Marshall, “Fourier transform ion cyclotron resonance

spectroscopy,” Chem. Phys. Lett., vol. 25, pp. 282-283, 1974.



23

[12] A. Makarov, “Electrostatic axially harmonic orbital trapping: A high-
performance technique of mass analysis,” Analytical Chemistry, vol. 72, pp. 1156—

1162, 2000.

[13] J. Mitchell Wells and S. A. McLuckey, “Collision-induced dissociation (CID) of

peptides and proteins,” Methods in Enzymology, vol. 402, pp. 148-185, 2005.

[14] J. V.Olsen, B. Macek, O. Lange, A. Makarov, S. Horning, and M. Mann, “Higher-
energy C-trap dissociation for peptide modification analysis.,” Nature methods,

vol. 4, pp. 709-12, 2007.

[15] D.P. Little, J. P. Speir, M. W. Senko, P. B. O’Connor, and F. W. McLafferty, “In-
frared multiphoton dissociation of large multiply charged ions for biomolecule

sequencing,” Analytical Chemistry, vol. 66, pp. 2809-2815, 1994.

[16] W. D. Bowers, S. S. Delbert, R. L. Hunter, and R. T. Mclver, “Fragmentation of
oligopeptide ions using ultraviolet laser radiation and Fourier transform mass

spectrometry,” Journal of the American Chemical Society, vol. 106, pp. 7288-7289,

Nov. 1984.

[17] J.E.P.Syka, ].]. Coon, M. ]J. Schroeder, J. Shabanowitz, and D. F. Hunt, “Peptide

and protein sequence analysis by electron transfer dissociation mass spectrome-



24

try.,” Proceedings of the National Academy of Sciences of the United States of America,

vol. 101, pp. 9528-33, 2004.

[18] R. Zubarev, N. L. Kelleher, and F. W. McLafferty, “Electron capture dissociation
of multiply charged protein cations. A ...,” J. Am. Chem. Soc, vol. 120, pp. 3265—

3266, 1998.

[19] J. K. Eng, A. L. Mccormack, and J. R. Yates, “An Approach to Correlate Tan-
dem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein

Database,” American society for Mass Spectrometry, vol. 5, pp. 976-989, 1994.

[20] J. E.Elias and S. P. Gygi, “Target-decoy search strategy for increased confidence
in large-scale protein identifications by mass spectrometry,” Nature Methods,

vol. 4, pp. 207-214, 2007.

[21] S.-E. Ong, “Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC,
as a Simple and Accurate Approach to Expression Proteomics,” Molecular &

Cellular Proteomics, vol. 1, pp. 376-386, 2002.

[22] A.S. Hebert, A. E. Merrill, D. J. Bailey, A. J. Still, M. S. Westphall, E. R. Stri-
eter, D. J. Pagliarini, and J. J. Coon, “Neutron-encoded mass signatures for

multiplexed proteome quantification.,” Nature methods, vol. 10, pp. 332—4, 2013.



25

[23] A. Thompson, J. Schifer, K. Kuhn, S. Kienle, J. Schwarz, G. Schmidt, T. Neu-
mann, and C. Hamon, “Tandem mass tags: A novel quantification strategy
for comparative analysis of complex protein mixtures by MS/MS,” Analytical

Chemistry, vol. 75, pp. 1895-1904, 2003.

[24] P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan,
N. Khainovski, S. Pillai, S. Dey, S. Daniels, S. Purkayastha, P. Juhasz, S. Martin,
M. Bartlet-Jones, F. He, A. Jacobson, and D. J. Pappin, “Multiplexed protein
quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging

reagents.,” Molecular & cellular proteomics : MCP, vol. 3, pp. 1154-69, Dec. 2004.

[25] “NIST Mass Spectral Library,” 2012.

[26] “Wiley Registry of Mass Spectral Data,” 2010.

[27] T. Kind, K. H. Liu, Y. Lee do, B. DeFelice, J. K. Meissen, and O. Fiehn, “Lipid-
Blast in silico tandem mass spectrometry database for lipid identification,” Nat

Methods, vol. 10, pp. 755-758, 2013.

[28] O. Fiehn, J. Kopka, R. N. Trethewey, and L. Willmitzer, “Identification of
uncommon plant metabolites based on calculation of elemental compositions
using gas chromatography and quadrupole mass spectrometry.,” Analytical

chemistry, vol. 72, pp. 3573-3580, 2000.



[29]

[33]

26

A. C. Peterson, G. C. McAlister, S. T. Quarmby, J. Griep-Raming, and J. ]. Coon,
“Development and characterization of a GC-enabled QLT-orbitrap for high-
resolution and high-mass accuracy GC/MS,” Analytical Chemistry, vol. 82,

pp. 8618-8628, 2010.

A. C. Peterson, J. P. Hauschild, S. T. Quarmby, D. Krumwiede, O. Lange, R. A. S.
Lemke, F. Grosse-Coosmann, S. Horning, T. J. Donohue, M. S. Westphall, J. J.
Coon, and J. Griep-Raming, “Development of a GC/quadrupole-orbitrap mass
spectrometer, Part I: Design and characterization,” Analytical Chemistry, vol. 86,

pp. 10036-10043, 2014.

A. Peterson and A. Balloon, “Development of a GC/Quadrupole-Orbitrap
mass spectrometer, part II: new approaches for discovery metabolomics,” Ana-

Iytical ..., vol. 86, pp. 1004451, Oct. 2014.

N. W. Kwiecien, D. J. Bailey, M. J. P. Rush, J. S. Cole, A. Ulbrich, A. S. Hebert,
M. S. Westphall, and J. J. Coon, “High-resolution filtering for improved small
molecule identification via GC/MS.,” Analytical chemistry, vol. 87, pp. 8328-35,

Aug. 2015.

C. D. Wenger, D. H. Phanstiel, M. V. Lee, D. J. Bailey, and J. J. Coon, “COM-



[34]

[37]

[38]

27

PASS: A suite of pre- and post-search proteomics software tools for OMSSA,”

Proteomics, vol. 11, pp. 1064-1074, 2011.

J. Cox and M. Mann, “MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein quan-

tification.,” Nature biotechnology, vol. 26, pp. 1367-72, 2008.

B. MacLean, D. M. Tomazela, N. Shulman, M. Chambers, G. L. Finney,
B. Frewen, R. Kern, D. L. Tabb, D. C. Liebler, and M. J. MacCoss, “Skyline: An
open source document editor for creating and analyzing targeted proteomics

experiments,” Bioinformatics, vol. 26, pp. 966-968, 2010.

D. R. Knapp, “Handbook of Analytical Derivatization Reactions,” John Wiley

Sons New York, p. 741, 1979.

A. Shevchenko, O. N. Jensen, A. V. Podtelejnikov, F. Sagliocco, M. Wilm,
O. Vorm, P. Mortensen, H. Boucherie, and M. Mann, “Linking genome and
proteome by mass spectrometry: large-scale identification of yeast proteins
from two dimensional gels.,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 93, pp. 14440-5, 1996.

M. P. Washburn, D. Wolters, and J. R. Yates, “Large-scale analysis of the yeast



28

proteome by multidimensional protein identification technology.,” Nature

biotechnology, vol. 19, pp. 242-7, 2001.

[39] L.M.F.de Godoy, ]. V.Olsen, G. A. De Souza, G. Li, P. Mortensen, and M. Mann,
“Status of complete proteome analysis by mass spectrometry: SILAC labeled

yeast as a model system.,” Genome biology, vol. 7, p. R50, 2006.

[40] M. Pirmoradian, H. Budamgunta, K. Chingin, B. Zhang, J. Astorga-Wells, and
R. a. Zubarev, “Rapid and deep human proteome analysis by single-dimension
shotgun proteomics.,” Molecular & cellular proteomics : MCP, vol. 12, pp. 3330-8,

2013.

[41] A.S. Hebert, A. L. Richards, D. J. Bailey, A. Ulbrich, E. E. Coughlin, M. S.
Westphall, and J. J. Coon, “The One Hour Yeast Proteome,” Molecular & Cellular

Proteomics, vol. 13, pp. 339-347, 2014.

[42] W. Kent, C. Sugnet, and T. Furey, “The human genome browser at UCSC,”

Genome ..., pp. 996-1006, 2002.

[43] ]. a. Stefely, N. W. Kwiecien, E. C. Freiberger, A. L. Richards, A. Jochem, M. J. P.
Rush, A. Ulbrich, K. P. Robinson, P. D. Hutchins, M. T. Veling, X. Guo, Z. a.
Kemmerer, K. J. Connors, E. a. Trujillo, J. Sokol, H. Marx, M. S. Westphall,

A.S. Hebert, D. J. Pagliarini, and J. J]. Coon, “Mitochondrial protein functions



29

elucidated by multi-omic mass spectrometry profiling.,” Nature biotechnology,

pp- 1-11, Sept. 2016.

[44] H. Marx, C. E. Minogue, D. Jayaraman, A. L. Richards, N. W. Kwiecien, A. E.
Sihapirani, S. Rajasekar, J]. Maeda, K. Garcia, A. R. Del Valle-Echevarria, J. D.
Volkening, M. S. Westphall, S. Roy, M. R. Sussman, J.-M. Ané, and J. J. Coon,
“A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing

endosymbiont Sinorhizobium meliloti.,” Nature biotechnology, Oct. 2016.



30

Chapter 2

HIGH-RESOLUTION FILTERING FOR IMPROVED SMALL
MOLECULE IDENTIFICATION VIA GC/MS

This chapter has been published:

Kwiecien NW, Bailey DJ, Rush MJP, Cole JS, Ulbrich A, Hebert AS, Westphall MS,
Coon JJ. High-Resolution Filtering for Improved Small Molecule Identification via
GC/MS. Analytical Chemistry. 2015, 87, 8328-8335.




31

Abstract

Gas chromatography-mass spectrometry (GC/MS) has long been considered one
of the premier analytical tools for small molecule analysis. Recently, a number of
GC/MS systems equipped with high-resolution mass analyzers have been intro-
duced. These systems provide analysts with a new dimension of information—
accurate mass measurement to the third or fourth decimal place; however, existing
data processing tools do not capitalize on this information. Beyond that, GC/MS
spectral reference libraries, which have been curated over the last several decades,
contain almost exclusively unit resolution MS spectra making integration of ac-
curate mass data dubious. Here we present an informatic approach, called High-
Resolution Filtering (HRF), which bridges this gap. During HRF, high-resolution
mass spectra are assigned putative identifications through traditional spectral
matching at unit resolution. Once candidate identities have been assigned, all
unique combinations of atoms from these candidate precursors are generated and
matched to m/z peaks using narrow mass tolerances. The total amount of measured
signal that is annotated is used as a metric of plausibility for the presumed identifi-
cation. Here we demonstrate that the HRF approach is both feasible and highly

specific towards correct identifications.
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Introduction

Gas chromatography-mass spectrometry (GC/MS) is a premier analytical tool
for small molecule analysis'=. Highly reproducible chromatographic separations
combined with conserved molecular fragmentation lend this technique to both
targeted and discovery assays, and has become particularly useful in the area of
metabolite profiling*°. Since the metabolome is closest to phenotype, metabolic
profiling has great potential to propel biomedical research and is quickly emerging
as a field of interest for both systems biologists and clinical researchers®’. The
ability to rapidly and comprehensively monitor metabolites will doubtless facilitate
basic research into disease pathogenesis and also provide new opportunities for
disease diagnosis. Moreover, metabolite screens are highly desirable in the clinical
setting as they often rank among the least invasive biological assays. As an emergent
field there is critical need for the development of advanced tools and technologies
to enable deeper small molecule profiling in shorter time spans.

In traditional discovery experiments, volatile analytes are separated by GC
and ionized using electron ionization (EI) prior to mass analysis. El is a “hard”
ionization technique and causes molecules to fragment in characteristic patterns.
Spectra containing fragments from individual analytes, which may or may not

include an intact molecular ion, are extracted and then compared to databases of
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unit-resolution reference spectra®. Matches with sufficiently high spectral similarity
are often presumed to be correct identifications. Identifying all of the observed
spectral features resulting from a GC/MS experiment is a formidable challenge®'°,
so often the majority of features often remain unidentified. For those compounds
where putative identifications have been assigned, subsequent validation often
necessitates analysis of a pure reference standard. This process is laborious, espe-
cially when considering that for many spectral features there exist a large number
of putative identifications. As such, any auxiliary information which can be used
to discriminate between candidate precursors is highly valuable'!.

Unit resolution GC/MS instruments have been, and continue to be, the most
widespread and commonly used mass spectrometers in the world. Given that, the
largest publically available reference libraries are comprised of spectra exclusively

acquired on these systems!*13

. In the last few years, however, several GC/MS
systems possessing mass analyzers capable of high-resolution and accurate mass
measurement have become commercially available—i.e., time-of-flight and, most
recently, Orbitrap. Despite these exciting technological advances and their poten-
tial impact on metabolomic research, data analysis tools have remained largely

unchanged!*'. We conclude that, if coupled with novel informatic capability,

this new generation of GC/MS systems offers considerable opportunity to drive
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small molecule discovery. This nascent promise is reminiscent of the revolution
that occurred in LC/MS-based proteomics following the introduction of high-
resolution/accurate mass measurement. In this case, existing peptide-spectral
matching algorithms were easily adapted to achieve a concomitant reduction in
search space while affording increased precursor/product ion matching specificity;
unfortunately, leveraging the specificity enabled by accurate mass GC/MS data
with existing small molecule algorithms is not straightforward. The major EI refer-
ence databases comprise unit resolution spectra, precluding the ability to directly
compare measured exact masses against their reference counterparts. An alterna-
tive route is to generate theoretical EI spectra in silico, though this has proven to
be exceptionally challenging'®2°. Of course, another approach is to generate new
accurate mass libraries which would ostensibly allow for increased discrimination
against spurious matches as fragments which are nominally the same but not equiv-
alent within a narrow mass tolerance would no longer be matched. This increased
specificity in spectral matching would hopefully make it easier to identify correct
matches. Generating new reference databases is an admirable goal but one that
will take years, if not decades, to achieve given that current spectral libraries have
been compiled over the past fifty years from hundreds of thousands of individual

analyses.
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Here we describe a new approach to harness the existing unit resolution EI mass
spectral databases while simultaneously exploiting the accurate mass measure-
ment capabilities of high-resolution GC/MS systems. In this method accurate mass
GC/MS data is searched via spectral matching to existing unit resolution EI spectral
libraries as normal. Next, EI-MS top scoring putative identifications are tested for
plausibility based on comparison of the experimentally measured accurate mass
fragments to combinatorially generated theoretical fragments constrained by the
atomic composition of the assigned precursor. This method avoids the pitfalls of
theoretical EI spectral prediction by simply generating and testing all possible com-
binations of atoms, as theoretical fragments, in a precursor. We demonstrate that
although this method makes minimal approximations it remains highly specific
toward correct precursor identifications. By enabling discrimination between candi-
date molecular precursors on the basis of both measured fragmentation profiles and
accurate mass, this method effectively bridges the current technology gap between

high-resolution spectral acquisition and unit resolution mass spectral libraries.

Experimental Section

Materials and Reagents Unless otherwise specified all standard reference ma-

terials were purchased from Sigma-Aldrich (St. Louis, MO) with the exception
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of the 37 pesticide reference standards analyzed which were contained in the
Organonitrogen Pesticide Mix #1 — EPA Method 525.2 and purchased from Restek
(Bellefonte, PA). Methanol, ethyl acetate, acetone, hexane, dichloromethane, and
isopropyl alcohol reagents were also purchased from Sigma-Aldrich. The N-methyl-
N-trimethylsilytrifluoroacetamide with 1% trimethylchlorosilane derivatization
reagent (MSTFA + 1% TMCS) was purchased from Pierce Biotechnology (Rock-
ford, IL). Compressed gases (methane, helium, and nitrogen) were ultrahigh purity
grade and purchased from Airgas (Madison, WI). 200 mg Clean Screen® Extraction

Columns were purchased from United Chemical Technologies (Bristol, PA).

Sample Preparation and GC/MS Acquisition Stock solutions of the reported stan-
dards were prepared individually at a concentration of 1 mg/mL in appropriate
solvents. Standards were processed in batches containing ~5-10 individual analytes.
The EPA 525.2 pesticide mixture was diluted from 500 ng/mL to a working concen-
tration of 3 ng/uL in acetone prior to mass spectral analysis. For the drug-spiked
urine experiments, stock solutions of all drugs were first prepared at 1 mg/mL in
methanol. These stock solutions were combined and diluted (again in methanol)
to appropriate concentrations. For each gradient data point, 100 uL of the drug
mixture was added to raw urine prior to extraction using the 200 mg Clean Screen

extraction columns. Acidic and basic drug/metabolite fractions were extracted
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according to manufacturer protocols?!. Yeast metabolites were extracted by first
washing cultured cells with buffered saline and submerging into a precooled 1.5 mL
plastic tube containing 2:2:1 acetonitrile /methanol/H,O mixture. For all materials
(not including the pesticide mixture) 25 pL aliquots were resuspended in 25 uL
of pyridine and vortexed. 25 pL of N-methyl-N-[trimethylsilyl]trifluoroacetamide
(MSTFA) with 1% trimethylchlorosilane (TMCS) was added and samples were
incubated at 60° C for 30 minutes. All samples were analyzed using a GC/MS
instrument comprising a Trace 1310 GC coupled to a Q Exactive Orbitrap mass
spectrometer. For the yeast metabolite extracts a linear temperature gradient rang-
ing from 50 °C to 320 °C was employed spanning a total runtime of 30 minutes.
Analytes were injected using a 1:10 split at a temperature of 275 °C and ionized
using electron ionization (EI). The mass spectrometer was operated in full scan
mode using a resolution of 30,000 (m/Am) relative to 200 m/z. Instrumental param-
eters and specifications for all other experiments are provided in the Supporting
Information. All MS experiments utilized Automatic Gain Control (AGC)** and

all data was acquired in profile mode.

GC/MS Data Processing All GC/MS data processing was done using in-house
algorithms designed to facilitate spectral deconvolution, spectral matching against

a unit resolution reference database, and high-resolution filtering. The details of
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each algorithmic component are described at length in the Supporting Information.
Briefly, following mass spectral acquisition deconvolved spectra were extracted
from raw data files. A pseudo-unit resolution copy of each spectrum was made by
combining the intensities of peaks falling in the same nominal mass range, setting
the measured m/z to the nearest integer value, and normalizing peak intensities
relative to the base peak (set to 999). All 212,961 unit resolution reference spectra in
the NIST 12 MS/EI Library were exported to a .JDX file through the NIST MS Search
2.0 program and converted to a format suitable for matching against acquired Q
Exactive CG spectra. Extracted spectra were submitted for database searching and

spectral similarity was measured using the following dot product equation:

Z (m/ Z [InteHSitYexperimental X Intensit}’reference] 05 ) 2

100
. 2_(Intensityexperimental X 71/2) )_ (Intensityreference X 11/z)

Following candidate identification retrieval the high-resolution filtering algo-
rithm was employed by first generating all unique atomic combinations from a
given precursor using the most abundant isotope of each considered atom. Starting
with the smallest measured m/z peak, peaks were matched to theoretical fragments
using a narrow £10 ppm tolerance centered around the m/z value. To account
for isotopic clusters a variant of each matched theoretical fragment was created
containing substituted heavy isotopes was placed back on the list of all candidate

theoretical fragments. This process was repeated until every measured peak in a
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given spectrum had been considered. The total amount of measured signal that

could be annotated as calculated by:

Z (Intensity X m/ Z ) annotated
Z (IntenSity X m/ Z ) observed

was returned in the form of an HRF score.

Results and Discussion

The HRF method is founded on one central tenet — all m/z peaks in a pure EI
spectrum are derived from a single molecular precursor and, therefore, contain
a subset of the atoms from the molecular precursor. For example, the EI mass
spectrum of 3-methyl-3-hexanol (C7H160) exhibits prominent features at m/z values
73,87, and 101%°. Expert annotation of this spectrum revealed the chemical identity
of these fragments as C;HyO, CsH;;O, and C4H;30, respectively?. Note each of
these formulas is a subset of the molecular precursor, supporting our guiding
supposition. Without regard for chemical structure feasibility, there are 271 unique
atomic combinations of the parent molecule C;H;¢O. First consider the m/z peak
at 73, only three of these combinations have this nominal mass — C¢H, CsH;3, and
C4HyO; however, only one (C4;HyO) has an exact mass within £10 ppm of the correct

annotation. Such is also the case for the other expertly annotated fragments. Given
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that we can now routinely measure all m/z peaks in an EI mass spectrum with low
ppm mass accuracy, we implement this annotation strategy on a large scale.

Figure 2.1 presents an outline of the HRF workflow. The process consists of
three main steps: deconvolution, spectral matching, and high-resolution filtering.
Spectral deconvolution is a standard part of processing GC/MS data; however,
accurate mass is highly advantageous as it reduces, or eliminates, interference
between nominally isobaric fragments. Extracted spectral features are subsequently
grouped based on corresponding elution apex and a spectrum containing only
fragments arising from a singular precursor is derived from each group (Figure
2.1a-c). Next, by rounding accurate mass m/z peaks to the nearest integer value, a
pseudo-unit resolution copy of each spectrum is created and then submitted for
spectral matching against a unit resolution reference database. The intent is to
retrieve candidate identifications based on spectral similarity. These steps repre-
sent a traditional workflow for spectral assignment in a discovery-based GC/MS
experiment. In the HRF method, this workflow is further augmented to leverage
accurate mass for discrimination between putative identifications.

The HRF method attempts to annotate every measured m/z peak in an EI mass
spectrum using some combination of atoms from a putative precursor’s chemical

formula. The amount of total ion current that can be successfully annotated can be
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used as metric of confidence in that putative identification. Figure 2.1d-f illustrates
the HRF strategy using an EI mass spectrum of loratadine, a popular over-the-
counter antihistamine, collected using a Q Exactive GC mass spectrometer. A unit
resolution database search, returns a reference spectrum of loratadine as a strong
candidate match. To evaluate the quality of this putative identification we next em-
ploy the HRF strategy. With the chemical formula of loratadine (Cx,H,3CIN,O;) all
non-repeating combinations of atoms (i.e., sub-formulas) are generated and ordered
by ascending exact mass less an electron (Figure 2.1d). Note that the theoretical
fragment search space is restricted by the atomic composition of loratadine. Starting
with the smallest measured m/z peak, sub-formulas are matched based on exact
mass. To accommodate isotopic clusters present in spectra, a variant containing
an appropriate number of heavy isotopes is created for each matched theoretical
fragment and placed back onto the list of sub-formulas. For example, once the
highlighted m/z peak at 245.1200 is matched to CigH;5N (theoretical m/z: 245.1199)
a formula containing a substituted *C isotope (C;17°CH;j5N) is added to the list
of candidate sub-formulas (Figure 2.1e). This strategy of on-the-fly theoretical
isotopic fragment generation enables annotation of non-monoisotopic fragments
without unduly increasing sub-formula search space. Once every m/z peak in the

spectrum has been considered the total percentage of measured ion current that
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has been annotated is returned in the form of a HRF score. In the example case of
loratadine we find that 99.2617% of all measured ion current can be annotated using
a sub-formula of its true parent precursor (Figure 2.1f). Here we demonstrate that
the HRF method is viable, enables discrimination between putative identifications,
is highly robust even in times of diminished signal-to-noise, and is uniquely enabled
with high-resolution GC/MS. Finally, we establish that this approach stands to

greatly improve how unknowns are identified in discovery-based analyses.

Reference Standard Analysis To ensure broad utility we benchmarked perfor-
mance of the HRF algorithm as applied to spectra collected from a diverse ar-
ray of small molecules. For this work, a data set of high-resolution Q Exactive
GC spectra collected from 105 pure reference standards covering many classes
of small molecules including metabolites, pesticides, pharmaceuticals, drugs of
abuse, among others, was constructed. Following GC/MS analysis of all refer-
ence standards, individual spectra were extracted from raw data files using the
described deconvolution algorithm. Each extracted spectrum was compared against
its corresponding NIST reference spectrum and a weighted dot product score was
calculated to measure spectral similarity. For these 105 spectra, a median spectral
match score of 81.889, minimum of 42.599, and standard deviation of 9.587 was

achieved. Following spectral matching, each spectrum was then subjected to our
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HRF approach using the chemical formula of the true parent molecule. Considering
all spectra in the data set, we report a median HRF score of 99.700, minimum of
93.497, and standard deviation of 1.022 (Figure 2.2a).

From these data we conclude that performance of the HRF method is well-
conserved across many different classes of small molecules. Next we wondered
whether similar results could be obtained from other chemical formulas in the
reference library. To test specificity, 60,560 HRF scores — all from unique formulas
residing in the NIST database — were calculated for each of the 105 spectra. Figure
2.2b presents the results of this experiment for the spectrum of trimethylsilyl-
derivatized beta-sitosterol (Cs,Hs3sOSi). Note the true parent chemical composition
is the smallest formula that can produce the maximal HRF score. We were curi-
ous as to the scores generated by subset formulas (some but not all of the atoms
contained within the precursor formula) as well as superset formulas (all of the
atoms contained by the precursor and then some) which are also highlighted. The
annotated subsets lack the proper combination of atoms to achieve the same score.
Not surprisingly, all supersets of C3;,Hs30Si produce similarly high scores. This
is expected as all subformulas from the true parent will also be included in the
subformula sets generated by these superset precursors. We note that in some cases

very large formulas which are not true supersets but share a large percentage of
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atoms with the correct parent can also produce high scores.

For a global view of the method’s specificity we plot the cumulative distributions
of HRF scores to all 105 spectra along with the average distribution of all cumulative
distributions (Figure 2.2c). Note that this analysis provides a worst-case scenario
given all 60,560 formulas considered have an equal chance of being selected as a
putative parent for an acquired spectrum. In most cases this is not the case, as either
spectral matching or a priori information held by the analyst allows discrimination
against the majority of these candidates. Still, these data reveal that on average
~86.9% of considered formulas will return a HRF score > 90 and that only 3.560%
of candidate formulas will produce a score greater than or equal to the median
calculated HRF score (99.700). We also note that specificity is dependent on the
complexity of the analyte in question, for example, increases in elemental complexity
and atom count will often result in spectra which a smaller number of precursors

can successfully annotate.

Urine Drug Testing Most analytical applications demand the identification of
low level analytes, often present within complex matrices. In these situations
spectral quality is eroded — manifested by the loss of key diagnostic fragments with
diminished signal and increased chemical noise — limiting the ability to correctly

assign identifications through traditional spectral matching. To test the benefits of
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HREF in such situations we next analyzed a panel of drugs at varying concentration
in a biological matrix. GC/MS is the ideal platform to test for drugs of abuse,
pharmaceuticals, sports dopants, and their metabolites in human urine. These
assays are highly desirable in the clinical setting as they are minimally invasive.

As a proof-of-concept, twelve drugs (amobarbital, Benadryl, caffeine, cotinine,
glutethimide, ketamine, loratadine, methadone, methaqualone, nicotine, primi-
done, and scopoloamine) were spiked into human urine at eight concentations
(10 ng/uL to ~78 pg/uL) and extracted prior to GC/MS analysis (Figure 2.3a).
Chromatographic resolution was insufficient to separate Benadryl and ketamine,
and high native levels of caffeine diminished the ability to analyze the compound
through a range of concentrations. As such, further analysis was not carried out
and here we report results for nine of the twelve drugs.

The analysis of compounds in a complex background matrix, such as urine,
presents two considerable challenges — extracting high-quality spectra and assign-
ing confident identifications—with the latter being highly dependent on the former.
Ideally, extracted spectra should retain all fragment m/z peaks stemming from the
eluting precursor while eliminating all other chemical background, which can be
of higher abundance. Deconvolution is the core technique for spectral extraction

and this process, as we report here, is considerably improved by use of the FI-MS
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Figure 2.3: Analysis of drugs spiked into human urine at variable concentration.
(a) GC/MS TIC chromatograms from the most concentrated (blue) and least con-
centrated (red) spiked samples are shown. (b) Deconvolved feature groups for
the drug Glutethimide at high (blue) and low (red) concentrations. Background
features are shown in gray. (c) Spectral match and HRF scores for each drug ana-
lyzed at all concentrations where analyte abundance was sufficient to produce a
spectrum. (d) Two spectra were isolated for each drug (one at the most concentrated
point, the other at the least) and 55,290 HRF scores were calculated using unique
formulas (0-500 Da) in the NIST database. Cumulative HRF results are shown for
each drug using a spectrum acquired at high and low concentration (blue and red,
respectively). A combined distribution is also shown for each population of drug
spectra.
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systems. Accurate mass measurement largely eliminates interferences between
nominally isobaric fragments and allows extraction of chromatographic profiles
using narrow mass tolerances (~+ 10 ppm). Furthermore, the rapid scan rate (>
18 Hz) provides sufficient temporal resolution enabling more precise detection of
chromatographic apex. Note that spectral deconvolution assumes that all peaks
are derived from a singular precursor and if two compounds completely overlap
the resulting EI-MS spectrum will be chimeric which may impede spectral iden-
tification. Figure 2.3b highlights spectral deconvolution of glutethimide at high
and low concentrations. Note the numerous co-eluting interferants in the low con-
centration chromatogram that are easily distinguished. We conclude that spectral
deconvolution is a key parameter for successful downstream identification and is
improved by collection of spectra with high-resolution and accurate mass.
Extraction of high-quality spectra from raw data files is only the first step in
assigning confident identifications. Mapping these spectra to structure is then com-
monly done by spectral matching against a library, which is most effective when
experimental spectra very closely resemble those contained in the library. The
specificity of this approach, however, is reduced as analyte abundance decreases
and diagnostic fragments fall below the limit of detection. We surmised that the

HRF approach could provide an orthogonal metric, allowing greater discrimination
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between putative identifications. To test this hypothesis we applied the HRF ap-
proach to analyze the standard drug compounds spiked into the urine matrix across
a wide range of concentrations. We required that all spectra contain at least 10 m/z
peaks, eliminating 5 of 72 data points. In these instances the compound in question
was at a sufficiently reduced concentration such that the extracted spectrum was
either non-existent or of too low quality for any further processing. Extracted
spectra were then compared to their corresponding NIST reference spectrum to
generate both spectral match and HRF scores for each (Figure 2.3¢). As expected,
the spectral match score decreases with diminishing analyte abundance, primarily
due to the loss of low abundance peaks at decreased concentrations. HRF perfor-
mance, however, is remarkably consistent, independent of analyte concentration,
and remains high (> 92) for all observed spectra. From these data we draw two
primary conclusions: First, FT-MS mass analyzers provide robust mass accuracy
measurements, even for signals occurring at low S/ N?; and second, unlike the
conventional spectral matching strategy, the HRF scoring metric is conserved across
a wide range of analyte concentrations.

While the experiment described above demonstrates strong HRF scoring perfor-
mance, we wondered whether the method would maintain the ability to discrim-

inate between candidate precursors, when provided with lower quality spectra.
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To determine if the HRF scoring method had diminished specificity for spectra
containing a reduced number of diagnostic m/z peaks, i.e., those collected at lower
abundance, we calculated HRF scores from 55,290 unique formulas in the NIST
spectral library (0-500 Da) using two EI-MS spectra for each drug analyzed (one
from the most concentrated data point, the other from the least). These high and low
concentration spectra present a striking spectral quality difference as the low abun-
dance spectra contain only about 25% of the m/z peaks found in the higher quality
analog (23 v. 96, on average). Figure 2.3d presents the cumulative distributions of
these calculated HRF scores for either high (blue) or low (red) concentration spectra.
The average distribution for each set of spectra is also displayed and no difference
is readily observed. It is apparent that, whether analyzing low or high quality
spectra, HRF specificity is maintained. The fundamental driving force for this
indifference to spectral quality, as compared to traditional spectral matching, is the
discriminatory power of mass accuracy which is retained even within low-quality
spectra. Based on these data we surmise that the HRF strategy is less dependent
upon input spectral quality—a characteristic that will propel the emergent area of

small molecule discovery and profiling applications.

Application to Discovery Metabolomics High chromatographic resolution, ex-

cellent sensitivity, and conserved fragmentation of molecular precursors render
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GC/MS a fitting method for discovery-based metabolic profiling. In recent years
there has been a marked decrease in the time required to comprehensively se-
quence genomes, transcriptomes, and proteomes. These increases in throughput
have largely come as a result of coincident improvements in instrumentation and
informatics enabling faster sequencing than ever before. Discovery metabolomics
has lagged behind these other “omics” technologies due in large part to the dif-
ficulty in assigning confident identifications to analyzed compounds. We assert
that by coupling the recent advances in high-resolution GC/MS instrumentation
with new data processing schemes, the depth and speed at which metabolomes
can be fully characterized can be greatly increased. One approach to realizing this
potential is to utilize the HRF approach as a data reduction strategy for eliminating
spurious hits, and retaining only those which are chemically plausible.

To characterize the utility of the HRF approach for metabolomic applications
the algorithm was applied to a discovery analysis of a yeast metabolite extract.
Here a TMS-derivatized yeast metabolome and solvent blank were analyzed on a Q
Exactive GC system in tandem. Following data acquisition individual spectra were
extracted from both raw files using the described in-house deconvolution algorithm.
Spectral deconvolution yielded 19,367 spectral features which were placed into 554

feature groups—each group containing fragments which are assumed to stem from
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a singular precursor. Deconvolution results were manually validated and additional
curation was employed where necessary. EI-MS spectra that were common to both
the yeast extract and solvent blank were eliminated from consideration. In total, 232
EI-MS spectra (all containing no fewer than 10 m/z peaks) were considered for this
analysis, post background subtraction. These spectra were then searched against
the NIST database (~213,000 compounds) at unit resolution. The 20 highest scoring
spectral matches were returned and HRF scores were then calculated for each —
generating 4,640 HRF scores in total. Figure 2.4a displays the distributions for both
scores. The orthogonality between these two metrics is readily apparent. While the
majority of spectral match scores cluster around 30-40 with a skew towards higher
scores—again, this distribution represents the 20 best hits to each spectrum, many
of which were derived from lowly abundant precursors—the HRF distribution is
bimodal with large clusters at both extremes. These clusters (greater than 90 and
less than 10) comprise 60.69% of all returned results.

In the analysis of reference standards we observed no instances where a correct
identification yielded spectral match or HRF scores lower than 20 or 90, respectively.
To visualize these data we present a heat map (Figure 2.4b) displaying each EI-
MS spectrum as a row with the calculated HRF score for each of the 20 putative

spectral matching assignments as the columns. This plot reveals that top scoring
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Figure 2.4: Discovery yeast metabolomic analysis. (a) Distributions of the top 20
spectral match/corresponding HRF scores to 232 spectra extracted from a yeast
metabolomics experiment. (b) HRF scores corresponding to the 20 best spectral
matches (left to right) for all 232 spectra (top to bottom) are shown in the blue heat
map. The intensity of each pixel reflects the percentage of total ion current that
can be annotated with an exact chemical formula. (c) Viable candidates/spectrum
when applying spectral match and HRF score thresholds.



55

spectral matches are not always consistent with the chemical formula information
gleaned by the HRF calculation. We find that 76.00% of returned identifications are
eliminated after applying an HRF threshold (90) including 58.62% of all number
one spectral match hits. We also note many instances in which lower spectral
match scores to a given spectrum yield higher HRF scores suggesting that joint
consideration of both metrics is advantageous. To determine the value of the HRF
method to eliminate from consideration incorrect putative assignments we plotted
the number of candidate identifications per spectrum before and after application of
HREF scoring (Figure 2.4c). Imposing a spectral match score cutoff of 20, eliminates
only 5.28% (245) of hits, leaving the analyst to sort through the remaining 4,240
candidates. Application of the HRF score threshold in addition to the spectral match
score threshold, however, allows dismissal of the majority of the putative candidate
identifications —79.78% (3,720). In fact, the HRF method allows the analyst to reduce
the number of viable candidate structures with confidence; for example, 65.09%
of spectra retain three or fewer valid candidates. While analysts will still find it
useful to confirm candidate identifications by sampling pure reference standards,
the tremendous reduction in candidate identifications will expedite the process
of small molecule identification and provide a means to accelerate the pace of

metabolomic discovery.
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Conclusions

Small molecule analysis and discovery remains at the core of many fields—e.g.,
toxicology, sports doping, environmental analysis, food safety, clinical research,
etc.—and is emerging as a key technology in the expanding area of metabolomics.
GC/MS is a robust and mature method for profiling small molecules, but has
recently undergone a transformation with the introduction of state-of-art mass
analyzer capabilities that deliver routine high-resolution and accurate mass mea-
surement. The new type of GC/MS data created by these modern systems has
transformative potential—realizing this promise, however, requires new and inno-
vative data processing approaches.

Here we describe a simple and straightforward method, HRF, which leverages
accurate mass to both improve spectral deconvolution and increase confidence
in small molecule identifications. The HRF approach can be used in conjunction
with traditional spectral matching and effectively extends the utility of currently
available unit-resolution reference libraries. Moreover, information provided by this
approach is orthogonal to traditional spectral matching. In the future we predict
this method will be of high value for the analysis of novel compounds, where a
suitable reference spectrum is unavailable. In this application users would simply

provide suspected chemical formulae and/or structures and utilize the HRF scoring
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method to test candidate plausibility. No such technology currently exists. We note
the HRF approach facilitates rapid annotation of EI-MS spectra, has potential for
LC-MS/MS applications, and may prove useful for automated false-discovery rate
calculations. In summary, by enabling discrimination between candidate molecular
precursors on the basis of both measured fragmentation profiles and accurate mass,
the HRF method capitalizes on new high-resolution GC/MS instrumentation and

the large, existing unit resolution EI-MS spectral libraries.

Extended Methods

Urine Drug Analysis The following GC gradient was used: 2.5 min isothermal
at 60 °C, ramp to 210 °C at 40 °C/min, ramp to 267 °C at 5 °C/min, ramp to 310
°C at 40 °C/min, then 6.2 min isothermal at 310 °C. The MS transfer line and
source temperatures were held at 280 °C and 200 °C, respectively. The mass range
from 50-500 m/z was mass analyzed using a resolution of 30,000 (1m/Am), relative
to 200 m/z. The AGC target was set to 10e6, and electron ionization (70 eV) was
used. Lock mass calibration was employed during acquisition of these data. An
unanticipated error occurred in calculation of the necessary mass correction, and
many scans acquired during these experiments resulted in extreme mass errors

(~25ppm). Large distortions in mass accuracy largely inhibit the described HRF
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approach. Assuch, during data processing each spectrum was restored to its native-
state by removing the applied mass correction as reported in each scan header.
Subsequent analyses did not employ this lock-mass correction and mass accuracy

was unaffected.

Preparation of a Saccharomyces cerevisiae metabolite extract Saccharomyces
cerevisiae was grown on media containing dextrose and glycerol. 1x10® cells were
isolated by rapid vacuum filtration with a nylon filter membrane, washed with
phosphate buffered saline, and submerged into a precooled 1.5 mL plastic tube

containing a 2:2:1 acetonitrile/methanol /H,O mixture.

Pesticide Analysis The mixture containing 37 EPA 525.2 pesticides was diluted
from 500 ug/mL to a working concentration of 3 ng/uL in acetone. A 1 pL aliquot
was injected using a 1:10 split at a temperature of 275 °C and separated at 1.2
mL/min He. The following GC oven gradient was used: isothermal at 100 °C for
1 min, 8 °C/min to 320 °C, and isothermal at 320 °C for 3 min. Transfer line and
source temperatures were maintained at 275 °C and 225 °C, respectively. In each MS
scan, the range from 50-650 m/z was analyzed using a resolution of 17,500 (m/Am),
relative to 200 m/z. Maximum injection times of 100 ms were allowed at an AGC

target of 1e6. Electron ionization (EI) at 70 eV was used.
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Additional Reference Standard Analysis Stock solutions for all other reported
standards were prepared individually at a concentration of 1 mg/mL in appro-
priate solvents. Mixtures containing ~5-10 reference standards were prepared by
combining 20 puL aliquots of each standard using no specific organizational scheme.
These mixtures were dried down under nitrogen, resuspended in 100 uL of the
MSTFA + 1% TMCS derivatization reagent, capped, vortexed, and heated at 60 °C
for 15 minutes. 100 pL of ethyl acetate was then added to each mixture before being
transferred to an autosampler vial. The same GC oven gradient and MS parameters

as described in Urine Drug Analysis were also used here.

Spectral Deconvolution Following data collection raw EI-MS spectral data was
deconvolved into ‘features” and then grouped into individual spectra containing
only product ions stemming from a singular parent. This step was critical as the
inclusion of extraneous fragment ions in a spectrum can diminish the ability of the
algorithm to annotate all observed peaks with exact chemical formulas constrained
by the atom set of the parent. Every peak in the raw data file was considered. Peaks
observed in at least five consecutive scans having m/z values within £10 ppm of
their averaged m/z were grouped together as a data feature. Note that mass accuracy
is a function of and S/N, and ppm tolerance a function of m/z. The 10 ppm tolerance

was empirically observed to yield complete chromatographic profiles which were
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free of interference from neighboring peaks. Peaks were added successively to these
groups and the average m/z value was recalculated after each addition. Following
aggregation of peaks into features, smoothed intensity profiles were created for
each. Spurious features arising from noise were eliminated from consideration by
requiring that each feature exhibit a “peak-like” shape. All features were required to
rise to an apex having at least twice the intensity of the first and last peaks included.
Any features arising from fragments common to closely eluting precursors were
split into separate features at significant local minima. Features reaching an elution
apex at approximately the same time were grouped together. Features were first
sorted based on apex intensity. Starting with the most intense fragment a discrete
time window around the apex was created. All features having an apex within
this window were then grouped together. The width of this window was set to
include all peaks having an intensity > 96% of the apex peak’s intensity as a default.
More conservative criteria was used for the extraction of spectra in the urine drug
spike-in and discovery metabolomics experiments given the complex background.
Here the time window was set to include peaks having an intensity > 99% of the
apex. Following feature grouping, a new spectrum was created for each group
and populated with peaks representing each feature in the group. Peak m/z and

intensity values were set equal to the intensity-weighted m/z average of all peaks in
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the corresponding feature and the intensity at the apex, respectively.

Small Molecule Identification via Spectral Matching Compound identifications
for the small molecules analyzed were assigned by comparing deconvolved high-
resolution spectra against unit-resolution reference spectra present in the NIST 12
MS/EI Library. All 212,961 unit-resolution reference spectra in the library were
exported to a .JDX file through the NIST MS Search 2.0 program and converted to a
format suitable for matching against acquired Q Exactive GC spectra. A pseudo-
unit resolution copy of each high-resolution spectrum was created by combining
the intensities of peaks falling within the same nominal mass range. The nominal
mass value was reported as peak m/z and all intensity values were normalized
relative to the spectrum’s base peak (set to 999). To calculate spectral similarity
between experimental and reference spectra a weighted dot product calculation was
used. First, all peaks in a spectrum were scaled using the following normalization
factors reported in the literature which were determined to provide optimal spectral

matching results?:

m/znormalized = m/ Zmeasured X 1.3

: : 0.53
InteHSItYnormalized = IntenSItYmeasured

These normalization factors redistribute the weight placed on any given spectral
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peak in two ways: First, by scaling m/z by a factor of 1.3x, more massive peaks
(which are inherently more diagnostic for spectral matching) are given greater
weight. Second, by scaling intensity by a factor of x0.53 more intense peaks are
given relatively less weight. This is done to ensure that no single peak can dis-
proportionately influence spectral matches. The described normalizations were
applied to all reference spectra as well. The following dot product equation was

used to measure spectral similarity:

Z (m/ Z [InteHSitYexperimental X Il’1tenSitYreference] 05 ) 2

1
00 x 2>_(Intensityeyperimental X M/2) 3_(Intensityreference X m/2)

Although simplistic, this approach was more than adequate for retrieving candi-
date compounds having similar fragmentation patterns to experimentally derived
spectra. To increase search space as much as possible all reference spectra were
matched against each unit resolution copy of a Q Exactive GC spectrum in the
‘discovery metabolomics analysis’. All compounds reported yielded a confident

spectral match with a reference spectrum in the NIST database.

High-Resolution Filtering: Theoretical Fragment Generation A set of theoreti-
cal fragments for each candidate compound was produced by generating all unique
combinations of atoms from the set contained in the parent chemical formula which

can be calculated by:
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n

x:Z(iu+1)

1

where x is the number of theoretical fragments stemming from a given chemical
formula, n is the number of unique elements in the formula, and i, represents the
atom count of that element within the formula. The most abundant isotope for
each atom was used with the exception of bromine and chlorine. 7’Br and 8!Br have
natural isotopic abundances of 0.5069 and 0.4931, respectively. Similarly, *Cl and
%Cl have natural abundances of 0.7576 and 0.2424. For each theoretical fragment
containing either a bromine or chlorine an additional variant was generated where a
heavier isotope was exchanged for its lighter counterpart. This process was repeated
in a combinatorial manner for those theoretical fragments containing multiple Br
and/or Cl atoms. Generation of additional isotopic theoretical fragments for those
candidates containing atoms in the set '?C, S, #Si was done on a case-by-case

basis during the theoretical fragment/peak matching process.

High-Resolution Filtering: Theoretical Fragment/Peak Matching It is assumed
that all fragment peaks in an EI-MS spectrum are radical cations. Accordingly, the

mass of an electron was subtracted from the monoisotopic mass of each fragment
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in the set of candidates. Starting with the least massive peak in the Q Exactive
GC spectrum, theoretical fragments falling within a &= 10 ppm tolerance centered
around the peak’s measured m/z were found. This tolerance was empirically deter-
mined to be the optimal allowed mass tolerance as it enabled annotation of low S/N
fragments where mass accuracy is diminished while maintaining discrimination
against spurious chemical formulas. If no fragments were present within this range,
the algorithm moved to the next most massive peak and repeated the process. If a
single fragment was found within this range, isotopic variants containing substi-
tuted 1°C, S, 315, 2Sj, or *Si atoms were generated where appropriate and added
to the list of candidate fragments. If multiple fragments were found within the
allowed tolerance each fragment was independently evaluated to determine how
many additional peaks/signal could be matched. The theoretical fragment result-
ing in the largest amount of additional matched signal was assumed to be correct
and substituted isotopic theoretical fragments were added to the list of candidate
theoretical fragments. All peaks which had matching theoretical fragments were
stored. After all peaks were considered the total ion current that was matched to a

theoretical fragment as calculated by:

>_(Intensity X 1/2)annotated
Z (Intensity X M/Z)gbserved

was returned. This scoring calculation was deemed appropriate as it gives ad-
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ditional weight to larger ions which are inherently more diagnostic of a given

precursor than less massive ions. Conceptually, there are fewer molecules in exis-

tence which can theoretically produce a fragment at 300 m/z than there are which

can produce a fragment at 200 m/z.
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Chapter 3

A SOFTWARE SUITE FOR THE ANALYSIS OF
HIGH-RESOLUTION GC/MS METABOLOMIC DATA

Portions of this chapter are part of a manuscript in preparation:

Kwiecien NW, Rush MJP, Westphall MS, Coon JJ. A Software Suite for the Analysis
of High-Resolution GC/MS Metabolomic Data. 2016.
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Introduction

Within the field of metabolomics, liquid chromatography-mass spectrometry (LC/MS)
has emerged as the technology of choice for large-scale profiling studies. High-
resolution LC/MS systems are prominent in many research facilities, and software
tools for quantitative data processing are well developed 2. Gas chromatography-
mass spectrometry (GC/MS) is similarly a powerful tool for small molecule and
metabolite analysis. GC/MS affords highly reproducible chromatographic separa-
tions and molecular fragmentation patterns, which greatly facilitate the comparison
of metabolomic profiles across large sample sets. However, given the lack of high-
resolution instrumentation and associated data processing software, GC/MS has
been slow to gain traction in the metabolomics community. Recent developments in
GC/MS technology stand to increase the viability and appeal for metabolite profil-
ing applications. Thermo Fisher Scientific (Austin, TX) has recently commercialized
a new high-resolution GC-Orbitrap mass spectrometer, which affords unparalleled
resolution and mass accuracy®®. The resolving powers achievable with the GC-
Orbitrap enable detection and quantitation of more compounds per sample, given
that nominally isobaric ions can be readily distinguished. Furthermore, the high
mass accuracy provided allows annotation of m/z peaks with specific chemical

formulae (as described in Chapter 2), a feature which can be leveraged to improve
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assignment of putative chemical identities®.

Although this new platform can be used to generate rich metabolomic data, pro-
cessing software for extracting quantitative information remains underdeveloped.
In fact, to the best of our knowledge, no software packages exist for performing
untargeted metabolite quantitation from high-resolution GC/MS data. To propel
high-resolution GC/MS forward as a functional tool for metabolite profiling, robust
software solutions are needed. Ideal software tools would perform all necessary
operations to identify and quantify a conserved set of metabolites across a large
set of raw MS data files. Furthermore, these tools should present results to users
in a manner that facilitates rapid data exploration and comparative analysis. To
achieve these goals, a number of considerations must be made. First, developed
packages must be able to extract and aggregate chemical features arising from
singular chemical species. This is critical as traditional EI-GC/MS experiments gen-
erate numerous molecular fragments during the ionization process, which results
in multiple features being analyzed from each precursor. Second, it is necessary to
perform a conservative background subtraction to identify biologically relevant
metabolites in an unbiased manner, and eliminate chemical noise from downstream
quantitation. Finally, it is optimal that developed software solutions perform post

hoc statistical analyses which will expedite data analysis. To facilitate meaningful
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statistical testing, software tools must account for the hierarchical organization of
experimental data.

Here, we report on the development of a comprehensive high-resolution GC/MS
quantitation pipeline, to be used with GC-Orbitrap data. This pipeline was designed
with all of the previously mentioned considerations in mind, and is intended to
be run on personal computers (PCs). Our tools perform all operations required to
extract quantitative metabolomic profiles from raw MS data files in an untargeted
fashion. We incorporate user-provided data about experimental organization to
perform automated statistical analyses. Additionally, we provide quantitative
results to users in a format which can be immediately visualized through a provided
data viewer. Each component of the developed pipeline is described in detail below.
In addition, we highlight results from various biological studies where our pipeline

was employed, successfully, for metabolite quantitation.

Pipeline Overview

Our developed suite consists of five standalone software utilities—designed to be
used sequentially—which perform all steps required to quantify and compare a
conserved set metabolites across an undetermined number of raw GC-Orbitrap MS

data files. For the purposes of comparative analysis, it is desirable to profile the
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largest set of metabolites possible, in any given experiment. Metabolomics suffers,
in general, from a relatively low rate of compound identification’—an issue which
is addressed extensively in Chapter 2. Even without an assignment of compound
identity, examination of characteristic molecular abundance changes can afford
valuable insight into phenotypic similarities between analyzed samples. With this
in mind, we have designed our package to automatically select biologically-relevant
chromatographic features (i.e. m/z peaks) which we attempt to locate and quantify
across all user-provided MS data files. This untargeted approach negates the need
for assignment of molecular identities prior to quantitation, which greatly expands
the number of metabolites that can be monitored in a given MS study.

The five software tools included in this pipeline are: Deconvolution Engine,
Deconvolution Studio, Experiment Builder, GC-Quant, and GC-Viewer. Deconvolu-
tion Engine extracts all chromatographic features from user provided GC-Orbitrap
MS data files, and then exports that information to separate data files. Deconvo-
lution Studio performs a multi-dimensional background subtraction between a
‘blank” and an “analyte’ (read, representative sample) file, and automatically curates
a list of chromatographic features to be used for quantitation. Experiment Builder
is a tool for spreadsheet editing, wherein a user can define the hierarchical organi-

zation of MS data files in their experiment. GC-Quant performs all quantitation
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CURATION OF FEATURE GROUPS,
SELECTION OF TARGET METABOLITES
AND QUANT IONS.
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VISUALIZATION AND
COMPARATIVE ANALYSIS
OF PROCESSED QUANT RESULTS.

Figure 3.1: High-resolution GC/MS metabolite quantitation analysis workflow.
Chromatographic features and “pure” fragmentation spectra are extracted from
raw Thermo MS data files in Deconvolution Engine. Individual metabolites—and
corresponding quant ions—are selected for quantitation in a semi-automated fash-
ion in Deconvolution Studio. Users can define the hierarchical organization of
their experimental data within experiment builder. GC-Quant performs quantita-
tion across multiple files using output files from the three previoulsy mentioned
programs. Results from quantitative analyses can be explored in GC-Viewer.
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and normalization procedures using the previously generated “target-list,” as well
as deconvolved MS data files. Finally, GC-Viewer is a functional GUI wherein the
results generated by GC-Quant can be automatically visualized and explored. We

elaborate on the design and functionality of each of these tools below.

Deconvolution Engine

Design. Deconvolution Engine is the first software tool in our pipeline. It serves
to extract chromatographic features from raw GC-Orbitrap MS data files, aggregate
these features into consensus fragmentation spectra, and then export all results to
a separate file. This tool was built using C# .INET and we provide a simple, but
functional, GUI which only requires user input of MS data files and a file output
directory (Figure 3.2). By clicking ‘Start,” the processes described above are carried
to completion for each user-provided MS data file. A progress bar updates in
real-time as the underlying algorithms are executed. On average, each raw file—
assuming a 30-minute gradient—can be processed in approximately two minutes.
Here, we describe in detail the underlying processes which Deconvolution Engine

carries out.

Function. In a traditional GC/MS experiment, EI is used to impart charge to ana-

lyte molecules following a front-end chromatographic separation. EI is generally
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F\GC Metabolomics' Thermo Raw Files'\COQ7_Rep_1_Resp_Met_WT-M raw
FGC Metabolomics Therma Raw Files\COGT_Rep_2 Resp_Met_WT-M raw
F\GC Metabolomics' Thermo Raw Files'\COQ7_Rep_3 Resp_Met_WT-M raw
F\GC Metabolomics' Thermo Raw Files'\COQ8_Rep_1_Resp_Met_WT-Mraw
FGC Metabolomics Therma Raw Files\COG8_FRep_2 Resp_ Met_WT-M raw
F\GC Metabolomics' Thermo Raw Files'COQ8_Rep_3 Resp_Met_WT-Mraw
F\5C Metabolomics™. Thermo Raw Files'\COQ59_Rep_1_Resp_Met_WT-M aw
FAGC Metabolomics Therma Raw Files\COGQ59_FRep_2 Resp_Met_WT-M raw
F\GC Metabolomics' Thermo Raw Files'COQ5%_Rep_3 Resp_Met_WT-M.raw
FGC Metabolomics™ Therma Raw Files"\WT-M_Rep_1_Resp_Met raw

F\GC Metabolomics' Thermo Raw Files*WT-M_Rep_2_ Resp_Met raw

F\GC Metabolomics' Thermo Raw Files"WT-M_Rep_3_Resp_Met raw

FGC Metabolomics Therma Raw Files\YLR253W _Rep_1_Resp_Met_WT-M.raw
F\GC Metabolomics' Thermo Raw Files\YLR253W _Rep_2_Resp_Met_WT-M.raw
F\GC Metabolomics' Thermo Raw Files\YLR253W _Rep_3_Resp_Met_WT-M.raw

Browse Remove Clear

Output Location
Output Folder
FAGC Metabolomics\GC Feat Files

Figure 3.2: Deconvolution Engine. The GUI program used for extracting chro-
matographic features from raw GC-Orbitrap MS data files. Users can drag and
drop data files into the “Thermo Raw Files (*.raw)” pane and specify an output
directory. One corresponding .gcfeat file is created for each user provided MS file.
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considered a “hard” ionization technique as it induces molecular fragmentation
during the ionization process®’. It is noteworthy that this ionization process is
highly reproducible, and yields a characteristic set of fragments from individual
analytes. Following ionization, these charged fragments are subjected to mass anal-
ysis in the Orbitrap. The exclusive analysis of molecular fragments differentiates
GC/MS-based metabolomics from related LC/MS studies. In the case of the latter,
intact parent precursors are measured prior to selection for MS? analysis, yielding
both an intact parent mass and a fragmentation spectrum.

Given that analytes elute continuously throughout the course of a GC gradient,
the MS is constantly sampling pools of fragments. This results in acquisition of
chimeric spectra comprised of fragment peaks derived from multiple precursors.
Since putative identifications are assighed by matching fragmentation spectra
against reference spectra (acquired from pure standards), resolving fragments from
individual compounds is critical. Furthermore, quantitation is facilitated by use
of at least one ion from a specific compound. In this regard, it is useful to identify
and group together all fragments which are derived from a singular precursor.
Deconvolution Engine was designed specifically to perform this procedure.

To begin, all chromatographic features—a collection of individual m/z peaks

observed across consecutive scans—need to be extracted from a raw data file. This
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process is done with no a priori knowledge of what fragments have been monitored.
We start with the first acquired MS data scan. For each observed m/z peak, a new
Feature object is created. This object serves as a container for all peaks having the
same m/z observed across consecutive scans. The associated m/z peak is added to
the Feature object and it’s retention time (RT) is noted. Each of these objects is
initially flagged as ‘active” asserting that we anticipate that a peak of similar m/z
exists in the following scan. From here, we move to the second MS scan in the raw
data file. For each active Feature we attempt to find a corresponding peak which
has an m/z that falls within a 10 ppm tolerance of the measured m/z. If peak is
found, it is added to the Feature along with its corresponding RT. If no peak is
found, the Feature is flagged as ‘inactive’, asserting that we do not expect to find
additional m/z peaks derived from this particular fragment in subsequent scans.
For all m/z peaks measured in the second scan which do not have an m/z matching
that of an ‘active’ Feature, a new Feature object is created, and again, it is flagged
as ‘active. This process is performed iteratively and to completion such that all
scans and all m/z peaks are considered. Only Features which contain five or more
consecutive m/z peaks are stored for further analysis.

Once the m/z peak aggregation process has completed, we are provided with

a set of complete Features. A consideration which must be made is that not all



81

measured m/z peaks are derived from biologically-relevant species—some mea-
sured signal stems from background noise. It is desirable to omit Features which
arise from background noise from further analysis. We can distinguish analyte
signals from noise signals based on chromatographic peak shape. We anticipate
that analyte signals will exist as a unimodal distribution wherein they rise to a local
maxima and then fall. We note that signals from noise will be somewhat random,
and instead expect fluctuations around a central mean, without a characteristic
peak shape.

To make chromatographic peak shapes more obvious we apply an 11-pt boxcar
average smoothing filter to all complete Features. From here we utilize a peak-
splitting algorithm which separates multi-modal Features into unimodal Features,
by identifying local minima and maxima. Essentially, for each chromatographic
Feature, a first derivative is calculated and all patterns wherein a zero-crossing
point is padded by positive and negative data points (left and right, respectively)
before returning to a zero baseline are stored. Each instance of this pattern is saved
as a new Feature object. Previously acquired Feature objects which do not meet
this pattern are subsequently omitted.

At this point in execution, we have extracted a set of chromatographic Features,

all of which meet our aforementioned “signal” criteria. Each of these Features
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is assumed to represent a molecular fragment, derived from a singular parent
precursor. For the purpose of obtaining a “pure” fragmentation spectrum, and
identifying candidate ions for quantitation, it is necessary that features stemming
from individual parents are grouped as such. Fragments from singular parents will
co-elute, and they will reach an elution apex at the same time. We have developed
and employ an algorithm which groups together fragments based on similarities
in elution profiles.

Briefly, starting from all valid chromatographic Features, we group Feature
objects into smaller sets based on similar retention times. All Features are ranked
in descending order based on apex intensity. Starting with the most abundant
Feature, we calculate a time window centered around its apex where measured
intensities are >95% of that Feature’s apex intensity. We then iterate over all other
valid Features in the set and group together those which have an apex within the
calculated time range. These Features are then placed into a new Feature Group
object—an object containing all features assumed to stem from a singular parent—
and removed from further consideration. This process is carried out iteratively
until all Features have been placed into a single Feature Group. Feature Groups
containing fewer than five features are discarded from further consideration. Finally,

we extract a consensus spectrum from each of these Feature Groups by creating a
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peak for each Feature, with corresponding m/z and apex intensity.

Following aggregation of Features into Feature Groups, we export all results
to a SQLite database file (the extension .gcfeat is used) to be used downstream
in our pipeline. This database consists of three individual tables. First, is a to-
tal ion current (TIC) chromatogram table which contains individual entries for
each data point in the TIC chromatogram (RT and TIC). Second, is a table con-
taining entries for each valid chromatographic Feature including specific columns
for m/z, apex RT, apex intensity, a string representation of the smoothed feature
(RTq:Intensity;RT,:Intensity,;...RTy:Intensity, ), and a unique numerical identifier.
Finally, a table describing all Feature Groups is included with columns containing
apex RIT, a string of all included feature IDs, and a string representation of all

spectral peaks (m/z;:Intensity,;m/z,: Intensity,;...m/z,: Intensityy).

Deconvolution Studio

Design. Deconvolution Studio is the second software tool in our pipeline and
serves to identify biologically relevant target species via comparison of a represen-
tative ‘analyte’ file against a ‘blank’ file. This target list is saved to a separate file
and can be modified at the a user’s discretion. We provide users with the ability to

adjust the constituent features in all feature groups, select/deselect target feature



84

groups (read, molecules) for downstream quantitation, and to intelligently choose
ions to use for quantitation. This tool was built using C# .NET and we provide a
functional GUI which supports a number of tabs and embedded graph panes to
facilitate the processes above (Figure 3.3). This tool is designed such that individual
files can be opened and edited ad infinitum and supports change save functionality.

Here we will describe some of the key functions which this software tool supports.

GC Master Creation. As mentioned, one of the critical functions which Decon-
volution Studio supports is creation of a “target” list (.gcmaster file) to be used
for downstream quantitation. Upon initial launch, a user will select both ‘ana-
lyte” and ‘background’ .gcfeat files—files containing deconvolved Features and
Feature Groups, produced by Deconvolution Engine. After clicking ‘Create GC
Master File,” Feature Groups from both files are loaded into memory for subse-
quent comparison. The expectation is that all biologically relevant species will
be present exclusively in the “analyte’ .gcfeat file. We note that the inclusion of a
TMS-derivatization step in GC/MS sample preparation procedures'® is common,
and adds many background chemicals which give rise to spurious signals that
should be omitted from further analysis. For each feature group in the ‘analyte’
file, the most abundant Feature is selected, and searched for in the corresponding

‘background’ file using a +10 ppm m/z, +0.05 minute RT, and 2x apex intensity
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tolerance. If no matching record is found, it is assumed that the selected Feature
Group is biologically relevant, and it is listed as a downstream quantitation target.
Additionally, a single quant ion is automatically selected. By default, the most
abundant ion—which is not a known TMS fragment—is chosen, although this can
be updated later at the user’s discretion. All of this data is saved to the .gcmaster
file, which can then be loaded back into Deconvolution Studio and edited. The
following processes described occur after a .gcmaster file has been created and

re-loaded into the tool.

Feature Group Curation. The construction of Feature Groups is handled in a
completely automated fashion by Deconvolution Engine, using a set of predeter-
mined parameters. While the employed algorithms are highly performant, we
recognize that they can still fail. In these situations it is desirable to provide users
with added control to correct improperly grouped Features. Under the ‘Feature
Group Curate’ tab (Figure 3.4), all Feature Groups are displayed in a list with both
apex RT and peak count indicated. Selection of any Feature Group from this list
will display related data in the associated graph panes. In the left pane, all Features
surrounding the group’s apex RT are shown. Features belonging to the selected
Feature Group are shown in red, and all others are shown in gray. In the right

pane, a mass spectrum containing peaks corresponding to all constituent Features
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is displayed.

We support functionality such that Features can be added to and removed
from the selected Feature Group. All Features can be selected from the left pane
by double-clicking a curve of interest. Upon select, the chosen curve will change
color and line thickness. If the Feature belongs to the current Feature Group it can
be removed by clicking the ‘Exclude’ button. Alternatively, if it is not currently a
member, it can be added by clicking ‘Include.” In either case, after the composition
of the Feature Group is changed, the right-hand spectrum is updated to reflect the
current state. Additional functionality is supported to allow a user to lookup a
Feature with characteristic m/z and RT, and then create an entirely new Feature
Group. This option is useful for the case of lowly abundant metabolites which may
not have been incorporated into a Feature Group containing the minimum number
of required features. Once changes have been made here, a user can click the ‘Save

Changes’ button and all edits will be stored in the .gcmaster file.

Feature Group Target Selection. One of the most notable advantages of our pipeline
is that it supports untargeted quantitation, which negates the need for identifica-
tions to enable extraction of molecular abundances. In any untargeted, or discovery-
based, quantitation routine it is necessary to designate a set of species which you

will attempt to quantify across all samples. Our pipeline is designed around the idea
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that a control will be used for normalization purposes—which we acknowledge will
not always be the case. This assumption greatly simplifies the quantitation process.
Using this approach, we can determine which Features to quantify based on a
single experiment, rather than multiple experiments. This streamlined Feature
selection process opens to the door to manual result-checking and curation which
we provide in Deconvolution Studio.

All Features to be quantified are initially selected during the GC master creation
process—as described above. By navigating to the ‘Feature Group Alignment’ tab
(Figure 3.5), users can observe all Feature Groups—from the provided analyte
file—displayed in a list. This list contains associated column labeled ‘Included’
which reflects whether that Feature Group is to be quantified across all MS data
tiles. This tab provides four individual graph panes, each of which provides the
user with a unique data view that serves to inform whether a Feature Group ought
to be targeted for downstream quantitation.

Briefly, the views shown include a look at all Features from the analyte file
over a narrow time range (upper-left), and all Features eluting over the same
time range in the background file (lower-left). Individual Feature Groups can be
selected in these two panes by double-clicking the group of interest. In the lower-

right hand pane a reflection of all chromatographic Features across both analyte
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and background files are shown, with selected analyte and background Feature
Groups indicated in red and blue, respectively. Finally, in the upper right hand
corner, a reflection of fragmentation spectra from both chosen Feature Groups
is displayed. Collectively, these plots should provide users with the requisite
information to determine whether a Feature Group is unique to the analyte file,
and should therefore be targeted for quantitation. In this tab, we also provide users
with the ability to provide both a name and ChEBI identifier for targeted Feature

Groups if desired.

Quant Ion Selection. For quantitation purposes, we have developed our pipeline
to utilize intensity measurements from a single ion to represent the abundance of
a particular molecule. Intuitively, one might want to choose the most abundant
Feature from a Feature Group (read, molecule) as this has the best chance of
being observed in times of lowered abundance. However, we recognize that many
fragments are shared between molecules, which can obscure the origin of signal
when dealing with closely eluting compounds. Instead, we assert that it is preferable
to choose a fragment with m/z dissimilar to other closely eluting fragments.
Under the ‘Quant Ion Selection” tab (Figure 3.6), all Feature Groups specified as
targets for quantitation are listed. By clicking on any Feature Group, the associated

spectrum is displayed. All ions from the Feature Group’s consensus spectrum are
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displayed in an associated list—labeled “All Ions.” The ion selected for quantitative
purposes is displayed in a separate list—labeled ‘Selected Ion’. Individual ions can
be moved between these lists, however only one ion is allowed on the ‘Selected Ions’
list at any given time. The ion chosen for quantitation is differentially colored in
the displayed consensus spectrum, and a chromatographic profile is shown in a
separate pane.

To determine uniqueness of the chosen quant ion, a user can load a Thermo
Raw MS data file. Following upload, chromatographic traces extracted directly
from the raw MS file—using a +10 ppm tolerance—and are displayed with a 15
second span surrounding the fragment’s apex RT. Ideally, the only observable
signal at this m/z would be derived from the fragment of interest. Such is not
always the case, but it is desirable that there is some sort of baseline separation
between fragment signals. Another component which must be considered when
selecting a quant ion is signal-to-noise (S/N). If a very lowly-abundant fragment is
chosen for quantitative purposes, this will likely preclude the detection of a large
decrease in abundance for the particular molecule. Similarly, if a fragment intensity
is exceedingly high, detection of large abundance increases will be challenging.
Here we have provided users with multiple data views which inform the quant ion

selection process. All changes in quant ion selection are stored locally until a user
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clicks ‘Save Changes” at which these modifications are stored in the .gcmaster file.

Experiment Builder.

Design. One of the main objectives of our pipeline is to produce outputs which
can be immediately visualized and explored. To this end, inclusion of statistical
analyses in our processing is desirable. In order to enable meaningful statistical
testing, the organizational hierarchy of the experiment must be known so that data
can be properly compared. One of the inputs in our downstream tool GC-Quant, is
a text file (*.gcexp) which describes how each MS data file is related to the others.
This file can be created using our tool, Experiment Builder. To facilitate easy editing,
the .gcexp file is written in a semicolon-delimited format, which lends itself to
editing in our tool as well as in Microsoft Excel. Furthermore, these files can easily
be generated programmatically. The general structure of each line in this file is as
follows: .gcfeat file path, replicate name, condition name, control condition. This
structure provides all information required for statistical analysis to be carried out.
We provide a simple GUI, developed in C# .NET, which facilitates construction of
this file by means of an editable and interactive table where individual files can be
added and associated fields changed with ease (Figure 3.7).

We have designed a flexible and generic experimental hierarchy structure, which
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Experiment Builder

»

Condition Names

[=[=]=]

* gofeat File Replicate Narme Condition Select Control Condition
y Y T Batch Ten-2-C  [WTBatch Ten-2  |~|None AMzs
D:WMIFA,_ASKS YaK G.. | QCR7 - A lacrz > |\ T Batch Two - 1 ATP3
DiMIRA_ASMS Y3K G... | QCRT - B lacrz ~ |\WT Batch Two - 1 3 EEE%
DMIRA_ASMS Y3K G | GCR7 - C locry ~ [T Bateh Twa - 1 Pl
DiWMIRA_ASMS 3K G, |[KGD1 - & [kGD1 ~ |WT Batch Two - 1 Egy
DiMIRA_ASME Y3K G.. KGDT - E |GD1 ~ |\ Batch Two - 1 | |FMP30
DiMIRA_ASMS YK G |KGDT- C [kGD1 ~ |\WT Batch Two - 1 ey
DiMIFEA_ASMS V3K G.. |KED2 - A [kGD2 ~ |\ Batch Two - 1 harss
DrMIBA_ASMS Y3K G.. |KGDZ - B = > |WT Batch Two - 1 KGD1
DiMIBA_ASMS Y3K G |KGD2-C |kGD2 ~ |\WT Batch Two - 1 Ve
DAMIRA_ASME YEK G... |ATP1- A [aTP1 ~ [T Batch Two - 1 noe,
DiMIRA_ASMS YK G | ATP1- B [aTP1 ~ |\WT Batch Two - 1 WT Batch Ten- 2
DiIRA_ASMS vaK G |ATPT-C |aTP1 ~ |\wT Batch Two - 1 WT B Toa 3
DAMIPA_ASMS Y3K G.. | ATPI- A |aTP3 ~ |WT Batch Twa - 1 YBR230 A
DrMIBA_ASMS YK G |ATP3- B |aTP3 ~ |\WT Batch Two - 1
DiMIBA_ASMS Y3K G |ATP3-C |aTP3 ~ |\WT Batch Two - 1
DMIPA_ASMS 3K G... |MDM32 - A |MDM32 ~ [T Batch Two - 1 [ AutoFil Batch ]
DiMIRA_ASMS Y3K G.. | MDM3Z - B |mDMmaz - |wT Batch Two - 1
_
DiMIRA_ASMS Y3K G... | MOM3Z - C [MDMaZ ~ | T Batch Two - 1
Dk A ohigvar = Enc [erea e i Do T 1 2k Autocomplete On
Add Batch Name
| [ Add J
Load GC Experimental Design File
|D:\MIHA_ASMS 13K GC Metabolomics'FespirationsResp_Testing gcexp | [ Browse ]
Select Output Directory
| | [ Erowse ]

[

Save Experimental Design

Figure 3.7: Experiment Builder. The GUI program used for creation and editing of
a text file (*.gcexp) describing the hierarchical organization of deconvolved MS data
files to be quantified. Here, users drag and drop deconvolved .gcfeat files, provide
replicate names to each file, as well as ‘condition” and ‘control’ mappings. Edited
data can be saved to a new file by clicking ‘Save Experimental Design’ button.
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we require users to utilize for describing the organization of their data. We assume
that individual analyses can be grouped into ‘conditions,” which encapsulate repli-
cate samples that have undergone similar treatments prior to analysis. These
‘conditions’ can contain either single, or multiple replicate MS experiments. Fur-
ther, we note that often these ‘conditions” will represent an experimental control
which can be used for normalization and comparative purposes. The file structure
outlined above is designed such that individual MS data files can be mapped into

the described structure.

Function. Experiment Builder is the third software tool in our pipeline and serves
to create a text file (.gcexp) containing information on the hierarchical organization
of replicate MS experiments (.gcfeat files), to be used in our downstream quantita-
tion tool. The generated text file contains semicolon-delimited values and can be
constructed and edited within the provided Experiment Builder GUI, or program-
matically generated using custom scripts. Users can drag-and-drop .gcfeat files into
the Experiment Builder GUI and each will be added as a new row in the displayed
data table. This table consists of four columns—*.gcfeat File, Replicate Name, Con-
dition Select, and Control Condition Select—all of which can be edited. For each
added .gcfeat file, users will specify a replicate name under the associated column.

Then, users will map individual replicates to ‘conditions.” Conditions can be added
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by entering a name in the ‘Add Condition Name” textbox and clicking the ‘Add’
button. The right-hand ‘Condition Names' list is then automatically populated with
the new entry, and it is available for subsequent mapping. The ‘Condition Select’
column contains dropdown lists with the names of all user-specified conditions.
For each replicate entry, users will select a condition name from this list. We have
added an ‘AutoAppend Run Names’ button which attempts to map similarly named
replicates with the same condition to expedite the .gcexp file creation process.
After all replicates have been mapped to appropriate conditions, users will
indicate control condition mappings. We recognize that often several conditions will
be profiled in a given project, and that many conditions will map to a single control.
These control conditions can be specified by selecting a single condition from the
dropdown lists under the ‘Control Condition Select’ column. After performing
this procedure once, all other replicates associated with a non-control condition
are automatically mapped to the specified control, and the associated fields are
updated appropriately. Control conditions have no associated control, and, as such,
are left blank. Once all .gcfeat files have been added, and mappings completed,
users can export their work by selecting an output directory, and clicking the ‘Save
Experimental Design’ button. This triggers creation of a new timestamped .gcexp

file which is ready for use in downstream applications.
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GC-Quant

Design. GC-Quant is the fourth program in our pipeline which serves to perform
all quantitation and normalization procedures across a set of user-provided MS
data files. This program accepts a .gcmaster file (Deconvolution Studio output)
and a .gcexp file (Experiment Builder output) as inputs. The former provides
information about which chromatographic features should be extracted from all
files for quantitative analysis. The latter provides a file location for each deconvolved
.gcfeat file, as well as, information about the hierarchical organization of replicate
MS experiments. All inputs can be easily imported into our functional GC-Quant
GUI developed in C# .NET (Figure 3.8). Upon execution of this tool, all previously
specified .gcfeat files are loaded into the program and listed in the GC-Quant
progress window. During execution, progress is reported back in real-time and
displayed in the GUI. After all underlying processes complete, a .gcresults file is
created which contains normalized quantitative data and results from statistical
analyses. This file can be imported into our developed data visualizer—GC-Viewer—
where all data can be readily explored. The algorithms employed by GC-Quant
to ensure that meaningful quantitative information is appropriately extracted and

transformed are described in detail here.
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Figure 3.8: GC-Quant. The GUI program used for quantitation, normalization, and
statistical analysis of all user-selected MS data files. Users provide by a .gcmaster
(target list information) and .gcexp (file location hierarchical organization) files as
inputs. Upon launch all files to be quantified are displayed in the ‘Data Processing
Progress” window, and progress is updated in real-time.
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Chromatographic Realignment. One of the most substantial benefits afforded by
GC/MS metabolomic analysis, is a high-degree of chromatographic reproducibility.
Typically, only very small shifts in retention of individual molecules are noted,
even across extended periods of data acquisition. Chromatographic realignment
algorithms are frequently employed by MS quantitation packages to enable com-
parison of molecular abundances for a conserved set of features across MS data
files. This high level of chromatographic similarity in GC/MS studies alleviates
the computational burden of realignment—which is often challenging in orthogo-
nal LC/MS analyses—to compensate for systematic shifts or warping. That said,
we have developed our quantitation tool to account for deviations in molecular
retention, to ensure that our quantitative results are robust.

The GC-Quant tool utilizes a .gcmaster file as an input—which is generated
from a single representative file—that provides information about what features
should be quantified across all files. This .gcmaster file also contains the TIC
chromatogram from the associated MS data file used for its creation. We utilize this
TIC chromatogram as a reference for all realignment procedures (i.e., all replicate
MS files are aligned to this chromatogram prior to quantitation). To account for
any warping, we perform all alignments on a molecule-by-molecule basis. Briefly,

for each molecule listed as a target in the .gcmaster file, a one minute segment of
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the TIC chromatogram—centered around the molecule’s apex RT—is extracted.
Within each analyte file to be quantified, a TIC segment covering the same retention
time range is also extracted. We anticipate that these two segments will contain
similar prominent features which we exploit for our realignment purposes. We
aim to calculate a characteristic time offset (.gcmaster elution time — expected
analyte elution time) for the current molecule. We begin by rastering the analyte
TIC segment across the .gcmaster TIC segment—in 0.005 minute increments—and
calculating a dot product score for overlapping sections at each point. This rastering
process is carried from -0.15 minutes to +0.15 minutes by default. The offset position
which yields a maximal dot product score is stored as the characteristic RT offset
for the selected molecule within the analyte file. This value is later used for feature
location purposes. Figure shows TIC chromatogram segments from WT yeast

samples before and after chromatographic realignment (Figure 3.9).

Metabolite Quantitation. The deconvolution processes performed by Deconvo-
lution Engine, negate the need to go into individual raw MS data files to locate
and extract abundances for targeted metabolites. Instead, each .gcfeat file already
inherently contains all chromatographic Features which could possibly be used
for quantitation. Hence, all that is necessary to extract abundances for targeted

metabolites, is to identify Features in a given .gcfeat file which have matching
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Retention time (minutes)

Figure 3.9: Chromatographic realignment. TIC chromatogram segments from
33 raw GC-Orbitrap MS data files acquired across consecutive days before and
after realignment. a.) Chromatographic profiles extracted directly from raw MS
data files. b.) Chromatographic profiles following calculation and application of a
characteristic RT offset.
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m/z and RT values. These matched Features can then be normalized and used for
comparative analyses.

At this point in the execution, a RT offset for each targeted molecule has been cal-
culated within each analyte .gcfeat file. For each molecule, the GC-Quant algorithm
locates all metabolites which have a RT within a +0.075 minute span of the expected
RT (.gcmaster RT — calculated offset), and a m/z within a 10 ppm tolerance of
the specified quant ion. If no matching Features are found, the algorithm moves
to the next molecule. If one matching Feature is found, it is associated with the
targeted molecule, and stored locally for downstream normalization. If more than
one matching Feature is found—which is rare given the restrictive RT and m/z
tolerances used—the Feature having a RT closest to the expected RT is designated
as the correct match, and also stored locally. This process is repeated iteratively
and to exhaustion for all targeted metabolites, across all user specified .gcfeat files.

Upon completion all metabolite abundances are log, transformed.

Normalization. We have designed our pipeline to be used for relative quantitation
rather than absolute quantitation. The tacit assumption of this approach is that over-
all metabolite levels are similar between samples, but that the relative abundances
of these species will differ. In our normalization procedure, we first create a ‘virtual

replicate analysis.” For each targeted metabolite, we identify the median quantified
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abundance, considering all replicates where the metabolite was located. This value
is then assigned as the associated abundance for the selected metabolite within our
virtual replicate. We repeat this process for all targeted metabolites. This virtual
replicate is used as a reference for normalization of all profiled replicates. For each
replicate experiment, we calculate the total abundance of all located metabolites,
as well as the total abundance of the same set of metabolites within our virtual
replicate. Then, using a TIC-based normalization approach, we scale the abundance
of each replicate metabolite equivalently such that the total abundance is equal
to that of the virtual replicate. This process is repeated for iteratively for all user

specified .gcfeat files.

Statistical Analysis. At this point in execution, each user specified replicate MS
analysis contains normalized quantitative information for all metabolites that could
be located. In order to expedite data analysis, we perform some basic statistics
within the GC-Quant program, which are subsequently stored in a provided re-
sult file (.gcresult). Granted that we require information about the mapping of
replicate analyses into conditions, we can perform statistical analyses at this level.
For each metabolite, we calculate the average condition abundance and standard
deviation, using replicate abundance measurements. If a control has been specified,

we calculate fold changes for each molecule by subtracting log, control averages
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from log, condition averages. Additionally, we calculate a p-value for each fold
change (two-sided Student’s t-test; homostatic), which reflects the significance of
the measured perturbation. All calculated values are written to an output file and

are used for automatic generation of data visualizations in our GC-Viewer utility.

Output File. We export results from GC-Quant in a SQLite database file (*.gcre-
sults) which can be loaded into GC-Viewer and explored or ported to text-based
formats using any SQLite data viewer. This output file contains all qualitative and
quantitative experimental information in a series of well-defined data tables. A
single entry is stored for each replicate MS experiment in the table named “Repli-
cate_Table,” which contains replicate name, a unique replicate identifier, associated
.gcfeat file path, condition name, a unique condition identifier, control condition
name, and control condition identifier. Similarly, a single entry is stored for each
condition in the ‘Condition_Table’ table which contains condition name, a unique
condition identifier, a comma-delimited list of associated replicate identifiers, a
comma-delimited list of associated replicate names, a control condition identifier,
and a control condition name. Replicate quantitative data is stored under in a table
called ‘ReplicateQuant_Table.” Here, each quantified molecule, within each repli-
cate, is stored with associated replicate and condition identifiers—as mentioned

above—along with an apex RT, RT offset, quant ion m/z, and apex intensity. Aggre-
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gated condition quantitative data is stored in a table called ‘ConditionQuant_Table.”
In this table, we store a semicolon-delimited string of all replicate intensities, an
average intensity, a standard deviation, a control-normalized intensity (log, fold
change), and a p-value. Following insertion of data into data tables, indexes are

added where appropriate to expedite queries employed by GC-Viewer.

GC-Viewer

Design. GC-Viewer is the fifth and final software tool in our pipeline which enables
users to visualize and explore their quantified metabolomics data. This standalone
software utility accepts .gcresults files—outputs from GC-Quant—as inputs and
converts all associated data into interactive plots. GC-Viewer is a functional GUI (de-
veloped in C# .NET) with graph panes (ZedGraph) embedded across multiple tabs
(Figure 3.10). These individual graph panes can be used to automatically generate
interactive visualizations which enable users to rapidly identify measurements
and trends of interest. To facilitate communication of results from our pipeline, all
generated visualizations can be exported to SVG files which can be manipulated in
graphic editing packages such as Adobe Illustrator or Microsoft Powerpoint. Here,
we describe the visualizations which can be generated within GC-Viewer, as well

as the interactivity which this tool supports.



107

‘suoyng ajerrdordde a3 Sunyord Aq preoqdr ay3 03 pardod 10 a71j e 03 paaes aq ued syord
PajeIDduan) "sqe} XIS [[e ssode pake[dsIp pue pajeard A[[edonewiojne aIe SUOIRZI[eNSIA "uopng d[L] aseqere(]
S}NSIY-DO) PrOoT, Y} SundId Aq papeo] 9q ued Yotym [l sjnsaing-, e sydoooe werdoid sy, yuendd-Ho)
WOIJ S)NSI [ed1IsHe)s pue aanjejryuenb jo uonezipensia 10y pasn werdord [0 Y TOMIIA-DO) QL' 1IN

[st-A) [s1-3)
anesed Aysum| AU 14 xady a aweN 1BYILSP| SUOgEIE
yaeg jonucy 19342
Apsuaju| apjoqejaly z6o | - uaL yojeg Lm
1% 0¢ 7 0c Gl
i La ]y
- . T 0
A | 8
y 4

- = 102 &

- e‘\l 4 r

.“ 0

L 7 [{=]

a o i M
) 212 i m :wan_
0Lond
- ¥ 18 & Lo
- . = 1313
=2 E[i]
1 = 1412
. o L'¥HD
_ [2al
1 = ¥wNg
- | @ £dlv
’ 0e 35 zd1¥
. 23 Zldl¥
= Ld1¥
1 e saly
. 1a1v
oLody
1 = SOHY
1 L L L L 1 L L L L 1 L L L L SFHIY
1 SZHIF
A - LMY
800D A LM i A e

[aueaop, | uageEnag payuey | duepus yoegyaeg | anua] + fsue) S0geeE | yoeg '« yoeg |2Ralday » sRaday
dw3 aneg  pueoqdp o Adon  sAeapeq1gayn peo] S Iseqejeq sUnsay-)D peo
[=]=]|[=] AazEnsip sYnsaY-00 Se

4




108

Function. GC-Viewer viewer consists of six separate visualization tabs, each of
which can be used to create a unique view of a quantitative metabolomics data set
(Figure 3.11). Upon launching the tool, users are prompted to select a .gcresults file
for further analysis. Once a file is selected, all underlying data is loaded into the
software tool, and input selection lists are populated appropriately across all tabs.
Under the ‘Replicate vs. Replicate” tab, users can compare metabolomic profiles
from any two replicate MS analyses by selecting desired condition and nested
replicate options. These data are displayed as a scatter plot with log, metabolite
abundances along the x- and y-axes. A Pearson correlation coefficient (R?) is calcu-
lated as a metric of similarity between replicate profiles, and reported in the graph
pane.

Under the ‘Condition vs. Control’ tab, users can explore molecular perturbations
within any condition relative to its specified control. Data are displayed here as
a bubble plot with control intensities along the x-axis, and condition intensities
along the y-axis. Each data point is colored according to fold change and statistical
significance (p-value>0.05 = red, p-value<0.05 and | FC | <1 = blue, p-value<0.05 and

| FC | >1 = green). Additionally, data point size is scaled with increasing significance
(read, decreasing p-value). Double-clicking any data point will cause the associated

data to be added to a table at the bottom of the tab. We provide a similar view of the
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Figure 3.11: GC-Viewer visualizations. Representative visualizations generated
by GC-Viewer. a.) Replicate vs. Replicate. log,-transformed metabolite abundances
from replicates of COQ8 KO (x-axis) and YJR120W KO (y-axis). b.) KO vs. WT. A
bubble plot showing average log, abundances (n=3) from WT (x-axis) and COQ8
KO (y-axis). Data point size and color are used to indicate fold change and statistical
significance. ¢.) KO vs. WT-Volcano Plot. A volcano plot showing average log,
molecule fold change (n=3 mean log,[KO-WT]) along the x-axis, and statistical
significance (-log10[p-value]) along the y-axis.
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Figure 3.11: d.) KO vs. KO Correlation. A scatter plot showing average log,
molecule fold change (n=3 mean log,[KO-WT]) from COQ8 KO (x-axis) and
YJR120W KO (y-axis). Highlighted data points reflect those where p<0.05 across
both conditions. The reported Pearson coefficient (R?) is calculated by fitting a
line to all data points. e.) Molecule Fold Change. Bar chart showing average log,
fold change (n=3 mean log,[KO-WT]) for a single molecule (lactic acid) across KOs,
along with standard deviation (error bars). Color reflects statistical significance
and fold change. f.) KO Correlations. Bar chart reflecting Pearson correlation
coefficients (as calculated in d.) for all KOs against the COQ8 KO strain.

data under the ‘Volcano’ tab. Here, complete metabolite perturbation profiles are
displayed as a volcano plot—fold change along the x-axis, and statistical significance
(p-value) along the y-axis—for each user-selected condition.

Users can analyze fold changes for individual molecules across all conditions
under the ‘Metabolite Intensity vs. Control” tab. Here, fold changes for a selected
molecule across all conditions are represented as a bar chart, with error bars indicat-
ing +1 standard deviation. Bars are colored according to fold change and statistical
significance using the same scheme employed in the ‘Condition vs. Control” tab.
Any two profiled conditions can be compared under the ‘Condition vs. Condition’
tab. Here, users will select two conditions for comparison. Abundance fold changes
from all molecules profiled across both conditions are displayed as a scatter plot
with one condition along the x-axis, and the other along the y-axis. Molecules which
are significantly changing (p<0.05) in both conditions are highlighted in light blue.

A Pearson correlation coefficient—calculated using all data points—is reported
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as a metric of similarity between the two strains. This coefficient is calculated on
the fly and displayed in the graph pane. Extended data from any molecule can be
displayed in an associated data table by double-clicking a data point of interest.
To enable users to quickly identify which conditions are most closely related to
a selected condition, we have constructed a view under the ‘Ranked Correlations’
tab wherein all Pearson correlation coefficients are displayed in descending order
as a bar chart. Users can select a Pearson coefficient cutoff and only correlations
exceeding that value will be displayed. All of the described plots can be copied to
the clipboard, or saved as an SVG file. We support export functionality to make
it easier for users to generate manuscript-ready figures from our data analysis

pipeline.

Highlighted Results

The described metabolite quantitation pipeline was developed out of necessity
to enable metabolomic profiling of yeast knockout (‘Agene’) strains analyzed as
part of a large-scale multi-omic profiling experiment (Y3K; described in detail in
Chapter 5)!!. Here, 174 Agene strains were grown in biological triplicate under two
separate growth conditions, and profiled using quantitative proteomic, lipidomic,

and metabolomic MS techniques. Considering only the metabolomic portion of
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this work, these efforts generated upwards of 1,000 GC-Orbitrap MS data files. This
constitutes a rich data set for software development and testing. From these data
we anticipate that extracted quantitative metabolomic profiles between replicates
of the same Agene strain would be similar. In (Figure 3.12) we highlight correla-
tions between metabolite profiles from three replicates (grown under respiration
conditions) of three separate Agene strains. All of the deleted genes code for pro-
teins involved in disparate biochemical pathways. As such, we anticipate that
intra-replicate correlations will be stronger than inter-replicate correlations, an
expectation which aligns with observations. Across the entire Y3K data set, we
report a median coefficient of variation (CV) of 9.98%, considering all metabolites
profiled. In our opinion, this exceptionally small variation speaks not only to the
reproducibility of the acquired data, but also to the performance of our quantitation
tools.

Aside from testing pipeline performance on the basis of intra-replicate profile
similarities, the Y3K data set affords the ability to test for correlations between
functionally similar Agene strains. Many of the Agene strains profiled in Y3K were
knockouts of genes coding for proteins involved in similar biochemical processes.
For instance, we analyzed knockouts of all COQ genes (COQ1-COQ11), each of

which codes for a protein involved in synthesis of the essential lipid Coenzyme
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Q (CoQ). Elimination of proteins involved in conserved biochemical processes
induces similar cellular responses which can be observed across omes. We note that
within the complimentary protein and lipid data, similar profiles were observed
between functionally related knockouts. The metabolomic profiles extracted using
our pipeline reflect these correlations, and we report strong correlative agreement
between all three omes.

The aforementioned global analyses demonstrate the exemplary performance
of our developed software tools. In a narrower scope, we also found that these
metabolomic data were exceptionally useful for hypothesis generation and test-
ing. In the Y3K study, we elucidated a novel function of the incompletely char-
acterized protein Hfd1p. It was hypothesized, and subsequently confirmed, that
this protein facilitates the conversion of the metabolite 4-hydroxybenzaldehyde
(4-HBz) to 4-hydroxybenzoic acid (4-HB). Speculation of this putative function
arose as 4-HB was observed to be uniquely—and significantly (p<0.05; Student’s
t-test)—downregulated in the Ahfd1 knockout strain. This characteristic genotype—
phenotype relationship was specific enough to merit follow-up testing which led
to a new assignment of protein function. Outside of Y3K, this pipeline has been
used for other metabolomic profiling efforts, notably recent work from Stefely et

al'?. Here, Stefely and colleagues utilized these processing tools to highlight that
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central carbon metabolism metabolite levels in Cog8a™/~ were not significantly
altered from WT. While this result is admittedly less climactic compared to the
Y3K results described here, these data were nonetheless informative to the larger
biochemical conclusions drawn in that work. Also, we draw attention to the fact
that our developed tools remained highly performant when presented with data

from mouse, an organism which is markedly more complex than yeast.

Future Directions.

The software suite described here capitalizes on the unparalleled mass accuracy
and sensitivity afforded by the recently commercialized GC-Orbitrap platform,
and enables metabolomic profiling on a grand scale. We have developed user-
friendly tools for converting raw MS data into meaningful quantitative values,
and even provide a convenient interface through which to explore and compare
these measurements. All of these tools have been designed to run on PCs and are
modularized such that users can interact with, and edit data at separate stages in
processing. Collectively, these tools provide a comprehensive data analysis solution
for extracting novel biochemical insight from GC-Orbitrap metabolomics data.
While this pipeline has been of great value to our lab’s research efforts, we

recognize opportunities for improvement. We constructed this pipeline with the
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intention that users would analyze data which adheres to a set experimental design
(i.e., a control condition is always present). In many cases users will wish to
analyze data sets lacking an associated control, which would preclude usage of
our developed suite. Addition of functionality to allow comparison of conserved
metabolite features across MS data files, without need for a control, is welcome.
Implementing this functionality requires developing new algorithms for improved
feature selection across a large set of files. Manually comparing single files against
associated blanks to identify targets for quantitation—as is done in our current
pipeline—becomes untenable when data sets grow large. Thus, it is imperative that
the underlying feature selection routines utilize all provided data to automatically
construct these target lists—while discriminating against noise features—without
requiring user input of any kind.

Although GC/MS profiling affords many advantages with regards to repro-
ducible chromatography and fragmentation, LC/MS remains the preferred tech-
nology for metabolomic analysis. To extend the utility of our developed pipeline, it
is desirable that we support LC/MS analyses as well. LC/MS data acquisition is
fundamentally different from GC/MS in that intact precursors are monitored (MS')
prior to selection for MS? analysis. However, the same untargeted quantitative

profiling techniques can be applied. Here, we would seek to extract, quantify, and
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compare abundance profiles from intact species. We would likely employ similar
feature grouping procedures to account for adducts and characteristic loss species.
Assignment of molecular identifies would be performed in much the same way,
however all compound-informative fragmentation information would be derived
from MS? spectra.

Finally, we recognize that metabolomic studies are often conducted on a variety
of instruments from numerous vendors. In order to make our tools more broadly
useful, it is imperative that we support data from multiple vendors. The most
obvious way to provide this kind of support is to further develop our tools to
accept universal MS data formats such as mzML" and mzXML. These universal
formats have been developed as community standards by a consortium of MS users.
Furthermore, there are a number of freeware tools which support conversion of
data acquired on instruments from nearly all MS vendors'>-'7. By enabling our tools
to accept mzML or mzXML inputs we can provide functional software solutions to

a much larger audience of metabolomic researchers.
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Abstract

Mitochondrial dysfunction is associated with many human diseases, including
cancer and neurodegeneration, that are often linked to proteins and pathways that
are not well-characterized. To begin defining the functions of such poorly charac-
terized proteins, we used mass spectrometry to map the proteomes, lipidomes and
metabolomes of 174 yeast strains, each lacking a single gene related to mitochon-
drial biology. 144 of these genes have human homologs, 60 of which are associated
with disease and 39 of which are uncharacterized. We present a multi-omic data
analysis and visualization tool that we use to find covariance networks that can
predict molecular functions, correlations between profiles of related gene deletions,
gene-specific perturbations that reflect protein functions, and a global respiration
deficiency response. Using this multi-omic approach, we link seven proteins in-
cluding Hfd1p and its human homolog ALDH3A1 to mitochondrial coenzyme
Q (CoQ) biosynthesis, an essential pathway disrupted in many human diseases.
This Resource should provide broad molecular insights into mitochondrial protein

functions.
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Introduction

High resolution mass spectrometry (MS) has become the primary analysis tool for
many classes of biomolecules, including proteins, metabolites, and lipids. Major
advancements in MS technology—particularly in the rate and depth of analysis—
have enabled dozens of proteomes, metabolomes, and lipidomes to be analyzed in
a single day'=. Studies of bacteria demonstrated that parallel measurement of mul-
tiple molecule classes can synergistically enhance the biological insight afforded **.
Recently, proteomics has been integrated with transcriptomics and genomics in
mice®’. However, large-scale, comprehensive (i.e., proteome-wide), multi-omic
data acquisition, integration, and visualization tools remain underdeveloped, of-
ten lagging behind genomics in terms of coverage, speed, and broad accessibility
for end users. Given the interdependence of proteins, lipids, and metabolites,
we reasoned that coordinated analysis across all three biomolecule classes could
afford new insight into eukaryotic biology. In particular, we hypothesized that
this multi-omic profiling strategy, when coupled with genetic and environmental
perturbations, could enable functional predictions for uncharacterized proteins.
We applied this strategy to study mitochondria, dynamic organelles whose
dysfunction is associated with over 150 human diseases including cancer, diabetes,

8-10

Parkinson’s, and numerous genetic disorders® . While the yeast and mammalian
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mitochondrial proteomes were recently defined '3, functional annotation of these
proteins lags behind ¥, impeding biomedical research on the many diseases im-
pacted by mitochondrial metabolism. Of the ~1,200 mammalian mitochondrial pro-
teins, nearly 300 are “mitochondrial uncharacterized (x) proteins” (MXPs)>!¢ that
have no well-established biochemical function within mitochondria. Here, toward
defining functions for MXPs, we performed over 3,000 MS experiments in parallel
to analyze the proteomes, metabolomes, and lipidomes of 174 single-gene dele-
tion (“Agene”) Saccharomyces cerevisiae yeast strains in biological triplicate across
two metabolic conditions, fermentation and respiration (Fig. 4.1a). To facilitate
development of biological hypotheses based on the resultant “yeast-three-thousand
(Y3K)” data set (Fig. 4.1b), we also developed a multi-omic data visualization
approach (highlighted in Fig. 4.1c and online at http:/ /y3kproject.org/). Our data
establish many new connections between MXPs and proteins with well-established
functions by virtue of gene-specific phenotypes or shared global biomolecular
changes that result from the loss of each protein’s expression. We leveraged a
subset of these connections to address the incomplete mitochondrial pathway that
generates ubiquinone (coenzyme Q, CoQ), an essential lipid required for oxidative
phosphorylation (OxPhos) and linked to diseases ranging from severe infantile

multisystemic disease to isolated myopathy and aging'”'®.


http://y3kproject.org/
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Results

Multi-omic mass spectrometry profiling. The 174 Agene yeast strains we analyzed
covered 124 characterized genes that were selected to span a broad range of path-
ways to assist functional mapping, and 50 uncharacterized genes that encode MXPs
(Fig. 4.1a and Supplementary Fig. S4.1a). In selecting these targets, we prior-
itized genes with human homologs (144/174 genes) and those associated with
disease (60/144 genes) based on primary literature analysis and online database
gene annotation (e.g., omim.org). Inclusion of characterized genes, some of which
could be considered as only partially characterized, also provided the ability to
connect them to previously unrecognized functions. Each strain was grown in
biological triplicate under two contrasting growth conditions, a standard fermenta-
tion culture condition and a carefully optimized respiration culture condition that
stimulates mitochondrial function (Fig. 4.1a, Supplementary Fig. S4.1b-e, and
Supplementary Note 1)—yielding six separate cultures per yeast strain.
Altogether we grew more than 1,050 yeast cultures (including WT cultures), each
of which was analyzed using three separate high-resolution MS-based proteomic,
metabolomic, and lipidomic techniques. These 3,000+ MS experiments yielded
quantitation of 4,040 proteins, 411 metabolites, and 53 lipids (averaging 3,180 pro-

teins, 252 metabolites, and 53 lipids per culture)—over 3.5 million biomolecule
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measurements in total (Fig. 4.1a and Supplementary Fig. S4.2a,b). Key to our
approach was streamlining procedures for proteome extraction and preparation to
under two hours of hands-on time (Supplementary Fig. S4.2c). Use of label-free
quantitation negated the need for a chemical tagging step and further increased
throughput. We observed a wide dynamic range across all profiled omes, with
some molecule abundances spanning more than three orders of magnitude (Sup-
plementary Fig. S4.2d). Additionally, we observed remarkable reproducibility
between replicate cultures, with a median coefficient of variation of 12.7% consid-
ering all profiled biomolecules, and high overlap of molecules quantified across
cultures (Supplementary Fig. S4.2e-g).

A high-level view of the Y3K data set shows significant perturbations across
all three omes, with more pronounced perturbations in respiration (Fig. 4.1b and
Supplementary Fig. S4.3a). Hierarchical clustering revealed groups of function-
ally related molecules (along the y-axis) and groups of functionally related Agene
strains (along the x-axis). Protein clusters show significant gene ontology (GO)
term enrichments for diverse processes and include both characterized and unchar-
acterized proteins (Supplementary Fig. S4.3b). For example, the uncharacterized
proteins Esbp6p and Ypr010c-a cluster with proteins involved in mitochondrial

ATP synthesis and electron transport chain function, respectively (Supplementary
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Figure 4.1: Multi-omic mass spectrometry profiling and data visualization.
Multi-omic mass spectrometry profiling and data visualization. Overviews of
(a) the experimental design and high resolution quantitative MS analysis, (b) the
Y3K data set, shown as hierarchical clusters of Agene strains and significantly per-
turbed molecules (relative abundances compared to WT as quantified by MS, mean,
n = 3; P < 0.05, two-sided Student’s t-test), and (c) the multi-omic data analysis and
visualization tools developed here.
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Supplementary Figure S4.1: AGene target strain characteristics and respiration
culture optimization. (a) Proteins encoded by the individual genes knocked out
of the 174 yeast strains investigated in this study, shown in the context of biological
pathways. APS, adenosine-5"-phosphosulfate; CII-CV, oxidative phosphorylation
complexes II-V; ER, endoplasmic reticulum; EMC, ER membrane complex; ERMES,
ER-mitochondria encounter structure; ETF, electron transfer flavoprotein com-
plex; MAM, mitochondria-associated membrane; MECA, mitochondria-ER-cortex
anchor; MICOS, mitochondrial contact site and cristae organizing system; MIM,
mitochondrial inner membrane; MOM, mitochondrial outer membrane; mtDNA,
mitochondrial DNA; mtRibosome, mitochondrial ribosome; NAD, nicotinamide
adenine dinucleotide; PDH, pyruvate dehydrogenase; TCA, tricarboxylic acid cycle;
vCLAMP, vacuole and mitochondria patch. The pie charts show the total number of
characterized and uncharacterized genes profiled (top); the total number of profiled
genes that have human homologs (upper middle); of these genes with human
homologs, the number of profiled genes that are also associated with disease (lower
middle); and of the uncharacterized genes profiled, the number of genes that have
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Supplementary Figure S4.1: (b) Density of yeast cultures in the respiratory growth
condition (mean, n = 3) plotted in strain rank order (left) or against fermentation
culture density (mean, n = 3) (right). (c) Optical density at 600 nm (ODg) of yeast
cultures (media with 3% [w/v] glycerol and 0.1% [w/v] glucose) indicating time
points at which yeast were harvested during fermentation (F1-F3) or respiration
(R4-R8). Time point R6 (25 h) was selected for the respiration culture condition of
the larger study. (d) Whole-proteome plot of protein abundances at time points R5
and R8. (e) Pairwise whole proteome plot comparisons (as in d) across all eight time
points (lower left) and linear regression analysis of each comparison (r?, Pearson
correlation coefficients) (upper right).

Fig. S4.4). Here, we leverage analyses from three different vantage points, each
of which can be recapitulated with our online data visualization suite, exploiting
unique biological perspectives afforded by a multi-omic data set of diverse genetic

perturbations (Fig. 4.1c).

Identification of gene-specific phenotypes. First, we systematically surveyed the
Y3K data set for significant molecule perturbations unique to just one or two of the
strains in the study (Fig. S4.2a). This unbiased search revealed 714 Agene-specific
phenotypes (Fig. 4.2a and Supplementary Note 2), which can reveal functional
relationships. For example, the electron transfer flavoprotein (ETF) subunit Aim45p
was uniquely decreased in just two Agene strains: the Aaim45 strain, and the Acirl
strain, which lacks the second ETF heterodimer subunit (Fig. 4.2b). Numerous
additional Agene-specific phenotypes were used to generate biological hypotheses

(Supplementary Figs. S4.5 and S4.6). We decided to investigate one of these
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Supplementary Figure S4.3: Features of protein-lipid-metabolite perturbation
profiles. (a) Heat maps depicting the number of molecules significantly perturbed
within each Agene strain (P < 0.05; two-sided Student’s t-test). (b) Hierarchical
clusters of Agene strains and significantly perturbed molecules (relative abundances
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characterized (gray) or uncharacterized (red) genes.
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observations at biochemical depth: a Ahfd1-specific decrease in 4-hydroxybenzoate
(4-HB), the CoQ headgroup precursor (Fig. 4.2¢c).

Though it has been known for decades that mammals can convert tyrosine
(Tyr) into 4-HB for CoQ biosynthesis'®?, the biochemical pathway has remained
undefined in mammals and yeast (Fig. 4.2c). The Y3K data set reveals Ahfd1
yeast to be significantly deficient in both the metabolite 4-HB (P < 0.001) and
the lipid CoQ intermediate 3-polyprenyl-4-hydroxybenzoate (PPHB) (P < 10™)
(Fig. 4.2c and Supplementary Fig. S4.7a). Despite the PPHB deficiency, Ahfd1
yeast have normal CoQ abundance (Fig. 4.2¢c), likely because of increased flux
through an alternative para-amino-benzoate (pABA)- dependent CoQ pathway???,
as suggested by elevation of the aminated analog of PPHB (PPAB) in Ahfd1 yeast
(Fig. 4.2¢). This is in contrast to terminal CoQ biosynthesis genes (cog3—c049), and
some genes not previously linked to CoQ function (e.g. octl and fzol), whose
deletion causes significant (P < 0.05) CoQ deficiency and accumulation of PPHB

(Fig. 4.2¢). Because Hfd1p is predicted to be an aldehyde dehydrogenase®

, we
hypothesized that it catalyzes dehydrogenation of 4-hydroxybenzaldehyde (4-HBz)
to form 4-HB. Consistently, 4-HBz is elevated in Ahfd1 yeast (Supplementary Fig.
$4.7b).

We used chemical-genetics to test the proposed Hfd1p activity. Most culture
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Figure 4.2: AGene-specific phenotype detection links Hfd1p to production of
4-hydroxybenzoate for coenzyme Q biosynthesis. (a) Overview of the Agene-
specific phenotype detection approach and number of Agene-specific phenotypes
identified in the respiration and fermentation data sets (distance to nearest neigh-
bor on a normalized scale, see Supplementary Note 2). (b) Relative abundance
of Aim45p (mean, n = 3) versus statistical significance across strains. (c) Rela-
tive abundances of 4-HB, PPHB, CoQ, and PPAB (mean, n = 3) versus statisti-
cal significance across Agene strains. (d) Serial dilutions of yeast grown on vari-
able solid medias. E.v., empty vector; +hfd1, hfd1l plasmid transformed. (e)
Relative respiratory growth rates of Ahfd1 yeast in pABA™ synthetic media with
the additives shown (mean =+ s.d, n = 3). 4-HPP, 4-hydroxyphenylpyruvate; 4-
HPAA, 4-hydroxyphenylacetaldehyde; 4-HPA, 4-hydroxyphenylacetate; 4-HMA,
4-hydroxymandelate; 4-HPL, 4-hydroxyphenyllactate; p-coum., para-coumarate. (f)
Relative CoQ abundance in Ahfd1 yeast cultured in pABA™ media with the additives
shown (mean + s.d., n = 3). (g) Enzyme activity of recombinant MBP-Hfd1¢4%
in vitro against 4-HBz (200uM) or hexadecanal (200uM) (mean =+ s.e.m., n = 3).
(h) Phylogenetic relationship between yeast Hfd1p and the human ALDH3 family,
and relative respiratory growth rates of Ahfd1 yeast transformed with plasmids
encoding the proteins shown and cultured in pABA™ synthetic media (mean + s.d,
n = 4). (i) Relative activity of the dehydrogenases shown against 4-HBz compared
to hexadecanal (mean + s.e.m., n = 3). *P < 0.05; **P < 0.01; ***P < 0.001 (two-sided
Student’s t-test for all panels).
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Supplementary Figure S4.5: Subsets of the Agene-specific phenotypes identified
in this study. Relative abundances of individual molecules (mean log,[Agene/WT],
n = 3) (x-axes) versus statistical significance (—logio[p-value]; two-sided Student’s
t-test) (y-axes) as quantified by MS. The plots shown represent a subset of molecules
identified as ‘Agene-specific phenotypes’ through an unbiased survey of the Y3K
data set (see Fig. 2a). The array here is limited to the most robust outliers (based
on both statistical significance and fold-change, see Supplementary Note 2 and
Methods)—the top 20 upregulated proteins, the top 20 downregulated proteins,
the top 10 metabolites, and the top 4 or 5 lipids—excluding ‘knocked out proteins’
(e.g. Fmp52p in the Afmp52 strain) and excluding a given Agene strain after it
appeared twice on the rank list. Biological hypotheses surrounding gene-phenotype
relationship were generated for the starred plots (see Supplementary Fig. 6).
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Supplementary Figure S4.7: Hfdlp supports production of 4-HB for CoQ
biosynthesis. (a) Relative lipid abundances (mean, n = 3) versus statistical signifi-
cance (-logo[p-value]; two-sided Student’s t-test) as quantified by MS. (b) Relative
abundances of 4-HBz (mean, n = 3) versus statistical significance (-log;o[p-value];
two-sided Student’s t-test) across all Agene strains in the study. (c) Protein domain
structures of Hfd1p, highlighting residues involved in catalysis. (d) Serial dilutions
of Ahfdl yeast transformed with plasmids encoding the indicated Hfd1p variants
grown on pABA~ synthetic solid medias with glucose or glycerol. (e) Relative
respiratory growth rates of Ahfd1 yeast transformed with plasmids encoding the
indicated Hfd1p variants and grown in pABA™ synthetic liquid media. (f) Growth
curves showing the respiratory growth of Ahfd1 yeast in pABA™ synthetic media
with the additives shown. (g) Relative 4-HB abundance inAhfd1 yeast cultured in
pABA™ media with the additives shown (mean log,[additive /unsupplemented] +
s.d., n =3). (h) SDS-PAGE analysis (Coomassie stained gel) of protein fractions from
an isolation of MBP-Hfd1p(CA25), MBP-ALDH3A1, and MBP-ALDH3A2(CA25)
(WT and catalytically dead mutant for each). (i) Phylogenetic tree of human ALDH
superfamily members and yeast Hfd1p.
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Supplementary Figure S4.7: (j) Density of yeast (upon harvest) cultured in pABA~
media + 4-HB (mean =+ s.d., n = 3). (k) Relative abundances of 4-HB, PPHB, and
CoQ compared to WT yeast cultured in pABA™ media (mean log,[Agene/WT with
no additive] + s.d., n = 3) as quantified by MS. (1) Whole proteome correlation map
for yeast grown in pABA™ media £ 4-HB (mean, n = 3). (m) Relative abundances of
select proteins as quantified by MS (mean log,[Agene/WT], n = 3) analysis of yeast
cultured in pABA™ media + 4-HB. (n) Serial dilutions of Ahfd1 yeast transformed
with plasmids encoding the proteins shown and cultured on solid pABA™ synthetic
media plates. (0) Enzyme activity of MBP-ALDH3A1 or MBP-ALDH3A2(CA25)
against 4-HBz (200uM) or hexadecanal (200uM) (mean + s.e.m., n = 3). (p) Table
of enzyme kinetic parameters for MBP-Hfd1p(CA25), MBP-ALDH3A1, and MBP-
ALDH3A2(CA25) (mean =+ s.e.m., n = 3). (q) Representative enzyme kinetic curves
for MBP-ALDH3A1 and MBP-ALDH3A2(CA25). *P < 0.05; **P < 0.01; ***P < 0.001
(two-sided Student’s t-test).

media contain either 4-HB (in yeast extract) or pABA (in standard yeast nitrogen
base), enabling yeast to bypass the Tyr-to-4-HB pathway, so we used a defined
medium lacking pABA and 4-HB (“pABA™). Ahfd1 yeast exhibited striking respi-
ration deficiency on pABA™ media, a phenotype rescued by pABA, 4-HB, or WT
Hfd1p, but not by Hfd1p with mutations to putative catalytic residues® (Fig. 4.2d
and Supplementary Fig. S4.7c—e). Testing a panel of potential intermediates in
the pathway revealed that 4-HB, but not 4-HBz, can rescue the respiratory growth
and CoQ production ofAhfd1 yeast (Fig. 4.2e,f and Supplementary Fig. S4.7f,g),
supporting a role for Hfd1p in dehydrogenation of 4-HBz. To directly test this
activity, we purified recombinant Hfd1p for enzyme assays (Supplementary Fig.

S4.7h). WT Hfd1p catalyzes NAD*-dependent dehydrogenation of 4-HBz, but a
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C273S (catalytic residue) point mutant does not (Fig. 4.2g). Together, these re-
sults demonstrate that Hfd1p dehydrogenates 4-HBz to produce 4-HB for CoQ
biosynthesis.

Hfd1p is a member of the ancient aldehyde dehydrogenase (ALDH) superfam-
ily, which is found across all three superkingdoms of life and includes 19 human
homologs with diverse functions®. Based on phylogenetic analyses, Hfd1p is
most similar to the human ALDH3 family (Supplementary Fig. S4.7i). ALDH3A2
(FALDH) mutations cause Sjogren—Larsson Syndrome?® due to defective fatty alde-
hyde metabolism. However, the endogenous functions of ALDH3A1, B1, and B2
remain obscure, and which of these human ALDHS3 functions are conserved in
Hfd1p has not been completely defined. Previous work showed that sphingolipid
metabolism is perturbed in Ahfd1 yeast due to a defect in dehydrogenation of hex-
adecanal, and this defect can be rescued by ALDH3A2, but not by ALDH3A123%.
However, a separate sphingolipid pathway defect (Adpl1) does not disrupt the
4-HB-CoQ pathway (Supplementary Fig. S4.7j-m and Supplementary Note 3),
suggesting that the two pathways are otherwise independent. Consistent with
the idea that Hfd1p is a dual-function protein that supports both sphingolipid
metabolism and CoQ biosynthesis, we observed Hfd1p activity in vitro with hex-

adecanal, similar to that observed with 4-HBz (Fig. 4.2g). However, in contrast to
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rescue of the sphingolipid metabolism defect, we found that ALDH3A1, but not
ALDH3A2, rescues the pABA™ respiratory growth phenotype of Ahfd1 yeast (Fig.
4.2h and Supplementary Fig. S4.7n). Moreover, while ALDH3A2 shows a strong
substrate preference for hexadecanal over 4-HBz, Hfd1p and ALDH3A1 show a
preference for 4-HBz (Fig. 4.2i and Supplementary Fig. S4.70—-q). These results
suggest that the dual functions of yeast Hfd1p have diverged in human ALDH3A1
and ALDH3A2. Collectively, these results demonstrate a major cellular function
for the aldehyde dehydrogenase Hfd1p in the Tyr-to-4-HB pathway and strongly

suggest that ALDH3A1 plays a similar role in human CoQ biosynthesis.

Regression analysis of global perturbation profiles. While molecular changes
unique to a given Agene strain can be functionally informative, similarities between
Agene strains can also assist characterization. In our second analysis approach,
we examined Agene—Agene correlations through pairwise comparisons of global
Agene perturbation profiles. Deletion of functionally related genes, such as the
cytochrome c oxidase genes cox12 and cox23, caused highly similar whole pro-
teome perturbations (Fig. 4.3a). Notably, highly correlated phenotype changes
were also observed in Acox12 and Acox23 metabolomes and lipidomes (Fig. 4.3a).
However, deletion of unrelated genes, such as cox12 and mic26, generated uncor-

related phenotype changes (Fig. 4.3a). Examination of Agene—Agene correlations
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across the entire study indicated numerous functional relationships, with stronger
correlations observed in respiration (Fig. 4.3b).

A group of respiration-deficient (RD) strains showed robust correlations across
all three omes (Fig. 4.3b), reflecting their similar broad biological functions in
mitochondrial OxPhos and suggesting that they share a universal “respiration
deficiency response” (RDR). Multi-omic principle component and GO term analy-
ses revealed a coordinated RDR that provides biological insight into respiration
defects—a common feature of many diseases including cancer—and suggests that
a multi-omic biomarker fingerprint could afford a specific diagnostic for mitochon-
drial disease (Fig. 4.3c-f, Supplementary Fig. S4.8, and Supplementary Note
4). However, stress responses such as the RDR also pose a barrier to biochemical
investigations because they can obscure functionally-informative phenotypes. To
assess more specific biochemical roles for individual proteins, we normalized for
the RDR across RD strains (Supplementary Fig. S4.9 and Supplementary Note
5). Across all of our RD strains, 776 molecules were identified as being consistently
perturbed. The individual measurements of these RDR-associated molecules were
mean normalized (“RDR-adjusted”) to reveal characteristic deviations from the
general RDR and to enable visualization of Agene-specific changes.

Recalculating Agene—Agene correlation coefficients with RDR-adjusted plots
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Figure 4.3: Functional correlations through perturbation profile regression anal-
ysis. (a) Plots comparing relative molecule abundances between pairs of Agene
strains. Strain-strain similarity assessed by linear regression analysis of Agene
perturbation profiles. Green points indicate molecules significantly perturbed in
both mutants ( |log,[FC] | > 0.7, P < 0.05; two-sided Student’s t-test). (b) Maps of
Pearson correlation coefficients (r?) for pairs of Agene perturbation profiles across
omes and metabolic conditions. Strains are clustered based on respiration pro-
teome correlations, and this strain order is held consistent across all 6 maps. (c)
Projection of respiration competent (RC) and deficient (RD) strains onto the plane
defined by principal component (PC) axes 1 and 2 (full multi-omic respiration
data set). (d) Average fold change in molecule abundances (mean log,[RD strain-
s/RC strains]) versus statistical significance (—logo[p-value, Bonferroni corrected
two-sided t-test]). (e) RD versus RC proteome perturbation volcano plot (as in d)
showing select functional groups (GO terms) significantly enriched in either upreg-
ulated or downregulated proteins. (f) Scheme of RDR pathways. (g) Re-clustered
respiration proteome strain-strain correlation map following RDR- adjustment. (h)
CoQ abundance changes in select Agene strains (mean =+ s.d., n = 3); **P < 0.01; ***P
< 0.001 (two-sided Student’s t-test).
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Supplementary Figure S4.8: Identification of respiration deficiency response
pathways and potential biomarkers. (a) Projection of RC and RD strains onto
the planes defined by principal component (PC) axes 1 and 2 for separate proteome,
metabolome, and lipidome PC analyses. (b) RD versus RC proteome perturba-
tion volcano plots (as in Fig. 3e) showing select functional groups (GO terms)
significantly enriched (Bonferroni corrected p-values shown in figure) in either
upregulated or downregulated proteins. (c) Box plots depicting median molecule
fold changes for RC and RD strains (log,[RD or RC average/WT]) (n = 111 for RC,
41 for RD). Notch indicates 95% c.i. (d) Receiver operating characteristic (ROC)
curves for select molecules depicting the false positive rates and true positive rates
for prediction of respiration deficiency associated with particular molecule fold
changes. AUC, area under the curve.
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points indicate molecules significantly perturbed in both mutants (|log,(FC)| >
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Fig. 3g).
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strikingly reduces correlations between more functionally disparate genes (Supple-
mentary Fig. S4.9c—e). Reclustering Agene—Agene correlations reveals new clusters
of genes with similar biochemical functions (Fig. 4.3g). For example, known CoQ
biosynthesis genes were brought into a tighter cluster that also includes the un-
characterized gene yjr120w (Fig. 4.3g), suggesting that yjr120w might support CoQ
biosynthesis. Consistently, we observed CoQ deficiency in Ayjr120w yeast (Fig.
4.3h), the molecular basis of which we determined to include loss of Atp2p, an
ATP synthase subunit (Supplementary Fig. S4.10 and Supplementary Note 6).
These results show that specific ATP synthase subunits support CoQ biosynthesis
and, more broadly, demonstrate how global mass spectrometry profiling can reveal

functional links between genes.

Molecule covariance network analysis. Similarly, in our third analysis approach,
we leveraged the multi-omic nature of our mass spectrometry profiles to determine
pairwise covariance between proteins, metabolites, and lipids. This approach is
similar to mRNA coexpression profiling, which can be used to predict gene func-
tion?#30, but it integrates three complementary classes of molecules. Perturbations
for functionally related molecules, such as the protein Cog4p and the lipid CoQ
intermediate PPHB, show strong positive or negative correlations, while those of

unrelated molecules, such as Cog4p and Rpb4p, lack correlations (Fig. 4.4a). Cor-
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related molecules include proteins in complexes, such as the cytosolic TRiC/CCT
chaperonin complex (Cct2p and Cct7p), and enzyme-product pairs (e.g. Uralp and
orotic acid) (Fig. 4.4a).

Examining correlations across all 4,505 molecules in the Y3K data set through
this multi-omic molecule covariance network analysis (MCNA) reveals numerous
functional relationships, which can be visualized as networks of molecules (nodes)
and correlations (edges) (Fig. 4.4b and Supplementary Fig. S4.11a). After apply-
ing strict correlation thresholds (Bonferroni-adjusted p-value < 0.001, |p| > 0.58),
237,342 edges remain among 2,382 nodes in the respiration data set (Supplemen-
tary Fig. S4.11a—f). Many edges were observed between RDR-associated molecules
(Supplementary Fig. S4.11g), reflecting their common relationship to mitochon-
drial metabolism. As described above for Agene correlations, we deepened the
molecular insight of the MCNA by RDR-adjustment, which reduced overall connec-
tivity and increased the selectivity of functionally related molecule sub-networks
(Supplementary Fig. S4.11g). For example, the selectivity of the mitochondrial
ribosome sub-network increased 16-fold (Supplementary Fig. S4.11h). These RDR-
adjusted networks associated the MXP Yor020w-a with the mitochondrial ribosome
(Supplementary Fig. S4.11g). To test this association, we examined the proteome

of Ayor020w-a yeast, which showed a significant decrease in the mitochondrial
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Figure 4.4: Multi-omic molecule covariance network analysis assists functional
characterization. (a) Relative abundances of molecule pairs across Agene strains.
Covariance assessed by Spearman’s rank coefficient (p). (b) Nearest neighbor
molecule covariance networks for a representative subset of uncharacterized pro-
teins. (c) Network for Coq4p in the RDR-adjusted respiration data set. (d) Networks
showing the 14 molecules most strongly correlated to Aro9p or Arol0p in the RDR-
adjusted respiration data set. (e) GO term analyses of the Aim18p, Aro9p, and
Arol0p networks (p-values). (f) Relative abundances of CoQ and PPHB (mean
log,[Agene/WT], n = 2) in Aaro9, Aaro10, and Aaim18 strains compared to WT yeast
cultured in pABA™ media; *P < 0.05; **P < 0.01 (two-sided Student’s t-test). (g)
Y3K-enabled characterization of proteins that support the CoQ pathway.
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ribosome protein Rsm19p (Supplementary Fig. S4.11i), suggesting that Yor020w-a
is linked to mitochondrial translation.

Hundreds of additional uncharacterized proteins were linked to characterized
molecules by our MCNA, providing a foundation for generating hypotheses about
their functions (Fig. 4.4b, Supplementary Figs. S4.12 and S4.13). For example,
the MXP Aim18p was linked to a network of CoQ biosynthesis proteins, and Aro9p
and Arol0p were linked to numerous mitochondrial proteins that support OxPhos
(Fig. 4.4c—e). Based on domain homology and predicted enzymatic functions, we
hypothesized that Aim18p, Aro9p, and Arol0p could function in the Tyr- to-4-HB
pathway (Supplementary Fig. S4.14 and Supplementary Note 7). Consistently,
when cultured in a pABA™ media, Aaim18, Aaro9, and Aarol0 yeast are deficient in
both CoQ and PPHB (Fig. 4.4f). This work shows how global mass spectrometry
profiling can be used to generate biological hypotheses and characterize protein

functions through distinct multi-omic data analysis approaches (Fig. 4.4g).

Discussion

A constant challenge in biology is to comprehensively monitor and understand the
molecular effects of a defined alteration (e.g., a disease mutation, a drug treatment,

or a gene deletion). Mass spectrometry (MS) has become central to answering this
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Supplementary Figure S4.11: Features of multi-omic molecule covariance net-
works. Network of all covariant molecules observed in each data set (| p| > 0.58,
Bonferroni-adjusted P < 0.001; two-sided Student’s t-test). (b) Regression analy-
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are indicated. (c) Distribution of calculated Spearman coefficients for all pairwise
molecule covariance comparisons (p cutoff at +0.58 used throughout the study
is indicated). (d) Distribution of Bonferroni-adjusted p-values from all pairwise
molecule comparisons (p-value cutoff at 0.001 used throughout the study is indi-
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Supplementary Figure S4.11: (g) Network of all covariant RDR-associated
molecules (| p| > 0.58, Bonferroni-adjusted P < 0.001; two-sided Student’s t-test)
generated using the respiration (left) and RDR-adjusted (right) data sets. Nodes are
highlighted according to GO category. (h) Box plots indicating the molecule covari-
ance network (MCN) specificity coefficient for all nodes involved in mitochondrial
translation in both the respiration and RDR-adjusted respiration RDR-associated
molecule networks (shown in panel G). (i) Relative protein abundances (mean
logy[Ayor020w-a/WT], n = 2) versus statistical significance (-log;[p-value]; two-
sided Student’s t-test) as quantified by MS.

challenge.

Here, we leveraged a subset of our multi-omic data set to investigate gaps in
knowledge of CoQ biosynthesis. Despite CoQ’s essential function in the mito-
chondrial electron transport chain, role as a key cellular antioxidant, and link to
numerous human diseases (e.g., ataxias, myopathies, and nephrotic syndromes),
multiple steps in CoQ biosynthesis remain uncharacterized”?'?2. In particular,
enzymes involved in the initial stage of CoQ biosynthesis— wherein the headgroup
precursor 4-HB is produced—were previously undefined in mammals and yeast.

Our Agene-specific phenotype detection approach suggested a role for the an-
cient aldehyde dehydrogenase superfamily member Hfd1p in 4-HB biosynthesis.
Biochemical and genetic studies confirmed this role for Hfd1p in yeast and further
demonstrated that the human homolog ALDH3A1 can also catalyze production of
4-HB in vivo and in vitro (Fig. 4.2), thereby highlighting ALDH3A1 as a candidate

disease gene for primary CoQ deficiency.
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Y3K respiration dataset networks for uncharacterized proteins
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Supplementary Figure S4.12: Molecule covariance networks for uncharacter-
ized proteins. ‘Nearest neighbor” molecule covariance networks for all unchar-
acterized proteins observed across the respiration, fermentation, and RDR-adjusted
respiration data sets (| p| > 0.58, Bonferroni-adjusted P < 0.001; two-sided Student’s
t-test). If more than 14 correlated molecules were present in a given covariance
network, only the top 14 correlated molecules (nearest neighbors) are displayed.
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Supplementary Figure S4.13: Examples of hypotheses that can be generated
from a subset of the molecule covariance network analyses in this study. Nearest
neighbor molecule covariance networks from uncharacterized proteins contain-
ing more than four connected nodes were tested for GO term enrichment using a
Fisher’s exact test with Benjamini-Hochberg FDR adjustment to account for multi-
ple hypothesis testing. Networks containing four or fewer connected nodes were
analyzed manually for functionally related molecules. Based on these MCNA re-
sults, biological hypotheses about the functions of the uncharacterized proteins

shown were developed.
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Supplementary Figure S4.14: Hypothesized pathways for Aro9p, Aro10p, and
Aim18p. (a) Putative biochemical functions of Aro9p and Arol0p in catabolism
of tyrosine and phenylalanine. (b) Predicted functions for Aro9p and Arol0p in
the Tyr-to-4-HB-to-CoQ pathway. (c) Protein sequence alignments of Aim18p (S.
cerevisiae) and chalcone isomerases (CHI) from Medicago and Arabidopsis highlight-
ing conservation of putative catalytic residues (starred residues). (d) Example of a
CHI catalyzed reaction (upper scheme) and the hypothesized pathway of Aim18p
action (lower scheme).
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Distinct Y3K data set analyses placed additional proteins into the CoQ biosyn-
thesis pathway. MCNA showed unexpected connections between Aro9p, Aro10p,
and mitochondrial OxPhos proteins, which helped place Aro9p and Aro10p into the
Tyr-to-4-HB pathway (Fig. 4.4). Similarly, links between Aim18p and known CoQ
biosynthesis enzymes also connected Aim18p to CoQ biosynthesis. Furthermore,
Y3K gene-gene correlation analyses and manual pathway analyses linked CoQ
biosynthesis to other proteins whose molecular functions in this pathway are not
yet fully defined (e.g. Atp2p, Fzolp, and Octlp). Disruption of the mammalian
Fzolp homolog, MFN2—a protein essential for mitochondrial fusion that harbors

¥__was recently shown to

causative mutations in Charcot-Marie-Tooth disease
cause CoQ deficiency through an unclear molecular mechanism?®. Our results
suggest that this unexpected relationship between MFN2 and CoQ biosynthesis is
evolutionarily conserved, and establish yeast as a model system for further probing
its mechanism.

Our Y3K data set provides many additional leads for further biochemical studies
of numerous metabolic pathways that impact human health and disease, and we
expect that the open access web utility (http://y3kproject.org/) will enable others

to generate their own hypotheses. With demand for multi-omic data set analysis

approaches increasing, we also hope that our multifaceted, data visualization


http://y3kproject.org/
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website will serve as a useful model for future studies.

We anticipate that the multi-omic Y3K data set will provide a resource for
broader systems biology inquiries. For example, our definition of the yeast respira-
tion deficiency response (RDR) (Fig. 4.3) may assist studies of how cells broadly
respond to defects in OxPhos, which are observed in diverse diseases including
many cancers. Our RDR work also suggests that a multi-omic fingerprint of numer-

ous molecules could provide a highly specific biomarker panel.

Methods

Yeast strains and cultures. The parental (WT) Saccharomyces cerevisiae strain for this
study was the haploid MATalpha BY4742. Single gene deletion (Agene) derivatives

0 or made in-

of BY4742 were either obtained through the gene deletion consortium?
house using a KanMX deletion cassette to match those in the consortium collection.
All gene deletions were confirmed by either proteomics (significant decrease in the
encoded protein) or a PCR assay. Agene strains made in-house were also confirmed
by gene sequencing.

Single lots of yeast extract (“Y’) (Research Products International, RPI), peptone

('P’) (RPI), agar (Fisher), dextrose (‘D’) (RPI), glycerol (‘G’) (RPI), and G418 (RPI)

were used for all medias. YP and YPG solutions were sterilized by automated
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autoclave. G418 and dextrose were sterilized by filtration (0.22 pm pore size, VWR)
and added separately to sterile YP or YPG. YPD+G418 plates contained yeast extract
(10 g/L), peptone (20 g/L), agar (15 g/L), dextrose (20 g/L), and G418 (200 mg/L).
YPD media (fermentation cultures) contained yeast extract (10 g/L), peptone (20
g/L), and dextrose (20 g/L). YPGD media (respiration cultures) contained yeast
extract (10 g/L), peptone (20 g/L), glycerol (30 g/L) and dextrose (1 g/L).

Yeast from a —80 °C glycerol stock were streaked onto YPD+G418 plates and
incubated (30 °C, ~60 h). Starter cultures (3 mL YPD) were inoculated with an
individual colony of yeast and incubated (30 °C, 230 rpm, 10-15h). A WT culture
was included with each set of Agene strain cultures (usually 19 Agene cultures and
1 WT culture). Cell density was determined by optical density at 600 nm (ODg)
as described®. YPD or YPGD media (100 mL media at ambient temperature in
a sterile 250 mL Erlenmeyer flask) was inoculated with 2.5x10° yeast cells and
incubated (30 °C, 230 rpm). Samples of the YPD cultures were harvested 12 h
after inoculation, a time point that corresponds to early fermentation (logarithmic)
growth. Samples of YPGD cultures were harvested 25 h after inoculation, a time

point that corresponds to early respiration growth.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. 1x10%

yeast cells were harvested by centrifugation (3,000 g, 3 min, 4 °C), the supernatant
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was removed, and the cell pellet was flash frozen in Nyj) and stored at —80 °C.
Yeast pellets were resuspended in 8 M urea, 100 mM tris (pH = 8.0). Yeast cells
were lysed by the addition of methanol to 90%, followed by vortexing (~30 s). Pro-
teins were precipitated by centrifugation (12,000 g, 5 min). The supernatant was
discarded, and the resultant protein pellet was resuspended in 8 M urea, 10 mM
tris(2-carboxyethyl)phosphine (TCEP), 40 mM chloroacetamide (CAA) and 100 mM
tris (pH = 8.0). Sample was diluted to 1.5 M urea with 50 mM tris and digested
with trypsin (Promega) (overnight, ~22 °C) (1:50, enzyme:protein). Samples were
desalted using Strata X columns (Phenomenex Strata-X Polymeric Reversed Phase,
10 mg/mL). Strata X columns were equilibrated with one column volume of 100%
acetonitrile (ACN), followed by 0.2% formic acid. Acidified samples were loaded
on column, followed by washing with three column volumes of 0.2% formic acid or
0.1% TFA. Peptides were eluted off the column by the addition of 500 puL 40% ACN
with either 0.2% formic acid or 0.1% TFA and 500 pL 80% ACN with either 0.2%
formic acid or 0.1% TFA. Peptide concentration was measured using a quantitative
colorimetric peptide assay (Thermo). LC-MS/MS analyses were performed using

previously described methodologiesl, 2.

LC/MS data analysis. Raw data files were acquired in batches of 60 (3 biological

replicates of 19 Agene strains and 1 WT strain) with time between LC-MS analyses
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minimized to reduce run-to-run variation. Batches of raw data files were subse-
quently processed using MaxQuant®® (Version 1.5.0.25). Searches were performed
against a target-decoy® database of reviewed yeast proteins plus isoforms (UniProt,
downloaded January 20, 2013) using the Andromeda®” search algorithm. Searches
were performed using a precursor search tolerance of 4.5 ppm and a product mass
tolerance of 0.35 Da. Specified search parameters included fixed modification for
carbamidomethylation of cysteine residues and a variable modification for the
oxidation of methionine and protein N-terminal acetylation, and a maximum of 2
missed tryptic cleavages. A 1% peptide spectrum match (PSM) false discovery rate
(FDR) and a 1% protein FDR was applied according to the target-decoy method.
Proteins were identified using at least one peptide (razor + unique). Proteins were
quantified using MaxLFQ with an LFQ minimum ratio count of 2. LFQ intensities
were calculated using the match between runs feature, and MS/MS spectra were
not required for LFQ comparisons. Missing values were imputed where appro-
priate for proteins quantified in > 50% of MS data files in a batch. Proteins not
meeting this requirement were omitted from subsequent analyses. Imputation was
performed on a replicate-by-replicate basis. For each replicate MS analysis a normal
distribution with mean and standard deviation equivalent to that of the lowest 1%

of measured LFQ intensities was generated. Missing values were filled in with
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values drawn from this distribution at random. Approximately 4.05% and 4.53%
of quantitative measurements were imputed in the respiration and fermentation
proteomic data sets, respectively. Replicate protein LFQ values from corresponding
Agene or WT strains were pooled, log, transformed, and averaged (mean log,[strain],
n = 3). Average Agene LFQ intensities were normalized against their appropriate
WT control (mean log,[Agene/WT], n = 3) and a 2-tailed t-test (homostatic) was
performed to obtain P values.

To control for batch-specific effects, proteins having unexpected and charac-
teristic misregulation across a majority of Agene strains processed together were
identified and omitted from the data set. For each protein quantified within a batch
of Agene strains a distribution of protein fold-changes (intra-batch) was generated.
The analogous distribution of protein fold-changes from all other Agene strains pro-
cessed separately (inter-batch) was created. These two distributions were compared
against each other using a Kolmogorov-Smirnov test (2-tailed) to obtain P values. If
a significant difference existed at P < 0.05 (Bonferroni-adjusted) protein abundance
measurements were omitted from the batch in question. This process of comparing
intra-batch and inter-batch protein fold change distributions was carried iteratively
and to exhaustion and resulted in the omission of an average 165 proteins/Agene

strain (~4.8% of quantified proteins) for respiration, and 188 proteins/Agene strain
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(~5.9%) for fermentation.

Gas chromatography-mass spectrometry (GC-MS) metabolomics. 1x10° yeast
cells yeast cells were isolated by rapid vacuum filtration onto a nylon filter mem-
brane (0.45 um pore size, Millipore) using a Glass Microanalysis Filter Holder
(Millipore), briefly washed with phosphate buffered saline (1 mL), and immediately
submerged into ACN/MeOH/H,0 (2:2:1, v/v/v, 1.5 mL, pre-cooled to —20 °C) in a
plastic tube. The time from sampling yeast from the culture to submersion in cold
extraction solvent was less than 30 s. Tubes with the extraction solvent, nylon filter,
and yeast were stored at 80 °C prior to analysis.

Tubes with yeast extract (also still containing insoluble yeast material and the
nylon filter) were thawed at room temperature for 45 min., vortexed (~15 s), and
centrifuged at room temperature (6400 rpm, 30 s) to pellet insoluble yeast mate-
rial. Yeast extract (25 pL aliquot) and internal standards (25 uL aqueous mixture
of isotopically labelled alanine-2,3,3,3-d4, adipic acid-d;o, and xylose-13C5 acid, 5
ppm in each) were aliquoted into a 2 mL plastic tube and dried by vacuum cen-
trifuge (~1 hr). The dried metabolites were resuspended in pyridine (25 uL) and
vortexed. 25 puL of N-methyl-N-trimethylsilyl]trifluoroacetamide (MSTFA) with
1% trimethylchlorosilane (TMCS) was added, and the sample was vortexed and

incubated (60 °C, 30 min). Samples were then transferred to a glass autosampler
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vials and analyzed using a GC/MS instrument comprising a Trace 1310 GC coupled
to a Q Exactive Orbitrap mass spectrometer. For the yeast metabolite extracts a
linear temperature gradient ranging from 50 °C to 320 °C was employed spanning
a total runtime of 30 minutes. Analytes were injected onto a 30 m TraceGOLD
TG-55ILMS column (Thermo) using a 1:10 split at a temperature of 275 °C and
ionized using electron ionization (EI). The mass spectrometer was operated in full

scan mode using a resolution of 30,000 (1m/Am) relative to 200 m/z.

GC/MS data analysis. The resulting GC-MS data were processed using an in-
house developed software suite (https://github.com/coongroup /Y3K-Software).
Briefly, all m/z peaks are aggregated into distinct chromatographic profiles (i.e.,
feature) using a 10 ppm mass tolerance. These chromatographic profiles are then
grouped according to common elution apex (i.e., feature group). The collection of
features (i.e., m/z peaks) sharing a common elution apex, therefore, represent an
individual EI-MS spectrum of a single eluting compound. The EI-MS spectra were
then compared against a matrix run and a background subtraction was performed.
Remaining EI-MS spectra are then searched against the NIST 12 MS/EI library
and subsequently subjected to a high resolution filtering (HRF) technique as de-
scribed elsewhere. EI-MS spectra that were not identified were assigned a numeric

identifier. Feature intensity, which was normalized using total metabolite signal,


https://github.com/coongroup/Y3K-Software

164

was used to estimate metabolite abundance. Following initial processing, raw data
tiles were re-analyzed to extract metabolite signals which were not successfully
deconvolved and registered as missing values in the data set. This process provided
measurements for ~1.87%, and 2.25% of metabolites quantified in the respiration
and fermentation data sets, respectively. Remaining missing values were imputed
using the same imputation strategy as described in the proteomic data processing
section. Quantitative values imputed using this process account for ~0.17% and
0.13% of metabolites in the respiration and fermentation data sets, respectively.
Replicate metabolite intensities from corresponding Agene or WT strains were
pooled, log, transformed, and averaged (mean log,[strain], n = 3). Average Agene
metabolite intensities were normalized against their appropriate WT control (mean
log,[Agene/WT], n = 3) and a 2-tailed t-test was performed to obtain P values. To
account for batch-specific effects the same Kolmogorov-Smirnov testing approach
as described in the proteomic data processing section was used. Distributions of
inter-batch and intra-batch metabolite fold changes were compared iteratively and
those that were significantly different at P < 0.05 (Bonferroni-adjusted) resulted
in metabolite abundance measurements being omitted from the batch in question
(~15 metabolites / Agene strain (~5.0%) from respiration and ~21 metabolites/Agene

strain (~5.9%) from fermentation).
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AGene-specific phenotype detection. For each profiled molecule (in both respira-
tion and fermentation growth conditions) we separated potential Agene-specific
measurements into two groups: positive log, fold change (log,[Agene/WT]) and
negative log, fold change. These two sets were then plotted individually with
log, fold change and —log;o(p-value [two-sided Student’s t-test]) along the x- and
y- axes, respectively. Data were normalized such that the largest log, fold change
and largest —logo(p-value) were set equal to 1. Considering the three largest fold
changes where P < 0.05, we calculated the Euclidean distance to all neighboring
data points and stored the smallest result. A requirement was imposed that all
considered ‘neighbors” have a smaller fold change than the data point being consid-
ered. It is anticipated that data points corresponding to Agene-specific phenotypes
will be outliers in the described plots and have large associated nearest-neighbor
Euclidean distances. The described routine yielded three separate distances, the
largest of which was stored for further analysis. We set a cutoff for classification as

a ‘Agene-specific phenotype” at a Euclidean distance of 0.70.

Regression analysis of Agene-Agene perturbation profiles. For all pairwise com-
binations of Agene strains from the same growth condition linear regression analysis
was conducted on protein, lipid, and metabolite perturbation profiles, respectively.

Fold change measurements (mean log,[Agene/WT], n = 3) from molecules where
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FC > 0.7 and P < 0.05 were used and a minimum of 20 proteins, 10 metabolites, and
5 lipids, respectively, were required. These measurements were fit to a line and
the associated Pearson correlation coefficient was reported. Coefficients carrying
negative signs were set to 0. For pairs of Agene strains lacking a sufficient number
of molecules that met the aforementioned criteria, the Pearson coefficient was re-
ported as 0. Hierarchical clustering of Agene-Agene correlations was performed as

described below.

Respiration deficiency response (RDR) abundance adjustment. All Agene strains
grown under respiration conditions were classified as respiration deficient (RD) (51)
or respiration competent (RC) (123) based on observation of a common perturbation
profile signature. For all molecules profiled within RD Agene strains an RDR score
was calculated. This metric represents the proportion of RD Agene strains over
which the molecule was consistently perturbed, relative to all RD Agene strains
where the molecule was quantified. Considering all RD Agene strains, 776 molecules
produced an RDR score > 0.95 (consistently perturbed across more than 95% of RD
Agene strains where quantified) and were subsequently classified as RDR-associated.
For each RDR-associated molecule, individual RD Agene strain measurements were
mean normalized and stored. These RDR-adjusted measurements were then used

in described respiration—-RDR analyses.
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Regression analysis of RDR-adjusted Agene-Agene perturbation profiles. For
all RD Agene strains linear regression analysis was performed pairwise on RDR-
adjusted protein perturbation profiles. Fold change measurements from molecules
where FC > 0.7 and P < 0.05 (p-value prior to RDR adjustment) were used and a
minimum of 20 proteins was required. Correlations and clustering were otherwise

conducted as described above.

Hierarchical clustering. All hierarchical clustering performed in this study was
done in Perseus. For all clustering operations Spearman correlation was used with
average linkage, preprocessing with k-means, and the number of desired clusters
set to 300 for both rows and columns.

For clustering of Agene perturbation profiles, clustering was performed sepa-
rately for fermentation and respiration data sets, and column-wise cluster order
for fermentation and respiration data sets was generated using only protein fold
change profiles. Column ordering was then applied to metabolite and lipid fold
change data sets from the corresponding growth condition and row-wise clustering
was conducted. GO term enrichment was performed in Perseus. P values were
obtained from a Fisher’s exact test, adjusted for multiple hypothesis testing and
reported where P < 0.05.

For the analysis of Agene—Agene correlations, clustering was performed on respi-
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ration protein perturbation profile correlation data and the resultant ordering was
applied to Agene—Agene correlation data sets from all other omes and growth condi-
tions for parallel visual display. The same clustering process was carried out for the

analysis of Agene—Agene correlations of RD Agene strains following RDR-adjustment.

Generation of Agene strains and cloning of genes and mutants for follow-up
studies. S. cerevisine (BY4742) gene deletion strains for hfd1, atp2, ypr010c-a, and
yjr120w were generated using a PCR deletion strategy in which the open reading
frames were replaced by a KanMX cassette from the pFA6a-kanMX6 plasmid.
Briefly, KanMX was amplified with primers containing sequence homologous to
sequence just upstream of the ATG and just downstream from the terminal codon
for each ORF. Amplicons were transformed into BY4742, and yeast were plated
onto YEPD plates containing 100 pg/mL G418. Knockouts were confirmed by PCR
and sequencing.

To generate plasmid yeast gene constructs, S. cerevisiae hfdl1, atp2, and yjr120w
were amplified by Accuprime Pfu polymerase (Invitrogen, USA) with primers
generating a Spel site (forward) and Sall (reverse) (BamHI forward and EcoRI
reverse for yjr120w). The hfd1, atp2, and yjr120w amplicons and the yeast expression
vectors p426GPD and p423GPD were digested with Spel and Sall or BamHI and

EcoRI. Hfd1 and yjr120w were ligated to p426GPD, atp2 was ligated to p423GPD,
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and each ligation was transformed into DH5« E. coli. Plasmid minipreps were
performed and recombinants were confirmed by sequencing. Hfd1 mutants were
generated via standard site-directed mutagenesis, and mutations were confirmed
by sequencing.

To generate plasmid human gene constructs, Homo sapiens ALDH3A1 and ALDH3A2
were amplified by Accuprime Pfu polymerase with primers generating a Spel site
(forward) and Sall (reverse). The ALDH3A1 and ALDH3A2 amplicons and the
yeast expression vector p426GPD were digested with Spel and Sall. ALDH3A1 and
ALDH3A2 were ligated to p426GPD and each ligation was transformed into DH5«

E. coli. Plasmid minipreps were performed and recombinants were confirmed by

sequencing.

Yjr120w molecular biology studies—yeast growth assays. Aatp2 and Ayjr120w
yeast were transformed with p426GPD plasmids (either encoding for Yjr120w or
empty vector) and p423GPD (either encoding for Atp2p or empty vector) and grown
on Ura~, His™ plates containing 2% glucose. Starter cultures were inoculated with
individual colonies of yeast and incubated (30 °C, ~16 h, 230 rpm). To assay Aatp2
and Ayjr120w yeast growth on agar plates, serial dilutions of yeast from a starter
culture were prepared in Ura", His™ media lacking glucose. 10-fold serial dilutions

of yeast cells were dropped onto Ura™, His™ agar media plates containing either
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glucose (2%, w/v) or glycerol (3%, w/v) and incubated (30 °C, 4 d).

Yjr120w molecular biology studies—mRNA quantitation. BY4742 WT, Acog$,
Aatp2, and Ayjr120w yeast were grown overnight in 3 mL YEPD. From the overnight
culture, 2.5x10° cells were used to inoculate 100 mL YPGD media. 1 mL of culture
was collected after 25 hours and total RNA was isolated using Masterpure Yeast
RNA Purification Kit (Epicentre). 1 ug of RNA was reverse transcribed using
Superscript III first strand synthesis kit (Thermo). Using the resultant cDNA as
template, set up QPCR reactions: 2 uL cDNA, 12.5 uL Power Sybr Green Master Mix
(Thermo), and 300 nmol/L forward and reverse primers. Primers amplifying the
following targets were used: atp2, yjr120w, and ubc6 (reference gene). QPCR cycled
as follows: After an initial 2 minute incubation at 50 °C, template was denatured
at 95 °C for 10 minutes, cycled 40 times: 95 °C for 15 s, 60 °C for 1 minute. RNA

abundance was calculated using the AACt method.

Hfd1p and ALDH3A1 biochemical studies—media lacking pABA. A specially
formulated synthetic media lacking pABA (‘pABA™") was used for numerous follow-
up studies in this project. This media consisted of CSM Mixture; Complete, 790
mg/L (# DCS0019, Formedium LTD, Hunstanton, U.K.) and yeast nitrogen base

without amino acids and para-amino benzoic acid, 6.9 g/L (# CYN4102, Formedium
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LTD, Hunstanton, U.K.).

Hfd1p and ALDH3A1 biochemical studies—yeast growth assays. Ahfd1 yeast
transformed with p426GPD plasmids encoding for Hfd1p variants were grown
on uracil drop-out (Ura™) synthetic media plates containing glucose (2%, w/v).
Individual colonies of yeast were used to inoculate starter cultures of synthetic
media lacking pABA (pABA~) but containing 20 g/L glucose. To assay WT and
Ahfd1 yeast growth on agar plates, serial dilutions of yeast from a starter culture
were prepared in pABA™ media lacking glucose. 10%, 10°, or 10? yeast cells were
dropped onto agar media plates containing either glucose (2%, w/v) or glycerol
(3%, w/v) and incubated (30 °C, 4 d). The base medias for the agar plates consisted
of either YEP (rich media), synthetic complete, pABA~, pABA™ supplemented with
100 uM 4-hydroxybenzoic acid, or pABA- supplemented with 100 uM pABA.

To assay yeast growth in liquid media, yeast from a pABA™ starter culture were
swapped into pABA™ media with glucose (0.1%, w/v) and glycerol (3%, w/v) (base
medium) at an initial density of 5x10° cells/mL. To interrogate the rescue efficacy
of various compounds, 100 nM (final concentrations) of pABA, tyrosine, 4-HPP,
4-HPAA, 4-HPA, 4-HMA, 4-HBz, 4-HB, 4HPL, or p-coumarate were added to the
base medium. The cultures were incubated in a sterile 96 well plate with an optical,

breathable coverseal (shaking at 1140 rpm). Optical density readings (ODgg) were
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obtained every 10 min. Respiratory growth rates were determined by fitting a linear
equation to the respiratory growth phase and determining the slope of the line.
Relative respiratory growth rates were determined by comparing cultures with

additives to those without additive.

Hfd1p and ALDH3A1 biochemical studies—Quantitation of CoQ and 4-HB in
PABA~ Ahfd1 yeast cultures. 2.5x10° Ahfd1 yeast cells from a pABA™ (2% w/v
glucose) starter culture were used to inoculate 100 mL of pABA™ media with glucose
(0.1%, w/v), glycerol (3%, w/v), and potential rescue compound (100 nM pABA, 4-
HPP, 4-HPAA, 4-HPA, 4-HBz, 4-HB, or none). These 100 mL cultures were incubated
(30 °C, 230 rpm). After 25 h (analogous to the primary respiration culture system
used for this study), 1x10® yeast cells were harvested for lipidomic or metabolomic
analyses, and CoQ and 4-HB were quantified by mass spectrometry as described

above. These cultures and analyses were conducted in biological triplicate.

Hfd1p and ALDH3A1 biochemical studies—Hfd1p phylogenetics. The amino
acid sequences of the 19 known Homo sapiens ALDH proteins25 and S. cerevisiae
Hfd1p (NP_013828.1) were aligned by MUSCLE®, analyzed by ClustalW2 Phy-

logeny*’, and visualized in iTOL*!.
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Hfd1p and ALDH3A1 biochemical studies—Mass spectrometry profiling of pABA~
yeast cultures (WT, Ahfd1, Adpl1, and Acog8). 2.5x10° yeast cells from a pABA~
(2% w /v glucose) starter culture were used to inoculate 100 mL of pABA™ media
with glucose (0.1%, w/v), glycerol (3%, w/v), and rescue compound (100 uM 4-HB
or none). These 100 mL cultures were incubated (30 °C, 230 rpm). After 25 h, 1x 108
yeast cells were harvested for lipidomic, metabolomics, and proteomic analyses by
mass spectrometry as described in the main Methods section. These cultures and

analyses were conducted in biological triplicate.

Hfd1p and ALDH3A1 biochemical studies—Hfd1p, ALDH3A1, and ALDH3A2
expression and purification. PIPE cloning was used to generate pVP68K vectors
encoding ALDH3A1, Hfd1p“4%, or ALDH3A2“4% (Hfd1p or ALDH3A2 lacking
their C-terminal 25 amino acids, which comprise putative transmembrane domains)
fused to an 8His-cytoplasmically-targeted maltose-binding protein with a linker in-
cluding a tobacco etch virus protease recognition site (8His-MBP-[TEV]-ALDH3A1,
8His-MBP-[TEV]-Hfd1p©4%, or 8His-MBP-[TEV]-ALDH3A24?%). These constructs
were expressed in E. coli (BL21[DE3]-RIPL strain) by autoinduction. Cells were iso-
lated and resuspended in lysis buffer (50 mM HEPES, 300 mM NaCl, 10% glycerol,
5 mM BME, 0.25 mM PMSE, 1 mg/mL lysozyme (Sigma), pH 7.5). Cells were lysed

by sonication (4 °C, 2 x 20 s), and the lysate was clarified by centrifugation (15,000
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g, 30 min, 4 °C). The clarified lysate was mixed with cobalt IMAC resin (Talon resin)
and incubated (4 °C, 1 h). The resin was pelleted by centrifugation (700 g, 2 min, 4
°C) and washed three times ( 10 resin bed volumes each) with wash buffer (50 mM
HEPES, 300 mM NaCl, 10% glycerol, 5 mM BME, 0.25 mM PMSEF, 10 mM imidazole,
pH 7.5). His-tagged protein was eluted with elution buffer (50 mM HEPES, 300
mM NaCl, 10% glycerol, 5 mM BME, 0.25 mM PMSF, 100 mM imidazole, pH 7.5).
The eluted protein was concentrated with a 50-kDa MW-cutoff spin filter (Merck
Millipore Ltd.) and exchanged into storage buffer (50 mM HEPES, 300 mM NaCl,
10% glycerol, 5 mM BME, 0.25 mM PMSEF, pH 7.5). Protein concentrations were
determined by absorbance at 280 nm. The MBP-fusion proteins were aliquoted,

frozen in Ny, and stored at -80 °C.

Hfd1p and ALDH3A1 biochemical studies—Hfd1p, ALDH3A1, and ALDH3A2
enzymology. Enzyme activity assays were conducted in groups of three replicate
100 puL reactions, each containing MBP-fusion protein (0.2-25 pg), 1 mM NAD*,
and 200 uM substrate (4-HBz or hexadecanal (Avanti 857458M)) in an aqueous
buffer (50 mM Tris pH 8.0, 150 mM NaCl, 0.1% Triton X-100). NADH production
was observed by monitoring fluorescence (356 nm excitation, 460 nm emission)
over a 30-60 minute period with a Cytation 3 Imaging Reader (Biolek). Ky and

k.t values were determined by measuring reaction rates in the linear range at
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varying substrate (4-HBz or hexadecanal) concentrations. Curve fitting to generate
Michaelis-Menten parameters was performed using SigmaPlot (Systat Software,
San Jose, CA). Reported activity represents the mean of three separate protein

purifications.

Molecule Covariance Network Analysis For all pairwise combinations of molecules
quantified within a particular growth condition, regression analysis was conducted
using fold change measurements from all Agene strains having a measurement for
both molecules in the pair. Spearman’s regression analysis was performed to obtain
correlation coefficients (p). From these test statistics P values were calculated using
a two-sided Student’s t-test. All P values were corrected for multiple hypothesis
testing (Bonferroni) and correlations where | p| > 0.58 and P < 0.001 were reported.
For RDR-adjusted regression analysis, the RDR adjustment procedure was car-
ried out as described in the ‘Respiration deficiency response (RDR) abundance
adjustment’ section (above). All pairs of covariant molecules are visualized as
networks generated using the Gephi open graph visualization platform (version
0.9.0). Complete respiration, fermentation and RDR-adjusted respiration network
layouts were generated using the Fruchterman-Reingold graph-drawing algorithm
with area set to 10,000 and gravity set to 30. Gene Ontology terms were obtained

from the Saccharomyces Genome Database (SGD). To calculate network selectivity
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the following equation was used:

SMCN - [EObs,In/ ETot,In]/ [(EObs,Out + 1)/ ETot,Out]

Where Syicn represents the selectivity coefficient for the molecule covariance net-
work (MCN) surrounding an individual node of interest, Eopsn is the number
edges observed within a pathway of interest, Ety 1, is the number of total possible
edges within the pathway of interest, Eqps out is the number of edges observed to
molecules outside the pathway of interest, and Eryout is the number total possible
edges to molecules outside the pathway of interest.

Gene ontology (GO) term enrichment analysis was performed using a Fisher’s
exact test with subsequent Benjamini-Hochberg FDR adjustment39 to account for

multiple hypothesis testing.

Proteomic analysis of Ayor020w-a yeast 2.5x10° yeast cells from a pABA™ (2%
w/v glucose) starter culture (Ayor020w-a or WT) were used to inoculate 100 mL of
pABA™ media with glucose (0.1%, w/v) and glycerol (3%, w/v). These 100 mL cul-
tures were incubated (30 °C, 230 rpm). After 25 h, 1x10® yeast cells were harvested
for proteomic analyses by mass spectrometry as described in the main Methods

section. These cultures and analyses were conducted in biological duplicate.
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Quantitation of CoQ and PPHB in pABA™ Aaro9, Aaro10, Aaim18, and WT yeast
cultures 2.5x10° yeast cells from a pABA~ (2% w /v glucose) starter culture were
used to inoculate 100 mL of pABA™ media with glucose (0.1%, w/v) and glycerol
(3%, w/v). These 100 mL cultures were incubated (30 °C, 230 rpm). After 25
h, 1x10® yeast cells were harvested for lipid analysis, and CoQ and PPHB were
quantified by mass spectrometry as described in the Main methods section. These

cultures and analyses were conducted in biological duplicate.

Respiration deficiency response analysis The densities of Agene cultures were
compared to those of WT cultures (2-tailed T-test). Strains with slow growth in
fermentation cultures (Agene/WT < 0.2 and P < 0.05) were categorized as “slow
fermentation growth’ strains (8 strains). Remaining strains were grouped into
three categories based on their growth rates in respiration cultures. Strains with
significantly decreased respiration growth (Agene/WT < 0.6 and P < 0.05) were
considered respiration deficient (RD) (41 RD strains). Strains with borderline respi-
ration growth (0.6 < Agene/WT < 0.8) were categorized as ‘borderline respiration’
(14 strains). Strains with respiration growth rates near WT or better than WT (0.8 <
Agene/WT) were categorized as respiration competent (RC) (111 RC strains).

For PCA, average log,(Agene/WT) values for each protein, metabolite, and lipid

measured in the respiration condition were analyzed using Perseus PCA software.
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PCA projections were exported from Perseus.

For volcano plot analyses, average log,(RD/RC) values were calculated as [mean
log>(RD Agene strains/WT)] — [mean log,(RC Agene strains/WT)]. A t-test (2-tailed,
homostatic) was performed to obtain P values. P values were corrected for mul-
tiple hypothesis testing by multiplying each P value obtained by the number of
biomolecules included in this analysis (4,116) (Bonferroni correction).

For GO term analyses, proteins were separated as increasing in RD strains (pos-
itive log,[RD/RC]) or decreasing in RD strains (negative log,[RD/RC]). Proteins
with Bonferroni-corrected P < 1x 107 were collected from each group and subjected
to GO term enrichment analysis (http://geneontology.org/page/go-enrichment-
analysis). Select GO terms were highlighted because they were significantly en-
riched (Bonferroni corrected P < 0.05) in proteins that were reduced (-) or increased
(+) in RD strains. Boxplots of select molecules were generated using matplotlib in
python to compare particular molecules across all RD and RC strains.

For ROC analysis, RD strains were considered positive examples whereas RC
cells were considered negative examples. Using the log,(Agene/WT) values for
individual biomolecules as a discriminator, ROCs were generated by calculating
false positive rate (FPR) and true positive rate (TPR) for values that fall above a

particular cutoff for molecules that are increased in RD strains relative to WT and


http://geneontology.org/page/go-enrichment-analysis
http://geneontology.org/page/go-enrichment-analysis
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below that cutoff for molecules that are decreased in RD strains relative to WT. A +
sign indicates that an increase in that molecule is predictive of RD whereas a — sign

indicates that a reduction in that molecule is predictive of RD.

Supplementary Notes

Development of a stable and reproducible respiration culture condition. To pro-
file diverse yeast strains during respiratory growth, when mitochondrial OxPhos is
highly active, we first needed to develop a distinct respiration condition suitable
for large-scale investigation. Early log phase fermentation cultures repress mito-
chondrial respiration, cultures containing solely non-fermentable sugars preclude
growth of respiration deficient yeast, and high glucose cultures grown past the
diauxic shift are too biologically dynamic to allow reproducible sampling across a
large-scale study***. To overcome these problems, we developed a culture system
that includes low glucose (1 g/L) and high glycerol (30 g/L), enabling a short fer-
mentation phase followed by a longer respiration phase. This respiration condition
affords steady growth and a stable biological state—as reflected by a proteome
that is constant over multiple hours (Supplementary Fig. S4.1c—e)—and, thus, an

essential window for reproducible sample harvesting.
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AGene-specific phenotype detection. To identify Agene-specific phenotypes, we
broadly surveyed our data for characteristic outlier abundance measurements. For
each profiled molecule (in both respiration and fermentation growth conditions) we
separated potential Agene-specific measurements into two groups: positive log, fold
change (log,[Agene/WT]) and negative log,fold change. These two sets were then
plotted individually with log, fold change and —log;(p-value [two-sided Student’s
t-test]) along the x- and y- axes, respectively. Data were normalized such that the
largest log, fold change and largest —log:o(p-value) were set equal to 1. Considering
the three largest fold changes where P < 0.05, we calculated the Euclidean distance
to all neighboring data points and stored the smallest result. A requirement was
imposed that all considered ‘neighbors” have a smaller fold change than the data
point being considered. It is anticipated that data points corresponding to Agene-
specific phenotypes will be outliers in the described plots and have large associated
nearest-neighbor Euclidean distances. The described routine yielded three separate
distances, the largest of which was stored for further analysis. The results of this
analysis and representative examples are highlighted (Fig. 4.2, Supplementary
Figs. S4.5 and S4.6). We observed maximal Euclidean distances across a range
of 0.006 to 1.25. We set a cutoff for classification as a ‘Agene-specific phenotype’

at 0.70 and report 714 molecules (4.6% of considered cases across both culture
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conditions) which exceed this threshold. This procedure provided a useful ‘first
pass’ analysis and afforded a truncated set of leads, which were used to develop

biological hypotheses.

Lack of effect of Dpllp disruption on the Tyr-to-4-HB-to-CoQ pathway. To test
the idea that the CoQ biosynthesis and sphingolipid catabolism pathways are
independent, we examined Adpl1 yeast, which lack a known dihydrosphingosine
phosphate lyase. Adpll yeast show neither a pABA™ respiratory growth phenotype
nor CoQ deficiency (Supplementary Fig. S4.7j,k). These results demonstrate that
disruption of the Tyr-to-4-HB pathway in Ahfd1 yeast is not downstream of a defect
in sphingolipid metabolism. Furthermore, proteome analyses showed that Ahfd1
cultured without 4-HB and pABA are similar to Acog8 yeast—but not Adpl1 yeast—
and adding 4-HB to Ahfd1 cultures returns their proteomes to WT-like profiles

(Supplementary Fig. S4.71,m).

Quantitative definition of the respiration deficiency response (RDR). To quan-
titatively define the RDR, we categorized strains as respiration deficient (RD) or
competent (RC) and examined differences between these two groups. Principal
component analysis of the Y3K respiration data set revealed marked separation

of RD and RC strains (Fig. 4.3c and Supplementary Fig. S4.8a). The underlying
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phenotype changes that distinguish RD and RC strains include proteins, lipids,
and metabolites (Fig. 4.3d). RDR perturbations include significant decreases in
ATP synthase, TCA cycle, and MICOS proteins (Fig. 4.3e,f and Supplementary
Fig. S4.8b), likely to decrease allocation of useless proteome mass to dysfunc-
tional mitochondriat. Importantly, the RDR also includes a positive response, and
numerous proteins—including protein folding, NADH metabolism, and protea-
some assembly proteins—are significantly upregulated in RD strains (Fig. 4.3e,f).
Numerous individual molecules—including lactate, alanine, 2-hydroxyglutarate,
tyrosol, 4-HB, Gpx2p, and Ahplp, among many others—are significantly perturbed
in RD strains and strongly predictive of respiration deficiency (Supplementary Fig.
?2¢,d). Our quantitative assessment of the RDR highlights biochemical features of
the cellular response to defects in mitochondrial respiration, and suggests that a
multi-omic assessment of proteins, lipids, and metabolites could afford a highly

specific biomarker panel for diseases affected by OxPhos deficiency.

RDR normalization procedure. Agene strains were classified as RD (51) or respi-
ration competent (RC) (123) based on observation of a common perturbation profile
signature in the respiration culture condition. For each molecule we calculated
an RDR score. This metric represents the proportion of RD Agene strains over

which the molecule was consistently perturbed, relative to all RD Agene strains
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where the molecule was quantified. Across all RD Agene strains, 776 molecules
were identified as having an RDR score > 0.95 (consistently perturbed across more
than 95% of RD Agene strains where quantified) and classified as RDR-associated.
The individual measurements of these RDR-associated molecules were then mean
normalized ("RDR-adjusted’) using abundance values from RD Agene strains. This
normalization procedure revealed characteristic deviations from the general RDR
(Supplementary Fig. S4.9). Importantly, this procedure enables visualization of
Agene-specific changes. For example, prior to RDR normalization, the expected
decrease in Coq8p in Acog8 yeast is obscured by RDR-associated proteins with large
abundance changes (Supplementary Fig. S4.9d). RDR normalization not only
uncovers the decrease in Cog8p, but a significant decrease in Coq5p, a functionally-
related CoQ biosynthesis protein, also becomes readily apparent (Supplementary

Fig. $4.9d).

Molecular defects of Ayjr120w yeast. To examine the molecular basis for the CoQ
deficiency of Ayjr120w yeast, we inspected our proteomics data set, which revealed
significant decreases in ATP synthase proteins, especially Atp2p (Supplementary
Fig. S$4.10a). Compared to other strains, the large decrease in Atp2p is unique to
Ayjr120w and Aatp2? (Supplementary Fig. $4.10b). A relationship between yjr120w

and atp2 is also suggested by their genetic proximity (Supplementary Fig. S4.10c).
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Plasmid overexpression of atp2 rescues the Ayjr120w respiratory growth defect
(Supplementary Fig. S4.10d), indicating a functional relationship between atp2
and yjr120w in vivo. A decrease in atp2 mRNA in the Ayjr120w strain is a component
of the underlying mechanism (Supplementary Fig. S4.10e). Interestingly, CoQ

deficiency was also observed in Aatp2 yeast (Fig. 4.3h).

Predicted enzymatic functions of Aim18p, Aro9p, and Aro10p. Since 1907, yeast
have been known to catabolize amino acids into fusel (German for ‘bad liquor”)
alcohols through the Ehrlich pathway %4, but the physiological roles for the en-
zymes involved—such as Aro9p and ArolOp—are not fully understood. Aro9p and
Arol10p were previously thought to provide a simple catabolic route for extracting ni-
trogen from aromatic amino acids*” (Supplementary Fig. S4.14a), but our MCNA
unexpectedly indicated strong correlations between Aro9p, Arol0p, and proteins
involved in mitochondrial respiration (Fig. 4.4d,e), suggesting a more complicated
biological function that supports OxPhos. We hypothesized that this function might
be in the Tyr-to-4-HB-to-CoQ pathway (Supplementary Fig. S4.14b), given the
putative enzymatic activities of Aro9p and Arol0p in tyrosine and phenylalanine
metabolism. Consistently, when cultured in pABA™ media, Aaro9 and Aarol0 yeast
are deficient in CoQ and PPHB (Fig. 4.4f).

Aim18p is a protein of undefined molecular function that has been detected
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in mitochondria*® and potentially linked to mitochondrial inheritance (Altered
Inheritance of Mitochondria, ‘AIM’) by large-scale studies in yeast*. Protein se-
quence alignments show that Aim18p contains a chalcone-flavone isomerase (CHI)-
like domain (Supplementary Fig. S4.14c), whose homologs in plants typically func-
tion on aromatic small molecules (chalcones) (Supplementary Fig. S4.14d)>°2.
Given the potential for this protein domain to catalyze modifications of aromatic
small molecules, we hypothesized that Aim18p might function in the Tyr-to-4-HB
pathway to produce the CoQ headgroup (Supplementary Fig. 14d). Consistently,

when cultured in pABA™ media, we observed deficiency of PPHB in Aaim18 yeast

(Fig. 4.4f).
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Introduction

Recent advances in mass spectrometry (MS) profiling technologies have afforded
substantial increases in both speed of data acquisition and experimental through-
put'?. These advances have opened the door to large-scale MS-based profiling
studies where the analysis of hundreds, or even thousands, of samples is consid-
ered routine. However, the creation of increasingly larger data sets presents a new
challenge in both processing and interpretation of results. Currently, publically
available tools for the analysis of large MS data sets—particularly multi-omic data
sets—remain poorly developed. There is a great need in the MS community for
software solutions which facilitate rapid exploration, integration, and dissemina-
tion of data. Online data analysis and visualization tools have become increasingly
popular in other areas of science®*, and stand to alleviate many of the issues asso-
ciated with analysis of large MS data sets. Functional web-based utilities are an
efficient means to share results with collaborators, and minimize the burden of file
transfer and version control. Online web-portals expedite data lookups and enable
users to rapidly access and explore all measurements within a data set. Further,
web-based visualizations are desirable as they enable quantitative data to be auto-
matically synthesized into plots and graphs which are more easily understood and

interpretable.
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Currently, the process of developing a web-based interface for MS data explo-
ration is tedious and time consuming. Construction of these tools requires computer
programming and web development expertise which many researchers lack. As a
result, online data analysis portals are rarely developed, and if so, they are built by
individual labs on a project-specific basis. Tools designed for non-programmers
which serve to convert MS data into a format that can be uploaded into the cloud,
interfaced with interactive visualizations, and shared with collaborators, do not
exist and need to be developed. We have recently started work on a new platform—
targeted towards non-programmers—which enables codeless generation of online
MS data exploration portals. Using this platform, researchers are able to create
project-specific sites and upload results directly to the web from generic spread-
sheets of MS data (i.e., peak tables). Then, users can select specific visualizations
through which they wish to explore their data that are automatically embedded
into their custom site. Once created, users are free to share these web tools with
collaborators around the world at the click of a mouse.

Here we present two custom web visualization portals designed to serve as
complimentary utilities for resources recently published in Nature Biotechnology.
Additionally, we report on the development of a web-based platform for codeless

generation of project-specific, online data visualization portals.
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The Medicago Protein Compendium

Medicago truncatula is a premier model legume for the study of symbiotic rela-
tionships between plants and microbes. M. truncatula forms a complex symbiotic
relationship with the nitrogen-fixing soil bacteria Sinorhizobium meliloti. Root nod-
ules form on the plant wherein these bacteria fix nitrogen from the soil, and transfer
it back to the host”®. This symbiosis largely mitigates the need for fertilization of M.
truncatula to support plant growth. Agricultural solutions which afford increasingly
higher yields, and more sustainable crops at lower cost, are necessary to support
the world’s growing population. A reduction in crop fertilization requirements
would doubtless be of great benefit in this regard. M. truncatula’s close phyloge-
netic relationship to many agricultural crops, and diminished need for fertilization,
makes this an extremely relevant and important system to study.

The Wisconsin Medicago Group is a consortium of researchers from the Uni-
versity of Wisconsin-Madison. This group is dedicated to applying novel tech-
nologies to elucidate the biochemical mechanisms which regulate the complex
plant-bacterium symbiosis between M. trunctula and S. meliloti. In 2013, work
began on a large-scale MS analysis to comprehensively profile M. truncatula and
its nitrogen fixing symbiont S. meliloti at the proteomic, phosphoproteomic, and

acetylomic level. These data were collected over many months, and produced a
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data set containing 23,013 protein groups (19,679 from M. truncatula, 3,334 from
S. meliloti), 20,120 protein phosphorylation sites, and 734 lysine acetylation sites.
This data set (The Medicago Protein Compendium) represents the most extensive
profile of M. truncatula acquired to date, and was recently published as a resource
in Nature Biotechnology®. In order to make these data more readily accessible
to biological and agricultural researchers, we developed a complimentary online
data exploration tool (http://compendium.medicago.wisc.edu). All data from the
compendium can be rapidly queried using a simple and intuitive lookup utility
and subsequently visualized through interactive plots and tables. Here we will

briefly describe the functionality of this developed web tool.

Data Accession. All protein data from the Medicago Protein Compendium can
be readily queried using lookup tools on the site’s ‘Search Data’ page (Figure 5.1).
Here we provide a search form which supports queries built using multiple optional
parameters (‘Accession’, ‘Organism’, ‘Description’, and ‘Gene’). A user can select
the parameter they wish to search on from an associated dropdown list, and add or
remove terms by clicking the ‘+” and ‘- buttons. If multiple search parameters are
provided, a concatenated query is built and submitted as a request to the remote
database.

It is of note, that by performing an empty search, all database entries are re-


http://compendium.medicago.wisc.edu

202

The Medicago Proteome Atlas Publication ~ Citation ~ Search Data  Misualize Data Downloads

Search Protein Information

Search On:
Accession ~ .
Accession =
Accession
Execute Search
Organism
Description
Gene

Search Results

Accession Description Organism Gene View Data
00000029|MEDTR Hydraxyproline-rich glycoprotein family protein MEDTR Medtragn 18600
00000037|MEDTR SAM domain protein MEDTR Medtr4g 116200 &
00000038|MEDTR Myb/SANT-like DNA-binding domain protein MEDTR Medtr2g102227 -
00000040|MEDTR Uncharacterized protein MEDTR Medirdg037575 =
00000073|MEDTR RNA-binding KH domain protein MEDTR Medtr3g110650 &
00000082|MEDTR SNARE-interacting KEULE-like protein MEDTR Medtr5g011790 -
00000089MEDTR RAB GTPase-like protein B1C MEDTR Medirdg098950 2
00000097|MEDTR Anaphase-promoting complex subunit 11 RING-H2 finger protein MEDTR Medir5g024730 -
00000105|MEDTR U4/UE small nuclear Prp3-like ribonuclecprotein MEDTR Medtrig115920 2
00000188|MEDTR Hydroxyproling-rich glycoprotein-like protein MEDTR Medtreg104260 &
00000191|MEDTR Paired amphipathic helix SIN3-like protein MEDTR Medir8g062700 2

Figure 5.1: The Medicago Protein Compendium-Data lookup. Data accession
page supporting dynamic protein queries from multiple, optional, search parame-
ters. Returned results are displayed in the data table which can be filtered through
the “search’ text box. All returned results contain a clickable link which redirects to
an associated data visualization page.



203

turned. Queried results are added to the attached data table which supports
filtering, sorting, and pagination of returned data. For each returned result, a
clickable link which redirects to a data visualization page for the specified protein
is provided. These data visualization pages contain all protein-specific quantitative

and qualitative data, including phosphorylation and acetylation data, if available.

Data Visualization. By clicking any returned protein entry in the ‘Search Data’
table, a user is redirected to a ‘Data Visualization” page containing all quantita-
tive and qualitative data from the selected molecule. At the top of the page, the
selected protein is listed along with its unique database identifier (Figure 5.2). To
provide users with information about detected sequence coverage, a collapsible
panel displaying the entire protein amino acid sequence is shown. Here, identified
peptide regions are highlighted in yellow. Along the top of this panel a calculation
of percent sequence coverage (amino acids observed/total amino acids) is displayed
(Figure 5.2).

All quantitative and qualitative data associated with the selected protein can be
observed in the data table located in the center of the page (Figure 5.2). The ‘Pro-
tein Databases’ tab displays the corresponding protein entry—with accession and
description—in each of the five databases utilized in the study (Augustus, Ensemb],

JCVI, RefSeq, and Uniprot). The ‘Peptides’ tab displays qualitative information
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The Medicago Proteome Atlas Publication ~ Citation ~ Search Data  Visualize Data ~ Downloads

00002281|MEDTR: /Q calmodulin-binding motif protein

Protein Sequence Protein Length: 534 Residues  Percent Sequence Coverage: 54.869%

MGKKGSWFAAIKRVFTHHSKGKDSENKSTKEKKKGVGKLKHGETNSFIPLFREPSSIEKIFGDFEREQQVLAIRPPTPPERPKTPPFVPPRVASPRPPS
PKPPSPRDPSPRAASPRVTSPKAASSRNVHQHKEVRYRPEPTLQNQHVSATKIQSAYRGYMARKSFRALKGLVRLQGVYVRGQANVKRQTVNAMKHMQ
LLVRVQSQIQSRRIQGMLENQARYQAEFKNEAGSTLGKSALGHGSEAGNNEDWDDSLLTKEEVEARLQRKVEAIIKRERSMAFAYSHQLWKATPKSTQ
TPVTDMRSSGFPWWWNWLERQLPASNPPEKQYLKNFQF TPPRPYSEQKTSPRPGSSSQRPFAFDNMDTPTPKSTRSTIFPSSRPSRTPPFRTPQG

NTSSATSKYSRPRGVGSNSPFDVPLKDDDSLTSCPPFSVPNYMAPTYVSAKAKVRASSNPRERFGGGSSGCATPTSTDSKRRVSFPLSQGIGSFKWNK
GSMFSRNKDPHGSHRTPDKYQSLESIGNVSVDSAVSLPARVERKPFTRFV

Protein Databases Peptides Quantitation
Sequence Andromeda Score Local FDR
PGSSSQRPFAFDNMDTRPTPK 120.56 0.00013582
VASPRPPSPKPPSPR 130.09 8.3108e-26
NEAGSTLGK 126.21 0.000029375
GVGSNSPFDVPLK 12,67 0.0000000002006
TSPRPGSSSQRPFAFDNMDTRPTPK 75.695 1685e-34
STIFPSSRPSR 96.866 0.000496 M

Figure 5.2: The Medicago Protein Compendium-Qualitative data visualiza-
tion. Data Visualization page displaying all qualitative data associated with IQ
calmodulin-binding motif protein. Molecule accession code, and parent organism
are specified at the top of the page. The protein’s amino acid protein sequence
is shown in the blue panel with identified peptide regions highlighted in yellow.
Quantitative and qualitative data are available here in tabular format, and can be se-
lectively accessed by clicking the ‘Protein Databases,” ‘Peptides,” and ‘Quantitation’
tabs.
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(Andromeda score and local FDR) for each protein-specific peptide identified in
the study. Finally, the ‘Quantitation” tab shows quantitative data for the selected
protein across all tissues, with an indication of which labeling method (TMT or
LFQ) was employed to obtain the measurement.

Quantitative protein, phosphorylation, and acetylation data is displayed below
in the form of an interactive bar chart and heat map (Figure 5.3). All quantitative
phosphorylation and acetylation data was measured using a TMT labeling strategy.
This approach was advantageous as it yielded relative abundances of modified
sites across all tissues, except for Apical Meristem which was not profiled. Relative
abundance changes for each modified site are displayed as columns in the heat
map with the modified residue/position indicated along the x-axis, and tissue
along the y-axis. Each pixel reflects abundance changes—relative to the mean—for
a single tissue. Alongside the heat map is a bar chart reflecting unmodified protein
abundance changes within each tissue. Note, the row-wise ordering of tissues
is maintained between the heat map and bar chart. Users can toggle between
quantitation methods (LFQ and TMT) using the associated dropdown and the bar
chart will update automatically. Each pixel and bar in these two visualizations

supports tooltips which display additional information on mouse hover.
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The Y3K Project Online

As discussed in Chapter 4, the Y3K project was a large-scale multi-omic study
wherein 174 single gene deletion (Agene) yeast strains were comprehensively pro-
filed at the proteomic, metabolomic, and lipidomic level, under two distinct growth
conditions ™. This effort yielded more than 3,000 individual MS data files, and pro-
duced a data set containing over 3.5 million biomolecule measurements. Analysis
and integration of this large multi-omic data set presented a unique challenge, as
tools to facilitate our analyses simply did not exist. In order to enable our team to
rapidly explore, interact with, and compare these data at depth, we constructed
a unique web portal (http://y3kproject.org). This online tool presented our data
through a number of interactive and easily interpretable data visualizations. We
employed three different analyses in our study, which linked seven new proteins
to Coenzyme Q (CoQ) biosynthesis. Importantly, each of these analyses can be
recapitulated online using our web resource. Here, we will briefly describe the
design of the Y3K website, as well as the data visualizations and analyses which

this portal supports.

Design. The Y3K web portal was constructed using the Twitter Bootstrap frame-

work, and supports numerous data visualizations developed using the D3.js JavaScript


http://y3kproject.org
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charting library'!. All data is stored on a remote server in a MySQL database which
is appropriately indexed to facilitate rapid data lookups. The Y3K site was designed
to be used primarily as a data exploration tool, and we provide seven different
interactive visualizations on the ‘Data Visualization” page. In addition to these
interactive plots, we provide ample information about the design of the project, com-
position of the data set, and research labs involved with Y3K under the ‘About Y3K’
page. All data from our data set can be queried in tabular format under the ‘Lookup
Data’ tab. By entering search terms into two simple input fields (Molecule/Strain
and Growth Condition) any of the Y3K data can be accessed and downloaded di-
rectly from an internet browser. In an effort to make this web resource as useful as
possible for all researchers, we have included an extensive ‘Tutorial” page. On this
page, we list eight common analyses and tasks which a user may want to perform,
and include a detailed description of how to carry out each of these routines with
an illustrated reference. Finally, in order to provide continued support for this
web tool to the community, we have added a ‘Contact Us’ form to each page. This
form allows a user to send an email to the Y3K website administrators, alerting
them to previously undetected glitches and bugs, or to request additional usage

information.
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Visualizations. All data from the Y3K data set can be accessed through numerous
interactive visualizations. These plots were designed to provide users with a
number of vantage points through which to view these data, and have greatly
facilitated our own analyses. All visualizations can be updated without refresh by
selecting inputs from corresponding dropdown menus, buttons, and lists. In order
to provide as much information as possible, all data points in these plots support
tooltips which display extended information about measurements and calculated
results. Furthermore, we have incorporated active legends to all visualizations,

which update in real-time in accordance with the data actively being displayed.

KO vs WT. We provide a view of all profiled molecule perturbations—within a
particular ome and growth condition—for each Agene strain under the ‘KO vs WT’
tab. Here, these data are presented as volcano plots with molecule fold change (n=3,
mean log,[KO-WT]) displayed along the x-axis, and statistical significance (p-value;
two-tailed Student’s t-test) displayed along the y-axis (Figure 5.4a). Data points
are differentially colored and sized according to both fold change and statistical
significance (p>0.05 and |FC | <1 = gray; p<0.05 and | FC|<1 = blue; p<0.05 and
| FC | >1 = green). These plots can be updated automatically by selecting a different
ome, growth condition, or Agene strain using the appropriate form inputs. Specific

fold change and p-value data, as well as molecule metadata (names and identifiers),
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can be observed in a tooltip by hovering over any data point. Double-clicking any
data point pushes the associated quantitative data and qualitative metadata to a

table located at the bottom of the tab.

KO vs. KO. We enable users to directly compare molecular abundance changes
between any two Agene strains in the ‘KO vs. KO’ tab. Here, users can select any two
Agene strains from a single ome and growth condition. Upon selection, measured
fold changes (n=3, mean log,[KO-WT]) for molecules quantified across both Agene
strains are displayed as a scatter plot (Figure 5.4b). Additionally, a line of best fit
is appended to the plot, and a Pearson correlation coefficient (calculated using all
shared molecules) is reported. The x- and y-axes inherently fail to capture p-value
information, which we provide in associated data point tool tips. To better convey
the p-value dimension, we have implemented a dynamic data point highlighting
scheme. Here, users can select different highlighting options (‘Shared’, “Unique’,
‘Correlated’, ‘Anticorrelated’, or ‘Highlighting Off’) from a dropdown menu. Each
of these options selectively colors different data points within the KO-KO scatter
plot based on observed fold change and p-values. For instance, by selecting ‘Shared,’
all data points which have an absolute fold change > 0.7 and p-value< 0.05 in both
Agene strains will be highlighted in green. Alternatively, by selecting “Unique,’

molecules which meet these criteria in only one of the two strains will be colored in
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red or blue (x-axis strain and y-axis strain, respectively). All highlighting schemes
are described in an associated legend which updates in accordance with a user’s

selection.

KO-KO Correlations. The previously described ‘KO vs KO’ tab provides valuable
information about phenotypic similarities between any two Agene strains. However,
these comparisons are made one at a time, mitigating a user’s ability to rapidly iden-
tify pairs of similar Agene strains. In the "KO-KO Correlations’ tab, all calculated
Pearson correlation coefficients—from a single strain—can be viewed simultane-
ously as a bar chart (Figure 5.4c). These bars are ranked by descending correlation
coefficient or in alphabetical order with respect to Agene name. These bars can
be hovered over to identify the correlated strain, as well as the specific Pearson

correlation coefficient.

AMolecule Across KOs. Changes in molecular abundance in response to a diverse
set of perturbations (gene knockouts) can explored for individual molecules in
the “AMolecule Across KOs’ tab. Here, users can select a single molecule—from
an easily filtered list—and growth condition of interest. All perturbation data
associated with the selected molecule is then displayed in the form of a volcano

plot, with measured fold change (n=3, mean log,[KO-WT]) along the x-axis, and
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statistical significance (p-value; two-tailed Student’s t-test [homostatic]) along the
y-axis (Figure 5.4d). Each data point is associated with a single Agene strain which
can be identified by hovering over the point. Through this perspective, users can
rapidly identify Agene strains associated with large abundance changes of their
selected molecule. This view is particularly useful for researchers interested in a
small set of molecules, as they can very quickly access specific information about

their targets of interest.

Molecule vs Molecule. In order to identify covariance between molecules across
profiled omes, we employed an analysis technique called Molecule Covariance
Network Analysis (MCNA). MCNA is similar to coexpression analyses frequently
employed in large-scale mRNA studies'*4. Using this approach we identified
237,342 pairs of coregulated molecules (Bonferroni-adjusted p-value < 0.001, |p| >
0.58), which can be explored in the ‘Molecule vs Molecule’ tab. Here, users can select
any molecule of interest from a filterable list. Upon selection of a molecule, all other
correlated molecules are displayed in a data table with complimentary information—
number of strains where both molecules were quantified and a correlation coefficient
(Spearman’s tho). Selection of a coregulated molecule from this secondary table will
trigger display of a molecule-molecule correlation plot. Here, measured abundance

fold changes (n=3, mean log,[KO-WT]) from both molecules are displayed as a
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scatter plot (Figure 5.4e), where each data point corresponds to a single Agene strain.

Tooltips are displayed by hovering over individual data points.

Molecule Covariance Networks. As previously described, the ‘Molecule vs Molecule’
tab displays individual pairs of covariant molecules as scatter plots of measured
fold changes across Agene strains. Alternatively, this data can be viewed as a net-
work, which displays many molecule-molecule correlations simultaneously—a
view which is provided in the ‘Molecule Covariance Networks’ tab (Figure 5.4f).
We have created covariance networks for each profiled molecule. Here, all positively
or negatively correlated molecules—(Bonferroni-adjusted p-value < 0.001, [p| >
0.58)—are ranked in descending order (| p | ). The most highly-correlated molecules
(maximum of 24) are then used to create a nearest-neighbor network, where each
molecule is represented as a single node and colored according to ome. Edges are
drawn between pairs of correlated or anti-correlated molecules, weighted according
to correlation coefficient (| p|), and colored based on the sign of the correlation.
Each of these networks has been pre-computed and stored as a JSON object on the
remote server. This front-end processing step improves performance of network
visualization by eliminating computationally intensive on-the-fly queries and cal-
culations. Users are able to select any profiled molecule and an interactive nearest

neighbor network will be generated automatically. To facilitate exploration of indi-
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vidual correlations, users can double click any node and unconnected edges will

disappear. A second double-click will restore all edges to the displayed network.

RD vs. RC. All profiled strains in our Y3K study were classified as either respi-
ration deficient (RD) or competent (RC) based on observed growth rate (relative
to WT) and presentation of a conserved multi-omic signature—the respiration
deficiency response (RDR). The RDR is comprised of 776 molecules which were
characteristically perturbed across a large plurality (= 95%) of RD gene strains,
where quantified. This signature reflects a generalized stress response stemming
from respiration defects—a common feature of many diseases. The composition
of this response is of interest as it affords novel biological insight into the under-
pinnings of respiration deficiency. In order to enable users to explore molecules
characteristically perturbed as part of the RDR we constructed a two-part visualiza-
tion under the ‘RD vs RC” tab. All molecule fold changes are stratified into RD and
RC groups and visualized as box plots in the left panel (Figure 5.4g). On the right,
a volcano plot showing fold change (mean log,[RD/WT]-mean log,[RC/WT]) and
statistical significance (-logio[Bonferroni-adjusted p-value]; two-sided Student’s
t-test [homostatic]) is displayed (Figure 5.4h). Any molecule selected will result in
the RD/RC box plots updating, and will be highlighted in green in this volcano

plot.
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Figure 5.4: The Y3K Project Online-Interactive data visualizations. Representa-
tive examples of all data visualizations which can be automatically generated in
the Y3K project web portal (http://y3kproject.org). a.) KO vs WT. Volcano plot
showing all molecule perturbations from a single Agene strain. Fold change (mean
log,[Agene /wt], n=3) is shown along the x-axis, and statistical significance (-logio[p-
value]; two-sided Student’s t-test) is shown along the y-axis. b.) KO vs. KO. Scatter
plot showing fold changes (mean log,[Agene/wt], n=3) from all molecules profiled
across two Agene strains. ¢.) KO-KO Correlations. Bar chart indicating pheno-
typic similarities between a user-selected Agene strain, and all other profiled strains.
d.) AMolecule Across KOs. Volcano plot showing measured changes in molecule
abundance (mean log,[Agene/wt], n=3), and statistical significance (-logio[p-value];
two-sided Student’s t-test) for a single molecule across all profiled Agene strains
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Figure 5.4: .e.) Molecule vs. Molecule. Scatter plot displaying fold changes
(mean log,[Agene/wt], n=3) for two molecules across all Agene strains where both
molecules were quantified. f.) Molecule Covariance Network. Nearest neighbor
molecule covariance network showing correlations between molecules covariant
with a user-selected molecule. g.) Box plots showing measured fold changes for a
single molecule acrossl respiration competent (RC) Agene strains (blue) and respira-
tion deficient (RD) Agene strains (orange). h.) Volcano plot showing average fold
change in molecule abundance (mean log,[RD strains/RC strains]) against statisti-
cal significance (-logo[p-value, Bonferroni corrected two-sided t-test]) between all
RC and RD strains.

A Platform for Codeless Generation of Custom Data Analysis Web Portals

The web tools designed and developed in support of the aforementioned projects
have undoubtedly bolstered the data analysis process and public profile of the
studies. However, we acknowledge that a great deal of work has gone into building
and deploying these web portals. Their construction required extensive knowledge
and application of several programming languages (JavaScript, PHP, C#, etc.) and
coding libraries (D3.js, Angular.js, underscore.js, etc.), as well as expertise in rela-
tional database design (MySQL) which many researchers lack. Collectively, this
creates a bottleneck to the construction and publication of similar web resources. In
order to extend the benefit which these data exploration solutions can provide, to a
broad audience, it is essential that we develop complimentary tools to facilitate the
upload, organization, processing, and eventual online visualization of MS-based

“omic” data sets. It is imperative that these tools be designed to accommodate
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non-programmers, and provide a code-free development environment. Here, we
describe the work-to-date on a platform designed to meet these demands. This
platform facilitates upload of generic spreadsheets containing processed mass spec-
trometry results (peak tables) and enables on-the-fly hierarchical organization of
data (i.e., grouping of replicate experiments, selection of control experiments, etc.).
Following data upload, platform users can select individual visualizations to add to
their custom web portal from a menu of options. Based on these selections, a com-
plete webpage is constructed with all associated functionality embedded. These
custom web portals can then be shared with collaborators and other researchers—at
the discretion of the creator—via a developed user permissions sharing scheme.
The following sections will describe succinctly the process of creating and
sharing of custom project web portals using a prototype version of our platform
(Figure 5.5). Specifically, we will provide an overview of 1) the data upload process,
2) data processing and database entry, 3) visualization selection, 4) web portal

sharing, and 5) developed features and functionality of these codeless web portals.

Data Upload. In order to achieve the overarching goal of our platform—rapid
data upload and visualization—it is critical that all uploaded data be stored using
a well-defined organizational structure. Storage of data in a predictable manner

enables reuse of code for queries and visualizations across projects. Specifically, this
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Figure 5.5: Custom data visualization portal creation workflow. An overview of
all steps involved in creating a custom data visualization portal using our prototype
platform. Users will create individual projects and provide MS data in the form
of peak tables, and define a hierarchical organization of that data. These data are
uploaded to a remote webserver where they are analyzed through a battery of
statistical tests and results are stored in a central MySQL database. The project
creator can then select visualizations through which to view these data, and a
custom webpage with these interactive plots embedded is automatically generated.
The user is then free to explore their data portal and can provide access permissions
to collaborators.
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characteristic storage will allow creation of functionally similar web portals—built
around unique data sets—using identical blocks of code. For our purposes, all
data is uploaded to a single central relational database (MySQL) with a static table
structure. In order to ensure that user data is uploaded properly to this database,
a number of considerations must be made. First, it is necessary that our upload
functionality be flexible enough to handle data from a broad array of experiment
types (proteomics, metabolomics, lipidomics, etc.). Second, we must account for the
hierarchical organization of data and accommodate various experimental designs.
Finally, it is essential that we develop this upload functionality to accept data
processed using a variety of quantitative software packages.

There exist a large number of publically available software tools for extraction of
quantitative information from raw MS data files. For proteomic analysis, software
packages such as MaxQuant'>, COMPASS'¢, Proteome Discoverer, Skyline!”, and
Spectronaut can be used to identify and quantify profiled peptide species, and
then aggregate these quantitative values into consensus protein abundances. For
metabolomic applications, tools such as XCMS'®, Maven'”, Compound Discoverer,
and our in-house high-resolution GC/MS processing suite (Chapter 3), can be
used to identify and quantify profiled small molecules. For lipidomic applications,

packages such as LipidSearch or TraceFinder can be used to extract similar quan-
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titative information. Each of these software tools are algorithmically unique and
offer a range of added functionality to the user. However, all perform the same
basic task—quantitation of profiled molecules—and produce structurally similar
output peak tables. Almost all peak tables produced by MS processing software
contain columns corresponding to replicate MS experiments, and rows correspond-
ing to profiled molecules. Within each replicate column, individual cells indicate
the abundance/intensity of the corresponding molecule as measured in that MS
experiment. Frequently, these peak tables also contain descriptive information
about the molecules profiled (molecule names, descriptions, identifiers, etc.). We
capitalize on this conserved output structure in our platform, and have designed
a file upload architecture which accepts MS data from nearly all MS quantitation
software packages.

To upload quantitative MS data, a user will first create a new Project where
all project-associated data will be stored. Next, the user will navigate to the ‘Data
Upload’ tab where they can upload generic peak tables in either comma, semicolon,
or tab-delimited format. After selecting a peak table of interest, the file is read
locally, and all column headers are displayed in the browser. The user is then
prompted to categorize individual columns as either ‘Unique Identifiers,” ‘Feature

Metadata,” or ‘Quantitative Data’ (Figure 6.1).
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Figure 5.6: Data Visualization Portal-Data upload. Data upload page from our
prototype platform. Users select peak tables and all column headers are subse-
quently read and displayed. Individual column headers can be specified as ‘Unique
Identifiers,” ‘Feature Metadata,” and ‘Quantitative Data’ by moving them into the
appropriate table. Inside the ‘Quantitative Data’ table, users can provide a replicate
name for each column, as well as a condition mapping. Prior to upload, users will
select a branch where the data should be added, and provide a name for the current

data set.
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Briefly, ‘Unique Identifiers” are values which uniquely represent profiled molecules
inside peak tables. For instance, in proteomic analyses, standard gene names or
Uniprot IDs are commonly used to identify distinct molecules profiled across exper-
iments. ‘Feature Metadata” columns, are those which contain additional molecule
descriptors that would be useful to reference during data exploration in the fin-
ished web portal. These columns may contain extended molecule descriptions,
aliases, or alternate identifiers, among other values. Finally, ‘Quantitative Data’
columns contain quantitative measurements of individual molecules from replicate
MS experiments. It is anticipated that each column corresponds to exactly one MS
experiment.

Users can organize columns by moving the corresponding headers into their
appropriate table in the upload data tab (Figure 6.1). Before finalizing the data
upload, a few pieces of additional information are requested which will help define
a hierarchical organization of the user-provided data that is essential for enabling
downstream statistical testing and visualization generation.

We have developed a generic tree-based structure which can be used to describe
the organization of MS profiling experiments of all types (Figure 5.7). These generic
trees consist of nodes at 5 levels, described here from the top down. The root node or

‘Project’ node at level 1 corresponds to the project that the user has created. Nodes
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at level 2 (‘Branch’ nodes) contain distinct sets of data which will be compared
in downstream analyses. For example, a multi-omic profiling experiment may
contain separate Branch nodes for protein, metabolite, and lipid data. Nodes at
level 3 (‘Set” nodes) contain all of the data from a single uploaded peak table.
Nodes at level 4 (‘Condition” nodes) contain all replicate data corresponding to
a single condition or treatment. For example, if 20 knockout yeast strains were
analyzed at the protein level in biological triplicate, 20 ‘Condition” nodes would
be created, each corresponding to one of the knockout strains. It is worth noting
that ‘Condition” nodes can also be specified as controls, which will then be used for
normalization purposes in downstream statistical processing. Finally, nodes at level
5 (‘Replicate’ nodes) contain all of the data from a single replicate MS experiment.
Using the previous example of 20 knockout yeast strains profiled in biological
triplicate, 60 ‘Replicate’ nodes would be created, each of which would be connected
to its one parent ‘Condition” node. We contend that this structure can be used to
describe the organizational hierarchy of nearly any MS-based profiling experiment.
Furthermore, this design can be exploited to logically organize quantitative MS
data into easily queryable data structures.

Once values have been specified for all required fields, the user is allowed

to upload their data to a remote server. Before this process begins, the user is
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presented with a new dialog showing the hierarchical organization of columns in
the provided data file (in tree-form) and prompted to confirm the organization.
Upon confirmation, the user-defined column organization is stored in the central

MySQL database, and the specified peak table is transferred to the webserver.

Data Processing and Database Entry. At this point in the web portal generation
process, a user has created a new ‘Project’ and uploaded at least one peak table
with appropriate organizational information to the webserver. In order to make
individual measurements accessible on-command, it is required that the data
be entered into a logically-structured database (MySQL is used here) to enable
subsequent querying and visualization.

For each uploaded file, entries for all column headers have been stored in a
MySQL data table with an indication of whether that column contains ‘Unique
Identifiers,” ‘Feature Metadata,” ‘Quantitative Data,” or if it should be ignored during
subsequent processing. Each ‘Quantitative Data’ column is assumed to arise from a
single replicate MS experiment. For these entries, the user-provided replicate name
along with its associated condition has been stored. Using these information we
can extract quantitative values from the user-provided peak table, and insert them
into the MySQL database. This task is performed by a client-side script developed

in C# NET, which is executed upon user confirmation of their peak table structure.
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The developed script performs two basic functions: addition of unique identi-
fiers and quantitative values, and statistical and descriptive analysis of the uploaded
data followed by insertion of results to the database. Together, these processes work
to convert user-uploaded data files into a format which lends itself to web-based

data accession and visualization. Both processes are described in more detail below.

Insertion of Unique Identifiers and Quantitative Values. Forindexing and query-
ing purposes, all unique molecule, replicate, condition, and sets are assigned a
unique numerical identifier. These numerical identifiers facilitate expedient refer-
ence to, and querying of, specific subsets of data. Further, numerical identifiers are
easy to manage across projects contained within a singular database.

First, unique molecule identifiers are read from the user-uploaded file, and
added to the database where appropriate. Here, all existing molecule identifiers
associated with the project are queried and stored locally. Each molecule identifier
contained in the uploaded file is cross-referenced against the list of existing molecule
identifiers. The named identifiers which have not yet been added to the database
are assigned a unique numerical identifier—incremented from the last identifier
added—and inserted into the database. This cross-referencing procedure prevents
duplicate entries from being added, and serves to associate measurements across

uploaded data files. Next, each named replicate, condition, and set is added to
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the database, similarly, with unique numerical identifiers. It is of note that these
names are checked on initial data upload to avoid collisions with existing replicate,
condition, and set names. Given that we are guaranteed to avoid collisions at this
step, no cross-referencing against existing entries is required. Once all molecule,
condition, replicate, and set identifiers have been added to the database with
appropriate numerical identifiers, the script extracts quantitative data from the
uploaded file and inserts it into the database. Each quantitative measurement is
added to the database with a reference to its corresponding molecule and replicate
identifier. It is also of note that user options to ignore 0, empty, or null values are
provided during the file upload step, along with an option to log,-transform values.
This organization of measurements and identifiers in the database enables rapid
querying of measurements filtered by molecule name, replicate name, condition

name, set name, or any combination thereof.

Statistical and Descriptive Analysis of Uploaded Data. The described database
insertion procedure for unique identifiers and quantitative data produces data table
entries wherein individual measurements from uploaded peak tables are associated
with single replicates. Aggregation of replicate measurements at the "Condition’
level enables calculation of average molecule abundance, standard deviation, and

coefficient of variation (CV). Comparison of averaged abundances against control
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‘Conditions’—or alternatively, against all other replicates in the uploaded data
set—enables calculation of fold changes and statistical significance (i.e., p-values).
These fold change and p-values can be further exploited in various computational
processes such as unique genotype—-phenotype scanning and principal components
analysis (PCA). Here we have automated all of these calculations and computational
processes.

First, all replicate measurements are grouped together at the ‘Condition” level.
Using these grouped measurements we calculate and store average abundance,
standard deviation, and coefficient of variation. Calculations of fold change and
p-value are performed two ways for each profiled molecule. First, we utilize a
mean-normalization strategy wherein averaged abundances from each condition
are normalized to the average abundance considering all replicate measurements.
Here, p-values are calculated by performing a two-sided Student’s t-test (homo-
static) using grouped replicate values from each ‘Condition” and all other replicate
values (non-inclusive) as inputs. In the case that a particular ‘Condition” has been in-
dicated as a control, we also calculate control-normalized fold changes and p-values.
Similarly, average abundance measurements from each condition are normalized
against the average abundance of the associated control condition. P-values are

calculated by performing a two-sided Student’s t-test (homostatic) using grouped
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replicate values from each condition, and grouped replicate values from the control
condition as inputs. In all cases, we adjust calculated p-values using the Benjamini-
Hochberg FDR and Bonferroni adjustment procedures, to account for multiple
hypothesis testing. These adjusted values are stored locally in addition to the
unadjusted p-value.

Following calculation of descriptive statistics, fold changes, and p-values, we
also perform outlier (unique genotype—phenotype scanning) and PCA analyses.
These analyses (or variations thereof) are frequently employed by systems biologists
as they rapidly identify characteristic molecule—condition relationships, and inform
functional similarity between profiled conditions and replicates. In both cases,
mean-normalized values and control-normalized values (if available) are used as
inputs. The genotype—phenotype scanning procedure (as described in Chapter 4)
produces a Euclidean distance calculation, an outlier condition identifier, and an
enum type indicating whether the outlier measurement was increased or decreased
from the mean. The PCA procedure is performed twice. First, using averaged
molecule fold changes from all ‘Conditions’, and then using molecule abundances
from all replicates. In both cases the analysis produces scaled vectors and variance
fractions corresponding to each numbered principal component as outputs. All of

these data are stored locally.
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Upon completion of all described processing, calculated values are stored in
logically organized data tables in the MySQL database. In all cases, columns
indicating associated molecule, replicate, condition, and set identifiers are included
to expedite queries and minimize the need for complex data joins. These data are
now well formatted for the purposes of online visualization. Further, this conserved
database structure greatly facilitates the reuse of developed code, as data from

multiple projects are stored in exactly the same manner.

User Visualization Selection. At this point in the portal generation process, users
have uploaded peak tables complete with associated organizational information,
data from these files has been inserted into appropriate MySQL data tables, and
results from statistical and descriptive analyses has been stored. All of these tasks
were achieved with minimal user interaction. In fact, all that was requested of a
user is that they upload a file, organize and appropriately name data columns, and
confirm the data organization. We highlight the fact that absolutely no new code
generation has been required of the user, only simple tasks which can be completed
in minutes for modestly sized data sets.

For the purposes of automatic visualization generation, we note that most data
plots have well-defined inputs. For example, volcano plots contain data points

having a fold change (x-axis) and significance component (y-axis; typically -logio[p-
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value]). Similarly, bar charts contain bars having numerical (y-axis) and positional
components (x-axis), and often error bars showing variance or standard deviation
in the numerical component (y-axis). Granted that these, and other, visualizations
have standard inputs, we can make them available to users by simply requesting
that they specify what values should be used.

Following data upload, users can navigate to the ‘Manage Visualizations’ tab
where a menu of visualization options is presented. This menu displays all of the
visualizations which are available to be integrated into a user’s custom web analysis
portal. Among the offered visualizations are Volcano Plot-Full Perturbation Profile,
Bar Chart-Molecule Perturbations, Scatter Plot—-Condition vs. Condition, PCA-
Conditions, PCA—Replicates, and Outlier Analysis. It is worth noting that these
visualizations reflect an early development set which will continue to grow. Those
listed were chosen as they are commonly used by researchers to explore “omics”
data.

For each listed visualization a description is included along with an input
selection dropdown menu and an “on/off” toggle. The input selection list indicates
what values the user wishes to use to generate a particular visualization. For
instance, under the ‘Bar Chart-Molecule Perturbations’ input selection the following

options are listed: Control-Normalized, Mean-Normalized, and Log, Intensity.



232

Each of these options reflects one way in which changes in molecule abundance
across Conditions can be visualized. After selecting the appropriate inputs for
desired visualizations, the user will toggle those visualizations to the ‘On’ state
and save their selections by clicking the ‘Save Changes’ button. Clicking the ‘Save
Changes’ button stores the user’s selections in a data table, and triggers an event
which automatically builds a new webpage with all visualizations embedded.
Briefly, a new directory is created for each project on the webserver. The files
contained in this directory are used to render the web portal in a browser, perform
server-side database queries, and display all returned results in the form of inter-
active visualizations. This compartmentalized structure is desirable as it greatly
simplifies restructuring of individual project websites and makes the process of
website migration to a new webserver or domain straightforward. The event fired
by clicking ‘Save Changes’ launches an executable (C# .NET) which updates all of
the files in the project directory. First, a new webpage is generated by concatenating
segments of developed code (stored in the root folder of the webserver) to create
a fully functional interface with different visualizations embedded. For instance,
if a user selected “Volcano Plot—Full Perturbation Profile” and ‘PCA-Replicates’
only code segments required to display these two plots would be added to the

new webpage. This concatenation process is extremely quick to execute (<1 sec-
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ond) and completely overwrites the existing webpage allowing users to re-select
visualizations and recreate custom web portals ad infinitum.

In addition to generating a new webpage, individual PHP files containing server-
side query commands are updated. For each visualization, the user-selected inputs
are specified and PHP files containing relevant commands are updated to reflect
the requested data. This process of automatically updating server-side queries
simplifies client-side operations by masking the underlying data requests. Further,
restricting query results to include only those values desired by the user reduces the
volume of data returned by a single query and bolsters performance. Additionally,
preparing and storing all MySQL queries on the server-side of the application
affords an added layer of security in prevention against SQL injection attacks.

Immediately after these text files are updated in the project directory the new
web portal can be explored by the user. As mentioned, this portal can be updated

to include different visualizations, and tailored specifically for the user’s project.

Web Portal Sharing. At this point in the web portal creation process, the user
has uploaded data with associated organization information, all data has been
processed and added to appropriate data tables, the user has selected visualizations
(and inputs) of interest, and a new web portal has been created. Again, we note

that all of this has been achieved by requiring a user to perform simple tasks, and
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no new code has to be generated on their part. At this point, the only user who can
view the newly generated web portal is the creator. This user also has the exclusive
ability to grant collaborating users access to the project’s portal.

Briefly, we have designed a permissions scheme consisting of three levels. Level
one (read-only access) provides users with the ability to view developed web portals
and download associated data. Level two (read/edit access) provides users with all
level one permissions, in addition to the ability to add, remove, and edit uploaded
data. Level three (project owner access) provides users with all level one and two
permissions, in addition to the ability to grant collaborating users access to the web
portal, as well as the power to delete the web portal entirely. These permissions
were designed to afford the appropriate amount of control to individual users so
they can effectively utilize and share these tools while maintaining privacy and
security of their data.

By default, the only user who is initially granted access to a project’s web portal—
other than administrators—is the creator. The creator is the default ‘Project Owner’
which grants them all of the permissions listed above. Project owners are the
only users who have the ability to provide access to other collaborators, affording
complete discretion over who can utilize their data. Project access can be managed

under the ‘Manage Visualizations’ tab. Upon navigating here, users can enter
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collaborator email addresses along with a short message, and specify an appropriate
permission level for the collaborator in question. Clicking ‘Send Invite’ triggers a
series of events culminating in invitations being sent to the specified collaborators.
In this process, a unique 20-digit alphanumeric code is randomly generated (there
exist ~7.04x10% possible combinations) for each invited collaborator and stored
in the central database, along with information about the project and the project
owner-specified permission level. Then, each collaborator is automatically emailed
their specific 20-digit alphanumeric code, along with the owner’s message and a
link to the website. After navigating to the site and either logging in (for current
users) or creating an account, invited users can select ‘Accept Invitation” where
they are prompted to enter their emailed 20-digit code. This code is then checked
against the data table containing all sent codes for a matching entry. If a match is
found, the user is granted access to the associated project—with the appropriate
permissions—and the project is added to a list of web portals which they are able

to interact with and explore.

Developed Features and Functionality. Collectively, the previously described
processes have enabled the creation of project-specific web portals without requiring
any coding on the part of users. All user tasks are straightforward and can be

performed in a web browser without requiring the download or installation of
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any software tools. We contend that this platform will have widespread utility
for mass spectrometrists and other biological researchers who routinely interact
with MS-based “omics” data. To make these developed web portals as useful
as possible we have developed a number of unique features and functionality
including interactive visualizations, informative tooltips, real-time chart editing,
data and chart downloads, and data table lookups. These developed features are

described briefly below.

Interactive Visualizations. All user-selected visualizations have been created us-
ing the D3.js JavaScript library'!. D3 (Data Driven Documents) is a well-developed
and well-supported library for displaying data in the form of interactive charts
in web applications. This library is widely used and has a strong community fol-
lowing which is a valuable resource that makes it easier to develop, maintain, and
debug code for displaying data. All developed visualizations are designed to be
highly interactive and users can easily select data to visualize by choosing options
from lists of valid inputs. Animations are employed when transitioning between
data sets for all visualizations, and data point indexes are used to maintain object
consistency (i.e., the same data point represents the same molecule, condition, etc.
before and after a transition). This object consistency provides useful visual cues to

the user about how individual measurements differ between selected conditions,
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for instance.

Informative Tooltips. All developed visualizations support informative tooltips.
Within each plot, hovering over an individual data point displays a tooltip which
contains relevant metadata about the molecule, measurement, condition, etc. in
question. These tooltips enable users to rapidly identify data points of interest
and retrieve more information about that measurement. In contrast to static plots,
this display of tool tips greatly increases the amount of information which can be

transferred to a user per unit time, expediting data analysis.

Real-Time Chart Editing. All visualizations were designed to employ differential
coloring schemes and data filters. For instance, generated volcano plots use a three
color scheme to indicate significance and fold change. For these plots, we have
built controls for dynamically resetting fold change and p-value cutoffs which will
automatically recolor data points in the chart appropriately. We have also employed
chart filters to selectively display only those data points which meet certain fold
change and p-value thresholds. Additionally, we have included an option to set
fixed scales to axes in generated plots. Changes to these settings are automatically
rendered in the associated visualization providing users an additional level of

control over their data.



238

Data and Chart Downloads. We acknowledge that for communicating data to
other scientists—either in communications or publications—it is often helpful to
include individual plots. To make web-portal generated plots more useful for re-
searchers we have added an option to download all data associated with a particular
plot. Here, by clicking a button a user can download a tab-delimited file containing
all of the numerical and textual information used to generate a particular visual-
ization. From this file, users can port data into their preferred plotting software
package and generate new graphs for sharing. Additionally, we have built in an op-
tion to download generated plots directly in .SVG format. This file can be imported
directly into graphics editors (such as Adobe Illustrator or Microsoft PowerPoint)
and each plotted object can be manipulated to adjust color, size, opacity, etc. to the

user’s liking.

Data Table Lookups. While visual display of data is highly useful, it is often
advantageous to explore data in numerical format. Within each developed web
portal a data table lookup option is provided by default. Individual query terms
corresponding to all project-specific replicates, conditions, and profiled molecules
have been created and stored in the database. By selecting any one of these query
terms, all associated data is returned and displayed in tabular format. This data

table is interactive and supports filtering, sorting, column hiding, and pagination
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of results to make it easier to navigate to individual pieces of data. All queried
results can also be downloaded in tab-delimited format for plotting and analysis at

the discretion of the user.

Conclusions and Future Directions

Mass spectrometry has positioned itself as one of the premier tools for interrogating
biological systems and elucidating novel biochemical insight. More and more, large-
scale MS studies are being undertaken to answer increasingly complex biological
questions. It is imperative that we continue to develop software solutions to meet
the analysis needs of these experiments. Online data analysis and exploration
tools are an attractive solution, but remain underdeveloped. Both the Medicago
Proteome Compendium and Y3K Project web portals have enabled researchers to
dig deeper into these massive data sets, and have brought them to larger biological
community in a format which is readily accessible from any internet browser.
There are undoubtedly great challenges posed by data curation, web portal
creation, and deployment of developed web tools which create a bottleneck for
researchers without advanced programming skills. However, these online tools
can greatly expedite data analysis and enable researchers to investigate their results

at greater depth. Our work on a codeless web portal generation platform is a step
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in the right direction. Continued development of tools designed for use by non-
programmers widens the aforementioned bottleneck and will make online data
analysis a much more tractable option for the entire research community.

As we continue development on our platform we intend to build in additional
functionality including gene ontology (GO) enrichment, coexpression analysis,
and hierarchical clustering. We aim to bolster the overall web design to make
exploration and analysis more intuitive for all users. We recognize that data security
and privacy are concerns for all scientists, and, as such, must ensure that all data is
well-protected while remaining accessible to collaborators worldwide. We note that
increasingly, researchers are analyzing data on numerous devices including mobile
and tablet and it is critical that we support these platforms. Finally, we believe it
is absolutely essential that we promote data sharing between individuals so that
multiple data sets can leveraged against one another to synergistically enhance
the insight afforded. Our platform is uniquely positioned in that we host multiple
data sets from a singular location making inter-project data comparison a very

manageable option.
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Chapter 6

THE YEAST CONTROLLER: A WEB-BASED QUALITY CONTROL
TOOL FOR MONITORING PERFORMANCE OF LC/MS SYSTEMS

Portions of this chapter are part of a manuscript in preparation:

Kwiecien NW, Brademan DR, Hebert AS, Westphall MS, Coon JJ. A Web-Based
Quality Control Tool for Monitoring Performance of LC/MS Systems. 2016.
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Introduction

Proper maintenance and monitoring of liquid chromatography-coupled mass spec-
trometry (LC/MS) system performance is critical for enabling high-throughput
profiling in cutting-edge MS research labs. Instrument downtime and time spent
troubleshooting MS performance issues are undesirable, as these periods preclude
the collection of valuable experimental data. The process of identifying the root
cause of suboptimal instrument performance and subsequent restorative main-
tenance can be burdensome, particularly when the source of issues is obscure.
Routine analysis of quality control (QC) samples is useful for providing contin-
ual snapshots of instrument performance, and for signaling declines in expected
operation.

In our own lab, we regularly analyze tryptic digests of whole yeast proteomes
('yeast controls’), to track performance of dedicated proteomic profiling LC/MS
systems. Each yeast control data file is searched against a target-decoy protein
database! and the number of unique peptides identified (at 1% FDR) is reported as
a metric of performance. Granted that identification of as many unique peptides
as possible per experiment is one of the overarching goals or proteomic analysis,
this simple value is useful for assessing overall system performance. However, this

single metric fails to capture many components which contribute to and influence
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system operation. For instance, no information about peptide elution peak widths,
systematic mass error, or the distribution of peptide precursors throughout the
chromatographic separation can be ascertained from the number of unique peptides
alone. This information would be useful to have during times of lowered instrument
performance, as deviations here can be used to diagnose specific problems.

For our own QC purposes, individual yeast control data files are manually
searched by instrument operators, and unique peptide identification counts are
logged in an informal record. Although this process is tedious for users, it has
proven useful in helping to maintain consistency of LC/MS performance. It is of
note that the described data analysis routine is completely static, and therefore,
opens the door to automatic processing. Although a number of automated QC data
analysis tools for monitoring LC/MS performance have been developed?®, none
have been widely adopted by the proteomics community. Ideal QC data processing
software would completely eliminate the need for hands-on analysis following
data collection. These software solutions should maintain historical records of
all processed QC data files, facilitate rapid data lookups and visualizations, and
support comparisons between QC data files across instruments and even labs.
Furthermore, it is desirable that these tools employ intelligent algorithms to assist

in diagnosing instrument issues during times of diminished performance.
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To bolster the means by which we analyze, store, and utilize yeast control data
in our own lab we have constructed a web-based data deposition, processing, and
visualization tool—The Coon Lab Yeast Controller. This web-based tool supports
drag-and-drop uploads of raw MS data files, performs all data analysis operations,
and logs numerous metrics of performance in a central database. All uploaded
data can be immediately visualized within a web-browser through a convenient
dashboard interface following processing. The Yeast Controller affords a substantial
time-savings to instrument operators, keeps an accurate historical record of individ-
ual instrument performance, and can be used to more rapidly identify errant trends
to streamline troubleshooting. The Yeast Controller has been designed specifically
with our lab in mind and tailored to our QC needs. That said, the basic framework
developed here should be applicable to QC procedures employed by many outside

MS labs.

Design and Functionality

The Yeast Controller is comprised of three major components: 1.) a front-end web
interface for data deposition and visualization, 2.) a back-end database containing
all instrument information, user information, and processed QC analysis results,

and 3.) a set of software scripts to handle processing of user-provided raw data
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and insertion of results into the database. Here we will describe the design and
capabilities of this web-based tool with a focus on data upload, data processing,

and data visualization.

Data Upload. The Yeast Controller uses a central back-end database (MySQL) for
storage of all processed QC results, in addition to information about individual
MS systems and laboratory instrument users. This design is convenient as it stores
all data in a single location which can be accessed by multiple users concurrently.
Within this database, a unique 'Instrument’ profile has been added for each of our
dedicated proteomic analysis LC/MS systems (one LTQ Velos, one Orbitrap Elite,
and four Orbitrap Fusion Lumos systems) along with a set of platform-optimized
data processing parameters. All lab members who conduct proteomics experiments
and analyze yeast controls are invited to create individual user profiles. These
profiles are password-protected and allow for upload of QC data files to specific
instruments.

To upload raw QC data files, users login to the Yeast Controller portal and
navigate to the ‘Data Upload” page (Figure 6.1). Here, users will first select the
instrument which generated the data file from a drop down list. In an effort to pre-
vent uploaded files from being improperly associated with the wrong instrument,

we provide instrument-specific upload privileges on a user-by-user basis. Users are
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then prompted to enter information about chromatographic separation methods.
No information about the employed LC method is stored within a Thermo raw data
file, but this information is useful for troubleshooting performance issues. Users
can create and save new LC methods by clicking the ‘Create New Chromatographic
Method’ button (Figure 6.1), providing their method a unique name, and entering
the following information: LC model, column length, column temperature, packing
material, particle diameter, inner diameter, gradient length, flow rate, buffer A
composition, and buffer B composition (Figure 6.2). We note that these methods
often will not change which eliminates a source of variation and is optimal for
temporal monitoring of instrument performance. These user-created methods are
added to a drop down list of LC methods which are available to all Yeast Controller
users.

After selecting an instrument and LC method, users can drag-and-drop Thermo
raw data files into the browser window, which are automatically populated in an
on-screen list. We provide a ‘Send Email on Completion” option which triggers
an automatic email alert to the user upon processing completion. This message
reports total processing time as well as relevant metrics of performance (identified
peptides, proteins, etc.) Upon clicking “Start Upload’ the file is transferred to a local

web server and a new entry is added to a processing queue indicating the complete
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Create Chromatographic Method

Give your new method a name and then fill in as many of the fields below as you can. The new method
will appear in the drop down as soon as you click save! (Note: If you don't have all the information on hand
you can update your method in the 'Add Notes' page later)

Method Name

LC Model Column Length (cm) Column Temperature (°C)
Dionex Nano v Ex: 4.6 Ex: 70

Packing Material Particle Diameter (pm) Inner Diameter (mm)
Ex: C18 Ex: 12 E

Gradient Length (min) Flow Rate (pl/min)

Buffer A Composition Buffer B Composition

Additional Notes

Ex: Other Useful Informatior

Figure 6.2: Chromatographic method creation form. This form is used to create
new chromatographic method entries in the central Yeast Controller database.
These methods are listed in the data upload page, accessible to all users, and can
be associated with individual QC experiments prior to file upload. The included
tields represent all information needed to adequately describe an employed LC
method.
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file path, instrument of origin, and uploading user. This entry signals to server-side

processing scripts that a new file has been uploaded, and needs to be analyzed.

Data Processing. The traditional steps in processing a raw QC file are as follows:
format conversion (.raw to .dta), peptide-spectral matching against a concatenated
target/decoy protein database done using OMSSA7, result filtering to a 1% FDR
level, aggregation of peptides into protein groups, and extraction of chromato-
graphic peak width information from all identified peptide species. The Yeast
Controller has been designed to perform all of these processes automatically and
sequentially without requiring external input from users.

As mentioned previously, a new entry is added to a process queue for each
uploaded QC file. A background script (C# .NET) runs continuously on the local
webserver and checks this queue for new entries every 5 seconds. Once a new entry
is found, MS? spectra are immediately extracted and written to DTA files (traditional
SEQUEST data file format which is compatible with the OMSSA search algorithm)
using the DTA Generator program in COMPASS®. We split all MS? spectra across a
number of DTA files, each containing 2000 individual spectra. This enables parallel
searching of smaller sets of MS? spectra—with OMSSA distributed across multiple
CPUs—which reduces overall processing time, relative to searching all MS? spectra

in a single operation. Our lab has a private cluster consisting of 17 nodes (read,
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CPUs) which are dedicated for processing of OMSSA searches. These 17 nodes
are also connected to a larger campus-wide distributed computing network as a
part of the HTCondor program. HTCondor is a system which monitors CPU usage
from computers around campus and recruits inactive machines for processing of
computational tasks®!?. We utilize the HTCondor computing network for our data
searching processes which affords substantial performance benefits.

After all DTA files are written, each is submitted as a single job to HTCondor
for database searching against a concatenated target-decoy yeast protein database
using OMSSA. Upon completion, each task will return a file containing database
search results, and the job will be removed from a list of submitted tasks. To avoid
race conditions after each job is returned (i.e., a file read begins before the file write
has completed), the size of each returned file is monitored to check for completion
of file writes. After each returned file's size is observed not to change for a period of
at least two minutes, it is assumed that the task and file write have both successfully
completed.

All returned result files are merged into a single CSV file containing scored
PSMs from both target and decoy peptide sequences. This file is moved to a new
time-stamped directory on the webserver which holds the raw QC data file, and

will store processed results. The combined CSV results file is then filtered to a
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1% FDR level using the FDR Optimizer program from COMPASS. This program
exports a list of PSMs and parsimony peptides (target and decoy) identified at 1%
FDR, which are similarly stored in the QC file directory. Identified peptides are
then aggregated into protein groups using the Protein Hoarder program, also a part
of the COMPASS suite. This program outputs a list of consensus protein groups in
addition to a summary file containing select figures of merit.

Maintenance of LC/MS system performance also requires monitoring of the
liquid chromatography system. To provide users with diagnostic information about
LC performance, we report descriptive statistics about peptide elution peak widths.
To do so, we have developed an in-house algorithm for extracting chromatographic
features from identified peptides using characteristic 7/z and RT. For each peptide
where a chromatographic elution profile can be successfully extracted, the peptide's
elution time at full width half maximum (FWHM), apex S/N, and apex RT is written
to a file stored in the QC file's target directory.

At this point in processing all relevant data searching and extraction routines
have been completed and associated result data written to files. In order to make
this information queryable and available for comparative analyses, it must be added
to the central Yeast Controller database. A comprehensive entry is made for each

QC file containing the following information: file ID (unique identifier for the
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QC file), instrument, uploading user, time collected, gradient length, PSM count,
peptide count, protein count, MS! count, MS? count, average PPM error, standard
deviation in PPM error, average protein sequence coverage, standard deviation
in protein sequence coverage, median apex S/N, standard deviation in apex S/N,
and a five-point summary of peak widths. An entry for each detected peptide
is also added to the database with the following information: file ID, MS? scan
number, sequence, mass, charge, measured m/z, theoretical m/z, ppm error, apex
S/N, apex RT, and peak width. We have found in many instances that it is a useful
practice to compare distributions of values against historical distributions to check
for characteristic deviations. The following distributions are stored as ordered
strings in four separate entries for each QC file: peptide m/z (25 Th bins), peptide RT
(3 minute bins), peptide S/N (1 unit bins), precursor m/z values (25 Th bins). This
preprocessing step negates the need for an on-the-fly query/binning procedure
which is a boon to visualization performance.

After all data has been inserted to the central Yeast Controller database it can
be immediately queried and visualized in-browser. At this point, if a user has
requested an email notification, a message is sent containing of the number of iden-
tified peptides and proteins, as well as an overall performance metric—percentage

of maximum peptides detected historically. This alert system was developed for con-
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venience of users. It enables researchers to go about other tasks during processing,
but still receive up-to-the-minute information about LC/MS system performance.

At the time of this writing, the Yeast Controller database contained QC infor-
mation from 597 raw data files which yielded 43,650,411 individual MS data scans,
and 9,844,986 peptide spectral matches. It is also of note that no raw QC data files
have been removed from the server. MS data file sizes are rapidly increasing and
storage of hundreds of raw files requires ample storage space. However, keeping
these files intact allows new data analyses to be added in the future, which will be

immediately bolstered by availability of a historical data set.

Data Visualization To enable rapid accession and comparison of current and
historical QC data, we have built a front-end web-based data visualization portal for
exploring these data. This web portal was constructed using the Twitter Bootstrap
framework and integrates interactive visualizations built using the D3.js JavaScript
library''. Our tool presents all data through a convenient dashboard style interface
where instrument-specific QC data can be explored openly by all members of the
Coon Research lab (Figure 6.3).

The visualization dashboard displays relevant figures of merit—peptides iden-
tified, proteins identified, and % peak performance (current peptide count/highest

peptide count)—from the most recent QC file processed for each lab instrument at
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the top of page on login. Three separate graph panes below are used to simultane-
ously display different performance data, each of which can be adjusted by selecting
options from a dropdown list (Figure 6.4). The largest pane at the top of the page
shows a running plot of either peptide identifications, protein identifications, MS?
scans acquired, MS! scans acquired, or average ppm mass error by date of QC file
acquisition. By hovering over individual data points, users can view tooltips which
include added data about the corresponding QC file. By clicking these data points,
users can select individual QC runs which they wish to retrieve more data from.
The lower right-hand pane displays current distributions relative to historical
distributions (Figure 6.5). These historical distributions consist of data from QC
analyses collected during times of high system performance (90+% of all-time peak
performance). The utility in this view is that it enables users to compare data
from singular files against data from multiple files collected when instruments
were performing as expected. This view makes visual detection of deviations in
trends away from what is expected much easier, and greatly facilitates localiza-
tion of system performance issues. Finally, the last pane can be used to display
historical distributions of peptide peak widths (Figure 6.6). Here, average peptide
peak (FWHM) is shown along with the IQR of all peptide peak widths. This is a

useful metric to monitor as increases in peak width can indicate systematic peak
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Figure 6.4: Historical record of QC performance metrics. Four example graphs
showing QC performance metrics over time from data files collected on a single in-
strument. These graphs can be automatically generated without refresh in our data
visualization dashboard by selecting options from a dropdown. Here, a.) peptide
identification counts, b.) protein identification counts, c.) MS? scans acquired, and
d.) average ppm mass error from each QC data file are displayed along the y-axis,
with file acquisition date shown along the x-axis.
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Figure 6.5: Comparison of QC data distributions. Four example distribution
comparisons, which can be automatically generated in our dashboard interface,
are shown. Here the distributions being compared consist of values taken from a
single QC data file (dark line) or values taken from all QC data files where peptide
identification counts were at least 90% of the highest recorded count (light fill).
Frequency distribution comparisons of a.) peptide m/z values, b.) MS? precursor
m/z values, c.) peptide RT, and d.) peptide S/N are shown here.
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01/2016 04/2016 07/2016

Figure 6.6: Chromatographic peak width display. Display of peptide peak widths
across a set of QC data files collected on a single instrument. For each QC file,
average peptide peak width (FWHM) is included as a point along the dark green
line, and the IQR of all peptide peak widths is displayed in the light green band.
These values are plotted against file acquisition date, which is shown along the

X-axis.
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broadening and potential column failure.

To provide an added level of user control, users are allowed to delete files which
they have uploaded. Occasionally, users will recognize substantial issues with QC
data files rendering them untfit for inclusion in a historical record to be used for
comparative purposes. Only the uploading user is given this power to prevent

tampering or mistaken deletion from other users.

Conclusions and Future Directions

Internally, the Yeast Controller has dramatically changed how our lab processes
and interacts with QC data. This utility has afforded substantial time savings
on the part of individual instrument users and made data more accessible and
interpretable to all lab members. That said, there are a number of improvements
to this in-house tool that stand to be made. First, additional data analyses and
corresponding visualizations are welcome. No analyses comparing populations
of detected peptides have been implemented to date. It would be interesting to
compare features such as peptide isoelectric point, length, charge, etc. to determine
if the composition of profiled molecules can provide insight into or correlate with
deviations in instrument performance.

The current implementation of the Yeast Controller does not support any in-
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telligent algorithms designed to provide information to users about the source of
instrument performance issues. This is perhaps the most fertile ground for addi-
tion of functionality. It would be of great benefit for all users if our online system
could provide information on the source of instrument issues with fine granularity.
Development of this capability requires extensive correlation analyses wherein the
root-cause of known performance issues are associated with low-performance QC
data files. These low-performance files then need to be analyzed to identify charac-
teristic features and deviations in trends. Detection of such features and trends in
future files can then be associated with the previously identified performance issue
causes. Lastly, it would be useful to develop functionality to support the addition
of user notes on general instrument maintenance and individual QC data files that
can be referenced at a later time. Outside of individual notes, development and
inclusion of more comprehensive tutorial materials would be greatly beneficial.
Although traditionally rooted in proteomics, our lab has recently begun to
diverge by moving into lipidomic and metabolomic analysis. This lateral shift
in experimental LC/MS and GC/MS methodologies is accompanied by a need
for orthogonal QC monitoring approaches. The current implementation of the
Yeast Controller only supports QC processing for LC/MS systems dedicated to

proteomics, which are set up for analysis of yeast control samples. Consequently, it
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cannot be used for processing small molecule assays. Development of web based
tools for upload, processing, and visualization of metabolomic and lipidomic QC
assays would be of benefit to lab members who routinely conduct small molecule
profiling experiments.

The Yeast Controller has been a valuable resource for our lab and stands to
benefit the larger proteomics community if made publicly available. Currently,
there is a deficiency of high-quality and open-access resources available for web-
based monitoring of LC/MS QC data. The Yeast Controller could be developed
as a community solution to enable widespread performance monitoring and data
sharing throughout the proteomics community. Our web-based approach facili-
tates rapid transfer of information which could be leveraged to support labs not
currently maximizing their LC/MS system's performance, and help to optimize
data acquisition methodologies. An additional step which might be taken to make
this community resource more attractive, is the provision of a standard sample for
QC analysis. Provision of QC standard samples from a single stock would enable
researchers around the globe to more directly compare data between systems by
eliminating a prominent source of variation.

Logistically, there are a number of challenges associated with converting the

Yeast Controller into a publicly available utility. First, file transfers and data stor-
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age will quickly become burdensome as MS file sizes are rapidly expanding. For
reference, an average yeast control QC file from the latest generation Orbitrap Fu-
sion Lumos system is ~1.5-2 GB in size (90 minute LC gradient). Comparatively, a
similar file from an earlier generation Orbitrap Elite system is ~500 MB. Adequate
server space would need to be acquired based on estimated upload traffic, and
unused files must be removed on a routine basis. Data privacy and protection of
files is a major concern for individual labs. We must have a well-developed security
system in place to ensure that no data could be tampered with or downloaded
without permission. Finally, we must develop functionality to promote data shar-
ing and comparative analysis between labs, in an effort to provide users with the
information needed to bolster data collection methods. We recognize that system
performance can vary greatly between labs, and believe it is a worthwhile endeavor
to help provide all MS users with the knowledge and tools they need to maximize
their LC/MS system's performance. By promoting information sharing between
members of the community, individual labs stand to capitalize on each other's
knowledge and expertise, and improve the means by which they routinely acquire

data.
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