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Abstract 

 Machine learning is changing the field of medical imaging. Studying complex neurological 

diseases like epilepsy can substantially benefit from its use. It can offer valuable insight onto the 

disease characteristics and also train predictive models to be used in various applications. Using 

both imaging and neuropsychological data provided by the Epilepsy Connectome Project, this 

work explores using machine learning to study temporal lobe epilepsy population in three steps. 

First, it exploits the feature extraction ability of machine learning to find that the frequency range 

between 0.1 – 0.073Hz is best at capturing abnormal resting-state functional connectivity in 

temporal lobe epilepsy compared to healthy controls, and that the impaired processing speed is the 

most informative among other neuropsychological tests in separating between the two groups. 

Second, it builds machine learning classification and regression models that can make various 

predictions on temporal lobe epilepsy patients. One finding reveals that temporal lobe epilepsy 

patients exhibit functional brains that are predicted to be on average 8.3 years older compared to 

their chronological ages. Third, the relationship between the sample size and binary classification 

accuracy is systematically explored using neuroimaging data. A number of guidelines are proposed 

for future research, as well as an equation for the sample size relationship that can be used to 

predict future accuracies given limited samples. Finally, it ends with suggestions of future research 

directions. Overall, this work presents how machine learning can facilitate epilepsy research and 

suggests ways that the limited sample size problems can be addressed. 
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Chapter 1 

 

Introduction 

 

 
The concept of machine learning has existed for a long time, but it is now beginning to change the 

field of medicine1-4. Over time, many machine learning algorithms have been proven effective to 

perform complex classification and regression problems in many industrial fields5. The promise 

of machine learning is that given datasets of sufficient size, it will solve these complex problems 

more efficiently and with greater accuracy than the traditional approaches6. However, its 

applications in medical imaging are being developed at a much slower pace compared to in 

industrial fields and are largely limited to a few classes of problems such as image segmentation, 

registration or 2-dimensional image classification3, 7-10. 

 Machine learning can be divided into two large branches: supervised and unsupervised 

learning1. Supervised learning starts with the goal of predicting a known output. Its models are 

trained from a set of input-output (feature-label), or annotated (labeled) datasets. The performance 

is then evaluated using the accuracy of predicting the outputs of unseen data. In contrast, in 
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unsupervised learning, there are no outputs to predict. Instead, the goal is to find naturally 

occurring patterns or groupings within the data. A method known as the cluster analysis is one of 

the most common algorithms of unsupervised learning11. The assessment of the performance is 

inherently more challenging due to the lack of ground truth, and is generally done by indirectly 

evaluating within-group similarities and between-group differences using other attributes. 

Supervised machine learning can solve two types of problems: classification and regression. 

Classification is at the basis of any medical diagnosis problems. Currently, in radiology, we mostly 

rely on radiologists to look through medical images to make diagnoses. With advancements in 

medical imaging and the growing complexity of imaging modalities, it is becoming more and more 

difficult to make crucial decisions in a timely manner4, 12. Regression is another group of problems 

machine learning can solve13. This is when the degree of a continuous outcome is to be modeled, 

such as age, tumor grade, success rate of a surgery or the rate of a disease progression14. Since the 

outcome is continuous, regression problems may require more training dataset to create high-

performing and reliable models, compared to classification problems where the outcome variable 

is categorical. 

One of the most limiting factors in applying machine learning to medical imaging is the 

lack of sample size15-19. Acquiring and handling large amounts of medical data are difficult due to 

issues with recruitment, cost, storage, patient data privacy and more20, 21. Higher dimensional 

datasets that require large storage and working memory, such as high-resolution magnetic 

resonance imaging (MRI) or functional MRI (fMRI), are especially challenging to handle and to 

train machine learning models with. With small sample sizes, the performance and the reliability 

of a trained model are expected to be deficient, because of issues with overfitting22, 23. This limits 

utilizing machine learning to study diseases whose symptoms or biomarkers can only be captured 
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with high dimensional imaging modalities. For example, epilepsy is a neurological disorder that 

causes unprovoked, recurrent seizures in affected patients24, 25. Currently, diagnosing and 

characterizing patients with epilepsy primarily rely on high-dimensional imaging modalities such 

as electroencephalogram (EEG), magnetoencephalography (MEG)25, 26, or MRI27. Acquiring 

enough imaging data from epilepsy patients to build reliable machine learning models is clinically, 

practically, and computationally challenging.  

Machine learning research has two broad goals: first, to reveal useful patterns in a dataset 

related to solving specific problems, and second, to make accurate predictions of unseen data. 

These two goals must accompany each other. For example, imagine that a machine learning model 

has been trained and it has developed a certain algorithm to utilize a certain pattern of data in order 

to make its predictions. Even if the mechanism seems reasonable, if the model’s prediction 

accuracies on unseen data are poor, it is doubtful. On the other hand, if a model shows good 

prediction accuracies, then the subsequent analyses of its underlying algorithms as well as the 

quality of the training dataset must follow, in order to verify that the good performance was not 

resulted from faulty algorithms or biased datasets. An ideal machine learning model shows good 

prediction results, as well as reveals informative patterns that can be reliably used to deliver future 

predictions. And, especially in medicine, it is much more preferred when the extracted patterns are 

understandable and at least partially co-align with prior clinical knowledge, which then potentially 

reveal the underlying biomarkers for the disease. 

It is difficult to achieve satisfactory results with machine learning when sample sizes are 

small15-19. However, a powerful advantage of using machine learning is simply the ability of the 

model to improve itself with more data. Therefore, in machine learning research with limited 

sample sizes, not only the model performance, but also the potential of the model is important: 
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whether the model has room for improvements if more data points are recruited, or else it has 

reached its maximum potential. To make this assessment, it is necessary to study the relationship 

between the model performance and the sample size. 

1.1 Specific Aims 

This work studies the most common form of epilepsy in adults called temporal lobe 

epilepsy (TLE) using machine learning28. High-resolution MRI images as well as 

neuropsychological test data of TLE patients were acquired from the Epilepsy Connectome Project 

(ECP)29, 30, sponsored by the National Institutes of Health (NIH). More details of this study and of 

the dataset can be found in Chapter 2. The specific aims addressed for the completion of this work 

are as follows: 

 

1. Investigate imaging and neuropsychological biomarkers of TLE using machine learning,  

 

2. Build machine learning models to make clinical predictions on TLE patients, 

 

3. Investigate the relationship between machine learning performance and the sample size. 

1.2 Thesis Outline 

In accordance with the aforementioned aims of this work, the remainder of the thesis will be 

structured as follows. 

• Chapter 2 introduces the main research project (ECP) where data from the TLE patients 

as well as most of the healthy control volunteers were taken from. The first section provides 
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a brief introduction of TLE. The following sections summarize the project aims and its 

acquired dataset. 

• Chapter 3 discusses using machine learning to search for biomarkers of TLE patients. The 

first section searches for biomarkers in resting-state fMRI images and the second section 

in neuropsychological test results. The following sections then discuss the potential 

discordance between diagnostic methods developed by humans and by machine learning. 

• Chapter 4 discusses using machine learning for building prediction models on TLE 

patients. The first section introduces the proper methods to assess the generalizability of a 

model performance. Then, in the following sections, some examples of building both 

classification and regression machine learning models are introduced using TLE patients’ 

data. 

• Chapter 5 explores the relationship between machine learning binary classification 

performance and the sample size. First, the relationship is investigated with respect to a 

number of machine learning training hyperparameters, and then, an equation is fitted to 

study the trends. Based on the findings, a number of research directions are proposed for 

future machine learning research with limited sample sizes. 

• Chapter 6 provides a final discussion of the takeaway points from this work and discusses 

potential directions for future work. 
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Chapter 2 

 

Epilepsy Connectome Project (ECP) 

 

A recent NIH-sponsored project known as the Human Connectome Project (HCP)31 which ended 

in 2018 laid out a thorough neuroimaging blueprint of young adults. It collected a comprehensive 

MRI and neuropsychological data from 1,200 healthy young adults between ages of 22 and 35. 

Then the focus moved towards finding abnormalities in patient populations compared to this 

normative dataset available. More than a dozen Connectome projects related to human disease 

were launched and applied HCP-style data collection protocols32, 33. One of these sister studies 

known as the Epilepsy Connectome Project (ECP) investigated temporal lobe epilepsy (TLE) 

population29, 30. Most of the studies included in this work involve data from the ECP and therefore, 

in this chapter, a brief introduction to the study is provided. 

2.1 Temporal Lobe Epilepsy (TLE) 

Epilepsy, a brain disorder characterized by recurring seizures, affects an estimated 1.2% of 

the United States population (3.4 million persons) and is associated with a high risk of cognitive 

and psychosocial dysfunction, and enormous healthcare costs24, 34. The number of affected people 
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worldwide is 50 million, which is expected to increase further due to the rising life expectancy and 

the increasing proportion of people surviving epilepsy-provoking insults, such as birth trauma, 

traumatic brain injury (TBI), brain infection and stroke35. Even with adequate diagnosis and 

treatment, 30 – 40% of epilepsy patients still experience recurring seizures that are uncontrolled 

by medication34, 36, who are then considered to have refractory epilepsy. Powerful imaging tools 

are now available for quantitatively characterizing the structural and functional connections 

between brain regions that make up epileptic networks37-39, providing a promising new approach 

for understanding, predicting, and treating refractory epilepsy. 

TLE is the most common form of epilepsy in adults, and the largest group among those 

with medically refractory seizures28. It is characterized by seizure activities emanating from the 

temporal lobe, which is where the most damage to the structural brain occurs, although this damage 

can extend to thalamus, insula, and other cortical regions40-42. Resting-state fMRI analyses have 

also demonstrated both temporal and extra-temporal functional connectivity abnormalities43, 44. 

Chronic TLE is associated with abnormalities in cognition, brain structure and brain connectivity 

in midlife45-48. Finding reliable biomarkers is crucial in prevention therapy and drug development, 

but has so far only been modestly successful49, 50. 

2.2 Enrollment Criteria 

The ECP (grant number U01NS093650) is a two-site, prospective research project based 

in the Medical College of Wisconsin and the University of Wisconsin-Madison. The enrollment 

period spanned from 2015 and ended in 2019. The Medical College of Wisconsin and Froedtert 

Hospital Institutional Review Board approved the use of human participants for this study. All 

participants provided written informed consent prior to their participation. 
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TLE patients were enrolled if they were between the ages of 18 and 60 (inclusive), had 

tested full-scale intelligence quotient (IQ) at or above 70, spoke English fluently, with no medical 

contraindications to MRI. The diagnosis of TLE was supported by two or more of the following: 

1) described or observed clinical semiology consistent with seizures of temporal lobe origin, 2) 

EEG evidence of either temporal intermittent rhythmic delta activity (TIRDA) or temporal lobe 

epileptiform discharges, 3) temporal lobe onset of seizures captured on video EEG monitoring, or 

4) MRI evidence of mesial temporal sclerosis or hippocampal atrophy. Patients with any of the 

following were excluded: 1) lesions other than mesial temporal sclerosis causative for seizures, 

and 2) an active infectious/autoimmune/inflammatory etiology of seizures. The TLE group was a 

combination of refractory and better-controlled patients (45% reported having at least one seizure 

during the past year).  

The controls were healthy adults between the ages of 18 and 60. Exclusion criteria included: 

Edinburgh laterality (handedness) quotient less than +50; primary language other than English; 

history of any learning disability, brain injury or illness, substance abuse, or major psychiatric 

illness (major depression, bipolar disorder, or schizophrenia); current use of vasoactive 

medications; and any medical contraindications to MRI. 

2.3 Data Types 

2.3.1 Neuropsychological Assessment 

All controls and TLE patients underwent neuropsychological evaluation targeting 

assessment of intelligence, language, visuoperceptual/constructional skills, learning and memory, 

executive functions, and cognitive/psychomotor speed. A total of 18 cognitive indices resulted 

which included assessment of intelligence (Wechsler Abbreviated Scale of Intelligence-2 [WASI-



9 
 

II] Vocabulary and Block Design subtests)51, verbal learning and memory (Rey Auditory Verbal 

Learning Test [RAVLT]) including total words learned across trials52, object naming (Boston 

Naming Test)53, letter fluency (Controlled Oral Word Association Test)54, 55, semantic fluency 

(Animal Naming)55, 56, spatial orientation (Judgement of Line Orientation)57, face recognition 

(Facial Recognition Test)57, speeded fine motor dexterity (Grooved Pegboard, dominant and non-

dominant hands)58, and selected subtests from the NIH Toolbox-Cognitive Battery including the 

Pattern Comparison Processing Speed (PCPS)59, 60, Dimensional Change Card Sort, List Sorting 

Working Memory, Flanker Inhibitory Control and Attention, Picture Vocabulary, Oral Reading 

Recognition, and Picture Sequence Memory tests.  

2.3.2 Neuroimaging 

MRI was performed on 3T GE (General Electric) 750 scanners at both institutions. T1-

weighted structural images were acquired using magnetization prepared gradient echo sequence 

(MPRAGE, repetition time [TR]/echo time [TE] = 604ms/2.516ms, inversion time = 1060.0ms, 

flip angle = 8°, field-of-view = 25.6cm, voxel size = 0.8mm isotropic). Cube T2-weighted 

structural images were also acquired (TR/TE = 2,500ms/94.641ms, flip angle = 90°, field-of-view 

= 25.6cm, 0.8mm isotropic). 

Resting-state fMRI images were acquired using whole-brain simultaneous multi-slice 

imaging61 (8 bands, 72 slices, TR/TE = 802ms/33.5ms, flip angle = 50°, matrix = 104 ×104, field-

of-view = 20.8cm, voxel size = 2.0mm isotropic) and a Nova 32-channel receive coil. The 

participants were asked to fixate on a white cross at the center of a black screen during the scans 

for better reliability62. Time-series from four 5-minute resting-state fMRI scans acquired in a single 

session were concatenated for more reliable analysis63. 
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2.4 Neuroimaging Data Processing 

2.4.1 Preprocessing 

Imaging data were pre-processed using the HCP minimal processing pipelines version 

3.4.064 which is primarily based on FreeSurfer65 and FSL (FMRIB Software Library)66. In brief, 

the function of this pipeline is to nonlinearly register T1- and T2-weighted images to the MNI 

(Montreal Neurological Institute) space, segment the volume into predefined structures, 

reconstruct white and pial cortical surfaces, and perform FreeSurfer's standard folding-based 

surface registration to a surface atlas (the “fsaverage” template). The functional portion of the 

pipelines removes nonlinear spatial distortions using spin echo unwarping maps, realigns volumes 

to compensate for subject motion, registers the fMRI data to the structural images, reduces the bias 

field, normalizes the 4D image to a global mean, masks the data with the final brain mask and 

maps the voxels within the cortical gray matter ribbon onto the native cortical surface space. More 

details on the HCP processing pipelines can be found in Glasser et al.64 

2.4.2 Glasser Parcellation 

The Glasser parcellation atlas67 was used for studying resting-state fMRI images 

throughout this study. This parcellation is a recent development from the HCP consortium for 

surface-based morphometry. It consists of 180 cortical parcels per hemisphere. These parcels were 

delineated using a multi-modal approach and the authors reported that the parcellation is highly 

reproducible67. One limiting factor is that this excludes subcortical brain regions. Therefore, 19 

subcortical regions from the FreeSurfer subcortical segmentation68 were additionally analyzed: a 

total of 379 regions of interest per brain. 
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Chapter 3 

 

Searching for Biomarkers of Temporal Lobe 

Epilepsy using Machine Learning 

 

 

When machine learning results are reported, what catches the public eyes is the prediction accuracy. 

Whether or not a machine can perform better in a particular task compared to humans is typically 

the question that generates excitement and disappointment from the crowds. However, what is 

almost equally important is how the machine was able to achieve the superior accuracy. A machine 

learning research not only focuses on producing the best performance, but also investigates the 

underlying features that drive the performance. In medical imaging or medicine in general, this is 

especially important, because this may reveal important biomarkers of a disease that humans were 

not able to decipher. Then the underlying features highlighted by machine learning models can be 

compared with the prior clinical knowledge to better characterize the disease in question. This 

chapter provides a few examples of using machine learning for searching for biomarkers of TLE 

patients.  
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3.1 Resting-state Functional Connectivity§ 

The human brain is a complex dynamic system characterized by spontaneous oscillations 

in multiple frequency bands69. Traditionally, the analysis of resting-state fMRI data focused on the 

low-frequency oscillation range (LFO; 0.01 – 0.1Hz, although exact cutoffs vary slightly), because 

the signals in this range seemed to be less contaminated by low/high frequency noise and to capture 

relevant resting-state information70. Some investigators have tested narrower frequency bands 

within and around the LFO, labeled Slow-5 (0.01 – 0.027 Hz), Slow-4 (0.027 – 0.073 Hz), Slow-

3 (0.073 – 0.198 Hz) and Slow-2 (0.198 – 0.50 Hz) by Buzsáki et al.69. Zuo et al. suggested that 

the Slow-5 and Slow-4 bands reflect signal changes from the gray matter, while Slow-3 and Slow-

2 signal changes from the white matter71 (Figure 1). A recent work by Gohel & Biswal revealed 

that functional integration between brain regions at rest occurs in multiple frequency bands72. 

 

Figure 1. Functional MRI Frequency Bands. It has been suggested that the Slow-5 and Slow-4 

bands reflect signal changes from the gray matter (GM), while Slow-3 and Slow-2 from the white 

matter (WM)71. 0.625Hz is the highest frequency that can be captured by a functional MRI scan 

with the repetition time (TR) of 0.8 seconds. †LFO = low frequency oscillations. 
 

 
§ Portions of this work have been published in: Hwang G, Nair VA, Mathis J, Cook CJ, Mohanty R, Zhao 

G, Tellapragada N, Ustine C, Nwoke OO, Rivera-Bonet C, Rozman M, Allen L, Forseth C, Almane DN, 

Kraegel P, Nencka A, Felton E, Struck AF, Birn R, Maganti R, Conant LL, Humphries CJ, Hermann B, 

Raghavan M, DeYoe EA, Binder JR, Meyerand E, Prabhakaran V. Using low-frequency oscillations to 

detect temporal lobe epilepsy with machine learning. Brain Connect. 2019;9(2):184-93 
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Based on these findings, our hypothesis was that seizure activity in TLE patients, which 

generally occurs at much higher frequencies than these slow bands, produces alterations in grey 

matter connectivity that can be detected at lower frequencies with fMRI. Since the raw voxel-

based signal data are 4-dimensional, highly complicated, and very large in size, three summary 

measures were calculated: resting-state functional connectivity (RSFC)70, amplitude of low 

frequency fluctuations (ALFF)70, 73, and fractional ALFF (fALFF)74. RSFC measures correlations 

between blood-oxygen-level dependent (BOLD) time series of two brain regions, while ALFF and 

fALFF capture intensity-based measures of the signal changes at a single region of interest. The 

goal was to reveal which combinations of a resting state measure and a frequency band capture the 

most valuable information to discriminate between TLE patients and healthy controls. 

Previous studies that investigated these measures in TLE patients reported abnormalities 

in different regions of the resting brain. These abnormalities include decreased RSFC within the 

epileptic temporal lobe, between hippocampi, and between the hippocampus and the orbito-frontal 

region75, and increased RSFC in the lateral portions of the non-epileptic hemisphere76. Zhang et 

al.77 reported that TLE patients with medial temporal sclerosis (a common structural abnormality 

in TLE) show increased ALFF in the medial temporal lobe and thalamus and decreased ALFF in 

the default-mode network. A difference in fALFF was noted between left and right TLE patients 

in the thalamus78.  

To create a reliable machine learning model, one needs to select an informative set of 

features for training, then narrow this set down to key components79, 80. Therefore, knowing what 

information is useful is essential, but typically difficult to determine a priori. In this section, 20 

different combinations of resting fMRI measures and frequency bands were examined for the 

machine learning training. Note that it is not necessary to consider the "All" band with fALFF, 
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because fALFF is defined as ALFF of a specific frequency band over that of the “All” band. A 

feature selection method using a least absolute shrinkage and selection operator (Lasso)81 was 

employed to remove uninformative features82, 83. 

3.1.1 Participants 

Data from 60 TLE patients (mean age = 39.5 ± 12.0 years, 34 females, five left-handed, 

epilepsy duration = 18.7 ± 14.4 years, 38 drug-resistant TLE), and 59 healthy controls (mean age 

= 36.0 ± 14.4 years, 32 females, all right-handed) were analyzed. The two groups did not differ in 

the mean age (p = 0.16, two-tailed t-test), and gender ratio (p = 0.79, Chi-squared test). The patient 

group consisted of 29 individuals with left TLE, 15 with right TLE, and four who had bilateral 

onsets based on either interictal EEG, imaging (hippocampal sclerosis) or ictal monitoring. Twelve 

patients had uncertain lateralization. To closely match the mean age and gender ratio between the 

TLE and control samples, 12 of the healthy control data were taken from the Alzheimer’s Disease 

Connectome Project (ADCP)84, which used the same set of MRI scanners and the same imaging 

protocols for structural and resting-state fMRI scans as the ECP. ADCP is also an NIH-sponsored 

disease Connectome project that launched in 2016 with aims to study populations with 

Alzheimer’s disease and mild cognitive impairment (MCI). The Medical College of Wisconsin 

Institutional Review Board has approved the use of human participants for ADCP and the sharing 

of de-identified datasets from this study.  

3.1.2 Data Processing 

In addition to the pre-processing described in Section 2.4.1, additional processing was 

performed using AFNI (Analysis of Functional NeuroImages)85, which included motion regression 

using 12 motion parameters, and regression-based removal of signal changes in the white matter, 
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cerebrospinal fluid, and the global signal. Bandpass filtering was applied to select frequency bands 

of interest: Slow-2, Slow-3, Slow-4, Slow-5, Slow-4+5 (covering both Slow-4 and Slow-5), LFO, 

and All (no bandpass filtering; approximately 0.00 – 0.62Hz) (Figure 1). 379 time series signals 

from the combined parcellation scheme described in Section 2.4.2 have been extracted per subject. 

Pairwise Pearson correlations were computed to generate RSFC matrices to be used as 

machine learning training features. For ALFF, the filtered resting-state fMRI signals in the time 

domain were Fourier transformed to the frequency domain, and the mean of the square root values 

within the frequency range of interest was calculated73. fALFF was calculated as the ALFF of the 

selected frequency range over the ALFF of the All range74. For ALFF and fALFF, the number of 

possible features in the training was 379 for each. 

3.1.3 Motion Outliers 

Resting-state fMRI images can be heavily affected by subject motion in the scanner86. 

However, it is also not desired to build a classifier model based on highly selected data, because 

an ideal model should be able to classify participants despite moderate levels of motion in the 

scanner. To achieve this, the machine learning model needs to be exposed to a sufficient number 

of data points contaminated by motion. One needs to be cautious, however, not to train a model 

that classifies based on the differences between high and low motion, instead of between TLE 

patients and healthy controls. 

Therefore, instead of performing a rigorous motion scrubbing, we used three different 

motion metrics to determine if a MRI run was acceptable: relative mean root-mean-squared (RMS), 

absolute mean RMS, and derivative of variance RMS (DVARS)86, 87. These are common quality 

control measures for resting-state fMRI scans, where the RMS’s measure pure subject motion, 

while DVARS measures the combination of motion and the scanner instabilities. These three 
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motion measures were calculated per each run of five minutes, and transformed into the standard 

scores. Subjects who had z > 3 on any of the three measures in any of the four runs being 

concatenated were defined as motion outliers (Figure 2).  

 

Figure 2. Histogram of Mean DVARS by Runs. Most subjects showed 

acceptable in-scanner motion, while a few outliers existed, with respect to a metric 

called the derivative of variance root-mean-squared (DVARS). Subjects with high 

in-scanner motion were excluded based on a criteria described in Section 3.1.3.  

3.1.4 Machine Learning Models 

All machine learning analyses in this section were done in MATLAB R2016a with the 

Statistics and Machine Learning Toolbox88. Three different binary classifiers were examined: 

support vector machine (SVM)89, linear discriminant analysis (LDA)90, and naïve Bayes (NB)91 

classifiers. These three traditional classifiers were trained instead of one to get a general sense of 

the expected machine learning classification performance. 

Leave-one-out-cross-validation (LOOCV) was used to estimate model performance92. In 

each LOOCV loop, one participant was taken out and the machine learning model was trained 

with 𝑁 − 1 participants. Then the left out participant was used as a testing sample for the trained 
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model. This procedure was repeated until every participant had been left out once. The 

classification performance was averaged to give the LOOCV accuracy. This method is known to 

give the most unbiased estimate of the test error and is a good method for small sample cases92, 93, 

which will be discussed more in Section 5.2.5. Receiver operating characteristic area-under-the-

curve (AUC) was also computed by adjusting the misclassification cost function during the 

training. A random classifier would give 50% LOOCV accuracy with AUC = 0.5. 

3.1.5 Feature Selection 

To reduce feature dimensionality, Lasso regression analysis was performed on the training 

set in each cross validation loop, with the regularization coefficient (lambda) at 0.181, 82. Only 

features with non-zero Lasso coefficients were used in the training of the machine learning models. 

This technique was selected over other common feature selection techniques such as principle 

component analysis (PCA)94 in order to preserve the original features in the training. Features that 

received non-zero coefficients in all 119 cross validation loops were marked for further analysis. 

Recursive feature elimination95 was employed within each loop based on the Lasso coefficients to 

further reduce the dimensionality. 

3.1.6 Results 

The highest LOOCV classification accuracies using RSFC were in the low to mid-80%, 

with the AUC close to 90%. The highest cross validation accuracies were only in the mid-70% 

using ALFF and fALFF measures. These results are summarized in Table I. 

Using RSFC, the Slow-4+5 band produced the best overall model performance in 

classifying the TLE patients and healthy controls, with around 83% LOOCV accuracy. The highest 
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cross validation accuracies from the three machine learning models were also consistent: 83.2 ± 

1.4%. Using ALFF and fALFF, LOOCV accuracies were not as consistent as using RSFC.  

19 Slow-4+5 RSFC features were selected by the Lasso feature selection every time in all 

119 cross validation loops, and these are summarized in  

Table II, as well as shown in Figure 3. Only 5 of these features also received significant 

p-values (Benjamini-Hochberg false discovery rate [FDR] corrected based on the standard alpha 

level of 0.05)96 from the group t-test. Connection between right fusiform face complex (R_FFC) 

and right area posterior 9-46v (R_p9-46v, a part of Brodmann area 46) was the most significant 

feature based on both Lasso and t-test (corrected p < 0.001) analyses, and was stronger (less 

negative correlation) in TLE compared to the healthy group (Figure 4). 

The 19 significant features did not include any exclusively temporal lobe connections. 

Repeating the analysis using only Slow-4+5 RSFC within the temporal lobe (24 regions, 276 

connections), the maximum LOOCV accuracy was only 68.9%. 
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Table I. Classification Results of Separating TLE Patients and Healthy Controls. The three resting-state measures and seven 

frequency bands tested are organized in the two leftmost columns. The three traditional machine learning models trained are organized 

in the top row. The accuracies are the LOOCV accuracies. “Features” columns indicate the number of features selected from the 

recursive feature elimination feature selection. Best LOOCV accuracies were achieved with Slow-4+5 RSFC features. †LFO = low 

frequency oscillations. AUC = area under the curve. 
 

Measure 
Frequency 

Band 

SVM LDA NB 

Accuracy AUC Features Accuracy AUC Features Accuracy AUC Features 

RSFC 

Slow2 57.14 0.52 57 63.87 0.62 3 61.34 0.60 3 

Slow3 65.55 0.67 14 63.03 0.62 12 63.03 0.61 21 

Slow4 52.10 0.44 3 53.78 0.43 3 52.94 0.42 3 

Slow5 75.63 0.80 10 75.63 0.80 8 76.47 0.79 11 

Slow4+5 84.87 0.86 31 81.51 0.86 36 83.19 0.88 29 

LFO 72.27 0.72 5 69.75 0.71 5 73.95 0.79 60 

All 72.27 0.72 37 69.75 0.73 27 68.07 0.69 26 

ALFF 

Slow2 52.94 0.43 25 53.78 0.49 34 57.98 0.56 33 

Slow3 63.03 0.59 4 67.23 0.69 1 66.39 0.67 1 

Slow4 69.75 0.71 17 68.91 0.72 17 69.75 0.73 17 

Slow5 78.99 0.81 11 77.31 0.81 13 73.11 0.76 12 

Slow4+5 64.71 0.65 3 67.23 0.68 3 64.71 0.67 3 

LFO 73.95 0.72 14 78.15 0.81 14 69.75 0.72 15 

All 62.18 0.56 6 61.34 0.61 8 63.87 0.64 10 

fALFF 

Slow2 53.78 0.46 22 59.66 0.58 2 60.50 0.57 2 

Slow3 54.62 0.42 12 73.11 0.78 6 72.27 0.75 6 

Slow4 64.71 0.55 2 63.87 0.64 2 65.55 0.65 2 

Slow5 70.59 0.70 6 68.07 0.70 6 64.71 0.69 2 

Slow4+5 56.30 0.46 6 55.46 0.53 25 56.30 0.53 24 

LFO 58.82 0.50 16 55.46 0.54 3 63.03 0.57 20 
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Table II. Slow-4+5 Features Repeatedly Selected by Lasso Feature Selection. These 19 Slow-4+5 connections were selected by 

Lasso feature selection repeatedly in all 119 cross validation loops. Features with positive Lasso weights were stronger in TLE patients, 

and vice versa for those with negative weights. Only 5 out of 19 features showed significant group differences based on the t-test. Feature 

names and abbreviations follow the nomenclature in Glasser parcellation67. †FDR = false discovery rate. 
 

Lasso Features t-test 

No From To Lasso Weight p_FDR 

1 R_Fusiform Face Complex R_FFC R_Area posterior 9-46v R_p9-46v 0.713 <0.001*** 

2 R_RetroSplenial Complex R_RSC R_Area 46 R_46 -0.622 0.003** 

3 L_Entorhinal Cortex L_EC L_Area V3CD L_V3CD 0.584 > 0.1 

4 L_Area 11l L_11l L_Area 52 L_52 0.575 > 0.1 

5 R_RetroSplenial Complex R_RSC R_Rostral Area 6 R_6r -0.552 > 0.1 

6 L_Area 2 L_2 R_Area PGs R_PGs 0.451 0.087 

7 R_Area posterior 9-46v R_p9-46v R_Area PH R_PH 0.377 0.005** 

8 L_Area 9 anterior L_9a L_Amygdala L_Amygdala -0.376 0.087 

9 L_VentroMedial Visual Area 3 L_VMV3 R_Frontal Opercular Area 4 R_FOP4 0.336 0.063 

10 L_Area 23d L_23d L_Hippocampus L_H -0.297 0.095 

11 L_Area OP4/PV L_OP4 L_Area PFt L_PFt -0.292 0.039* 

12 L_Ventral Visual Complex L_VVC R_Ventral Visual Complex R_VVC -0.290 0.002** 

13 R_Fusiform Face Complex R_FFC R_Medial Belt Complex R_Mbelt 0.274 > 0.1 

14 L_Area anterior 10p L_a10p R_Area IFJa R_IFJa -0.260 > 0.1 

15 L_Premotor Eye Field L_PEF L_ParaBelt Complex L_Pbelt -0.231 > 0.1 

16 L_Primary Auditory Cortex L_A1 R_Area 8Av R_8Av -0.225 > 0.1 

17 R_Area IntraParietal 2 R_IP2 R_Area PGs R_PGs -0.214 > 0.1 

18 R_Medial Area 7P R_7Pm R_Area 5m R_5m 0.201 > 0.1 

19 R_Area 31p ventral R_31pv R_Area 46 R_46 -0.191 0.057 
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Figure 3. Slow-4+5 Features Repeatedly Selected by Lasso Feature Selection. 18 significant Slow-4+5 RSFC cortical features 

based on Lasso feature selection are shown. Subcortical connection between left area 9 anterior (L_9a) and left amygdala is not shown 

in the picture from  
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Table II. This picture suggests that the changes in the temporal lobe epilepsy (TLE) brains are throughout the whole brain, not only in 

the temporal lobes. The background brain images have been generated with the Connectome Workbench and show Glasser 

parcellation.67 
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Figure 4. Most Contributing Connection to Classification Model. This 

histogram shows the distributions of pearson correlations between signals from 

right fusiform face complex (Right FFC) and right area posterior 9-46v (Right 

p9-46v). An increased correlation, or decreased negative correlation, was found 

in the temporal lobe epilepsy (TLE) group, and this was the most significant 

feature based on both Lasso and t-test analyses. 

3.1.7 Discussion 

Seven frequency ranges with three different measures of the resting functional brain signals 

were used to train three different traditional machine learning models. This extensive search for 

good training features was an attempt to cover all possible measures using the resting-state fMRI 

images. In brief, the results suggest that functional brain alterations in the TLE patients are indeed 

detectable and are captured best by RSFC using the Slow-4+5 range. The machine learning models 

were able to use this information to separate TLE patients from age- and gender-matched healthy 

controls in our samples with approximately 83% cross validation accuracy (more discussion on 

the difference between a cross validation accuracy and a test accuracy found in Section 4.1)97. Also 

notably, the features separating between the TLE patients and healthy controls were located 
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throughout the entire brain, and not just within the temporal lobe, which is consistent with previous 

findings98, 99. 

There have been many papers in the recent literature describing the development of reliable 

machine learning models to make more accurate decisions from complex clinical datasets. For 

example, there are reports on using machine learning to predict post-surgical outcome of TLE 

patients using non-imaging data100, structural MRI data101, 102, or intracranial EEG103. Machine 

learning has also been applied in determining the lateralization of TLE seizure focus, based on 

resting-state fMRI78 or positron emission tomography (PET)104, and also in separating TLE 

patients and healthy controls using structural imaging105, diffusion imaging106, or both107. It was 

also applied in separating epilepsy patients overall and healthy controls using RSFC108, 109.  

Without machine learning, or a similar automated method, humans are limited in their 

ability to comprehend high-dimensional data, especially when the patterns are complex. Also, the 

true nature of a clinical question may be significantly non-linear than one may assume at the outset. 

Instead of trying to extract multi-dimensional patterns from a complex set of features by hand, one 

can consult machine learning models. 

One of the biggest limitations of training traditional machine learning models is the need 

to select input features. In most cases, we do not know a priori what combination of features would 

contain the most useful information for the models. In this study, a Lasso-based feature selection 

method along with recursive feature elimination was employed, in order to preserve original 

features for the feature analysis. There are other feature reduction methods that aim to maximize 

classification accuracies (more discussion on feature reduction in Section 5.2.2). At present, 

identifying the best set of features and the correct non-linearity of the model (or kernel) remains a 

trial-and-error process. It is advisable to think broadly, considering a wide range of potential 
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features available, while actively narrowing it down so that the models are not clogged with noisy 

information. 

In this section, three traditional machine learning models were trained, in order to get a 

general sense of the expected machine learning classification performance using traditional 

techniques. The best overall cross validation accuracy was achieved with the Slow-4+5 RSFC 

features and it was very comparable between the three classifiers. These traditional models are 

more straight-forward and understandable compared to highly non-linear models such as deep 

learning. Therefore, they allow us to easily analyze the underlying features contributing the most 

to the models. 

The set of Slow-4+5 RSFC features that contributed most to the models, as visualized in 

Figure 3, suggested widespread functional connectivity alterations in TLE patients. This list 

included no exclusively temporal lobe connections, perhaps due to the heterogeneity of our TLE 

patient group. It is notable that using the whole-brain connectivity yielded better classification 

results, compared to using temporal lobe connections alone. The decreased negative connection 

between right fusiform face complex and right area posterior 9-46v found in TLE patients is 

consistent with the findings of Riley et al., who reported altered functional connectivity of the 

cortical face processing networks in TLE110. Abnormal structure and function of the retrosplenial 

cortex have also been reported111, 112. These results are promising for future applications of 

machine learning in diagnosing and understanding the basic pathophysiology of TLE.  
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3.2 Neuropsychological Test§ 

The domains of memory, language and executive function are among the most studied 

cognitive complications of the epilepsies45, 113, 114 with an increasing number of imaging 

investigations focused on the disrupted regions and networks associated with these cognitive 

anomalies115-120. Psychomotor slowing is also a common but arguably less investigated cognitive 

abnormality of the epilepsies. While known to be exacerbated by many anti-epileptic drugs 

(AED)121-123, cognitive and/or psychomotor slowing is evident in new onset adult and pediatric 

patients prior to administration of AEDs124, 125, and has been observed to persist following 

remission of epilepsy and cessation of medication treatment126, 127. Thus, cognitive and 

psychomotor slowing is an inherent neuropsychological morbidity of the epilepsies.  

The relative salience of slowed processing speed relative to other potential cognitive 

abnormalities in epilepsy remains uncertain. Abnormalities in memory, language and executive 

function are of clear importance, but the set of abnormalities that most reliably discriminates 

persons with epilepsy compared to healthy controls, and the role of slowing of processing speed 

in this discrimination, remains to be determined. To address this issue we utilize machine learning 

to characterize the relative power of various cognitive abilities, including processing speed, to 

classify or discriminate patients with epilepsy compared to controls. As machine learning builds 

multidimensional models using multiple variables, it offers the ability to analyze 

neuropsychological measures together as a group, instead of individually. For example, a 

combination of several, individually non-significant features may classify two groups better than 

 
§ Portions of this work have been published in: Hwang G, Dabbs K, Conant L, Nair VA, Mathis J, 

Almane DN, Nencka A, Birn R, Humphries C, Raghavan M, DeYoe EA, Struck AF, Maganti R, Binder 

JR, Meyerand E, Prabhakaran V, Hermann B. Cognitive slowing and its underlying neurobiology in 

temporal lobe epilepsy. Cortex. 2019;117:41-52 
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the most significant feature itself. In this investigation, we apply SVM to standardized 

neuropsychological test scores to classify groups (epilepsy and controls) and identify the salient 

predictors.  

3.2.1 Participants 

Research participants included 55 TLE patients and 58 healthy controls from the ECP. The 

difference in the mean age (p < 0.01) between the TLE (range 19 – 60 years) and control groups 

(range 18 – 56 years) was addressed by using age-corrected cognitive scores. The two groups did 

not significantly differ with regard to gender (p = 0.85), with a modest trend in years of education 

(p = 0.06). In the TLE group, 14 subjects had right TLE, 26 had left TLE, and 2 had bilateral onsets 

based on either interictal EEG, imaging (hippocampal sclerosis) or ictal monitoring. Thirteen 

subjects had uncertain lateralization. TLE participants were taking 0 to 4 AEDs with a mean of 

2.1, with chronic epilepsy (mean = 20 years) characterized by onset in late adolescence (mean = 

19 years). A subset of the sample underwent Wada testing or fMRI language assessment and none 

showed reversed cerebral dominance. 

3.2.2 Processing Speed 

At its most basic level, processing speed can be defined as either the amount of time it 

takes to process a specific quantity of information, or the quantity of information that can be 

processed within a specific unit of time128. There has been little consistency in the metrics used to 

assess cognitive and psychomotor slowing in epilepsy, as speed-based performances have been 

assessed with a variety of measures including simple and complex reaction time, finger tapping, 

mental scanning, motor assembly tasks, and others129. One common approach, across diverse 

disorders, has been the use of digit symbol substitution tests, with applications to examine speeded 
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performance in schizophrenia130-132, multiple sclerosis133, normal aging134, 135 as well as epilepsy136. 

Further investigation of the task has shown that it is driven in part by speed-dependent processes 

(graphomotor speed, perceptual speed), with contributions of visual scanning efficiency, 

learning/memory and executive function137, 138. 

An alternative measure of central processing speed is the Pattern Comparison Processing 

Speed Test (PCPS) of the NIH Toolbox Battery-Cognition Battery (NIHTB-CB) which is an 

efficient visually-based measure of choice reaction time adapted for computerized presentation. 

This test has applicability across the lifespan, sound test-retest reliability, appropriate age-related 

performance characteristics, and demonstrated construct validity59. Furthermore, there is less 

confounding of psychomotor issues with quantification of central information processing speed 

compared to digit symbol substitution tests.  

PCPS requires the subject to identify whether two simultaneously presented visual patterns 

are the “same” or “not the same”. Patterns are either identical or vary in: 1) color, 2) adding/taking 

something away, or 3) one versus many. The score reflects the number of correct items (out of a 

possible 130) completed in 90 seconds59, 60. The distribution of PCPS scores for the TLE and 

control groups is shown in Figure 5. 
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Figure 5. Pattern Completion Processing Speed Score Histogram. TLE 

patients (red) overall scored significantly lower than the age- and education-

matched healthy controls (blue) on Pattern Completion Processing Speed 

(PCPS). The scores are the age-corrected standard scores. The vertical lines 

indicate the median scores for each group, which were 92 and 118. 

3.2.3 Neuropsychological Test Results 

Fourteen of the neuropsychological tests from Section 2.3.1 that were administered to both 

TLE patients and healthy controls have been selected to be the training features to machine 

learning. For all 14 measures the age-corrected standard scores were used. All test scores were 

normally distributed in both TLE and control groups (p’s > 0.15, Kolmogorov-Smirnov test), 

except for the Judgement of Line Orientation test (p’s < 0.05). Therefore, the Wilcoxon Rank-Sum 

Test was performed on this test and two-sample t-tests on the others. 

TLE patients as a group performed significantly worse on 13 of the 14 administered 
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neuropsychological tests (Table III, Columns 5 and 6). PCPS had the largest effect size (1.27) 

followed by Grooved Pegboard (dominant hand 1.12, non-dominant hand 1.07), WASI-II 

Vocabulary (0.91), RAVLT (total words 0.89, delayed recall 0.86), and Dimensional Change Card 

Sort Test (0.86). Medium effect sizes were evident for WASI-II Block Design (0.78), Judgement 

of Line Orientation, and Boston Naming Test (0.71). Small effect sizes were observed for Flanker 

(0.49), Working Memory (0.48), Semantic Fluency (0.45) and Controlled Oral Word Association 

(0.24).  

There were few lateralized cognitive findings. 26 left TLE and 14 right TLE patients did 

not differ in age (p > 0.10), gender ratio (p = 0.50), education (p = 0.40), AED count (p = 0.96), 

or duration of epilepsy (p = 0.81). The right TLE group performed significantly worse than the left 

TLE group on the Dimensional Change Card Sort Test (p = 0.027, t = 2.30). There were no other 

significant lateralized cognitive findings. The majority of cognitive tests were significantly lower 

than controls in both the left TLE (11 of 14 tests, all p’s < 0.02) and right TLE (13 of 14 tests, all 

p’s < 0.03) groups. Thus, cognitive anomalies were generalized in nature in the context of 

lateralized epilepsy.  

Spearman correlations examined the relationship between the number of AEDs and 

cognitive performance. AED effects were observed on measures of dominant and non-dominant 

hand speeded fine motor dexterity (ρ’s = -0.287 and -0.271, p’s = 0.034 and 0.046 respectively) 

and working memory (ρ = -0.266, p = 0.049). There were no other significant associations between 

AED number and cognition including PCPS (ρ = 0.122, p = 0.374). 

3.2.4 Machine Learning Feature Selection 

The ability of the 14 neuropsychological tests to classify TLE and healthy control 

participants was tested using machine learning. SVM binary classification models89 were trained 
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using the z-transformed age-corrected standard scores as the features. Figure 6 provides a diagram 

for the SVM training and testing procedures employed in this study. 10-fold cross validation was 

used, where 10% of the samples were kept as a testing set. Randomization seeds were used for 

repeatability. When feature selection was on, a cross validation loop was added within the 

procedure and the feature with the lowest average absolute weight (or smallest contribution to the 

classification model) was removed per loop (recursive feature elimination). The feature selection 

continued until the 10-fold classification loss reached the minimum. This survived “optimum set” 

of features was then used in the final testing. The 10-fold test accuracy was recorded. This entire 

procedure in Figure 6 was repeated 10 times (10 iterations), both with and without the feature 

selection. The optimum sets of features were then analyzed based on their normalized weights, 

where the maximum absolute weight was one.
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Table III. Neuropsychological Tests by Contribution to Machine Learning Classification. The 14 neuropsychological test 

scores are sorted by their average absolute weights (Column 8) from the support vector machine (SVM) analysis without feature 

selection. Pattern Completion Processing Speed (PCPS) is the biggest contributor to the classification model, both collectively 

(SVM weight) and individually (effect size). †SD = standard deviation. 
  

No Feature Name 
TLE                

(Mean ± SD) 

Control          

(Mean ± SD) 

2 sample t-test           

p-value 

Effect Size d 

(Cohen’s) 

SVM 

Weight 

1 Pattern Completion Processing Speed 89.24 ± 16.16 102.78 ± 14.18 <0.001 1.27 0.66 

2 Grooved Pegboard Dominant Hand 87.35 ± 16.69 100.72 ± 14.27 <0.001 1.12 0.47 

3 Dimensional Change Card Sort 86.87 ± 15.30 97.88 ± 15.68 <0.001 0.86 0.46 

4 Boston Naming Test 96.47 ± 13.28 108.00 ± 16.19 <0.001 0.71 0.41 

5 RAVLT Delayed Recall 96.42 ± 10.59 107.19 ± 12.85 <0.001 0.86 0.36 

6 Grooved Pegboard Non-Dominant Hand 90.22 ± 17.49 97.95 ± 17.13 <0.001 1.07 0.36 

7 Flanker Inhibitory 99.49 ± 16.18 109.27 ± 9.24 0.010 0.49 0.28 

8 WASI-II Vocabulary 85.73 ± 14.98 102.16 ± 14.33 <0.001 0.91 0.26 

9 RAVLT Total Words 89.27 ± 14.32 104.14 ± 13.38 <0.001 0.89 0.24 

10 Working Memory 90.09 ± 17.98 93.93 ± 14.38 0.013 0.48 0.23 

11 WASI-II Block Design 94.13 ± 16.46 108.34 ± 16.71 <0.001 0.78 0.19 

12 Controlled Oral Word Association 84.80 ± 12.73 91.33 ± 13.73 0.214 0.24 0.18 

13 Semantic Fluency 94.91 ± 16.54 102.36 ± 14.66 0.019 0.45 0.16 

14 Judgement of Line Orientation 89.11 ± 21.53 115.14 ± 19.24 <0.001 0.74 0.16 
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Figure 6. Diagram of 10-fold Machine Learning Training and Testing. Without feature selection (top half), a support 

vector machine (SVM) model gets trained on 90% of the entire samples and tested on the other 10%, which is repeated 10 

times (exhaustive). With feature selection (bottom half), the training set is further split and the cross validation (CV) takes 

place. In the case of recursive feature elimination, CV is repeated, every time with the lowest weighted feature removed. The 

set of features that produce the best CV accuracy (“optimum set”) is kept to train the entire training set for the final testing.
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3.2.5 Results 

The 14 neuropsychological test scores were able to train an SVM model that reliably 

classified TLE and control participants with 73.4 ± 2.7% test accuracy without feature selection. 

The PCPS score received the highest average absolute weight (w = 0.66) among all 14 scores in 

all 10 testing loops, followed by Grooved Pegboard Dominant Hand (w = 0.47) (Table III, Column 

7). With feature selection, PCPS was most reliably and repeatedly present in every cross validation 

loop (9 out of 10 iterations) in the optimum set of features, followed by Grooved Pegboard-

Dominant (5 out of 10) and Boston Naming Test (1 out of 10).  

3.2.6 Discussion 

For people with epilepsy the cognitive (and affective) comorbidities associated with the 

disorder create as much disability as the seizures themselves139, 140. The results of this investigation 

demonstrated that, in a non-surgical cohort of TLE participants, cognitive slowing is a powerful 

marker of TLE. While it has been recognized that processing speed is among the cognitive 

morbidities of chronic epilepsy, its relative standing among the other cognitive morbidities of 

epilepsy has not been fully appreciated. In fact, it was the most salient measure in separating the 

TLE and control groups (Table III, Column 7, SVM weight). Other measures of interest (Boston 

Naming Test, RAVLT) discriminated the TLE and control groups as expected, but not as 

powerfully as processing speed (Table III, Columns 5 and 7). Even though SVM does not assume 

feature independence, it is still possible that if two features are highly correlated, one of the two 

will receive less attention or weight, which explains the case with Grooved Pegboard Non-

Dominant Hand score. Even with this in mind, we can conclude that PCPS is the best contributor 

to the classification model. 
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3.3 Data-driven Cognitive Phenotyping§ 

A longstanding pursuit in the neuropsychology of epilepsy has been an understanding of 

the signatures of cognitive abnormality associated with the disordered pathophysiology of specific 

epilepsy syndromes117, 141. This classic approach led to early appreciation of impaired memory in 

TLE, dysexecutive function in frontal lobe epilepsy, attentional disruption in absence epilepsy, 

language problems in Rolandic epilepsy, and dysexecutive behavior in juvenile myoclonic 

epilepsy142, 143. This general model, tracking cognition as a function of the taxonomy of the 

epilepsies and their associated clinical features, has served the field well144, 145. 

But incongruities in the classic model have accumulated over the years, in part due to 

studies involving broad-based neuropsychological assessment comprehensively overviewing 

human cognitive function as well as by head-to-head cognitive comparisons of epilepsy syndromes. 

Rather than finding the expected selective cognitive abnormalities linked to syndrome-specific 

pathophysiology, either a) more widespread and arguably unexpected cognitive anomalies have 

been reported when epilepsy syndromes are studied in depth (e.g., widespread cognitive 

abnormalities in focal epilepsies)146-151 or, b) in head-to-head comparisons of two or more epilepsy 

syndromes, more shared than unique syndrome-specific cognitive abnormality is evident146-156, or 

c) particular cognitive impairments (e.g., dysexecutive function) have been found to cut across 

multiple epilepsy syndromes157-162. 

A comprehensive neuropsychological test battery found in Section 2.3.1 from 111 TLE 

patients and 83 controls was reduced to core cognitive domains (language, memory, executive, 

 
§ Portions of this work are currently being reviewed: Hermann B, Conant L, Cook C, Hwang G, Garcia-

Ramos C, Dabbs K, Nair V, Mathis J, Rivera-Bonet C, Allen L, Almane D, Arkush K, Birn R, DeYoe E, 

Felton E, Maganti R, Nencka A, Raghavan M, Shah U, Sosa V, Struck A, Ustine C, Reyes A, Kaestner E, 

McDonald C, Prabhakaran V, Binder J, Meyerand M. Network, Clinical and Familial Features of 

Cognitive Phenotypes in Temporal Lobe Epilepsy. NeuroImage: Clinical. Under Review 
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visuospatial, motor speed) which were then subjected to k-means clustering, a type of a cluster 

analysis (unsupervised learning). The resulting cognitive subgroups were compared in regard to 

sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and 

functional connectivity. 

Three cognitive subgroups were identified: Generalized Cognitive Impairment 

(Generalized-CI) (N = 20, 18% of TLE group) reflecting significant impairment affecting all 

domains, Focal Cognitive Impairment (Focal-CI) (N = 34, 31%) demonstrated by particularly 

abnormal language, memory and executive function/processing speed, and No Cognitive 

Impairment (No-CI) (N = 57, 51%) where performance was intact and comparable to controls 

across all domains (Figure 7). The Generalized-CI group was characterized by an earlier age at 

medication initiation (p < 0.05), fewer patient (p < 0.001) and parental years of education (p < 

0.05), greater racial diversity (p < 0.05), and greater number of lifetime generalized seizures (p < 

0.001) (Table IV). The three groups also differed in an orderly manner across total intracranial (p 

< 0.001) and bilateral cerebellar cortex volumes (p < 0.01), but not in regional measures of cortical 

thickness or volume. In contrast, large-scale patterns of cortical-subcortical covariance networks 

revealed significant differences across groups in global and local measures of community structure 

and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster 

membership, with the most abnormal patterns of connectivity evident in the generalized 

impairment group and no significant differences from controls in the cognitively intact group 

(Figure 8). 
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Figure 7. Cognitive Performance of Three Identified Subgroups of TLE. Three 

clusters within temporal lobe epilepsy group were identified, with Generalized 

Cognitive Impairment (Generalized-CI) (red, N = 20) being the most impaired overall, 

then Focal Cognitive Impairment (Focal-CI) (yellow, N = 34), and No Cognitive 

Impairment (No-CI) the most intact (blue, N = 57). 
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Table IV. Summary of Demographics of Three Identified Subgroups. Generalized cognitive impairment (Generalized-CI) group 

showed significantly fewer years of patient and parental education and larger proportion of non-Caucasian participants compared to 

focal (Focal-CI) and no cognitive impairment (No-CI) groups, which suggested the influence of socioeconomic risk factors in the 

cognitive impairment of temporal lobe epilepsy (TLE). 
 

Groups N Age (years) 

Gender 

(Male / 

Female) 

Education 

(years) 

Mother 

Education 

(year) 

Father 

Education 

(years) 

Duration of 

Seizures 

(years) 

Race 

(Caucasian/ 

Non-Caucasian) 

Controls 83 33.8 ± 10.6 36 / 47 15.8 ± 2.7 14.6 ± 2.7 14.8 ± 2.8 - 74 / 9 

All TLE 111 39.6 ± 11.5 43 / 68 14.7 ± 2.7 13.5 ± 2.7 13.8 ± 2.9 16.8 ± 13.9 91 / 20 

Generalized-CI 20 38.2 ± 13.5 8 / 12 12.3 ± 2.0 12.6 ± 2.7 11.9 ± 2.1 21.3 ± 16.7 10 / 10 

Focal-CI 34 36.6 ± 11.1 15 / 19 13.6 ± 1.7 13.8 ± 2.3 13.2 ± 2.0 13.2 ± 12.9 26 / 8 

No-CI 57 41.9 ± 10.4 20 / 37 16.2 ± 2.4 13.6 ± 2.9 14.7 ± 3.1 17.4 ± 13.2 55 / 2 
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Figure 8. Resting-state Connectivity Changes in TLE Subgroups. Resting-state connectivity changes of temporal lobe epilepsy 

(TLE) patients in Generalized Cognitive Impairment (Generalized-CI, left) and Focal Cognitive Impairment (Focal-CI, right) groups, 

compared to healthy controls. Red lines indicate decreased connectivity (hypoconnectivity) in the patients, while blue lines indicate 

increased connectivity (hyperconnectivity). No-CI subjects did not show any significant changes in the connectivity.



40 
 

 

Overall, patients with TLE are composed of distinct underlying cognitive phenotypes that 

harbor systematic relationships with clinical, familial, demographic and neuroimaging correlates. 

Cognitive phenotype variations in patient and familial education and ethnicity, with linked 

variations in total intracranial volume, suggest an early and persisting socioeconomic-status related 

neurodevelopmental impact with additional contributions of clinical epilepsy factors (e.g., lifetime 

generalized seizures). The neuroimaging features of cognitive phenotype membership are most 

notable for disrupted large scale cortical-subcortical networks and patterns of functional 

connectivity, and cerebellar atrophy. 

There is a taxonomy of cognitive abnormality in TLE that only partially overlaps with the 

syndrome-specific pathophysiology of the disorder. This taxonomy is influenced by diverse 

epilepsy, non-epilepsy, and neuroimaging features reflecting the combined influence of 

socioeconomic, neurodevelopmental and neurobiological risk factors. The fact that there seems to 

be three distinct subgroups within TLE group should have influenced the results in Sections 3.1 

and 3.2 negatively, since all TLE patients were originally assumed to be showing similar imaging 

and neuropsychological abnormalities compared to healthy controls. On the other hand, separating 

the TLE group into these three subgroups in order to reflect this finding substantially diminishes 

the sample sizes and is detrimental to machine learning research. Perhaps, there is a better method 

of diagnosing and sub-grouping epilepsy based on other phenotypes than seizure focus, which has 

been convenient for human clinicians. 

3.4 Concluding Remarks 

In the era of machine learning and big data, the methods that humans have developed to 

make medical diagnoses and to offer appropriate treatments will be tested and contested. Decisions 
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will need to be made when to trust criteria and standards proposed by machines over those of 

humans. There will also be cases where machine learning results will completely contradict 

diagnoses by human physicians. In this case, is the machine picking up something that the human 

physicians have not noticed, or is it an error? What if the underlying algorithm that the machine 

has used to reach the answer is too complex to be assessed, or perhaps inconsistent with established 

clinical knowledge? 

Human decisions can be influenced by prior knowledge and prejudice. Confirmation bias 

drives humans to quickly accept scientific results that conform to the standard knowledge. It takes 

more effort to divert a scientific mistake than to establish one. With increased amounts of medical 

information as well as advanced computational capacity and techniques, leaning towards using 

more data-driven, objective approaches in medicine seem reasonable. However, this must come 

along with careful research on polishing the data-driven methods to eliminate all sources of 

technical errors. In other words, we need better understanding on the data-driven techniques such 

as machine learning. Careful use of these techniques will take the current medicine to the next 

level. It will give human clinicians new insights to complex datasets, as well as correct 

unrecognized mistakes. As discussed in Section 3.3, it may redefine our understanding of a disease 

and even allow for more personalized medicine in the future. 

In this chapter, the ability of machine learning to extract important features and patterns 

from complex datasets was discussed. In Chapter 4, the focus will be on building reliable machine 

learning models that can make accurate predictions on unseen data. 
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Chapter 4 

 

Building Predictive Models of Temporal 

Lobe Epilepsy using Machine Learning 

 

The attractive strength of machine learning is in its predictive power. Whether it is classifying a 

group of data into categories (classification) or predicting a continuous variable (regression)13, a 

machine learning has worth only when it reliably makes correct predictions. In Chapter 3, we have 

discussed the feature extraction ability of machine learning, but if the models did not achieve 

enough predictive power and accuracies, the extracted features would not have carried much 

weight. Therefore, achieving high performance is often the top priority in a machine learning 

research, although the analysis of the trained model and of the underlying features is still crucial. 

Section 4.2 will consider using machine learning for classification, and Section 4.3 will introduce 

one example of machine learning regression to make predictions on TLE patients. 
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4.1 Assessment of Machine Learning Models 

Reliability and reproducibility are essential in machine learning; especially in medicine, 

because it deals with human lives. In order to strictly assess a machine learning model’s 

performance, a clear distinction must be made between a cross validation accuracy and a test 

accuracy97. When assessing model performance for generalizability, the initial dataset needs to be 

split into two groups: training and testing sets. The entire training procedure must happen strictly 

within the training set, so that the data in the testing set become truly new observations for the 

trained model. Otherwise, the observed performance may be overestimated. This simple rule is 

easy to be violated in practice. 

For example, the results reported in Section 3.1.6 and Table I describe cross validation 

accuracy, because in order to determine the optimum number of features, the model performance 

was checked multiple times on the testing set during the recursive feature elimination. This was 

acceptable because the goal of the study was to compare the general classification performance 

between multiple models on multiple cases, but this accuracy should not be confused with a test 

accuracy. In other words, if these models were tested on strictly independent testing sets, their test 

accuracies would have likely been lower, or close at best. On the other hand, the accuracy reported 

in Section 3.2.5 was a test accuracy, because the procedure depicted in Figure 6 restricted the 

crosstalk between the training and testing sets. 

4.2 Classifying between TLE Patients and Healthy Controls 

Having access to the neuroimaging and neuropsychological testing data of TLE patients as 

well as healthy control volunteers from the ECP, the first and the most intuitive research direction 
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was to train machine learning models to separate the two groups. So a number of training features 

(features described in Sections 3.1 and 3.2, and also structural T1-weighted MRI features) have 

been used to train machine learning models even including a few “shallow” deep learning models. 

However, the test accuracies were not satisfactory (around 70 – 75% at best, see Section 5.2), 

which was largely due to small sample sizes. 

 The poor accuracy does not necessarily equal bad hypothesis, because accuracy can 

improve significantly with more sample sizes. In this case, the correct question is to ask the 

potential of the model, instead of the current accuracy. This led me to study the relationship 

between the sample size and the machine learning classification performance. More on this topic 

will be discussed in Chapter 5. 

 Another topic of discussion is whether building a model that classifies between TLE 

patients and healthy controls is beneficial. The TLE patients enrolled in the ECP were already 

aware that they had epilepsy from seeing themselves simply having recurring seizures. A machine 

learning model that can tell whether a patient has an epilepsy or not may not be clinically useful 

in terms of the diagnostic gain. Rather, a better question is, for example, to classify between TLE 

and frontal lobe epilepsy patients, or between TLE patients with left and right seizure foci. In other 

words, the ultimate goal in studying epilepsy patients using machine learning classification 

perhaps is to be able to predict patient subgroups instead. However, this question is more 

demanding to address using machine learning because of the limited samples. The progress in this 

field is expected to be slower, compared to other more common diseases such as Alzheimer’s 

disease. This is another reason to emphasize the understanding of the sample size relationship in 

machine learning, which will be discussed in Chapter 5. 
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4.3 Predicting Brain Ages of TLE with Machine Learning Regression§ 

Chronic TLE is associated with abnormalities in cognition, brain structure and brain 

connectivity in midlife45-48, findings that have raised concern regarding the future course of 

cognitive and brain aging and the risk of cognitive disorders of aging including dementia163. While 

different models of cognitive aging in epilepsy have been proposed (progressive decline, 

accelerated aging [two hit model], stable non-progressive abnormality)164, consensus has yet to be 

achieved. Importantly, all models predict significantly more impaired cognition in aging 

individuals with chronic epilepsy compared to controls165-167. Similarly, cross-sectional modeling 

of structural brain aging has suggested greater abnormality in chronic epilepsy compared to 

controls with advancing age40, 168. 

In a novel approach, Pardoe et al.169 trained a machine learning regression model using T1-

weighted structural MRI scans of 2,001 healthy controls to predict their chronological ages. They 

then used the model to predict the ages of 94 medically refractory focal epilepsy patients and 

showed that these patients had structural brains that were on average 4.5 years older than the 

healthy controls. Sone et al.170 recently reported findings from a similar study examining different 

types of epilepsy including TLE using T1-weighted images, and found the same trend of 

accelerated aging (10.9 years older for TLE patients with inter-ictal psychosis, and 5.3 years 

without).  

There are many paths of exploration from these studies that can be considered. First, will 

the functional brains of epilepsy patients similarly show accelerated brain aging (or premature 

 
§ Portions of this work have been published in: Hwang G, Hermann B, Nair V, Conant L, Dabbs K, 

Mathis J, Cook C, Rivera-Bonet CN, Mohanty R, Zhao G, Almane D, Nencka A, Felton E, Struck AF, 

Birn R, Maganti R, Humphries CJ, Raghavan M, DeYoe EA, Bendlin BB, Prabhakaran V, Binder JR, 

Meyerand ME. Brain Aging in Temporal Lobe Epilepsy: Chronological, Structural, and Functional. 

Neuroimage: Clinical. 2020; 



46 
 

brain aging in Pardoe et al., 2017)? Accelerated brain aging in epilepsy has been investigated 

mainly in the structural brain. While many studies have reported changes in the functional 

connectivity of epilepsy patients171, 172, whether the changes resemble accelerated aging is 

unknown.  

Second, what factors are associated with age accelerated structural and functional brains? 

Possibilities include clinical seizure characteristics (e.g., age of onset, seizure frequency), 

treatment factors (e.g., number or type of AED use), and of course demographic characteristics. 

Previous studies have reported that brain volume reductions in epilepsy may be independent of or 

only weakly related to seizure activity173 and potentially more related to AED use174. Pardoe et 

al.169 and Sone et al.170 in their secondary analyses briefly reported that increased brain age 

difference (or brain-PAD: predicted age – chronological age in Sone et al., 2019) in epilepsy was 

associated with earlier age of onset, but not with epilepsy duration nor AED use. More systematic 

search of potential correlates of accelerated brain aging is desired. 

Third, is accelerated brain aging in epilepsy directly related to cognitive status and 

cognitive decline over time? Are brain ages better predictors of cognitive performance than the 

patients’ chronological ages? Cognitive aging and its core dimensions (crystallized and fluid 

cognitive abilities) in epilepsy have yet to be examined in relation to potential age-accelerated 

alterations in functional connectivity patterns and brain structure. Whether they have explanatory 

power beyond chronological age remains to be determined. 

4.3.1 Participants 

Participants included 104 TLE patients (mean age = 40.4 ± 11.8 years, range = 19 – 60 

years, 64 females) and 151 healthy controls (mean age = 53.7 ± 19.4 years, range = 18 – 89 years, 

88 females). All TLE patients were from the ECP. 57 controls were from the ECP, and additionally 
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94 controls who matched the ECP criteria were drawn from ADCP84. The use of healthy controls 

from the two projects allowed investigation of participants with a wider age range than provided 

by either project alone, without compromising scanner, site or protocol variabilities (See Section 

3.1.1 for more on ADCP). 42 TLE patients and 51 controls were scanned at the Medical College 

of Wisconsin, while 62 TLE patients and 100 controls were scanned at the University of 

Wisconsin-Madison. 

4.3.2 Data Processing 

HCP minimal pre-processing was performed as described in Section 2.4.1. 254 structural 

features generated by FreeSurfer’s standard reconstruction (recon-all) were extracted from the T1-

weighted images, including cortical thicknesses, surface areas, volumes and also subcortical and 

global volumes. Surface areas and volumes were divided by the total surface area and total gray 

matter volume respectively to normalize for brain size. Then the structural features were 

normalized through z-score transform. 

Additional pre-processing was performed on the resting-state fMRI images using AFNI 

(Analysis of Functional Neuro-Images)85. This included motion regression using 12 motion 

parameters, regression-based removal of signal changes in the white matter, cerebrospinal fluid 

(CSF), global signal, and band-pass filtering (0.01 – 0.1Hz). There are trade-offs of regressing out 

the global signal from the raw signals, such as potential false negative correlations175. Therefore, 

another machine learning model was trained without the global signal regression to confirm 

whether similar results were obtained. 

Using the Connectome Workbench (version 1.1.1) (Marcus et al., 2011), time-series data 

from four 5-minute resting-state fMRI scans acquired in a single session were concatenated. 360 

time-series from Glasser Parcellation67 plus 19 FreeSurfer subcortical regions68 were extracted per 
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subject (see Section 2.4.2). Pairwise Pearson correlations between 379 timeseries were computed 

and Fisher-z transformed for generating connectivity matrices. 

A subset of connectivity features were found to be affected by the subject motion in the 

scanner (absolute and relative mean RMS motion)176. Therefore, absolute mean RMS motion was 

linearly regressed out from features that showed significant correlation (raw p < 0.05), first 

separately for healthy controls and then for TLE patients, by combining the two groups (in order 

to restrict crosstalk between the two groups). Without this regression, the accelerated functional 

brain ages were significantly correlated with motion (p < 0.01), while regressing it out from the 

entire matrices resulted in the opposite correlation (p < 0.05). 

4.3.3 Support Vector Regression (SVR) 

Two age-prediction support vector regression (SVR) models177, 178 were built in Python 

using the scikit-learn library179: with structural and functional (resting-state correlation matrices) 

features from the healthy controls. A linear kernel was used with no feature selection. First, the 

SVR models were trained and tested on the healthy controls using 10-fold cross validation. A linear 

correction that was suggested by Le et al.180 was applied to remove known systematic bias caused 

by regression dilution and regression towards the mean (old subjects predicted young, and vice 

versa)181. The accuracy of the models were quantified using the correlation between chronological 

age and predicted, the amount of variance in age explained by the model (R2), the mean absolute 

error (MAE) and the root mean squared error (RMSE). 

The final models were trained with the entire healthy control dataset and applied on the 

TLE patients. The predicted ages (brain ages) were compared to the chronological ages. 

Accelerated ages (brain age –  chronological age) were calculated. The entire training and testing 

process is summarized in Figure 9.
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Figure 9. Diagram of 10-fold Brain Age Model Training with Bias Correction. This diagram summarizes the process of support 

vector regression (SVR) model training and testing procedure. 10-fold cross validation on the healthy controls were first performed 

(left top), and then separately the testing on the temporal lobe epilepsy (TLE) patients (left bottom). Linear correction suggested by Le 

et al.180 was preformed to remove systematic bias caused by regression dilution and regression towards the mean.
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4.3.4 Brain Age Prediction Results 

The cross validation results of healthy controls are visualized in Figure 10 in blue dots (r 

= 0.82, R2 = 0.67, MAE = 10.7, RMSE = 13.65 for structural, r = 0.91, R2 = 0.83, MAE = 6.94, 

RMSE = 8.86 for functional model). The variance was significantly larger (p < 0.001, two-sample 

F-test for equal variances) in the accelerated structural ages compared to the functional ages. 

 

Figure 10. Scatter Plots of Predicted versus Actual Ages. These scatter plots show the 

support vector regression (SVR) age prediction results of both healthy controls (blue) and 

temporal lobe epilepsy (TLE) patients (orange): (A) with structural, and (B) functional 

features. The dotted lines indicate the 5th and the 95th percentiles of the cross validation results. 

†RSFC = resting-state functional connectivity. 
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The orange dots in Figure 10 represent TLE patients. The brain aging effect in TLE was 

found in all age groups. The 5th and 95th percentiles of the cross-validation (healthy control) 

results were marked. 17 TLE patients (16%) showed structural brain ages greater than the 95th 

percentile (>19.7 years of acceleration), and 34 patients (33%) showed functional brain ages 

greater than the 95th percentile (>12.9 years of acceleration), with seven patients who overlapped. 

There was no significant correlation between the two accelerated ages (r < 0.01, p = 0.94 in healthy 

controls, r = 0.14, p = 0.15 in TLE patients) (Figure 11). 

 

Figure 11. Scatter Plot of Two Accelerated Brain Ages. This scatter plot shows 

the relationship between two accelerated ages. No statistically significant 

relationship was found in neither healthy controls (blue, r < 0.01, p = 0.94, 

Pearson correlation), nor TLE patients (orange, r = 0.14, p = 0.15). 
 

In healthy controls, structural (r = 0.82) and functional (r = 0.91) brain ages were highly 

correlated with chronological age, and also were inter-correlated (r = 0.74). The three ages were 

still correlated in TLE (r = 0.60, r = 0.77, r = 0.53 correspondingly), but to a significantly lesser 

degree compared to healthy controls (p’s < 0.01, z = 3.54, z = 3.87, z = 2.75). 
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Figure 12 shows the histograms of the accelerated brain ages of the TLE patients. The final 

SVR model with the linear correction predicted their structural brain ages to be on average 6.6 

years older than their chronological ages (p < 0.001, paired t-test). Their structural brain ages were 

significantly older than those of the healthy controls (p < 0.001, unpaired t-test). The accelerated 

structural ages (structural brain age – chronological age) ranged from -27 (brain age younger than 

chronological age) to +39 years (brain age older than chronological age), with the standard 

deviation of 13.7 years, which was the same as in healthy controls. There was no specific structural 

feature whose value was significantly associated with the accelerated structural ages (Spearman 

correlation). 

 

Figure 12. Accelerated Brain Ages of Temporal Lobe Epilepsy. These histograms 

show the accelerated brain ages of 104 temporal lobe epilepsy (TLE) patients: (A) with 

structural, and (B) functional features. Accelerated aging in TLE was observed both in 

the structural (6.6 ± 13.7 years) and functional brains (8.3 ± 9.2 years). 
 

The final SVR model predicted the functional brain ages of the TLE patients to be on 

average 8.3 years older than their chronological ages (p < 0.001, paired t-test). Without the global 

signal regression of the raw signals, a similar results were found with the TLE patients’ functional 
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brain ages predicted to be on average 5.1 years older than their chronological ages (p < 0.001, 

paired t-test). Their functional brain ages were significantly older than those of the healthy controls 

(p < 0.001, unpaired t-test). The accelerated functional ages ranged from -14 to +34 years with the 

standard deviation of 9.2 years, which was similar to 8.9 years in healthy controls. They were not 

significantly associated with the absolute/relative mean RMS motion (p’s > 0.6, r’s < 0.05). The 

variance was significantly larger (p < 0.001, two-sample F-test for equal variances) in the 

accelerated structural ages compared to the functional ages. 

8,341 out of 71,631 connectivity features were significantly associated (corrected p-values 

< 0.05, Spearman correlation) with the accelerated functional ages, with the top 48 features (ρ’s < 

-0.53) all showing negative correlation (weaker connection associated with more accelerated 

functional age). Most of these 48 connections were bilateral temporal or frontal lobe connections 

(Figure 13).
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Figure 13. Resting-state Connectivity Associated with Functional Brain Aging in TLE. These 48 resting-state functional 

connections are most significantly associated with accelerated functional brain aging (corrected P-values < 0.0001, ρ’s < -0.53). 

Weaker correlations in these connections are associated with more accelerated functional brain aging.
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4.3.5 Clinical and Cognitive Correlates 

Out of 104 TLE patients that were examined, 74 reported having had complex partial 

seizures (49 currently) and 62 reported secondary generalized seizures (22 currently). After 

correcting the p-values for multiple comparisons with Benjamini-Hochberg FDR correction96, 

only trend-to-significant relationships were found between the functional accelerated ages of the 

TLE patients and their complex partial seizure frequency (p = 0.07) and AED count (p = 0.07). 

Patients who reported having at least one seizure during the past year were taking a greater number 

of AEDs (p < 0.01) compared to those who were seizure-free the past year, although there were 

no significant differences in the accelerated brain ages between the two groups. 

Table V shows the correlation results between the three ages of TLE patients and their 

cognitive test scores. The FDR multiple comparison correction was performed on the p-values 

within each age measure and cognition type. 

Chronological age was significantly associated (corrected p < 0.05) with four of seven tests, 

with trends (corrected p < 0.1) seen for two others. Structural age was not significantly associated 

with any test. Functional age was significantly associated with four of seven tests, with trends seen 

for one other: all fluid cognitive tests. Brain ages were not significantly associated with the 

crystallized subtests. Chronological age was significantly more associated with Picture 

Vocabulary than the brain ages (Z = 2.31, p = 0.02 for structural, Z = 2.13, p = 0.03 for functional 

age, Steiger’s Z-test). 

Three of seven tests (Dimensional Change Card Sort, Picture Sequence Memory, and 

Pattern Comparison Processing Speed) were significantly associated with both chronological and 

functional age measures. Subsequent mediation analyses addressed the question of whether 

structural or functional brain age mediated the association between chronological age and these 
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cognitive scores. Structural age was never a significant mediator while functional age partially 

mediated the relationship between chronological age and performance on three tests: Picture 

Sequence Memory (p < 0.001), Dimensional Change Card Sort (p = 0.004) and Flanker Inhibitory 

Control and Attention (p = 0.03) (Figure 14).
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Table V. Cognitive Correlates of TLE Brain Ages. This table summarizes the correlation results between the three brain ages of the 

temporal lobe epilepsy (TLE) patients and their cognitive test scores. False discovery rate (FDR) correction was made on the p-values 

within each age measure and cognition type. Overall, fluid cognition was well associated with both chronological and functional ages. 

Chronological age was the best predictor among the three age measures of Picture Vocabulary (Z > 2.1, p < 0.05). *corrected p < 0.05. 
 

Cognition 

Type 

NIH Toolbox Cognition Battery 

(NIHTB-CB) 
Subdomain 

Chronological 

Age Correlation 

Structural Age 

Correlation 

Functional Age 

Correlation 

r p r p r p 

Fluid 

Flanker Inhibitory Control and Attention 

Executive 

Function 

-0.174 0.091 -0.094 0.605 -0.172 0.088 

Dimensional Change Card Sort -0.239 0.028* -0.070 0.608 -0.214 0.041* 

List Sorting Working Memory -0.171 0.091 -0.033 0.748 -0.221 0.041* 

Picture Sequence Memory 
Episodic 

Memory 
-0.290 0.008* -0.254 0.055 -0.335 0.005* 

Pattern Comparison Processing Speed 
Processing 

Speed 
-0.313 0.008* -0.092 0.605 -0.231 0.041* 

Crystallized 

Picture Vocabulary 

Language 

0.293 0.006* 0.094 0.508 0.154 0.180 

Oral Reading Recognition 0.143 0.156 0.067 0.508 0.135 0.180 
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Figure 14. Mediation Analysis of Brain Age Correlation. This diagram shows the results from the mediation 

analysis for Picture Sequence Memory test. The independent variable was the chronological age of the TLE patients. 

The mediator was either their functional or structural brain age. Functional age partially mediated (P < 0.001) the 

association between chronological age and the test score (top triangle), whereas structural age did not (bottom triangle). 

Numbers in parentheses are results after the mediator was introduced.
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4.3.6 Discussion 

Accelerated aging is evident not only in the structural brains of patients with TLE, but also 

in their functional brains. This confirms and expands prior findings, here in a TLE group. Pardoe 

et al.169 and Sone et al.170 trained their regression models with a larger number of healthy control 

data (N = 2,001 and 1,196 respectively). Although the present study comparably lacks power in 

the trained age regression models (N = 151), the parameters and qualities of MRI images here are 

more controlled and the comparisons between the structural and functional brain ages provide 

novel insights into different dimensions of the brain aging effect in TLE.  

While the overall structural and functional brain ages are indeed accelerated compared to 

chronological age (Figure 12), inspection of the age discrepancy plots (Figure 10) shows that this 

accelerated aging effect is evident across the chronological age range of the TLE participants 

examined here. We did not observe increased accelerated brain aging in the older compared to 

younger TLE participants, nor in participants with longer history of seizures compared to shorter. 

It is worth noting that the correlations among the chronological and the two brain ages were 

significantly weaker in TLE patients compared to healthy controls (𝑝’s < 0.01), suggesting a 

detectable dissociation of brain ages from chronological age. Weintraub et al.182 reported 

correlations between chronological age and NIH Toolbox Battery-Cognition Battery (NIHTB-CB) 

test scores in healthy controls (𝑁 > 230), and observed significantly stronger negative correlations 

in fluid cognitive abilities (𝑝’s < 0.001, −0.46 > 𝑟′s > −0.65) compared to those seen in the 

TLE patients in our study (𝑝’s < 0.03, 𝑍 > 2.2). Together with the finding that the functional age 

mediated the relationship between chronological age and cognition in TLE patients, this leads us 

to conclude that judgment of cognitive abilities in the TLE patients based on their chronological 

ages may be less predictable compared to healthy controls. 
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There were significantly smaller variances ( 𝑝 < 0.001 ) in the predicted accelerated 

functional brain ages compared to the structural ages, both from the healthy control and TLE 

groups (Figure 12 and Figure 10), although the opposite was expected given the increased 

complexity of the model (71,631 dimensions in functional, compared to 254 in structural). This 

suggests that the functional brain age calculated from resting-state functional connectivity is a 

more stable measure of brain age. 

It was hypothesized that accelerated brain aging in TLE was related to either or both the 

clinical features of the epilepsy and AED use. Accelerated functional brain age was correlated with 

both complex partial seizure frequency (corrected 𝑝 = 0.07) and the number of AEDs (corrected 

𝑝 = 0.07), suggesting that the accelerated functional brain aging in TLE patients may be related 

to both seizure burden and related polytherapy. Results from this study confirm those from Pardoe 

et al.169 and Sone et al.170 which reported that there was no significant relationship between 

epilepsy duration and the accelerated brain age. However, the relationship between age of seizure 

onset and the accelerated brain age in our TLE population was found insignificant. Current data in 

this study were not sufficient to reveal definitive clinical correlates of accelerated brain aging. 

Table V depicts the dynamic nature of the relationships between chronological and brain 

ages with crystallized and fluid cognitive abilities. In regard to crystalized abilities, only 

chronological age predicted improvement on one of the two measures, predictably showing 

improving naming ability with age. In contrast, the interplay of chronological age with brain ages 

was more dynamic for fluid abilities. Moreover, functional brain age partially mediated the 

relationship for three measures including memory (Picture Sequence Memory) and selected 

measures of executive function (Dimensional Change Card Sort, Flanker Inhibitory Control and 

Attention) (Figure 14). Importantly, these brain age relationships are detected in a predominantly 
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young to middle age sample (mean age = 40.3) who have yet to enter the epoch where age exerts 

stronger and more diverse effects. It will be important to continue to monitor these relationships 

prospectively to confirm their change over time and linkages to changing cognition.  

4.3.7 Limitations 

One limitation of this investigation is the relatively small sample sizes. In order to control 

for the scanner variability, scan protocols and procedures, only data from the two Disease 

Connectome Studies (ECP and ADCP) were used. This resulted in a smaller training sample size 

compared to previous studies169, 170, while allowing us to expand the study to investigate the 

functional brain aging and other clinical and cognitive traits in TLE. 

The age range of our TLE population (19 – 60 years) was towards the younger spectrum 

of that of our control population (18 – 89 years). The results using this dataset should remain valid, 

since 1) the age range of the training set covered that of the testing set, and 2) the testing results 

on the healthy controls confirmed the performance of the linear correction. Before the linear 

correction, the bias in the regression model over-estimated the ages of young test subjects, making 

the prediction of TLE brain ages unreliable. The correction mitigated, if not completely removed, 

this bias effect180. Use of larger training sample sizes in conjunction with accurate non-linear 

regression models will create more robust age-predicting models. Future work is also desired to 

confirm the findings from the current study in older TLE population. 

4.4 Concluding Remarks 

 Only a modest success has been achieved at building reliable machine learning models 

using the ECP data, where the performance was most likely limited by the small sample sizes. 
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Although the state-of-the-art quality MRI images and a thorough neuropsychological battery were 

used in the training, building clinically useful machine learning models seemed to require much 

larger samples. 

 Having enough sample sizes is a relative matter: it largely depends on the difficulty of the 

problem (classification or regression) and the given set of clues (or training features). For example, 

we may expect to build a reasonable classification model that separates between males and females 

with their height and weight as features, but not as well with eyesight and number of fingers. On 

the other hand, a very small sample size is required to build such a model if one of the training 

features happens to be the sex chromosome. Also, we intuitively expect separating between males 

and females to be easier than, for example, between a married person and a single. Likewise, in 

medical imaging, each problem is unique and has its own target sample sizes for training effective 

machine learning models. 

 We can hypothesize that the general relationship between the sample size and the 

classification accuracy, however, follows a predictable trend. One model may reach a target 

accuracy faster due to the simplicity of the problem compared to others, but the general shape of 

the relationship curve may look similar. Understanding this relationship can aid the assessment of 

machine learning models that have been trained in the field so far, because it is likely that they 

have not reached their maximum potential with the limited sample sizes available at the time of 

training. In Chapter 5, therefore, we will systematically explore this relationship in binary 

classification.
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Chapter 5 

 

Sample Size Limitations of Applying 

Machine Learning in Medical Imaging§ 

 

With advancements in medical imaging, the amount of data to evaluate exponentially grows and 

so does the complexity of clinical problems12. It is becoming more impossible for human 

radiologists to analyze every detail in the high quality, high dimensional images that the state-of-

the-art imaging devices offer. The need for developing automated systems to help processing these 

images is clear. Then, when do we start trusting machines to the point where we confidently give 

them the same responsibilities as the human radiologists? Understandably, this question is loaded 

with not only technical, but also moral and logistical issues. However, in order to start the 

discussion, a thorough inspection of the current status in developing such machines must precede. 

And as discussed earlier, when the sample sizes are limited, we must assess the problem with the 

sample size in mind. 

 
§ Portions of this work are currently being reviewed: Hwang G, Nair VA, Bendlin BB, Prabhakaran V, 

Meyerand ME. Support Vector Machine Binary Classification for Diagnosis in Neuroimaging: the 

Sample Size Limitations. American Journal of Neuroradiology. Under Review 
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5.1 Challenges of Whole-brain MRI Classification 

Machine learning has a potential to make significant impact in medical imaging, but it is 

still at its infancy183. Areas with the most number of successful applications are image 

segmentation and registration3, 7, 8. Applications in image segmentation include delineating tissue 

interfaces or detecting abnormal cells, such as tumor. They are substantially reducing the amount 

of human work required to solve these problems and increasing the output quality. One of the key 

reasons why we already see high-performing models in this area is that accumulating large training 

dataset is relatively easy with data multiplication techniques such as data augmentation184. Data 

augmentation allows a single training data point to multiply to be many. For example, when the 

problem is to segment a tumor region out of a 2-dimensional image, one labeled image can be 

translated, reflected, rotated, stretched or down-sized, so that the model is exposed to many 

different examples from a single image. So, if a thousand images are required to train a reliable 

machine learning model, this number can be reduced to perhaps a hundred, with a proper use of 

data augmentation. The same technique can be applied to image registration problems, which 

effectively tackles sample size limitations. 

Data augmentation is not always straight-forward or even possible. For example, if the 

problem is to classify people into two groups based on their region-of-interested-based structural 

brain MRI features, such as cortical thicknesses or volumes, then the features cannot be rotated or 

stretched. The MRI images themselves can be, but they would be re-aligned before the features 

get extracted. In this case, without the help of the traditional data augmentation, the problem is 

much more difficult to solve with machine learning, compared to the tumor segmentation problem 

above. The problem requires much larger sample sizes, while the complexity of the problem may 
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be worse. In medical imaging, unfortunately, acquiring enough samples for machine learning is 

often impractical without data augmentation. 

Various feature extraction techniques have been developed, in order to reliably reduce the 

number of training features while conserving the most useful information for the model185. They 

are generally perceived as tools to reduce the high-dimensionality of the problem. However, from 

a different perspective, they can also be viewed as means to reduce the required sample sizes for 

solving a problem, because the lower dimensionality reduces the chance of overfitting and we can 

expect to build a reliable model with smaller samples. There are numerous proposed feature 

extraction techniques, in which some conserve the original values and only remove unwanted 

features81, 95, 186, whereas in others they use combinations of features to create more meaningful 

features using techniques such as PCA94, or singular value decomposition (SVD)187, 188. Some 

studies have compared the effectiveness of using these techniques in a given application by 

comparing the accuracies189, but none of them approached it from the perspective of reducing the 

required sample sizes. 

5.2 Sample Size and Machine Learning Classification 

 Various machine learning classification models have been tried in medical imaging and 

SVM30, 89 is among the most popular techniques. It has been shown effective in high-dimensional 

classification problems190. There have been a number of studies on the sample size requirements 

when using traditional machine learning classification models including SVM191. Mukherjee et al. 

and Figueroa et al. fitted SVM classification error curves to inverse power law models and 

introduced methods to predict the true accuracy given small sample sizes16, 192. Dobbin & Simon, 

and Guo et al. trained different types of omics data to test the sample size requirements193. 
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5.2.1 Participants  

 MRI data from the Connectome studies were examined: HCP for healthy young adults64, 

ECP for TLE patients29 and ADCP for Alzheimer’s disease and mild cognitive impairment (MCI) 

patients84. The processed images from the HCP were publically available on the ConnectomeDB 

web database194. All images were acquired with 3T Siemens or GE (General Electric) scanners 

using simultaneous multi-slice imaging (8 bands, TR < 802ms, voxel size = 2mm isotropic). 

Although the exact scanner parameters vary slightly, this was not the main focus of the current 

study. The images were processed using the Human Connectome Project pipelines as described in 

Section 2.4.1. 

Four binary classification problems were defined (Table VI): classifying between 1) 

healthy males and females (HCP–Sex, N = 440 per group), 2) healthy twenties and thirties (HCP–

Age, N = 445 per group), 3) healthy controls and temporal lobe epilepsy patients (ECP, N = 94 per 

group), 4) healthy controls and the combination of Alzheimer’s disease and mild cognitive 

impairment (MCI) patients (ADCP, N = 63 per group). HCP–Sex problem represents a relatively 

easy problem, whereas HCP–Age problem a relatively challenging problem. 

In each classification problem, two types of training feature set were investigated in order 

to consider two cases with widely different feature dimensionalities (or number of training 

features): structural (254 dimensions) and functional (71,631 dimensions) brain feature sets. 254 

structural features were extracted from the T1-weighted images using FreeSurfer65, including 

cortical thicknesses, surface areas, volumes and also subcortical and global volumes. These 

structural features were transformed to z-scores. From the resting state images, 360 timeseries from 

the Glasser parcellation67 plus 19 FreeSurfer subcortical regions68 were extracted (see Section 

2.4.2), and the Pearson correlation was used to generate connectivity matrices and then normalized 



67 

 

with Fisher-z transformation. Taking the upper triangles of the matrices resulted in 71,631 features 

for the training. Therefore, in total, there were eight distinct classification problems to be 

investigated. 

Dataset Group N Age (years) Sex (Male / Female) 

HCP-Sex 
Male 445 28.5 ± 3.2 445 / 0 

Female 445 28.2 ± 3.5 0 / 445 

HCP-Age 
20s 440 26.3 ± 2.2 180 / 260 

30s 440 32.3 ± 1.7 161 / 279 

ECP 
TLE 94 40.7 ± 12.4 41 / 53 

Control 94 42.7 ± 16.2 43 / 51 

ADCP 
AD + MCI 63 72.1 ± 8.9 34 / 29 

Control 63 70.8 ± 6.9 31 / 32 
 

Table VI. Summary of Four Binary Classification Problems. Two problems involved only 

healthy controls (HCP-Sex, HCP-Age) and the other two patient populations (ECP, ADCP). 

This table summarizes the demographics of each group. †AD = Alzheimer’s Disease. MCI = 

Mild Cognitive Impairment. 

5.2.2 Hyperparameters Tested 

SVM binary classification model training and testing were implemented in MATLAB 

R2018a. For the baseline, a linear kernel and leave-two-out cross validation (one subject from each 

group left out for the testing) were used with no feature reduction. Note that the samples in this 

study are only split into training and testing sets, and the term “cross validation” is used to denote 

that the testing is repeated exhaustively. This is not to be confused with a validation set97.  

The goal was to study the relationship between the sample size and the classification 

performance. For simplicity, the number of samples was kept equal between the two groups in 

comparison throughout the study, which minimized the concern of unbalanced sensitivity and 
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specificity195 (more discussion in Section 5.2.3). In the rest of Chapter 5, 𝑁 will represent the total 

number of samples in each group, instead of the combined. 

In each problem, subsets of the entire dataset, with varying size, were randomly selected, 

and used to train and test SVM models. The sample size of a subset in each group is denoted as 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 (𝑁 ≥ 𝑁𝑠𝑎𝑚𝑝𝑙𝑒). For each problem, 15 logarithmically spaced sample sizes or 𝑁𝑠𝑎𝑚𝑝𝑙𝑒’s 

between 5 and 𝑁 were tested. Training and testing for each 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  were repeated until 95% 

confidence level was reached that the mean accuracy was within ±1.0%. The mean and the 

standard deviation of the classification accuracy over all randomly selected subsets were calculated 

per 𝑁𝑠𝑎𝑚𝑝𝑙𝑒. 

Two other generic kernels were tested while keeping other parameters match the baseline 

setup: 3rd order polynomial and radial basis function (RBF, or Gaussian) kernels. Three other K-

fold values were tested while keeping other parameters match the baseline setup: 2, 5, and 10-fold 

testing. 𝑁𝑠𝑎𝑚𝑝𝑙𝑒′𝑠 < 10 were skipped for 10-fold testing. 

Three feature reduction methods were tested while keeping other parameters match the 

baseline setup: PCA94, SVD187, 188, and Lasso methods30, 81. For PCA, the number of features was 

reduced to the number of training sample minus one (𝑁𝑡𝑟𝑎𝑖𝑛 − 1), or kept equal for cases where 

𝑁𝑡𝑟𝑎𝑖𝑛 > 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  (𝑁𝑡𝑟𝑎𝑖𝑛 + 𝑁𝑡𝑒𝑠𝑡 = 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ). Then, the features were 

normalized to z-scores. For SVD, the number of features was reduced to the number of training 

samples ( 𝑁𝑡𝑟𝑎𝑖𝑛 ), or kept equal where 𝑁𝑡𝑟𝑎𝑖𝑛 ≥ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 . For Lasso 

method, lambda of 0.1 was used and features with zero regression coefficients were eliminated. 

The reduction was applied first on the training set, and the information such as the coefficients 

were kept for later applying the same reduction independently on the testing set. Note that this 
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procedure does not allow the K-fold holdout testing set to influence the training, and therefore, the 

testing is unbiased. 

5.2.3 Accuracy and Precision 

Only equal-sized groups were considered in this work, in order to minimize the concern of 

unbalanced sensitivity and specificity195. One measure of this unbalance is the precision of the 

model. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (1) 

Precision of 50% would indicate perfectly balanced sensitivity and specificity. The 

precision of our results ranged from 42% to 56%. This range was considered acceptable for the 

purposes of our work, because with the balanced group sizes, the total accuracy should not vary 

significantly within this range of precision. 

5.2.4 Effects of Kernels 

In all eight classification problems, the error rate (1 – accuracy) steadily decreased 

following a power law, while still showing room for improvements at 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑁 (Figure 15, A 

and B). As expected, the HCP–Sex classification model yielded superior performance compared 

to the HCP–Age model, whose problem was selected to represent a relatively difficult task 

(separating between brains of 20s and 30s). Using the structural features, the trend in performance 

of the ADCP model resembled that of the HCP–Sex model, while the ECP model showed the worst 

trend. Using the functional features, the performance of the two disease models were in between 

the two healthy control (HCP) models.  
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The change of kernels showed mixed effects on the classification accuracy (Figure 15, A 

and B): in some cases, the change of kernel significantly improved the accuracy, and in others, it 

decreased it. The effects of changing kernels were unpredictable. 

Leave-two-out cross validation was used for the baseline analyses, and the classification 

accuracy as 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 approached 𝑁 seemed unstable in many examples, especially with the disease 

models with smaller 𝑁 (Figure 15, C and D). Standard deviation of the accuracy was as high as 

±18.5% in T1 problems and ±19.7% in RSFC problems at 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 5, and gradually decreased 

to around ±5% as 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 increased to 50 (per group).
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Figure 15. Accuracy of Eight Classification Models with Varying Kernels. Support vector machine (SVM) classification results 

using leave-two-out cross validation and no feature selection. Three generic kernels were tested: linear, polynomial (3rd order) and 

radial-based function (RBF) kernels. (A) and (B) summarize the sample size relationship with binary classification accuracy, and (C) 

and (D) with the standard deviation of the accuracy. 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 represents the number of subjects in each group, instead of the combined. 

†RSFC = resting-state functional connectivity.  
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Figure 16. Accuracy of Eight Classification Models with Varying K-Fold. Support vector machine (SVM) classification results 

using linear kernel and no feature selection. Four K-fold settings were tested: 2, 5, 10-fold, as well as leave-two-out (𝑁𝑠𝑎𝑚𝑝𝑙𝑒-fold) 

testing. (A) and (B) show the results with the x-axis being the number of subjects in the subset per group (𝑁𝑠𝑎𝑚𝑝𝑙𝑒), whereas (C) and 

(D) the number of training subjects in the subset per group (𝑁𝑡𝑟𝑎𝑖𝑛). †RSFC = resting-state functional connectivity. 
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Figure 17. Accuracy of Eight Classification Models with Feature Reduction. Support vector machine (SVM) classification results 

using linear kernel and leave-two-out cross validation. Feature reduction using singular value decomposition (SVD, dotted) improved 

the accuracies significantly more than using principal component analysis (PCA, dashed) in all examples, especially when 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ≪

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. †RSFC = resting-state functional connectivity. 
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5.2.5 Effects of K-fold 

Using smaller number of K-folds, or holding out bigger testing sets consistently decreased 

the accuracies (Figure 16, A and B). Plotting the results with the number of training subjects per 

group (𝑁𝑡𝑟𝑎𝑖𝑛 = 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑁𝑡𝑒𝑠𝑡 = 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ×
𝐾−1

𝐾
) as the x-axis (Figure 16, C and D) revealed 

that the classification accuracy is closely related to 𝑁𝑡𝑟𝑎𝑖𝑛, or the number of subjects per group 

that the model was trained on. 

5.2.6 Effects of Feature Reduction 

Feature reduction using SVD methods most significantly improved the classification 

accuracy, whereas Lasso methods were the least effective (Figure 17). In fact, Lasso feature 

reduction significantly decreased the final accuracy (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑁) for seven out of eight examples.  

With the functional models, both PCA and SVD methods significantly improved the 

accuracies (p < 0.001), while SVD performing much better than PCA (p < 0.001). SVD feature 

reduction achieved boost in the final accuracy (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑁) by 4 – 7%, while PCA by 0 – 1%. 

With the structural models using PCA or SVD, the classification accuracies were improved with 

relatively low 𝑁𝑠𝑎𝑚𝑝𝑙𝑒, then there was a sudden decrease in accuracy as 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 approched the 

number of original features. When 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 > 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (HCP problems), 

the outcome was unpredictable, with HCP-Age problem showing improvement, while not with 

HCP-Sex (Figure 17). This sudden decrease in accuracy did not appear in the functional models, 

because 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ≪ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 71,631. 
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5.3 Sample Size Prediction Model 

5.3.1 Sample Size and Classification Accuracy 

It was previously suggested that the relationship between the sample size and the error rate 

(1 - classification accuracy) follow the inverse power law16, 192, which would have a general form: 

 
𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

1

𝑥1 × 𝑁𝑥2
 (2) 

𝑁 is the total sample size, and 𝑥1 and 𝑥2 are the model parameters. This equation needs 

modification as not all model will reach a 100% accuracy even with infinitely large 𝑁. From 

empirical search, this slightly modified equation below gave the best nonlinear fit to the sample 

size relationship both visually and from the residual statistics: 

 𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑓(𝑁)

= 50 + (x1 − 50) × (1 −
1

1 + 𝑥2 × 𝑁𝑥3
) (%) 

(3) 

Notice that equation (3) was slightly modified from (2) so that the model parameter x1 

gives the maximum possible accuracy, and 𝑓(𝑁 = 0) = 50%. Parameters x2 and x3 change how 

fast the accuracy improves as the sample size increases.
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Figure 18. Predicting Future Accuracy of the Eight Models. Support vector machine (SVM) 

baseline classification results (solid line) and the fitting results (dotted lines). Same model 

(Equation 3) was fitted four times: first with all data points, and then with one, two, or three last 

data points out (15 logarithmically-spaced data points in total per problem). †RSFC = resting-

state functional connectivity. 
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5.3.2 Sample Size Model Fitting 

Equation 3 was fitted four times per problem: first with all data points, and then with one, 

two, or three last sample data points (𝑁𝑠𝑎𝑚𝑝𝑙𝑒) out (15 logarithmically-spaced data points in total 

per problem) (Figure 18). The fitted lines matched the available data points well both visually and 

based on the residual statistics. For problems with smaller total samples sizes (𝑁), especially for 

ones that demonstrated higher degree of overfitting (ECP problems), the predictions were more 

unstable. For problems with larger 𝑁 (HCP problems), the prediction seemed more reasonable and 

stable. 

Fitted lines predicted that the HCP-Sex structural model would reach 84 – 88%, and its 

functional model nearly 100%. The HCP-Age structural model was predicted to reach 62 – 63%, 

and its functional model 79 – 88%. The ECP structural model was predicted to reach nearly 100%, 

and its functional model 69 – 100%. The ADCP structural model was predicted to reach 75 – 76%, 

and its functional model 72 – 79%. 

5.4 Discussion 

5.4.1 Reliability of Classification Accuracy 

Machine learning classification accuracy is unreliable with small sample sizes, due to the 

large variance and overfitting23. In medical imaging, it is often difficult to accrue large amounts of 

training dataset for machine learning research, and many publications vaguely state the low sample 

size as the biggest limitation of their work. Therefore, it is important to study the relationship 

between sample size and the model performance. Here, we tested the SVM binary classification 

algorithm with a number of different kernels, testing K-folds, and feature reduction methods. 
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As discussed earlier, most machine learning publications do not consider the sample size 

relationships of their model performance. However, the true reliability of a model cannot be 

correctly assessed only with the given dataset as evident from Figure 15, (C) and (D). The standard 

deviation of the model accuracy starts from around ±15%  with 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 5 , and steadily 

decreases until it drops sharply near 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ≈ 𝑁, because this is analogous to a sample standard 

deviation, instead of a population standard deviation. The same phenomenon is also found with 

smaller K-fold settings, albeit to lesser degrees. In order to correctly assess the true reliability at a 

given sample size, a larger sample needs to be tested. For example, the standard deviation of ADCP 

T1 problem was found to be ±0.78% with 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 63, but that of HCP-Sex T1 problem was 

±4.55% with 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 65, which should be closer to the true population standard deviation. The 

results suggest that, for similar problems, if ±5% standard deviation is desired, at least 𝑁 = 50, 

or more conservatively 𝑁 = 100 is required. If ±1% standard deviation is desired, around 𝑁 =

5,000 may be required for similar problems. 

5.4.2 Sample Size and Classification Accuracy 

Using a smaller number of K-folds (or holding out a larger testing set) consistently 

decreased the classification accuracy. Figure 16 effectively shows that the reason for this is due 

to the smaller training sample sizes. The number of training subjects in each group (𝑁𝑡𝑟𝑎𝑖𝑛) is 

closely related to the classification accuracy. The common practice of preferring K-fold over 

leave-two-out or leave-one-out testing to minimize overfitting (evident from curved ends in Figure 

15) is justified; however, it does so at the cost of the training sample size which is more difficult 

to afford in medical imaging. 
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Previous findings suggested that the relationship between the error rate (1 – accuracy) in 

binary classification and the sample size followed a power law function (Equation 2)16, 192, and a 

slightly modified version (Equation 3) showed the best fitting results. Although this fitted model 

may conveniently provide predictions of future accuracies, overfitting can be problematic as seen 

from the ECP problems in Figure 18. In addition, the accuracies in the problems that we 

investigated had not reached their maximum accuracies yet, which still left the validity and 

universality of this fitted model for further investigation and confirmation. 

Once the relationship is established, it can be used to make predictions and to examine 

whether a model has room for potential improvements with added training samples in the future. 

A classification model that gives only a sub-optimal accuracy can be promoted to a clinical tool, 

if it shows enough potential. Also, a classification model that shows little potential can be deserted 

quickly to save research time and effort. Moreover, the knowledge of this relationship can be 

informative when designing new clinical studies, as it suggests reasonable sample sizes to recruit 

per clinical group. 

5.4.3 Feature Reduction 

Three common feature reduction methods were explored and the best results in terms of 

improving classification accuracy were achieved using SVD in all eight problems, especially when 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ≪ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. PCA also consistently improved the accuracies, but 

to a lesser degree compared to SVD. Lasso methods did not improve the final accuracies 

(𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑁), most likely due to information loss. 

Both SVD and PCA attempt to summarize high-dimensional information using smaller 

number of dimensions, and they are closely related. In fact, PCA can be performed using SVD, 
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because it can be considered as a special case of SVD188, 196. However, performing SVD is 

computationally less demanding compared to PCA, and therefore, has an inherent advantage when 

used in machine learning197. 

The present results are in favor of using SVD over the other two feature reduction methods 

when the number of features is much greater than the available sample size. However, the results 

may differ with other types of applications, and therefore, if enough time is available, testing a 

variety of feature reduction methods is the most ideal. In addition, only linear feature reduction 

methods were considered in this study. If enough samples are available, exploring nonlinear 

methods is a possibility, although, considering the complexity of this search, building and 

optimizing small neural networks may turn out to be a more efficient and effective option. 

5.4.4 Machine Learning Research in Medical Imaging 

Given the observations and discussions above, a number of approaches are proposed for 

future machine learning research in medical imaging, or wherever dealing with limited sample 

sizes. First, it is advisable not to jump to conclusions from results acquired with low sample sizes. 

Population standard deviation of 10% or more is expected for 𝑁 < 20, and 5% or more for 𝑁 <

100. Second, instead of using a K-fold testing, maximizing the training sample, while plotting the 

relationship between the model performance and sample size using subsampling methods 

introduced here, may provide better insight on the dataset. This will also allow assessing the trend 

of the performance to determine whether the model has room for improvements. Third, hastily 

generalizing the findings of increased or decreased performances from changing training 

parameters can be risky. They may be specific to the dataset and the best combination of 

parameters may not carry over to new datasets, possibly even to the same dataset with added 
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samples, especially when dealing with small sample sizes. The sample size plots help discriminate 

between good and bad parameter combinations per given dataset. 

A machine learning model continues to learn after it is first trained, as it is exposed to more 

training samples, just as a human physician continues to learn throughout their residency and even 

while practicing. Therefore, machine learning research in medical imaging should focus less on 

the current accuracy, but more on its maximum potential accuracy that is reasonably achievable. 

Since the models can be trained much faster in clinical settings, compared to restricted research 

settings, more sub-optimal models showing enough potential should be promoted to clinical tools. 

They can first serve as a second eye to trained physicians and then, after a period of extra training 

with immense clinical data and reaching their target accuracy and reliability, can become stand-

alone tools. 

5.4.5 Limitations 

In this work, only eight selected research problems which have similar data types and 

qualities have been tested. Although their accuracies showed very similar sample size relationships, 

and the fitting results in Figure 18 were successful, these may not represent all problems in 

medical imaging. Future work is needed to confirm the findings here with other feature types and 

feature dimensionality. 

Only equal-sized groups were considered in this work for simplicity, because unbalanced 

groups cause unbalanced sensitivity and specificity using default training parameters. However, 

many medical imaging classification problems involve unbalanced groups, especially when the 

disease to be diagnosed is rare. Future work is needed to expand the findings here to cases with 

significantly unbalanced sample sizes. 
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There is no one-size-fits-all solution to training machine learning models, and each model 

tackling unique problems must be fine-tuned in order to handle the specific dataset well. 

Significant improvements in performance can be gained by optimizing the hyperparameters. 

However, in a systematic search considering multiple models at multiple sample sizes, sufficient 

time for this fine-tuning cannot be allotted to each model, and only a few default settings can be 

reasonably tested. Also, models that require relatively longer training periods such as deep learning 

are difficult to consider. Therefore, the predicted performance from these research efforts should 

be regarded as the lower bounds of the actual performance. A carefully fine-tuned deep learning 

model is expected to out-perform a linear SVM model.  

5.5 Concluding Remarks 

Applying machine learning in medical imaging problems is mostly limited by the small 

sample sizes. When sample sizes are small, large uncertainty in performance measurements is 

expected, along with overfitting. Here a number of research approaches have been proposed, 

including plotting the performance over the sample sizes, maximizing the training sample, using 

SVD feature reduction, making predictions of future accuracy, and identifying sub-optimal models 

with potentials. These guidelines will help the accurate assessment of medical imaging 

classification models, and ultimately allow the field to reach its goal faster, which is to make timely, 

accurate, and reliable medical diagnoses. 
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Chapter 6 

 

Conclusion and Future Works 

 

 
Machine learning has been drawing a massive attention in the past decade. The amount of research 

publications and also commercial products using machine learning have exploded and do not yet 

show signs of slowing. It is changing the ways humans view things and perform tasks. The 

versatility of it is being exploited in literally every field of study. The predictions that it offers are 

intriguing, but systematic patterns within complex datasets that it detects along the way also offer 

tremendous insight.  

 In the midst of all the hypes and success stories in the media, however, there are many 

areas that are still in the early developing stages, mainly due to the limited sample sizes. Then, the 

question becomes when we can expect to see useful products from these areas, if that is feasible. 

One of these areas is the whole-brain MRI classification, and the problem becomes more 

challenging with rare diseases. 
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 In this work, a neurological disorder known as temporal lobe epilepsy (TLE) was 

investigated using machine learning. The ECP provided comprehensive and high-quality imaging 

and neuropsychological testing data to train the models with. They would have been sufficient 

amount of information for many other traditional statistical analyses, but for machine learning, 

they seemed to fall short. Despite the limitations, we were able to make a number of noteworthy 

discoveries as well as train promising machine learning models. And these results suggest 

interesting research topics for the future. 

6.1 Epilepsy Research  

There is still a lot to be discovered about epilepsy. Because of the temporal nature of this 

neurological disorder (seizure activity), the direct search for the underlying cause, biomarkers, and 

the cure for epilepsy has only been effective with the developments of imaging devices capable of 

capturing temporal (functional) information (EEG or fMRI). With the advancements of imaging 

devices will come new discoveries on epilepsy. One example of this was introduced in Section 3.3, 

which showed that the classic model of associating cognitive abnormality in epilepsy with the 

disordered pathophysiology of specific epilepsy syndrome seemed to be challenged. Imaging 

results revealed that a large proportion of TLE patients instead suffered whole brain abnormality. 

The accelerated brain aging of TLE patients introduced in Section 4.3 also provided an interesting 

viewpoint of epilepsy.  

6.1.1 Machine Learning Classification of Epilepsy Subgroups 

 As discussed in Section 4.2, the correct goal in applying machine learning classification on 

epilepsy data should not be to separate between epilepsy patients and healthy controls, but to 
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separate among subgroups in epilepsy. A clinically useful machine learning model should provide 

information to physicians which would otherwise not have been easily acquired, but which would 

help in the assessment of the disease or the treatment planning. A few examples of this would be 

predicting seizure origin (by lobes, or hemispheres), course of epilepsy, severity of structural or 

functional brain damage, developing symptoms, best AED to be treated (or else refractory), or 

success rate of lobectomy. According to the results in Sections 5.2 and 5.3, any of these problems 

would likely to require data from at least hundreds of epilepsy patients just to start assessing 

whether such model can reasonably be built. 

 On the other hand, as shown in Chapter 3, there are still lots of insight to be gained from 

machine learning research, even if the trained model itself may not be clinically useful. For 

example, studying a machine learning model that effectively separates between TLE patients and 

healthy controls can reveal patterns in the training dataset that have not been discovered previously. 

This means that the possibilities are endless in the use of machine learning in epilepsy research. If 

only a valid research question is posed and if a sensible machine learning model can be trained, 

the underlying features can be analyzed, similar to the approach in Section 4.3. 

6.1.2 Data-driven Clustering of Epilepsy Subgroups 

 The class label is crucial in machine learning classification. For example, if a TLE patient 

is mislabeled as a healthy control, this is devastating for the training. Therefore, carefully screening 

for mistakes in the class labels is a critical step. However, it can be an issue even when there are 

no mistakes: if the classes are not well separable using the given feature set. 

 This can occur in two cases: an ill-posed problem, or ill-defined classes that are not 

supported by the data. First, the HCP–Age problem (separating between brain images of healthy 

20s and 30s) in Section 5.2 is an example of an ill-posed problem. Intuitively, we expect that the 
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training of this model would be more challenging compared to the HCP–Sex problem (separating 

between males and females). Second, Section 3.3 suggests that simply designating one class to 

include all TLE patients may be ill-defined. Fixing this requires re-thinking the definitions that we 

are accustomed to. Was separating epilepsy patients based on their seizure focus the best strategy? 

Cluster analysis is a data-driven method which aims to organize data points into subgroups and 

can address this question. If the efforts in Section 6.1.1 turn out to be unsuccessful, these two cases 

can be checked for alternative solutions. 

6.2 Sample Size Limitations 

 As in MRI research, where there are both researchers analyzing the images and ones 

developing hardware, in machine learning research, if there are the users, there must also be some 

that troubleshoot. A large amount of effort goes into building the best models, which grab more 

attention. Problems that are not showing high enough performance metrics get deserted quickly. 

Comparably few are devoted to troubleshooting problems that are currently not exciting due to 

either limited sample sizes or limited understanding of the problem. Chapter 5 explored the 

relationship between the sample size and binary classification accuracy, and proposed a few 

methods to identify machine learning models with enough potential. This can benefit many 

overlooked areas of study where previously limited by the lack of sample sizes. More of such 

systematic research effort is needed to achieve comprehensive understanding of the sample size 

issue, which can guide future machine learning research. 

As discussed in Section 5.4.5, future work is needed to explore other types of classification 

problems in medical imaging: less controlled images (such as clinical), unbalanced sample sizes, 

significantly non-normal features (with skewed or bimodal distributions), other imaging 
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modalities and training features, etc. In each case, performance metrics other than the simple 

accuracy may be considered to be more appropriate, such as AUC, sensitivity/specificity, 

precision/recall, etc. Similar approach can also be used to study machine learning regression 

problems. 

 In order to combat the problem of low sample sizes directly instead of simply waiting for 

more data to be available, efforts are needed to develop effective feature extraction or feature 

reduction methods. Traditional data augmentation techniques are not straightforwardly applicable 

in many medical imaging diagnosis problems, for reasons discussed in Section 5.1. It would be 

beneficial not only to know the amount of sample sizes required to build reliable machine learning 

models, but also to have methods to reduce the sample size barrier because of the difficulty in 

accumulating large medical imaging data.  

 After gaining enough understanding on the relationship between sample size and machine 

learning performance, it would be intriguing to perform a meta-analysis to review published 

machine learning models for their true potential as most publications only assess their current 

performances. A thorough review may discover among a large pile of proposed models ones that 

actually show enough potential for pursuing further. This is the correct way of exploiting the 

important advantage of using machine learning, which is its ability to improve itself given more 

data. It is an exciting time to study medical imaging and epilepsy with the powerful tool of machine 

learning in hand. 
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