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Abstract

Machine learning is changing the field of medical imaging. Studying complex neurological
diseases like epilepsy can substantially benefit from its use. It can offer valuable insight onto the
disease characteristics and also train predictive models to be used in various applications. Using
both imaging and neuropsychological data provided by the Epilepsy Connectome Project, this
work explores using machine learning to study temporal lobe epilepsy population in three steps.
First, it exploits the feature extraction ability of machine learning to find that the frequency range
between 0.1 — 0.073Hz is best at capturing abnormal resting-state functional connectivity in
temporal lobe epilepsy compared to healthy controls, and that the impaired processing speed is the
most informative among other neuropsychological tests in separating between the two groups.
Second, it builds machine learning classification and regression models that can make various
predictions on temporal lobe epilepsy patients. One finding reveals that temporal lobe epilepsy
patients exhibit functional brains that are predicted to be on average 8.3 years older compared to
their chronological ages. Third, the relationship between the sample size and binary classification
accuracy is systematically explored using neuroimaging data. A number of guidelines are proposed
for future research, as well as an equation for the sample size relationship that can be used to
predict future accuracies given limited samples. Finally, it ends with suggestions of future research
directions. Overall, this work presents how machine learning can facilitate epilepsy research and

suggests ways that the limited sample size problems can be addressed.
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Chapter 1

Introduction

The concept of machine learning has existed for a long time, but it is now beginning to change the
field of medicine'. Over time, many machine learning algorithms have been proven effective to
perform complex classification and regression problems in many industrial fields®. The promise
of machine learning is that given datasets of sufficient size, it will solve these complex problems
more efficiently and with greater accuracy than the traditional approaches®. However, its
applications in medical imaging are being developed at a much slower pace compared to in
industrial fields and are largely limited to a few classes of problems such as image segmentation,
registration or 2-dimensional image classification® 10,

Machine learning can be divided into two large branches: supervised and unsupervised
learning®. Supervised learning starts with the goal of predicting a known output. Its models are
trained from a set of input-output (feature-label), or annotated (labeled) datasets. The performance

is then evaluated using the accuracy of predicting the outputs of unseen data. In contrast, in



unsupervised learning, there are no outputs to predict. Instead, the goal is to find naturally
occurring patterns or groupings within the data. A method known as the cluster analysis is one of
the most common algorithms of unsupervised learningt. The assessment of the performance is
inherently more challenging due to the lack of ground truth, and is generally done by indirectly
evaluating within-group similarities and between-group differences using other attributes.

Supervised machine learning can solve two types of problems: classification and regression.
Classification is at the basis of any medical diagnosis problems. Currently, in radiology, we mostly
rely on radiologists to look through medical images to make diagnoses. With advancements in
medical imaging and the growing complexity of imaging modalities, it is becoming more and more
difficult to make crucial decisions in a timely manner* 2. Regression is another group of problems
machine learning can solve®. This is when the degree of a continuous outcome is to be modeled,
such as age, tumor grade, success rate of a surgery or the rate of a disease progression*. Since the
outcome is continuous, regression problems may require more training dataset to create high-
performing and reliable models, compared to classification problems where the outcome variable
is categorical.

One of the most limiting factors in applying machine learning to medical imaging is the
lack of sample size™>*°. Acquiring and handling large amounts of medical data are difficult due to
issues with recruitment, cost, storage, patient data privacy and more?® 2. Higher dimensional
datasets that require large storage and working memory, such as high-resolution magnetic
resonance imaging (MRI) or functional MRI (fMRI), are especially challenging to handle and to
train machine learning models with. With small sample sizes, the performance and the reliability
of a trained model are expected to be deficient, because of issues with overfitting®? 23, This limits

utilizing machine learning to study diseases whose symptoms or biomarkers can only be captured



with high dimensional imaging modalities. For example, epilepsy is a neurological disorder that
causes unprovoked, recurrent seizures in affected patients®* 2°. Currently, diagnosing and
characterizing patients with epilepsy primarily rely on high-dimensional imaging modalities such
as electroencephalogram (EEG), magnetoencephalography (MEG)® %, or MRI?’. Acquiring
enough imaging data from epilepsy patients to build reliable machine learning models is clinically,
practically, and computationally challenging.

Machine learning research has two broad goals: first, to reveal useful patterns in a dataset
related to solving specific problems, and second, to make accurate predictions of unseen data.
These two goals must accompany each other. For example, imagine that a machine learning model
has been trained and it has developed a certain algorithm to utilize a certain pattern of data in order
to make its predictions. Even if the mechanism seems reasonable, if the model’s prediction
accuracies on unseen data are poor, it is doubtful. On the other hand, if a model shows good
prediction accuracies, then the subsequent analyses of its underlying algorithms as well as the
quality of the training dataset must follow, in order to verify that the good performance was not
resulted from faulty algorithms or biased datasets. An ideal machine learning model shows good
prediction results, as well as reveals informative patterns that can be reliably used to deliver future
predictions. And, especially in medicine, it is much more preferred when the extracted patterns are
understandable and at least partially co-align with prior clinical knowledge, which then potentially
reveal the underlying biomarkers for the disease.

It is difficult to achieve satisfactory results with machine learning when sample sizes are
small*>*®, However, a powerful advantage of using machine learning is simply the ability of the
model to improve itself with more data. Therefore, in machine learning research with limited

sample sizes, not only the model performance, but also the potential of the model is important:



whether the model has room for improvements if more data points are recruited, or else it has
reached its maximum potential. To make this assessment, it is necessary to study the relationship

between the model performance and the sample size.

1.1 Specific Aims

This work studies the most common form of epilepsy in adults called temporal lobe
epilepsy (TLE) using machine learning?®. High-resolution MRI images as well as
neuropsychological test data of TLE patients were acquired from the Epilepsy Connectome Project
(ECP)?° 30 sponsored by the National Institutes of Health (NIH). More details of this study and of
the dataset can be found in Chapter 2. The specific aims addressed for the completion of this work

are as follows:

1. Investigate imaging and neuropsychological biomarkers of TLE using machine learning,

2. Build machine learning models to make clinical predictions on TLE patients,

3. Investigate the relationship between machine learning performance and the sample size.

1.2 Thesis Outline

In accordance with the aforementioned aims of this work, the remainder of the thesis will be
structured as follows.
e Chapter 2 introduces the main research project (ECP) where data from the TLE patients

as well as most of the healthy control volunteers were taken from. The first section provides



a brief introduction of TLE. The following sections summarize the project aims and its
acquired dataset.

Chapter 3 discusses using machine learning to search for biomarkers of TLE patients. The
first section searches for biomarkers in resting-state fMRI images and the second section
in neuropsychological test results. The following sections then discuss the potential
discordance between diagnostic methods developed by humans and by machine learning.

Chapter 4 discusses using machine learning for building prediction models on TLE
patients. The first section introduces the proper methods to assess the generalizability of a
model performance. Then, in the following sections, some examples of building both
classification and regression machine learning models are introduced using TLE patients’
data.

Chapter 5 explores the relationship between machine learning binary classification
performance and the sample size. First, the relationship is investigated with respect to a
number of machine learning training hyperparameters, and then, an equation is fitted to
study the trends. Based on the findings, a number of research directions are proposed for
future machine learning research with limited sample sizes.

Chapter 6 provides a final discussion of the takeaway points from this work and discusses

potential directions for future work.



Chapter 2

Epilepsy Connectome Project (ECP)

A recent NIH-sponsored project known as the Human Connectome Project (HCP)3! which ended
in 2018 laid out a thorough neuroimaging blueprint of young adults. It collected a comprehensive
MRI and neuropsychological data from 1,200 healthy young adults between ages of 22 and 35.
Then the focus moved towards finding abnormalities in patient populations compared to this
normative dataset available. More than a dozen Connectome projects related to human disease
were launched and applied HCP-style data collection protocols®? %3, One of these sister studies
known as the Epilepsy Connectome Project (ECP) investigated temporal lobe epilepsy (TLE)
population? 30, Most of the studies included in this work involve data from the ECP and therefore,

in this chapter, a brief introduction to the study is provided.

2.1 Temporal Lobe Epilepsy (TLE)

Epilepsy, a brain disorder characterized by recurring seizures, affects an estimated 1.2% of
the United States population (3.4 million persons) and is associated with a high risk of cognitive

and psychosocial dysfunction, and enormous healthcare costs?* 3. The number of affected people



worldwide is 50 million, which is expected to increase further due to the rising life expectancy and
the increasing proportion of people surviving epilepsy-provoking insults, such as birth trauma,
traumatic brain injury (TBI), brain infection and stroke®. Even with adequate diagnosis and
treatment, 30 — 40% of epilepsy patients still experience recurring seizures that are uncontrolled
by medication®* 3, who are then considered to have refractory epilepsy. Powerful imaging tools
are now available for quantitatively characterizing the structural and functional connections
between brain regions that make up epileptic networks®"=°, providing a promising new approach
for understanding, predicting, and treating refractory epilepsy.

TLE is the most common form of epilepsy in adults, and the largest group among those
with medically refractory seizures?. It is characterized by seizure activities emanating from the
temporal lobe, which is where the most damage to the structural brain occurs, although this damage
can extend to thalamus, insula, and other cortical regions*>*?, Resting-state fMRI analyses have
also demonstrated both temporal and extra-temporal functional connectivity abnormalities*? 44,
Chronic TLE is associated with abnormalities in cognition, brain structure and brain connectivity
in midlife*>“8, Finding reliable biomarkers is crucial in prevention therapy and drug development,

but has so far only been modestly successful®® 0,

2.2 Enrollment Criteria

The ECP (grant number U0O1NS093650) is a two-site, prospective research project based
in the Medical College of Wisconsin and the University of Wisconsin-Madison. The enrollment
period spanned from 2015 and ended in 2019. The Medical College of Wisconsin and Froedtert
Hospital Institutional Review Board approved the use of human participants for this study. All

participants provided written informed consent prior to their participation.



TLE patients were enrolled if they were between the ages of 18 and 60 (inclusive), had
tested full-scale intelligence quotient (1Q) at or above 70, spoke English fluently, with no medical
contraindications to MRI. The diagnosis of TLE was supported by two or more of the following:
1) described or observed clinical semiology consistent with seizures of temporal lobe origin, 2)
EEG evidence of either temporal intermittent rhythmic delta activity (TIRDA) or temporal lobe
epileptiform discharges, 3) temporal lobe onset of seizures captured on video EEG monitoring, or
4) MRI evidence of mesial temporal sclerosis or hippocampal atrophy. Patients with any of the
following were excluded: 1) lesions other than mesial temporal sclerosis causative for seizures,
and 2) an active infectious/autoimmune/inflammatory etiology of seizures. The TLE group was a
combination of refractory and better-controlled patients (45% reported having at least one seizure
during the past year).

The controls were healthy adults between the ages of 18 and 60. Exclusion criteria included:
Edinburgh laterality (handedness) quotient less than +50; primary language other than English;
history of any learning disability, brain injury or illness, substance abuse, or major psychiatric
illness (major depression, bipolar disorder, or schizophrenia); current use of vasoactive

medications; and any medical contraindications to MRI.

2.3 Data Types

2.3.1 Neuropsychological Assessment

All controls and TLE patients underwent neuropsychological evaluation targeting
assessment of intelligence, language, visuoperceptual/constructional skills, learning and memory,
executive functions, and cognitive/psychomotor speed. A total of 18 cognitive indices resulted

which included assessment of intelligence (Wechsler Abbreviated Scale of Intelligence-2 [WASI-



11] Vocabulary and Block Design subtests)®!, verbal learning and memory (Rey Auditory Verbal
Learning Test [RAVLT]) including total words learned across trials®?, object naming (Boston
Naming Test)®, letter fluency (Controlled Oral Word Association Test)>* >, semantic fluency
(Animal Naming)®> %, spatial orientation (Judgement of Line Orientation)®’, face recognition
(Facial Recognition Test)®’, speeded fine motor dexterity (Grooved Pegboard, dominant and non-
dominant hands)®, and selected subtests from the NIH Toolbox-Cognitive Battery including the
Pattern Comparison Processing Speed (PCPS)>® €, Dimensional Change Card Sort, List Sorting
Working Memory, Flanker Inhibitory Control and Attention, Picture VVocabulary, Oral Reading

Recognition, and Picture Sequence Memory tests.

2.3.2 Neuroimaging

MRI was performed on 3T GE (General Electric) 750 scanners at both institutions. T1-
weighted structural images were acquired using magnetization prepared gradient echo sequence
(MPRAGE, repetition time [TR]/echo time [TE] = 604ms/2.516ms, inversion time = 1060.0ms,
flip angle = 8°, field-of-view = 25.6cm, voxel size = 0.8mm isotropic). Cube T2-weighted
structural images were also acquired (TR/TE = 2,500ms/94.641ms, flip angle = 90°, field-of-view
= 25.6cm, 0.8mm isotropic).

Resting-state fMRI images were acquired using whole-brain simultaneous multi-slice
imaging®® (8 bands, 72 slices, TR/TE = 802ms/33.5ms, flip angle = 50°, matrix = 104 x104, field-
of-view = 20.8cm, voxel size = 2.0mm isotropic) and a Nova 32-channel receive coil. The
participants were asked to fixate on a white cross at the center of a black screen during the scans
for better reliability®2. Time-series from four 5-minute resting-state fMRI scans acquired in a single

session were concatenated for more reliable analysis®®.
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2.4 Neuroimaging Data Processing

2.4.1 Preprocessing

Imaging data were pre-processed using the HCP minimal processing pipelines version
3.4.0% which is primarily based on FreeSurfer® and FSL (FMRIB Software Library)®®. In brief,
the function of this pipeline is to nonlinearly register T1- and T2-weighted images to the MNI
(Montreal Neurological Institute) space, segment the volume into predefined structures,
reconstruct white and pial cortical surfaces, and perform FreeSurfer's standard folding-based
surface registration to a surface atlas (the “fsaverage” template). The functional portion of the
pipelines removes nonlinear spatial distortions using spin echo unwarping maps, realigns volumes
to compensate for subject motion, registers the fMRI data to the structural images, reduces the bias
field, normalizes the 4D image to a global mean, masks the data with the final brain mask and
maps the voxels within the cortical gray matter ribbon onto the native cortical surface space. More

details on the HCP processing pipelines can be found in Glasser et al.®*

2.4.2 Glasser Parcellation

The Glasser parcellation atlas®” was used for studying resting-state fMRI images
throughout this study. This parcellation is a recent development from the HCP consortium for
surface-based morphometry. It consists of 180 cortical parcels per hemisphere. These parcels were
delineated using a multi-modal approach and the authors reported that the parcellation is highly
reproducible®’. One limiting factor is that this excludes subcortical brain regions. Therefore, 19
subcortical regions from the FreeSurfer subcortical segmentation®® were additionally analyzed: a

total of 379 regions of interest per brain.
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Chapter 3

Searching for Biomarkers of Temporal Lobe

Epilepsy using Machine Learning

When machine learning results are reported, what catches the public eyes is the prediction accuracy.
Whether or not a machine can perform better in a particular task compared to humans is typically
the question that generates excitement and disappointment from the crowds. However, what is
almost equally important is how the machine was able to achieve the superior accuracy. A machine
learning research not only focuses on producing the best performance, but also investigates the
underlying features that drive the performance. In medical imaging or medicine in general, this is
especially important, because this may reveal important biomarkers of a disease that humans were
not able to decipher. Then the underlying features highlighted by machine learning models can be
compared with the prior clinical knowledge to better characterize the disease in question. This
chapter provides a few examples of using machine learning for searching for biomarkers of TLE

patients.
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3.1 Resting-state Functional Connectivity®

The human brain is a complex dynamic system characterized by spontaneous oscillations
in multiple frequency bands®®. Traditionally, the analysis of resting-state fMRI data focused on the
low-frequency oscillation range (LFO; 0.01 —0.1Hz, although exact cutoffs vary slightly), because
the signals in this range seemed to be less contaminated by low/high frequency noise and to capture
relevant resting-state information’. Some investigators have tested narrower frequency bands
within and around the LFO, labeled Slow-5 (0.01 — 0.027 Hz), Slow-4 (0.027 — 0.073 Hz), Slow-
3 (0.073 — 0.198 Hz) and Slow-2 (0.198 — 0.50 Hz) by Buzsaki et al.%. Zuo et al. suggested that
the Slow-5 and Slow-4 bands reflect signal changes from the gray matter, while Slow-3 and Slow-
2 signal changes from the white matter’* (Figure 1). A recent work by Gohel & Biswal revealed

that functional integration between brain regions at rest occurs in multiple frequency bands’?.

WM
Slow 2 ‘
§ Slow 3 i€ e .
: Slow 4
: : Nyquist
S;Iow;S Frequency at
: ﬁ TR=0.8s
i i LFO | 1
001 0.027 0.073 010 0198 050 0625

Frequency (Hz)

Figure 1. Functional MRI Frequency Bands. It has been suggested that the Slow-5 and Slow-4
bands reflect signal changes from the gray matter (GM), while Slow-3 and Slow-2 from the white
matter (WM)™. 0.625Hz is the highest frequency that can be captured by a functional MRI scan
with the repetition time (TR) of 0.8 seconds. TLFO = low frequency oscillations.

§ Portions of this work have been published in: Hwang G, Nair VA, Mathis J, Cook CJ, Mohanty R, Zhao
G, Tellapragada N, Ustine C, Nwoke OO, Rivera-Bonet C, Rozman M, Allen L, Forseth C, Almane DN,
Kraegel P, Nencka A, Felton E, Struck AF, Birn R, Maganti R, Conant LL, Humphries CJ, Hermann B,
Raghavan M, DeYoe EA, Binder JR, Meyerand E, Prabhakaran V. Using low-frequency oscillations to
detect temporal lobe epilepsy with machine learning. Brain Connect. 2019;9(2):184-93
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Based on these findings, our hypothesis was that seizure activity in TLE patients, which
generally occurs at much higher frequencies than these slow bands, produces alterations in grey
matter connectivity that can be detected at lower frequencies with fMRI. Since the raw voxel-
based signal data are 4-dimensional, highly complicated, and very large in size, three summary
measures were calculated: resting-state functional connectivity (RSFC)”, amplitude of low
frequency fluctuations (ALFF)’* 7, and fractional ALFF (fFALFF)’*. RSFC measures correlations
between blood-oxygen-level dependent (BOLD) time series of two brain regions, while ALFF and
fALFF capture intensity-based measures of the signal changes at a single region of interest. The
goal was to reveal which combinations of a resting state measure and a frequency band capture the
most valuable information to discriminate between TLE patients and healthy controls.

Previous studies that investigated these measures in TLE patients reported abnormalities
in different regions of the resting brain. These abnormalities include decreased RSFC within the
epileptic temporal lobe, between hippocampi, and between the hippocampus and the orbito-frontal
region’, and increased RSFC in the lateral portions of the non-epileptic hemisphere’®. Zhang et
al.”” reported that TLE patients with medial temporal sclerosis (a common structural abnormality
in TLE) show increased ALFF in the medial temporal lobe and thalamus and decreased ALFF in
the default-mode network. A difference in fALFF was noted between left and right TLE patients
in the thalamus’®.

To create a reliable machine learning model, one needs to select an informative set of
features for training, then narrow this set down to key components’: 8. Therefore, knowing what
information is useful is essential, but typically difficult to determine a priori. In this section, 20
different combinations of resting fMRI measures and frequency bands were examined for the

machine learning training. Note that it is not necessary to consider the "All" band with fALFF,
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because fALFF is defined as ALFF of a specific frequency band over that of the “All” band. A
feature selection method using a least absolute shrinkage and selection operator (Lasso)® was

employed to remove uninformative features®? 82,

3.1.1 Participants

Data from 60 TLE patients (mean age = 39.5 = 12.0 years, 34 females, five left-handed,
epilepsy duration = 18.7 + 14.4 years, 38 drug-resistant TLE), and 59 healthy controls (mean age
= 36.0 + 14.4 years, 32 females, all right-handed) were analyzed. The two groups did not differ in
the mean age (p = 0.16, two-tailed t-test), and gender ratio (p = 0.79, Chi-squared test). The patient
group consisted of 29 individuals with left TLE, 15 with right TLE, and four who had bilateral
onsets based on either interictal EEG, imaging (hippocampal sclerosis) or ictal monitoring. Twelve
patients had uncertain lateralization. To closely match the mean age and gender ratio between the
TLE and control samples, 12 of the healthy control data were taken from the Alzheimer’s Disease
Connectome Project (ADCP)®, which used the same set of MRI scanners and the same imaging
protocols for structural and resting-state fMRI scans as the ECP. ADCP is also an NIH-sponsored
disease Connectome project that launched in 2016 with aims to study populations with
Alzheimer’s disease and mild cognitive impairment (MCI). The Medical College of Wisconsin
Institutional Review Board has approved the use of human participants for ADCP and the sharing

of de-identified datasets from this study.

3.1.2 Data Processing

In addition to the pre-processing described in Section 2.4.1, additional processing was
performed using AFNI (Analysis of Functional Neurolmages)®®, which included motion regression

using 12 motion parameters, and regression-based removal of signal changes in the white matter,
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cerebrospinal fluid, and the global signal. Bandpass filtering was applied to select frequency bands
of interest: Slow-2, Slow-3, Slow-4, Slow-5, Slow-4+5 (covering both Slow-4 and Slow-5), LFO,
and All (no bandpass filtering; approximately 0.00 — 0.62Hz) (Figure 1). 379 time series signals
from the combined parcellation scheme described in Section 2.4.2 have been extracted per subject.

Pairwise Pearson correlations were computed to generate RSFC matrices to be used as
machine learning training features. For ALFF, the filtered resting-state fMRI signals in the time
domain were Fourier transformed to the frequency domain, and the mean of the square root values
within the frequency range of interest was calculated”. fALFF was calculated as the ALFF of the
selected frequency range over the ALFF of the All range’. For ALFF and fALFF, the number of

possible features in the training was 379 for each.

3.1.3 Motion Outliers

Resting-state fMRI images can be heavily affected by subject motion in the scanner®.
However, it is also not desired to build a classifier model based on highly selected data, because
an ideal model should be able to classify participants despite moderate levels of motion in the
scanner. To achieve this, the machine learning model needs to be exposed to a sufficient number
of data points contaminated by motion. One needs to be cautious, however, not to train a model
that classifies based on the differences between high and low motion, instead of between TLE
patients and healthy controls.

Therefore, instead of performing a rigorous motion scrubbing, we used three different
motion metrics to determine if a MRI run was acceptable: relative mean root-mean-squared (RMS),
absolute mean RMS, and derivative of variance RMS (DVARS) &, These are common quality
control measures for resting-state fMRI scans, where the RMS’s measure pure subject motion,

while DVARS measures the combination of motion and the scanner instabilities. These three



16

motion measures were calculated per each run of five minutes, and transformed into the standard
scores. Subjects who had z > 3 on any of the three measures in any of the four runs being
concatenated were defined as motion outliers (Figure 2).

Histogram of Mean DVARS by Runs
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Figure 2. Histogram of Mean DVARS by Runs. Most subjects showed
acceptable in-scanner motion, while a few outliers existed, with respect to a metric
called the derivative of variance root-mean-squared (DVARS). Subjects with high
in-scanner motion were excluded based on a criteria described in Section 3.1.3.

Patients

3.1.4 Machine Learning Models

All machine learning analyses in this section were done in MATLAB R2016a with the
Statistics and Machine Learning Toolbox®. Three different binary classifiers were examined:
support vector machine (SVM)®, linear discriminant analysis (LDA)%, and naive Bayes (NB)®
classifiers. These three traditional classifiers were trained instead of one to get a general sense of
the expected machine learning classification performance.

L eave-one-out-cross-validation (LOOCV) was used to estimate model performance®. In
each LOOCYV loop, one participant was taken out and the machine learning model was trained

with N — 1 participants. Then the left out participant was used as a testing sample for the trained



17

model. This procedure was repeated until every participant had been left out once. The
classification performance was averaged to give the LOOCV accuracy. This method is known to
give the most unbiased estimate of the test error and is a good method for small sample cases®® %,
which will be discussed more in Section 5.2.5. Receiver operating characteristic area-under-the-
curve (AUC) was also computed by adjusting the misclassification cost function during the

training. A random classifier would give 50% LOOCYV accuracy with AUC =0.5.

3.1.5 Feature Selection

To reduce feature dimensionality, Lasso regression analysis was performed on the training
set in each cross validation loop, with the regularization coefficient (lambda) at 0.18- 82, Only
features with non-zero Lasso coefficients were used in the training of the machine learning models.
This technique was selected over other common feature selection techniques such as principle
component analysis (PCA)® in order to preserve the original features in the training. Features that
received non-zero coefficients in all 119 cross validation loops were marked for further analysis.
Recursive feature elimination®® was employed within each loop based on the Lasso coefficients to

further reduce the dimensionality.

3.1.6 Results

The highest LOOCV classification accuracies using RSFC were in the low to mid-80%,
with the AUC close to 90%. The highest cross validation accuracies were only in the mid-70%
using ALFF and fALFF measures. These results are summarized in Table I.

Using RSFC, the Slow-4+5 band produced the best overall model performance in

classifying the TLE patients and healthy controls, with around 83% LOOCYV accuracy. The highest
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cross validation accuracies from the three machine learning models were also consistent: 83.2 +
1.4%. Using ALFF and fALFF, LOOCYV accuracies were not as consistent as using RSFC.

19 Slow-4+5 RSFC features were selected by the Lasso feature selection every time in all
119 cross validation loops, and these are summarized in

Table 11, as well as shown in Figure 3. Only 5 of these features also received significant
p-values (Benjamini-Hochberg false discovery rate [FDR] corrected based on the standard alpha
level of 0.05)% from the group t-test. Connection between right fusiform face complex (R_FFC)
and right area posterior 9-46v (R_p9-46v, a part of Brodmann area 46) was the most significant
feature based on both Lasso and t-test (corrected p < 0.001) analyses, and was stronger (less
negative correlation) in TLE compared to the healthy group (Figure 4).

The 19 significant features did not include any exclusively temporal lobe connections.
Repeating the analysis using only Slow-4+5 RSFC within the temporal lobe (24 regions, 276

connections), the maximum LOOCYV accuracy was only 68.9%.



Table I. Classification Results of Separating TLE Patients and Healthy Controls. The three resting-state measures and seven
frequency bands tested are organized in the two leftmost columns. The three traditional machine learning models trained are organized
in the top row. The accuracies are the LOOCV accuracies. “Features” columns indicate the number of features selected from the
recursive feature elimination feature selection. Best LOOCV accuracies were achieved with Slow-4+5 RSFC features. 1LFO = low

frequency oscillations. AUC = area under the curve.

Measure Frequency SVM LDA NB

Band Accuracy AUC  Features Accuracy AUC  Features Accuracy AUC  Features

Slow?2 57.14 0.52 57 63.87 0.62 3 61.34 0.60 3

Slow3 65.55 0.67 14 63.03 0.62 12 63.03 0.61 21

Slow4 52.10 0.44 3 53.78 0.43 3 52.94 0.42 3

RSFC Slow5 75.63 0.80 10 75.63 0.80 8 76.47 0.79 11

Slow4+5 84.87 0.86 31 81.51 0.86 36 83.19 0.88 29

LFO 72.27 0.72 5 69.75 0.71 5 73.95 0.79 60

All 72.27 0.72 37 69.75 0.73 27 68.07 0.69 26

Slow2 52.94 0.43 25 53.78 0.49 34 57.98 0.56 33

Slow3 63.03 0.59 4 67.23 0.69 1 66.39 0.67 1

Slow4 69.75 0.71 17 68.91 0.72 17 69.75 0.73 17

ALFF Slow5 78.99 0.81 11 77.31 0.81 13 73.11 0.76 12

Slow4+5 64.71 0.65 3 67.23 0.68 3 64.71 0.67 3

LFO 73.95 0.72 14 78.15 0.81 14 69.75 0.72 15

All 62.18 0.56 6 61.34 0.61 8 63.87 0.64 10

Slow?2 53.78 0.46 22 59.66 0.58 2 60.50 0.57 2

Slow3 54.62 0.42 12 73.11 0.78 6 72.27 0.75 6

FALEE Slow4 64.71 0.55 2 63.87 0.64 2 65.55 0.65 2

Slow5 70.59 0.70 6 68.07 0.70 6 64.71 0.69 2

Slow4+5 56.30 0.46 6 55.46 0.53 25 56.30 0.53 24

LFO 58.82 0.50 16 55.46 0.54 3 63.03 0.57 20

61



Table Il. Slow-4+5 Features Repeatedly Selected by Lasso Feature Selection. These 19 Slow-4+5 connections were selected by
Lasso feature selection repeatedly in all 119 cross validation loops. Features with positive Lasso weights were stronger in TLE patients,
and vice versa for those with negative weights. Only 5 out of 19 features showed significant group differences based on the t-test. Feature

names and abbreviations follow the nomenclature in Glasser parcellation®’. +FDR = false discovery rate.

Lasso Features t-test
No From To Lasso Weight p_FDR
1 R_Fusiform Face Complex R_FFC R_Area posterior 9-46v R_p9-46v 0.713 <0.001***
2 R_RetroSplenial Complex R_RSC R_Area 46 R_46 -0.622 0.003**
3 L_Entorhinal Cortex L EC L_Area V3CD L _V3CD 0.584 >0.1
4 L _Area 11l L 11l L_Area 52 L 52 0.575 >0.1
5 R_RetroSplenial Complex R_RSC R_Rostral Area 6 R_6r -0.552 >0.1
6 L Area?2 L2 R_Area PGs R _PGs 0.451 0.087
7 R_Area posterior 9-46v R_p9-46v R_Area PH R_PH 0.377 0.005**
8 L_Area 9 anterior L 9a L_Amygdala L_Amygdala -0.376 0.087
9 L_VentroMedial Visual Area 3 L VMV3 R_Frontal Opercular Area 4 R_FOP4 0.336 0.063
10 L _Area 23d L 23d L_Hippocampus L H -0.297 0.095
11 L_Area OP4/PV L_OP4 L_Area PFt L_PFt -0.292 0.039*
12 L_Ventral Visual Complex L vVvC R_Ventral Visual Complex R_VvVC -0.290 0.002**
13 R_Fusiform Face Complex R_FFC R_Medial Belt Complex R_Mbelt 0.274 >0.1
14 L_Area anterior 10p L alOp R_Area IFJa R_IFJa -0.260 >0.1
15 L_Premotor Eye Field L _PEF L_ParaBelt Complex L_Pbelt -0.231 >0.1
16 L_Primary Auditory Cortex L Al R_Area 8Av R_8Av -0.225 >0.1
17 R_Area IntraParietal 2 R_IP2 R_Area PGs R_PGs -0.214 >0.1
18 R_Medial Area 7P R_7Pm R_Area 5m R_5m 0.201 >0.1
19 R_Area 31p ventral R_31pv R_Area 46 R 46 -0.191 0.057

0c¢
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§— TLE > Controls

Figure 3. Slow-4+5 Features Repeatedly Selected by Lasso Feature Selection. 18 significant Slow-4+5 RSFC cortical features
based on Lasso feature selection are shown. Subcortical connection between left area 9 anterior (L_9a) and left amygdala is not shown
in the picture from

T¢



Table 11. This picture suggests that the changes in the temporal lobe epilepsy (TLE) brains are throughout the whole brain, not only in
the temporal lobes. The background brain images have been generated with the Connectome Workbench and show Glasser
parcellation.5’
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Right FFC to Right p9-46v (Slow-4+5 RSFC)
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Figure 4. Most Contributing Connection to Classification Model. This
histogram shows the distributions of pearson correlations between signals from
right fusiform face complex (Right FFC) and right area posterior 9-46v (Right
p9-46v). An increased correlation, or decreased negative correlation, was found
in the temporal lobe epilepsy (TLE) group, and this was the most significant
feature based on both Lasso and t-test analyses.

3.1.7 Discussion

Seven frequency ranges with three different measures of the resting functional brain signals
were used to train three different traditional machine learning models. This extensive search for
good training features was an attempt to cover all possible measures using the resting-state fMRI
images. In brief, the results suggest that functional brain alterations in the TLE patients are indeed
detectable and are captured best by RSFC using the Slow-4+5 range. The machine learning models
were able to use this information to separate TLE patients from age- and gender-matched healthy
controls in our samples with approximately 83% cross validation accuracy (more discussion on
the difference between a cross validation accuracy and a test accuracy found in Section 4.1)%’. Also

notably, the features separating between the TLE patients and healthy controls were located
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throughout the entire brain, and not just within the temporal lobe, which is consistent with previous
findings®: %,

There have been many papers in the recent literature describing the development of reliable
machine learning models to make more accurate decisions from complex clinical datasets. For
example, there are reports on using machine learning to predict post-surgical outcome of TLE
patients using non-imaging data'®, structural MRI datal®® 12 or intracranial EEG!®. Machine
learning has also been applied in determining the lateralization of TLE seizure focus, based on
resting-state fMRI’® or positron emission tomography (PET)!%, and also in separating TLE
patients and healthy controls using structural imaging®, diffusion imaging'%, or both'®’. It was
also applied in separating epilepsy patients overall and healthy controls using RSFC08: 109,

Without machine learning, or a similar automated method, humans are limited in their
ability to comprehend high-dimensional data, especially when the patterns are complex. Also, the
true nature of a clinical question may be significantly non-linear than one may assume at the outset.
Instead of trying to extract multi-dimensional patterns from a complex set of features by hand, one
can consult machine learning models.

One of the biggest limitations of training traditional machine learning models is the need
to select input features. In most cases, we do not know a priori what combination of features would
contain the most useful information for the models. In this study, a Lasso-based feature selection
method along with recursive feature elimination was employed, in order to preserve original
features for the feature analysis. There are other feature reduction methods that aim to maximize
classification accuracies (more discussion on feature reduction in Section 5.2.2). At present,
identifying the best set of features and the correct non-linearity of the model (or kernel) remains a

trial-and-error process. It is advisable to think broadly, considering a wide range of potential
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features available, while actively narrowing it down so that the models are not clogged with noisy
information.

In this section, three traditional machine learning models were trained, in order to get a
general sense of the expected machine learning classification performance using traditional
techniques. The best overall cross validation accuracy was achieved with the Slow-4+5 RSFC
features and it was very comparable between the three classifiers. These traditional models are
more straight-forward and understandable compared to highly non-linear models such as deep
learning. Therefore, they allow us to easily analyze the underlying features contributing the most
to the models.

The set of Slow-4+5 RSFC features that contributed most to the models, as visualized in
Figure 3, suggested widespread functional connectivity alterations in TLE patients. This list
included no exclusively temporal lobe connections, perhaps due to the heterogeneity of our TLE
patient group. It is notable that using the whole-brain connectivity yielded better classification
results, compared to using temporal lobe connections alone. The decreased negative connection
between right fusiform face complex and right area posterior 9-46v found in TLE patients is
consistent with the findings of Riley et al., who reported altered functional connectivity of the
cortical face processing networks in TLE'°, Abnormal structure and function of the retrosplenial
cortex have also been reported™? 2, These results are promising for future applications of

machine learning in diagnosing and understanding the basic pathophysiology of TLE.
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3.2 Neuropsychological Test®

The domains of memory, language and executive function are among the most studied
cognitive complications of the epilepsies* % 114 with an increasing number of imaging
investigations focused on the disrupted regions and networks associated with these cognitive
anomalies!®>120, Psychomotor slowing is also a common but arguably less investigated cognitive
abnormality of the epilepsies. While known to be exacerbated by many anti-epileptic drugs
(AED)!#123 cognitive and/or psychomotor slowing is evident in new onset adult and pediatric
patients prior to administration of AEDs!?* 1% and has been observed to persist following
remission of epilepsy and cessation of medication treatment!?® 27, Thus, cognitive and
psychomotor slowing is an inherent neuropsychological morbidity of the epilepsies.

The relative salience of slowed processing speed relative to other potential cognitive
abnormalities in epilepsy remains uncertain. Abnormalities in memory, language and executive
function are of clear importance, but the set of abnormalities that most reliably discriminates
persons with epilepsy compared to healthy controls, and the role of slowing of processing speed
in this discrimination, remains to be determined. To address this issue we utilize machine learning
to characterize the relative power of various cognitive abilities, including processing speed, to
classify or discriminate patients with epilepsy compared to controls. As machine learning builds
multidimensional models using multiple variables, it offers the ability to analyze
neuropsychological measures together as a group, instead of individually. For example, a

combination of several, individually non-significant features may classify two groups better than

§ Portions of this work have been published in: Hwang G, Dabbs K, Conant L, Nair VA, Mathis J,
Almane DN, Nencka A, Birn R, Humphries C, Raghavan M, DeYoe EA, Struck AF, Maganti R, Binder
JR, Meyerand E, Prabhakaran V, Hermann B. Cognitive slowing and its underlying neurobiology in
temporal lobe epilepsy. Cortex. 2019;117:41-52
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the most significant feature itself. In this investigation, we apply SVM to standardized
neuropsychological test scores to classify groups (epilepsy and controls) and identify the salient

predictors.

3.2.1 Participants

Research participants included 55 TLE patients and 58 healthy controls from the ECP. The
difference in the mean age (p < 0.01) between the TLE (range 19 — 60 years) and control groups
(range 18 — 56 years) was addressed by using age-corrected cognitive scores. The two groups did
not significantly differ with regard to gender (p = 0.85), with a modest trend in years of education
(p =0.06). Inthe TLE group, 14 subjects had right TLE, 26 had left TLE, and 2 had bilateral onsets
based on either interictal EEG, imaging (hippocampal sclerosis) or ictal monitoring. Thirteen
subjects had uncertain lateralization. TLE participants were taking 0 to 4 AEDs with a mean of
2.1, with chronic epilepsy (mean = 20 years) characterized by onset in late adolescence (mean =
19 years). A subset of the sample underwent Wada testing or fMRI language assessment and none

showed reversed cerebral dominance.

3.2.2 Processing Speed

At its most basic level, processing speed can be defined as either the amount of time it
takes to process a specific quantity of information, or the quantity of information that can be
processed within a specific unit of time*?. There has been little consistency in the metrics used to
assess cognitive and psychomotor slowing in epilepsy, as speed-based performances have been
assessed with a variety of measures including simple and complex reaction time, finger tapping,
mental scanning, motor assembly tasks, and others'?®. One common approach, across diverse

disorders, has been the use of digit symbol substitution tests, with applications to examine speeded
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133 136

performance in schizophrenia'®*-132 multiple sclerosis'®, normal aging'3* ** as well as epilepsy
Further investigation of the task has shown that it is driven in part by speed-dependent processes
(graphomotor speed, perceptual speed), with contributions of visual scanning efficiency,
learning/memory and executive function®*" 138,

An alternative measure of central processing speed is the Pattern Comparison Processing
Speed Test (PCPS) of the NIH Toolbox Battery-Cognition Battery (NIHTB-CB) which is an
efficient visually-based measure of choice reaction time adapted for computerized presentation.
This test has applicability across the lifespan, sound test-retest reliability, appropriate age-related
performance characteristics, and demonstrated construct validity®®. Furthermore, there is less
confounding of psychomotor issues with quantification of central information processing speed
compared to digit symbol substitution tests.

PCPS requires the subject to identify whether two simultaneously presented visual patterns
are the “same” or “not the same”. Patterns are either identical or vary in: 1) color, 2) adding/taking
something away, or 3) one versus many. The score reflects the number of correct items (out of a

possible 130) completed in 90 seconds® . The distribution of PCPS scores for the TLE and

control groups is shown in Figure 5.
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Figure 5. Pattern Completion Processing Speed Score Histogram. TLE
patients (red) overall scored significantly lower than the age- and education-
matched healthy controls (blue) on Pattern Completion Processing Speed
(PCPS). The scores are the age-corrected standard scores. The vertical lines
indicate the median scores for each group, which were 92 and 118.

3.2.3 Neuropsychological Test Results

Fourteen of the neuropsychological tests from Section 2.3.1 that were administered to both
TLE patients and healthy controls have been selected to be the training features to machine
learning. For all 14 measures the age-corrected standard scores were used. All test scores were
normally distributed in both TLE and control groups (p’s > 0.15, Kolmogorov-Smirnov test),
except for the Judgement of Line Orientation test (p’s < 0.05). Therefore, the Wilcoxon Rank-Sum
Test was performed on this test and two-sample t-tests on the others.

TLE patients as a group performed significantly worse on 13 of the 14 administered
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neuropsychological tests (Table 111, Columns 5 and 6). PCPS had the largest effect size (1.27)
followed by Grooved Pegboard (dominant hand 1.12, non-dominant hand 1.07), WASI-II
Vocabulary (0.91), RAVLT (total words 0.89, delayed recall 0.86), and Dimensional Change Card
Sort Test (0.86). Medium effect sizes were evident for WASI-II Block Design (0.78), Judgement
of Line Orientation, and Boston Naming Test (0.71). Small effect sizes were observed for Flanker
(0.49), Working Memory (0.48), Semantic Fluency (0.45) and Controlled Oral Word Association
(0.24).

There were few lateralized cognitive findings. 26 left TLE and 14 right TLE patients did
not differ in age (p > 0.10), gender ratio (p = 0.50), education (p = 0.40), AED count (p = 0.96),
or duration of epilepsy (p = 0.81). The right TLE group performed significantly worse than the left
TLE group on the Dimensional Change Card Sort Test (p = 0.027, t = 2.30). There were no other
significant lateralized cognitive findings. The majority of cognitive tests were significantly lower
than controls in both the left TLE (11 of 14 tests, all p’s < 0.02) and right TLE (13 of 14 tests, all
p’s < 0.03) groups. Thus, cognitive anomalies were generalized in nature in the context of
lateralized epilepsy.

Spearman correlations examined the relationship between the number of AEDs and
cognitive performance. AED effects were observed on measures of dominant and non-dominant
hand speeded fine motor dexterity (p’s = -0.287 and -0.271, p’s = 0.034 and 0.046 respectively)
and working memory (p =-0.266, p = 0.049). There were no other significant associations between

AED number and cognition including PCPS (p = 0.122, p = 0.374).

3.2.4 Machine Learning Feature Selection

The ability of the 14 neuropsychological tests to classify TLE and healthy control

participants was tested using machine learning. SVM binary classification models® were trained
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using the z-transformed age-corrected standard scores as the features. Figure 6 provides a diagram
for the SVM training and testing procedures employed in this study. 10-fold cross validation was
used, where 10% of the samples were kept as a testing set. Randomization seeds were used for
repeatability. When feature selection was on, a cross validation loop was added within the
procedure and the feature with the lowest average absolute weight (or smallest contribution to the
classification model) was removed per loop (recursive feature elimination). The feature selection
continued until the 10-fold classification loss reached the minimum. This survived “optimum set”
of features was then used in the final testing. The 10-fold test accuracy was recorded. This entire
procedure in Figure 6 was repeated 10 times (10 iterations), both with and without the feature
selection. The optimum sets of features were then analyzed based on their normalized weights,

where the maximum absolute weight was one.



Table I11. Neuropsychological Tests by Contribution to Machine Learning Classification. The 14 neuropsychological test
scores are sorted by their average absolute weights (Column 8) from the support vector machine (SVM) analysis without feature
selection. Pattern Completion Processing Speed (PCPS) is the biggest contributor to the classification model, both collectively

(SVM weight) and individually (effect size). +SD = standard deviation.

No Feature Name TLE Control 2 sample t-test  Effect Size d SV_M
(Mean % SD) (Mean + SD) p-value (Cohen’s)  Weight
1 Pattern Completion Processing Speed 89.24 + 16.16 102.78 £ 14.18 <0.001 1.27 0.66
2 Grooved Pegboard Dominant Hand 87.35 + 16.69 100.72 £ 14.27 <0.001 1.12 0.47
3 Dimensional Change Card Sort 86.87 + 15.30 97.88 + 15.68 <0.001 0.86 0.46
4 Boston Naming Test 96.47 + 13.28 108.00 + 16.19 <0.001 0.71 0.41
5 RAVLT Delayed Recall 96.42 + 10.59 107.19+12.85 <0.001 0.86 0.36
6 Grooved Pegboard Non-Dominant Hand 90.22 £17.49 97.95+17.13 <0.001 1.07 0.36
7 Flanker Inhibitory 99.49 + 16.18 109.27 £ 9.24 0.010 0.49 0.28
8 WASI-1I Vocabulary 85.73 +14.98 102.16 + 14.33 <0.001 0.91 0.26
9 RAVLT Total Words 89.27 + 14.32 104.14 + 13.38 <0.001 0.89 0.24
10 Working Memory 90.09 +17.98 93.93+14.38 0.013 0.48 0.23
11 WASI-II Block Design 94.13 + 16.46 108.34 + 16.71 <0.001 0.78 0.19
12 Controlled Oral Word Association 84.80 + 12.73 91.33+13.73 0.214 0.24 0.18
13 Semantic Fluency 9491 +16.54 102.36 + 14.66 0.019 0.45 0.16
14 Judgement of Line Orientation 89.11 + 21.53 115.14 + 19.24 <0.001 0.74 0.16
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Figure 6. Diagram of 10-fold Machine Learning Training and Testing. Without feature selection (top half), a support
vector machine (SVM) model gets trained on 90% of the entire samples and tested on the other 10%, which is repeated 10
times (exhaustive). With feature selection (bottom half), the training set is further split and the cross validation (CV) takes
place. In the case of recursive feature elimination, CV is repeated, every time with the lowest weighted feature removed. The
set of features that produce the best CV accuracy (“optimum set”) is kept to train the entire training set for the final testing.
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3.2.5 Results

The 14 neuropsychological test scores were able to train an SVM model that reliably
classified TLE and control participants with 73.4 £ 2.7% test accuracy without feature selection.
The PCPS score received the highest average absolute weight (w = 0.66) among all 14 scores in
all 10 testing loops, followed by Grooved Pegboard Dominant Hand (w =0.47) (Table 111, Column
7). With feature selection, PCPS was most reliably and repeatedly present in every cross validation
loop (9 out of 10 iterations) in the optimum set of features, followed by Grooved Pegboard-

Dominant (5 out of 10) and Boston Naming Test (1 out of 10).

3.2.6 Discussion

For people with epilepsy the cognitive (and affective) comorbidities associated with the
disorder create as much disability as the seizures themselves™*® 140, The results of this investigation
demonstrated that, in a non-surgical cohort of TLE participants, cognitive slowing is a powerful
marker of TLE. While it has been recognized that processing speed is among the cognitive
morbidities of chronic epilepsy, its relative standing among the other cognitive morbidities of
epilepsy has not been fully appreciated. In fact, it was the most salient measure in separating the
TLE and control groups (Table 111, Column 7, SVM weight). Other measures of interest (Boston
Naming Test, RAVLT) discriminated the TLE and control groups as expected, but not as
powerfully as processing speed (Table 111, Columns 5 and 7). Even though SVM does not assume
feature independence, it is still possible that if two features are highly correlated, one of the two
will receive less attention or weight, which explains the case with Grooved Pegboard Non-
Dominant Hand score. Even with this in mind, we can conclude that PCPS is the best contributor

to the classification model.
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3.3 Data-driven Cognitive Phenotyping®

A longstanding pursuit in the neuropsychology of epilepsy has been an understanding of
the signatures of cognitive abnormality associated with the disordered pathophysiology of specific
epilepsy syndromes!’” 141, This classic approach led to early appreciation of impaired memory in
TLE, dysexecutive function in frontal lobe epilepsy, attentional disruption in absence epilepsy,
language problems in Rolandic epilepsy, and dysexecutive behavior in juvenile myoclonic
epilepsy'*> 143, This general model, tracking cognition as a function of the taxonomy of the
epilepsies and their associated clinical features, has served the field well*44 14,

But incongruities in the classic model have accumulated over the years, in part due to
studies involving broad-based neuropsychological assessment comprehensively overviewing
human cognitive function as well as by head-to-head cognitive comparisons of epilepsy syndromes.
Rather than finding the expected selective cognitive abnormalities linked to syndrome-specific
pathophysiology, either a) more widespread and arguably unexpected cognitive anomalies have
been reported when epilepsy syndromes are studied in depth (e.g., widespread cognitive
abnormalities in focal epilepsies)!*¢*°! or, b) in head-to-head comparisons of two or more epilepsy
syndromes, more shared than unique syndrome-specific cognitive abnormality is evident!#6-1% or
c) particular cognitive impairments (e.g., dysexecutive function) have been found to cut across
multiple epilepsy syndromes®’-162,

A comprehensive neuropsychological test battery found in Section 2.3.1 from 111 TLE

patients and 83 controls was reduced to core cognitive domains (language, memory, executive,

$ Portions of this work are currently being reviewed: Hermann B, Conant L, Cook C, Hwang G, Garcia-
Ramos C, Dabbs K, Nair V, Mathis J, Rivera-Bonet C, Allen L, Almane D, Arkush K, Birn R, DeYoe E,
Felton E, Maganti R, Nencka A, Raghavan M, Shah U, Sosa V, Struck A, Ustine C, Reyes A, Kaestner E,
McDonald C, Prabhakaran V, Binder J, Meyerand M. Network, Clinical and Familial Features of
Cognitive Phenotypes in Temporal Lobe Epilepsy. Neurolmage: Clinical. Under Review
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visuospatial, motor speed) which were then subjected to k-means clustering, a type of a cluster
analysis (unsupervised learning). The resulting cognitive subgroups were compared in regard to
sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and
functional connectivity.

Three cognitive subgroups were identified: Generalized Cognitive Impairment
(Generalized-CI) (N = 20, 18% of TLE group) reflecting significant impairment affecting all
domains, Focal Cognitive Impairment (Focal-Cl) (N = 34, 31%) demonstrated by particularly
abnormal language, memory and executive function/processing speed, and No Cognitive
Impairment (No-Cl) (N = 57, 51%) where performance was intact and comparable to controls
across all domains (Figure 7). The Generalized-CI group was characterized by an earlier age at
medication initiation (p < 0.05), fewer patient (p < 0.001) and parental years of education (p <
0.05), greater racial diversity (p < 0.05), and greater number of lifetime generalized seizures (p <
0.001) (Table V). The three groups also differed in an orderly manner across total intracranial (p
<0.001) and bilateral cerebellar cortex volumes (p < 0.01), but not in regional measures of cortical
thickness or volume. In contrast, large-scale patterns of cortical-subcortical covariance networks
revealed significant differences across groups in global and local measures of community structure
and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster
membership, with the most abnormal patterns of connectivity evident in the generalized
impairment group and no significant differences from controls in the cognitively intact group

(Figure 8).
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Figure 7. Cognitive Performance of Three Identified Subgroups of TLE. Three
clusters within temporal lobe epilepsy group were identified, with Generalized
Cognitive Impairment (Generalized-Cl) (red, N = 20) being the most impaired overall,
then Focal Cognitive Impairment (Focal-Cl) (yellow, N = 34), and No Cognitive
Impairment (No-Cl) the most intact (blue, N = 57).
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Table IV. Summary of Demographics of Three Identified Subgroups. Generalized cognitive impairment (Generalized-ClI) group
showed significantly fewer years of patient and parental education and larger proportion of non-Caucasian participants compared to
focal (Focal-Cl) and no cognitive impairment (No-CI) groups, which suggested the influence of socioeconomic risk factors in the

cognitive impairment of temporal lobe epilepsy (TLE).

Gender Education Mother Father Duration of Race
Groups N  Age (years) (Male/ (years) Education  Education Seizures (Caucasian/
Female) y (year) (years) (years) Non-Caucasian)
Controls 83 338+106  36/47 158+27 146+27 148128 - 7419
All TLE 111 396+115  43/68 147+27 135+27 138%+29 16.8%+13.9 91/20
Generalized-CI 20 38.2+135 8/12 123+20 126+27 119+21 21.3%16.7 10/10
Focal-ClI 34 36.6+11.1 15/19 136+17 138+23 132+20 132+%129 26/8
No-ClI 57 419x104 20/ 37 16.2+2.4 13.6+2.9 147+3.1 17.4+13.2 55/2

8¢
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Figure 8. Resting-state Connectivity Changes in TLE Subgroups. Resting-state connectivity changes of temporal lobe epilepsy
(TLE) patients in Generalized Cognitive Impairment (Generalized-Cl, left) and Focal Cognitive Impairment (Focal-Cl, right) groups,
compared to healthy controls. Red lines indicate decreased connectivity (hypoconnectivity) in the patients, while blue lines indicate
increased connectivity (hyperconnectivity). No-CI subjects did not show any significant changes in the connectivity.
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Overall, patients with TLE are composed of distinct underlying cognitive phenotypes that
harbor systematic relationships with clinical, familial, demographic and neuroimaging correlates.
Cognitive phenotype variations in patient and familial education and ethnicity, with linked
variations in total intracranial volume, suggest an early and persisting socioeconomic-status related
neurodevelopmental impact with additional contributions of clinical epilepsy factors (e.qg., lifetime
generalized seizures). The neuroimaging features of cognitive phenotype membership are most
notable for disrupted large scale cortical-subcortical networks and patterns of functional
connectivity, and cerebellar atrophy.

There is a taxonomy of cognitive abnormality in TLE that only partially overlaps with the
syndrome-specific pathophysiology of the disorder. This taxonomy is influenced by diverse
epilepsy, non-epilepsy, and neuroimaging features reflecting the combined influence of
socioeconomic, neurodevelopmental and neurobiological risk factors. The fact that there seems to
be three distinct subgroups within TLE group should have influenced the results in Sections 3.1
and 3.2 negatively, since all TLE patients were originally assumed to be showing similar imaging
and neuropsychological abnormalities compared to healthy controls. On the other hand, separating
the TLE group into these three subgroups in order to reflect this finding substantially diminishes
the sample sizes and is detrimental to machine learning research. Perhaps, there is a better method
of diagnosing and sub-grouping epilepsy based on other phenotypes than seizure focus, which has

been convenient for human clinicians.

3.4 Concluding Remarks

In the era of machine learning and big data, the methods that humans have developed to

make medical diagnoses and to offer appropriate treatments will be tested and contested. Decisions
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will need to be made when to trust criteria and standards proposed by machines over those of
humans. There will also be cases where machine learning results will completely contradict
diagnoses by human physicians. In this case, is the machine picking up something that the human
physicians have not noticed, or is it an error? What if the underlying algorithm that the machine
has used to reach the answer is too complex to be assessed, or perhaps inconsistent with established
clinical knowledge?

Human decisions can be influenced by prior knowledge and prejudice. Confirmation bias
drives humans to quickly accept scientific results that conform to the standard knowledge. It takes
more effort to divert a scientific mistake than to establish one. With increased amounts of medical
information as well as advanced computational capacity and techniques, leaning towards using
more data-driven, objective approaches in medicine seem reasonable. However, this must come
along with careful research on polishing the data-driven methods to eliminate all sources of
technical errors. In other words, we need better understanding on the data-driven techniques such
as machine learning. Careful use of these techniques will take the current medicine to the next
level. It will give human clinicians new insights to complex datasets, as well as correct
unrecognized mistakes. As discussed in Section 3.3, it may redefine our understanding of a disease
and even allow for more personalized medicine in the future.

In this chapter, the ability of machine learning to extract important features and patterns
from complex datasets was discussed. In Chapter 4, the focus will be on building reliable machine

learning models that can make accurate predictions on unseen data.
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Chapter 4

Building Predictive Models of Temporal

Lobe Epilepsy using Machine Learning

The attractive strength of machine learning is in its predictive power. Whether it is classifying a
group of data into categories (classification) or predicting a continuous variable (regression)®?, a
machine learning has worth only when it reliably makes correct predictions. In Chapter 3, we have
discussed the feature extraction ability of machine learning, but if the models did not achieve
enough predictive power and accuracies, the extracted features would not have carried much
weight. Therefore, achieving high performance is often the top priority in a machine learning
research, although the analysis of the trained model and of the underlying features is still crucial.
Section 4.2 will consider using machine learning for classification, and Section 4.3 will introduce

one example of machine learning regression to make predictions on TLE patients.



43

4.1 Assessment of Machine Learning Models

Reliability and reproducibility are essential in machine learning; especially in medicine,
because it deals with human lives. In order to strictly assess a machine learning model’s
performance, a clear distinction must be made between a cross validation accuracy and a test
accuracy®’. When assessing model performance for generalizability, the initial dataset needs to be
split into two groups: training and testing sets. The entire training procedure must happen strictly
within the training set, so that the data in the testing set become truly new observations for the
trained model. Otherwise, the observed performance may be overestimated. This simple rule is
easy to be violated in practice.

For example, the results reported in Section 3.1.6 and Table I describe cross validation
accuracy, because in order to determine the optimum number of features, the model performance
was checked multiple times on the testing set during the recursive feature elimination. This was
acceptable because the goal of the study was to compare the general classification performance
between multiple models on multiple cases, but this accuracy should not be confused with a test
accuracy. In other words, if these models were tested on strictly independent testing sets, their test
accuracies would have likely been lower, or close at best. On the other hand, the accuracy reported
in Section 3.2.5 was a test accuracy, because the procedure depicted in Figure 6 restricted the

crosstalk between the training and testing sets.

4.2 Classifying between TLE Patients and Healthy Controls

Having access to the neuroimaging and neuropsychological testing data of TLE patients as

well as healthy control volunteers from the ECP, the first and the most intuitive research direction
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was to train machine learning models to separate the two groups. So a number of training features
(features described in Sections 3.1 and 3.2, and also structural T1-weighted MRI features) have
been used to train machine learning models even including a few “shallow” deep learning models.
However, the test accuracies were not satisfactory (around 70 — 75% at best, see Section 5.2),
which was largely due to small sample sizes.

The poor accuracy does not necessarily equal bad hypothesis, because accuracy can
improve significantly with more sample sizes. In this case, the correct question is to ask the
potential of the model, instead of the current accuracy. This led me to study the relationship
between the sample size and the machine learning classification performance. More on this topic
will be discussed in Chapter 5.

Another topic of discussion is whether building a model that classifies between TLE
patients and healthy controls is beneficial. The TLE patients enrolled in the ECP were already
aware that they had epilepsy from seeing themselves simply having recurring seizures. A machine
learning model that can tell whether a patient has an epilepsy or not may not be clinically useful
in terms of the diagnostic gain. Rather, a better question is, for example, to classify between TLE
and frontal lobe epilepsy patients, or between TLE patients with left and right seizure foci. In other
words, the ultimate goal in studying epilepsy patients using machine learning classification
perhaps is to be able to predict patient subgroups instead. However, this question is more
demanding to address using machine learning because of the limited samples. The progress in this
field is expected to be slower, compared to other more common diseases such as Alzheimer’s
disease. This is another reason to emphasize the understanding of the sample size relationship in

machine learning, which will be discussed in Chapter 5.
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4.3 Predicting Brain Ages of TLE with Machine Learning Regression®

Chronic TLE is associated with abnormalities in cognition, brain structure and brain
connectivity in midlife***8, findings that have raised concern regarding the future course of
cognitive and brain aging and the risk of cognitive disorders of aging including dementia®®®. While
different models of cognitive aging in epilepsy have been proposed (progressive decline,
accelerated aging [two hit model], stable non-progressive abnormality)!4, consensus has yet to be
achieved. Importantly, all models predict significantly more impaired cognition in aging
individuals with chronic epilepsy compared to controls®®1¢7. Similarly, cross-sectional modeling
of structural brain aging has suggested greater abnormality in chronic epilepsy compared to
controls with advancing age*® 18,

In a novel approach, Pardoe et al.'®® trained a machine learning regression model using T1-
weighted structural MRI scans of 2,001 healthy controls to predict their chronological ages. They
then used the model to predict the ages of 94 medically refractory focal epilepsy patients and
showed that these patients had structural brains that were on average 4.5 years older than the
healthy controls. Sone et al.1” recently reported findings from a similar study examining different
types of epilepsy including TLE using T1-weighted images, and found the same trend of
accelerated aging (10.9 years older for TLE patients with inter-ictal psychosis, and 5.3 years
without).

There are many paths of exploration from these studies that can be considered. First, will

the functional brains of epilepsy patients similarly show accelerated brain aging (or premature

$ Portions of this work have been published in: Hwang G, Hermann B, Nair V, Conant L, Dabbs K,
Mathis J, Cook C, Rivera-Bonet CN, Mohanty R, Zhao G, Almane D, Nencka A, Felton E, Struck AF,
Birn R, Maganti R, Humphries CJ, Raghavan M, DeYoe EA, Bendlin BB, Prabhakaran V, Binder JR,
Meyerand ME. Brain Aging in Temporal Lobe Epilepsy: Chronological, Structural, and Functional.
Neuroimage: Clinical. 2020;
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brain aging in Pardoe et al., 2017)? Accelerated brain aging in epilepsy has been investigated
mainly in the structural brain. While many studies have reported changes in the functional
connectivity of epilepsy patients!’™ 172, whether the changes resemble accelerated aging is
unknown.

Second, what factors are associated with age accelerated structural and functional brains?
Possibilities include clinical seizure characteristics (e.g., age of onset, seizure frequency),
treatment factors (e.g., number or type of AED use), and of course demographic characteristics.
Previous studies have reported that brain volume reductions in epilepsy may be independent of or
only weakly related to seizure activity'’® and potentially more related to AED use!’*. Pardoe et
al.!®® and Sone et al.t” in their secondary analyses briefly reported that increased brain age
difference (or brain-PAD: predicted age — chronological age in Sone et al., 2019) in epilepsy was
associated with earlier age of onset, but not with epilepsy duration nor AED use. More systematic
search of potential correlates of accelerated brain aging is desired.

Third, is accelerated brain aging in epilepsy directly related to cognitive status and
cognitive decline over time? Are brain ages better predictors of cognitive performance than the
patients’ chronological ages? Cognitive aging and its core dimensions (crystallized and fluid
cognitive abilities) in epilepsy have yet to be examined in relation to potential age-accelerated
alterations in functional connectivity patterns and brain structure. Whether they have explanatory

power beyond chronological age remains to be determined.

4.3.1 Participants

Participants included 104 TLE patients (mean age = 40.4 £ 11.8 years, range = 19 — 60
years, 64 females) and 151 healthy controls (mean age = 53.7 + 19.4 years, range = 18 — 89 years,

88 females). All TLE patients were from the ECP. 57 controls were from the ECP, and additionally
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94 controls who matched the ECP criteria were drawn from ADCP84, The use of healthy controls
from the two projects allowed investigation of participants with a wider age range than provided
by either project alone, without compromising scanner, site or protocol variabilities (See Section
3.1.1 for more on ADCP). 42 TLE patients and 51 controls were scanned at the Medical College
of Wisconsin, while 62 TLE patients and 100 controls were scanned at the University of

Wisconsin-Madison.

4.3.2 Data Processing

HCP minimal pre-processing was performed as described in Section 2.4.1. 254 structural
features generated by FreeSurfer’s standard reconstruction (recon-all) were extracted from the T1-
weighted images, including cortical thicknesses, surface areas, volumes and also subcortical and
global volumes. Surface areas and volumes were divided by the total surface area and total gray
matter volume respectively to normalize for brain size. Then the structural features were
normalized through z-score transform.

Additional pre-processing was performed on the resting-state fMRI images using AFNI
(Analysis of Functional Neuro-Images)®®. This included motion regression using 12 motion
parameters, regression-based removal of signal changes in the white matter, cerebrospinal fluid
(CSF), global signal, and band-pass filtering (0.01 — 0.1Hz). There are trade-offs of regressing out
the global signal from the raw signals, such as potential false negative correlations!’. Therefore,
another machine learning model was trained without the global signal regression to confirm
whether similar results were obtained.

Using the Connectome Workbench (version 1.1.1) (Marcus et al., 2011), time-series data
from four 5-minute resting-state fMRI scans acquired in a single session were concatenated. 360

time-series from Glasser Parcellation®” plus 19 FreeSurfer subcortical regions® were extracted per
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subject (see Section 2.4.2). Pairwise Pearson correlations between 379 timeseries were computed
and Fisher-z transformed for generating connectivity matrices.

A subset of connectivity features were found to be affected by the subject motion in the
scanner (absolute and relative mean RMS motion)'’®. Therefore, absolute mean RMS motion was
linearly regressed out from features that showed significant correlation (raw p < 0.05), first
separately for healthy controls and then for TLE patients, by combining the two groups (in order
to restrict crosstalk between the two groups). Without this regression, the accelerated functional
brain ages were significantly correlated with motion (p < 0.01), while regressing it out from the

entire matrices resulted in the opposite correlation (p < 0.05).

4.3.3 Support Vector Regression (SVR)

Two age-prediction support vector regression (SVR) models*’” 18 were built in Python
using the scikit-learn library'’®: with structural and functional (resting-state correlation matrices)
features from the healthy controls. A linear kernel was used with no feature selection. First, the
SVR models were trained and tested on the healthy controls using 10-fold cross validation. A linear
correction that was suggested by Le et al.*®° was applied to remove known systematic bias caused
by regression dilution and regression towards the mean (old subjects predicted young, and vice
versa)'8l, The accuracy of the models were quantified using the correlation between chronological
age and predicted, the amount of variance in age explained by the model (R?), the mean absolute
error (MAE) and the root mean squared error (RMSE).

The final models were trained with the entire healthy control dataset and applied on the
TLE patients. The predicted ages (brain ages) were compared to the chronological ages.
Accelerated ages (brain age - chronological age) were calculated. The entire training and testing

process is summarized in Figure 9.
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Figure 9. Diagram of 10-fold Brain Age Model Training with Bias Correction. This diagram summarizes the process of support
vector regression (SVR) model training and testing procedure. 10-fold cross validation on the healthy controls were first performed
(left top), and then separately the testing on the temporal lobe epilepsy (TLE) patients (left bottom). Linear correction suggested by Le
et al.18 was preformed to remove systematic bias caused by regression dilution and regression towards the mean.
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4.3.4 Brain Age Prediction Results

The cross validation results of healthy controls are visualized in Figure 10 in blue dots (r
=0.82, R? = 0.67, MAE = 10.7, RMSE = 13.65 for structural, r = 0.91, R? = 0.83, MAE = 6.94,
RMSE = 8.86 for functional model). The variance was significantly larger (p < 0.001, two-sample

F-test for equal variances) in the accelerated structural ages compared to the functional ages.
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Figure 10. Scatter Plots of Predicted versus Actual Ages. These scatter plots show the
support vector regression (SVR) age prediction results of both healthy controls (blue) and
temporal lobe epilepsy (TLE) patients (orange): (A) with structural, and (B) functional
features. The dotted lines indicate the 5™ and the 95" percentiles of the cross validation results.
TRSFC = resting-state functional connectivity.



51

The orange dots in Figure 10 represent TLE patients. The brain aging effect in TLE was
found in all age groups. The 5th and 95th percentiles of the cross-validation (healthy control)
results were marked. 17 TLE patients (16%) showed structural brain ages greater than the 95th
percentile (>19.7 years of acceleration), and 34 patients (33%) showed functional brain ages
greater than the 95th percentile (>12.9 years of acceleration), with seven patients who overlapped.
There was no significant correlation between the two accelerated ages (r < 0.01, p = 0.94 in healthy

controls, r =0.14, p = 0.15 in TLE patients) (Figure 11).
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Figure 11. Scatter Plot of Two Accelerated Brain Ages. This scatter plot shows
the relationship between two accelerated ages. No statistically significant
relationship was found in neither healthy controls (blue, r < 0.01, p = 0.94,
Pearson correlation), nor TLE patients (orange, r = 0.14, p = 0.15).

In healthy controls, structural (r = 0.82) and functional (r = 0.91) brain ages were highly
correlated with chronological age, and also were inter-correlated (r = 0.74). The three ages were
still correlated in TLE (r = 0.60, r = 0.77, r = 0.53 correspondingly), but to a significantly lesser

degree compared to healthy controls (p’s <0.01,z =3.54,z=3.87,z = 2.75).
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Figure 12 shows the histograms of the accelerated brain ages of the TLE patients. The final

SVR model with the linear correction predicted their structural brain ages to be on average 6.6

years older than their chronological ages (p < 0.001, paired t-test). Their structural brain ages were

significantly older than those of the healthy controls (p < 0.001, unpaired t-test). The accelerated

structural ages (structural brain age — chronological age) ranged from -27 (brain age younger than

chronological age) to +39 years (brain age older than chronological age), with the standard

deviation of 13.7 years, which was the same as in healthy controls. There was no specific structural

feature whose value was significantly associated with the accelerated structural ages (Spearman

correlation).
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Figure 12. Accelerated Brain Ages of Temporal Lobe Epilepsy. These histograms

show the accelerated brain ages of 104 temporal lobe epilepsy (TLE) patients: (A) with

structural, and (B) functional features. Accelerated aging in TLE was observed both in
the structural (6.6 + 13.7 years) and functional brains (8.3 + 9.2 years).

The final SVR model predicted the functional brain ages of the TLE patients to be on

average 8.3 years older than their chronological ages (p < 0.001, paired t-test). Without the global

signal regression of the raw signals, a similar results were found with the TLE patients’ functional
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brain ages predicted to be on average 5.1 years older than their chronological ages (p < 0.001,
paired t-test). Their functional brain ages were significantly older than those of the healthy controls
(p <0.001, unpaired t-test). The accelerated functional ages ranged from -14 to +34 years with the
standard deviation of 9.2 years, which was similar to 8.9 years in healthy controls. They were not
significantly associated with the absolute/relative mean RMS motion (p’s > 0.6, r’s < 0.05). The
variance was significantly larger (p < 0.001, two-sample F-test for equal variances) in the
accelerated structural ages compared to the functional ages.

8,341 out of 71,631 connectivity features were significantly associated (corrected p-values
< 0.05, Spearman correlation) with the accelerated functional ages, with the top 48 features (p’s <
-0.53) all showing negative correlation (weaker connection associated with more accelerated
functional age). Most of these 48 connections were bilateral temporal or frontal lobe connections

(Figure 13).



Figure 13. Resting-state Connectivity Associated with Functional Brain Aging in TLE. These 48 resting-state functional

connections are most significantly associated with accelerated functional brain aging (corrected P-values < 0.0001, p’s < -0.53).

Weaker correlations in these connections are associated with more accelerated functional brain aging.
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4.3.5 Clinical and Cognitive Correlates

Out of 104 TLE patients that were examined, 74 reported having had complex partial
seizures (49 currently) and 62 reported secondary generalized seizures (22 currently). After
correcting the p-values for multiple comparisons with Benjamini-Hochberg FDR correction®®,
only trend-to-significant relationships were found between the functional accelerated ages of the
TLE patients and their complex partial seizure frequency (p = 0.07) and AED count (p = 0.07).
Patients who reported having at least one seizure during the past year were taking a greater number
of AEDs (p < 0.01) compared to those who were seizure-free the past year, although there were
no significant differences in the accelerated brain ages between the two groups.

Table V shows the correlation results between the three ages of TLE patients and their
cognitive test scores. The FDR multiple comparison correction was performed on the p-values
within each age measure and cognition type.

Chronological age was significantly associated (corrected p < 0.05) with four of seven tests,
with trends (corrected p < 0.1) seen for two others. Structural age was not significantly associated
with any test. Functional age was significantly associated with four of seven tests, with trends seen
for one other: all fluid cognitive tests. Brain ages were not significantly associated with the
crystallized subtests. Chronological age was significantly more associated with Picture
Vocabulary than the brain ages (Z = 2.31, p = 0.02 for structural, Z = 2.13, p = 0.03 for functional
age, Steiger’s Z-test).

Three of seven tests (Dimensional Change Card Sort, Picture Sequence Memory, and
Pattern Comparison Processing Speed) were significantly associated with both chronological and
functional age measures. Subsequent mediation analyses addressed the question of whether

structural or functional brain age mediated the association between chronological age and these
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cognitive scores. Structural age was never a significant mediator while functional age partially
mediated the relationship between chronological age and performance on three tests: Picture
Sequence Memory (p < 0.001), Dimensional Change Card Sort (p = 0.004) and Flanker Inhibitory

Control and Attention (p = 0.03) (Figure 14).



Table V. Cognitive Correlates of TLE Brain Ages. This table summarizes the correlation results between the three brain ages of the
temporal lobe epilepsy (TLE) patients and their cognitive test scores. False discovery rate (FDR) correction was made on the p-values
within each age measure and cognition type. Overall, fluid cognition was well associated with both chronological and functional ages.
Chronological age was the best predictor among the three age measures of Picture Vocabulary (Z > 2.1, p < 0.05). *corrected p < 0.05.

Chronological

Structural Age

Functional Age

Cognition NIH Toolbox Cognition Battery .~ Age Correlation  Correlation Correlation
Type (NIHTB-CB) Subdomain
r P r p r p
Flanker Inhibitory Control and Attention -0.174 0.091 -0.094 0.605 -0.172 0.088
Dimensional Change Card Sort EFXQC“F'VQ -0.239 0.028* -0.070 0608 -0.214 0.041*
unction
Fluid List Sorting Working Memory -0.171  0.091 -0.033 0.748 -0.221 0.041*
Picture Sequence Memory E/Ip's"d'c -0.290 0.008* -0.254 0055 -0.335 0.005*
emory
Pattern Comparison Processing Speed Prg%is;(;ng -0.313 0.008* -0.092 0.605 -0.231 0.041*
Picture Vocabulary 0.293 0.006* 0.094 0508 0.154 0.180
Crystallized Language
Oral Reading Recognition 0.143 0.156 0.067 0508 0.135 0.180

LS
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Figure 14. Mediation Analysis of Brain Age Correlation. This diagram shows the results from the mediation
analysis for Picture Sequence Memory test. The independent variable was the chronological age of the TLE patients.
The mediator was either their functional or structural brain age. Functional age partially mediated (P < 0.001) the

association between chronological age and the test score (top triangle), whereas structural age did not (bottom triangle).

Numbers in parentheses are results after the mediator was introduced.
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4.3.6 Discussion

Accelerated aging is evident not only in the structural brains of patients with TLE, but also
in their functional brains. This confirms and expands prior findings, here in a TLE group. Pardoe
et al.?®® and Sone et al.}’ trained their regression models with a larger number of healthy control
data (N = 2,001 and 1,196 respectively). Although the present study comparably lacks power in
the trained age regression models (N = 151), the parameters and qualities of MRI images here are
more controlled and the comparisons between the structural and functional brain ages provide
novel insights into different dimensions of the brain aging effect in TLE.

While the overall structural and functional brain ages are indeed accelerated compared to
chronological age (Figure 12), inspection of the age discrepancy plots (Figure 10) shows that this
accelerated aging effect is evident across the chronological age range of the TLE participants
examined here. We did not observe increased accelerated brain aging in the older compared to
younger TLE participants, nor in participants with longer history of seizures compared to shorter.

It is worth noting that the correlations among the chronological and the two brain ages were
significantly weaker in TLE patients compared to healthy controls (p’s < 0.01), suggesting a
detectable dissociation of brain ages from chronological age. Weintraub et al.'®? reported
correlations between chronological age and NIH Toolbox Battery-Cognition Battery (NIHTB-CB)
test scores in healthy controls (N > 230), and observed significantly stronger negative correlations
in fluid cognitive abilities (p’s < 0.001, —0.46 > r's > —0.65) compared to those seen in the
TLE patients in our study (p’s < 0.03, Z > 2.2). Together with the finding that the functional age
mediated the relationship between chronological age and cognition in TLE patients, this leads us
to conclude that judgment of cognitive abilities in the TLE patients based on their chronological

ages may be less predictable compared to healthy controls.
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There were significantly smaller variances (p < 0.001) in the predicted accelerated
functional brain ages compared to the structural ages, both from the healthy control and TLE
groups (Figure 12 and Figure 10), although the opposite was expected given the increased
complexity of the model (71,631 dimensions in functional, compared to 254 in structural). This
suggests that the functional brain age calculated from resting-state functional connectivity is a
more stable measure of brain age.

It was hypothesized that accelerated brain aging in TLE was related to either or both the
clinical features of the epilepsy and AED use. Accelerated functional brain age was correlated with
both complex partial seizure frequency (corrected p = 0.07) and the number of AEDs (corrected
p = 0.07), suggesting that the accelerated functional brain aging in TLE patients may be related
to both seizure burden and related polytherapy. Results from this study confirm those from Pardoe
et al.’®® and Sone et al.1’”® which reported that there was no significant relationship between
epilepsy duration and the accelerated brain age. However, the relationship between age of seizure
onset and the accelerated brain age in our TLE population was found insignificant. Current data in
this study were not sufficient to reveal definitive clinical correlates of accelerated brain aging.

Table V depicts the dynamic nature of the relationships between chronological and brain
ages with crystallized and fluid cognitive abilities. In regard to crystalized abilities, only
chronological age predicted improvement on one of the two measures, predictably showing
improving naming ability with age. In contrast, the interplay of chronological age with brain ages
was more dynamic for fluid abilities. Moreover, functional brain age partially mediated the
relationship for three measures including memory (Picture Sequence Memory) and selected
measures of executive function (Dimensional Change Card Sort, Flanker Inhibitory Control and

Attention) (Figure 14). Importantly, these brain age relationships are detected in a predominantly
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young to middle age sample (mean age = 40.3) who have yet to enter the epoch where age exerts
stronger and more diverse effects. It will be important to continue to monitor these relationships

prospectively to confirm their change over time and linkages to changing cognition.

4.3.7 Limitations

One limitation of this investigation is the relatively small sample sizes. In order to control
for the scanner variability, scan protocols and procedures, only data from the two Disease
Connectome Studies (ECP and ADCP) were used. This resulted in a smaller training sample size
compared to previous studies'®® 0 while allowing us to expand the study to investigate the
functional brain aging and other clinical and cognitive traits in TLE.

The age range of our TLE population (19 — 60 years) was towards the younger spectrum
of that of our control population (18 — 89 years). The results using this dataset should remain valid,
since 1) the age range of the training set covered that of the testing set, and 2) the testing results
on the healthy controls confirmed the performance of the linear correction. Before the linear
correction, the bias in the regression model over-estimated the ages of young test subjects, making
the prediction of TLE brain ages unreliable. The correction mitigated, if not completely removed,
this bias effect’®®. Use of larger training sample sizes in conjunction with accurate non-linear
regression models will create more robust age-predicting models. Future work is also desired to

confirm the findings from the current study in older TLE population.

4.4 Concluding Remarks

Only a modest success has been achieved at building reliable machine learning models

using the ECP data, where the performance was most likely limited by the small sample sizes.
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Although the state-of-the-art quality MRI images and a thorough neuropsychological battery were
used in the training, building clinically useful machine learning models seemed to require much
larger samples.

Having enough sample sizes is a relative matter: it largely depends on the difficulty of the
problem (classification or regression) and the given set of clues (or training features). For example,
we may expect to build a reasonable classification model that separates between males and females
with their height and weight as features, but not as well with eyesight and number of fingers. On
the other hand, a very small sample size is required to build such a model if one of the training
features happens to be the sex chromosome. Also, we intuitively expect separating between males
and females to be easier than, for example, between a married person and a single. Likewise, in
medical imaging, each problem is unique and has its own target sample sizes for training effective
machine learning models.

We can hypothesize that the general relationship between the sample size and the
classification accuracy, however, follows a predictable trend. One model may reach a target
accuracy faster due to the simplicity of the problem compared to others, but the general shape of
the relationship curve may look similar. Understanding this relationship can aid the assessment of
machine learning models that have been trained in the field so far, because it is likely that they
have not reached their maximum potential with the limited sample sizes available at the time of
training. In Chapter 5, therefore, we will systematically explore this relationship in binary

classification.
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Chapter 5

Sample Size Limitations of Applying

Machine Learning in Medical Imaging®

With advancements in medical imaging, the amount of data to evaluate exponentially grows and
so does the complexity of clinical problems!2. It is becoming more impossible for human
radiologists to analyze every detail in the high quality, high dimensional images that the state-of-
the-art imaging devices offer. The need for developing automated systems to help processing these
images is clear. Then, when do we start trusting machines to the point where we confidently give
them the same responsibilities as the human radiologists? Understandably, this question is loaded
with not only technical, but also moral and logistical issues. However, in order to start the
discussion, a thorough inspection of the current status in developing such machines must precede.
And as discussed earlier, when the sample sizes are limited, we must assess the problem with the

sample size in mind.

§ Portions of this work are currently being reviewed: Hwang G, Nair VA, Bendlin BB, Prabhakaran V,
Meyerand ME. Support Vector Machine Binary Classification for Diagnosis in Neuroimaging: the
Sample Size Limitations. American Journal of Neuroradiology. Under Review
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5.1 Challenges of Whole-brain MRI Classification

Machine learning has a potential to make significant impact in medical imaging, but it is
still at its infancy®®. Areas with the most number of successful applications are image
segmentation and registration® "8, Applications in image segmentation include delineating tissue
interfaces or detecting abnormal cells, such as tumor. They are substantially reducing the amount
of human work required to solve these problems and increasing the output quality. One of the key
reasons why we already see high-performing models in this area is that accumulating large training
dataset is relatively easy with data multiplication techniques such as data augmentation!®. Data
augmentation allows a single training data point to multiply to be many. For example, when the
problem is to segment a tumor region out of a 2-dimensional image, one labeled image can be
translated, reflected, rotated, stretched or down-sized, so that the model is exposed to many
different examples from a single image. So, if a thousand images are required to train a reliable
machine learning model, this number can be reduced to perhaps a hundred, with a proper use of
data augmentation. The same technique can be applied to image registration problems, which
effectively tackles sample size limitations.

Data augmentation is not always straight-forward or even possible. For example, if the
problem is to classify people into two groups based on their region-of-interested-based structural
brain MRI features, such as cortical thicknesses or volumes, then the features cannot be rotated or
stretched. The MRI images themselves can be, but they would be re-aligned before the features
get extracted. In this case, without the help of the traditional data augmentation, the problem is
much more difficult to solve with machine learning, compared to the tumor segmentation problem

above. The problem requires much larger sample sizes, while the complexity of the problem may
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be worse. In medical imaging, unfortunately, acquiring enough samples for machine learning is
often impractical without data augmentation.

Various feature extraction techniques have been developed, in order to reliably reduce the
number of training features while conserving the most useful information for the model*®, They
are generally perceived as tools to reduce the high-dimensionality of the problem. However, from
a different perspective, they can also be viewed as means to reduce the required sample sizes for
solving a problem, because the lower dimensionality reduces the chance of overfitting and we can
expect to build a reliable model with smaller samples. There are numerous proposed feature
extraction techniques, in which some conserve the original values and only remove unwanted
features®: % 18 \whereas in others they use combinations of features to create more meaningful
features using techniques such as PCA%, or singular value decomposition (SVD)*" 18 Some
studies have compared the effectiveness of using these techniques in a given application by
comparing the accuracies®®, but none of them approached it from the perspective of reducing the

required sample sizes.

5.2 Sample Size and Machine Learning Classification

Various machine learning classification models have been tried in medical imaging and
SVM3®: 8 js among the most popular techniques. It has been shown effective in high-dimensional
classification problems!®. There have been a number of studies on the sample size requirements
when using traditional machine learning classification models including SVM?*®!, Mukherjee et al.
and Figueroa et al. fitted SVM classification error curves to inverse power law models and
introduced methods to predict the true accuracy given small sample sizes'® 12, Dobbin & Simon,

and Guo et al. trained different types of omics data to test the sample size requirements®,
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5.2.1 Participants

MRI data from the Connectome studies were examined: HCP for healthy young adults®,
ECP for TLE patients®® and ADCP for Alzheimer’s disease and mild cognitive impairment (MCI)
patients®4. The processed images from the HCP were publically available on the ConnectomeDB
web database'®*. All images were acquired with 3T Siemens or GE (General Electric) scanners
using simultaneous multi-slice imaging (8 bands, TR < 802ms, voxel size = 2mm isotropic).
Although the exact scanner parameters vary slightly, this was not the main focus of the current
study. The images were processed using the Human Connectome Project pipelines as described in
Section 2.4.1.

Four binary classification problems were defined (Table VI): classifying between 1)
healthy males and females (HCP-Sex, N = 440 per group), 2) healthy twenties and thirties (HCP-
Age, N = 445 per group), 3) healthy controls and temporal lobe epilepsy patients (ECP, N = 94 per
group), 4) healthy controls and the combination of Alzheimer’s disease and mild cognitive
impairment (MCI) patients (ADCP, N = 63 per group). HCP-Sex problem represents a relatively
easy problem, whereas HCP—Age problem a relatively challenging problem.

In each classification problem, two types of training feature set were investigated in order
to consider two cases with widely different feature dimensionalities (or number of training
features): structural (254 dimensions) and functional (71,631 dimensions) brain feature sets. 254
structural features were extracted from the T1-weighted images using FreeSurfer®, including
cortical thicknesses, surface areas, volumes and also subcortical and global volumes. These
structural features were transformed to z-scores. From the resting state images, 360 timeseries from
the Glasser parcellation®” plus 19 FreeSurfer subcortical regions®® were extracted (see Section

2.4.2), and the Pearson correlation was used to generate connectivity matrices and then normalized
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with Fisher-z transformation. Taking the upper triangles of the matrices resulted in 71,631 features
for the training. Therefore, in total, there were eight distinct classification problems to be

investigated.

Dataset Group N Age (years) Sex (Male / Female)
Male 445 285+3.2 445/0
HCP-Sex
Female 445 28.2+35 0/445
20s 440 26.31+2.2 180/ 260
HCP-Age
30s 440 323+ 1.7 161 /279
TLE 94 40.7+£12.4 41/53
ECP
Control 94 42,7 +16.2 43/51
AD + MCI 63 72.1+8.9 34129
ADCP
Control 63 70.8+6.9 31/32

Table VI. Summary of Four Binary Classification Problems. Two problems involved only
healthy controls (HCP-Sex, HCP-Age) and the other two patient populations (ECP, ADCP).
This table summarizes the demographics of each group. fAD = Alzheimer’s Disease. MCI =
Mild Cognitive Impairment.

5.2.2 Hyperparameters Tested

SVM binary classification model training and testing were implemented in MATLAB
R2018a. For the baseline, a linear kernel and leave-two-out cross validation (one subject from each
group left out for the testing) were used with no feature reduction. Note that the samples in this
study are only split into training and testing sets, and the term ““cross validation™ is used to denote
that the testing is repeated exhaustively. This is not to be confused with a validation set®’.

The goal was to study the relationship between the sample size and the classification
performance. For simplicity, the number of samples was kept equal between the two groups in

comparison throughout the study, which minimized the concern of unbalanced sensitivity and
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specificity!® (more discussion in Section 5.2.3). In the rest of Chapter 5, N will represent the total
number of samples in each group, instead of the combined.

In each problem, subsets of the entire dataset, with varying size, were randomly selected,
and used to train and test SVM models. The sample size of a subset in each group is denoted as
Ngampte (N = Nggmpie). FOr each problem, 15 logarithmically spaced sample sizes or Nygmpe’s
between 5 and N were tested. Training and testing for each Nggp,. Were repeated until 95%
confidence level was reached that the mean accuracy was within £1.0%. The mean and the
standard deviation of the classification accuracy over all randomly selected subsets were calculated
per Ngampie-

Two other generic kernels were tested while keeping other parameters match the baseline
setup: 3rd order polynomial and radial basis function (RBF, or Gaussian) kernels. Three other K-
fold values were tested while keeping other parameters match the baseline setup: 2, 5, and 10-fold
testing. Nggmpie's < 10 were skipped for 10-fold testing.

Three feature reduction methods were tested while keeping other parameters match the
baseline setup: PCA%, SVD¥": 18 and Lasso methods®® 8L, For PCA, the number of features was
reduced to the number of training sample minus one (N-q4in — 1), Or kept equal for cases where
Nityqin > number of original features (Nirqin + Niest = Nsampie)- Then, the features were
normalized to z-scores. For SVD, the number of features was reduced to the number of training
samples (N¢rqin), Or kept equal where Nipqin = number of original features. For Lasso
method, lambda of 0.1 was used and features with zero regression coefficients were eliminated.
The reduction was applied first on the training set, and the information such as the coefficients

were kept for later applying the same reduction independently on the testing set. Note that this
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procedure does not allow the K-fold holdout testing set to influence the training, and therefore, the

testing is unbiased.

5.2.3 Accuracy and Precision

Only equal-sized groups were considered in this work, in order to minimize the concern of
unbalanced sensitivity and specificity'®®>. One measure of this unbalance is the precision of the

model.

Precisi True Positives (1)
recision =
True Positives + False Positives

Precision of 50% would indicate perfectly balanced sensitivity and specificity. The
precision of our results ranged from 42% to 56%. This range was considered acceptable for the
purposes of our work, because with the balanced group sizes, the total accuracy should not vary

significantly within this range of precision.

5.2.4 Effects of Kernels

In all eight classification problems, the error rate (1 — accuracy) steadily decreased
following a power law, while still showing room for improvements at Ny, = N (Figure 15, A
and B). As expected, the HCP-Sex classification model yielded superior performance compared
to the HCP—Age model, whose problem was selected to represent a relatively difficult task
(separating between brains of 20s and 30s). Using the structural features, the trend in performance
of the ADCP model resembled that of the HCP—Sex model, while the ECP model showed the worst
trend. Using the functional features, the performance of the two disease models were in between

the two healthy control (HCP) models.
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The change of kernels showed mixed effects on the classification accuracy (Figure 15, A
and B): in some cases, the change of kernel significantly improved the accuracy, and in others, it
decreased it. The effects of changing kernels were unpredictable.

Leave-two-out cross validation was used for the baseline analyses, and the classification
accuracy as Nsqmpie @pproached N seemed unstable in many examples, especially with the disease
models with smaller N (Figure 15, C and D). Standard deviation of the accuracy was as high as

+18.5% in T1 problems and £19.7% in RSFC problems at Nspm e = 5, and gradually decreased

to around +£5% as Nggmpe increased to 50 (per group).
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Figure 15. Accuracy of Eight Classification Models with Varying Kernels. Support vector machine (SVM) classification results
using leave-two-out cross validation and no feature selection. Three generic kernels were tested: linear, polynomial (3" order) and
radial-based function (RBF) kernels. (A) and (B) summarize the sample size relationship with binary classification accuracy, and (C)

and (D) with the standard deviation of the accuracy. Nsumpi. represents the number of subjects in each group, instead of the combined.

+RSFC = resting-state functional connectivity.
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Figure 16. Accuracy of Eight Classification Models with VVarying K-Fold. Support vector machine (SVM) classification results
using linear kernel and no feature selection. Four K-fold settings were tested: 2, 5, 10-fold, as well as leave-two-out (Nsgpmp.-fold)

testing. (A) and (B) show the results with the x-axis being the number of subjects in the subset per group (Nsgmp:e), Whereas (C) and
(D) the number of training subjects in the subset per group (N¢qin)- TRSFC = resting-state functional connectivity.
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Figure 17. Accuracy of Eight Classification Models with Feature Reduction. Support vector machine (SVM) classification results
using linear kernel and leave-two-out cross validation. Feature reduction using singular value decomposition (SVD, dotted) improved
the accuracies significantly more than using principal component analysis (PCA, dashed) in all examples, especially when Ngppie <
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5.2.5 Effects of K-fold

Using smaller number of K-folds, or holding out bigger testing sets consistently decreased
the accuracies (Figure 16, A and B). Plotting the results with the number of training subjects per
group (Nergin = Nsampie — Ntest = Nsampie X %) as the x-axis (Figure 16, C and D) revealed
that the classification accuracy is closely related to Niy4in, OF the number of subjects per group

that the model was trained on.

5.2.6 Effects of Feature Reduction

Feature reduction using SVD methods most significantly improved the classification
accuracy, whereas Lasso methods were the least effective (Figure 17). In fact, Lasso feature
reduction significantly decreased the final accuracy (Nggmpe = N) for seven out of eight examples.

With the functional models, both PCA and SVD methods significantly improved the
accuracies (p < 0.001), while SVD performing much better than PCA (p < 0.001). SVD feature
reduction achieved boost in the final accuracy (Nsgmpie = N) by 4 — 7%, while PCA by 0 — 1%.
With the structural models using PCA or SVD, the classification accuracies were improved with
relatively 10W Nggmpie, then there was a sudden decrease in accuracy as Nggmpie approched the
number of original features. When Nggp, . > number of original features (HCP problems),
the outcome was unpredictable, with HCP-Age problem showing improvement, while not with
HCP-Sex (Figure 17). This sudden decrease in accuracy did not appear in the functional models,

because Nsgmpie < number of original features = 71,631.
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5.3 Sample Size Prediction Model

5.3.1 Sample Size and Classification Accuracy

It was previously suggested that the relationship between the sample size and the error rate

(1 - classification accuracy) follow the inverse power law'® 12 which would have a general form:

1

Error Rate = 1 — Accuracy = m 2

N is the total sample size, and x; and x, are the model parameters. This equation needs
modification as not all model will reach a 100% accuracy even with infinitely large N. From
empirical search, this slightly modified equation below gave the best nonlinear fit to the sample

size relationship both visually and from the residual statistics:

Binary Classification Accuracy = f(N)

(3)

=50 + (x, — 50) X (%)

)
( 1+ x, X N*3

Notice that equation (3) was slightly modified from (2) so that the model parameter x,
gives the maximum possible accuracy, and f(N = 0) = 50%. Parameters x, and x5 change how

fast the accuracy improves as the sample size increases.
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A Sample Size Predictions - Model Fitting (T1)
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Figure 18. Predicting Future Accuracy of the Eight Models. Support vector machine (SVM)
baseline classification results (solid line) and the fitting results (dotted lines). Same model
(Equation 3) was fitted four times: first with all data points, and then with one, two, or three last
data points out (15 logarithmically-spaced data points in total per problem). +RSFC = resting-
state functional connectivity.
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5.3.2 Sample Size Model Fitting

Equation 3 was fitted four times per problem: first with all data points, and then with one,

two, or three last sample data points (Nggmpe) OUt (15 logarithmically-spaced data points in total

per problem) (Figure 18). The fitted lines matched the available data points well both visually and
based on the residual statistics. For problems with smaller total samples sizes (N), especially for
ones that demonstrated higher degree of overfitting (ECP problems), the predictions were more
unstable. For problems with larger N (HCP problems), the prediction seemed more reasonable and
stable.

Fitted lines predicted that the HCP-Sex structural model would reach 84 — 88%, and its
functional model nearly 100%. The HCP-Age structural model was predicted to reach 62 — 63%,
and its functional model 79 — 88%. The ECP structural model was predicted to reach nearly 100%,
and its functional model 69 — 100%. The ADCP structural model was predicted to reach 75 — 76%,

and its functional model 72 — 79%.

5.4 Discussion

5.4.1 Reliability of Classification Accuracy

Machine learning classification accuracy is unreliable with small sample sizes, due to the
large variance and overfitting®3. In medical imaging, it is often difficult to accrue large amounts of
training dataset for machine learning research, and many publications vaguely state the low sample
size as the biggest limitation of their work. Therefore, it is important to study the relationship
between sample size and the model performance. Here, we tested the SVM binary classification

algorithm with a number of different kernels, testing K-folds, and feature reduction methods.



78

As discussed earlier, most machine learning publications do not consider the sample size
relationships of their model performance. However, the true reliability of a model cannot be
correctly assessed only with the given dataset as evident from Figure 15, (C) and (D). The standard
deviation of the model accuracy starts from around £15% with Nsgmpe =5, and steadily
decreases until it drops sharply near Nggmpe = N, because this is analogous to a sample standard
deviation, instead of a population standard deviation. The same phenomenon is also found with
smaller K-fold settings, albeit to lesser degrees. In order to correctly assess the true reliability at a
given sample size, a larger sample needs to be tested. For example, the standard deviation of ADCP
T1 problem was found to be £0.78% with Nygpmpe = 63, but that of HCP-Sex T1 problem was
1+4.55% With Nsgmpie = 65, which should be closer to the true population standard deviation. The
results suggest that, for similar problems, if £5% standard deviation is desired, at least N = 50,
or more conservatively N = 100 is required. If +1% standard deviation is desired, around N =

5,000 may be required for similar problems.

5.4.2 Sample Size and Classification Accuracy

Using a smaller number of K-folds (or holding out a larger testing set) consistently
decreased the classification accuracy. Figure 16 effectively shows that the reason for this is due
to the smaller training sample sizes. The number of training subjects in each group (Ngyqin) 1S
closely related to the classification accuracy. The common practice of preferring K-fold over
leave-two-out or leave-one-out testing to minimize overfitting (evident from curved ends in Figure
15) is justified; however, it does so at the cost of the training sample size which is more difficult

to afford in medical imaging.
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Previous findings suggested that the relationship between the error rate (1 — accuracy) in
binary classification and the sample size followed a power law function (Equation 2)'® %2 and a
slightly modified version (Equation 3) showed the best fitting results. Although this fitted model
may conveniently provide predictions of future accuracies, overfitting can be problematic as seen
from the ECP problems in Figure 18. In addition, the accuracies in the problems that we
investigated had not reached their maximum accuracies yet, which still left the validity and
universality of this fitted model for further investigation and confirmation.

Once the relationship is established, it can be used to make predictions and to examine
whether a model has room for potential improvements with added training samples in the future.
A classification model that gives only a sub-optimal accuracy can be promoted to a clinical tool,
if it shows enough potential. Also, a classification model that shows little potential can be deserted
quickly to save research time and effort. Moreover, the knowledge of this relationship can be
informative when designing new clinical studies, as it suggests reasonable sample sizes to recruit

per clinical group.

5.4.3 Feature Reduction

Three common feature reduction methods were explored and the best results in terms of
improving classification accuracy were achieved using SVD in all eight problems, especially when
Ngampie < number of original features. PCA also consistently improved the accuracies, but
to a lesser degree compared to SVD. Lasso methods did not improve the final accuracies
(Nsampie = N), most likely due to information loss.

Both SVD and PCA attempt to summarize high-dimensional information using smaller

number of dimensions, and they are closely related. In fact, PCA can be performed using SVD,
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because it can be considered as a special case of SVD!® 1% However, performing SVD is
computationally less demanding compared to PCA, and therefore, has an inherent advantage when
used in machine learning®®’.

The present results are in favor of using SVD over the other two feature reduction methods
when the number of features is much greater than the available sample size. However, the results
may differ with other types of applications, and therefore, if enough time is available, testing a
variety of feature reduction methods is the most ideal. In addition, only linear feature reduction
methods were considered in this study. If enough samples are available, exploring nonlinear
methods is a possibility, although, considering the complexity of this search, building and

optimizing small neural networks may turn out to be a more efficient and effective option.

5.4.4 Machine Learning Research in Medical Imaging

Given the observations and discussions above, a number of approaches are proposed for
future machine learning research in medical imaging, or wherever dealing with limited sample
sizes. First, it is advisable not to jump to conclusions from results acquired with low sample sizes.
Population standard deviation of 10% or more is expected for N < 20, and 5% or more for N <
100. Second, instead of using a K-fold testing, maximizing the training sample, while plotting the
relationship between the model performance and sample size using subsampling methods
introduced here, may provide better insight on the dataset. This will also allow assessing the trend
of the performance to determine whether the model has room for improvements. Third, hastily
generalizing the findings of increased or decreased performances from changing training
parameters can be risky. They may be specific to the dataset and the best combination of

parameters may not carry over to new datasets, possibly even to the same dataset with added
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samples, especially when dealing with small sample sizes. The sample size plots help discriminate
between good and bad parameter combinations per given dataset.

A machine learning model continues to learn after it is first trained, as it is exposed to more
training samples, just as a human physician continues to learn throughout their residency and even
while practicing. Therefore, machine learning research in medical imaging should focus less on
the current accuracy, but more on its maximum potential accuracy that is reasonably achievable.
Since the models can be trained much faster in clinical settings, compared to restricted research
settings, more sub-optimal models showing enough potential should be promoted to clinical tools.
They can first serve as a second eye to trained physicians and then, after a period of extra training
with immense clinical data and reaching their target accuracy and reliability, can become stand-

alone tools.

5.4.5 Limitations

In this work, only eight selected research problems which have similar data types and
qualities have been tested. Although their accuracies showed very similar sample size relationships,
and the fitting results in Figure 18 were successful, these may not represent all problems in
medical imaging. Future work is needed to confirm the findings here with other feature types and
feature dimensionality.

Only equal-sized groups were considered in this work for simplicity, because unbalanced
groups cause unbalanced sensitivity and specificity using default training parameters. However,
many medical imaging classification problems involve unbalanced groups, especially when the
disease to be diagnosed is rare. Future work is needed to expand the findings here to cases with

significantly unbalanced sample sizes.
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There is no one-size-fits-all solution to training machine learning models, and each model
tackling unique problems must be fine-tuned in order to handle the specific dataset well.
Significant improvements in performance can be gained by optimizing the hyperparameters.
However, in a systematic search considering multiple models at multiple sample sizes, sufficient
time for this fine-tuning cannot be allotted to each model, and only a few default settings can be
reasonably tested. Also, models that require relatively longer training periods such as deep learning
are difficult to consider. Therefore, the predicted performance from these research efforts should
be regarded as the lower bounds of the actual performance. A carefully fine-tuned deep learning

model is expected to out-perform a linear SVM model.

5.5 Concluding Remarks

Applying machine learning in medical imaging problems is mostly limited by the small
sample sizes. When sample sizes are small, large uncertainty in performance measurements is
expected, along with overfitting. Here a number of research approaches have been proposed,
including plotting the performance over the sample sizes, maximizing the training sample, using
SVD feature reduction, making predictions of future accuracy, and identifying sub-optimal models
with potentials. These guidelines will help the accurate assessment of medical imaging
classification models, and ultimately allow the field to reach its goal faster, which is to make timely,

accurate, and reliable medical diagnoses.



83

Chapter 6

Conclusion and Future Works

Machine learning has been drawing a massive attention in the past decade. The amount of research
publications and also commercial products using machine learning have exploded and do not yet
show signs of slowing. It is changing the ways humans view things and perform tasks. The
versatility of it is being exploited in literally every field of study. The predictions that it offers are
intriguing, but systematic patterns within complex datasets that it detects along the way also offer
tremendous insight.

In the midst of all the hypes and success stories in the media, however, there are many
areas that are still in the early developing stages, mainly due to the limited sample sizes. Then, the
question becomes when we can expect to see useful products from these areas, if that is feasible.
One of these areas is the whole-brain MRI classification, and the problem becomes more

challenging with rare diseases.
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In this work, a neurological disorder known as temporal lobe epilepsy (TLE) was
investigated using machine learning. The ECP provided comprehensive and high-quality imaging
and neuropsychological testing data to train the models with. They would have been sufficient
amount of information for many other traditional statistical analyses, but for machine learning,
they seemed to fall short. Despite the limitations, we were able to make a number of noteworthy
discoveries as well as train promising machine learning models. And these results suggest

interesting research topics for the future.

6.1 Epilepsy Research

There is still a lot to be discovered about epilepsy. Because of the temporal nature of this
neurological disorder (seizure activity), the direct search for the underlying cause, biomarkers, and
the cure for epilepsy has only been effective with the developments of imaging devices capable of
capturing temporal (functional) information (EEG or fMRI). With the advancements of imaging
devices will come new discoveries on epilepsy. One example of this was introduced in Section 3.3,
which showed that the classic model of associating cognitive abnormality in epilepsy with the
disordered pathophysiology of specific epilepsy syndrome seemed to be challenged. Imaging
results revealed that a large proportion of TLE patients instead suffered whole brain abnormality.
The accelerated brain aging of TLE patients introduced in Section 4.3 also provided an interesting

viewpoint of epilepsy.

6.1.1 Machine Learning Classification of Epilepsy Subgroups

As discussed in Section 4.2, the correct goal in applying machine learning classification on

epilepsy data should not be to separate between epilepsy patients and healthy controls, but to
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separate among subgroups in epilepsy. A clinically useful machine learning model should provide
information to physicians which would otherwise not have been easily acquired, but which would
help in the assessment of the disease or the treatment planning. A few examples of this would be
predicting seizure origin (by lobes, or hemispheres), course of epilepsy, severity of structural or
functional brain damage, developing symptoms, best AED to be treated (or else refractory), or
success rate of lobectomy. According to the results in Sections 5.2 and 5.3, any of these problems
would likely to require data from at least hundreds of epilepsy patients just to start assessing
whether such model can reasonably be built.

On the other hand, as shown in Chapter 3, there are still lots of insight to be gained from
machine learning research, even if the trained model itself may not be clinically useful. For
example, studying a machine learning model that effectively separates between TLE patients and
healthy controls can reveal patterns in the training dataset that have not been discovered previously.
This means that the possibilities are endless in the use of machine learning in epilepsy research. If
only a valid research question is posed and if a sensible machine learning model can be trained,

the underlying features can be analyzed, similar to the approach in Section 4.3.

6.1.2 Data-driven Clustering of Epilepsy Subgroups

The class label is crucial in machine learning classification. For example, if a TLE patient
is mislabeled as a healthy control, this is devastating for the training. Therefore, carefully screening
for mistakes in the class labels is a critical step. However, it can be an issue even when there are
no mistakes: if the classes are not well separable using the given feature set.

This can occur in two cases: an ill-posed problem, or ill-defined classes that are not
supported by the data. First, the HCP—Age problem (separating between brain images of healthy

20s and 30s) in Section 5.2 is an example of an ill-posed problem. Intuitively, we expect that the



86

training of this model would be more challenging compared to the HCP—Sex problem (separating
between males and females). Second, Section 3.3 suggests that simply designating one class to
include all TLE patients may be ill-defined. Fixing this requires re-thinking the definitions that we
are accustomed to. Was separating epilepsy patients based on their seizure focus the best strategy?
Cluster analysis is a data-driven method which aims to organize data points into subgroups and
can address this question. If the efforts in Section 6.1.1 turn out to be unsuccessful, these two cases

can be checked for alternative solutions.

6.2 Sample Size Limitations

As in MRI research, where there are both researchers analyzing the images and ones
developing hardware, in machine learning research, if there are the users, there must also be some
that troubleshoot. A large amount of effort goes into building the best models, which grab more
attention. Problems that are not showing high enough performance metrics get deserted quickly.
Comparably few are devoted to troubleshooting problems that are currently not exciting due to
either limited sample sizes or limited understanding of the problem. Chapter 5 explored the
relationship between the sample size and binary classification accuracy, and proposed a few
methods to identify machine learning models with enough potential. This can benefit many
overlooked areas of study where previously limited by the lack of sample sizes. More of such
systematic research effort is needed to achieve comprehensive understanding of the sample size
issue, which can guide future machine learning research.

As discussed in Section 5.4.5, future work is needed to explore other types of classification
problems in medical imaging: less controlled images (such as clinical), unbalanced sample sizes,

significantly non-normal features (with skewed or bimodal distributions), other imaging
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modalities and training features, etc. In each case, performance metrics other than the simple
accuracy may be considered to be more appropriate, such as AUC, sensitivity/specificity,
precision/recall, etc. Similar approach can also be used to study machine learning regression
problems.

In order to combat the problem of low sample sizes directly instead of simply waiting for
more data to be available, efforts are needed to develop effective feature extraction or feature
reduction methods. Traditional data augmentation techniques are not straightforwardly applicable
in many medical imaging diagnosis problems, for reasons discussed in Section 5.1. It would be
beneficial not only to know the amount of sample sizes required to build reliable machine learning
models, but also to have methods to reduce the sample size barrier because of the difficulty in
accumulating large medical imaging data.

After gaining enough understanding on the relationship between sample size and machine
learning performance, it would be intriguing to perform a meta-analysis to review published
machine learning models for their true potential as most publications only assess their current
performances. A thorough review may discover among a large pile of proposed models ones that
actually show enough potential for pursuing further. This is the correct way of exploiting the
important advantage of using machine learning, which is its ability to improve itself given more
data. It is an exciting time to study medical imaging and epilepsy with the powerful tool of machine

learning in hand.
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