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I. General overview 

 In cattle production, reproduction is a key component for success whether it’s in beef or 

dairy production. Over the years, progress has been made in understanding physiology of the 

reproductive cycle in cattle but some of the more molecular aspects remain a mystery. Genetics 

particularly in dairy has been revolutionary in progressing herd productivity and selecting for 

more desirable phenotypes. The realm of genetics has exploded with improvements and 

capability of sequencing technologies. This has led to improvements in reference genomes, 

increased number of genetic markers, and ability to detect different genetic variants. The scope 

of this work is to investigate different reproductive stages and identify genetic variations linked 

to different phenotypic traits at that stage of the cattle reproduction cycle.  

II. Review of cattle reproductive physiology 

2.1 Folliculogenesis   

 In mammals’ reproduction starts with development of the Graafian follicle developing in 

a process called folliculogenesis (Figure 1.1). Initially the cohort of follicles are dependent on 

follicle-stimulating hormone (FSH) (Figure 1.1A) 1–4. A surge of FSH recruits follicles from the 

cohort to start growing (Figure 1.1B) 1,4–6. The majority of follicles at this stage undergo atresia. 

Typically, in cattle, deviation or selection occurs when the largest follicle reaches 8 mm in 

diameter. Selection begins in response to increases in estradiol and inhibin and decreases of FSH, 

resulting in the largest follicle becoming dominant and the remaining subordinate follicles 

undergoing atresia (Figure 1.1C) 1,2,6. The dominant follicle further increases estradiol and 

inhibin while decreasing FSH, thus preventing additional follicles from reaching this stage 

(Figure 1.1D) 1,2,7–9. A key feature of the dominant follicle is it is no longer dependent on FSH to 

grow and has developed receptors for luteinizing hormone (LH) 1,3,4,6. There are two paths left 
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for the dominant follicle. Like other follicles, most dominant follicles undergo atresia leading to 

negative feedback on estradiol and inhibin and increasing FSH production (Figure 1.1E). The 

final option would be developing to a preovulatory stage that would eventually be ovulated 

(Figure 1.1F) 3,4,7. This sets the stage for ovulation rate (OR), the number of follicles that mature 

and ovulate during an estrous or menstrual cycle.   

 In cattle, folliculogenesis occurs in a wave pattern where follicles begin to grow and 

regress until the dominant follicle(s) are ovulated. The number of waves varies from cow to cow 

ranging from two to four waves per cycle (Figure 1.2). Waves occurring at the beginning to mid-

cycle correspond with the luteal phase and end with atresia 2,4. The final wave corresponds to the 

follicular phase and ends with ovulation 2,4. During a cycle each wave is initiated by a surge of 

FSH, then either a steady amount of progesterone during the luteal phase, or a decrease of 

progesterone and LH surge during the follicular phase (Figure 1.2)2–5,7. The LH surge triggers 

release of the oocyte from the follicle 4,6,10. 

 Two theories have been proposed to explain how more than one dominant follicle is 

selected and ovulated. These theories are centered around the period prior to deviation when 

FSH is above a threshold preventing atresia. In one theory, the increased OR is caused by 

follicles developing LH receptors at a smaller size and allowing them to survive FSH 

depletion1,3,7. The other is the decreasing FSH levels are not sufficient at deviation, instead they 

stay high enough to allow more follicles to reach dominance 3,7. Either or both of these aspects 

could lead to multiple follicles being ovulated.  

2.2 Embryo survivability 
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 While ovulation rate sets the upper limit for number of offspring, embryo survivability 

(ES) ultimately decides if a pregnancy ends with a multiple, single, or loss. The first obstacle is 

fertilization. Roughly 10 to 20% of oocytes are not fertilized 11,12. After conception, 10 to 80% of 

embryos are lost within the first few weeks, with higher percentages being seen in lactating dairy 

cows 11–13. On many dairy farms pregnancy checks are conducted at around 28 to 30 days after 

insemination and around days 42 to 60. During the time between pregnancy checks, embryo loss 

occurs at ~12% 12. After day 60 there are only moderate losses of 1 to 3%12; however, in cows 

bearing multiple embryos, a large proportion (75%) are lost between days 60 to 90 12,14,15. This is 

caused primarily by overcrowding in the uterus as the fetuses grow and develop 6,7,12,16. Loss of 

the embryo post-fertilization leads to economic loss for the producer (loss of calf, cost of re-

breeding, etc.) and impact the reproductive efficiency of the cow.  

III. Reproductive events    

 3.1 Embryo and fetal lethality  

 Embryo survivability and development and thus fetal survivability is an interplay 

between the composition of the fertilized oocyte and the uterine environment of dam. As the 

embryo develops there are several key developmental stages that impact the progress towards 

fetal development and subsequent parturition of a live calf17–19. At any point during 

development, programmed cell death may occur and trigger an early abortion of the 

embryo/fetus. Termination of pregnancy caused by the developmental insufficiency contributes 

to the percentage of unknown causes of cow abortion and may be linked to the genetic make-up 

of the embryo. Identification of these developmental defects would help improve reproductive 

efficiency. These effects can be linked both to the genetic composition of the embryo and the 

quality of the oocyte during ovulation19. As far as genetic composition, this can be attributed to 
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lethal mutation phenotypes, spontaneous mutations or errors in DNA repair, or segmental 

chromosome rearrangements20,21.  

 The other component to embryo survivability lies with the dam’s uterine environment. As 

previously mentioned in multiple births and embryo survivability overcrowding is one example 

of how that environment contributes to fetal death. But even before embryo elongation and 

development the uterine environment must change to sustain pregnancy11,19,22. This is tied with a 

cascade of different biological and hormonal pathways and disruption of any stage could lead to 

abortion of the embryo/fetus. One source of negative environmental impact is lactation status of 

the cow. Lactation triggers its own pathway cascades that impede and trigger opposite regulatory 

pathways to those needed for uterine environmental sustainability. Multiple studies have shown 

that higher producing cows showed decreased reproductive efficiency when compared with 

lower producing and non-lactating counterparts21,23. Nutrition also plays a role in these pathway 

cascades and controls the uterine environment as the embryo/fetus develops21,22,24. The health 

status of the cow during her previous partition and current gestation impacts the uterine 

environment. With previous partition affecting her return to cyclicity and early development and 

current gestation impacting more the later stages25,26. Genetic composition of the dam impacts 

her ability to sustain a viable environment for the embryo/fetus.  

3.2 Multiple births and ovulation rate 

 The term multiple births refers to a pregnancy resulting in two or more offspring being 

gestated and born. Cattle, like most primates, are typically monotocous – producing one 

offspring at a time; however, on occasion, more are produced. Typically, these pregnancies result 

in twins. There are two forms: 1) monozygotic (MZ) twins, or identical twins, where the 
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developing fetuses are from the same ovum fertilized by the same sperm, and 2) dizygotic (DZ) 

twins, or fraternal, which are fetuses that develop from different ovum and sperm.  

 While MZ pairs must be of the same sex, DZ have a ratio for male-male, male-female, 

and female-female pairs of 1:2:1 27–29. The proportion of MZ in cattle is low at 0.13 – 0.74% of 

all births 28–34. Thus, twins are typically assumed to be the result of DZ pregnancies. There are 

potentially incidences of greater than two however this happens for approximately 0.015% of 

total births 29. Because of this, twin is used interchangeably to refer to the phenomenon of 

multiple births in cattle interchangeably throughout this dissertation. Typically, this trait is 

measured by the number of calves born and measured as a frequency termed twinning rate (TR). 

Multiple factors can affect multiple births both intrinsically and extrinsically to the cow herself. 

 Firstly, the cow’s production type (dairy vs beef) and her breed composition may affect 

her TR 29,30,35–37. In dairy, the frequency is increasing. The prominent dairy breed, Holstein, has 

shown a change from 2.0% of all births in 1932 27 to an average 3.5 to 5.0% of all births from 

years 1975 to 2018 32,36–38. Twining rates in other dairy breeds include ~2.7% in Jersey, ~3.2% in 

Guernsey, ~2.0% in Ayrshires, and 4.6 to 8.9% in Brown Swiss 30,32,36,37. Beef cattle tend to have 

a lower incidence ranging from 0.2 to 4.6% 35,37,39. A beef breeds also show variation like Angus 

(0.4 to 1.6%) 35,37,39, Charolais (1.63 to 1.7%) 35,39 and Simmental (2 to 4.6%) 35,37,39. 

 Additionally, cow age impacts her chances of multiple births. Across multiple species, 

including humans, age and twinning share a positive correlation. Potentially, this is caused by 

increases of FSH and/or uterine capacity coinciding with increases in age and number of times 

giving birth 15,34,40–42. Age relates both to the chronological age or parity and the number of times 

one gives birth as they are highly correlated 27.  
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 Another intrinsic factor that has been linked to causing increased TR primarily in dairy 

cattle has been milk production. Higher producing dairy cows show increased chances of double 

ovulations and twinning 6,33,43–45. A hypothesis for this association is higher producing dairy 

cows have greater feed intakes and subsequently greater steroid metabolism. This causes 

decreases in circulating estrogen and progesterone that, in turn, increases multiple ovulations 6,46. 

Further, the effect of feed intake and feed quality on ovulation rate, referred to as “flushing” has 

been seen in beef cattle and sheep 15,47.  

 The final factor unique to the cow is her genetics and repeatability of the trait. Twinning 

rate tends to be lowly heritable. In Holstein dairy cattle, heritability ranges from 1.7 to 9.0% for 

linear models and 8.0 to 14.2% with threshold models 32,36,38,48–50. Repeatability estimates from 

linear models range from 0 to 6.3%36,48,51 with one estimate of 28.6% using a threshold model 36. 

Ovulation rate has slightly higher heritability ranging from 3 to 40% and repeatability ranging 

from 10 to 32.6% 7,35,52,53. TR and OR are highly correlated (0.66 to 0.90) 35,52,53. However, while 

heritability is low, genetic variation exists that can be exploited by selection, as seen in the 

USDA Meat Animal Research Center (MARC) twinning herd. In their final report, the 

population had attained an annual TR of 60% 16.  Additionally, there are reported cases of unique 

individuals or families with high fecundity. In the 1800s and 1900s, six cows have been 

documented for having multiple sets of twins and/or triplets37. A family, referred to as the Trio 

family, has been identified in the last 20 years that has increased frequency of twins and triplets. 

Multiple studies with the Trio family show a Mendelian inheritance of a trait for increased OR 

54,55. 

 As with any organism, the environment where it is cultured or raised impacts its growth, 

development, and reproductive performance. For cattle this can be narrowed to herd. 
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Management decisions influence the incidence of disease, calf survivability, lifetime production, 

and TR on a farm. One major difference in management style is nutrition. Feed quality varies 

from location to location and year to year. A hypothesized increase in TR is caused by higher 

quality feed stuffs. This leads to higher energy intake stimulating folliculogenesis and increased 

ovulation rates (discussed earlier). The culling practices of a farm influence TR. Cows calving 

twins have a higher risk of being culled due to fertility or health issues 33,56,57. This limits chances 

for repeated incidences and number of offspring that are predisposed to produce multiple births. 

Additionally, reproductive protocols such as in vitro fertilization (IVF) and embryo transfer 

(ET) impact ovulation rate. Hormones such as those used in synchronization protocols and 

antibiotics, have been indicated as influencing TR 33,34,43; however, in recent work it seems that 

milk production is the main contributing factor 58–60. Additionally, cows with ovarian cysts or 

lacking corpora lutea (CL) have higher risks of double ovulations when subjected to Ovsynch 

synchronization protocol 43,58.  

 The next layer of environmental effects comes at the year and season level. Conditions 

encompassing a year influence not only cow productivity but herd management. For example, 

drought years cause issues with feed quality of both pasture-based beef operation and mixed 

rations in dairy cattle. Year to year changes may reflect changes in a herd’s health status; 

healthier herds produce more, are more reproductively fit, leading to more effective feed intake.  

 A year can also be broken down into components of season. Each season affects calving 

or conception. Most dairy operations breed for year-round calving, while beef limit to spring 

and/or fall calving – matching pasture growth. Calving during the summer and early fall 

(conception fall to early winter) shows increased incidences of multiple births 32,35–37,61,62. 

Studies measuring OR saw a trend of increased ovulations during cooler seasons (fall and winter 
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months) 15,35,60,63. Heat stress during the summer months could impact both ovulation and 

embryo survivability, while higher quality fall pastures or supplements increase OR and 

ES15,33,60,62. 

IV. Genes associated with folliculogenesis, twinning, and embryo survivability  

 4.1 Transforming growth factor beta super family  

 Over the years one super family of proteins has been heavily linked to folliculogenesis 

and twinning. This family is the transforming growth factor-beta (TGF-β) superfamily 

encompassing more than 30 structurally related proteins involved in numerous pathways 

affecting cell differentiation, proliferation, apoptosis, development, reproductive processes, and 

many more 64–71. Members of this superfamily are found in various tissues and their activation 

typically is cell or tissue specific. The superfamily splits mostly into two subfamilies: 1) the bone 

morphogenetic proteins (BMP) and growth differentiation factor (GDF) including > 20 members 

comprised of the BMP proteins (excluding BMP1), GDF proteins, and anti-Mullerian hormone 

(AMH) and 2) the activin/TGF-β subfamily including ~ 8 members comprised of TGF-β 

proteins, activin, and inhibins 64,68–70,72–74. The structure and functionality of this super family 

have been extensively reviewed elsewhere69,70,74,75.  

 Briefly it is comprised of the ligand proteins, receptors, and signal transducers – members 

of the mother against decapentaplegic (SMAD) family. The ligands make up most of the 

superfamily and bind to the receptors with preferences to a specific receptor pair. The receptors 

break down into type I and type II groups and comprise a smaller group than the ligands. In 

mammalian species, there are seven known types I receptors and five type II 66–68,70,71,73. 

Typically, the ligand influences the receptor pairs forming a heteromeric complex and which is 
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bound first (type I vs. type II). Members of the activin/TGF-β subfamily tend to have affinity for 

type II receptors, while BMP/GDF subfamily members tend to have affinity for type I receptors 

64,68–71,73. Additionally, the type I receptor has a preference for the type II receptor they binds, 

limiting the number of possible combinations. Once a heteromeric receptor/ligand complex is 

created type II receptors cause phosphorylation of the type I receptor which activates the SMAD 

family64,65,68,70,74. There are eight known SMADs affecting the TGF-β superfamily and they split 

into three functional groups. SMADs directly affected by the type I receptor phosphorylation are 

the regulatory SMADs (R-SMADs). R-SMADs include SMAD1, 2, 3, 5, and 9 66,67,69,71,74,76. Like 

receptor binding, R-SMADs are influenced by the type I receptor. Typically the BMP/GDF 

subfamily activates SMAD1, 5, and 9 and the activin/TGF-β subfamily activates SMAD2 and 

SMAD3 65–70.  

 Once activated, the R-SMADs interact with SMAD4, the common SMAD, creating either 

heterodimers (an R-SMAD and SMAD4) or heterotrimers (two R-SMADs and SMAD4) 64–66,71. 

These complexes allow translocation into the nucleus and subsequent regulation of transcription 

of target gene(s) either directly or indirectly. They are regulated by SMAD-interacting proteins 

and/or inhibitory SMADs (I-SMAD) 64–69,71,76. I-SMADs include SMAD6 and SMAD7. SMAD6 

preferentially inhibits the BMP/GDF subfamily by competing with SMAD4 for binding with R-

SMADs as well as competing with BMP/GDF type I receptors and R-SMAD binding. SMAD7 

inhibits both subfamilies by competing with the R-SMADs for binding to the intracellular 

portion of the type I receptor 64–68,70,71,73,76.  

 The relation of TGF-β superfamily to multiple births has been widely studied. This 

family has been indicated as a major regulatory signaling pathway for female reproduction8,77,78. 

Activins promote and inhibins inhibit FSH production in feedback loops during folliculogenesis 
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3,78. Ligands BMP15 and GDF9 are oocyte-specific proteins that control follicular development 

and ovulation 79,80. Multiple members of the superfamily have been investigated for expression 

and contribution to litter size (LS), OR, and TR 72,81,82.   

 These investigations identified multiple members expressed in ovarian tissue, granulosa 

cells, and theca cell. These include BMP2, 3, 4, 6, 7, 15, GDF9, 10, AMH, BMPR1A, BMPR1B, 

TGFBR1, and BMPR2 3,7,69,70,72,73,77,83–85. Expression of BMP2, 4, 6, 7, 15, BMPR1A and B, 

BMPRII, SMAD1, 4, 5, GDF9, TGFBR1, and INHBB was measured in Hu high fecundity (HF) 

and low fecundity (LF) sheep. BMP15 expression was lower in HF while BMP4, BMPRIB, 

BMPRII, SMAD4, GDF9, and TGFBR1 were higher 85.   

 Unique phenotypes of increased OR and LS, and in some cases infertility, in sheep led to 

investigation of major genes affecting LS and OR in sheep breeds 86,87. Nomenclature for these 

genes is Fec standing for fecundity, a number or capital letter standing for chromosome location 

or gene (e.g. X for chromosome X), and in the case of multiple different locations a superscript 

designating breed or researcher (e.g. FecXI). The first identified major gene, called the Booroola 

gene (identified first in Booroola sheep) or FecB, corresponds to a nonsynonymous mutation in 

BMPR1B. It caused an additive increase in OR based on number of mutated alleles (WT [+/+]< 

BMPR1B [+/-] < BMPR1B [-/-]) 86,88–93 (Table 1.1).  

 Additionally, multiple mutations in oocyte-specific proteins BMP15 and GDF9 were 

identified. To date, nine and six different variants, respectively, have been reported for these 

genes. Three of the reported variants in BMP15 produced premature stop codons (FecXH 86,89,94, 

FecXG 86,89,91,95, and FecXR 86,96,97), while the others are different non-conservative mutations 

(FecXO 86,98, FecXGr 86,98, FecXB 89,95, FecXI 86,88,89,94, and FecXL 86,89,99, FecXBar 100). FecXBar also 

contains a 3 bp deletion and frameshift insertion. Of these FecXO and FecXGr show similar 
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phenotypes as the Booroola gene, but with homozygous mutant individuals having a minimal 

increase over heterozygous carriers. All other known variants of BMP15 in sheep cause 

increased OR in heterozygote carriers and infertility in homozygous mutant individuals (Table 

1.1). Two of the GDF9 variants (FecGI 101 and FecGF 102,103) are conservative, missense 

mutations and were both identified by Hanrahan et al95, but at the time were not associated with 

LS or OR. Both were subsequently shown to result in increased OR in heterozygous carriers but 

FecGI homozygous mutants have lower OR than WT while FecGI heterozygotes have increased 

OR. The remaining four variants are non-conservative mutations. FecGH 86,89,95
 and FecGT 86,104 

mutations result in phenotypes of increased OR in heterozygote carriers and infertility in 

homozygous mutant individuals. While FecGE 86,105
 causes phenotypes like FecXO, FecXGr, and 

FecB (Table 1.1). A novel synonymous mutation in GDF9 was significantly associated with LS 

in Hu sheep and has an additive effect with FecB and dominate TGFBR2 variant. It is a candidate 

gene mutation for this breed affecting LS85 (Table 1.1) . Authors point out that reports have 

shown synonymous mutations may affect mRNA splicing and stability, protein translation and 

folding, and involved in regulating microRNA meditated genes. They give no additional 

speculations on why these synonymous mutations are associated with LS.  

 Knowledge of these major genes, as well as known roles the TGF-β superfamily 

members play in reproduction, other mutations have been indicated as candidates for OR, TR, or 

LS in different species. These include BMP4 106,107, BMP7 108, BMP15 106, GDF9 109–111, 

BMPR1B 112, and TGFBR2 85. Additionally, mouse and rat knockout (KO) and conditional 

knockouts (cKO) have been produced that cause infertility (GDF9 113,114, BMPR1B 115) or 

subfertility (ACVR2 116, SMAD3 117,118, double cKO SMAD2/SMAD3 118, BMP15 114, and BMP7 

119) in these rodents (Table 1.1).  
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 In cattle, TGF-β member variants of GDF9 and overexpression of ACVR2A have been 

indicated as potential candidates for fertility traits 120,121. A nonsynonymous mutation of GDF9 

was identified as a potential candidate gene for TR in Maremmana cattle as it was only identified 

in cows producing twins 109 (Table 1.1).  Utilization of the Trio family has led to the 

identification of a major gene affecting ovulation rate in cattle 54,55,122–126. No causative 

polymorphism has been identified yet, the gene (Trio Allele) has been mapped to a 1.2 Mb 

region of bovine chromosome 10 (BTA10) 54. Heterozygous and homozygous individuals of the 

Trio allele generate ~2.6 more follicles per ovulation than non-carriers 54,124–126. Three positional 

candidate genes (SMAD3, SMAD6, and IQCH) were initially proposed 54 and screened for 

polymorphisms in coding regions and 5’ and 3’ flanking regions (Table 1.3). No plausible 

causative variants were identified, suggesting the causative variant is within regulatory sequence 

farther from the gene than the originally considered 5' and 3' flanking sequences. Gene 

expression analysis showed only SMAD6 having differential expression between carriers and 

non-carriers indicating that changes in regulation of SMAD6 drive the differences in phenotypes 

(Table 1.1) 122,123.  

 A recent whole genome sequencing analysis indicated BMP5, BMP6, ACVR1, and 

TGFBR2 as candidate genes for reproductive traits in pigs 127. Additionally, quantitative trait 

locus (QTL) and genome-wide association study (GWAS) analysis implicated TGF-β 

superfamily members as candidate genes for OR, TR, or LS in sheep and swine. These include 

TGFBR1 128,129, BMP7 127,128, INHBA127,128, INHBB 87, and SMAD187 (Table 1.4). A peak SNP 

rs80956812 (CHR 1: 164674664 from Swine genome assembly Sscrofa 11.1) associated with LS 

is located in SMAD6 gene in swine with a second peak SNP rs80912860 (CHR 1: 164637575 

from Sscrofa 11.1) upstream from SMAD6 130 (Table 1.4). The updated bovine genome 
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assembly131 and further evaluation of GWAS-based analysis for TR in cattle done by E.S. Kim et 

al. in 2009132 implicate TGFB1 and BMP6 (Table 1.3).   

 4.2 Other influential genes  

 One source of information of genes and genetic locations has been the QTL database 

(Animal QTLdb). Utilizing information from this database poses challenges related to differing 

methods used in studies summarized. For this review location of QTLs not already mapped to 

ARS-UCD 1.2 were approximated by dividing the cM location by 1,000,000 to estimate a 

physical (bp) location. On BTA5 there are three genes of interest including SOCS2, NR1H4, and 

IGF1 (Tables 1.2 and 1.3). IGF1, insulin-like growth factor I, has roles including hormone 

activity and has been implicated in multiple studies as a candidate gene. SOCS2, suppressor of 

cytokine signaling 2, functions include IGF receptor binding. Seven QTLs span BTA7 and three 

contain genes that are part of signaling pathways involved in embryogenesis, the Wnt  (WNT3A 

and WNT9A) and the fibroblast growth factors (FGF1) pathway 78,133 (Table 1.2). The last region 

of interest is on BTA21 containing IGF1R the receptor for IGF1 (Table 1.2). There could be 

potentially numerous additional candidate genes as some regions span large segments of a 

chromosome.  

 While microsatellite data is challenging to update, SNP-based data is relatively easy. A 

new database consortium sponsored by the FAANG projects was developed, called 

FAANGMINE. This database includes primary livestock species consolidating information from 

multiple sources. The limitations of this resource are utilization of a single reference for each 

species and that QTLs must have SNP reference locations passing quality filters. This database 

allowed for further screening of QTLs for TR and OR in cattle (Table 1.3) and two closely 

related species (Table 1.4). Genes of interest found within this curation of cattle include one 
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gene, NDF1P2, that interacts indirectly with the TGF-β superfamily signaling pathway, four 

genes, AKR1D1, NR1H4, CYP2S1, and END1, related to hormone activity, and four genes, 

SPATA3, IGCH, PAFAH1B2, and MAK, related to spermatogenesis.  

 Using both the Animal QTLdb and FAANGMINE, QTLs in porcine and ovine species 

were also screened for genes of interest in respect to the traits of LS, TR, and OR (Table 1.4).  In 

addition to IGF1 being implicated in cattle its paralog IGF2 134 and insulin like growth factor 

binding protien (IGFBP2)135 are candidate genes in pigs. Like IGF, growth hormone (GH) is 

involved with folliculogeneis136 making the GH receptor (GHR) identified in sheep a good 

candidate gene87. QTLs in both pigs and sheep share common genes of estrogen receptors 1 and 

2 (ESR187,128,137 and ESR287,138). These two genes form heterodimers and are needed for 

reproductive function. Two other reproducitve receptors, gonadotropin relaeasing hormone 

receptor (GNRHR) and follicule stimulating hormone receptor (FSHR) are candidate genes in 

swine 139 and sheep 140 QTLs, respectively. NCOA1 is a coactivator for hormone receptors 

located in an ovine QTL87. ZP3, zona pellucida qlycoprotein 3, and VPM1, vacuole membrane 

protein 1, play roles during embryo development and implantation. Two genes with indirect 

implications are transcription factor 12 (TCF12) 141 and zinc finger FYVE-type containing 9 

(ZFYVE9) 127. TCF12 is related to the Wnt pathway, while ZFYVE9 interacts with the TGF-β 

superfamily (Table 1.4). Gene information, functions, and locations (Bos taurus) were obtained 

from NCBI annotation release 106 and human gene card. QTL regions were viewed using 

NCBI’s genome browser and genes documented using references ARS-UCD 1.2 for cattle, Oar 

Rambouillet v1.0 for sheep, and Sscrofa 11.1 for pig.  

V. Sequencing technologies  

 5.1 First generation sequencing: Sanger  
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 One of the first methods of sequencing originating back in the 1970s, Sanger Sequencing 

is still a widely used method. This method sequences using a primer to locate a specific region of 

interest in the template DNA, labeled dideoxyribonucleotides (ddNTP) missing the 3’ hydroxyl 

group which prevents extension of the DNA strand, and capillary electrophoresis. The use of the 

ddNTPs  missing the 3’ hydroxyl group, where N stands for any one of the four different 

nucleotides (A, C, T, G), is why this technique is also referred to as chain-termination.  Each of 

the different nucleotides are labeled with a different fluorescent dye and when separated by 

fragment size via electrophoresis, the resulting sequence can be inferred by the fluorescent label. 

Though shorter than the other methods of sequencing (~1,000 bp) and limited to single 

fragments, the accuracy is extremely high (99.99 %)142,143. While initially used in genome 

assembly, the multiple step process to generate a single fragment makes it less ideal for large 

scale assemblies. It does, however, have strength in low and medium target sequencing projects 

particularly for visualization and validation of different variant detection events.   

 5.2 Next generation sequencing: Illumina pair-end reads 

 The objective of developing low cost, high-throughput sequencing gave rise to a new 

generation of sequencing that had the capability of increasing the quantity of reads through 

parallelization144. This allowed for massive amount of data being generated. While multiple 

platforms exist for generating next generation sequencing (454, Solid, Illumina, etc.), the focus 

here will be on the Illumina platform. Still using the sequence by synthesis methodology as 

Sanger, this method takes it a step further by using reversible dye termination and flow cells with 

multiple lanes containing different oligonucleotide anchors142,145. Initially, a sequencing library is 

prepared where DNA is fragmented, adaptors are added to them, and potentially PCR 

amplification to generate more copies of the adaptor fragments. The library is added to the flow 
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cell where the oligonucleotide anchors complement the adaptors. Upon amplification fragments 

will then create bridge clusters between two anchors. The resulting clusters are then sequenced 

using reverse terminator method which detects single bases incorporated into the DNA template 

by emission of the different fluorescently labeled nucleotides. Output from this step is numerous 

copies of either single-end or pair-end reads142,143. The advantage of pair-end reads is the ability 

to sequence both ends of the DNA fragment giving positional information, which increases the 

ability and accuracy to align the reads to a reference and detect different genetic variants. The 

depth of sequencing coverage, also provides valuable information on quality and ability to detect 

certain variants events such as deletions and duplications142,143. Even though the reads are 

slightly less accurate than Sanger sequencing, the advantage of volume, pair-end information, 

knowledge of the library size, and low cost makes them advantageous145. However, the short 

length of the reads generates challenges with repetitive genomes during assembly/alignment 

stages and may generate errors of misplacing the reads.  

 5.3 Third generation sequencing: Long reads  

 Unlike first and second generation sequencing the defining line between third and second 

generation is harder to establish. One uniform underlying component for this generation is the 

capability to generate the sequencing based on a single molecule rather than relying heavily on 

DNA amplification. The ultimate goal for this generation of sequencing was to generate long 

reads that have the potential to span full genomes in a few reads in the case of small genomes or 

complete chromosomes in the case of larger (e.g., human and cattle). Like the other generations, 

there have been multiple different platforms and advantages to them. Here the focus will be on 

two widely used platforms of Pacific Biosciences (PacBio) single-molecule real-time (SMRT) 

and Oxford Nanopore technologies (ONT)143. These two platforms utilize different concepts to 
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generate their respective reads. The SMRT method still uses sequence-by-synthesis and different 

fluorescent tags on the different nucleotides146; however, the key feature is the sequencing is 

done in real time. This imaging is achieved through utilizing zero-mode waveguide (ZMW) 

regions146,147.  The advantage for SMRT is that the single molecule itself will not degrade, but 

the disadvantage is that read length will be dependent on the ability of the polymerase142,146. 

Currently the average read length is 10-20 Kb with some reads being over 50 Kb143. In contrast, 

the ONT method does not rely on fluorescent labelling but instead on ion currents generated as 

the nucleic acid cross the membrane and through pores143,148. As the DNA passes through the 

pore, the base generates a change to ion current that reflects which nucleotide is next in the 

sequence148,149. The average read length of ONT depends on the sample preparation, but 10-20 

Kb average reads or greater can be routinely obtained with reports of 2.3 Mbp long 

capabilities143,148. In the past a disadvantage of these long-read methods has been the high error 

rates however this has been reduced for both and can be further improved based on the 

sequencing depth. The current disadvantage of these technologies is the cost and computing 

resources to handle the longer reads. But the advantages of being able to span longer segments of 

a genome make this a promising and exciting generation of sequencing150.  

VI. Genetic variant classifications  

 6.1 Single nucleotide polymorphisms 

 One of the most widely used variants has been single nucleotide polymorphisms (SNP) 

which as the name implies are single base changes from one nucleotide to another. They have 

been widely used in breeding programs as genetic markers because of the abundance throughout 

the genome, stability, and capability to utilize high-throughput automation. Throughout the years 

the number of known variants has grown151. In cattle the progress of identifying SNPs has 
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followed a similar trend as sequencing technologies. As the methods of detection gets better and 

less expensive, the number of SNPs detected increases and knowledge of those that are included 

on SNP chips. Initially SNP chips started with small numbers < 10k and have progressed to 80k 

standards. Additionally, whole genome levels can be achieved. The ability to impute from lower 

density SNP data to higher also increases the amount of data available for studies. This allows 

for large meta-analysis of trait associations to detect genomic regions of interest to a trait or 

traits152. Typically, these regions of interest are referred to as quantitative trait loci (QTL). 

 The Cattle QTL database is a curation of QTLs and associations spanning 1,000s of 

studies. These can be further broken down by different traits including reproduction. Multiple 

studies have identified associations between SNPs and traits such as early embryonic survival, 

reproductive efficiency, embryonic mortality, ovulation rate, twinning, and many others. These 

studies have been used to develop selection indexes for producers and utilized to help improve 

traits. Examples of those found in cattle involved with twinning and ovulation rate can be seen in 

Table 1.3. 

 6.2 Insertion-deletion mutations  

 Another classification of smaller variants is the Insertion-deletion mutation (InDel) 

which are addition or removal of one or more base pairs. There are variable definitions for the 

size of these events and cutoffs are arbitrary. One such definition is InDels are deletions or 

insertions < 1 Kb or more recently those < 50 Bp153,154. These differences may reflect the 

progression, accuracy, and methods involved in both sequencing and variant detection within a 

sample. For this work we will define an InDel as those ≤ 50 bp and those > 50 bp as structural 

variants (discussed next). Abundance of these variants is second to SNPs and detection is limited 

based on the quality of the alignment153,155.  
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 In cattle numerous InDels have been detected particularly as the 1000 Bull Genomes 

Project grows. Examples include a 17 bp insertion InDel that affects cattle growth in Chinese 

cattle156. Interestingly, this variant is found within SMAD3 and affects the transcription levels of 

the gene. Another example is an 11 bp deletion Indel found in the MSTN gene and its connection 

to double muscling in Belgium Blue cattle157. This deletion shortens the amino acid chain, 

introduces premature stop codons, and leads to MSTN protein fragmenting. Thus, it disrupts 

expression of the normal MSTN gene product allowing for hypertrophic muscle growth and the 

double muscling phenotype.  

 6.3 Structural Variants   

 As previously alluded to, structural variants (SV) are large (> 50 bp) changes to a genome 

and are classified into various types. These include the widely studied sub-class called copy 

number variants (CNV). Copy number variants are deletions (losses) or duplications (gains) of a 

region’s copy number relative to a reference genome assembly. Other structural variants include 

a) inversions - regions of the genome inverted in orientation compared with a reference, b) 

translocations – regions of the genome that have moved either within the same chromosome or to 

a different chromosome, and c) insertions – addition of “novel” regions. While less numerous 

than the smaller variant types (SNP and InDel), SVs have the potential to cause the greatest 

variation and impact because of their size150,154.  

 Detection of these variants varies slightly depending on sequencing information; 

however, in all cases the sample genome sequence is compared with a reference genome 

assembly. Previously, detection was conducted utilizing quantitative allele intensity data from 

SNP chips and primarily focused on CNVs. With the advancements to sequencing technology to 

include short and long reads, detection of these large structural variants has improved. 



21 

 

| 2
1
 

Challenges remain due to the size of different events, and SV types can have similar patterns of 

detection, for example, distinguishing a novel insertion from a tandem duplication150. Four main 

detection strategies have been employed to call variants. The most computationally taxing 

method is assembly-based where the individual of interest is first de novo assembled  and then 

compared to another assembly150,158. While the other methods rely heavily on information from 

the reads themselves, particularly with paired reads where orientation or spacing is abnormal. 

These methods include read depth (RD), which can measure copy number based on changes in 

the depth relative to the surrounding areas158. It is limited to large size events and CNVs. The 

other two methods look at disagreements in read mapping of pairs and the expected reference. 

They include read-pair (RP) and split-read (SR). Read pair methods look for disagreement in 

read insert size of the sequenced reads versus the expected158. Similarly, SR looks for read 

disagreement but in the form of one pair member mapping and the other entirely or partially 

failing to align. The unaligned read becomes the site of a potential break point and allows for 

more base pair level detection158. Each method on their own has limitations that can be bolstered 

by combining the different methods to detect variants.  

 In cattle these large variants have been shown to influence phenotypic appearances, 

disease resistance, reproductive health, and between-breed differences. The well-known 

phenotypic trait of horns or polled (no horns) is linked currently to four different structural 

variants on BTA1. In two of the four it’s a large duplication event, and in the other two it’s a 

complex insertion-deletion event159. These variants have also been shown to differentiate 

between sub-species (e.g., taurus vs. indicus) and breeds (e.g., Angus vs. Holstein)160–162. In 

Nordic Red dairy cattle, a 660 Kb deletion has been indicated as causative for low fertility and 

potentially for embryo lethality163,164.   
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VII. Problems identified  

 7.1 – Negative association of multiple births (Dairy)  

 Twinning, particularly in dairy cattle, is viewed negatively. This is due to greater risks 

associated with multiple births compared to potential rewards. A major risk category is health 

issues including early abortions, difficulties during calving, calves born dead or dying shortly 

after, retained placenta (RP) and metabolic disorders like displaced abomasum (DA) and ketosis 

165–174. Consequently, these risks, as well as the pregnancy itself, impact subsequent lactations for 

a dam. This can include increases in calving interval (CI, time between calvings), days to first 

service, first service conceptions rates, days from calving till conception, and reduced mean 

lifetime production 57,169,175–177. Another concern for replacement females is freemartins. 

Freemartins refers to females that are co-gestated with males and have a <10% chance of being 

fertile 27,165,178. In dairy the associated negative cost ranges from $50 to $250 per twin birth165,179. 

With ~5% incidence seen in Holstein and a national herd average of 9 million cows this would 

be an annual loss of $22.5 to $112.5 million 36.  

 7.2 – Positive association of multiple births in cattle (Beef)  

 Profitability in beef production is impacted by weight of calf weaned per cow exposed. A 

way to increase this and utilize resources is by increasing the number of calves born per cow 

bred. Potential exists for 104 kg to 186.0 kg increase per cow exposed with twin production 

16,180. The U.S. Meat Animal Research Center (MARC) twinning herd found an average total 

weight weaned per cow of 217.7 kg ± 2.5 for singles, 328.3  kg ± 3.2 for twins, and 378.4kg ± 

15.0 for triplets16. 
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 Beef cattle sustainability is measured by resource management. In a simulation study, a 

prediction of a 3.2% to 9% reduction in land and water use and reduction in greenhouse gas 

emissions when utilizing multiple births in beef production181. This system additionally allows 

spreading the per cow maintenance cost between two calves rather than one. Utilizing multiple 

births in beef cattle could accomplish net gains168,180,182.  

 7.3 – Reproductive inefficiency and cost of abortions 

 A large economic investment for producers is in reproduction costs. In 2006 a study by 

A. De Vries183 looked at estimating costs associated with pregnancy. On average the cost of a 

new pregnancy is $278 with an average cost of $555 associated with pregnancy loss. With ranges 

being predicted from $90 – $2,000 depending on factors such as days in milk, stage in gestation, 

and cow value influencing the total loss183–185. Abortions also impact the cow as well increasing 

her time to return to estrus and chance of being culled. Additionally, this may increase chances 

of reproductive disease depending on stage of gestation. There are several factors that may 

impact reproductive efficiency and embryo/fetal mortality, one of which is genetics. Previous 

studies have demonstrated that certain haplotypes were associated with embryonic death and 

shown to not appear in the population in homozygous states184,186,187. Additionally, as previously 

mentioned in section 6.3 there has been a large deletion found in Nordic Red cattle that 

influences embryo loss.  

VIII. The present studies  

 8.1 – Twinning in North American Holsteins  

 Objectives  
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 1. Estimate heritability and repeatability of twinning rate in recent North American 

 Holstein calving records.  

 2. Conduct genome wide association to identify genomic regions with replicated effects 

 across timeframes.  

 3. Test if inclusion of whole-genome sequencing showed SNPs of greater association  

 4. Identify gene pathways with greater association with twinning rate 

 5. Evaluate the potential for genomic selection in future genetic improvement programs  

 Rational and hypothesis  

 Previous studies have looked at identifying QTL and locations associated with twinning 

in dairy cattle188–190. However, there is minimal agreement between them on locations, genes, 

and pathways. Based on previous reviews and discussions this trait is a negative and frustrating 

trait for producers57,165,175. Identifying genetic markers and developing genomic selection against 

twinning would be a means of reducing incidence of twin birth. In addition, identifying 

underlying mechanisms of genes involved may help future research in understanding the biology 

behind twinning. We hypothesize that the transforming growth factor-beta (TGF-β) superfamily 

contributes to genetic variation for twinning rate in Holstein cattle.   

 8.2 –  Exploration of embryo lethal candidates in Jersey cattle using large structural 

variant detections.  

Objectives  

 1.  Identify copy number variants in Jersey cattle using short read whole genome 

 sequencing. 
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 2. Validate predicted CNVs focusing on those located within genes. 

 3. Identify deletions as candidates for embryo lethality potential.  

 4. Test frequency of embryo lethal candidates in general population of Jersey cattle.  

 Rational and hypothesis  

 Jersey cattle are the second most popular breed of dairy cattle in the United States. 

Reproductive inefficiency leads to a large economic cost to producers and is one of the top 

reasons for culling cows from a herd183–185. Copy number variants, while low in frequency, have 

greater potential impact phenotype because of their size ( > 50 bp)191. Large deletions are 

potential candidates for embryo lethality because of their size and removing sections of DNA 

needed for developmental progression163,192. Detection of deletions that are only present in the 

heterozygous state would be a strong indicator that the deletion had embryo lethality potential. 

Providing information on such deletions could help producers in making breeding decisions and 

improve reproductive efficiency. We hypothesize that CNVs in gene regions with embryo lethal 

potential cause absence of homozygote individuals. 

 8.3 – Identification of causative mutation in Trio allele  

Objectives  

 1. Produce a de novo assembly of a homozygous individual for the Trio allele 

 2. Identify candidate variants that may be causing the Trio allele high ovulation 

 phenotype  

 3. Test the concordance of candidate variant(s) with inferred Trio allele genotype 
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 4. Determine the frequency of the candidate variant(s) in two populations outside the Trio 

 descendants which are most likely to harbor the Trio allele 

 Rational and hypothesis  

 The Trio allele is a major gene which produces high ovulation rate in carrier females and 

has been studied to understand one mechanism for variation in ovulation rate193. This work has 

identified no differences in follicular waves but difference in hormone and follicular 

development between normal and Trio allele carrier females124,126. Previous work has shown that 

the Trio allele is associated with over-expression of the gene SMAD6, which is part of a pathway 

of genes involved in folliculogenesis122,123. This signaling pathway has been previously 

implicated in contributing to variation in ovulation rate and litter size in sheep86. The exact 

variant causing the SMAD6 over-expression and high ovulation rate has not been identified. 

Understanding the mechanism behind this phenotype has the potential to be utilized in different 

reproductive technologies. The Trio allele itself has the potential to be used to increase twinning 

rate while limiting some of the negative aspects of the trait. Given a strong pressure to remove 

cows by involuntary (abortion/death offspring and death of dam) and/or voluntary (producer 

culling) selection we hypothesize that this mutation is recent and unique to the Treble/Trio 

family. Under this assumption, candidate variant(s) would be exceedingly rare in the general 

cattle population, in essence not observed outside of Trio descendants. Within Trio descendants, 

to be considered as potentially causal, a candidate variant would necessarily show perfect 

concordance with true Trio allele genotypes. Thus, these two conditions can be employed in 

screening variants for those which are putatively causal.  
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CHAPTER 2 

Heritability of twinning rate in Holstein Cattle  

 

I. Preface 

 

At the time of submission this chapter was published in the Journal of Dairy Science (Accepted: 

December 11, 2017)  

 Lett, B. M. & Kirkpatrick, B. W. Short communication: Heritability of twinning rate in 

Holstein cattle. Journal of Dairy Science 101, 4307–4311 (2018).  

Formatting and reference style were changed for consistency throughout the thesis. Figures and 

tables have been updated and assigned based on location within thesis and references included in 

full reference section of thesis. Lastly the acknowledgements have been removed. All other 

aspects are consistent with the published manuscript.    
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II. Abstract  

Multiple births or twinning in cattle is a naturally occurring reproductive phenomenon. For dairy 

cattle, twinning is considered a detrimental trait as it can be harmful to cow and calf as well as 

costly to the producer. The objective of this study was to examine recent US calving records for 

the Holstein breed to determine a current estimate of heritability for twinning rate along with 

effects of season and parity. Two models were used in this study: a linear sire model and a binary 

threshold-logit sire model. Both were mixed models considering fixed effects and random 

effects. Analyses were conducted using a restricted maximum likelihood method. Heritability 

estimates were 0.0192 ± 0.0009 and 0.1420 ± 0.0069 for the linear and threshold models, 

respectively. Repeatabilities from the linear and threshold-logit models were 0.0443 ± 0.0012 

and 0.2310 ± 0.0072, respectively. The nonzero estimates of heritability indicate the potential to 

select against this trait for genetic improvement of Holstein cattle.  

Key words: twinning, heritability, dairy cattle 

III. Introduction 

 Twinning in cattle, especially dairy cattle, is viewed as a negative trait. This is due to the 

negative ratio of risk to reward in having twin births. There is still a debate about whether there 

is a benefit of increased milk production from dams that deliver multiple calves in a single 

calving43,56,169,194 or whether there is a negative effect on milk production33,165,177. However, even 

with increased milk production as a possible positive effect, it is associated with multiple 

negative effects such as abortion, dystocia, stillbirth, retained placenta, metabolic disorders, 

displaced abomasum, and ketosis165,166. Additionally, there is the effect on future calving for the 

dam as twinning increases the calving interval and the time period between calving and 
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conception and reduces mean lifetime production57. Twinning is neutral with regard to the 

proportion of fertile replacement female calves to infertile freemartin females from mixed-sex 

twin births166. The neutrality is from the offset of fertile females from same-sex twin births, 

though the absolute number would be lessened owing to the lower perinatal survival rate of 

twins. Even though there is a chance to reduce some of these negatives with adjustments to 

management (e.g., changes to diet for twin-bearing cows, additional labor), these adjustments 

would result in increased costs. A range of approximately $50 to $250 loss per twin birth puts a 

large economic expense on twinning with very minimal, if any, benefits for twins in the dairy 

industry165,179. Frequency of twinning in US Holstein cattle has been approximately 5%32,38, 

meaning an annual loss to the industry of $22.5 to $112.5 million assuming a national herd of 9 

million cows.  

 Known contributing factors for twinning need to be accounted for when analyzing 

heritability. One such factor, as reviewed in 1975 by Rutledge37, is the seasonal effect. This has 

been expressed as either the month or season of calving or conception, with conception months 

of September through October and March through April having the highest incidences. Another 

factor is parity of the dam. As the parity increases so does the chance of twinning, with the 

largest increase happening between the first and second parities37,38. These effects are 

presumably effects on ovulation rate, as incidence of monozygotic twinning is low and ovulation 

rate and twinning rate have a high genetic correlation52,195. Additionally, sires can have an 

influence on twinning rates in their daughters37, suggesting a genetic component to variation. In 

2001 Johanson et al38 grouped Holstein sires based on birth year and demonstrated that the sire 

group from the most current time points had more daughters with higher incidences of twinning. 

As with heritability, repeatability of twinning tends to be low37,48. The objective of the current 
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study was to estimate heritability and repeatability of twinning rate in US Holstein cattle using 

current calving record information for this population. 

IV. Material and methods  

Calving records from the years 2010 to 2016 were obtained from AgSource Cooperative 

Services (Verona, WI). Initially, we obtained more than 2.9 million records from all breeds. 

Available information included cow, sire, and dam identification (ID), herd, birthdate, calving 

date, parity, and multiple birth code. After editing, as described below, only the Holstein breed 

had sufficient records for estimation of heritability using a sire model. All other breeds had fewer 

than 20 sires represented in edited data versus more than 2,000 for the Holstein breed (Table 

2.1). Consequently, efforts focused on data from Holsteins and records were removed if they 

were not Holstein for the cow, sire, and dam. Additionally, records were excluded if the cow, 

sire, or dam were missing part or all of their ID code or had codes indicating unknown ID. 

Records were also excluded if a cow had discrepant sire, dam, and birthdate information between 

records. Duplicate calving entries were eliminated such that there was 1 record per calving. Two 

sires and corresponding records were removed due to being listed both as a sire and as a cow. 

Suspected embryo transfer calvings were likewise excluded (indicated by multiple calvings 

within the same year for a cow). To increase the reliability of the genetic evaluation, only sires 

with ≥100 daughter records were included in the final data set (n = 2,223; Figure 2.1). Likewise, 

only herds with ≥100 records were included (n = 1,748; Figure 2.1). After editing, 1,440,540 

records with 658,436 cows remained for use in the analysis. Preliminary fixed effects analysis 

was done using SAS 9.4 (SAS Institute Inc., Cary, NC). Variance components for heritability 

and repeatability calculations were estimated using Asreml 4.1 (VSN International, Hemel 
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Hempstead, UK). Two models were used in alternative analyses: a linear sire model (LM) and a 

binary threshold-logit sire model (TLM). The general form of the model in matrix notation was 

 𝒚 =  𝑿𝒃 +  𝒁𝒔 +  𝑬𝒑 +  𝒆,  

where y is a vector of calving phenotypes (singles or twins) for the LM and a vector of 

unobserved liabilities for twinning for the TLM; X is an incidence matrix relating phenotypes to 

fixed effects of herd, year, season, and parity; b is a vector of fixed effects; Z is a matrix relating 

phenotypes to sire genetic effects; s is a vector of sire additive genetic effects; E is a matrix 

relating phenotypes to permanent environmental effects; p is a vector of animal environments; 

and e is a vector of random residuals. The sire, permanent environment, and residual effects were 

random effects and herd, year, season, and parity were fixed effects. It was assumed for the LM 

that the random effects followed normal distributions of 𝑠~𝑁(0, 𝐀𝜎𝑠
2), p~𝑁(0, 𝐈𝜎𝑝

2), 

and e~𝑁(0, 𝐈𝜎𝑒
2) where 𝜎𝑠

2, 𝜎𝑝
2, and 𝜎𝑒

2 represent additive genetic, permanent environment, and 

residual variances, respectively; A represents the numerator relationship matrix for sires; and I is 

the identity matrix. For the TML, random effects were assumed to have followed normal 

distributions of  𝑠~𝑁(0, 𝐀𝜎𝑠𝑇
2 ), p~𝑁(0, 𝐈𝜎𝑝𝑇

2 ), and e~𝑁(0, 𝐈
𝜋2

3
) where 𝜎𝑠𝑇

2 , 𝜎𝑝𝑇
2 , and 

𝜋2

3
 represent 

additive genetic, permanent environment, and residual variances, respectively. Parity for this 

data was categorized into 4 groups: parity 1 (n = 563,942), parity 2 (n = 415,867), parity 3 (n = 

251,010), and parity 4 and above (n = 209,721). Preliminary analysis indicated that means for 

parities 4 and above were not significantly different (P < 0.05), and the number of calving 

records per parity rapidly diminished with parity 3 and greater (Figure 2.1). Calving dates were 

categorized as being in 1 of 4 seasons based on month: season 1 = December through February, 

season 2 = March through May, season 3 = June through August, and season 4 = September 
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through November. In these data, year is the 7 yr from 2010 to 2016 in which a calving was 

recorded. Estimates of genetic effects for sires on twinning rate were regressed on year of birth 

for each sire to evaluate genetic trend for twinning rate. Heritability was estimated using 

variance components for sire, animal permanent environmental, and residual effects 

h2 =
𝜎𝑠

2𝑥4

𝜎𝑠
2+𝜎𝑝

2+𝜎𝑒
2. 

 For TLM, the underlying scale for the residual variance was  
𝜋2

3
~3.3196 for the logit link and 

was used as a coefficient to return residual variance to approximately 1 for heritability analysis. 

Additionally, the variance components for the TLM where 𝜎𝑠𝑇
2 , 𝜎𝑝𝑇

2 , and 
𝜋2

3
, respectively. Both 

LM and TLM models were executed as restricted maximum likelihood models196. Repeatability 

was estimated using the variance components for sire, animal permanent environmental, and 

residual effects as 

r =
(𝜎𝑠

2𝑥4) + 𝜎𝑝
2 

𝜎𝑠
2+𝜎𝑝

2+𝜎𝑒
2 . 

Similarly, for heritability estimation from the TLM model, the corresponding variance 

components were 𝜎𝑠𝑇
2 , 𝜎𝑝𝑇

2 , and 
𝜋2

3
, respectively.  

VI. Results and discussion  

 Our results showed strong evidence (P < 0.001) for fixed effects of herd, year, season, 

and parity on twinning rate. Twinning rate increased with parity (Table 2.2), with the largest 

change in effect between parity 1 (0.3%) and parity 2 (4.3%). Previous studies with Holstein 

cattle have shown increases in twinning with parity, with twinning rates between 0.6 and 1.63% 

in parity 1 and ranging between 3.01 and 6.48% in later parities32,38,62,197. Additionally, in 2000 
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Karlsen et al.197 and in 2001 Johanson et al.38 each reported the largest change between parity 1 

and parity 2, with increases from 0.7 to 2.8% and 1.63 to 5.22%, respectively. June through 

August (season 3) had the highest twinning rate among seasons (Table 2.2), which coincides 

with a conception period of September through November. In 1975  Rutledge37, reviewing 

previous reports on twinning, stated that 2 periods of conception were associated with increased 

twinning rate, one of which (September to October) coincides with our findings. Cady and Van 

Vleck (1978)32 found peak of twins in calving between May and July (conceived between 

September and November), overlapping with the highest twinning rate season observed in the 

current analysis. Herd effects can vary due to a contribution of multiple management factors 

such as nutrition, culling practices, and reproductive protocols37,43.  

 Previous average twinning rates ranged from 4.82 to 5.02% in the US Holstein breed32,38. 

Average twinning rate in the current data was 4.8%, comparable with these previous reports. A 

genetic trend for increasing twinning was evidenced by a significant regression of sire genetic 

effects on birth year (P < 0.001), with a regression coefficient of 0.0003 ± 0.0001. Estimates of 

heritability were 0.0192 ± 0.0009 and 0.1420 ± 0.0069 for the LM and TLM, respectively. This 

indicates a lowly heritable trait, which concurs with previous findings. The higher heritability 

estimate from TLM versus LM was expected due to the different underlying distributions for the 

models. Heritability estimates for LM are in good agreement with previous reports of linear 

model heritability estimates, which ranged from 1.7 to 9.0%, whereas the TLM is slightly higher 

compared with previous threshold model estimates, ranging from 8.0 to 10.5%32,38,48,49,52. 

 Repeatabilities of twinning rate from the LM and TLM were 0.0443 ± 0.0012 and 0.2310 

± 0.0072, respectively. Our result on the LM scale is within the range of previous findings (0–

6.3%)48,51. Few published estimates of repeatability from threshold model analyses are available 
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in the scientific literature. Moioli et al. (2017)198 reported a repeatability estimate of 0.286 ± 

0.012 from a threshold model analysis of twinning rate in Maremmana cattle, and Wolc et al. 

(2006)199 reported a repeatability estimate ranging from 0.33 to 0.34 in threshold model analyses 

of twinning rate in Thoroughbred horses. The results reported here indicate that twinning rate is a 

lowly heritable and lowly repeatable trait that is affected by herd, year, season, and parity. This 

data set is one of the largest used thus far in estimation of heritability and repeatability of 

twinning rate and provides current estimates of each as well as fixed effects of season, parity, 

and year. The nonzero estimate of heritability and repeatability for twinning rate suggests the 

opportunity to improve this trait (i.e., reduce twinning rate) by selection.  
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CHAPTER 3 

Identifying genetic variants and pathways influencing daughter averages for twinning in 

North American Holstein cattle and evaluating the potential for genomic selection 

 

IV. Preface 

 

At the time of submission this chapter was published in the Journal of Dairy Science (Accepted: 

March 4, 2022)  

 Lett, B. M. & Kirkpatrick, B. W. Identifying genetic variants and pathways influencing 

 daughter averages for twinning in North American Holstein cattle and evaluating the 

 potential for genomic selection. J. Dairy Sci. (2022). Doi:10.3168/jds.2021-21238 

Formatting and reference style were changed for consistency throughout the thesis. Figures and 

tables have been updated and assigned based on location within thesis and references included in 

full reference section of thesis. Lastly the acknowledgements have been removed. All other 

aspects are consistent with the published manuscript.    
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II. Abstract 

Multiple birth in dairy cattle is a detrimental trait both economically for producers and for animal 

health. Genetics of twinning is complex and has led to several quantitative trait loci regions 

being associated with increased twinning. To identify variants associated with this trait, calving 

records from 2 time periods were used to estimate daughter averages for twinning for Holstein 

bulls. Multiple analyses were conducted and compared including GWAS, genomic prediction, 

and gene set enrichment analysis for pathway detection. Although pathway analysis did not yield 

many congruent pathways of interest between data sets, it did indicate two of interest. Both 

pathways have ties to the strong candidate region on BTA11 from the genome- wide association 

analysis across data sets. This region does not overlap with previously identified quantitative trait 

loci regions for twinning or ovulation rate in cattle. The strongest associated SNPs were 

upstream from 2 candidate genes LHCGR and FSHR, which are involved in folliculogenesis. 

Genomic prediction showed a moderate correlation accuracy (0.43) when predicting genomic 

breeding values for bulls with estimates from calving records from 2010 to 2016. Future analysis 

of the region on BTA11 and the relation of the candidate genes could improve this accuracy. 

Key words: twin, cattle, folliculogenesis, genomic prediction 

III. Introduction  

 Twinning in dairy cattle is viewed as an undesirable trait. This is due to the negative 

association of the trait with calving issues (abortion, dystocia, and calf loss), and cow health and 

performance (retained placenta, metabolic disorders, increased calving interval, and reduced 

mean lifetime production)57,165,175. The frequency of having twins is referred to as daughter 

averages for twinning (TW) and is a complex trait influenced by multiple genetic and 
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environmental factors37,200,201. Multiple studies have identified QTL for TW in dairy cattle; 

however, those identified seldom overlap regarding region132,188–190,202–204. With minimal overlap 

of results between TW studies, this results in multiple QTLs listed in the Animal QTL database 

(Animal QTL Database (animalgenome.org))205 and shows the complex and polygenetic nature 

of twinning. 

 Recently, a newer method for GWAS called single- step GWAS (ssGWAS), and by 

extension weighted ss- GWAS (WssGWAS), has been used in various animal genetic studies206–

210. This method allows for the combination of nongenotyped and genotyped animals with 

phenotypes to be used in the analysis with pedigree information used to relate nongenotyped 

animals with genotyped. Further exploration of GWAS results comes from the expansion of gene 

set enrichment analysis, originally developed for gene expression data211–213. Utilization of these 

methods allows for associating genes and pathways with traits of interest to add more depth to 

standard GWAS results. Identification of gene sets more involved with TW would lead to a 

greater understanding of the trait, the biological mechanisms involved, and potentially a better 

understanding of previously dissimilar results. The low consensus from previous QTL mapping 

and GWAS studies owes partly to differences in experimental design (granddaughter and 

daughter designs vs. GWAS, different breeds, sample number, and statistical power) genotype 

data available (microsatellites vs. SNP chips, and low-density vs. high-density chips), and 

modeling methods (single SNP vs. simultaneous fit). Although this causes SNPs of interest to 

vary, genes associated with them may belong to the same pathway. One such example is the 

transforming growth factor-β superfamily that has members implicated in changes in litter size 

and fertility in sheep7,86,214 and increased ovulation rate (OR) in a unique cattle family54,122,123.  

https://www.animalgenome.org/cgi-bin/QTLdb/index
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 The objective of this study was to conduct GWAS using the methodology of ssGWAS to 

identify genomic regions with replicable effects using 2 data sets, test if the inclusion of whole-

genome sequencing showed SNPs of greater association, test if any gene pathways had greater 

enrichment for association with twinning and evaluate the potential for genomic selection in 

future genetic improvement programs. 

IV. Materials and methods  

No animals were used in this study, and ethical approval for the use of animals was thus deemed 

unnecessary. 

Data 

Estimations of sire phenotypes, such as daughter averages, were available from previous studies 

using calving records from 1994 to 199838, and from 1999 to 2008190. Estimates for bulls 

represented in both data sets were combined by taking a weighted average based on number of 

daughters in the respective data sets. The combined data set is referred to herein as data set B 

(DSB, n = 8,589). Calving records from 2010 to 2016 were obtained from AgSource Cooperative 

Services (Verona, WI) and Dairy Records Management Systems (Raleigh, NC). Data were 

cleaned as described in 2018 by Lett and Kirkpatrick36 briefly, the data sets were checked for 

duplicated records, missing or partial IDs, and discrepancies in age to calving date. They were 

then merged and narrowed to only include sires with ≥100 daughters and herds with ≥100 cows. 

A total of 4,361,165 calving records encompassing 2,143,606 cows with single or repeated 

records were used to generate sire phenotypes (daughter averages). Sires remaining after 

cleaning comprised data set A (DSA, n = 3,154). Although calving records were unique to each 

data set, 706 bulls were represented in both DSA and DSB meaning that the data sets are not 
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fully independent. However, we chose to analyze data from these data sets separately to provide 

validation of results and in recognition of differences between data sets in calculation of 

phenotypes. Additionally, they are treated as older (DSB) and newer (DSA) for training and 

testing of genomic prediction. Phenotypes for DSA bulls were estimated based on an average of 

daughters’ twinning rates. Daughter TW was calculated by estimating least squares means 

(LSM) using R v3.5.1 (R: The R Project for Statistical Computing (r-project.org)) with the 

model: y = Xb + ε, where y is the vector of multiple birth codes of 0 and 1 for single and 

multiple birth, X is an incidence matrix relating phenotypes to fixed effects of herd (levels = 

5,311), calving year (levels = 7), season (levels = 4), and parity (levels = 4); b is the vector of 

fixed effects, and ε is the vector of random residual effect. The LSM estimates for herd, year, and 

season were expressed as deviations from the average for each effect. The LSM estimates for 

parity were expressed as deviations from mature equivalent (parity 4+). The TW estimate for 

each record was calculated by summing the multiple birth code (0,1) with the corrected LSM 

values for fixed effects. An average for each daughter was calculated and then finally an average 

for each sire. Given the variation in number of daughters per sire, sire phenotypes were weighted 

in the subsequent GWAS analyses following Garrick et al. (2009)215. A pedigree was developed 

for each data set using a cross reference file from National Association of Animal Breeders 

(Madison, WI). For each bull with a phenotype the matching ID was found in the reference file 

and its sire, dam, and year of birth was extracted. Any bull without a matching ID was 

considered a founder and a 0 was placed in position of sire, dam, and year of birth. A total of 158 

bulls in DSB and 47 in DSA were considered founders.  

 Low-density (LD) 60K SNP data for the bulls were obtained from the Cooperative Dairy 

DNA Repository (n = 2,974) and Council on Dairy Cattle Breeding (CDCB, n = 2,267) for a 

https://www.r-project.org/
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total of 4,720 bulls. Imputation to HD was done using Beagle v4.1216–218 with a Holstein 

reference group of 736 animals previously genotyped with Illumina BovineHD (HD) and 

GeneSeek Genomic Profiler GGP F-250 (F250) chips. This was followed with imputation from 

HD to whole-genome sequence (WGS) using Fimpute version 3219 with a population-based 

model and a reference population of 700 Holstein-Friesian animals from Run 7 Tau of the 1000 

Bull Genomes project220. Variants were also pruned based on linkage disequilibrium using 

PLINK v1.9 with window set to 50, step set to 5, and r2 set to 0.98 to eliminate variants which 

were proxies for others. Quality control included excluding variants failing a Hardy Weinberger 

Equilibrium (HWE) test at P < 1 × 10−10 or minor allele frequency <0.02. From 60,026,972 

initial variants, 7,994,662 variants remained after quality control. A total of 1,897 DSA and 

3,037 DSB bulls were available with both genotypes and phenotypes. This corresponds to 

60.15% of the total number of phenotyped bulls for DSA (1,897 of 3,154) and 35.36% for DSB 

(3,037 of 8,589). Genomic locations of all variants are based on bovine reference assembly ARS-

UCD1.2221. Quality control for HWE, minor allele frequency, and linkage disequilibrium 

pruning was done using PLINK v1.9222. Phenotype estimation of LSM and imputation used 

computational resources and assistance of the UW-Madison Center for High Throughput 

Computing in the Department of Computer Sciences. 

Genome-Wide Association Study with WGS 

 GWAS was conducted using the BLUPF90 family of software223 including RE- 

NUMF90 v1.145, BLUPF90 v1.68, and POSTGSF90 v1.68. Single-step GWAS was 

implemented as in Wang et al. (2012, 2014)206,224 and Aguilar et al. (2019)225. Briefly, 

RENUMF90 was used to convert the files to correct format, BLUPF90 calculates EBV, and 

POSTGSF90 estimates SNP-effects, P-values, and percentage of genetic variance explained by 
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overlapping 500 kb sliding windows with a step size of one SNP. Windows are calculated by 

dividing the genetic variance of the region by the total genetic variance206. A total of 7,994,662 

variants were used in this analysis and was conducted on each data set individually. The 

parameter files used in ssGWAS were set up following the BLUPF90 manual223 and used an 

animal model including additive animal effects: 

yij = μ + ai + εj, 

where y = daughter averages for twinning, μ = 1, and a and ε are random variables for additive 

genetic effect and residual for animal i. Covariance between related individuals was accounted 

for by using an H matrix226, which uses pedigree information for ungenotyped individuals and 

pedigree information and genotype data for genotyped individuals in determining relationship. 

Residual variance and genomic variance were estimated using AIREMLF90 using the LD 

genotype data. Both BLUPF90 and POSTGSF90 parameter files included the options 

weightedG, snp_p_value, and no_quality_control with the BLUPF90 also including sol se and 

POSTGSF90 also including window_variance_mbp 0.5 and windows_variance_type 1. Multiple 

correction testing was done using false discovery rate (FDR) calculated using the R package 

qvalue227. A threshold of Q < 0.01 was set to identify variants of interest and Q < 0.001 for those 

of strong association. Window variance thresholds were set to identify for the top 99.9% and 

99.99% of the data. The P-values from DSA and DSB were combined for a meta-analysis using a 

weighted z transformation method via combine.test from package survcomp v1.38.0228,229 in R 

v4.0. 1 (R: The R Project for Statistical Computing (r-project.org)). Weighting equaled the 

inverse of the prediction error variance of the SNP effect. Manhattan plots were generated using 

R v4.0.1 and the qqman v0.1.4 package230. All results were further compared to a list of genes of 

interest previously curated by literature review. 

https://www.r-project.org/
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Pathway Analysis  

 Gene set enrichment analysis was conducted using 2 types of software. Initially, SNPs 

were annotated to genes and gene enrichment was conducted using MAGMA v1.09231. Default 

settings were used with the addition of 2 flags nonhuman and window = 500 (annotates SNPs to 

genes going ± 500 kb from the start and end of the gene). The annotation used a list of genes 

downloaded from Ensembl release 96. Gene enrichment was analyzed using the SNP P-value 

data generated from ssGWAS analysis for DSA and DSB separately. This task is used to 

generate a degree of association each gene has with the phenotype. Initially this is done by 

looking at the individual SNPs in a gene and combining the resulting P-values into a gene test- 

statistic. The software was set to run 2 base models, mean and top, and used to generate a gene-

level P-value based off the gene test-statistic for that model (Z or X). Additionally, the software 

aggregates the resulting model P-values into one. Because P-values were used, additional 

genotype data were needed to calculate and account for linkage disequilibrium between the 

SNPs. This consisted of all the bulls before splitting (n = 4,377) and the SNPs used in the GWAS 

(n = 7,994,662). The gene sets and gene set analysis were conducted using the R package 

SetRank232,233. SetRank compiles information from different publicly available databases and 

eliminates overlapping gene sets. Gene set databases were generated following manual 

documentation to obtain information of Bos taurus and included (1) Kyoto Encyclopedia of 

Genes and Genomes (KEGG; KEGG: Kyoto Encyclopedia of Genes and Genomes)234, (2) 

BioCyc (BioCyc Pathway/Genome Database Collection)235, (3) Gene Ontology (GO) biological 

pro- cesses, cellular components, molecular function (Gene Ontology Resource)236,237, (4) 

Reactome (Home – Reactome Pathway Database)238, (5) WikiPathways (WikiPathways – 

WikiPathways)239, and (6) a user-curated database. The user-curated database was based on prior 

https://www.genome.jp/kegg/
https://biocyc.org/
http://geneontology.org/
https://reactome.org/
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
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knowledge and literature review of involvement in folliculogenesis and previous indication in 

other species of influencing litter size (Supplemental Table S3.1, Supplementary Table. 

Twinning rate pathway analysis (figshare.com)). Implementation of SetRank used default 

settings. Genes were ranked based on the P-values from MAGMA gene enrichment. Results 

were compared between DSA and DSB to identify areas of overlap between the results. Sets of 

highest interest were identified by passing additional optional filters of corrected and adjusted P-

value <0.001 or pSetRank <0.05240. 

Genomic Prediction 

 Genomic prediction was carried out using the PREDF90 v1.12 program from the 

BLUPF90 suite. This was done using DSB as training and using a subset of the genotyped bulls 

from DSA as testing. The subset (n = 1,340) was selected to include only those individuals with 

genotypes, those that are not part of DSB, and are not sires of individuals in DSB. Genotype data 

used in this analysis were those from the HD imputation and a subset of the imputed HD data 

that corresponded to the 79K SNPs currently used in genomic prediction by CDCB (personal 

communication, G. Wiggans, CDCB, Bowie, MD). After quality control as described previously 

(HWE P < 1 × 10−10 and minor allele frequency < 0.02) a total of 75,598 SNPs were considered 

for LD and 640,966 for HD. Implementation involved running WssGWAS as described by 

Zhang et al. (2016)241 and Fragomeni et al. (2019)242 on DSB for each genotype level (LD and 

HD). The difference between ssGWAS and WssGWAS is that BLUPF90 and POSTGSF90 are 

repeated iteratively with SNP weights being updated each iteration. A threshold for stopping the 

number of iterations was based on the change in correlation of EBV from BLUPF90 and 

estimated phenotype between iterations. The model and parameter file options were the same as 

used during ssGWAS (described above) with one addition to the post POSTGSF90 file of 

https://figshare.com/articles/figure/Supplementary_Table_Twinning_rate_pathway_analysis/19579210/1
https://figshare.com/articles/figure/Supplementary_Table_Twinning_rate_pathway_analysis/19579210/1
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which_weight. In this analysis, the threshold was set to 0.0001 and weighting during 

POSTGSF90 used method nonlinear A242,243. Then after WssGWAS was completed results from 

POSTGSF90 were used by PREDF90 to predict genomic EBV (GEBV) in the testing set. 

Accuracy was calculated as the correlation between phenotype (daughter average) and the GEBV 

from PREDF90. Bias was evaluated by regressing daughter average on GEBV as recommended 

by Daetwyler et al. (2013)244 and the slope was reported for each regression. 

V. Results and discussion  

Genome-Wide Association Study with WGS 

 Results from ssGWAS using WGS were looked at each data set separately and in 

conjunction. The residual variance estimates were 8.27 × 10−5 ± 6.16 × 10−6 for DSA and 1.82 × 

10−4 ± 1.03 × 10−5 for DSB and genetic variance was estimated at 1.82 × 10−4 ± 1.12 × 10−5 for 

DSA and 3.77 × 10−4 ± 1.25 × 10−5 for DSB. False discovery rate in the form of q-values showed 

no SNPs surpassing q < 0.05 in either DSA or DSB alone. In each data set the minimal q-value 

was 0.2775 DSA (Figure 3.1A) and 0.1467 DSB (Figure 3.1B). Results from window variance of 

DSA showed 10 different chromosomes with windows >99.9 percentile for a total of 11 regions 

(Figure 3.2A and Table 3.1); DSB also showed 11 different regions on 10 different chromosomes 

(Figure 3.2B and Table 3.1). There were 3 regions that had overlap between the 2 data sets found 

on BTA1, 11, and 21. In 2 of these regions, genes of interest partially or fully spanned the 

window which included FSHR and LHCGR (BTA11) and ZSCAN2 (BTA21). A DSA window on 

BTA24 also partially or fully spanned the gene TAF4B (Table 3.1). Combining the P-values of 

the 2 data sets using weighted Z transformation indicated 1,214 SNPs with q-value <0.01 and 34 

had q-values <0.001. Comparing results with the curated list of candidate genes showed 3 

different genes (GDF9, IGFBP2, and BMP15) with at least one variant ± 500 Kb from the 
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beginning or end of the gene with a q-value <0.01 and 2 genes (LHCGR, and FSHR) with at least 

one variant within 500Kb at q-value <0.001 (Figure 3.1C). Additionally, 13 significant (q <0.01) 

variants of the almost 8 million used in this analysis were seen in LHCGR, 16 were in FSHR, and 

one was in GDF9. A total of 11 different chromosomes contained associated SNPs with q-values 

<0.01 (Table 3.2). The strongest peak was found on BTA11 with all q-value <0.001 variants 

located in this region (Figure 3.3A). The peak containing the most significant SNPs ranged from 

28 to 32 Mb with the candidate genes LHCGR and FSHR located at 30.98 to 31.04 Mb and 31.26 

to 31.45 Mb, respectively (Figure 3.3B). 

 These results show a strong association with BTA11 and the 28 to 32 Mb region. 

Although neither dataset alone showed q-values <0.05 the combined values showed a very strong 

association with TW in this region. Additionally, both data sets showed an overlapping window 

within this region. The window was the most associated window explaining 0.752% of the 

variance and falling within the 99.99 percentile, whereas for DSA it was the third-most 

associated window at 0.3516% variance explained and just outside the 99.99 percentile. The 

association observed for this region in the current study is supported by a recent report of 

significant association for twinning rate in a similar genomic region in the Swiss Holstein 

population245. Found within the region are 2 genes, LHCGR and FSHR, involved in 

folliculogenesis making it a strong positional candidate region. Being the gonadotropin receptors 

to key hormones, luteinizing hormone (LH) and follicle- stimulating hormone (FSH), they play 

an important role in follicular development and ovulation4,10. Mutations involving these genes 

have been shown to have detrimental effects on human reproduction246,247. Studies in sheep have 

also found these genes as candidates for association with litter size86,140. A study in Holstein 

heifers suggested a missense mutation in LHCGR is associated with superovulation traits in 127 
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animals248. This mutation corresponds with SNP rs41256848, which is located on BTA11 at 

30978812. The variant sharing the same location in WGS data (11_30978812), had a low 

association (P = 0.067 DSA, P = 0.139 DSB, P = 0.034 and FDR = 0.92 combined P-values) 

indicating it is not the causative variant for the association seen in this region. Looking at the 

variants used in the GWAS located within LHCGR with Ensembl variant effect prediction 

indicated the predicted consequences are related to introns and noncoding transcript variant249. 

Additionally, this genomic region does not overlap with any previously documented twinning 

rate or OR QTL in the QTL database. The other strong peak on BTA11 (85.3 to 88.8 Mb) does 

not overlap with previous QTLs or genes from the candidate gene list. However, the most 

associated SNP, 11_86316394 (P = 6.38 × 10−8, FDR = 0.0019), in this region falls in the gene 

GREB1, which is an estrogen response gene that has primarily been associated with endometritis 

and breast cancer in humans246,250. It could have an unknown role in bovine reproduction and 

relation to TW. Another set of strong peaks are on BTA19 at location 26.9 to 34.9 Mb and 44.7 

to 52.7 Mb. Although the first peak does not overlap with a previously indicated QTL, the 

second overlaps with the start of a previously identified QTL region spanning 98 to 126 

centimorgans251. The last chromosome harboring 2 peaks is BTA25. Comparison between data 

sets in both P-values and window variance only indicated DSA having a strong association with 

these regions. They also do not overlap with any other previously reported QTLs for twinning or 

OR. Comparison with 2 previously fine-mapped chromosomes (BTA5 and BTA14) yielded little 

overlap. BTA5 showed an overlap with a previous QTL region for OR251 in combined P-value 

but neither DSA or DSB alone showed strong support for this. It is surprising not to see any 

SNPs significant at a suggestive level in the IGF1 region of BTA5 (~66.2 Mb) that has been 

previously associated with twinning rate in Holstein as well as other cattle Populations202,203,252–
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254. Given the objective to identify variants and regions associated across the different data sets, 

the strongest candidates would be the two regions seen on BTA11. 

Pathway Analysis  

 The gene ranking results from MAGMA showed 62 genes in DSA and 46 in DSB with an 

aggregated P- value <0.0001. Of these only 11 overlapped between them and only 2 of these had 

a rank within ±10 of each other. The gene FOXN2 had the same rank within both data sets. 

Three genes overlapped between DSB and the curated genes of interest used in comparisons for 

the GWAS. Included in the top 3 were FSHR and LHCGR. Data set A showed no overlap with 

the genes of interest. 

 In gene set enrichment, a total of 1,928 sets were considered significant for DSA and 

after correction a total of 116 sets remained. Although for DSB, 1,723 sets were initially 

considered, a total of 107 sets remained after correction. A total of 7 sets are shared between the 

2 data sets (Table 3.3), and 2 of these passed the additional filter. 

 Given the set analysis is based on rank of the genes, it is not surprising that there are few 

overlapping pathways between data sets (~6% of the total possible). A contributing factor to this 

is also a limitation of pathway analysis which is the quality of the gene annotation. Genes may be 

missed, improperly called, or not called in a specific pathway which influences the results. Thus, 

SNPs are not always annotated correctly to genes, affecting the scoring of a gene and its 

pathway. Similarly, there were a low number of pathways that showed agreement. One of the 

gene sets that also passed further filter was MutSalpha complex. This gene set contains 2 genes, 

MSH2 located on BTA11 at 29.8 to 29.89 Mb and MSH6 located also on BTA11 at 30.12 to 

30.14 Mb. Both genes are part of the DNA mismatch repair system255. Proximity of both genes 
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to the region of interest in the GWAS may be influencing the association given to these genes 

and thus this pathway. However, in various species studies, including human, DNA repair genes 

have been shown to be overexpressed in oocytes and may play a role in oocyte quality256–258. The 

other gene set that passed further filtering was a broad GO class called cellular process involved 

in reproduction in multicellular organisms. It included a total of 135 different genes of which 

includes MSH2 as well as 2 genes of interest, LHCGR and FSHR. Of the remaining 5 sets 

overlapping, the only one that stands out is the user defined pathway #5 prolactin signaling 

pathway, which was included for containing candidate gene LHCGR. 

 Several pathways have been implicated in influencing folliculogenesis and potentially it 

is a combination of these that contributed to increased 2597,72,106. Additionally, the above 

pathways all have interactions with the transforming growth factor-β superfamily which is 

known to be involved with folliculogenesis and variation in multiple birth in multiple species259. 

A possible future direction would be to create a reference set of genes to help eliminate any 

source bias, for example genes expressed in the hypothalamus, anterior pituitary, and ovary 

representing the hypothalamic-pituitary-ovarian axis which regulates female reproduction. 

Genomic Prediction 

 Genomic prediction used SNP predictions of a training set to predict GEVB in a testing 

set. Evaluation of this was done using results from DSB WssGWAS with LD and HD genotypes 

as training and tested by predicting GEBV of 1,340 nonoverlapping genotyped bulls in DSA. 

Correlation between daughter average and GEBV ranged from 0.4235 (iteration 1) to 0.4244 

(iteration 3) for LD, and from 0.4272 (iteration 1) to 0.4287 (iteration 4) for HD. Estimate bias 

was assessed by regression of daughter averages on GEBV. The slopes ranged from 0.7171 
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(iteration 1) to 0.6934 (iteration 3) for LD and from 0.7303 (iteration 1) to 0.7048 (iteration 4) in 

HD (Table 3.4, Supplementary table S3.2 shows 5 fold cross-validation).  

 Results indicate that the prediction estimates change only slightly with iterations of 

WssGWAS. Across genotype levels the accuracy increased marginally, whereas the slope 

decreased by iteration. The decrease in slopes indicated that iterations biased the estimates. 

When comparing LD prediction to HD, the prediction benefited in both accuracy and slope from 

higher SNP number. Accuracy of these estimates is lower than the average reliability across 

multiple production traits (net merit, milk, fat, protein, productive life, SCS, daughter pregnancy 

rate) for Holstein dairy cattle (71 vs. 38.16–56.28%)260. Previous reports showed accuracies of 

0.14 unadjusted daughter averages, 0.34 for PTAs190 and 0.39261. The differences in methods 

make these not perfectly comparable, but the results presented here are similar to those 

previously reported using PTAs. One contributing factor to a lower accuracy is low heritability, 

which is seen with twinning rate. Previous heritability estimates range between 0.017 to 0.09 

using linear models and 0.08 to 0.14 with threshold models36,38,63. Another is the moderate 

sample size of the genotyped individuals making up the reference set (DSB). Although the total 

number of phenotyped bulls was 8,589, only a small fraction of these were genotyped (2,961). 

Increasing the number of bulls with both genotypes and phenotypes should lead to improved 

accuracy of SNP effect estimates and subsequent genomic prediction. Additionally, an 

unaccounted-for and unidentified environmental factor could be contributing. Not accounting for 

unidentified environmental factors could cause a decrease in accuracy leading to the moderate 

accuracy of the prediction seen. Lastly, the correlation between the estimated TW for sires in 

DSB and the EBV from BLUPF90 was only 0.7, whereas the correlation between estimated TW 

in DSA bulls and EBV was 0.9. This indicates that the difference in TW estimation could also 
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have affected the predictions. One potential difference was that in DSA a criterion of ≥100 

calving records per herd was imposed, which would affect the accuracy of the LSM calculated 

for herds. Ideally, a more accurate measurement could be used. One such measure is OR by 

counting corpora lutea. Genetic correlation between OR and TW is 0.66 to 0.90 meaning 

selection based on OR could indirectly select for TW35,52; however, measuring OR is more labor 

intensive requiring more equipment, training, and time, and is not routinely performed on farms. 

Calving data including factors such as herd, calving year, calving season, parity, and birth type 

typically are routinely recorded and thus more available than OR. These records also more 

closely reflect what farmers use when making management decisions on farm. 

 Genomic selection for health traits using producer- recorded health trait data has been 

proposed262 and recently implemented in the United States263. Twinning has quantifiable 

economic costs, which should make it feasible to readily incorporate into a selection index for 

dairy health traits by CDCB. Further evidence of the feasibility of genomic selection for 

twinning is the recent commercial development of this approach264. 

VI. Conclusions  

 Utilizing calving records from 2 distinct time frames allowed for comparison between 

them to identify regions associated with daughter averages for twinning. The strongest associated 

SNPs are upstream from 2 genes, LHCGR and FSHR, which are involved in folliculogenesis and 

are key gonadotropin receptors. Additionally, the window spanning part of each gene accounted 

for the most variance in DSB and was among the top 3 in DSA. Their involvement with 

follicular development makes them strong candidates for future analysis, both to identify causal 

genetic variants and to understand the mechanism underlying genetic variation in twinning. 

Pathway analysis further supports this region by implicating sets that have genes found within 



51 

 

| 5
1
 

the area. There was limited correspondence between genomic locations associated with TW in 

these analyses and previous QTL-mapping studies. The correlation between daughter average 

and GEBV (0.421 LD and 0.426 HD) in genomic prediction analysis indicates the potential of 

genomic selection for reducing twinning in the dairy cattle industry.  
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CHAPTER 4  

Identification of copy number variations in Jersey cattle using whole genome sequencing. 

 

I. Preface  

At the time of submission this chapter was ready for submission to Animal Genetics but has not 

been submitted.  

Authorship is as follows: Beth M. Lett, Xian Qiao, and Brian W. Kirkpatrick.  

Acknowledgment and thanks to Taylor Schaefer for assistance with laboratory CNV validation 

and Alex Bagnato and Maria Strillacci for the discussion on copy number variants.  

Data availability set to release at time of publication or October 2022 whichever comes first: 

Novel CNVs compared with the dVGA database (2020) were deposited in the European 

Variation Archive (EVA)265 at EMBL-EBI under accession number PRJEB52447 

(https://www.ebi.ac.uk/eva/?eva-study=PRJEB52447). Sequencing data was submitted to the 

SRA database for the 20 Jersey AI bulls and four MARC Twinner Sires with project accession 

number: PRJNA826358.  

Formatting of figures, tables, and references align with the remainder of the thesis.   

https://www.ebi.ac.uk/eva/?eva-study=PRJEB52447
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II. Summary  

Copy number variants have the potential to cause greater phenotypic change due to their size. 

Knowledge of the location of these variants will facilitate future research examining their direct 

effects on trait variation. In this study we looked at identifying variants specifically found in 

Jersey cattle when compared to a genetically diverse group with no Jersey breed background. 

Consensus CNV calls were retained from four different detection methods with a 93.02% 

accuracy of detection based on literature review and/or PCR-based genotyping for validation. A 

total of 1,269 different CNVs were detected with 740 being specific to the Jersey samples used 

in this study. Additionally, 648 of the 1,269 were novel when compared to the variant archive 

database. Screening for deleterious recessive deletion alleles looked at the 1,210 CNVs found in 

at least one Jersey and identified deletions (171) for which none of the initial 20 sires were 

homozygous. These deletions were further screened in an additional 36 publicly available 

sequenced Jersey animals. Absence of deletion homozygotes would provide evidence of embryo 

lethality. Four of the resulting candidates were PCR genotyped in a random sample of Jersey 

cows, and deletion homozygotes were observed for all four. Additionally, there are 33 deletions 

with absence of homozygotes not tested. Overall using multiple methods to detect structural 

variants in short read data yields high accuracy but misses some positives in favor of limiting 

false positives. Breakpoint resolution remains a challenge even when using short read 

sequencing data.  

III. Introduction  

 Copy number variations are a type of structural variant (SV) that present abnormal 

changes in number of genome copies inherited. These are typically associated with losses, also 
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referred to as deletions (DEL), or gains, also called duplications (DUP). While SVs are less 

common than SNPs, they present potential for greater functional impact due to their larger size 

(> 50 bp191). Studies have looked at utilizing these regions to pinpoint breed differences266. 

Further, across various species CNVs have been implicated as involved in various phenotypic 

traits and disease responses. These range from changes in coat color and pattern267,268 to 

extremes in function such as embryo and fetal lethality164,269.    

 Initially, microarray data was used to infer CNVs and detect regions of the genome that 

were more susceptible to copy number changes. Previous studies in cattle using microarray data 

could not always pinpoint exact locations leading to identification of large sections spanning in 

some cases most of a chromosome160,162,266. With the development of next generation sequencing 

(NGS, i.e. millions of short, paired-end reads of ~150 bp), methods of detection have been 

developed to better fine map and identify CNVs. These methods utilize different aspects of NGS 

technology to predict SV and each has their own limitations. Briefly these include: 1) read depth 

(RD) which utilizes depth of coverage, 2) read-pair (RP) that utilizes information of read-pair 

insert size, orientation, and alignment to infer changes compared to a reference,  3) split-read 

(SR) which, similar to RP, uses information gained from read-pairs when one read maps reliably 

to the reference sequence while the other does not, 4) assembly (AS) which compares a de novo 

assembly of reads to reference, and 5) combined approaches (CA) which takes various methods 

in combination158,270. Since the introduction of NGS multiple studies have investigated detection 

of CNVs using NGS in cattle163,271,272. Many of these studies used earlier bovine reference 

genome assemblies and only used one or two methods individually to detect CNVs.  

 In addition, few studies have taken this information further to investigate potential 

negative impacts these large segmental deletions have on the cattle population. One utilization of 
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this information is identification of deletions that appear without homozygotes in the sampled 

population suggesting the potential for embryo or fetal lethality. Previously, a similar study was 

conducted in Belgian beef and New Zealand dairy cattle to screen for genetic variations that are 

candidates for embryo lethality by absence of homozygotes192. Using similar logic, a study 

looking at Holstein, Jersey, and Nordic Red cattle scanned NGS for large deletions (100 bp to 1 

Mb in size) to pinpoint potential embryonic lethal deletions in this population163. They tested the 

deletion lethality potential by comparing cow and known mouse lethal genes.  

 The following study had two objectives. The first objective was identification of putative 

CNVs in the US Jersey population using NGS data and validating them by PCR-based assays or 

other independent means. The second objective was to identify deletions which are potentially 

associated with embryonic or fetal lethality in Jersey cattle based on absence of homozygous 

genotypes in a sample from the Jersey population. The goal was to provide additional 

information about CNVs in cattle, particularly the Jersey breed, and provide information 

regarding potential deleterious alleles that impact reproductive efficiency.  

IV. Materials and methods  

DNA and sequencing  

 DNA was extracted from semen of twenty US Jersey artificial insemination (AI) sires, 

four USDA MARC Twinner bulls with no Jersey background, and extracted from ear punch 

tissue of one mixed heritage bull with Jersey in the composition, C041, from a unique cattle 

family at the University of Wisconsin – Madison. The MARC Twinner bulls are from a 

genetically diverse population with twelve different breeds represented49. Illumina paired-end 

short reads were generated at about 15x coverage for the Jersey and Twinner sires and 50x for 
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C041 by Beijing Genomics Institute (BGI). The short reads were then aligned to the current 

bovine reference assembly ARS-UCD1.2 following the 1000 Bull Genomes Project220,273. 

Analysis 1: CNV detection and validation  

 CNV detection utilized three different publicly available bioinformatic software 

implemented in four different methods. These methods included: 1) CNVnator274, a read depth 

(RD) method that uses a mean-shift approach with read coverage to predict DUP and DEL in 

individual samples, 2) DELLY275, a CA using RP and SR sequentially to detect SVs in 

individual samples, 3) LUMPY276 single sample method (LS) which is another CA using RP and 

SR information but analyzing concurrently instead of sequentially, and 4) LUMPY population 

method (LP) which uses LS methods along with additional steps to combine information across 

multiple samples to generate a single output. LS and LP were run using the smoove docker as 

recommended by LUMPY authors277. All 25 samples were used to generate the population prior 

knowledge in LP. For the remainder of detection and the other methods, each sample was 

analyzed individually. All CNV detection methods were run using computational resources and 

assistance of the UW-Madison Center for High Throughput Computing (CHTC) in the 

Department of Computer Sciences.  

 Consensus within and between samples was generated by SURVIVOR, a SV toolset 

allowing for merging and comparing SVs across different pieces of information278. To generate 

within-sample consensus, CNVs were retained if: A) the predicted size was > 30 bp, B) all four 

methods agreed on the type and strand called and C) the predicted start and end of each method 

were within 1 kb of each other. To generate a list of CNVs across the samples SURVIVOR was 

run on the 24 within consensus results with the only change being that the methods no longer had 

to agree with type and strand. C041 was excluded from the remaining analysis due to mixed 
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breed background containing Jersey. This list of CNVs was then split based on if the variant was 

only found in the 20 Jersey bulls (JE), only the four MARC Twinner bulls (TR), and the 

remainder being found in all (ALL).  

 Accuracy of CNV detection methods was validated by a subset of putative CNVs which 

were observed specifically in the Jersey bulls.  These CNVs were annotated to genes using 

MAGMA231 annotation with a gene map generated based on an ENSEMBL release 96 gene file 

for bovine assembly ARS-UCD1.2279. The CNV list was then reduced to those in functional gene 

regions based on location spanning at least a coding sequence, exon, 5’ or 3’ UTR, start or stop 

codon, and/or transcripts as specified by the ENSEMBL database (.GFT file, release 96). CNVs 

spanning, overlapping, or located within functional regions were validated using a two-step 

approach. In the first step CNVs were compared with three different sources to see if they had 

been previously detected. This was conducted with a python script (Python v3.6) that compared 

each CNV to a previously detected CNV of the same type and allowed ± 5,000 bp in CNV start 

or end. Sources of previous CNVs included Ensembl structural variations which includes 

Database of Genomic Variants Archive (dVGA) and dbSNP (accessed 03/12/2020) 279, and two 

previous reports in 2017 by Chen et al.271 and in 2019 by Kommadath et al.272. Any CNV 

detected in one of these sources was considered validated and not tested further. Copy number 

variants not previously reported were validated by PCR-based assays. Primers were designed to 

allow for unique products for alternative CNV alleles. This was done with one pair spanning the 

full size of the variant and the third primer located in the middle. If the normal product was small 

enough < 1000 bp and a second reverse/forward primer could not be designed, only a single pair 

of primers was used. Primers (Supplementary Table S4.1) were designed using NCBI Primer-

BLAST and unique products were checked using NCBI ePrimer in Primer-BLAST280.  
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 Using the same script as the literature review overlap, comparison of all detected and 

retained CNVs was done with the dVGA (accessed 3/12/20220). Those that were not found in 

the dVGA within ± 5,000 bp  of the start/end were considered novel to the database. Novel 

variants were submitted to the dVGA for inclusion in future releases.  

Analysis 2: Deleterious deletion identification and validation  

 Identification of embryonic lethal candidates for Jersey cattle involved first genotyping 

all the deletions in the Jersey bulls. Genotyping was done using SVTyper281 and a list of CNVs 

found in at least one Jersey from this study (n = 1,210 CNVs). Resulting genotype calls consisted 

of NN (normal), ND (single copy of deletion), DD (homozygous for deletion), and UNK (not 

enough support to call the genotype). From these genotype calls a list of deletions with zero 

UNK and DD genotypes was generated. To narrow the list further, the variants were genotyped 

in a group of Jersey animals available in the NCBI Sequence Read Archive (SRA)282. This data 

was downloaded (accessed June – July 2020), aligned to bovine reference ARS-UCD1.2, and 

genotyped in the same manner as described earlier. Only samples with depth of coverage greater 

than 10x based on GATK DepthOfCoverage283 command were used. The genotype calls from 

the twenty sires were combined with the open-source data. As before, the list was narrowed to 

deletions with no DD genotypes but included those with  <10% of the samples having UNK. 

Frequency of the deletion allele was calculated and those with a frequency between 0.15 and 

0.45 were considered in testing absence of deletion homozygotes. The lower threshold was 

chosen to attain a probability of ~0.01 or less for absence of homozygotes by chance in a sample 

of ~200 individuals. The upper threshold was arbitrary and reflected an expectation that a true 

deleterious allele would not be expected to occur at a frequency exceeding this magnitude. 
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 Testing of deletions as deleterious embryo lethal candidates involved genotyping the 

deletion in a large sample of Jersey cows. A total of 192 Jersey cows, whose DNA was available 

from previous studies284, were chosen for this purpose based on each having a unique sire. 

Genotyping utilized 96 of the 192 samples initially, with the remainder available for additional 

genotyping should no deletion homozygotes be observed in the first set of 96. Initially each 

deletion had primers designed as described before in analysis 1 validation. Following primer 

design visual inspection using Golden Helix GenomeBrowse285 was conducted to verify that the 

primers would span the deletion, that the genotype calls were correct, and to check breakpoint 

accuracy. To generate additional information on breakpoints, Sanger sequencing was generated 

from a ND genotype bull for each candidate deletion. This was conducted by first performing 

PCR in separate reactions for alternative alleles and then either gel purifying (QIA quick gel 

extraction kit, QIAGEN LLC, Germantown, MD) or directly cleaning (QIAquick PCR 

purification kit, QIAGEN LLC, Germantown, MD) the PCR product prior to Sanger sequencing. 

Purified PCR products were then used as template for Sanger sequencing using a BigDye 

(ThermoFisher Scientific, Waltham, MA) protocol with initial incubation at 96 °C for 1 min and 

40 cycles of 20s at 96 °C, 30s at 50 °C and 4 min at 60 °C. The sequencing reaction used 5 

picomoles of primer in a 15 µl reaction with the amount of PCR product used as template 

varying depending on PCR product length (~10 ng/100 bp). Clean up and capillary 

electrophoresis were performed by the University of Wisconsin-Madison Biotechnology Center. 

Sequencing results were trimmed, aligned to bovine reference ARS-UCD1.2, and viewed using 

Geneious prime 2021.2.2 (http://www.geneious.com). Information from both Sanger sequencing 

and GenomeBrowse were used to correct the predicted size of the PCR products (Table 4.3).  
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 PCR amplification used a basic protocol with a 1.5 min initial denature step, followed by 

a series of cycles of 30s at 95 °C, 30s at an ideal annealing temperature, and 1 min extension 

phase at 72 °C, and then a final extension step of 5 min at 72 °C. The number of cycles and 

optimal annealing temperature depended on primer pair (Table 4.3) and was determined 

empirically by preliminary PCR analyses using a thermal cycler with annealing temperature 

gradient (RoboCycler, Stratagene Inc.). Following PCR, products were run on a 1% agarose gel 

and genotypes were called from visual inspection of the gel. 

V. Results  

Sequencing data  

Next-generation paired-end sequence data was successfully generated for 25 animals (Table 4.1). 

Read depth after processing and variant calling per the 1000 Bull Genomes Consortium pipeline 

ranged from 12.55 to 17.31-fold depth of coverage, except for sample C041 which was 

sequenced at greater depth and had 46.93-fold depth of coverage.  

Analysis 1: CNV detection and validation 

 Of the four methods employed, only CNVnator was limited to detection of CNVs (DEL 

and DUP) while, the other three methods report multiple types of SVs. Reports herein will 

consider only CNVs (Table 4.2). For CNVnator the average number of CNVs detected was 

3,686 with an average size of 12,737 bp and median of 4,000 bp. This method detected an 

average of 2,843 DEL and 843 DUP across the 24 samples (excluding C041). DELLY detected 

the most SVs for the individual sample runs, discovering an average of 19,317 SV across all 

samples of which an average 9,783 were CNVs. The average size for this method was 1,247,920 

bp with the size median being 2,741 bp. The 9,783 CNVs included an average of 7,133 DEL and 



61 

 

| 6
1
 

2,650 DUP. The LS method identified an average of 5,430 CNVs from a total of 7,651 SV, on 

average. This method had an average size of CNVs of 123,390 bp and a median size of 660 bp. 

An average of 4,935 DEL and 494 DUP were observed. The LP method reports only a single file 

result across the 25 samples. It detected a total of 32,200 SV with a subset of 18,442 being 

CNVs. This method detected the greatest number of putative SV and CNVs of the four methods. 

The average size of CNVs by this method was 280,760 bp and the median size was 787 bp. Total 

CNVs included 15,235 DEL and 3,207 DUP.  

 Within-sample consensus across methods showed an average of 295 CNVs across the 

samples (Table 4.2). The smallest number of CNVs (n=207) was found in a non-Jersey bull, 

while the largest number (n=426) was found in a Jersey sire. In the individual consensus the 

average size of CNV was 1,287 bp. Like the individual methods, the consensus found on average 

a greater number of DEL (n=284) than DUP (n=11). Between-sample analysis detected 1,269 

unique CNVs. Of these, a total of 1,214 were DEL with the remainder being DUP (n=55), 

following the pattern of the within-sample methods. In the Jersey bulls (n=20), results showed 

1,210 different CNVs. For the non-Jersey bulls, 529 CNVs were observed across four samples. 

Comparison between the different subsets showed a total of 740 CNVs unique to this sample of 

Jersey bulls. The remaining 529 CNVs split into those found specifically in the non-Jersey bulls 

(n =59) and those shared between the groups (n= 470). The distribution of CNV types in the 

Jersey bulls consisted of 699 DEL and 41 DUP.  

 For validation, a total of 158 CNVs found only in Jersey’s were identified as being within 

genes and being characterized (gene description is known, e.g. not uncharacterized LOC404063, 

Figure 4.1). These CNVs overlapped 159 different genes with one DUP predicted to be 85,551 

bp, spanning two genes. Deletions accounted for 92.4% and duplications 7.6% of the CNVs 
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identified. This list was further narrowed to those that spanned functional regions, as described 

earlier, leaving a remainder of 86 (Figure 4.1). When comparing the variant by type and location 

with database and literature review, 73 (84.88%) overlapped. Validation of the remaining 13 

CNVs was attempted using PCR. For three of these (one DEL and two DUP), primers producing 

unique products were unattainable due to repetitive DNA sequences. For the remaining ten, 

seven were validated by PCR and three failed. One failed to produce a normal product and upon 

closer inspection (visualization on Golden Helix GenomeBrowse and genotyping) appears to be 

a fixed deletion in this population sample. The other two failed due to off-target amplification 

making results ambiguous. Thus, of the CNVs examined,  93.02% were validated (Figure 4.1). 

Comparison of the 1,269 CNVs with the dVGA database (downloaded 3-13-2020) showed 648 

were novel when allowing ± 5,000 bp for the start/stop location.  

Analysis 2: Potential deleterious deletion candidates’ identification and validation 

 From the list of 1,210 CNVs found in at least one Jersey bull, 171 deletions lacked 

individuals homozygous for the deletion allele (genotype DD). These were further genotyped in 

an additional 36 Jersey bulls from the SRA database with coverage > 10x. With the addition of 

these samples the set of 171 was reduced to 104 deletions with no DD genotypes and <10% 

UNK genotype. The frequency of the normal and deletion alleles was calculated for the 

remainder using the 36 SRA bulls and the 20 Jersey AI sires (n = 56). The distribution of the D 

allele ranged from 0.027 to 0.5 with a median of 0.263 and mean of 0.264. From these a subset 

was chosen with a D allele frequency between 0.15 and 0.45 (n = 66). Primers were designed as 

described for CNV detection validation for 34 of these 66. These 34 were selected based on 

prioritizing three aspects: those found within genes, those with higher frequency of the deletion 

allele, and utilization of default parameters during primer design of repeat filter and avoiding low 
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complexity filter. Visual inspection using GenomeBrowse, and Sanger Sequence showed only 

four of the 34 candidate deletions having ≤ 1 Jersey AI sires showing zero read pile up in the 

region of interest (Table 4.4 and Figure 4.2).  Further examination of these four CNVs by 

genotyping Jersey cows showed four or more animals with genotypes homozygous for the 

deletion allele for all CNVs (Table 4.4).  

II. VI. Discussion  

Analysis 1: CNV detection and validation 

 Each method yielded varying number of CNVs with various average sizes. Of the single 

sample methods DELLY predicted the most with 9,783 being the average with an average size of 

1,245,181 bp, by far the largest average size (next largest was 280,760 bp in the population-

based method). The variation in number and size explains why only a small portion of these (295 

CNVs average) were identified as a consensus. It is concerning that only a small number CNVs 

overlapped between methods even though the inputs for single-step methods were the same and 

the one additional sample included in the population implementation was one that should 

increase detection being of greater coverage. Despite the minimal overlap of detection methods, 

validation based on literature review, database search, and PCR confirmed 93.02% as true 

positives indicating that consensus from four different methods limits the number of false 

positives detected. As expected, each method detected more deletions than duplications. This is 

due to limitations of detection methods typically caused by repeat regions in the genome. One 

solution is the use of long-read sequence data; as this approach becomes more affordable and 

read lengths become longer (now tens of thousands of bp on average)150,286, using such 

technologies may improve detection of segment duplications since the technology has the 

capability to read through large repeats.  
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 A total of 159 genes overlapped with at least one CNV. This accounted for 0.58% of the 

total genes available from Ensembl (n = 27,233). This number does not take into account the 

genotype state of the variant (i.e., if it is homozygous or heterozygous). Additionally, the 

function of the gene overlapped by the CNV may be compensated by actions of another gene. 

Alternatively, the gene function may simply be nonessential for life; distinguishing between 

redundance and non-essential function is not simple. A recent study reported 167 natural gene 

knockouts in cattle that were present in the homozygote state, indicating that the genes were 

nonessential for life163 Since gene function and expression is beyond the scope of this work, it is 

unknown what effects the reported variants have.  

 In depth review of the overlapping dVGA variants showed that a majority of CNVs 

overlapped with those reported by a 2018 study conducted by Mesbah-Uddin et al.163. This is not 

surprising given that the study conducted by Mesbah-Uddin et al. utilized next-generation 

sequence data as in the current study, whereas many of the previous studies submitted to the 

database were conducted using array data. Those reported using array data are typically reported 

as copy number regions which are regions that tend to have greater number of copy number 

changes rather than defined individual events. The advantage of the short read data has been the 

ability to resolve the breakpoints. While 48.93% overlapped with the database, there were still 

648 novel variants added that could be examined in the future. As sequencing technologies 

improve, the ability to identify and validate SV will increase as will the ability to further study 

the effects of these large genome variations.  

Analysis 2:  

 While the 34 deletions selected for genotyping were observed to have no homozygotes in 

the initial NGS samples, only a fraction of them had concordance regarding the genotype 
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determined by different methods (e.g. ND by SVTyper but DD by PCR genotype or visual 

inspection). A large part of this is due to breakpoint resolution of the original CNV detection. 

Examination of PCR product sequencing revealed that most deletion size predictions were 

greater than the actual size. Typically, either one or both breakpoints were incorrectly identified. 

Since SVTyper uses read support to agree or disagree with the different alleles of the SV, if the 

deletion starts or ends in a different location than predicted, reads would be found matching the 

reference supporting that the genotype should by NN or ND rather than DD. The other factor 

effecting genotyping is the reference. As the predictions are based on the reference a miss-called 

genotype may reflect a variation of the reference that is not seen in population sequenced. This 

may be the case where closer inspection of the VCF file of the deletions indicates the bovine 

reference allele as “N” and the alternative as “Del” wherein the 20 Jersey AI bulls show no 

coverage through a portion of the predicted variant but were genotyped “ND” (n=19) or “NN” 

(n=1). Again, the predicted start and stop did not match visual location on either Geneious prime 

analysis of Sanger sequence data nor Golden Helix GenomeBrowse of the aligned short reads. 

This is another aspect where long read sequencing would be advantageous to correct and refine 

breakpoint detection. 

 For the four deletions that were subjected to genotyping in 96 Jersey cows, all showed at 

least four homozygotes. In all cases this was despite the frequency of the deletion being low ( < 

0.26) in both the next-generation sequence data (n=56) and the PCR genotyped samples.  Given 

the low frequency it is not surprising that there had been no homozygotes in the original sample 

of 20 bulls and there may have been miss-genotyping in the SRA data (visual inspection was not 

performed on those). For two of these four CNVs < 5% of the animals were homozygous for the 

deletion. There are 33 other deletions that were not extensively examined that may still be of 
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interest. In addition, the stringent parameters used to limit false positive SV calls may have 

eliminated some true positives that would have been of interest.  

VII. Limitations 

 A major limitation of this study are the numbers of DNA samples used for the initial 

CNV detection and genotyping. Both in the initial detection and follow up screening. While 

these numbers were low there were still 51.06% novel variants detected and given the high 

accuracy (93%) of those validated the likelihood these are true CNVs remains high. Regarding 

screening for CNVs with potential embryo lethality the limitation is both in the low numbers (n 

= 56) for generating the putative candidate CNV list and in the stringent criteria of retainment of 

CNVs matching across methods. Utilization of the SRA database to increase both the number of 

Jersey and non-Jersey samples at the start of CNV detection would have been advantageous. In 

addition, principal component analysis could be used to assess breed make-up of the samples. An 

additional limitation of this study is the inherent weakness of short-read sequence data for CNV 

detection in regions with repetitive sequence motifs vs long-read sequence data.   

VIII. Conclusions  

Sequencing data provides deeper insights into structural variants. As the technology improves 

and resolution increases, the accuracy of variant detection will also increase. For now, utilization 

of consensus across multiple methods of detection in short reads yields high true positive rates 

(93.02% validated). This type of calling does risk excluding variants in favor of avoiding false 

positives. Though those intensively examined here did not yield candidates for embryonic 

lethality, screening for deletions that do not appear in the homozygous state does have the 

potential to identify deleterious variants. However, to more effectively detect deleterious variants 
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will require greater numbers of animals in the initial screening at the sequence level due to most 

cases of homozygote absence simply being a reflection of low allele frequency. Additionally, 

future CNV detection would benefit from long read sequencing technology to improve accuracy 

of the breakpoint identification and genotype calls. As a result of this work 648 CNVs have been 

added to the dVGA providing additional resources for future studies. 

  



68 

 

| 6
8
 

CHAPTER 5  

Screening for novel causative mutation candidates for the Trio allele 

 

II. I. Preface  

At the time of submission, this chapter contains the initial strict screening of the region for 

variants of interest; prior to publication a less strict screening of variants found in either 

homozygous individual should be conducted.  

Authorships at this stage: Beth M. Lett, Dean M. Sanders, Alvaro Garcia-Guerra, Ricky L. 

Monson, Milo C. Wiltbank and Brian W. Kirkpatrick 

Formatting of figures, tables, and references aligns with the remainder of the thesis.   
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II. Abstract 

Increased ovulation rate lends to increased opportunities for birth of multiple calves, 

which is potentially beneficial to beef producers. A region on BTA10 was previously indicated 

as the location harboring a variant causing increased ovulation rate in a cattle family. This allele, 

called the Trio allele, caused ~ 3x greater ovulation per cycle in carriers compared to non-carrier 

siblings. The objective of this study was to identify candidates for the causative mutation 

responsible for the Trio allele phenotype. The breed in which the mutation occurred was 

determined using 10 members of the Trio family and 28 SNPs within a 1.2 Mb positional 

candidate region on BTA10. Comparing this haplotype with the Bovine HapMap project 

genotype data the breed with the highest frequency (0.3) of the haplotype was Hereford. Variant 

detection utilized short and long read sequence data generated from two individuals homozygous 

for the Trio allele. Screening the 1.2 Mb positional candidate region for variants and comparing 

1) with the 1000 Bull Genomes project, and 2) between the two homozygous individuals 

indicated only one SNP both common to the two individuals and unique to them as well. 

Genotyping of this SNP indicated 100% correspondence with the inferred Trio allele genotypes 

of 85 individuals. Additionally, this variant was absent in two non-Trio populations with high 

likelihood to possess the allele: Hereford (n= 98) and USDA MARC Twinner herd (n=78). In 

this strict variant screening, this SNP is a strong variant for further functional testing.  An effect 

of the variant on SMAD6 overexpression would need to be documented to make a case for 

causality. 

III. Introduction  

 In beef cattle production increasing the number of calves born alive and reared to market 

would increase producer profit180. Breeding for increased ovulation rate (OR) would improve the 
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odds to produce multiple calves. In 1996 a commercial New Zealand beef cow who produced 

three sets of triplets was identified from which a son, Trio, was kept and used in breeding within 

a twinning selection study at AgResearch (Hamilton, New Zealand). Trio’s daughters exhibited 

increased frequency of multiple births in a proportion (30%)55. This was the first indication of 

Mendelian inheritance of a genetic variant within this family. Imported semen from Trio was 

subsequently used in matings at the University of Wisconsin – Madison to establish a herd of 

high ovulation individuals. Ovulation rate phenotypes, genotyping (Bovine 3K SNP chip, 

Illumina Inc., San Diego, CA) and linkage analysis confirmed Mendelian segregation of a major 

gene for ovulation rate (Trio allele) and identified a genomic region associated with high 

ovulation54. Initial candidate gene screening did not yield a causative mutation within candidate 

gene coding sequences or proximal 5' and 3' gene regions, but a haplotype based on three 

polymorphisms within the candidate gene region was identified which could be used in 

identifying individuals as carriers and non-carriers of the Trio allele.  

 Subsequent work has determined that one of the positional candidate genes, SMAD6, is 

approximately nine-fold overexpressed in granulosa cells (GC) from Trio allele carrier females, 

while other positional candidate genes are not differentially expressed123. SMAD6 is an inhibitor 

of the transforming growth factor-beta, bone morphogenetic signaling pathway, the same 

signaling pathway for which receptor90,287,288 and ligand94,95 mutations which cause high 

ovulation rate and litter size in sheep have been identified. Additionally, work was conducted 

looking at the physiological and hormonal difference between Trio carriers and non-carriers124–

126. In these studies, carriers were found to have similar follicular waves, concentrations of 

progesterone, estradiol, and total volume of dominant follicle and luteal tissues as non-carrier 

females. The key difference was the size of the follicles. Trio carrier follicles grew at a slower 
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rate and reached deviation at roughly 1/3 the size of non-carrier controls by spherical volume. 

These works hypothesized the mechanism of higher ovulation rate in Trio allele carriers is 

influenced by follicle stimulating hormone (FSH) remaining at high enough levels to prevent 

atresia until multiple smaller follicles (~3-4) attain dominance. Lastly, GC of carriers showed 

overexpression of SMAD6 regardless of follicle growth stage compared with non-carriers124. 

 Since the original candidate gene screening, the cost, availability, and quality of 

sequencing methods have improved. These methods include the next generation sequencing of 

paired-end short reads and third generation long reads. Using a homozygous individual and the 

longer sequencing methods would potentially generate sequence information spanning the entire 

region of interest. Long-read sequencing particularly, Oxford Nanopore, with average lengths of 

10-20 Kb with reports of 2.3 megabase read length capabilities143,148 and thus has the ability to 

potentially generate sequence contigs spanning the whole region of interest. Additionally, 

assuming this is a rare mutation, screening the identified variants against 1000 Bull Genomes 

project variant data to identify unique variants would further narrow the number of variants of 

interest. Thus, the goal of this work was to identify genetic variants potentially associated with 

high ovulation in the Trio family assessing their frequency and association with the Trio allele 

genotype. Based on multiple ovulations leading to potential for multiple births there is strong 

negative selection pressure from involuntary (abortion/death offspring and/or dam) and voluntary 

(producer selection) culling of cows that frequently bear multiple offspring with negative 

consequences. Thus, we hypothesize that the Trio allele is a rare variant, unique to the 

Treble/Trio family55. 

IV. Materials and methods  

Breed background of Trio allele 
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 Identification of the Trio allele's breed background involved determining the haplotype of 

the positional candidate region for the Trio allele and individuals in the Bovine HapMap 

dataset289 with the same haplotype. Trio, two dams, and seven offspring, previously genotyped 

with the BovineHD chip (Illumina, San Diego, CA), provided information to determine the 

haplotype across the 1.2 Mb positional candidate region. The Bovine HapMap genotype data289 

containing 1,543 animals representing 134 different breeds was used for comparison. Both 

datasets were narrowed down to BTA10 and the region between 13,629,354 to 14,817,47 bp, the 

region containing the Trio allele based on previous analyses54. Genotypes from the two animal 

groups were merged using PLINK 1.9222. Missing genotypes were set to 0 using the sed 

command in Unix. A python script was implemented to convert plink ped format to the fastPhase 

programs format. Construction of haplotypes was done using the fastPhase program with default 

parameters290. Another python script was then used to convert the output of fastPhase into a three 

columned file with each line corresponding to a different individual and column two and three 

corresponding to the different haplotypes. Alternative haplotypes in Trio were directly deduced 

by separate analysis of Trio, two mates, and six offspring with assignment of the haplotypes as 

either Trio allele or non-Trio allele-associated based on the ovulation rate record of the offspring. 

Bovine HapMap individuals were screened for the Trio allele-associated haplotype those 

possessing that haplotype were identified as to breed.  

Generation of Trio allele homozygotes  

 Potentially homozygous embryos for the Trio allele were produced in July, 2014 by 

breeding super-ovulated Trio allele carrier females to a carrier bull. Embryos were collected by 

flushing and transferred singly to recipient females, with calves born in Spring 2015. Presumed 

Trio allele genotype was determined using the three-variant haplotyping as previously 
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described54. Homozygosity across the positional candidate region was confirmed by genotyping 

individuals with the BovineHD SNP chip (Illumina, San Diego, CA). 

Sequence data  

 Whole genome sequencing was obtained for two individuals (C041 and C069) 

homozygous for the Trio allele.  Illumina paired-end short reads at 50x coverage were produced 

for C041, a bull, by Beijing Genomics Institute (BGI), while Oxford Nanopore long reads were 

generated for C069, a cow, at 14.8x coverage by the University of Wisconsin-Madison 

Biotechnology Center. DNA from C041 was initially used as template for long read sequencing 

using the Pacific Biosystems platform. However, sequence quality and read length were 

insufficient for creation of a quality de novo sequence assembly. Being unable to obtain 

additional usable DNA from C041 (animal deceased and previously collected semen not suitable 

for extraction of high molecular weight DNA for long reads), DNA was obtained from another 

individual homozygous for the Trio allele which was still available, C069.  

 Illumina short reads were aligned to bovine reference ARS-UCD 1.2 following the 1000 

Bulls Genomes Project220,273 guidelines. These reads were also used as needed to polish the long-

read data within and around the positional candidate region. Oxford Nanopore Technology 

(ONT) long reads were used to generate a de novo assembly conducted by University of 

Wisconsin-Madison Biotechnology Center Bioinformatics resource center. Briefly, Flye291 and 

Canu292 were each used to generate a de novo assembly for C069 which were compared to each 

other using Quast293 and the reference: ARS-UCD 1.2131,294. Additionally, 3x iterative contig 

polishing was performed with Racon295 with Illumina data from C041 on the C069 contigs 

(contig_553, contig_1505) representing the 1.2 Mb region of interest. 
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Variant detection  

 Both homozygous animals had the following types of variants detected: single nucleotide 

polymorphisms (SNPs), small insertions and deletions (InDels), and large (> 50 bp) structural 

variants (SV). The software from Genome Analysis Toolkit (GATK) was used to identify SNPs 

and InDels from both, while various methods were used for SV detection. Based on Lett et al. 

2022 (Lett, 2022 Thesis chapter 3), LUMPY single sample method296 was used to detect 

structural variants in C041 and was implemented using the docker smoove as recommended by 

LUMPY authors277. Structural variant detection in the long-read data was done using SVIM-asm 

v1.0.2297,298. Results were then compared between the two to identify those that were in common 

between them. Deletions were visually inspected using Golden Helix GenomeBrowse285 and 

Integrative Genomic Viewer (IGV)299 for copy number. The variants were further screened to 

identify those SV that overlapped with the 1.2 Mb region on BTA10 (13,629,354-14,817,470 

bp).  

 Small variant detection with GATK v 4.2.3.0 followed both the GATK best practices300 

and a variation for non-model organisms301. The short read used the GVCF file created by 

following the 1000 Bull Genomes project guidelines220 and the long read data used the 

1164_1165 bam file provided by the UW-Madison Biotech Center after narrowing to BTA10 

and further polishing with the short reads. A pre-step to create the GVCF file was done on the 

long-read file using GATK v4.2.3.0 HaplotypeCaller. The remainder of the steps were run on 

both individuals. Initially, GATK v4.2.3.0 GenotypeGVCFs was run with BTA10 being selected 

for the short read data. These were then split into SNP and InDels files using GATK v4.2.3.0 

SelectVariants and converted into tables with GATK v4.2.3.0 VariantsToTable. An Rscript was 

run based on the non-model documentation to generate distributions to select the values to use in 
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filtering. Filtering was conducted using GATK v4.2.3.0 VariantFilteration and based on results 

from the R plots. Lastly, data was converted from VCF to text and specific information was 

extracted (BTA, position, type, counts of the different genotypes - heterozygous, homozygous 

reference, and homozygous variant, the reference and alternative, and the genotype of individual) 

using GATK v4.2.3.0 VariantsToTable. These variants were then narrowed to those that were 

homozygous for the alternative allele and were in both C041 and C069. Further, the variants 

were narrowed to those found within the 1.2 Mb region BTA10:13,629,354-14,817,470 bp and 

compared with 3,093 bulls from the 1,000 Bull Genome Project run 7.  

Variant genotyping  

 A variant located within the 1.2 Mb positional candidate region of potential interest was 

genotyped using a PCR-RFLP assay.  The primer pairs (Forward = 5’-

TGTTCATCATGGGCTTGTCAT-3’  and Reverse = 5’-ACACCCAAACCAGACAAAGAC-3’) 

were designed to span a segment of 390 bp centered on the base change. The variant in question 

altered the restriction site for restriction enzyme, BsaBI. PCR was performed with a touchdown 

protocol in which annealing temperature was reduced by 0.5°C starting from 63°C for the first 

10 PCR cycles following which an annealing temperature of 58°C was used. Restriction 

digestion of the PCR product used 5 µl of PCR product and 5 units of BsaBI (New England 

Biolabs, Ipswitch, MA) in a 20 µl reaction with incubation at 60°C for 6 h followed by heat 

inactivation at 80°C for 20 min. Visualization of products was by gel electrophoresis and 

ethidium bromide staining using 1.5% agarose gels run for 350 volt-hours at 125 volts. Primer 

designs were made using NCBI Primer-BLAST and unique products were checked using NCBI 

ePrimer in Primer-BLAST280. 
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 Genotyping was conducted to determine concordance of variant genotype with inferred 

Trio allele genotype and to determine allele frequency in two populations most likely to possess 

the Trio allele. Trio descendants generated at the University of Wisconsin-Madison were used to 

determine concordance of variant and inferred Trio allele genotypes. All were females from 

whom ovulation rate information had been collected over four estrous cycles. An average 

ovulation rate ≥ 2.5 ova per cycle inferred carrier genotype for the Trio allele, as they had triple 

ovulations or greater on at least two of four estrous cycles. Animals with single ovulations in all 

four estrous cycles were inferred to be homozygous normal. Animals with phenotypes 

intermediate between these thresholds were considered indeterminant and excluded. Genotyping 

was conducted using Trio descendants (n=85), random Hereford samples (n=98), and a sample 

of cattle from the USDA Meat Animal Research Center twinning population (MARC Twinner; 

n=78). Trio descendants’ ovulation data was obtained by ultrasound visualization of CL, as 

described previously54,125 and DNA was extracted from ear punches. Hereford DNA was 

extracted from semen samples (n=26) obtained from AI studs or a Hereford breeder between 

1992 and 2019 and from hair (n=72) obtained from cattle shown at the 2021 Wisconsin and Iowa 

State Fairs. Samples were chosen to avoid including close relatives (e.g. half-siblings) and 

typically no more than three samples were obtained from an individual breeder. The MARC 

Twinner DNA was obtained from ear punches or semen. Extractions were conducted using a 

proteolytic digestion and organic extraction protocol203. 

V. Results  

Breed background of Trio allele 

 A total of 28 SNPs in common between the HD SNP data for the Trio family and the 50K 

SNP data for the HapMap samples spanned the 1.2 Mb positional candidate region of interest. 
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Alternative haplotypes for Trio were deduced from the family genotype data and the haplotype 

associated with the Trio high ovulation rate allele identified (Trio allele; Table 1).  After 

identification of the Trio allele haplotype, it was compared with the 1,543 Bovine HapMap 

individuals. Twenty-seven individuals were observed to have the haplotype associated with the 

Trio allele based on the Trio family analysis (Table 2). Within those 27 individuals a total of nine 

different breeds were represented with the greatest proportion (9/27) of the individuals being of 

Hereford origin. These nine individuals with the Trio allele made up 45% of the Herefords in the 

data and had a haplotype frequency of 0.3 for the Trio allele haplotype. Beefmaster, Normande, 

and Charolais each had four individuals possessing the Trio allele haplotype, representing 20% 

of the animals for their respective breeds. The remaining five breeds included Finnish Ayrshire 

with two (11% of the individuals) and Belgian Blue (25% of the individuals), White Park (20% 

of the individuals), Beefalo (100%), and Maine-Anjou (5%) with one individual each (Table 2).  

Generation of Trio allele homozygotes  

In the spring of 2015, 26 calves from carrier x carrier mating and embryo transfer were born. Of 

24 which were genotyped to determine Trio allele inheritance, nine were non-carriers, ten were 

carriers and five were Trio allele homozygotes (not significantly different from expectations 

under the assumption of Mendelian inheritance, p>0.05). Homozygosity across the positional 

candidate region was confirmed using high density SNP genotyping for all five predicted Trio 

allele homozygotes (Figure 5.1). 

Assembly 

 Alignment of the Illumina short reads (C041) to the reference genome (ARS-UCD1.2) 

yielded depth of coverage averages of 48.07 with 81.9% of the bases above 40x coverage. The  
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de novo long read assemblies of C069 totaled 2.76 Mbp in 9563 contigs using Canu and 2.63 

Mbp present in 1455 contigs using Flye. The Flye assembly N50 outperformed Canu with N50 

of 27.6 Mb to just 0.5 Mb in Canu. Additionally, the longest contig assembled by Canu was only 

3.18 Mb as compared to Flye which generated a maximum contig length of 119 Mb. The Flye 

assembly was clearly more contiguous, so we pursued all downstream analyses with it.  

Given our interest in the genetic variation present at the Trio allele, we polished the 

nearby contigs (contig_553, contig_1505) using Illumina data from C041 to remove errors 

introduced by assembling with Oxford Nanopore reads. To understand the variation relative to a 

known reference we realigned those two polished contigs using Minimap2 with relaxed 

conditions (-ax asm20) to ARS-UCD 1.2 given the inherent inaccuracy of ONT reads. Variant 

detection was conducted on this alignment and C041 alignment.  

Variant detection  

 Variants were detected in each sample individually before being compared between 

samples.  Alignment of the de novo C069 assembly with ARS-UCD 1.2 detected 18,427 SV 

events by SVIM-asm with 816 of them being on BTA10. In C041, LUMPY detected 14,489 SV 

with 558 being on BTA10. Of the 558 SV, 125 genotyped as homozygous alternatives to the 

reference ARS-UCD1.2. Comparison between C041 and C069 showed 18 SV that overlapped 

with each other nearby but not within the 1.2 Mb region of interest (Table 3).  

 Detection of smaller variants indicated 269,360 SNPs and 36,088 InDels in C041 before 

quality filtering on BTA10 and 205,470 SNPs and 35,145 InDels after. From these, homozygous 

alternative genotypes were selected with 93,155 SNPs and 15,387 InDels remaining. InDels split 

into 7,222 deletions and 8,165 insertions. Less variants were detected in C069, with a total of 
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6,030 SNPs and 1,600 InDels prior to quality filtering on BTA10. After filtering there were 

3,247 SNPs of which 2,611 were genotyped as homozygous alternative and 1,259 InDels 

remained after filtering with 948 having homozygous alternative genotypes. These split into 797 

deletions, and 151 insertions. Narrowing to the 1.2 Mb region showed that C041 had 739 SNPs 

and 149 InDels while C069 had 214 SNPs and 113 InDels (Table 3). Comparison between these 

variants and those obtained from the Bos taurus run 7 of the 1000 Bull Genomes project 

involved looking at BTA10 in 3,093 animals. This left 11 SNPs and 20 InDels for C041 and 8 

SNPs and 91 InDels for C069. When compared between each other only one SNP remained as 

novel and no InDels overlapped (Table 3).  

 The novel SNP is located at 13828552 bp on BTA10 and is a change from A to G. 

Running Ensembl variant effect prediction (VEP) on this variant indicated that it had an impact 

listed as modifier and consequence of intergenic variant. Selecting ± 100 bp of sequence 

surrounding this variant and running BLAST showed 27 alignments with > 50% coverage 

overlap. Percent identify ranged from 75.26 to 98.51 with a median of 78.24. The highest 

identify alignment was to Bos mutus. Looking at the variant location within ARS-UCD1.2 using 

the UCSC Genome Browser, the variant location is in a GeneScan predicted gene 

(chr10:13797154-13889348 bp) and within a LINE element L1M3.  

Variant genotyping  

 The PCR amplicon had a length of 390 bp with the variable base located at base 210 from 

the 5' end of the forward primer. Presence of A at the variable base creates a BsaBI restriction 

site, yielding fragments of 207 and 183 bp upon digestion, versus 390 bp for the uncut G allele. 

Successfully genotyped Trio descendants showed perfect concordance between SNP genotype 
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and inferred Trio allele genotype (Table 4). In the other two populations, all individuals were 

homozygous for the A allele corresponding to the non-Trio allele. 

VI. Discussion  

Breed background of Trio allele 

 Comparison of Trio's genotypes with daughters and two mothers of daughters allowed for 

deduction of alternative Trio haplotypes and identification of the haplotype associated with high 

OR. Frequency of this haplotype in the HapMap data was low, occurring in 27 of 1,543 

individuals. Three of twenty individuals of Hereford origin were homozygous and the remaining 

25 individuals were heterozygous for the haplotype giving a frequency estimate of 0.30. 

Considering breeds with more than one sample, the breed with most individuals possessing the 

haplotype and with highest frequency was Hereford. One of the next highest breeds for 

haplotype frequency was Beefmaster which is a composite breed including Hereford, Shorthorn 

and Brahman ancestry. Given the relatively high haplotype frequency in Hereford and a Hereford 

composite breed and that Treble, the source of the allele and matriarch of the family, was born in 

New Zealand where Hereford is a common beef breed, we hypothesized that the Trio allele 

mutation originated in a Hereford haplotype.  

Variant detection and genotyping  

 Only one novel SNP was found in both homozygous individuals and the 1.2 Mb 

positional region of interest (Figure 5.2). Results from the PCR-RFLP genotyping of this SNP 

showed perfect concordance between this variant and the Trio allele-inferred genotypes. All 

individuals with genotype AG were Trio descendants with inferred genotype of carrier, whereas 

all individuals with AA genotypes had inferred genotypes of non-carrier. When tested in two 
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populations most likely to possess the allele either due to breed origin (Hereford) or ovulation 

rate phenotype (MARC Twinner), the Trio allele (G) was not observed. This pattern is consistent 

with a putative causative variant that is unique to the Trio family, but it is not proof of causation. 

Predictions of the variant's effect were listed as modifier for which Ensembl defines as either 

non-coding, affecting non-coding genes or where prediction is difficult or the is no evidence of 

impact. Given the Trio allele's effect on SMAD6 expression, causation could potentially be tested 

in vitro by editing the mutation into normal granulosa cells and assessing SMAD6 expression in 

the edited cells.   

 Looking at the structural variants only the long-read data showed variants within the 1.2 

Mb region. This may in part be due to the use of the FASTA alignment to detect variants and it 

illustrates the increased capability to detect structural variants when using long reads. This was 

also indicated by the long reads initially detecting greater number of SV events on BTA10 from 

the outset. In contrast, for smaller variant detection the short read alignment yielded more 

variants. But neither yielded high numbers of novel SNPs (1.4% short reads and 3.7% long 

reads), while novel InDels ranged from 13.4% for the short read alignment to 80.5% for the long 

read. The discrepancy maybe due to location difference not being the same between short read 

and long reads. The 1000 Bull Genomes Project data is based on short read data (mostly) and it 

could be the predicted variant location is incorrect, thus a greater number of variants are 

considered novel in the analysis. The fact that none overlap between the two and remain novel is 

of interest, but this again maybe a factor of discrepancies in location of the call between a region 

that may have a read spanning the variant fully and one broken between multiple reads.  

VII. Conclusions  
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 Based on the haplotyping results the breed background for the Trio allele is most likely 

Hereford in origin. Comparison of two Trio descendants homozygous for the Trio allele revealed 

numerous variant overlaps on BTA10 however only 15 InDels and 174 SNPs corresponded 

within the 1.2 Mb positional region as being homozygous in both C041 and C069. Comparison 

of the 189 variants to the 1000 Bull genome project data showed only one SNP 

(10:g.13828552A>G) as novel. Genotyping supported this variant being a strong candidate as all 

non-carrier Trio descendants and individuals unrelated to Trio were homozygous for the non-

Trio allele. Future work to test if and how this variant impacts expression of SMAD6, by editing 

the variant into normal granulosa cells and assessing gene expression, is needed. Additionally, 

exploration of the difference between InDel size may indicate if the difference in numbers is 

caused by location difference between read lengths or differences in assembly/alignment quality.   
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CHAPTER 6  

Communicating science to a non-scientific audience  

 

I. Preface 

I wrote this chapter because the field of animal and dairy science relies heavily on the committee 

of farmers, consumers, advocates, and researchers. There is a larger portion that do not have a 

deep background in the technical side of research or specialization in a topic that we, scientists, 

tend to forget. Effective communication of science to the stockholders and beneficiaries of our 

research, has always been at the forefront of my mind while conducting my research. I am 

thankful to Wisconsin Initiative for Science Literacy (WISL) at UW Madison for providing the 

opportunity and support to create a chapter designed to help communicate science. Gratitude and 

many thanks to Professor Bassam Shakhashiri, Elizabeth Reynolds, and Cayce Osborne for 

helping provide feedback, support, and this opportunity.   
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II. Introduction  

When a lot of people think of genetics, animals, and computers it conjures up thoughts of the 

movie Jurassic Park. Thankfully, my work does not involve prehistoric creatures that will most 

likely eat me, but it does involve a lot of computer work, some DNA, and trying to improve 

cows’ reproductive health. 

Like humans, cows have roughly a nine-month pregnancy, monthly cycles, and  complications 

that arise at various stages of these processes. Unlike humans, a cow cannot speak of issues 

during pregnancy, and so noticing and addressing problems that arise falls to their owner and 

care-givers. Part of what my work focuses on is helping improve the health of the cow through 

genetics to limit early pregnancy loss or pregnancy loss due to overcrowding before these issues 

arise. 

Each of my studies looks at different events (twinning, embryo lethality, and ovulation rate) in 

cattle reproduction. Two of them looked to help improve negative pregnancy outcomes and one 

looked to explore a deeper understanding of mechanisms driving ovulation rate and its links to 

reproduction. This work includes looking at limiting twins, which are hard on cows, identifying 

sources of early term abortions, and identifying a potential cause of increased ovulation rate.  

III. When too many is a bad thing  

The saying “less is more” rings true in cattle when it comes to multiple births. And in my time 

working and talking with dairy producers this comes up as a problem again, and again.  This is 

because these pregnancies are more demanding both on the cow and the farmer. These super 

moms produce several pounds of milk a day that takes a toll on the body. During pregnancy, the 
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toll of carrying multiple babies is heavy, just like it is in pregnant women, and it causes risks to 

both the mom and the unborn children, which sometimes ends in tragedy. 

This makes multiple births an undesirable trait for farmers, and they look to find ways to prevent 

this from happening. One way is usually removing that cow and her offspring from the herd 

because multiple birth pregnancies is a genetic trait. Other ways are more invasive and usually 

lead to termination of the pregnancy. Because of this, I was very eager to start my research 

career as a master’s student looking at ways to solve this problem.  

Since we know the incidence of twins is linked to family lines, one noninvasive way to limit 

multiple births is through genetic selection. Now this sounds easy enough but to effectively 

implement selection we need to know what DNA changes influence twinning. We also need to 

know the current values of heritability, the probability of a trait being passed from parent to 

offspring, and repeatability, the probability of a trait/event happening again, of twinning in a 

group of cows. And the best source of this information would be from producer records. We 

obtained calving records from 2010 – 2016 from a dairy record management group called 

AgSource CRI.  

Using producer records however comes with a frustrating challenge. They are noisy and not what 

some researchers would call “clean”. This is because of user errors. Unlike studies that generate 

their own data and have rigorous guidelines, this data source relies heavily on what the producer 

records and tends to include more user errors, specifically missing or misentered information.  

I first cleaned the records by removing any with missing ID information of the cow, her dad 

(sire), and her mom (dam). Then I had to correct and remove any date issues. The most 

interesting date issue I encountered was the cow that was born after she gave birth. And lastly, I 
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sorted through to match and remove duplicate records that carried over from an old herd to a new 

herd.  

This task was the most time consuming and really what most computer work ends up being. The 

challenge I faced was the sheer number of records. Initially, I had to sort through 2.9 million 

records, and programs like Excel cannot perform corrections on that magnitude of data let alone 

open it. But by writing a few of my own computer scripts, I was able to clean my records and 

restrict them to ensure that each herd and sire had at least 100 records.  

I used the cleaned data, about 1.4 million records, in a heritability and repeatability analysis. I 

estimated these values using a software, AIREML, that was designed to perform such genetic 

analysis, and implemented using a model equation.  The results showed a low heritability and 

repeatability. Most reproductive traits show low heritability, and we did not expect the value to 

be too high. These estimates were in range of previous ones and indicated no drastic increase 

overtime to twinning in this cow population.  

Even though these numbers were low, they were still greater than zero. This told us there is a 

potential to generate selection tools for producers using genetics. The next step would be to 

incorporate genotype data in the form of SNPs (single DNA nucleotide changes). An individual’s 

genotype is their genetic make-up. For this study, specific SNPs across the genome are 

genotyped using a chip panel that has known information (genotyping is the process of detecting 

genetic differences in individuals). These small changes from one DNA nucleotide to another 

can cause large changes to how the DNA sequence is read and interpreted into a phenotype, or 

observable characteristics. Because genotypes are more regularly generated on male cattle, we 

decided to convert the data into sire-daughter averages and obtain genotypes from the repository 

of dairy cattle genotypes.  
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I used another model to estimate values of the factors that can influence twinning. Then I 

corrected the individual calving records, averaged them per cow, and finally averaged that per 

sire. These values would serve as the phenotype (or observable characteristic) in the next 

analysis – genome wide association study.  

Genome wide association studies, or GWAS, are a widely used method of looking for 

association between a phenotype and genotypes. They help to identify regions of interest in the 

DNA that influence a particular trait. And with the improvement in genetic technologies, we can 

even locate single DNA base changes for researchers to investigate further.  

I initially ran my GWAS using a program called GenABLE. In addition to using the records 

from 2010-2016, previous estimates were available from previous studies done in my lab group 

and in collaboration with another group at Iowa State University. Using these time points from 

1994-1998 and 1999-2008 as well, I was able to compare across the different datasets to identify 

genetic regions that showed association with twinning in all three. 

My pilot study showed that chromosome 11 in all three datasets had a peak comprised of 

genotypes that were strongly associated with the twinning phenotype. Unlike humans, cattle have 

29 autosomal chromosomes (humans have 22) but have the same number of sex chromosomes 

(X and Y) . Additionally, two of the three datasets shared the exact same genomic region of 

interest. What made this region even more exciting was the presence of two genes involved in 

the female reproductive cycle.  

Unfortunately, before I could look deeper, my research took an unexpected health break. This 

did not stop my interest in the subject, but rather changed my path from a Master’s to a PhD. 

When my path changed it opened new doors on this project. Door one was more calving records 
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from another record management system. Secondly, another option for conducting GWAS that 

would allow me to increase the number of bulls I could use in the analysis and test all the SNPs 

at once rather than individually. These small base changes can either cause large effects on their 

own or in combination with each other, so by looking at only one at a time you lose information 

on how they interact together. And lastly, a new and more correct reference genome for cattle 

and access to the 1000 bulls project data was made available.  

     In genetic studies, the reference genome is the gold standard from which other individuals of 

that species are compared.  Because genetic technologies keep improving, the quality of the 

references improves too. In terms of GWAS this means improved knowledge of SNP locations, 

improved quality of the genotype types from SNP chips, and increased amount of SNPs we can 

detect.   

My initial GWAS only had ~60,000 genotypes. This means across the genome (~3 billion bases) 

we have detected only 60,000 different base locations. We did impute, that is, utilize information 

from higher density genotype animals to infer the missing genotypes in the lower density 

genotyped animals, up to ~ 600,000. This still leaves a lot of missing information and spaces 

untested. By the lab being part of the 1000 bulls project, we had access to whole genome level 

SNP data. This data was used to impute the 600,000-genotype data to just under 8 million.  

I cleaned the new calving records like I did the original and merged the two newest calving 

record sources. Because I already had code written, this process was faster, however there were a 

few more challenges to correct. But by combining these datasets, the total number of records 

increased to ~4.4 million. Further, I improved the herd and sire restrictions to include only those 

with at least 100 unique cows per herd and at least 100 unique daughters per sire. This would 

improve both the quality of the herd effects prediction and the estimates per sire.  
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Previously, when I ran the GWAS, I could only use sires with both known phenotypes and 

genotypes. This cut the number of bulls in the study down by about half for 2010-2016 calvings 

and by ¾ in the older datasets. By using the new program single-step GWAS we could use all the 

individuals with estimated phenotypes in the association study. We also combined the older two 

datasets into one since there was greater overlap between bulls and the phenotype estimates.  

I conducted the single-step GWAS for each time point, sire phenotype estimates based on 1994 – 

2008 calvings and 2010-2016, separately and then combined the data together. Individually, the 

datasets did not show any significant results but the older (and largest dataset) did show a 

tendency for association between the sire daughter averages for twinning with chromosome 11 

still. When the results were combined the strongest association was the same as the pilot study! 

And it still included the previous two genes of interest.  

Because I switched to the PhD I was able to also use the pilot data in a gene set analysis, which 

is an analysis to see what genes or gene pathways (set of genes that work together to turn on or 

off different biological functions) are more involved with your data. I implemented this analysis 

on the new results from GWAS. It did not yield the results I had hoped for. There was no 

pathway associated with the twinning rate phenotype that contained the two genes of interest, but 

there was one pathway that was ranked high in both analyses. When I looked at that pathway, I 

found that it included only two genes that were also found in the region implicated in GWAS. 

There are two possibilities: these genes are indeed of interest and they influence the trait, or they 

are just near the genes of interest. This will be for someone else to test and decide.  

My last task for this work was to look at genomic prediction, the ability to use current 

information to predict breeding values in another individual. Genomic prediction is widely used 

by producers now and heavily influences the breeding and retention decisions of a farm. By 
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generating this prediction we can start to provide producers with the knowledge to select for or 

against twinning in their herds. For studies on prediction, you first need to build a model and 

train it, and then you need to test the accuracy of the prediction. This is like how google/Pandora 

"learns” your preference on a specific news or song choices. It makes future decisions based on 

your previous choices. In this case we use the genotype records to train the model and predict 

breeding values that can be tested against our phenotypes.  

To accomplish this, I split the data into a testing and training set, which was easy for this study 

as the newer and older records made for a good split. The older data would serve as a training set 

to generate the values used to predict the values in a new set of animals. The new set would be a 

portion of the newer data. I removed all bulls that appeared in both data sets, so the testing set 

was completely new sires compared with the training.  

The reliability of my model in prediction was about 42% which may not seem high but is the 

highest thus far in the literature. This means there is the possibility to utilize this for selection 

purposes. It also tells me there is room for improvement. 

All research is constrained by time, money, and resources available, which puts limits on what 

can be done. The main limitation I faced was in numbers. Genetics studies, particularly GWAS, 

are dependent on the number of samples used. As mentioned, I only had genotype information 

for portions of my data. The other part is that in an ideal situation combining the raw calving 

records across all the time periods would have been done. However, we were unable to obtain 

access to the older calving data original records.  

In the end of this project, there are still more answers to be sought and questions to be asked. But 

I can say I have indicated a region of interest that is strongly associated with twinning and two 
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genes of interest. I also found a pathway containing two additional genes that may be connected 

to the trait. And I estimated a genomic prediction reliability greater than zero, and generated 

information that can be provided to producers for selection purposes.  

IV. Loss hurts, unknown loss hurts and confuses  

Loss of anything is upsetting and frustrating. For farmers, a cow losing a pregnancy is both an 

emotional and financial burden. In addition to affecting the owner it also impacts the cow, both  

in her short-term and long-term production.  

Pregnancy can be thought of like a chain of events, each connected to another, and breaking any 

link will impact the results. The earlier in the chain an event occurs, the harder it is to identify 

the causes. To better understand early losses, a source to study is the DNA and how those 

building blocks are set up.  

As you may know from Jurassic Park and Mr. DNA, DNA is the building block of all things. 

Breaks or changes in the code can disrupt its function causing cell death, changes in expression 

of genes and thus phenotypes, or no effects at all. There are multiple sources of genetic 

variations that affect DNA, ranging from changes to small single bases (SNPs) to large sequence 

rearrangements (structural variants). A class of structural variations are CNVs, or copy number 

variants.  

Now as the name would imply, CNVs are changes in copy number. By copy number I am 

referring to the number of times a base or sequence of bases are inherited. In normal diploid 

individuals, like humans and cows, two copies of a chromosome are inherited. One copy comes 

from mom and the other comes from dad. A chromosome can be thought of as being made up of 

several blocks of DNA or chunks. In a normal perfect case these blocks would be continuous 
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strings of DNA sequence and you would not see blocks. But with a copy number variation you 

may be going along the string and find a block missing or an extra one added on (Figure 6.1).   

While duplications (extra copies) maybe impactful, they are harder to detect in the type of DNA 

sequences I had available, so our focus was looking at losses (deletions). Losses also carry 

potential to be destructive as they may remove a DNA block needed for a gene to function. The 

key first step would be to detect CNVs in a group of samples.  

In this case we had 25 samples with pair-end short read sequence data. Short reads are 

fragmented pieces of an individual’s genome about 200-500 bases in length, depending on the 

method used to obtain them. Being pair-end refers to both ends of the fragment being sequenced 

rather than just one. These reads can be pieced together using an assembler program or by 

matching the sequence reads to an already assembled reference submitted and maintained in a 

database location such as National Center for Biotechnology Information (NCBI).   

Jerseys are the second most popular breed of dairy cattle in the dairy industry. Even though they 

are second in total numbers few studies have been done in just them. Thus, we wanted to focus 

our work to identify CNVs in Jersey cattle, and then screen these samples to provide Jersey 

producers with deleterious variants to avoid in breeding programs. Within our 25 sequenced 

bulls, 20 were purebred Jerseys and one was a mixed breed including Jersey.  

To detect CNVs we utilize the information provided by the sequencing fragment (reads) focusing 

on two concepts. Reads can be thought of like puzzle pieces that fit together in a specific way 

and the final picture is a genome. The starting image we work from is the reference and we 

compare the pieces to it. Sometimes they do not match, and this one source is used to detect 

structural variants. The catch with this puzzle is that it is a 3D puzzle whose height is dependent 
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on the depth at which the sequences are generated (i.g. 10x coverage means on average you 

would expect the height of the 3D puzzle to be 10 pieces). This lends to the second source used 

to identify CNVs, changes in the depth compared to what is expected (Figure 6.2). In most cases 

the depth is good at finding deletions but has problems with duplications. Using the piece 

orientation and how it matches to the main piece orientation and matching to the main image, the 

software has a better chance at finding the exact start and stop of CNVs. For my detection, I used 

several detection software to predict potential CNVs within a sample. I then used another 

program to merge the different CNVs from each method to generate a consensus. This method 

found CNVs in a similar location, size, and type, for each sample. I used the same software to 

merge the sample consensus CNVs into different groups Jersey, non-Jersey, and both.  

Our next step was to find deletion with embryo lethal potential, meaning they could be 

contributing to early pregnancy loss under the assumption that within the population there is an 

absence of homozygotes (individuals with two deletion copies). This goes back to the block 

inheritance concept. Normally you would inherit two copies of the block (NN). In the case of a 

deletion one parent or both have that block deleted and you would inherit a single copy (ND) or 

two copies of the deletion (DD). Now not all deletions are harmful and thus are passed from one 

generation to the next. But some are, and these would not be seen in the population in the DD 

state due to inability to produce offspring that survive.   

So, I took my CNV list and pulled out the deletions and screened them to locate any that did not 

have DD individuals. I further found additional open-source Jersey sequence data and genotyped 

my deletions of interest in these animals as well. This helped narrow the list and I designed 

primers, small sequences that are paired as a forward (start) and reverse (end), that target a 
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specific target location in the genome. In the end, I was only able to visually match the predicted 

genotypes and design primers for four from a list of 32.  

In designing a three-primer system, we could genotype the deletions in multiple samples with the 

possible results in image 2. Unlike the image we expect to see only the NN and ND outcomes if 

the deletion truly has embryo lethal potential. We performed genotyping using 96 Jersey cows 

that had DNA extracted from a previous study for the four deletions indicated earlier. Like SNP 

genotyping a PCR assay allows replication of DNA at a specified location and can reveal if an 

individual has one, two, or no copies of a deletion. The resulting PCR assay image showed DD 

individuals within the 96 cows for all four deletions tested (Figure 6.3. This disproved the idea 

that these deletions have embryo lethal potential and are just rarely seen. There are, however, 33 

other deletions indicated as being absent DD individuals that maybe of interest for future 

screening. An initial first step should be improving breakpoint detection (CNV start and stop 

locations).  

While the four deletions I tested did not show embryo lethality, I did however find 468 CNVs 

that were not previously in the variant database. I also, through using multiple tools, figured out 

which I would consider ideal for CNV detection and would use in future studies. Like the 

twinning study, a limiting factor was number of samples. The other limiting factor for this study 

is the data source. Short read sequences, while cost effective, are prone to alignment mistakes 

when trying to compare the sample pieces to a reference map. This is particularly challenging 

given the fact that genomes tend to have a lot of short, repeated pieces (Figure 6.2B). This leads 

to duplications being hard to differentiate. The new read technology, long reads, allows for 

generating sequences that span 10,000 – 20,000 bases on average compared to the short reads 
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(max ~500 bp). I look forward to long reads reaching the affordability of short reads or the day a 

long read can sequence an entire human/animal chromosome in one entire strand.  

V. Understanding a phenomenon 

Like humans, multiple sets of twins in cattle are amazing. But multiple sets of triplets is 

phenomenal. A New Zealand cow named Treble did just that, had not one, not two, but three sets 

of triplets. It was at this point that she drew the interest of her owner and two researchers 

invested in studying multiple births in cattle. These researchers, along with Brian Kirkpatrick, 

used Treble’s son Trio to produce granddaughters.  

When they looked at the granddaughter calving records, they found that 30% had incidences of 

multiple birth pregnancies. This was a phenomenon and raised the question of whether there is a 

genetic component to it. Brian Kirkpatrick imported semen from Trio to generate a herd of cows. 

To identify a more quantitative measure for the phenotype, Dr. Kirkpatrick used ultrasound to 

count corpus luteum (CL), a structure that forms on the ovary after an oocyte (egg) ovulates.  

In cattle, typically only one egg ovulates at a time producing one CL. When multiple eggs 

ovulate, there are more CLs present and these structures can be counted using the ultrasound 

images. In the 2015 study, Dr. Kirkpatrick and Dr. Morris found a portion of the Trio daughters 

had  > 3 eggs per cycle compared to normal. This created a measurable phenotype to split the 

herd into – high ovulation rate and normal.  

The next step involved generating SNP genotype information on the daughters and Trio to help 

decide if there was a genetically inherited mutation causing this phenomenon. By using two 

groups, high and normal/low ovulation rate (number of eggs released at a time), they could 

compare the genotypes between the groups. This allowed them to locate a region on 
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chromosome 10 that is positionally of interest, meaning they located a segment of change 

between the high and low groups and proved there was indeed a genetic component. Due to the 

sparsity of the SNP data at the time, they could only narrow the region to 1.2 mega bases 

(1,200,000 bases) but were able to use this information to create a genotype assay to distinguish 

between the carriers and non-carriers.  

They called the genetic trait the Trio allele. An allele refers to the genetic change that has 

alternative forms when inherited. In this case a cow may inherit two normal alleles (normal 

ovulation rate), one normal allele and one Trio allele (high ovulation rate), or two Trio alleles 

(same as single copy). However, the exact causative mutation and mechanisms remained 

unknown.  

Work done by two previous graduate students, Mamat Kamalludin and Alvaro Garcia-Guerra, 

provided more insight into this phenomenon. In Kamalludin’s work, he showed that the gene 

SMAD6 was overexpressed (the protein encoded by this gene is seen in the cells more often than 

normal) in carriers compared to non-carrier individuals. The positional candidate region, the 1.2 

mega-base (Mb) region previously identified, is located near the DNA block encoding this gene, 

making it the most likely gene of interest. The work Garcia-Guerra performed looked more into 

the physiology difference between Trio allele carriers and non-carriers. His work showed that the 

carriers ovulated more eggs at a smaller size even though the timing and hormonal profiles were 

similar to noncarrier siblings.  

Now since the initial genetic screen, genetic sequencing technologies have improved, and the 

cost has decreased for specific types. This made it possible to produce both short read 

sequencing and long read sequencing. But the first task was animal selection. For this, having 

individuals homozygous, those who inherited two copies of the Trio allele, would be 
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advantageous. The logic is that by sequencing a homozygous individual rather than a 

heterozygous one (inherited only one copy), you rule out variants not found in that state and 

simplify the comparison process.  

In the end our lab sequenced one cow, C069, and a bull, C041. I performed sequencing 

alignment like with my CNV project on C041, since his sequencing was done using pair-end 

short reads. Initial attempts to assemble C041’s long read sequencing (average lengths are 

10,000 bp rather than 350) failed. I lacked the computing power to perform this task, so we 

outsourced to the University of Wisconsin Madison Biotech Center Bioinformatics department.  

They found that the quality of the original long read sequencing was not adequate to generate a 

good quality assembly. In comes C069, since DNA was no longer available from C041. These 

two animals are full siblings meaning their DNA should be similar and both should have 

inherited two copies of the Trio allele. Newer methods of long read technology were used to 

generate sequencing results on C069. The hope was to get the 1.2 mb region in one continuous 

read rather than in chunks.  

Once we had an assembly of reads for both C041 and C069, I began to detect multiple genetic 

variant types in them. These include SNPS (single base changes), InDels  (small ≤ 50 bp base 

additions or deletions), and structural variations (large > 50 bp genomic rearrangements). 

Detection of SNPs and InDels was straightforward, as a program, GATK, is designed for such 

studies. The structural variant detection was slightly more complicated. In the case of C041, 

detection was easy since I implemented multiple methods previously and selected the method 

that performed the best. C069 presented more of a challenge, as the methods I used previously 

were all designed for short reads. 
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I found a program online that would allow me to both align the assembly to a reference and 

perform detection at the same time. The next hurdle was removing all variants that were not 

homozygous and did not match the bovine reference genome. We assumed the reference 

contained the normal allele. Thankfully, all the software I used performs genotyping, so I only 

needed to create a script to pull out those variants based on the genotype.  

From there I performed a comparison between variants detected in C041 and C069. This 

narrowed the results from the thousands down to hundreds for SNPs and less for InDels. In the 

case of structural variants (SV) only five predicted variants were implicated, and none fell in the 

region of interest. I am curious about one of the SVs and hope that future work will investigate 

that more. A total of 15 InDels and 174 SNPs fell within the original 1.2 mb window.  

The second assumption we made was that the Trio allele mutation would be rare. Previous work 

granted us access to 1000 Bull genome data, which is a consortium of DNA sequencing and 

variant calls similar to the 1000 Genomes project in humans. This provided variant, SNP and 

InDel data, on over 3,000 bulls from various breed backgrounds. I took my list of SNPs and 

InDels and compared them with this dataset to locate any novel variants. Of those in the 1.2 Mb 

region, only one SNP had not been previously detected. Digging into the SNP more, I used a 

prediction software to see if the DNA change caused an impact. The results indicated it caused 

no fancy or drastic changes to a gene – this is known. It may be that, since it is novel, the variant 

causes a change for which the impact is unknown.  

A goal was to see if this variant had consistency with the high ovulation phenotype and not with 

two other cattle populations of interest. These included the MARC Twinner herd, a herd bred to 

increase twinning and ovulation rate in beef cattle, since more calves in beef is a positive trait. 

The other population is Hereford cattle. This was selected because previous work looking to 
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identify the breed background showed Hereford as the most likely breed from which this 

mutation arose.  

Dr. Kirkpatrick performed genotyping using a restriction enzyme digest PCR (PCR-RFLP) 

assay. Like the CNV work, a segment of DNA is targeted and replicated using PCR. In a PCR-

RFLP assay, we must use a restriction enzyme (a reaction catalyst whose property cleaves DNA) 

to cut the fragment at the base change location only if the individual had the reference allele. The 

restriction enzyme should ignore the sequence if the individual had the Trio allele (Figure 6.4).  

How it works is first PCR is run on the samples to test. They would all produce a ~400 bp band 

when viewed. Then the PCR is added with the enzyme in a reaction to digest the DNA at the 

restriction site targeted by the enzyme (Figure 6.4). Next these would be run on a gel using an 

electric current that pulls the negatively charged DNA down the gel towards the positive end. 

Each sample has its own lane (Figure 6.4). The DNA travels at different speeds depending on the 

weight or amount of DNA. These bands correspond to different genotypes.  

A single band at ~400 would indicate only the variant was present (G in this case). While  a 

single band at ~200 shows only the normal allele is present (A), and two bands at ~400 and the 

other at ~200 would indicate both the normal and variant is present (A/G). If this is indeed tied to 

the Trio allele then we would hope to see A/G for our carrier animals, A for our non-carriers, and  

G for the homozygous Trio allele individuals (Figure 6.4). We would also hope to only see the A 

band in the other two populations making it unique to the Trio family.  

Running the genotypes was performed by Brian Kirkpatrick and the corresponding genotypes 

were assessed by both of us. Thus far the genotypes are descriptively in accordance with the Trio 

allele phenotypes. Additionally, the other populations all show the single band for the A allele, 
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indicating this may be the causative mutation, but the underlying mechanism is still unknown. 

Questions remain on if and how it affects SMAD6, the candidate gene of interest, and further 

tests will need to be done to figure that out.  

While the exact mutation was not identified, there is a strong possibility that the SNP I found is 

linked in someway to the Trio allele. Limitations in this work have been mostly time, funding, 

and computing resources. The COVID-19 pandemic really halted progress and forced extensions 

on a lot of projects. Time lost figuring out the computing resources that were not there to 

perform assembly in-house, along with slow run times on some of the variant calling also 

hindered progress. 

VI. Wrapping up 

While many of my studies have left doors open, they have helped create bridges for future 

directions. My work with the twinning project provides an updated estimate of twinning 

heritability and repeatability. It also provided a location for further study on chromosome 11 and 

two positional candidate genes. This location also has recently been indicated as an area of 

interest by another group in a different population of cows. The CNV work provided additional 

information on limitations and knowledge gaps on software for CNV detection. It also increased 

the amount of data available in the variant archive and sequencing archives, allowing future 

researchers to utilize this information for their studies. And lastly the Trio allele work generated 

one SNP of high interest but also hundreds of other variants that may be looked at in the future. 

Four of these events stand out because they were not present in the 1000 Bulls genome database 

but were not looked at further here due to their locations being outside the 1.2 mb region of 

interest. Genetics influences many aspects of life as its building blocks. In studying its role in 

reproduction, we move towards improving the health and well-being of our animals. We can 
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capitalize on non-invasive means of care and increase our own knowledge and understanding of 

the mechanisms driving the reproductive cycle.   
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Chapter 7  

Conclusions and future directions   
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 Cattle production, both milk and meat, functions as a direct result of successful 

reproductive events. Looking at potential genetic mechanisms that underline events such as 

multiple births, embryo lethality, and ovulation rate provide can increase subject knowledge and 

provide tools for producers to use in making breeding selections. At the conclusion of the 

twinning research, a new estimate of twining rate heritability and repeatability using 1.44 million 

North American Holstein calving records were generated using both a linear and threshold 

model. This is one of the first times repeatability of twinning has been reported using a threshold 

model. Additionally, a region on BTA11 from 28-32 Mb was identified to be significantly 

associated with sire daughter averages for twinning rate. Within this region are two candidate 

genes of interest, FSHR and LHCGR, which are involved in folliculogenesis. The estimation of 

genomic predictions showed an accuracy of ~40% when using older sires to predict newer ones. 

Results from the copy number variant analysis using whole genome sequencing added 468 new 

variants to the variant archive, and 33 potential deletions to screen further for embryo lethality 

potential. Finally, the work on the Trio allele showed that haplotype breed background most 

likely comes from Hereford origins. Comparison of two homozygote individuals showed 

congruent results between the short and long read data. Screening variants within the 1.2 Mb 

positional region previously identified against the 1000 Bull Genomes data narrowed the 

potential candidates down to a single SNP.  The exact effect remains unknown, but genotyping 

showed 100% correspondence between the variant and the inferred genotype of Trio 

descendants. Further when genotyping non-Trio descendant populations, it was only present in 

homozygous normal state.  

 For as much as we learned, there is still more to uncover about each of the mechanisms 

discussed. Though a region of interest that harbors two genes of interest was identified, more 
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work is needed to identify how this region influences frequency of multiple births. Further, 

correspondence of the most significant SNP within the region and how it influences prediction of 

twinning and the role it can play in selection. Initial deletion screening only implicated four 

deletions for embryo lethality potential. After further genotyping, none presented with the 

missing homozygotes. A deeper view into the deletions themselves revealed mis-genotyped 

variants with incorrect estimation of breakpoints. This highlights an area of further study – 

improving and benchmarking the quality of current structural variant detection methods used in 

animal breeding. Additionally, looking further into the variants detected to identify phenotypic or 

expression changes caused by these large deletions and duplications. Lastly, screening the other 

33 deletions not tested due to time and funding constraints would be advantageous to rule them 

out as embryo lethal candidates. Regarding the Trio allele causative mutation, a novel variant 

was identified but the connection with SMAD6 overexpression remains elusive. Looking at 

inserting this variant into normal granulosa cells and measuring expression of SMAD6 would 

indicate if it is indeed the causative mutation. Given the use of two sources of sequencing data 

(short and long reads) and a contig was able to span the full 1.2 Mb region this screen for 

variants has been extensive. If this novel variant is not causative, then either looking at one of the 

173 SNPs or 15 InDels that overlapped in the 1000 Bull genome data maybe a next step or 

looking outside the region previously indicated.  Utilizing a trio sequence technique (sequence 

offspring and both parents) in the future, should none of the currently detected variants in the 

homozygous half-siblings prove causative, may be an advantageous next step. Improvements in 

sequencing technologies in terms of quality, length and cost would improve detection of variants 

(SNPs, InDels, and structural) and would help all projects when trying to identify underlying 



105 

 

| 1
0
5
 

genetic mechanisms for multiple births, the Trio high ovulation rate phenotype, and screening 

deletions for embryo lethality potential.   
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Tables 

Table 1.1. TGF-β Superfamily genes with known knockout and point mutations related to litter 

size, ovulation rate, or twinning rate across different species.  

Gene Species Mutation Type Phenotype Reference 

 

BMP4 

Primate non-synonymous 

mutation 

Candidate increases TR 106 

Caprine non-synonymous 

mutation 

Candidate increases OR/LS 107 

BMP6 
Mouse Knock out Decreased OR 302 

BMP7 

Rat Over expression Decreased the number of 

ovulated Oocytes 

119 

Porcine  Substitution  Candidate polymorphism for 

LS  

108 

 

 

 

BMP15 

Ovine: 

FecXG 

premature stop Increased OR in 

heterozygotes carriers (+/-) 

and sterility in homozygote (-

/-) 

86,89,91,95 

Ovine: 

FecXO 

non-conservative 

mutation 

Increases OR in homozygotes 

and heterozygote 

86,98 

Ovine: 

FecXGr 

non-conservative 

mutation 

Increases OR in homozygotes 

and heterozygote 

86,98 

Ovine: 

FecXB 

non-conservative 

mutation 

Increased OR in 

heterozygotes carriers and 

sterility in homozygote (-/-) 

89,95 



127 

 

| 1
2
7
 

Ovine: 

FecXI 

non-conservative 

mutation 

Increased OR/LS in 

heterozygotes carriers and 

sterility in homozygote (-/-) 

86,88,89,94 

Ovine: 

FecXH 

premature stop Increased OR in 

heterozygotes carriers and 

sterility in homozygote (-/-) 

86,89,94 

Ovine: 

FecXL 

non-conservative 

mutation 

Increased OR in 

heterozygotes carriers and 

sterility in homozygote (-/-) 

86,89,99 

Ovine: 

FecXR 

17 bp deletion: 

premature stop 

Increased OR in 

heterozygotes carriers and 

sterility in homozygote (-/-) 

86,96,97 

Ovine: 

FecXBar 

Non-conservative 

substitution, 3 bp 

deletion, and 

frame shift 

insertion  

Increased OR in 

heterozygotes carriers and 

sterility in homozygote (-/-) 

100 

Primate non-synonymous 

mutation 

Candidate increases TR 106 

Mouse Knockout  Subfertility in homozygotes; 

LS reduction  

114 

 

GDF9 

Ovine: 

FecGH 

non-conservative 

mutation 

Increased OR/LS in 

heterozygotes and sterility in 

homozygote carriers 

86,89,95 

Ovine: 

FecGT 

non-conservative 

mutation 

Increased OR/LS in 

heterozygotes and sterility in 

homozygote carriers 

86,104 

Ovine: 

FecGE 

non-conservative 

mutation 

Major increase in OR in 

homozygotes and minimal 

increase in OR in 

heterozygotes 

86,105 



128 

 

| 1
2
8
 

Ovine: 

FecGF 

Conservative 

mutation 

Increases OR in homozygotes 

and heterozygote 

102,103 

Ovine: 

FecGV 

Non-conservative 

mutation 

Increase OR in heterozygous 

carriers  

303 

Ovine: 

FecGI 

Conservative 

mutation  

Increased OR in heterozygous 

carriers with lower OR in 

homozygous carriers 

304 

Ovine:  

Novel 

Synonymous 

mutation  

Additive candidate mutation 

to high fecundity in Hu sheep 

breed 

85 

Bovine Nonsynonymous 

mutation 

Candidate increase TR  109 

Human Deletion/insertion 

(3): stop codon 

Candidate for TR  110,111 

Human Missense 

mutation (4) 

Candidate for TR  110 

Mouse Knockout Infertility in homozygotes 113,114 

 

BMPR1B 

Ovine: 

FecBB 

non-synonymous 

mutation 

- Additive increase in OR 

based on number of mutated 

alleles 

86,88–93 

Porcine Non-coding 

mutation 

Candidate for LS  112 

Mouse Knockout Infertility – homozygotes 

(fertilization issues)  

305 

SMAD2/3 
Mouse  Conditional 

Knockout  

Reduced OR and LS in cKO 

of both SMAD2 and SMAD3 

118 

SMAD3 
Mouse Deficient  Reduced fertility in deficient 

mice 

117 
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SMAD6 

Bovine Over expression  Increases OR and TR in 

homozygotes of the allele and 

heterozygote carriers 

54,122,123 

ACVR2 

Mouse Knock out FSH suppression leading to 

disruption of estrous cycle 

and increase atresia of 

follicles  

116 

TGFBR2 

Ovine Synonymous 

mutation  

Additive candidate mutation 

to high fecundity in Hu sheep 

breed 

85 
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Table 1.2. Documented QTLs in cattle for TR and OR based on microsatellite data from Animal 

QTL database or literature review. 

BTA 

Number 

of TR 

QTL 

Total 

number of 

QTLs 

QTL by location 

cM 
Candidate gene(s)1 References  

1 1 1 83.69-83.89  189 

5 

2 2 ND  188,190 

3 5 24.30-25.80   306  

2 3 29.91-33.92 SOCS2 253,306 

4 4 36.07-47.23  253 

7 7 56.63-90.84 IGF1 202,203,252–254 

0 1 98.00-126.00   251 

6 
1 1 26.68-28.88   189  

1 1 43.07-43.27   189  

7 

0 1 3.01-3.21  WNT3A, WNT9A 251  

2 3 27.06-31.60  189,251 

2 2 53.63-71.02  FGF1 189 

1 1 116.60-124.90    252  

8 
1 1 25.89-26.09   189 

1 1 92.70-122.90   204  

10 1 1 35.07-44.25   204  

12 1 1 0.00-15.11   252  

13 0 1 ND   188  

14 2 3 51.94-83.93   189,204,307   

15 1 2 ND    188,189  

19 0 1 48.00-80.00   251  

21 1 1 0.00-12.60 IGF1R   204 
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23 

1 1 4.70-11.83  203  

2 2 20.66-42.44  203,252 

1 1 58.19-64.37  203 

1 1 74.08-74.30   189  

29 1 1 29.20-65.64    204 

 ND = not in QTL database 
1 Genes indentified using rough bp location cM/1,000,000 when possible and searched for in 

ARS-UCD 1.2 and NCBI release 106 
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Table 1.3. Cattle QTL TR and OR studies based on SNP data found within the FAANGMINE 

database and updated in ARS-UCD 1.2.  

BT

A 

TR related 

QTL 

Total related 

QTL 

Spanning locations 

(MB)1 Candidate Gene(s)2 Refere

nce  

1 4 4 3.95 - 151.1   132  

2 

2 2 27.4 - 66.5    132 

9 9 112.9 - 113.1  132 

2 2 118.8 - 130.7 SPATA3 132  

3 2 2 97.6 - 105.2    132 

4 
2 2 42.9 - 58.1    132 

2 2 103.8 - 114.5 AKR1D1  132 

5 
4 4 9.1 - 24.5    132 

7 7 64.4 - 117.6 NR1H4  132 

6 
4 4 12.7 - 23.8    132 

2 2 44.7 - 85.5    132 

7 1 1 59.2 - 64.1    132 

8 

1 1 24.07    132 

5 5 52.8 - 63.6  132 

1 1 107.3    132 

9 
2 2 34.2 - 34.6    132 

2 2 81.6 - 90.3    132 

10 
1 2 13.7 - 17.1 

SMAD6*, SMAD3*, 

IQCH 
193  

1 1 65.8    132 

11 

1 1 0.5 - 0.8    132 

3 3 43.0 - 65.6  132 

3 3 93.2 - 104.8    132 
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12 5 5 48.1 - 54.6 NDFIP2  132 

13 
4 4 6.4 - 9.7    132 

1 1 38.9    132 

14 
5 5 12.0 - 20.2    132 

3 3 29.3 -37.5 CYP7B1  132 

15 
1 1 27.8 PAFAH1B2  132 

1 1 77.3    132 

16 2 2 46.7 - 49.2    132 

18 
3 3 6.7-24.7    132 

2 2 42.7 - 50.5 TGFB1*  132 

20 
2 2 22.8 - 37.1    132 

2 2 57.1 - 68.8    132 

21 1 1 44.4    132 

22 2 2 41.5 - 50.8    132 

23 

1 1 19.2    132 

2 2 41.9-48.3 
BMP6*, MAK, 

NEDD9, EDN1 
 132 

24 
1 1 39.5    198 

1 1 62   132  

26 
5 5  5.5 - 28.2    132 

3 3 38.8 - 45.4    132 

27 
1 1 14.8    132 

2 2 22.4 - 23.33    132 

28 2 2  36.9 - 44.8     132 

1 Spanning location includes multiple SNPs all near each other  

2 Genes looked up via NCBI release 106 for functions  

* Member of the TGF-β superfamily  

\  



134 

 

| 1
3
4
 

Table 1.4 Documented QTLs in sheep and swine for twinning rate, litter size, and ovulation rate 

containing genes involved or implicated in reproductive functions. Shaded rows overlap with 

cattle QTL regions.  

Species  Gene Bos taurus locations 

(BTA: start bp – end bp)1 

Reference 

Ovine INHBB2 2: 72108054 - 72113653 87 

Porcine IGFBP2 2: 104619962 - 104648632 135 

Porcine ZFYVE9 3 3: 94012835- 94201474 127 

Porcine INHBA2 4: 79279914 - 79300035 127,128 

Porcine GNRHR  6: 83434759 - 83452222 139 

Porcine TGFBR12 8: 64106861 - 64182858 128,129 

Porcine, Ovine ESR1 9: 88683050 - 89098471 87,128,137 

Porcine SMAD6 10: 13544183 - 13622063 130 

Porcine TCF12  10: 53023354 - 53416751 141 

Porcine, Ovine ESR2   10: 76393666 - 76460150 87,138 

Ovine FSHR 11 31255649 - 31450537 140 

Ovine NCOA1 11: 74447679 - 74666711 87 

Porcine BMP72 13: 58889622 - 58975046 127,128 

Ovine SMAD12 17: 12740787 - 12823219 87 
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Porcine VMP1 19: 10674095 - 10803987 308 

Ovine B4GALNT2 (FecLL) 19: 37390785 - 37466628 87,309,310 

Ovine GHR 20: 31869704 - 32043372 87 

Ovine ZP3 25: 34446154 - 34453895 311 

Porcine IGF2  29: 49395153 - 49422469 134 

1 Location based on bovine assembly ARS-UCD1.2 and NCBI annotation release 106 
2 Member of the TGF-β superfamily 
3 Involved with the TGF-β superfamily directly 
4 Manual exploration of QTLs from Animal QTL Lab (https://www.animalgenome.org/cgi-

bin/QTLdb/index) and FAANGMINE () 

 

  

https://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.animalgenome.org/cgi-bin/QTLdb/index
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Table 2.1. Breakdown of records, herds, animals, and sires per breed with corresponding average 

twinning rates.  

Breeds Herds (no.) Animals (no.) Sires (no.) Total records 

(no.) 

Average 

Twinning 

(%)  

Holstein 3,074 831,579 20,317 1,806,505 - 

Holstein1 1,748 658,436 2,223 1,440,540 4.8% 

Jersey2 491 14,938 1,767 29,378 2.7% 

Brown Swiss2 318 5,466 724 11,725 4.6% 

Guernsey2 80 2,846 357 6,062 3.2% 

Ayrshire2 95 983 258 2,151 2.0% 

Milking 

Shorthorn  

63 563 193 1,359 5.7% 

1 Number of records after removal of herds and sire with less than 100 records. Data used in 

the heritability analysis. All other breeds had fewer than twenty sires after similar editing were 

not used in heritability estimation. 
2 Number of records prior to removal of herds and sires with less than 100 records 
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Table 2.2. The least squares means (LSM) and standard errors (SE) for parity, season and year 

fixed effects.  

Effect1  LSM  SE  

Parity    

  1 0.0030 0.0004 

  2 0.0425 0.0004 

  3 0.0690 0.0005 

  4 0.0763 0.0005 

Season   

  1 0.0459 0.0004 

  2 0.0467 0.0005 

  3 0.0519 0.0004 

  4 0.0462 0.0004 

Year    

  2010 0.0441 0.0008 

  2011 0.0438 0.0006 

  2012 0.0470 0.0005 

  2013 0.0501 0.0005 

  2014 0.0505 0.0005 

  2015 0.0486 0.0005 

  2016 0.0497 0.0005 
1Effects of season, parity, and year were significant (P < 0.0001).  Season 1, December-

February; Season 2, March-May; Season 3, June-August; Season 4, September-November. 

  



138 

 

| 1
3
8
 

Table 3.1. Genomic 0.5 Mb windows explaining > 99.9% of the dataset’s variance. 

  

Dataset - 

Analysis 

BTA Window region (bp) % Variance 

Explained 

Positional 

Candidate Genes 

DSA1  

1 55,834,185 - 56,333,878 Δ 0.7992*    

25 21,068,151 - 21,568,055   0.3862*  

11 31,002,263 - 31,502,083 Δ 0.3516 LHCGR, FSHR 

21 3,678,838 - 4,178,477 0.3451  

15 69,356,243 - 69,855,814 0.3282   

24 30,219,508 - 30,718,316 0.2934 TAF4B 

21 22,103,608 - 22,603,573 Δ 0.2924 ZSCAN2 

29 13,194,498 - 13,694,492 0.2885  

23 28,947,216 - 29,447,202 0.2632  

2 56,060,044 - 56,559,883 0.2617  

4 3,691,381 - 4,191,265 0.2537   

DSB2 

11 31,002,263 - 31,502,083 Δ 0.7520* LHCGR, FSHR 

10 27,530,261 - 28,030,117 0.4096  

18  8,071,002 - 8,570,969 0.3227  

6  9,607,396 - 10,107,227 0.3125  

4  113,464,343 - 113,964,263 0.3053  

24  32,596,784 - 33,096,765 0.2926  

21  22,103,608 - 22,603,573 Δ 0.2757 ZSCAN2 

1  55,834,185 - 56,333,878 Δ 0.2718  

14  24,526,962 - 25,026,602 0.2489  

15  8,959,561 - 9,458,927 0.2466   

6 8,652,990 - 9,152,983 0.2433  
1 DSA = dataset A calving records from 2010-2016 
2 DSB = dataset B calving records from 1994-2008 
 Δ Windows overlap between the two datasets  
* Explained > 99.99% of the dataset’s variance  
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Table 3.2. Most significant SNPs by chromosome from single-step genome-wide association 

study using whole genome sequence. 

BTA 
Location 

(bp) 
p-value1 FDR 

p-value 

DSA1 

SNP 

effect4 

DSA2 

p-value 

DSB2 

SNP 

effect4 

DSB3 

Minor 

allele 

frequency 

2 104826747 
4.78 x 

10-7 

4.89 x 

10-3 

1.20 x 

10-4 

-4.65 x 

10-7 

5.08 x 

10-4 

-4.39 x 

10-7 
0.395 

5 106037831 
1.16 x 

10-7 

2.20 x 

10-3 

4.06 x 

10-4 

4.36 x 

10-7 

3.45 x 

10-5 

5.28 x 

10-7 
0.488 

6 25264112 
3.29  x 

10-7 

4.01 x 

10-3 

7.80 x 

10-6 

-2.66 x 

10-7 

4.46 x 

10-3 

-1.79 x 

10-7 
0.030 

7 44424467 
1.36 x 

10-7 

2.39 x 

10-3 

1.44 x 

10-5 

-3.05 x 

10-7 

1.31 x 

10-3 

-2.23 x 

10-7 
0.08 

9 39650984 
4.28 x 

10-8 

1.66 x 

10-3 

6.41 x 

10-7 

3.81 x 

10-7 

3.45 x 

10-3 

2.27 x 

10-7 
0.103 

11* 29977957 
5.99 x 

10-12 

4.79 x 

10-5 

1.43 x 

10-6 

-5.65 x 

10-7 

4.63 x 

10-7 

-6.01 x 

10-7 
0.349 

11 86316394 
6.38 x 

10-8 

1.89 x 

10-3 

3.73 x 

10-5 

 -4.96 x 

10-7 

2.04 x 

10-4 

 -4.47 x 

10-7 
0.348 

11 40142237 
2.01x 

10-7 

2.94 x 

10-3 

1.68 x 

10-4 

 -3.30 x 

10-7 

1.70 x 

10-4 

 -3.37 x 

10-7 
0.154 

11 24578435 
3.03 x 

10-7 

3.82 x 

10-3 

5.75 x 

10-5 

-3.93 x 

10-7 

7.54 x 

10-4 

-3.45 x 

10-7 
0.211 

14 25256056 
1.19 x 

10-6 

8.50 x 

10-3 

2.40 x 

10-3 

-3.71 x 

10-7 

6.13 x 

10-5 

-5.21 x 

10-7 
0.394 

15 79242162 
4.53 x 

10-7 

4.82 x 

10-3 

1.48 x 

10-6 

6.82 x 

10-7 

1.99 x 

10-2 

3.37 x 

10-7 
0.216 

19 48738300 
4.66 x 

10-9 

1.01 x 

10-3 

4.63 x 

10-6 

4.01 x 

10-7 

1.30 x 

10-4 

3.35 x 

10-7 
0.129 

19 30859152 
9.17 x 

10-9 

1.32 x 

10-3 

4.99 x 

10-6 

-4.80 x 

10-7 

1.93 x 

10-4 

-3.90 x 

10-7 
0.245 

25 20772567 
5.10 x 

10-8 

1.73 x 

10-3 

1.20 x 

10-5 

-4.70 x 

10-7 

5.94 x 

10-4 

-3.66 x 

10-7 
0.253 

25 29826449 
2.82 x 

10-7 

3.64 x 

10-3 

7.78 x 

10-6 

-3.88 x 

10-7 

4.10 x 

10-3 

-2.34 x 

10-7 
0.114 

X 88629215 
1.25 x 

10-6 

8.86 x 

10-3 

2.47 x 

10-3 

 -5.56 x 

10-7 

7.11 x 

10-5 

 -7.36 x 

10-7 
0.434 

1 P-value combined across datasets using a weighted z transformation method via combine.test from package 

survcomp v1.38.0228,229 
2 DSA = dataset A calving records from 2010-2016 
3 DSB = dataset B calving records from 1994-2008 

4 SNP effects ( û ) are estimated from GEBV as follows: 
1ˆ ˆ'( ' )DZ ZDZu q q a−= , where q is weighting factor, 

D is a diagonal weight matrix for SNP, Z is a matrix of gene content adjusted for allele frequency (0, 1, 2, for 

AA, AB, and BB respectively), and â  is the GEBVs of genotyped animals206 

* Indicates most significantly associated SNP out 7,994,662 
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Table 3.3.  Pathways identified as overlapping between newer calving records (DSA) and older 

(DSB) when using the whole genome sequence results from single-step GWAS.  

  

Pathway 

Identification 
Description Database Size 

Order by 

P-value1 

(DSA2) 

Order by 

P-value1 

(DSB3) 

GO:0022412 cellular process involved in 

reproduction in multicellular 

organism 

GOBP 135 

14 24 

GO:0032301 MutSalpha complex GOCC 2 24 44 

GO:0016607 nuclear speck GOCC 124 

3 7 

bta04150 mTOR signaling pathway KEGG 152 4 6 

WP1069 Integrin-mediated Cell 

Adhesion 

WikiPathways 86 
5 5 

user5 prolctin 280991 BL_TR 81 6 1* 

R-BTA-

6805567 

Keratinization REACTOME 108 

7 3* 

1 Ordered first by the P-value of the set rank then the adjusted P-value and lastly the corrected 

P-value 
2 DSA = dataset A calving records from 2010-2016 
3 DSB = dataset B calving records from 1994-2008 
4 Value of high interest found and found in both datasets 
* Value was considered highly of interest based on P-value of set rank < 0.05 OR the adjusted 

and corrected P-values were ≤ 0.001240.  
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Table 3.4. Assessment of accuracy and bias of genomic prediction based on correlation and 

regression analysis of daughter average and genomic breeding value.  

 

 

 

 

 

 

 

 

  

 DSA1 testing, DSB2 training 

 LD 

DSA1 testing, DSB2 training  

HD 

Iteration r3 (SE) β4 (SE) r3 (SE) β4 (SE) 

1 0.4235 (0.025) 0.7171 (0.042) 0.4272 (0.025) 0.7303 (0.042) 

2 0.4242 (0.025) 0.6958 (0.041) 0.4283 (0.025) 0.7075 (0.041) 

3 0.4244 (0.025) 0.6934 (0.040) 0.4286 (0.025) 0.7052 (0.041) 

4 - - 0.4287 (0.025) 0.7048 (0.041) 

1DSA, dataset A, sires with daughters having calving records from years 2010-2016. 
2DSB, dataset B, sires with daughters having calving records from years 1994-2008. 
3Correlation of phenotype (daughter average) and GEBV  
4Slope from regression of phenotype on GEBV. 
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Table 4.1. Read depth for sequenced DNA samples. 

Animal ID Read depth 

JEUSA000000660226  16.18 

JEUSA000000654500  13.57 

JEUSA000000660675  12.55 

JEUSA000000661399  15.56 

JEUSA000000662737  12.91 

JEUSA000000664195  14.04 

JEUSA000067011433  13.71 

JEUSA000067282568  14.69 

JEUSA000110106571  16.49 

JEUSA000110379366  13.19 

JEUSA000110641243  15.90 

JEUSA000110874946  13.59 

JEUSA000110980032  13.29 

JEUSA000111142055  15.56 

JEUSA000113076851  13.24 

JEUSA000116279413  14.55 

JEUSA000111080315  14.59 

JEUSA000113503201  15.80 

JEUSA000111023978  16.61 

JEUSA000113672851  15.46 

MARC_839802  15.04 

MARC_029661  17.18 

MARC_039610  17.31 

MARC_988688  14.64 

C041 46.93 
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Table 4.2. Average number of Copy Number Variants detected by the methods and consensus. 

As well as the average and median size (bp), and average number of deletions and duplications 

per method and consensus. 

  

Method 

Average 

number 

detected 

Average 

size (bp) 

Median 

Size (bp) 

Average 

number of 

deletions 

Average number 

of duplications 

CNVnator 3,686 12,737 4,000 2,843 843 

Delly 9,783 1,247,920 2,741 7,133 2,650 

Lumpy – Single 

sample (LS) 
5,430 123,390 660 4,936 494 

Lumpy – 

Populations 

(LP) 

18,442* 280,760 787 15,235* 3,207* 

Consensus 296 2,828 1,287 284 11 

* Results are exact, not averages 
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Table 4.3. Primers designed for PCR-assay genotyping  

 Amplicon Size Primer Sequences 

BTA CNV start 

(bp) 

Tm1 

(°C) 

F&R 

(normal 

template) 

F&R 

(deletion 

template) 

F&D (normal 

template) 

Forward (F) /  

1st Reverse (R) /  

2nd Reverse (D) 

1 21,845,290 62 849 423 533 AGGCTTCACATGGATT

ACCTC / 

GAGGAGGAAGTGGCA

ATCTG / 

GAAATAGGGAAGCAG

CCAGG 

5 75,404,077 59 1341 296 562 GAATCCTGAGACCCAA

GTCC / 

AGGAGAGGGGAAACA

ACCTA / 

GAGTCCTTGCCCTTAA

CCAC  

18 65,442,186 58 798 355 514 GACCCCCAGTTTGATA

GAACA / 

GGTGTCGTCTGCTAGA

TTGG / 

GGCTAGAGAAAGGCTC

GATG  

23 26,626,756 58 6905 486 575 ACCCTAGCATTCCCAG

ACAT / 

GGCCTCAAGAAATCCA

CCAT / 

TTGGAGAGTGCTGATG

GTTG  
1 Empirically determined optimal PCR annealing temperature. 
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Table 4.4. Details on the four embryo lethal candidates PCR genotyped in 96 Jersey cows. 

BTA Predicted 

Start 

Predicted 

Stop 

Predicted 

size 

Corrected 

Start 

Corrected 

Stop   

Corrected 

Size 

Number of 

homozygotes/number 

genotyped 

1 21,845,287 21,845,863 576 21,845,290 21,845,715 426 4/96 

5 75,404,076 75,405,121 1,045 75,404,076 75,405,121 1,045 4/96 

18 65,442,115 65,442,609 494 65,442,186 65,442,628 445 9/96 

23 26,626,756 26,633,190 6,434 26,626,756 26,633,174  6,419  6/96 

  



146 

 

| 1
4
6
 

Table 5.1. Haplotypes in the positional candidate region for Trio, offspring, and mates a,b,c.  

Animal Genotype Haplotype A Haplotype B 

TRIO Carrier 2211122111221111221212112121 2221122112111212221221111121 

FR0015 Dam 

(U019) 

1222112211221112221222212212 1211122112211111112121221112 

S070 Dam 

(U020) 

1222112211221111112121221121 1222112211221111112121221121 

  Paternally inherited haplotype Maternally inherited haplotype 

U004 Carrier 2211122111221111221212112121 2211122111221111221212112112 

U019 Carrier 2211122111221111221212112121 1222112211221112221222212212 

YW059 Carrier 2211122111221111221212112121 2221122112111212221222111112 

OW064 Non-

Carrier 

2221122112111212221221111121 1222112211221111112121221121 

U020 Non-

Carrier 

2221122112111212221221111121 1222112211221111112121221121 

YW020 Non-

Carrier 

2221122112111212221221111121 2221111211212212221221112212 

a 1 corresponds to Illumina 50K genotype chip allele A; 2 corresponds to Illumina 50K 

genotype chip allele B. 
b Shaded gray entries are the haplotype containing the Trio allele  
c Starting SNP, rs29021659 at BTA10:13,644,156 (UMD3.1 location BTA10:13,606,664); 

ending SNP, rs41613055 at BTA10:14,747,084 (UMD3.1 location 10:14,720,037). 
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Table 5.2. Breed results for individuals from the Bovine HapMap data with the at least one copy 

of the haplotype containing the Trio allele after using fastPhase on the merged data of nine 

members of the Trio family and the bovine HapMap data.  

Breed Total num. 

samples of 

breed 

Total num. of 

breed with Trio 

haplotype 

Frequency of 

Trio haplotype 

in Breed  

Percentage of 

samples with 

Trio haplotype 

within breed (%) 

Beefalo 1 1 0.500 100 

Hereford 20 9 0.300 45 

Belgian Blue 4 1 0.125 25 

Beefmaster 20 4 0.100 20 

Normande 20 4 0.100 20 

Charolais 20 4 0.100 20 

White Park 5 1 0.100 20 

Finnish 

Ayrshire 

18 2 0.056 11 

Maine-Anjou 20 1 0.025 5 
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Table 5.3. The variants (SNPs, InDels, and structural variants) detected in C041 and C069 pre- 

quality control filtering, post, narrowing to homozygous only, the resulting overlap, overlap in 

the positional candidate region (BTA10:13629354-14817470) , and final filtering against the 

1000 Bull Genomes project data.  

 SNP InDels Structural Variants 

C041 C069 C041 C069 C041 C069 

Initial detection  

(BTA10) 
269,360 6,030 36,088 1,600 558 816 

Quality control 

filtering 
205,470 3,247 35,145 1,259 NAa NAa 

Homozygous 

Alternative  
93,155 2,611 15,387 948 125 816 

1.2 Mb candidate 

regions 
739 214 149 113 0 29 

Comparison 1,000 

Bull Genomes Run7 
11 8 20 91 NAb NAb 

Overlap  1 0 0 
a Quality control filter was applied during the software implementation prior to narrowing to 

BTA10  
b Comparison with 1,000 Bull Genomes Run7 was not possible do to no corresponding 

structural variant information  
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Table 5.4. SNP (10:g.13828552A>G) genotyping results.  

 Trio descendants inferred genotype Non-Trio relation populations 

Genotype Carrier Non-carrier Hereford 
MARC 

Twinner1 

GG 0 0 0 0 

AG 40 0 0 0 

AA 0 45 98 78 
1 USDA Meat Animal Research Center twinning population 
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Figures 

Figure 1.1. Folliculogenesis of a primary follicle till preovulatory stage or atretic. Cycle consists 

of FSH dependent cohort (A), recruitment (B), selection (C), dominant follicle (D), and either 

atretic follicle (E) or preovulatory (F). The deviation is the time period of drastic change between 

the two largest follicles (green dashed line) and leads to the selection of the dominant follicle.  
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Figure 1.2. The 3-wave cycle in cattle. The blue line indicates progesterone levels, green arrows 

FSH surges, and the black arrow the LH surge.   
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Figure 2.1. (A) Distribution of daughters per sire plotted on a log10 scale. Bars in gray represent 

sires that were kept after removing sires with fewer than 100 daughter records. (B) Distribution 

of records per herd plotted on a log scale. Bars in gray represent herds that were kept after 

removing those with fewer than 100 records. (C) Distribution of the number of calving records 

by parity for the data set before exclusion for low daughters per sire (<100) or low records per 

herd (<100) (n = 1,806,505).  
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Figure 3.1. Results from single-step GWAS using whole genome sequence data. SNP 

significance, as -log10 of the P-value, is shown on the y-axis and SNP genomic locations are 

shown on the x-axis.  A) Manhattan plot of -log10(p-value) from DSA, B) Manhattan plot of the -

log10(p-value) from DSB, C) Manhattan plot of the -log10(weight z-transformed combined p-

values) of DSA and DSB. The top red line indicates false discovery rate (FDR) threshold of 

0.001 and lower blue line indicates FDR threshold of 0.01.   
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Figure 3.2. Variance attributable to 500-kb overlapping windows variance from single-step 

GWAS using whole-genome sequence data. The % variance explained is shown on the y-axis 

and SNP genomic locations are shown on the x-axis. The Blue horizontal line represents the 

threshold for variance falling in the top 0.001% (99.9th percentile) and the red horizontal line 

represents the threshold for variance falling in the top 0.0001% (99.99th percentile). A) Results 

from dataset A calving records, 2010-2016 (DSA). B) Results from dataset B calving records. 

1994-2008 (DSB).  
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Figure 3.3. Results highlighting the two strongest peaks on BTA11 from the combined p-values 

of single-step GWAS using whole genome sequence data. SNP significance, as -log10 of the P-

value, is shown on the y-axis and SNP genomic locations are shown on the x-axis.  Horizontal 

lines denote false discovery rate (FDR) < 0.01 (blue) and FDR < 0.001 (red) association 

thresholds. A) Manhattan plot of associations for BTA11 variants, and B) positional candidate 

gene region (28 to 32 Mb) of BTA11. Variants highlighted by squares fall within the two 

candidate genes LHCGR and FSHR. Those colored pink highlight LHCGR and those colored 

purple highlight FSHR.  
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Figure 4.1. Stacked Venn diagram of the variants used to test validation of the consensus 

method starting from the 740 CNVs found in Jersey cattle and narrowing based on overlapping 

the genomic region encompassing a predicted or characterized gene, the genomic region of a 

characterized gene, functional gene regions (coding sequence, exon, 5’ or 3’ UTR, start or stop 

codon, and/or processed transcripts as specified), and finally those validated by literature review, 

database, or PCR.  
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Figure 4.2. Plot views of one of the four deletions subjected to further testing for embryo 

lethality. A) Is a screenshot from Geneious prime viewer of the Sanger sequencing results 

aligned to bovine reference ARS-UCD 1.2 for BTA18. This shows the new breakpoints for the 

deletion indicated by the black bar. B) Is a screenshot from Golden Helix GenomeBrowse 

visualization tool (Version 3.0.0) of the same region on BTA18 in reference ARS-UCD 1.2. It 

displays three different bulls sequence coverage and sequence pile up. These bulls correspond to 

a heterozygote, normal, and homozygote. The heterozygote and normal bull are Jersey while the 

homozygous bull is a MARC twinner. Black lines indicate where the deletion is located based on 

Sanger sequence data.   
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Figure 5.1. Extent of homozygosity on BTA10 including the positional candidate gene region 

for five individuals homozygous for the Trio allele (sequencing candidates). Genotypes were 

generated from the BovineHD SNP chip (Illumina, San Diego, CA). Shaded blue/gray area 

denotes the positional candidate region and solid black lines indicate regions where genotypes 

were homozygous for each individual.  
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Figure 5.2. Golden Helix GenomeBrowse image of C069 and C041 alignments to ARS-UCD1.2 

from 10:13,447,197 to 14,899,170. In coverage view green indicates reverse orientation reads 

and blue indicates forward oriented reads. C069 only has one read depth being based on the 

alignment of a FASTA file of a single contig making up this region. The thick single black lines 

denote the start (13,629,354) and stop (14,817,470) of the 1.2 Mb region of interest and the black 

box indicates the region for which the haplotype SNPs are located with the vertical lines at the 

start and stop SNPs. The novel SNP in this region (10:g.13828552A>G) is indicated by the 

purple line.   
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Figure 6.1. The different blocks present different DNA chunks within a chromosome. Blue 

blocks represent the father, purple the mom, and the combination of colors their offspring. A) 

Represents no missing blocks – no deletion, B) the father has a missing block that is inherited – 

single copy of the deletion, and in C) both parents have a block missing that is inherited by the 

offspring – double copy of the deletion.  
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Figure 6.2. Depicts a sequence alignment to a reference as puzzle pieces. In part A, there is a 

reference image (left) and different reads from a sample individual at 1x depth (right). Part B is 

those reads aligned to the reference map. It highlights two features and a challenge from dealing 

with short read alignments: repeat regions where reads are ambiguous; duplication where a 

sequence appears more than once; and a deletion where the sequence does not appear at all when 

compared to the reference.   
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Figure 6.3. Depiction of genotyping deletions using three-primer assay and corresponding 

genotypes with blue segments representing chromosome segments inherited from father and 

purple from the mother.   
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Figure 6.4. Diagram explaining how the restriction digest PCR (RFLP-PCR) assay interacts with 

the target region containing the SNP of interest. The enzyme (represented as scissors) only cuts 

where the sequence matches its target site (GATTGTATCT) thus if the variant is nucleotide G it 

will not cut. Next the results are displayed on a gel where bands correspond to the different 

alleles (~400 bp = G and ~200 bp = A). Lastly is the resulting genotype calls followed by their 

characterization to the Trio allele. Highlighted region in the sequence is the SNP of interest.    
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Apendix  

Supplmentary table S3.1: Information regarding the user defined pathways included during the 

pathway analysis. These are pathways of interest owning to connection with folliculogenesis or 

the candidate genes of interest.  

 

  

Pathway 

Identification 

Number of 

Genes 
Description 

Source 

User 1 
53 

Ovarian Steroidogenesis – bta04913 
BovineMine V 

1.6 

User 2 54 User 1 plus the gene GDF9  

User 3 14 GDF9 and BMP15 pathways  Literature review 

User 4 66 User 1 and user 3 (without 

duplicates) 

 

User 5 81 Prolactin signaling pathway  BovineMine V 

1.6 
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Supplmentary table S3.2 Unpublished results of genomic prediction testing using 5-fold cross 

valiations.   

 Validation method – LD Validation method – HD 

DSA1 5-fold cross-

validation 

DSB2 5-fold 

cross-validation 

DSA1 5-fold cross-

validation 

DSB2 5-fold cross-

validation 

Iteration r3,5 β4,5 r3,5 β4,5 r3,5 β4,5 r3,5 β4,5 

1 0.555 

(0.043) 

0.969 

(0.074) 

0.396 

(0.038) 

0.950 

(0.091) 

0.550 

(0.043) 

0.970 

(0.075) 

0.395 

(0.038) 

0.952 

(0.091) 

2 0.557 

(0.043) 

0.952 

(0.073) 

0.398 

(0.038) 

0.934 

(0.089) 

0.552 

(0.043) 

0.953 

(0.074) 

0.396 

(0.038) 

0.934 

(0.089) 

3 0.557 

(0.043) 

0.950 

(0.072) 

0.399 

(0.038) 

0.933 

(0.088) 

0.552 

(0.043) 

0.951 

(0.073) 

0.397 

(0.038) 

0.933 

(0.089) 

4 - - - - - - 0.373 

(0.038) 

0.884 

(0.091) 
1DSA, dataset A, sires with daughters having calving records from years 2010-2016. 
2DSB, dataset B, sires with daughters having calving records from years 1994-2008. 
3Correlation of phenotype (daughter average) and GEBV  
4Slope from regression of phenotype on GEBV. 
5Average across the five testing subsets 
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Supplmentary table S4.1 Primer design for the 10 validation CNVs including the predicted genomic location of the variant, its type, 

the expected product lengths and the validation status.  

BTA 

Predicted 

variant 

start (bp) 

Predicted 

variant 

end (bp) 

Type 

F&R 

Product 

Length 

(normal) 

F&R 

Product 

Length 

(deletion) 

F&D 

Product 

length 

(normal) 

Validatio

n status 

Forward 

primer 

sequence (F) 

Reverse 

primer 

sequence (R) 

Second 

reverse 

primer 

sequence (D) 

4 16,347,345 16,347,873 DEL 1102 574 NA 
Failed - 

off targets 

TCCAGAGA

CTACAGTG

GGAG 

CTCCAGTA

TTGATGCC

TGGG 

- 

6 86,460,133 86,460,644 DEL 1017 506 631 
Failed - 

fixed DD 

TGTTAGTTC

AGCTGAGG

ACG 

TCACTGCT

GAACATTT

TGGC 

GGTGAAA

AGACAGC

CTTCAGA 

7 82,154,890 82,155,697 DEL 1115 308 NA Validated 

CCTGTGTA

GCCACCAT

TCAA 

AGGAAATC

CAAAGTCA

GGCTAC 

- 

11 13,095,979 13,096,992 DEL 1378 365 453 Validated 

TCTTAATCC

GTGGGCTC

CTA 

CTGGGATT

ACGGGAGA

CCTAT 

CAGCCATT

CTGACTGT

GGTA 

20 9,931,216 9,932,200 DEL 1254 270 522 Validated 

TGTCCTGT

ATTTGTGT

GGGTC 

CCAGGCCC

TTATTCTGT

GAC 

CTGCGATG

AACATTGG

GGTA 

20 65,744,143 65,745,214 DEL 1430 359 580 Validated 

ACTAAGAT

CATGGCAT

CTCATCC 

CTTTAGGA

TGGACTGG

GTGGA 

TGACTGCT

CAAAGGA

ATCTGT 
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22 38,000,845 38,027,594 DEL 26934 185 727 Validated 

CAACACTT

ATGAGCTG

GGTGA 

TCCCAAAG

TCATCAGG

CAAA 

TAAACCAG

GCTTGCTT

CAGG 

23 914,957 916,403 DEL 1980 534 830 Validated 

CCAGTAGC

AACTTGTC

CTCC 

AAGCCATA

GCAAACCC

GTAG 

CCTTATGA

TCCAGCAA

CCCC 

23 44,946,422 44,946,933 DEL 932 421 NA Validated 

CACCCAGG

ACTGATCT

TTAGAA 

GAATGGGA

AAGACAGG

GATCT 

- 

26 51,809,137 51,809,870 DEL 1210 477 NA 
Failed - 

off targets 

ACAAATGG

AGACAGAA

GAGGC 

TTGTGAAA

ATGAGACC

CTGGC 

- 

 

 

  


