Specializing C and x86 Machine-Code Software with OS Assistance

by

Michael B. Vaughn

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2024

Date of final oral examination: 01/16/2024

The dissertation is approved by the following members of the Final Oral Committee:
Thomas Reps, Professor, Computer Sciences
Remzi Arpaci-Dusseau, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences

Parameswaran Ramanathan, Professor, Electrical & Computer Engineering

© Copyright by Michael B. Vaughn 2024
All Rights Reserved

To my parents, for everything.

ii

Acknowledgments

I am beyond grateful to so many people. I find that much of the joy in
life is inextricable from its winding nature; we branch off down different
paths, go off into the woods, find an odd little cul-de-sac and gaze at the
flowers. Innumerable meetings and interactions, large and small have
brightened my days over the past eight years, and condensing it into one
or two pages seems a little bit wrong. All that is to say that if you, dear
reader, find that I have missed you, it is not an intentional slight on my
part.

I wouldn’t have completed this without Tom Reps; his patience and
guidance kept me on track throughout the construction of GenXGen,
and his astonishing breadth and depth of knowledge was an invaluable
resource in completing this work. Anybody who’s worked with him knows
he is sincerely, deeply, committed to his students’ success, and it shows in
his (seemingly indefatigable) work ethic. I am grateful for his advice on
good academic writing, on how to break down a research problem, and
for our chats on a little bit of everything: math, literature, theater, travel,
life in general. I also wouldn’t have found my way into computer science
research without the mentorship of Remzi Arpaci-Dusseau in undergrad,
and he has been a source of good advice in the years since. I am also
thankful for my other committee members, Parmesh Ramanathan and
Somesh Jha for their advice and insight.

One of the joys of working in the PL group at UW is how friendly and

iii

warm the community is. There were so many people I've bounced ideas off
of, groused about bugs to, and generally just enjoyed the company of in my
time here. Loris D’Antoni’s mentorship early in my PhD was invaluable,
and not many faculty members anywhere have such an excellent repertoire
of close-up magic. My officemates John Cyphert and Jordan Henkel,
who are just plain kind and funny, and generally two people you are
glad to (Tom, please ignore the rest of the sentence) do the weekly Ken
Jennings Trivia Newsletter with/chat about film and video games with/get
a whiteboard lecture on general relativity from. Jason Breck is one of the
kindest and most encouraging colleagues around, and a great person to
run ideas past. David Bingham-Brown is a C++ wizard who helped me
debug some truly gnarly stuff, and is always game for a chat aboute.g., your
favorite 60s/70s session musicians. Tom Johnson, Eric Schulte, Junghee
Lim, Chi-Hua Chen, Evan Driscoll, and many others at GrammaTech were
great help in troubleshooting my increasingly arcane STK scripts and
helped save me untold hours. There are also so many great staff members
in the department: Angela Thorp and Gigi Mitchell are tireless, immensely
helpful, and great conversation.

I would also like to thank all of my friends and family. My parents,
who I love dearly, instilled an appreciation for education — and more
importantly, curiosity — in me from a young age. Their kindness, warmth,
and encouragement helped me throughout grad school. I have so many
friends, I don’t even know where to start. Jon Sieg is basically my brother,
and we’ve shared so many road trips and pizzas. Of course, I can’t leave
out the rest of my friends from our decade-old group chat. Joe Bogumill,
Scott Ondracek, and Tyler Blach are some of the funniest, most encouraging
people around. Liz Keyes and Nate Arendt are two of the kindest people I
know, and I'm grateful for giving me an excuse to run off and dogsit for
many an afternoon. I also want to thank Mary Pei for her encouragement

over the years, it’s great having a PhD student from a wildly different part

iv

of academia to commiserate with. Finally, thanks to Roger Pei, Eric Britigan,
Laraine Zimdars, Allison Neumann, Matt Borysewicz, Jack Ehlers, and
Darcy Strayer for being so wonderful, open-hearted, and encouraging.
Here’s to many more years of Summer Friendfest.

This work was supported, in part, by a gift from Rajiv and Ritu Batra;
by ONR under grants N00014-17-1-2889 and N00014-19-1-2318; and by
the UW-Madison OVCRGE with funding from WARF.

Contents

Contents v

List of Tables viii
List of Figures ix
Abstract xvii

1 Introduction 1
1.1 Ouerview of Problems 9
1.2 Owerview of Results 23
1.3 Thesis Organization 30

2 Background 31
2.1 A Précis on Partial Evaluation 31
2.2 Slicing Overview 49
2.3 Rabin fingerprinting 63
2.4 Pointer Symbolization 78

3 OS-Assisted State Management 80
3.1 Issues With Prior Snapshot Approaches 82
3.2 The Process Abstraction on x86 Linux 86
3.3 Using OS Mechanisms to Implement Incremental State Hash-
ing 90

3.4
3.5

Vi

Incremental Updating of State Hashes 94
Discussion 95

The Ge-Gen Algorithm 97

4.1
4.2
4.3
4.4
4.5

Summary of Slicing as a BTA Algorithm 98
Polyvariance Overview 100

A Slice-Materialization Algorithm 103

The Ge-Gen Algorithm 106

Discussion 116

Pragmatics 118

5.1
5.2
5.3

Generating-Extension Runtime 118
Ge-Gen 135
Handling Procedure Calls 147

Experimental Evaluation 152

6.1
6.2
6.3
6.4

Research Questions 153

Experimental Setup 159

Evaluation 167

Experimental Evaluation of GenXGen[mc] 198

Related Work 216

7.1
7.2
7.3
7.4
7.5

Specialization of C and LLVM Bytecode 217
Specialization of Machine Code 219
Manipulations of Memory Snapshots 220
Recording States 222

Symbolic/Concolic Execution 222

Conclusion 225

8.1
8.2
8.3

Contributions 226
Limitations and Challenges 227
Future Directions 234

8.4 Concluding Notes 244

Bibliography 246

vii

viii

List of Tables

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

21

(a) String-matching program match; (b) match partially evalu-
atedonp = "hat".
A generating extension that specializes match with respect to
concretevaluesof p.. o
(a) A standard forward slice, which exhibits the parameter-
mismatch problem. (b) The results after applying Binkley’s
algorithm to eliminate the parameter mismatch.
(a) b a procedure with control-flow governed by dynamic state.
This cannot be specialized via simple straight-line execution
over static state. (b) The desired specialization of b with respect
tos =56, . .
(a) £, a procedure whose loop can be partially unrolled. (b) A
possible f specialized with respecttov = 0,L = 2..
(a) and (b) are the respective original and residual versions of
ffromFig. 1.5 o
(a). The Binkley slice from Fig. 1.3(b) in§1.1.1. (b) The forward

ix

data-dependence slice on a polyvariant version of the program. 24

(a) String-matching procedure match; (b) the CFG of match. .

32

2.2

2.3
24

2.5

(a) The CFG of the residual program (in structured program
form). (b) The residual program in the form of a structured
program. (This version is given for the sake of pedagogical
clarity. As will be seen, the true residual program is in unstruc-
tured form.)
The residual string matcher in unstructured form.
Portions of a C-Mix-style generating extension for match from
Fig. 2.1, where S = {p, pat}. The remainder of the generating-
extension code is presented in Fig. 2.5. Each handle_block_n
procedure produces a specialized version of a block on a state.
Statements in bold produce the code of the residual program.
Statements in boxes correspond to program elements in boxes
in Fig. 2.1(a) (i.e., elements that depend on the dynamic formal
parameter s). They are emitted to the residual program along
with additional statements that direct the flow of control in
the residual program. The match_ge procedure uses the work-
list of outstanding block/state pairs to marshal the program
specialization. oo oo
Portions of a C-Mix-style generating extension for match from
Fig. 2.1, where S = {p, pat}. The remainder of the generating-
extension code is found in Fig. 2.4. Each handle_block_n pro-
cedure produces a specialized version of a block on a state.
Statements in bold produce the code of the residual program.
Statements in boxes correspond to program elements in boxes
in Fig. 2.1(a) (i.e., elements that depend on the dynamic formal
parameter s). They are emitted to the residual program along
with additional statements that direct the flow of control in the

residual program.o Lo oo

45

2.6

2.7

2.8

29

2.10

211

212
213

3.1

3.2

Xi

(a) The forward slice of procedure a with respect to formal
parameter d. (b) The PDG for procedure a. Dotted edges
denote a transitive dependence only on s. Solid edges denote a
transitive dependence on d. Solid vertices are in the slice. . . . 53
(a) Procedures p and q from Fig. 1.3. (b) The subset of the
SDG corresponding to the shown portions of p and q. Solid
lines denote regular dependence edges, dashed lines denote
summaryedges. Lo Lo 54
(a) A standard forward slice, which exhibits the parameter-
mismatch problem. (b) The results after applying Binkley’s
algorithm to eliminate the parameter mismatch. 55
The subset of the PDG corresponding to the code in Fig. 2.8(a).
Because the slice begins in p, and thus formal-to-actual-out
edges can only traversed upwards from p during the execution
of the slicing algorithm, the p-to-q output edges are elided.
Bold lines denote edges traversed in the computation of the
slice, and solid vertices denote vertices in the slice. 56
The graph-reachability slice of the polyvariant version of the
code from Fig. 2.8. The procedure q has been replaced by a new

copy foreachcall-site. 59
A recursive procedure whose binding-time pattern depends

oncallingcontext. L. 59
Copies of rec in the infinite inliningof rec 61

A polyvariant version of Fig. 2.11 that yields the desired result. 62

Diagram of how the ideas that support our memory-
management technique fit together. (1) Ideas used to save
and restore program states efficiently; (2) ideas that support
an efficient means for determining whether a state has repeated. 80
An example virtual-memory configuration for two three-page

processes, A and B in a system with n physical pages. 87

3.3

4.1

4.2

4.3

4.4

4.5
4.6

51
52

5.3

The state of virtual memory before (a) and after (b) a CoW
fault. Configuration (a) denotes the state of memory immedi-
ately after A calls fork, and (b) denotes the state of memory
immediately after child process A’ writes to virtual page As. .

The data-polyvariant residual versions of block 4 from
Fig. 1.1(b) produced by the generating extension in §2.1.5,
along with the state that produced the variants.
The specialization slice results for rec and swap from Fig. 2.11.
When considered as BTA results, these results are binding-time
polyvariant. Each set Syariant name re€present a single procedure-
variant slice result encoded in the result automaton R.
The materialization of the slicing results in Fig. 4.2, pictured
along with the result set corresponding to each variant.
A program in which p does not have a null slice result, while q
does.
the CFG of match from Fig.2.1.
Blocks from Fig.2.1.

The three classes of lifts.
Without stack zeroing, specialization of procedure do_loop
explores many semantically redundant states.
The post-states after executing branches 1, 2, and 3, respectively.
The arrows denote the stack-frame pointers after returning from
the respective procedure calls in each branch. The x86 stack
grows downward, so the contents of memory below the pointer

arenolongervalid.

Xii

90

102

134

54

5.5

5.6

5.7

5.8

5.9

6.1

6.2

The post-states enqueued after specializing the loop body with
respect to Fig. 5.3(a). The arrows denote the stack-frame pointer
after returning from the procedure calls in each branch. The
x86 stack grows downward, so the contents of memory below
he pointer areno longervalid.
The sequence of steps for specializing a program with GenX-
Gen[C]. The boxed items, (1), (2), and (3) require the ability
to replay the build of a C project.
Body of the naive string matcher’s inner loop. Boxed instruc-
tions are dynamic, double-boxed instructions have their desti-
nation operands lifted, and the remainder are static.
The machine-code generating extension block-procedures pro-
duced for the code in Fig. 5.6, with label-generation, jump-
generation, and worklist-manipulation pseudo-instructions
elided.
Code that illustrates several subtle issues with code generation
for procedure calls. Note that the printf statement in block 2
is tagged as dynamic even though its arguments are static, so
that an occurrence of the printf statement will appear in the
residual program. L L

Incomplete code for the specializationof fons = 1..

The first two programs (a) P; and (b) P, in the worst-case-
slice program family, along with the sets of slice results for the
different variants of procedure R, (at the bottom of the call
hierarchy) produced by specialization slicing. The boxed lines
denote the source statements for the specialization slice.
Three example procedures from the materialization of the spe-
cialization slice of P2in Fig. 6.1

Xiii

136

143

6.3

6.4

6.5

6.6
6.7
6.8

6.9

6.10

6.11

Xiv

Time to perform a full ge-gen on the BusyBox applets. The
colored regions break the time down into the eight phases
described in RQ1 in §6.1: The bottom bar is the make tracing
step (step 1). The orange bar is the preprocessor expansion
(step 2). The green bar is construction of the SDG and PDG
(step 3). The red bars are for specialization slicing (step 4).
The purple bar is reachability pruning (step 5). The brown bar
builds a new CodeSurfer project for the materialized slice (step
6). Steps 7 and 8 are folded into a single light pink bar, and the
times for those two steps are shown in Fig. 6.4. 169
Time to produce generating extensions for the BusyBox applets
from specialization-slicing results. 170
Time to produce generating extensions for the microbench pro-

GraIMS. e 171
Timing results for the worst-case microbenchmark family. . . . 172
The effects of specialization slicing on code size. 173

The size of the base program and the materialized slice results
for programs P; through Pjp from the slice-materialization mi-
crobenchmark described in§6.2. 175
Run times for the generating extensions for the microbench-
marks, along with run times for the original and residual pro-
grams (with 95% confidence intervals). 177
Run times for the generating extensions for the BusyBox applets,
along with run times for the original and residual programs
(with 95% confidence intervals). yes is a program that prints
repeatedly until killed, so times are marked N/A. 178
Average time to hash a single page, average number of page
hashes per block, and minimum and maximum hashes com-
puted in a single block for the generating extensions for the

microbenchmarks. 179

6.12 Average time to hash a single page, average number of page
hashes per block, and minimum and maximum hashes com-
puted in a single block for the generating extensions for the
BusyBoxapplets. Lo oo

6.13 Execution times of original and residual programs in nanosec-
onds as input size in bytes is increased. Black lines denote 95%
confidenceintervals.

6.14 Execution times of original and residual programs in nanosec-
onds as input size in bytes is increased. Black lines denote 95%
confidence intervals.

6.15 Execution times of original and residual programs in nanosec-
onds as input size in bytes is increased. Black lines denote 95%
confidenceintervals.

6.16 Sizes of original and residual BusyBox applets. The column
labeled “size,” which gives the sum of the values in the columns
to the right, is a measure of overall program size

6.17 Sizes of original and residual microbenchmark programs. The
column labeled “size,” which gives the sum of the values in
the columns to the right, is a measure of overall program size.

6.18 Procedures not present in the residual program, as a fraction
of procedures in the original program. (Larger numbers are
better. The horizontal line shows the geometric mean.)

6.19 Blocks not present in the residual program, as a fraction of
blocks in the original program. (Larger numbers are better.
The horizontal line shows the geometric mean.)

6.20 Run times and space usage for each generating extension, with
and without CoW/fingerprinting. Run times for original and
residual programs are also included, with 95% confidence in-

tervals (“—” means “not measured.”)

XV

190

. 192

Xvi

6.21 Comparison of the number of instructions in the original and
residual programs.o L o oL 213

6.22 Comparison of the number of procedures and call-sites in the
original and residual programs for the feature-removal examples.213

Xvii

Abstract

There is an intrinsic tension between the incentives for developers of
commodity software and the desires of users of commodity software. De-
velopers of commodity software must support a multitude of users and
use cases, and must often develop and maintain large sets of optional
features to address and anticipate diverse use cases. Individual organi-
zations and users often have specific, well-defined use cases that depend
only on a subset of a program’s features. From the perspective of the end
user, unused features constitute bloat, which has ramifications in terms of
program size, performance, and attack surface. Thus, for end-users, it is
desirable to have an automated means of producing programs specialized
for their use case.

One means of performing program specialization, is via a partial eval-
uator. A partial evaluator takes as input a subset of a program’s input
(referred to as static input), and identifies a portion of the program’s text
that can be executed safely on the static input. The partial evaluator ex-
ecutes the “safe” portion of the program on the static input, performing
an exploration of the partial program’s state-space. In the course of this
state-space exploration, the partial evaluator simplifies the the program,
using information computed from the static input. Partial evaluation can
remove unreachable code, and perform optimizations such as constant
propagation, loop-unrolling and function inlining. For low-level languages
such as C and machine code, performing partial evaluation on programs

XVviii

of non-trivial complexity requires solving problems related to the state-
space exploration of partial programs, particularly (i) saving and restoring
program states, and (ii) identifying previously visited states.

In this thesis, I describe GenXGen, a system for partially evaluating
programs written in C and x86 machine code. With GenXGen, I improve
on the state-of-the-art for problem (i) by creating an OS-assisted mech-
anism to save and restore states. By using additional information made
available by the OS, I improve on previous techniques for problem (ii) by
using incremental-hashing techniques to implement an O(1) technique for
identifying previously visited states (with high probability). In addition,
I improve on the scalability of existing tools by using program-slicing
techniques to identify the “safely executable” portion of a program’s code.
These techniques allow GenXGen to produce specialized versions of real-

world Linux programs.

Chapter 1
Introduction

Commodity software poses a quandary for the performance and security-
minded. The received wisdom in systems design is that the end user knows
their workload best, and thus is best suited to make, e.g., performance-
relevant design choices [Saltzer et al., 1984]. However, software is complex,
money and developer hours are finite, and thus organizations necessarily
rely on commodity programs and libraries for the majority of their needs.
Widely adopted commodity software, by its nature, tends to support large
sets of features to meet the diverse use-cases of end-users. However, any
given user may only need a subset of a program’s features.

Unused features constitute “bloat” in terms of binary size, program
performance, and attack surface. Users may configure a program via flags
or configuration files, thus incuring overhead in terms of parsing and dis-
patch code. Given better knowledge of a given workload, a developer may
have been able to, e.g., unroll program loops or hard-code pre-computed
data into the program. Moreover, attackers may attempt to re-activate
unused code, directly as in cypher-suite downgrade attacks, or indirectly
as raw material for, e.g., ROP attacks.

A means of producing specialized versions of programs that only

include features relevant to a given use case would be a useful tool for

simplifying and hardening COTS software. In particular, given certain
configuration settings, a developer or administrator may wish to remove
features irrelevant to their particular configuration, thereby improving
space usage and performance, and reducing the program’s attack surface.

Constructing a tool that provides this “debloating” functionality is
an instance of the general problem of constructing program specializers. A
program specializer can be thought of as a program that, when provided
with a program P and concrete values for some of P’s input, produces a
new program P’. This new program is specialized with respect to the
static concrete inputs.

For example, consider the problem of specializing a substring-matcher
with respect to a given target string. The C procedure match in Fig. 1.1(a)
is an implementation of an O(|s|[p|) naive substring-matching algorithm.
It returns 1 if and only if the string pointed to by s contains the string p as
a substring. Note that s and p are presumed to point to valid C strings,
and thus match terminates whenever the null terminator (ASCII 0) for s
is encountered.

We may wish to specialize match with respect to the case where p
points to the string “hat”. One possible specialized program for this case
is illustrated by the procedure shown in Fig. 1.1(b). In this version, the
inner loop has been unrolled, and all manipulations and uses of pat and
p have been eliminated: the characters in “hat” are hard-coded into the
tests in the specialized procedure.

One approach for obtaining the procedure match_s from match and
the input pattern “hat” is partial evaluation. A partial evaluator is essentially
a non-standard interpreter for a programming language, which executes a
program over partial states, and at each program point simplifies the current
statement with respect to the current partial state. More specifically, a
partial evaluator is a program that takes three inputs:

1. A program to specialize

int match_s(char *s){

_ while(*xs != 0){
int match(char *p,) { char *si = s;

’While(*s 1= O)‘{ if (sl !'= ’h?)
’char *sl = s; goto 1;
char *pat = *p; sl++;
while(1) { if(xs1 1= ’a’)

if (xpat == O) goto 1;

’if(*pat I= *s1) goto 1; sl++;
if(xs1l 1= ’t?)

pat+t; |sitt; goto 1;

} sl++;
1: stt; return 1;
1: s++;
}
by return O;
}
(a) (b)

Figure 1.1: (a) String-matching program match; (b) match partially evalu-
ated onp = "hat".

int gen_match(char *p){
printf ("int match_s(char *s){\n");
printf ("while(*s != 0){\n");
printf ("char *sl1 = s;\n");
char *pat = *p
while(1){
if (xpat == 0){
printf ("return 1;\n")
break;
}
printf ("if (%d != *s1)\n", *pat);
printf("goto 1;\n")
pat++;
printf ("si++;\n")
}
printf("1l: s++\n")
printf ("}\n")
printf("return 0;\n")
printf ("}\n")

Figure 1.2: A generating extension that specializes match with respect to
concrete values of p.

2. A partition of the program’s input variables into static and dynamic

sets.
3. A concrete assignment to each variable in the static set.

For every point in the program, a partial evaluator extends the partition
of input variables into static and dynamic sets to cover all of the variables in
the program. For each point in the program, the partial evaluator identifies
all variables that depend solely on the static input variables, placing all
such variables in the static set. Conversely, any variables that cannot be
computed based solely on the static set are placed in the dynamic set.

In the case of match, the static input set consists of p, while the dynamic
input set consists of s; the static set can be safely extended to contain pat,
and the dynamic set is extended to contain s1. The concrete assignment
to variables in the static input setisp = "hat".

The partition of the program variables is such that every unboxed
statement and expression in Fig. 1.1(a) can be evaluated over partial states
consisting of concrete values of p and pat. Informally, a partial evaluator
executes the inner loop of match_s, and simplifies the boxed statements
with respect to the current value of pat at each iteration. Each time the
loop body is evaluated in the course of unrolling, the statement if (*pat
= xs1) goto 1; can be simplified by substituting the concrete value of
*s1 into the condition.

In general, a partial evaluator may be able to identify parts of a pro-
gram’s control-flow graph (CFG) that are unreachable given particular
configuration settings, and produce a residual program that does not con-
tain the identified parts. Moreover, code in the program that is dependent
solely on the static inputs can be executed by the partial evaluator, and
elided from the resulting specialized program. In practice, these abilities
allow a partial evaluator to perform a multitude of optimizations, without
the developer of the partial evaluator needing to write explicit implemen-
tations of each optimization [Jones et al., 1993]. For example, a partial

evaluator will perform removal of unreachable code and constant folding,
as well as more sophisticated optimizations, such as loop-unrolling and
function in-lining. For debloating, a partial evaluator can (i) simplify
code so that the resulting program incorporates specific features based on
particular configuration parameters, and (ii) collapse abstraction layers in
the original program via function in-lining.

In some contexts—including in my work—an alternative formulation of
the above approach, based on the creation of generating extensions, is more
desirable. Informally, a generating extension is a program-specific spe-
cializer. For example, gen_match in Fig. 1.2 is a generating extension that
takes a pattern string, and produces a version of match specialized with
respect to the pattern. In particular, when given the inputp = ‘‘hat’’,
gen_match produces the procedure in Fig. 1.1(b).

Generating extensions have the advantage that they can execute as
native programs, avoiding the need to interpret the target language at
specialization time. This avoidance of interpretation can be thought of
as a shallow embedding of the static program in the subject language of
the specializer. The notions of shallow and deep embeddings originate
in research into implementation of domain-specific languages (DSLs)
[Gibbons and Wu, 2014]. An implementation of a DSL is considered a deep
embedding in the implementation language if the developer implements
code mapping DSL source to AST data-types representing the syntax
of the DSL, along with the necessary procedures to implement the DSL
semantics as a traversal of the ASTs. For example, a deep embedding
of a basic language of arithmetic expressions would implement an AST
representing arithmetic expressions, along with per-node code to map
each node to its interpretation.

Thus, arithmetic constants in the DSL would give rise to AST nodes

representing constants, which the semantics would map to arithmetic

values. Similarly, arithmetic operations in the DSL would give rise to
nodes representing operations, with each operand as a subtree, and the
procedures implementing the semantics would map each node to a value
in the implementation language, typically via a recursive traversal of the
AST.

Conversely, an implementation of a DSL is a shallow embedding if DSL
code is mapped directly to operations in the implementation language.
For example, a shallow embedding of a DSL for arithmetic expressions
would simply map the constants directly to numeric constants in the
implementation language, while the operations are mapped directly to the
underlying implementation-language operations;' that is, the DSL code is
translated directly to the implementation language.

Similarly, a generating extension like the one pictured in Fig. 1.2 can
be thought of as a shallow embedding of a C program specializer into
the semantics of C. The key insight, which is subtle but important, is that
given an appropriately chosen partition of the subject program into static
and dynamic sets, such that all static code depends only on statically com-
putable values, the static portion of a program written in language L is a
perfectly usable shallow embedding of itself into L. Similarly, the dynamic
portions, if they don’t contain static values, can simply be wrapped in a
print statement.

Moreover, a pre-made generating extension can be delivered to an end
user who wishes to specialize a program without needing to deliver addi-
tional special-purpose tools for specializing programs. For these reasons,
I chose to work with generating extensions. In particular, I chose to work with
generating extensions for x86 machine-code and C.

For any specialization system to be applicable to non-trivial commodity

software in either C or machine code, three main problems must be solved:

1Or procedures implementing the operations, as in [Gibbons and Wu, 2014].

1. Binding-time analysis (BTA), the process that partitions variables into
static and dynamic sets exerts significant influence on the efficacy
of the subsequent specialization phase. Binding-time analyses that
mark relatively little code as dynamic may cause specialization to
diverge, and overly conservative binding-time analysis that marks
too much code as dynamic limits the amount specialization that can
be done.

2. Implementing the specialization phase that executes the static por-
tion of the program and specializes the dynamic portion entails
solving several state-management issues. In particular, a specializer

must be able to save, restore, and compare program states.

3. Generating extensions must be able to correctly and efficiently use
statically known values to rewrite dynamic code at specialization
time. In particular, heap and stack addresses known at specialization
time cannot simply be written into the residual program. Additional
bookkeeping must be performed to ensure that the address written
into the residual program is a valid reference to the correct residual-
program memory object.

In addition, to be of practical use for specializing commodity hardware,
a generating-extension system targeting C code must be able to produce
generating extensions for programs with numerous .c and .h files, and
whose builds are orchestrated by, e.g., a makefile. Such a system must be
able to extract the appropriate information from the makefile and construct
a generating extension, and the residual code must be in a form that can
be compiled into a working program.

No existing natively-executing generating-extension-based specializer
for C or x86 machine code has addressed all of these in a satisfactory man-
ner. Machine-code specializers such as WIPER [Srinivasan and Reps, 2015]
and LLPE [Smowton, 2014] can handle problems (1), (2), and (3), but are

interpretation-based partial evaluators, rather than generating-extension
systems. Interpretation-based systems are capable of manipulating so-
phisticated representations of state and code, which are unavailable to a
generating extensions in the style of Fig. 1.2, which runs natively on hard-
ware without interpretation. Moreover, these systems handle problem (2)
in an inefficient way, and specialization is, in the worst case, O (N?), where
N is the number of states? that arise.

The state-of-the-art generating-extension-generator for C, C-MixII
[Makholm, 1999], still must resort to interpreter-like techniques to han-
dle problem (3) in many cases. In addition, C-MixII solves problem (1)
with a conservative binding-time analysis that constrains the amount of
possible specialization. Moreover, C-MixII cannot process large programs
produced by make without significant manual intervention, and in practice
struggles to function usefully on programs larger than ten source files.

In my work, I constructed GenXGen, a system that produces generating
extensions that perform classical partial evaluation on non-trivial real-
world programs. In doing so, I constructed a general-purpose langauge-
agnostic generating-extension runtime that can be repurposed for other
low-level languages whose compiled code adheres to the System V AMD64
ABI [Michael Matz, 2012], or other similar C/Unix-style ABL. Moreover,
these generating extensions solve problems (2) and (3), while remaining
a shallow embedding of a program specializer—that is, every expression
from the static portion of the subject program is translated to the generating
extension verbatim, and executes natively. The semantics of the static
statements themselves are not augmented with additional semantics for
saving and restoring states, or operations to aid in computing state equality.
In other words, the essence of my approach is that the generating extension
uses a shallow embedding, where the language of the specializer is native
code, together with the primitives of the underlying operating system.

2In WiPEr, states are represented as AVL trees.

In resolving issues (1), (2), and (3) for GenXGen, I made the following

contributions:

1. Tharnessed an improved method for program slicing to create a more
precise binding-time analysis for generating-extension generation

2. I developed OS-assisted state-representation and state-management
techniques that enable efficient program specialization

3. I developed generating-extension-construction techniques that ad-

mit specialization of non-trivial real-world programs.

GenXGen'’s runtime system, which solves problem (2) efficiently, is
language agnostic. Because of this property, I was able to implement two
different versions of GenXGen: GenXGen[C], a generating-extension sys-
tem for C programs, and GenXGen[MC], a generating-extension system
for machine code.

1.1 Overview of Problems

In its classical formulation[Jones, 1988; Jones et al., 1993] partial evaluation

is implemented as a two-phase process, consisting of:
1. Binding-time analysis (BTA)
2. Specialization

Given the desired partition of the inputs into static and dynamic sets, BTA
extends the partition to the program’s variables at all program points,
identifying variable occurrences that can safely be included in partial
states. The specialization phase executes the program over partial states,
starting with an initial partial state (e.g., [p — “hat”]), simplifying the
program as it executes.

This classical conception of partial evaluation—a transformation that

performs general-purpose computation over a subset of the program, and

10

uses the statically computed values to simplify other parts of the program—
is generally accepted to date back to the 1970s [Jones et al., 1993; Sestoft
and S: Gfndergaard, 1988] in the work of Futamura [Futamura, 1971],
and subsequently explored by foundational authors, including Turchin
[Turchin, 1986], Beckman [Beckman et al., 1976], and Ershov [Ershov,
1977]. Broadly speaking, this view of partial evaluation can be thought
of as implementation-oriented, centered on state-space-exploration and
constant-folding.

Over the subsequent decades, researchers attempted to produce partial-
evaluation systems capable of specializing non-trivial programs written
in industry-standard languages. Tools such as C-Mix and C-MixII, for
example, produce generating extensions for C code, and others have im-
plemented systems such as LLPE for partially evaluating intermediate
representations. These systems, while impressive and technically sophis-
ticated, nonetheless struggle to scale to programs larger than ten source
files, and this style of partial evaluation has found little industrial use.

However, many modern systems, such as PyPy and Trimmer perform
program specializations that produce specialized code that is structurally
similar to that produced by partial evaluators, with, e.g., loop unrolling,
constant propagation, and procedure inlining. In these systems, pro-
gram specialization is implemented in a variety of ways. Some program-
specialization systems, such as Trimmer [Sharif et al., 2018a], are imple-
mented as a collection of disjoint optimizations, each of which is essentially
a more powerful version of a standard compiler optimization, such as loop-
unrolling or constant propagation.

Others, like Truffle, do perform classical partial evaluation over con-
strained subsets of a program’s code. Truffle is a system that takes as
input an interpreter for a language, and produces a high-performance
JIT compiler by partially evaluating portions of the interpreter that was

passed as input. However, even Truffle is not a general-purpose partial

11

evaluator in the sense of Futamura and Jones: it is a partial evaluator for
interpreters, and the interpreters must adhere to a specific "specialization-
aware" coding style.?

The members of this spectrum of modern program-specialization tools
are generally referred to as "partial evaluators," despite deviating signifi-
cantly from the original general-purpose conception of the technique. This
situation is natural and reasonable: in most contexts, producing useful,
fast production software should win out over theoretical purity. However,
the lack of distinction in the techniques used is often a point of confusion
for readers (and writers) of the literature on program specialization.

Thus, for the purposes of this dissertation, the term partial evaluation
will be taken to mean, and used interchangeably with, classical partial
evaluation in the style of Futamura and Jones.

To implement GenXGen, I improved upon the state-of-the-art for gen-

erating extensions in three areas:
1. Binding-time analysis
2. Specialization-phase state management

3. Processing the structure of real-world software projects.

1.1.1 Binding-Time Analysis

In the literature on partial evaluation, there are a variety of methods for
producing a partition of a program’s variables into static and dynamic sets.
Systems such as C-Mix[Andersen, 1994a] have used type-inference, while
others [Jones et al., 1993] have used data-flow analysis, and yet others
have used abstract interpretation [Consel, 1990].

3Jones observed that any interpreter, to be specializable in a meaningful way, must be
implemented in a "specialization-aware" manner. The point here is that the Truffle VM is
specifically a partial evaluator for interpreters, and exposes domain-specific control and
data primitives to the program being specialized, and its architecture cannot be readily
adapted to specialize other kinds of programs.

12

Regardless of the technique chosen, there are many possible partitions
that a BTA algorithm could produce. A BTA algorithm is acceptable for
our purposes as long as the partition that it produces for each program
point is congruent [Jones et al., 1993].

Informally, congruence ensures that in every subject-program state-
ment that updates a static variable, the update to the static variable does
not depend on any dynamic values. A partition of the variable occurrences
at the different program points of p into static and dynamic sets (V; and
V4, respectively) is congruent if at every statement 1 in P where a variable
v € V; is updated, the new value of v is computed solely from variables
in V. Congruence is important because it ensures that the partial state
induced by the set of static inputs can always be safely updated during
specialization.

A BTA algorithm can use forward slicing [Weiser, 1981; Horwitz et al.,
1990] to compute a congruent partition of a single-procedure program.
Given a set of variables V and a set of program points L, forward slicing
computes the the set of program points that may be affected by the values
of V at points in L. For BTA, we compute the forward slice from the
dynamic inputs. The boxed statements in Fig. 1.1(a) show the program
points included in the forward data-dependence slice starting at formal
parameter s.

A congruent partition of the program-variable occurrences is implicit
in the slice. The forward slice contains all assignments to, and uses of,
variable occurrences that are transitively dependent on s, while the com-
plement of the slice contains all assignments to and uses of variable oc-
currences not dependent on s. Thus, to ensure that the specialization
phase only performs safe updates, it executes only the statements in the
complement of the slice. Moreover, slicing can be viewed as an extension
of BTA results from variable occurrences to statements: all statements

dependent only on static state are marked as static; the remainder are

13

int g; int g;
int p(int s,) { int p(int s,) {
d-
d-

int rs, rd; int rs, rd;

res = 0; res = 0;
rs = q(s, [d]); [rs] = q(s, [d];

I
~
Q.
[

T =

rd| = q(@, s); rd| = q(@, s);

-
n
|

rs = g;
res += rs; res += rs;

res += rd; res += rd;

return res; return res;

int b ‘){

return a + 1 ;

int q(’ int a

int b ‘){

return a + 1 |;

int q(’ int a

B
>

(a) (b)

Figure 1.3: (a) A standard forward slice, which exhibits the parameter-
mismatch problem. (b) The results after applying Binkley’s algorithm to
eliminate the parameter mismatch.

marked as dynamic.

However naive applications of forward slicing to multi-procedure pro-
grams lead to the parameter-mismatch problem. Consider the program in
Fig. 1.3, in which we flag d as dynamic and perform a standard forward
slice.

By examination, we can see that the value of rd always depends on d,
while rs always depends solely on s. The standard (summary-edge-based)
forward slice in Fig. 1.3(a) correctly leaves rs out of the slice in p. However,
standard forward slicing is monovariant; in this example, there is only one
version of procedure q in the sliced program, but the slice contains two
different callsites at which q is called, one of which has the first actual-in
parameter % in the slice, and the other has the second actual-in in the slice.

*Actual-in parameters are the expressions passed as parameters at a specific call-site.
Formal-in parameters are the parameters in a procedure’s definition. For example, at the

14

Thus, both formal parameters of q and both statements in q’s body must
be in the slice.

This slicing result violates congruence: both assignments to rs are
dependent on dynamic statements in g, and cannot be safely executed at
specialization time.?

One standard way of rectifying the parameter mismatch problem is
Binkley’s Algorithm [Binkley, 1993]. For every pair of formal and actual-out
parameters for which the formal-out is in the slice, but the actual-out is
not, we perform a forward slice from the formal-out. The re-slicing is
repeated until there are no more parameter mismatches.

However, as shown in Fig. 1.3(b), Binkley’s Algorithm yields extremely
conservative results that are suboptimal for specialization purposes. Here,
congruence is recovered at the expense of leaving no static code that can
be meaningfully eliminated.

The crux of the problem is the aforementioned monovariance of slicing.
A conventional slicing algorithm must incorporate the information from
all of q’s callsites into its only representation of q. What is desired is a
slicing algorithm that can behave as if there are two different versions of
q, one for each binding-time pattern of its input parameters.

Specialization slicing [Aung et al., 2014], operationalizes this idea

first call to q in Fig. 1.3, s is the actual-in parameter in p corresponding to the formal-in a in
g. Symmetrically, there exist formal-out and actual-out parameters: return res defines
an (unnamed) formal-out parameter that represents the return value of q, and there is
an actual-out parameter representing the return value of of q at every call-site. Formal
and actual parameters need not be explicitly defined parameters, either. The program
representation used to compute slices in GenXGen does not have global variables in
the traditional sense: global variables are modeled as local variables passed around as
implicit parameters of the procedures. For example g in p and q is treated as two local
variables passed between caller and callee via implicit actual/formal-in/out parameters.

°Note that the correctness-relevant parameter mismatch in forward slicing is not the
immediately visible mismatch between the formal and actual-in parameters, but instead
the one between the formal and actual-out parameters. This situation is the dual of how
the mismatch problem is conventionally discussed in slicing literature, which frames
the problem in terms of using a backwards slice to identify all program points that could
affect a variable at a given point.

15

with an automata-theoretic slicing technique that produces polyvariant
program slices that produce more precise results than Binkley, but the
slices do not exhibit the parameter-mismatch problem.

1.1.2 Specialization-Phase State Management

Given a partition of program statements into static and dynamic sets, a
program specializer can begin executing static code and simplifying and
emitting dynamic code. However, unlike the program and generating
extension in Fig. 1.1 and Fig. 1.2, not all programs can be specialized
by performing a conventional linear execution of the static subset of the
subject program’s code. Consider the specialization of procedure b in
Fig. 1.4 with respect to x = 5.

void b_s(int d){

void b((int d], int s){ if ()1

int v = 10; goto post_add;
yelse
v += 8; goto post_sub;
Yelsed{ }
v -= 8; post_add: printf("}d", 4 + 15);
goto exit;
’printf("%d", d + v");‘ post_sub: printf("%d", d + 5);
} exit: return;
}

(a) (b)

Figure 1.4: (a) b a procedure with control-flow governed by dynamic state.
This cannot be specialized via simple straight-line execution over static
state. (b) The desired specialization of b with respecttos = 5.

Because v is statically known, the computations inside each branch
can be eliminated, and the value of v can be propagated to the argument
of the final printf. However, normal execution clearly will not suffice
because each branch is dependent on the value of the dynamic variable
d. Moreover, each arm of the if statement yields a different static post

state, with v equal to either 5 or 15. Thus, if a specializer is to carry partial

16

states forward and use that state to simplify later dynamic statements, the
specializer must be able to juggle multiple states at once. In particular, the
partial evaluator needs to be prepared to go both ways at a branch. That
is, the specializer needs to traverse both arms of the if statement, and
produce residual code for each arm, as well as all blocks after the arms of
the if statement.

If one has a state representation that provides a convenient means for
capturing and saving states, it is not so difficult to satisfy this requirement,
which is one reason why most partial resemble interpreters. One can, for
example, modify an existing interpreter to save and restore an interpreter’s
stack representation, along with mappings from symbols to values and
the collection of live heap objects.

In addition, a classical specializer must be able to determine whether
a state has been seen before to avoid producing redundant states and to
ensure convergence where possible. Consider the procedure f in Fig. 1.5.
The general case poses several significant challenges for the implementer
of a classical program specializer. Consider specializing f in Fig. 1.5 with
respecttov = 0, L = 0.

The procedure takes as input d, v, and L, and computes a sum that
depends on all three inputs. In particular, the loop counts down from
d to zero, accumulating every value in the range from d to zero. But,
also, at each iteration the procedure also incorporates v mod L into the
accumulator, and then increments v.

Given the BTA results, we know that the only static variable that
changes is v, and that inside the loop v ranges over {1,2}. Thus, we can
partially unroll the loop body so that it contains one copy of the body for
each value that v takes on. Moreover, f now has two exit points, depending
on the value of v whenever the dynamic counter d reaches zero.

Clearly, this transformation can be done manually based on our rea-

soning, but how do we automate this reasoning? Unlike the example in

17

void f_s(int d){
while(d > 0){

void f(, int v, int L){ sum += 0 + d;

int sum = O; d--;
while(d > 0){ if(d <= 0) goto odd_break;
sum += v + d; sum += 1 + d;
v+t d--;
v=v'% L; +
printf("%d, %d", 0, sum);
} goto exit;
odd_break:
’printf("%d, %d", v, sum); printf("%d, %d", 1, sum);
¥ exit:
return;
}

(a) (b)

Figure 1.5: (a) f, a procedure whose loop can be partially unrolled. (b) A
possible f specialized with respecttov = 0,L = 2.

Fig. 1.1, it doesn't seem immediately implementable as a straightforward
linear execution of a loop. How do we determine when to terminate the
specialization of £?

To solve these problems, the specialization phase of a classical spe-
cializer is implemented as a special-purpose interpreter that performs
a state-space exploration controlled by a worklist of (state, basic block)
configurations. The specializer simplifies and emits code as it explores,
using special state-management techniques to avoid exploring redundant
(state, basic block) pairs.

The specializer interprets the CFG of the program, using a partial
state to track the values of the variable occurrences in the static set. The
interpretation is non-standard because at a condition classified as dynamic,
such as the boxed conditional in Fig. 1.6(a), there are two successor basic
blocks to interpret. A worklist is used to keep track of basic blocks that still
need to be processed. Every basic block is interpreted linearly, statement-
by-statement, and each statement is evaluated in one of three ways.

18

sum = O
d>o F
T
sum = @
1 sum += 0 + d;
d'“)
d>e F
2 - F if d >0
sum += v + d T
V++; sum +=1 + d
v=v5%L; d--;
3 d--
printf(“%d, %d”, sum, 0);
4
printf(“%d, %d”, sum, d); printf(“%d, %d”, sum, 1);

(a) (b)

Figure 1.6: (a) and (b) are the respective original and residual versions of
f from Fig. 1.5

1. All statements marked as “static” are evaluated, and the partial state
is updated accordingly. For example, the statement v++ will cause
the value of v in the partial state to be incremented by 1.

2. Statements marked as “dynamic” are not evaluated, but are emitted
to the residual program instead. For instance, the single occurrence
of “d--" in the original procedure is emitted at two different times
during the specialization of f.

3. However, some statements marked as “dynamic” cannot just be
emitted as is; if a dynamic statement s depends on the value of
a static variable v, the value of v must be lifted into the residual
program’s state at s. Lifting can be performed by replacing every

occurrence of v in the emitted statement with the current value of

19

v. For example, lifting is required for the sum += v + d statement
in the loop body of f: every emitted instance of the statement in
Fig. 1.5(b) has v replaced with 0 and 1.

Unlike a standard interpreter, the specialization phase is prepared to
handle control flow governed by dynamic state. Consider the flow control
statement in basic block 2 in Fig. 1.6(a). Due to the comparison against the
(dynamic) integer d, there is not sufficient information in the partial state
to determine which branch will be taken. Consequently, the specializer
must arrange to specialize the blocks at both successors.

In essence, the specializer needs to “go both ways” when encounter-
ing a branch governed by dynamic state. In practice, the specializer is
generally implemented as a worklist-based algorithm: basic blocks are
specialized and residuated using the approach described earlier; however,
upon reaching a branch classified as “dynamic,” the specializer records
the current state, o, and adds a (o, 1) pair to the worklist for every succes-
sor block 1. The specializer then removes an (s, b) pair from the worklist,
and executes basic block b, starting with state s. Thus, at the basic-block
level, specialization is similar to execution, except that code can also be
emitted; at the end of a basic block, the specializer creates the appropriate
(partial-state, basic-block) pair(s) for the block’s successor(s), and inserts
them into the worklist.

The partial evaluation of f shows that a partial evaluator needs to be
able to check state equality efficiently. Consider the loop in f. Every time
the block constituting the loop body is executed, v is incremented by one
and reduced modulo L. The pair consisting of the state with the updated
value of v and block 2 are enqueued. Every time block 2 is removed from
the worklist, two successors are enqueued: one for the final printf and
one for the loop body; this residuation of the loop body will eventually
lead back to block 2. Thus, a partial evaluator that always enqueues the
successor of block 2 will never terminate, despite the fact that v can only

20

take on the values from Qup toL — 1

To prevent this infinite unrolling, the partial evaluator must be able to
detect duplicate partial-state/basic-block pairs. In particular, the first time
we evaluate block 2, we want to enqueue the pair (o, block 3) where o is
the state mapping v to 0.

After two evaluations of block 3, we have re-encountered the state-
pair (o, block 2). The partial evaluator will not terminate unless it can
determine that (o, block 2) has repeated.

Thus, a worklist-based partial-evaluation algorithm requires two key

state-management features:
1. the ability to save and restore partial states,
2. the ability to efficiently check state equality

When partial evaluation is performed on a program written in a type-
safe high-level language, both features can be implemented in a relatively
straightforward fashion. States can be saved, restored, and compared
by traversing the graph of memory objects induced by the reachability
relation over the static state, in a manner similar to the walk performed by
a mark-and-sweep garbage collector.

However, when creating a program-specialization tool for real-world
programs, one faces a multitude of problems. For programs implemented
in strongly-typed languages, a mark-and-sweep walk requires traversing
all memory objects reachable from the stack. Moreover, for weakly-typed
languages, like C and machine-code, the problems are intensified. In the
general case, it is difficult or impossible to determine whether a value
stored in a memory location or register is a memory address or an integer.
This situation makes it difficult to identify the portion of memory over
which the mark phase should be carried out [Boehm, 1993], and to handle
cyclic data structures. Moreover, when working with machine code, mem-

ory is undifferentiated beyond the coarse-grained divisions into program

21

text, global variables, stack, and heap. Building on mathematical back-
ground described in §2.3, in Chapter 3 I describe state-management tech-
niques that allow for efficient summarization and comparison of weakly-
typed and undifferentiated program states, allowing me to implement

efficient generating extensions for both machine code and C.

1.1.3 Generating Extensions in the Real World

Pointer Lifting. In §1.1.2, I described lifting, the act of using a value
known at specialization-time to rewrite an expression marked as dynamic
by the BTA. Specialization systems such WIPER and C-MixII perform
the sort of lifting shown in Fig. 1.5(b), where variables in expressions
are replaced by concrete values from the static state. When the value is
a pointer,the implementation of lifting becomes more challenging. For
example, in the course of specialization, a static variable p may take on
the address of a heap-allocated linked-list node. However, if the special-
izer encounters dynamic code such as dyn->ptr = p, simply lifting the
concrete specialization-time value of p is problematic. In all likelihood,
the original, and residual programs will have wildly different memory
layouts, and p’s specialization-time address will not reference the same
memory object, if it references valid memory at all.

WIPER and C-MixII address this issue by treating addresses as sym-
bolic. WIPER, by virtue of being an interpreter, is free to represent point-
ers to memory objects as base/offset pairs, and can implement pointer
arithmetic appropriately. C-MixII, despite being a generating extension,
behaves more like an interpreter when dealing with pointer types. Point-
ers reference special-purpose wrapper types, and address arithmetic is
rewritten and is subject to special rules. This approach compromises the
key advantage of generating extensions—namely, that the static portion of
the program is able to run natively on hardware. My work takes a different
approach, eliminating interpreter-like behavior. Addresses are treated

22
normally until the point that they are lifted.

C Generating Extensions and Build Frameworks. As discussed in §1.1,
existing classical partial evaluators for low-level languages like C have
struggled to scale beyond small examples. Beyond the issues of binding-
time analysis and state management, there are other pragmatic issues that
existing systems have not satisfactorily addressed.

First, the current state-of-the-art generating-extension tool for C, C-
MixII, cannot process multi-compilation-unit projects without significant
manual intervention. One must essentially construct a parallel makefile to
the original project, and there is no straightforward way to take C-MixII's
output and reconstitute the residual code into a new multi-source-file-
program. The main problem is that C-MixII’s interface is purely source
level, and has no means of integrating with build systems.

It would be preferable to have a more "turnkey" system, in which a user
provides an initial-binding-time annotation and, e.g., a makefile, and the
system produces a generating extension. Moreover, such a system should
be able to produce residual source code such that the residual program
can be built correctly.

Tools like LLPE and Trimmer can work with large projects. However,
these systems are not generating-extension-based, and instead function as
interpreters that analyze and transform a compiler’s intermediate repre-
sentation (IR), and thus have access to information after the compiler link
phase. Because I am producing natively-executing generating extensions
that performs source-to-source transformations, I do not have this luxury,
and must take a different approach—namely, extracting build informa-
tion from the build process, which is then used to build the generating

extension and the residual program.

23

1.2 Overview of Results

1.2.1 Specialization-Slicing-Based BTA

Consider the (forward) Binkley slice of procedures p and q from §1.1.1,
shown again in Fig. 1.7(a). Because the slice of ¢ must incorporate infor-
mation from all callsites, all output parameters® of q are in the slice, and
the conservative nature of Binkley’s algorithm causes nearly all the code
in p to be put in the slice.

We can obtain better results by creating a polyvariant version of the
program. In Fig. 1.7(b), we have a semantically identical version of the
program, which contains a distinct copy of q for each callsite. Because
each version of q is associated with exactly one binding-time pattern for
its parameters, the formal-outs are guaranteed to match the actual-out
parameters.

In the absence of recursion, inducing polyvariance by making one
copy of every procedure for each of its callsites will produce parameter-
mismatch-free slices that are more precise than those produced by Bink-
ley’s algorithm. However, copying can produce an excessive amount of
redundant code. For example, a two-parameter procedure can have at
most four binding-time-patterns: all parameters are dynamic, one of the
two parameters is dynamic, or no parameter is dynamic. Thus, if there are
more than four callsites, copying is guaranteed to produce redundant code.
This situation could be particularly costly if there are widely reused utility
procedures. Thus, it is desirable to use a slicing strategy that produces a
minimal set of procedure copies.

Additionally, Aung et al. [Aung et al., 2014] observe that due to recur-
sion, naive inlining will not work in the presence of recursion. To produce

polyvariant slices, they propose a new algorithm: specialization slicing.

®Recall that a procedure’s output parameters include not just the return values, but
also global variables and any values or memory regions passed by reference.

24

int g;

int p(int s,) {
d-

int rs, rd; .
res = 0; nt g;

_ ,(@) int p(int s,) {
- aGs, [a]; Pt rs T int qi(int a, [int DDA
rd = g; res = return a + 1;

0;
rd] = q((d], s); rs = qi(s, [d];
; = o }

d =

[
[©]
|
(0]
I

res += rs;

rsdjg_q?@ 5 ine q2(3nt a), int D)
res += rs; ;

g = b;

res += rd;

H

return res;
res += rd;

int q(’int al, |int b‘){ return res;

>

(o)

return a + 1 ;

(-

(o)

(a) (b)

Figure 1.7: (a). The Binkley slice from Fig. 1.3(b) in§1.1.1. (b) The forward
data-dependence slice on a polyvariant version of the program.

Specialization slicing works symbolically, performing automata-theoretic
operations to identify the minimum set of copies of a procedure needed
to capture all possible binding-time patterns induced by the slice sources.
In certain cases, though, given the presence of an n-parameter procedure
specialization slicing can produce 2™ copies. Experimental evaluation
shows that, for the real-world programs tested, worst-case blow-up does
not occur, and the automata-theoretic algorithm comprises a small pro-
portion of the time taken to produce a generating extension. (See §6.3.1
and §6.3.2.)

I give a technical overview of SDGs and the basics of slicing in §2.2.1,
and in §2.2.3 I give a high-level overview of specialization slicing. In
Chapter 3, I discuss the technical details of integrating specialization slicing
into GenXGen. In Chapter 6, I evaluate the effects of specialization slicing
on specialization. In particular, I measure the amount of copied code,
and show that it is relatively modest in practice, with at most 30% more

25

code added, and that the worst-case blow-up does not occur on the real

programs tested.

1.2.2 OS-Assisted State Management

My initial work in program specialization was to investigate the feasibility
of creating a generating-extension generator that produces generating
extensions for x86 binaries, without requiring access to source code. In
particular, my aim was to produce generating extensions that execute as
native x86 binaries. That is, at generating-extension execution time, there is no
need for the generating extension to have a sophisticated semantic model of x86
machine code; the semantic model of x86 comes from the native instruction set,
implemented in hardware.

This approach is fundamentally different from prior approaches
to machine-code specialization. WiIiPER [Srinivasan and Reps, 2015]
is a partial-evaluation-based framework, which is able to leverage
CodeSurfer/x86’s [codesurfer, 2018; Anderson et al., 2003] sophisticated
model[Lim, 2011] of the x86 ISA to interpret the subject program. Other
existing run-time code-generation approaches, such as the one used in the
Fox Project [Leone and Lee, 1996] do produce natively executing generat-
ing extensions. However, they implement a staged-compilation approach:
binding-time annotations must be supplied by the user at the type level in
the source code, and a modified compiler uses source-level information to
produce the machine-code generating extensions.

In addition, because the runtime library that implements GenXGen’s
CFG-exploration is language-agnostic,” I also implemented GenXGen|[C].
GenXGen[C] produces generating extensions for C code, but uses the
same state-management runtime library as GenXGen[mc]. Because of

limitations of the platform on which GenXGen[mc] is based—discussed

7Tt is language-agnostic, modulo the assumption that the language can be compiled
to x86 machine code that uses a conventional ABL

26

in §5.2.2 and Chapter 8—GenXGen|[C] became the primary showcase for
the techniques I developed.
My work addressed the following research question:

Is it possible to produce generating extensions for low-level languages
that (a) specialize non-trivial real-world programs, (b) execute na-

tively, without needing to be packaged with an interpreter, and (c)

perform program specialization in a time- and space-efficient fashion?

Constraints (a), (b), and (c) pose non-trivial state-management challenges
not present when specializing strongly-typed high-level languages. Any
program-specialization tool implementing either the generating-extension
approach or the partial-evaluation approach must address two state-
management problems:

1. A program specializer needs to be able to save and restore program
states efficiently.

2. A program specializer uses a worklist-based algorithm that executes
a program over partial program states (§2.1.3 and §2.1.5). To prevent
redundant exploration of the program’s state space, there needs to
be an efficient means of determining whether a (partial) state has
repeated.

Unlike source-code programs, machine-code program states consist of
memory that is undifferentiated beyond the coarse division into regions for
the stack, the heap, and global data. Moreover, for a program specializer
that runs natively, the states that need to be captured and compared in
issues (1) and (2) are native hardware states (at the level of the instruction-
set architecture).

Naive approaches to these issues are extremely costly:

o A straightforward approach to issue (1) means copying the entire
state for each save and restore operation.

27

e The need to test a new state against all states that have previously
arisen (issue (2)) suggests the use of hashing. However, resolving
collisions requires the ability to compare two states for equality.

These state-management operations have never been addressed in a
completely satisfactory manner in prior work on program specialization —
even for interpretation-based specialization of high-level languages. The
best prior solution take advantage of the fact that a partial evaluator is
similar to a language interpreter [Jones et al., 1993 |—except that a partial
evaluator operates on partial states, and an interpreter operates on full
states.

One can design an abstract datatype of partial states for which sav-
ing/restoring states and identifying state repetition can be performed with
low time and space overhead. In particular, the components of (partial)
states can be hash-consed [Goto, 1974] so that a unique representative—
i.e., a canonical address—is maintained for each partial state.® A set of the
addresses of the unique representatives is then maintained, with hashing
used to assist membership testing (and collision resolution performed by
comparing addresses).

However, due to constraints (a) and (b), I did not have the option of
implementing memory as an explicit data structure that can be readily

swapped to save and restore states—which raises the following question:

How can 1) saving and restoring states and 2) checking state equality

be handled efficiently in a generating extension that runs natively?

To address issue (1), I use two OS-level mechanisms—copy-on-write
(CoW) and process context-switching—to create an efficient mechanism
for state-snapshotting and restoration. However, the main element that al-

$More precisely, to support the unique-representative property, one would make use
of applicative maps (see [Reps et al., 1983, §6.3] and [Myers, 1984]), hash-consing, and a
hash table to detect duplicates. (The hash-code would be based on the contents of the
map’s entries, rather than the structure of the tree that represents the map.)

28

lowed us to devise a solution is that we changed the requirements asso-
ciated with issue (2) slightly. In particular, we do not insist that there be a
mechanism to resolve collisions, as long as we have control over parameters
that ensure that the probability of a collision ever arising is below a value of our
choosing. In other words, we allow the use of a hash, as long as the param-
eters of the hash function can be tuned to keep the collision probability at
an acceptable level. Moreover, the hash function is incrementally updatable:
as execution of ge, ¢ mutates one (partial) state 07 to another (partial)
state 0y, the hash value for o, can be computed efficiently by updating
the hash value of o;. We implement this hashing algorithm using Rabin
fingerprinting [Rabin, 1981]. Although often presented as a sliding hash,
the algebriac properties of the algorithm admit the construction of an
in-place-updatable hash algorithm.

In §2.3, I provide a mathematical overview of the Rabin-fingerprinting
algorithm. In Chapter 3, I discuss the OS-assisted state-management
techniques, including my process-based state representation (§3.2) and
copy-on-write-fault-based hash-update method (§3.3). In Chapter 6, I
evaluate the performance of this multi-process approach on microbench-
marks and real-world programs, and show that the technique is feasible
and effective for non-trivial programs. In particular, for tasks that involve
removing program features, the generating extensions terminate in under
one minute, and the time contributed by state hashing constitutes 10-20%
of specialization time.

1.2.3 Generating-Extension Pragmatics

Pointer Lifting. As described in §1.1.3, concrete pointer values cannot
be lifted into residual programs. Existing systems, even generating ex-
tensions that otherwise execute static code natively, solve the problem by
treating pointers symbolicly during specialization-time. My work takes a
different approach to pointer lifting, and performs lightweight lazy sym-

29

bolization at lifting time, by using debug symbols (in the case of C code),
coarse-grained information about memory layout, and a special malloc
implementation that permits identifying the allocated memory region as-
sociated with a specific address held by a pointer variable. By taking this
approach, ordinary specialization-time pointer operations can be handled
by hardware in the usual way, without rewriting or interpretation.

C Generating Extensions and Build Frameworks. Prior approaches to
partially evaluating C code either worked at the source-file-level and could
not readily process large projects, or were interpreters that specialized
compiler IR. I present a method to create a generating extension for a
C program, and can process makefile-based projects in an automated
manner. Prior to constructing a generating-extension, GenXGen|[C] uses
the strace command to track Makefile or shell build-script execution, and
collects all compiler invocations in the build. By taking this approach,
GenXGen[C] can automatically produce generating extensions for files
containing hundreds of source files.

In Chapter 3, I provide an overview of generating extensions, describ-
ing their basic structure, and challenges in performing tasks such as lifting.
In §5.1.5, I describe the implementation details of the lazy-symbolization
technique. The build-tracing technique that allows GenXGen[C] to process
non-trivial projects is described in §5.2.1. In addition to these contribu-
tions, the multiprocess approach described in §1.2.2 is a novel approach to
constructing a generating extension, which entails solving several smaller,
but still non-trivial design and implementation problems, relating to IPC,
code-generation, and the process-based state representations. The bulk of

Chapter 5 describes the solutions to these problems.

30

1.3 Thesis Organization

Chapter 2 provides a formal overview of program specialization with an
emphasis on generating extensions. In particular, Chapter 2 provides an in-
depth discussion of the structure of a generating extension, as well as the
state-management challenges a generating extension must solve. Chapter 2
also provides a theoretical overview of specialization slicing, which forms
the basis of GenXGen’s BTA algorithm, and Rabin fingerprinting, which
is a key component of GenXGen's state-management technique. Chapter
3 provides the technical details of how I use the slicing algorithms from
Chapter 2 to implement the BTA phase of GenXGen. Chapter 4 discusses
our process-based state-representation, and the Rabin-fingerprint-based
technique for state hashing. In addition, Chapter 4 describes how GenX-
Gen constructs generating extensions, with a focus on how the generating
extension architecture described in Chapter 2 is adapted to operate using
the process-based state representation. Chapter 5 discusses pragmatic
implementation concerns needed to implement GenXGen for real-world
programs. Chapter 6 discusses the experimental evaluation of our tech-
niques for both machine-code and C generating extensions. Chapter 7
discusses related work not covered in other sections, and provides more
information on some work mentioned elsewhere. Chapter 8 provides

concluding remarks.

31

Chapter 2
Background

In §2.1, I give an introduction to classical partial evaluation, and explain
how a generating extension works to specialize a program. In §2.2.1,
I discuss forward slicing, and show that forward slicing can be used to
produce results that satisfy the requisite properties of a valid BTA, and thus
can be used as a valid, albeit imprecise, BTA. I also show how an alternative
slicing strategy can be used to obtain better precision. In §2.3, I present
the algebraic properties of Rabin’s fingerprinting scheme, emphasizing
how to use it as an in-place-updatable hashing algorithm, which will be
used as a component in an efficient version of the classical specialization
algorithm from §2.1 that is suitable for specializing programs written in

low-level languages.

2.1 A Précis on Partial Evaluation

This section provides an overview of classical partial evaluation. §2.1.1
provides a formal definition of the desired functional relationship be-
tween a partial evaluator’s inputs and outputs. Classical partial evaluation
is a two-phase algorithm, which consists of (1) a binding-time-analysis
phase, and (2) a specialization phase. §2.1.2 defines the formal properties

int match(char *p, [char *s]){
while((*s != 0)){ // blockl

’char xsl = s;| // block 2

char *pat = p;
while(1) {
if (xpat == 0) // block 3
return 1; // block 7
[if (+pat != *s1)| // block 4

break;

pat++; // block 5

}
// block 6
}

return 0; // block 8

(a)

Figure 2.1: (a) String-matching procedure match; (b) the CFG of match.

that a valid binding-time-analysis algorithm’s results must satisfy. §2.1.3
discusses the classical worklist-driven specialization algorithm. §2.1.4
discusses the need for an efficient state-management strategy in a classical
partial evaluator or generating extension (a stand-alone, program-specific
partial evaluator). §2.1.5 provides a concrete example of how the classical
specialization algorithm from §2.1.2 and §2.1.3 can be instantiated in a

generating extension.

.
F
| ifFs =0 |
K
2
[char *s1 = s;| | g
char *pat = p;
v
3 T
—» if(*pat == 0)
JF
4

|if(*pat I= *sl)|I

lF

pat++;

A
.

return 1 [—

return 0 —

(b)

33

2.1.1 Partial Evaluation: A Functional Definition

A partial evaluator pe takes as inputs (i) a program P (expressed in some
language L); (ii) a partition of P’s inputs into two sets, static and dynamic
(for short, S and D, respectively); and (iii) an assignment A(S) to the
variables in S. As output, pe produces a residual program P s) that is
specialized with respect to A(S). Letting [-] denote the meaning function

for the language in which pe is written, we have'
[pe] (P, A(S)) = Pacs), (2.1)
The requirement on P (s) is
[Pars)L(A(D)) = [PIL(A(S UD)), (22)

where [-]; is the meaning function for L. That is, P4 sy with input A(D)
produces the same output as P with input A(S U D); however, P (s) has
fewer input arguments, and is specialized with respect to the assignment
A(S).

The C procedure match in Fig. 2.1(a) is an implementation of an
O([s[lpl) substring-matching algorithm. It returns 1 if and only if the string
pointed to by s contains the string p as a substring. Note that s and p are
presumed to point to valid C strings, and thus match terminates whenever
the null terminator (ASCII 0) for either string is encountered. The CFG of
match is given in Fig. 2.1(b).

If we partially evaluate match with p pointing to the string “hat”, we
obtain the program whose CFG is shown in Fig. 2.2(a). In this version, the
inner loop has been unrolled, and all manipulations and uses of pat and
p have been eliminated: the characters in “hat” are hard-coded into the
tests in the specialized procedure. For this example, Eqns. (2.1) and (2.2)
become

[pe] (match, [p — “hat”]) = matchpp, hat#) = match_s

'Here, the partition of P’s inputs into S and D is implicit in A(S).

34

, if(*s 1= 0) - int match_s(char *s){
T F while(xs != 0){
[char *s1 =s; | char *sl = s;
| //no dynamic code | if(’h’ !'= xs1){
—|s++;|< F—' if(‘h’ 1= *s1) | s++; continue;
T }
| S1++; |
sl++;
| //no dynamic code | if(’a’ 1= *Sl){
|s++;kgfg| if(fa’ 1= *s1) | s++; continue;
I }
| S1++; |
sl++;
| //no dynimic code | if(Pt? 1= xs1){
L s e B[RO 1= sy | s++; continue;
lT }
| S1++; | S1++;
| //no dynamic code | return 1;
} }
| return 1 |
P— return O;
| return 0; | }

(a) (b)

Figure 2.2: (a) The CFG of the residual program (in structured program
form). (b) The residual program in the form of a structured program.
(This version is given for the sake of pedagogical clarity. As will be seen,
the true residual program is in unstructured form.)

and
[match_s]c(A(D)) = [match]c([p — “hat”] U A(D)),

where [-]¢ denotes the meaning function for C.

35

2.1.2 Binding-Time Analysis (BTA).

Given a partition of the input variables into “static” and “dynamic” sets,
the first stage, called BTA [Jones et al., 1993], extends the partition to one
over all occurrences of variables anywhere in the program. The goal is to
find a partition of the variable occurrences at the different program points
of P into static and dynamic sets (V; and Vg, respectively) such that, at
every statement 1 in P where a variable v € V; is updated, the new value
of v is computed solely from variables in V; (i.e., it does not depend on
any dynamic values). Such a partition is said to be congruent [Jones et al.,
1993]. At specialization-time, partial states are maps from V; to values;
congruence ensures that the variables in V; can always be evaluated at
specialization-time.

To compute a congruent partition, a BTA algorithm can use a forward
slice [Horwitz et al., 1990, §4.5] from the dynamic input variables D. The
slice identifies the set V4 of variable occurrences that could be affected by
D’s values. (One can also think of the BTA algorithm as performing static
taint analysis [Livshits and Lam, 2005] with respect to the dynamic input
variables.) The static variable occurrences V; are those in the complement
of the slice.

The boxed statements in Fig. 2.1(a) show the program points in the
forward slice with respect to the dynamic formal parameter s. The slice
contains all assignments to, and uses of, variable occurrences that are
transitively dependent on s, while the complement of the slice contains

all assignments to and uses of variable occurrences not dependent on s.

2.1.3 Specialization

The second stage of partial evaluation is specialization. The specializer takes
as input the program (or CFG), annotated with BTA results, together with
the assignment of values for the static input variables. The specializer

36

creates the residual program by executing the original program over par-
tial states [Jones et al., 1993; Andersen, 1994b| (starting with an initial
partial state, such as [p — “hat”]). To ensure that the specializer only
performs safe updates, it computes only with the variable occurrences V;
of a congruent partition.

One way of structuring the second stage is to materialize? the results of
BTA as a program ge,, ¢ that takes as input an assignment A(S), and—when

run—emits the code of P (s):

[gep sI(A(S)) = Pags), (2.3)

where P, (s) is the specialized residual program defined previously, which
obeys Eqn. (2.2). A program ge,, ¢ that obeys Eqn. (2.3) is called a generat-
ing extension for P (and S) [Ershov, 1977].

To automate this approach, one creates what is called a generating-
extension generator. A generating-extension generator ge-gen is a program
that takes as inputs (i) a program P, and (ii) a partition Part(S U D) of
P’s input variables into disjoint sets S and D of static and dynamic inputs,

respectively, and creates as output a generating extension 8ep s
[ge-gen] [P, Part(SUD)] = gey, ¢ (2.4)

that obeys Eqn. (2.3).
The end-to-end partial evaluator is defined as follows:

pe AP AA(S) Jletge,, ¢ = [ge-gen] (P, Part(SUD)) in [ge,, (] (A(S)). (2.5)

(Again, the S/D partition of P’s inputs is implicit in A(S).)

Before delving into the concrete implementation details of a generating
extension, it will be instructive to informally walk through part of a gener-
ating extension’s execution, to get a more concrete idea of how classical

partial evaluation works.

2The use of “materialize” here should not be confused with the use of “materialize”
in the term slice materialization described in §4.3.

37

A generating extension executes P on partial states over V;, where the
results of BTA are used to know whether each action of P can be carried
out (i) by the generating extension itself (an action classified “static”), or
(ii) delayed until the residual program is executed (an action classified
“dynamic”). The generating extension performs actions that are “static”
(using/updating the current partial state), but emits code to residual
program Pa s) for actions that are “dynamic.” When emitting dynamic
code, the specializer incorporates known static values into the emitted
code.

For the purposes of this discussion, assume that a generating extension
has some unspecified means of saving and restoring static states over V.

This execution is performed in a basic-block-by-basic-block fashion, as
an exploration of the state space of V. Within a basic block, the execution
is a conventional execution of straight-line code, with static code being
executed, and dynamic code being emitted as described above. The state-
space exploration is a non-standard execution however, because a basic
block may end with a control-flow statement governed by a dynamic value,
and thus the branch to take cannot be determined at specialization time.
Thus, the specialization must be marshalled by means of a worklist of
outstanding states to explore both successors of each dynamic control flow
statement.

Upon reaching the end of a basic block that is not governed by a control-
flow statement, or a control-flow statement for which the successor can be
determined using the static state control, then there is a single successor
block. The generating extension records the current static state o, as well
as a single successor block,® and inserts a state/block pair for each success
into the worklist.

If, instead, the generating extension reaches a condition classified
as “dynamic,” such as the two boxed conditionals in blocks 1 and 4 of

3Unless the block is the final block of the program, or, e.g., a call to an abort procedure,
such as exit in Unix.

38

Fig. 2.1(a), there are two successor basic-blocks to interpret. Thus, the
partial evaluator instead enqueues two partial state/block pairs.

For example, consider what happens when executing the body of the
outer loop in Fig. 2.1 for the first time, starting at block 2 (ignoring the
dynamic loop head for now). The current state is o; = [p — "hat",].
First, the statement char s1 = s; is emitted. Then, the static statement
char *pat = pis evaluated. Thus, at the end of block 2, the static state
is now o7 = [p — "hat",pat — "hat"]. Because block 2 does not end
with a control-flow statement, there is only one successor, and the pair
(01, block3) is placed in the worklist.

To ensure specialization works correctly, a small piece of bookkeeping
must be handled correctly. The residual program’s control flow will need
to be linked up via gotos. The reasons for doing so will become more
apparent upon discussing dynamic control-flow, but for now we will cover
the simple case. Every basic block is preceded by a label corresponding
to both the identity of the basic block, and the static state on which the
block was executed and specialized. For the purposes of this example,
we will identify each basic block with the numeric ID of the basic block
in Fig. 2.1(b), and for a given state o3, the ID will just be i. Thus, before
specializing block 2 on o7, the generating extension would emit the label
“block_2_state_1:”. Note that due to this, the structure of the residual
program will look like Fig. 2.3, rather than Fig. 2.2(b).

Moreover, for reasons that will become apparent upon discussing dy-
namic control, the generating extension will also emit a goto to the succes-
sor of this block. Because the successor is known to be block 3, and the
post state is 0y, the successor’s label will be block_3_state_2. Thus, after

residuating block 2 for the first time, the residual code is:

blk 1 1h:
if(xs != 0)
goto blk_2_2h;
else goto blk_8_8h;
blk_2 2h:
char *sl1 = s;
goto blk_3_3h:

blk_3_3h:

goto blk_4 4h:
blk_4 4h:

if(Ch’ = *s1)

goto blk_6_6h;
else goto blk_5_bh;
blk_5_bh:
sl++;
goto blk_3_3a;
blk_3_3a:
goto blk_4 4a;

//... omitted ...

blk 5 bt:

sl++;

goto blk_3_30;
blk 3 30:

goto blk_7_70;
blk 7 70:

return 1;
blk 8 8h:

return O;

Figure 2.3: The residual string matcher in unstructured form.

block 2 state 1:
char s1 = s;

goto block_3_state_2;

40

Now consider what happens if the generating extension de-queues
(02, block3) next. The only code in the block is the if statement if (*pat
== 0), which is governed by a static value. Thus, the successor is known
to be the false branch, because 0, = [pat — "hat"]. The static state is
unchanged, so the generating extension enqueues (03, block4). The code
that is emitted is*

block 3 _state_2:
goto block 4 state_2;

Now consider the specialization performed when removing
(02, block4) from the worklist. The only statement is a dynamic control-
flow statement, and thus, it cannot be determined at specialization-time
which successor is taken. However the condition does contain a derefer-
ence of a static pointer, and can thus be simplified using static state from
*pat != *slto ‘h’ != *sl. Because there are two possible successor
states: (07, block6), and (07, block5), the generating extension emits to
the residual program a block that ends with a conditional statement (and,

in this case, contains only that conditional statement), as follows:

*An attentive reader may notice that this code seems pointless, and that with the
information now in hand, the jump at the end of block_2_state_1 could be amended
to target block_4_state_2. That technique is called jump compression in the partial-
evaluation literature. For pedagogical purposes, I ignore this for now. GenXGen'’s
jump-compression method is discussed in Chapter 5.

41

block 4 state 2:
if (’h’ != s1)

goto block_6_state_2;
else

goto block b_state_2;

. 7

If (o3, block5) is de-queued next, pat++; is evaluated, yielding the
post-state 03 = [p — "hat", pat — "at"]. The only successor is the head of

the inner loop, block 3, so (o3, block3) is enqueued. The emitted code is:

')

block_5_state_2:
sl++;

goto block_3_state_3;

\ J

At this point, the generating extension will visit block 3 again, but at
03, a new state. The generating extension can again execute the loop body
as we've just described, except with [pat — "at"]. It is easy to see that that
doing so would yield:

42

block 3 _state_3:
goto block 4 state_3;
block 4 state 3:
if(’a’ != %xs1)

goto block 6_state_3;
else

goto block_b5_state_3;
block 5 state_3:
sl++;

goto block_3_state_4;

\. J

Note that having done so, the residual code contains multiple versions
of blocks from the subject program. This circumstance is what is referred
to in the specialization literature as polyvariance. Polyvariance is frequently
described as "encoding static state into control," or "re-bracketing of the
division between code and state." What these phrases describe can be seen
explicitly in the code above; there are two variants of block 4, one that
has a label associated with o0, and one associated with o3. All explicit
references to pat have been removed, but its value in the block’s associated
static state has been incorporated into the code of the block itself.

Furthermore, note that upon specializing block 5 again, the static incre-
ment of pat occurs again, yielding a new state o4 = [p — "hat",pat — "t"],
and another loop unrolling can occur. After this unrolling, the resulting
state is 05 = [p — "hat", pat — ""]. At this point the loop is fully unrolled,
and a final jump to block 7 is emitted.

What about the dynamic control, however? At block 4, control is
returned to block 1, the head of the loop over s. This loop cannot be
unrolled, even if the inner loop can. What should this traversal look like?

This question leads to the first implementation concern for generating

43

extensions: ensuring termination.

2.1.4 Termination

For a generating extension to terminate, it needs to be able to check state
equality. Let’s consider this issue for the example from §2.1.3, in which a
generating extension is specializing the program from Fig. 2.1. Every time
block 1 is traversed, the true branch takes the generating extension back to
block 2. Block 2 contains two assignments, and ends with an unconditional
branch into the inner loop.

The first time block 2 is executed, pat is set to the beginning of string
p, and an occurrence of block 3 is added to the worklist. As previously
seen, the generating extension can unroll the inner loop (i.e., blocks 3,
4, and 5). However, each time block 4 is executed, two successors are
enqueued, one corresponding to block 6, and one corresponding to block
5. Note that program specialization can be viewed as a traversal of an
implicit graph—the graph of (state, block) pairs induced by the semantics
of the static portion of the program—and the traversal is performed as
a worklist-marshalled frontier search. Because it is a graph traversal,
we are free to choose, e.g., a depth-first traversal strategy, and thus for
expository purposes we can assume that the unrolling of the inner loop is
performed before the generating extension handles the enqueued entries
corresponding to block 6.

Having unrolled the inner loop, one of the worklist entries associ-
ated with block 6 will be enqueued. Without loss of generality, consider
(04, blocké6). Block 6 will be specialized, as will block 1. If specialization
next follows the true branch from block 1, block 2 is visited again. The pre-
state at block 2 will thus be 04 = [p — "hat",pat — "t"]. Executing block
2 sets sets pat to p again, and the post-state is [p — "hat",pat — "pat"],
which is equal to state o,. If block 3 were added to the worklist again, it

would lead to an identical unrolling of the inner loop, and specialization

44

would never terminate.

Instead, the specializer detects repeated (partial-state, basic-block)
pairs: the first time handle_block_2 runs, (o, block3) is inserted
into a record V of visited block/state pairs; each subsequent time
handle_block_2 runs, the specializer determines that (o, block 3) has re-
peated because it is already in V.

Thus, it is important that whatever state representation GenXGen uses,
it must be (1) inexpensive to save and restore states, and (2) it must
be inexpensive to determine when a state/block pair is in V. Chapter
4 describes the implementation of this state-management scheme. §2.3
describes mathematical aspects of our solution to (2).

2.1.5 Generating-Extension Structure

A generating extension can be implemented so that the structure of its
code reflects the basic-block structure of the subject program [Andersen,
1994b]. In this approach, a generating extension can be thought of as the
subject program, with the partial-evaluation code “compiled in.”

The generating extension can be produced algorithmically, basic-block
by basic-block: each basic-block in the subject program has an associated
basic-block procedure in the generating extension that updates the par-
tial state, generates residual code, and inserts new successor states into
the worklist; finally, the basic-block procedure yields control to a central
dispatch procedure, which uses the worklist to select the next basic-block
procedure to call.

This design was used in the C-Mix partial evaluator for C [Ander-
sen, 1994b]. Figs. 2.4 and 2.5 show such a generating extension for pro-
cedure match from Fig. 2.1(a), for static input p. The central dispatch
procedure is match_ge. Until worklist L is empty, it repeatedly removes a
(partial-state, basic-block) pair (o, b) from L, and calls b with partial state

45

// All visited (block,state) pairs
i void handle block_1(worklist_t L, state_t S){

state_record_t visited = emptyset;
char *p = S.p; char *pat = S.pat;
printf("blk_1_%d:", S.id);
state_t succ_state = snapshot();
printf("if (xs != 0)");
printf (" goto blk_2_%d;", succ_state.id);
printf("else goto blk_8_%d;". succ_state.id);

if (!contains(visited, 8, succ_state)

worklist_t L = empty_worklist();

int match_ge(char *p){

int cur_block;

state_t cur_state, init_state;
//Initialize partial state
init_state.p = p; init_state.pat = NULL;
] o insert(visited, 8, succ_state);
worklist_enqueue(L, 1, init_state);)
) o o worklist_enqueue(L, 8, succ_state);
insert(visited, 1, init_state);
printf("match_s(char *s){");
while(!is_empty(L)){

cur_block = get_worklist_head(L).block;

if (!contains(visited, 2, succ_state)

insert(visited, 2, succ_state);

worklist_enqueue(L, 2, succ_state);

cur_state = get_worklist_head(L).state;
remove_worklist_head(L);

void handle_block_2(worklist_t L, state_t S){
switch(cur_block){

char *p = S.p; char *pat = S.pat;

case 1:

printf("blk_2_%d:", S.id);
handle _block_1(L, cur_state); break;

printf("char *sl = s;");
case 2:

char *pat = p;
handle_block_2(L, cur_state); break;

state_t succ_state = snapshot();
//code elided

printf("goto blk_3_%d;". succ_state.id);

case 8:
if (!contains(visited, 3, succ_state)
handle_block_8(L, cur_state); break;
) insert(visited, 3, succ_state);
worklist_enqueue(L, 3, succ_state);
printf("}");

) }

Figure 2.4: Portions of a C-Mix-style generating extension for match from
Fig. 2.1, where S = {p, pat}. The remainder of the generating-extension
code is presented in Fig. 2.5. Each handle_block_n procedure produces
a specialized version of a block on a state. Statements in bold produce
the code of the residual program. Statements in boxes correspond to pro-
gram elements in boxes in Fig. 2.1(a) (i.e., elements that depend on the
dynamic formal parameter s). They are emitted to the residual program
along with additional statements that direct the flow of control in the resid-
ual program. The match_ge procedure uses the worklist of outstanding
block/state pairs to marshal the program specialization.

0. Calling match_ge with p = “‘hat’’ produces the residual program
shown in Fig. 2.2.

46

void handle_block_3(worklist_t L,

state_t S){ void handle_block_4(worklist_t L,

char *p = S.p; char *pat = S.pat;
printf("blk_3_%d:", S.id);
state_t succ_state = snapshot();
if (*pat == 0) {
printf (" goto_7_%s", succ_state.id);
if (!contains(visited, 7, succ_state))
insert(visited, 7, succ_state);
worklist_enqueue(L, 7, succ_state);
} else {
printf(" goto_4_%s", succ_state.id);
if (contains(visited, 4, succ_state)
insert(visited, 4, succ_state);
worklist_enqueue(L, 4, succ_state);

}

ioid handle_block_5(worklist_t L,
state_t S){
char *p = S.p; char *pat = S.pat;
printf ("blk_5_%d:", S.id);
pat++;
state_t succ_state = snapshot();
printf("goto blk_3_%s", succ_state.id);
if (lcontains(visited, 3, succ_state))
insert(visited, 3, succ_state);
worklist_enqueue(L, 3, succ_state);

}

state t S){
char *p = S.p; char *pat = S.pat
printf("blk_4_%d:", S.id);
state_t succ_state = snapshot();
printf("if (“%c” != *s1)", xpat);
printf(" goto blk_6_%s", succ_state.id);

printf("else goto blk_5_Y%s", succ_state.id);

if (!contains(visited, 6, succ_state))
insert(visited, 6, succ_state);
worklist_enqueue(L, 6, succ_state);

if (!contains(visited, 5, succ_state))
insert(visited, 5, succ_state);

worklist_enqueue(L, 5, succ_state);

Figure 2.5: Portions of a C-Mix-style generating extension for match from
Fig. 2.1, where S = {p, pat}. The remainder of the generating-extension
code is found in Fig. 2.4. Each handle_block_n procedure produces a
specialized version of a block on a state. Statements in bold produce the
code of the residual program. Statements in boxes correspond to program
elements in boxes in Fig. 2.1(a) (i.e., elements that depend on the dynamic
formal parameter s). They are emitted to the residual program along
with additional statements that direct the flow of control in the residual

program.

The construction of the basic-block procedure for block B of the subject

program transforms each statement of B in one of three ways:

47

e Statements classified “static” are placed in the procedure verbatim,
and their actions update the partial state accordingly. For example,
the increment “pat++” in handle_block_5 causes the value of pat

in the partial state to be incremented by 1.

e Statements classified “dynamic” are converted into emit statements.
Each time they are executed, they generate residual code. For in-
stance, the single occurrence of “s1++” in the original match program
is emitted three times when match_ge is called with p = ¢ ‘hat’’:
handle_block_5 is called three times, and thus printf ("s1++;") is

executed three times.

e Some statements classified “dynamic” cannot just be converted to
emit statements as is; if a dynamic statement s depends on the value
of a static variable v, the value of v must be lifted into the residual
program’s state at s. Lifting can be performed by replacing every
occurrence of v in the statement to emit with a parameter for the
current value of v. For example, lifting is required for the if state-
ment at the end of block 4 in Fig. 2.1. In procedure handle_block_4,
the if statement is emitted via printf ("if (*%c’ != *s1)", xpat),
and thus every instance of the statement in the residual program
shown in Fig. 2.2(a) has *pat replaced with a character from “hat”.

The worklist manipulations at the end of each basic-block procedure follow
three templates, depending on whether the subject-program’s block ends

with a goto, a branch classified “static,” or a branch classified “dynamic.”

e For a block that ends with a simple goto, such as block 5, given the
block’s single control-flow target b’, and the post-state ¢, the pair
(o/,b’) is enqueued if the pair has not previously been traversed. A
goto targeting the block corresponding to the specialization of b’
with respect to o’ is also emitted

48

e For a block that ends with a statically-controlled conditional state-
ment, such as block 3, the appropriate successor b’ is chosen. This
is done by merely evaluating the static branch condition. From this

point it continues in a manner identical to the single-target goto case.

e In the dynamic case, a generating extension needs “to go both way,”
as in block 4. Thus, given a post-state o’ and the respective true and
false successor blocks b; and by, the pairs (o', b{) and (o', bg) are
placed in the worklist if they have not previously been enqueued.

In addition, a conditional if statement must be emitted. The
condition is simply the original program’s condition, possibly with
static values lifted into it. The true branch of the if contains a goto
targeting the residual block associated with (o/,b;), and the false
branch contains a goto targeting the residual block associated with
(o, b)).

State Management. The great potential of generating extensions is to
have them run at native speeds, manipulating native memory states, rather
than being interpreted, as in a more classical partial evaluator [Jones et al.,
1993]. Unfortunately, there is a stumbling block: a generating extension
must support three key state-management operations: saving partial states,
restoring partial states, and checking state equality. How can these operations
be carried on native hardware states?

In Figs. 2.4 and 2.5, the snapshot procedure is used to save states
into a state_t struct. (We assume that when a state is captured by
snapshot, an identifying value is assigned to the state_t struct’s id
field. The id fields of two state_t structs are equal if and only if the
captured states are equal.) Restoring a state starts with the operation
get_worklist_head(L).state in match_ge, and finishes with the assign-
ments char *p = S.pand char *pat = S.patineachhandle_block pro-

cedure. Here we have assumed that a state_t struct is a value that can

49

be assigned to a variable and passed as a parameter. Clearly we are not
talking about native hardware states, and hence the architecture illustrated
in Figs. 2.4 and 2.5 do not satisfy our desire to have generating extensions
run natively.

The generating extensions created by GenXGen[C] are based on the
same high-level principles used in C-Mix [Andersen, 1994b|; however,
they are based on a different software architecture (§4.4, §3.2.1), motivated
by the need to support different state-management mechanisms (§3) so that
GenXGen[C]’s generating extensions can run natively. The core result in

Chapter 3 is our solution to the following previously open problem:

How can a generating extension efficiently (1) save and restore native

hardware states, and (2) compare them for equality?

A straightforward approach to implementing these operations requires
traversing all of a partial state’s reachable memory objects, similar to what
is done in mark-and-sweep garbage collection. Such a brute-force ap-
proach is inefficient because it essentially requires multiple invocations of
mark-and-sweep when each basic-block of the generating extension executes. This
approach is expensive, hence we want O(1) switches and state compar-
isons, thus hashing. In Chapter 4, I describe a state-representation and
management technique that uses OS primitives to facilitate efficient saving
and restoration of hardware states, as well as incrementally-updatable
hashing. In §2.3, I provide the mathematical background underpinning
the updatable hash.

2.2 Slicing Overview

To implement GenXGen’s binding time analysis, I use existing work in
program slicing, specifically graph-reachability slicing [Horwitz et al.,
1988] and specialization slicing [Aung et al., 2014]. I provide a high-level
overview of each, giving enough information to help the reader build

50

intuition for the properties of the results, while directing curious and
motivated readers to the original papers for specific automata-theoretic

implementation details.

2.21 Graph-Reachability Slicing

This section provides a basic introduction to program slicing, and is a high-
level summary of the graph-reachability-based interprocedural-slicing
algorithm of Horwitz, Reps, and Binkley [Horwitz et al., 1988].

Given a program point p and a variable x from program P, a forward
(data-dependence-)slice of P with respect to x at p is a set S containing
all program points in P that depend on x at p (and, as will be shown,
perhaps additional program points). It is important to note that S con-
tains more than just those that depend on x at p. For example, the set of
all program points in P is a (not very informative) slice of P. Because
there are a multitude of valid slices, there are many slicing algorithms that
provide slices that satisfy additional properties that are useful in various
contexts. In §2.2.2, I discuss the limitations of Horowitz-Reps-Binkley slic-
ing, and in §2.2.3 I discuss Aung, Horwitz, Joiner, and Reps’s algorithm for
specialization slicing [Aung et al., 2014], which rectifies these limitations.

The Horwitz-Reps-Binkley slicing algorithm converts a program slic-
ing problem into a graph-reachability problem by constructing a System
Dependence Graph (SDG), which encodes program points as vertices, and
dataflow dependencies as edges. An SDG is a representation of a multi-
procedure program, consisting of multiple Procedure Dependence Graphs
(PDGs), each of which represents a single procedure, and are connected
to each other by edges that represent (i) the passing of parameters from
caller to callee when the procedure is invoked (including the “passing”
of global variables as a kind of extended set of parameters), and (ii) the
passing of return values (including globals) from callee to caller when the
procedure returns. These value-passing actions are captured in the SDG

51

as flow-dependence edges from (i) actual-in vertices to formal-in vertices,
and (ii) from formal-out vertices to actual-out vertices, respectively. SDGs
may optionally contain summary edges between actual-in and actual-out
vertices at a call-site, representing transitive flows of values that might
occur when the callee is invoked.

For simplicity’s sake, we will assume that all C code is available in a
normalized form in which at most one variable is assigned to at a given
vertex of a PDG (e.g., a = b++is converted into two assignments: a = b
andb = b + 1.) By ensuring that at most one variable is assigned to at
a given vertex, slicing can be performed with respect to just a program
point, and program points and vertices can be discussed interchangeably.

To further simplify the discussion, we first discuss the single-procedure
case, and discuss the construction of a single PDG. The vertices in the PDG
for a procedure P are essentially the same vertices as in P’s CFG: for each
program point, input parameter, and output parameter of a procedure P,
there is a vertex in the PDG for P.

For each pair of vertices v; and v,, we construct a directed edge (v;,v2)
if and only if

1. v; defines x
2. v, uses x

3. there exists a path from v; to v, in the CFG for P that does not contain

an intervening assignment to x

The PDG'’s for a program’s procedures are then connected to form the
SDG by connecting the actual-in vertices and actual-out vertices at a call-
site to the formal-in vertices and formal-out vertices of the callee. Edges
run from actual-in vertices of the caller to corresponding formal-in vertices
of the callee, and from formal-out vertices of the callee to corresponding
actual-out vertices of the caller.

52

For example, Fig. 2.7 shows the subset of the SDG for the program in
Fig. 1.3 that corresponds to the first call to q in p. Fig. 2.7(a) shows the
portion of the program in Fig. 1.3 corresponding to the the first callsite of g,
and Fig. 2.7(b) shows the subgraph of the program’s SDG that corresponds
to the first callsite of q. Consider the two formal parameters to q, aand b. In
the PDG for p, there are two corresponding actual-in vertices, actual-in a
and actual-in b, which are connected, respectively, to formal-in a and
formal-in b in the PDG for q. Moreover, because s is the value passed as
parameter a of g, there is an edge from s to actual-in a. The edge from
d to actual-in b exists for the same reason.

Similarly, there are two formal-out vertices in the PDG for q,
formal-out g, which corresponds to the global variable g at the return
statement, and formal-out q_ret, which represents the return value of q.
These vertices are connected to corresponding actual outs, actual-out g
and actual-out g_ret; actual-out q_ret has an edge tors = q(s,d),
encoding the dependence of rs on the return value of q. Thus, the en-
coding of transitive dependence as graph reachability is extended to the
interprocedural case.

Given the SDG, a forward slice with respect to v is the set of vertices
reachable from v in the SDG. In a PDG, the set of vertices in a forward
slice can be computed via e.g., a depth-first search of the PDG, starting
from the origin point(s) of the slice. For example, the forward slice of
procedure a with respect to formal-in parameter d in Fig. 2.6(a) is the bold
component of Fig. 2.6(b).

The intraprocedural case follows the same general reachability ap-
proach, except with the addition of summary edges. For every procedure
Fin P, summary edges that encode the transitive data-flow relationship
between F’s formal-ins and actual-outs. For leaf procedures, this is straight-
forward: a edge is added from actual-in v; to actual-out v, if and only

if there is a path from v; to v,. For non-leaf procedures in the presence

53

int a(int s, [int d]{

int x, y, 2;

y = 8
x =y +1;

(a) (b)

Figure 2.6: (a) The forward slice of procedure a with respect to formal pa-
rameter d. (b) The PDG for procedure a. Dotted edges denote a transitive
dependence only on s. Solid edges denote a transitive dependence on d.
Solid vertices are in the slice.

of recursion, the case is more complex. For our purposes, it suffices to
note that the possible calling contexts of a procedure can be encoded as a
context-free grammar, and that there exists a polynomial-time algorithm
that computes the transitive dependencies between a procedure’s input
and output parameters by solving a CFL-reachability problem [Horwitz
et al., 1988; Reps, 1998].°

Given summary edges, the slicing is computed in a two-phase ap-
proach, with the first phase being an "across-and-out-slice" and the second
phase being a "down-but-not-out-slice." More concretely, noting that the
reachability computation can be generalized from individual source ver-

tices to a set in the obvious element-wise way:

1. Given a a set of source vertices V, compute forward reachability
in the SDG, but do not follow edges from actual to formal-in ver-
tices. Importantly, summary edges from actual-ins to actual-outs are

followed. Store all reachable vertices in set V'.

°CFL-reachability is the variant of graph reachability in which a path from node s to
node t only counts as a valid s-t connection if the path’s labels form a word in a given
context-free language

54

int g; F)

int p(int s, int 4) {
int rs, rd;
//cut
rs = q(s , d); actual-in a
rd = g; S
//cut

P L L L T T

int q(int a, int b}){
g = b;
return a + 1;

(a)

Figure 2.7: (a) Procedures p and q from Fig. 1.3. (b) The subset of the
SDG corresponding to the shown portions of p and q. Solid lines denote
regular dependence edges, dashed lines denote summary edges.

2. Compute forward reachability from V', but this time edges from
actual to formal-in vertices are followed. Summary edges are also
followed, but edges from formal-out to actual-out vertices are not
followed. Store the reachable vertices in V"

The resulting V" contains all vertices corresponding to program points
that could be affected by the initial set V.

Unfortunately, as discussed in more detail in §2.2.2, the result of this
computation is not sufficient to produce a result that can be used for
binding-time-analysis.

2.2.2 Limitations of Graph-Reachability Slicing.

In §2.1.2, I said that given a set of inputs D tagged as dynamic, a forward
slice from D could be used as the basis of a BTA algorithm. In this ap-
proach, the compliment of the slice of P with respect to D, S(P, D) is the
set of static program points. However, not all slices produce valid BTA
results; in particular, the Horwitz-Reps-Binkley interprocedural graph-
reachability slice can produce incongruent results: in certain cases items in

55

. 1 t .
int g; }n g,. -
o plane 5, [0 0) ¢ o plint 5, (it 4) ¢

int rs, rd; int rs, rd;

res = 0; res = 0;
rs = q(s, [d]); [zs] = ats, [ah:

rd = g;

g:
rd] = q(d], s); rd| = q(d], s);

I

-
HE

rs += g; rs += g;
res += rs; res += rs;

res += rd; res += rd;

.
!

return res; return res;

int b‘){

return a + 1;

int q(’int a

>

>

int b

return a + 1;

int q(’int a

(a) (b)

Figure 2.8: (a) A standard forward slice, which exhibits the parameter-
mismatch problem. (b) The results after applying Binkley’s algorithm to
eliminate the parameter mismatch.

the complement of S(P, D) may have data-flow dependences on items in
S(P,D).

Consider again the slice with respect to formal parameter d of pro-
cedure p in the full program from Fig. 1.3 in Chapter 1, shown again in
Fig. 2.8(a). In the results, statements (1) rs = q(s,d); and (2) rs += g
are in the complement of the slice. However, both the return value of q and
the assignment g = b; in procedure q are elements in the slice. Thus, if
all of the elements in the slice were tagged as dynamic, and the specializer
attempted to execute the items not in the slice at specialization-time, the
right-hand-side of the assignments to rs in statements (1) and (2) are
values that are not defined at specialization-time.

Examining the subset of the SDG pictured in Fig. 2.9 elucidates the
underlying algorithmic issue. In the first phase of the slicing algorithm,

the parameter edges into q are not traversed. The summary edges are

56

*9DI[S Y} UI S9DT}IDA 9}OUDP SIDNISA PI[OS PUe “dI[S
3y} jo uonendwod ayj ur pasiaAer) sa3pa 9j0Udp saul] pog PapIe a1e sadpa mndino b-03-d a3 ‘wnyjriodre
3urdrrs ay) Jo uonndaxs ayj 3urmp d woiy spremdn pasiaer) A[uo ued sa3pa Jno-Tenjde-0}-[eurioy snyj pue
‘d ur surdaq 9017 a3 asnedaq *(e)g 'z “SL] ur apod ay} 03 Surpuodsarrod H(J Y} JO 19sqns [, :6°¢ I

57

traversed at each call-site, however, and they correctly carry the transitive-
dependence relationship between the actual-in and actual-out vertices for
that call-site, and only that call-site, and thus rs = q(s,d) and rs += gare
left out of the slice.

In the second phase, the parameter edges into q are traversed, but not
the parameter edges out of q. Because the formal-in for a is in the slice at
the first call-site and the formal-in for b is in the slice at the second call-site,
both statements in the body of q are in the slice, as are the two formal-out
vertices of q.

The key issue is that the summary edges induce a limited and asym-
metric form of context-sensitivity. The summary edges cause the actual
parameters to q to be treated in a context-sensitive manner. However,
q itself is treated in a context-insensitive manner: the dependences at
all call-sites are carried down into q in the second phase of the slicing
algorithm.

Binkley’s algorithm rectifies this issue at the expense of this caller-side
context-sensitivity. For every formal-out vertex that is in the slice, Binkley’s
algorithm examines each associated actual-out vertex. If an actual out
is not in the slice, slicing is performed from that vertex, and the results
are added to the slice. This slice-augmentation step essentially carries
the dynamic dependence up and out of the procedure, and back into the
call-site. The slice-augmentation step is repeated until no more parameter
mismatches exist. Because the slice-augmentation step cannot remove
vertices, this is guaranteed to terminate.

For example, in Fig. 2.9 Binkley’s algorithm would perform two more
slices, one from the first instance of the vertex labeled "actual-out q_ret"and
the second instance of "actual-out g," resulting in Fig. 2.8(b). Binkley’s
algorithm produces congruent results, but the elimination of context-
sensitivity dramatically affects the precision of the slice. In this example,

little specializable code remains.

58

In real-world programs, given the presence of globally-used flags that
are dependent on a single procedure parameter, this imprecision can
have significant impact on slice precision and the consequent quality of
specialization. Consider a two-parameter utility procedure u(x,y) that
has a path that sets a global flag f to a value dependent on y, but does
not have any path that sets f based on x. In real-world programs such
as BusyBox, small utility procedures of this form often have tens of call-
sites. If, in the basic graph-reachability slice, y is dynamic at only one
of these call-sites, that is nonetheless sufficient to place u’s assignment
to f in the slice, yielding a parameter mismatch at all other call-sites of
u. Consequently, the application of Binkley’s algorithm will re-slice the
program’s SDG from the actual out-vertices for f at all other call-sites of
u. In practice, such slice-augmentation steps cause extremely undesirable
results, such as errno being classified as dynamic at virtually every point
in the program.

The issue discussed above leads to the key question that specializa-
tion slicing [Aung et al., 2014] addresses: how does one extend context-
sensitivity seen at the call-sites in the basic (non-Binkley) version of graph-
reachability slicing fo the callee-procedure representations as well?°

2.2.3 Specialization Slicing

The crux of the problem with basic graph-reachability slicing is the mono-
variance of the program procedure representation. Because there is one
version of of every procedure P, the information at every call-site of P
must be incorporated into the single representation of P, and thus, due
to the presence of summary edges, the information about P itself may be

less precise than the information available at any given call-site.

®In fact, specialization slicing also improves context sensitivity at the call-sites in
certain situations, particularly in the presence of recursion.

59

int g;

int p(int s,) {
int rs, rd; int q1(int a,){

res = 0; return a + 1;

rs = qi(s, [d);
rd = g;

d =g?12@); int q2((int a], int b){
res += rs; ;

g = b;

R

res += rd;

return res;

3

Figure 2.10: The graph-reachability slice of the polyvariant version of the
code from Fig. 2.8. The procedure q has been replaced by a new copy for
each call-site.

int main(){

int s, d; void rec(k){ s =9
swap(s,d) //csl o . .
void swap(a, b){ if(k > 0) q t ieE_lnE(?’ééiynamlc
s = b; rec(k-1); //cs2 o (k)T %j _;.)n ’
d = a; swap(s,d); //cs3 ree ks fres
} } return s;

}

Figure 2.11: A recursive procedure whose binding-time pattern depends
on calling context.

Thus, converting a program to a polyvariant representation will im-
prove the quality of slicing. Given the code in Fig. 2.8, making a copy
of q for each call-site improves precision, as pictured in Fig. 2.10. In the
absence of recursion, this approach would work. However, it may be the
case that an excessive amount of copying would be performed. For a
two-parameter procedure like g, at most four copies need to be made, one
for each possible subset of the input parameters that are in the slice. If
there are more than four call-sites of g, some copies of q are guaranteed to
be redundant.

Moreover, as we will see, naive inlining fails in the presence of recursion.
Consider the program given in Fig. 2.11, which is an example from [Aung

60

et al., 2014]. I will use this program as a running example to motivate the
core ideas from the work of Aung et al. Before even thinking about how to
perform a slice, it is useful to consider what answer would be a desirable
result for the slice of this code with respect to the first assignment to d.

The procedure swap takes the value of the first parameter, a, and assigns
it to global variable d, and similarly swap assigns the value of b to global
variable s. Note that swap is always called with s as the first argument, and
d as the second. Thus, for the purposes of reasoning about the behavior of
the program, it suffices to treat swap as a procedure that swaps s and d.”

Now consider the behavior of the procedure rec with respect to s and
d. With a small bit of insight, one can see that an inductive argument
establishes that for all k, rec (k) leaves s and d unchanged.

If k is zero, swap is called twice in succession, with no recursive call to
rec. So, after a call to rec(0), s and d have the same values as before the
call. More precisely, s immediately after a call to rec(0) depends only s,
and similarly d after rec(0) depends only on d.

Now consider the case where k is greater than zero. The first call to
swap k leaves s and d swapped. Invoking the inductive hypothesis that
rec(-) leaves s and d unchanged, the recursive call rec(k-1) leaves s and
d in the swapped configuration, and the second call to swap returns them
to the original configuration. Again, we can make a stronger statement:
the value of s after swap(k) depends solely on s and, symmetrically, d
after swap (k) depends solely on d.

Thus, whatever other properties a slice with respect to the initial as-
signment to d in main might have, it would be desirable for return s to
not be in the slice. However, a basic graph-reachability slice must include

both assignments to s and d. Moreover, naively making a copy of each pro-

’Certainly, we could write swap as a procedure with no formal parameters that just
explicitly swapped the global variables. However, that version would make it impossible
to point out the changing dependence patterns of the input parameters that occur in our
running example.

61

void rec_0(k){ void rec_1(k){ void rec_2(k){
swap(s,@) //cs1 swap([s],d) //cs1 swap(s,@) //cs1
if(k > 0) if(k > 0) if(k > 0)
rec_1(k-1); //cs2 rec_2(k-1); //cs2 rec_3(k-1); //cs2

swap([s],d); //cs3 swap(s,@); //cs3 swap([s],d); //cs3
} } }

Figure 2.12: Copies of rec in the infinite inlining of rec

cedure for each call-site in the program clearly cannot be used to resolve
the problem, because rec is recursive.

Surprisingly, considering the slice of an infinite inlining of copies of
rec provides a useful insight. Let rec_i represent the version of rec at
call-depth i. That is, main calls rec_0, rec_0 calls rec_1, and so on (see
Fig. 2.12). Moreover, let us associate each copy of rec with a stack context.
Let a stack context be defined in terms of a call-string:

Let each c; represent a call-site, and let the string cic,cs...c,, represent
a call-string where c,, is the bottom of the stack. Then, rec_0 is associated
with c., and e.g., rec_2 is associated with c.rces2C050. In general, rec_n is
associated with (c.)™c.0. Moreover, we can represent the calling contexts
of swap in the same manner with, e.g., the second call to swap in rec_1 as
Ces3Ces2Ces0-

Let us consider what the slice with respect to the assignment d in main
should look like at different depths. First, consider the behavior of rec_0.
Which of the occurrences of s and d in rec_0 are in the slice at call-sites
cs1, cs2, and cs3 with calling context c.4?

From our argument earlier, we know that rec_0’s call to rec_1 will
leave s and d unchanged. From this observation, it follows that the second
actual parameter of swap at cs1 and the first actual parameter of swap at
cs3 should be in the slice.

Next, consider the slice of rec_1. Before rec_0 called rec_1, s and
d were swapped. Thus, the first actual parameter of swap at cs1 and the
second actual parameter of swap at cs3 are in the slice.

62

void rec_even(k){

int s, d; swap_r(s,@)
if(k > 0)

void swap_l([a], b){ rec_odd(k-1); int main(){

s = b; swap_1([(s],d); s = 2;

} d = get_int(Q;
by int k = get_int();

void rec_odd(k){ rec_even(k);

void swap_r(a, @){ swap_1([s],d) return s;

if(k > 0) }

d = a; rec_even(k-1);
¥ swap_1(s ,@) ;

b
Figure 2.13: A polyvariant version of Fig. 2.11 that yields the desired result.

Clearly, then, because swap is called before rec_2in rec_1, d should be
in the slice upon entry to rec_2. But, this situation is identical to the situation
for rec_o.

Indeed, it is clear that for n = 2k, rec_n should be sliced identically
to rec_0, and similarly for n = 2(k + 1), the slice of rec_n is identical
to rec_1. Thus, if we make two versions of rec, one encoding the odd-
labeled elements of the infinite inlining of rec, and the other encoding
the even-labeled elements of the infinite inlining, as well as two versions
of swap, one encoding the case where the first parameter-dependency is
in the slice, and one where the second is, and inline them appropriately,
we obtain Fig. 2.13. Computing the forward dependence slice over this
version of the program yields the desired result, as shown in Fig. 2.13.

Stated in terms of calling contexts, the slice of any member of the
infinite unrolling at (ce2Ces2)*ce0 looks like rec_even and any one at
(Ces2€es2)*CesaCeso loOks like rec_odd. Similarly, any version of swap at
Ces3(Ces2Ces2) *Ceso OF Cest(Ces2Ces2) *CesaCeso l0Oks like swap_1, and conversely
any version at Ces1(Ces2Ces2)* Cest OF Ces3(Ces2Ces2) *Ces2Ceso l00ks like swap_r.

Note that these are all regular languages: this property is what lies
behind the key insight of the specialization-slicing algorithm. When-

ever, in an infinitely-inlined version of a program, one "performs" a data-

63

dependence slice like the one depicted in Fig. 2.12, the versions of a proce-
dure P in the infinite inlining can be partitioned into a finite number of
equivalence classes, where two elements P, and Py, are in the same class
if they have the same vertices in their slice result. Moreover Aung et al.,
show that each equivalence class can always be associated with a regular
language of calling contexts.®

Specialization slicing is performed via a series of automata-theoretic
operations [Aung et al., 2014]. First, a program P is transformed into a
pushdown system that reflects the calling structure of the program. That
is, the stack-manipulations of the system correspond to calls and returns
in P. Next, a finite automaton A encoding a regular language of slice
sources is constructed. Then, a series of automata-theoretic operations
are performed on A, using the structure of P, which construct the sets of
regular languages encoding the most-precise partition of each procedure’s
infinite inlining as described above.

Thus, specialization slicing gives a viable means of performing a more
precise binding-time analysis than that afforded by Binkley’s Algorithm.
The only potential complication is the risk of expnential explosion. It is
possible to construct a program with k procedures that has 2% procedures
in the specialization-slicing result. In Chapter 6, we find that such an
explosion does not happen in practice. In Chapter 3, I discuss the imple-
mentation details of integrating specialization slicing with GenXGen.

2.3 Rabin fingerprinting

The worklist algorithm in §2.1.3 must, when enqueueing a state/block pair,

avoid enqueueing the state if the block has already been visited in that

8The first part is trivially true: there are only finitely many possible slice results for
each procedure. The surprising part is that (1) the partition can always be characterized
in terms of regular languages, and (2) a representation of the set of regular languages
for the partition is computable.

64

state. A naive approach to state-comparison entails comparing the current
state against all previously seen states, which in the worst case leads to
specialization requiring O(N?) time. If possible, we would like to have
this check take constant time, which suggests a hashing-based approach.

However, because GenXGen produces generating extensions for low-
level languages, program states consist solely of hardware states: the
contents of the CPU registers and memory. Traditional hashing mecha-
nisms have some means of resolving false positives; on a hash collision, the
two objects must be compared. Here, that potentially entails comparing
all live memory in at least two program states. This issue has significant
performance implications for a generating extension, and thus I instead
choose to take a probabilistic approach, and forego a collision-resolution
mechanism. Thus, it is essential to use a hashing method that guarantees
a negligible probability of there being any pair-wise collision between
hashed states, over the full execution of a generating extension.

In addition, because states are hardware states, it is infeasible to adopt
the naive strategy of hashing all of memory after executing each block
(even for a 32-bit architecture). However, in Chapter 4, I show how it is
possible to identify specific regions of memory that have changed during
an execution of a basic block, and how to make the contents of these regions
before and after the basic-block’s execution available to the generating-
extension runtime.” Thus, the most pressing question is, (*) "how do we
use the available information from the OS to efficiently update a hash,
while guaranteeing that there is a negligible probability of there being any
pairwise collision between hashed states."

Avoiding specific implementation details for now, we will operate
under the following abstract model: the generating-extension runtime

partitions memory into w-bit regions, and can (a) identify all regions that

Concretely, Chapter 4 shows how to use fork in conjunction with OS-level support
for logging events from the Copy-on-Write mechanism of the Linux page-fault handler
to collect data about memory changes at 4096-byte page granularity.

65

had at least one write, and (b) provide the values of changed regions both
before and after the writes. For the purposes of this abstract discussion, to
decouple the idea from any concrete hardware or OS-level details, I will
refer to these regions as "chunks."

Given this model, we consider the following refined version of (*):
(**) "given information about what chunks have changed during basic-
block execution and their contents before and after, is it possible to obtain
an efficient means of computing state summaries? Moreover, can the
strategy be implemented in a way that guarantees that there is a negligible
probability of there being any pair-wise collision between hashed states?"
Question (**) suggests an in-place updatable hash.

What is desired is a hashing algorithm H that, given a state hash S and
the following information about changes to a chunk c:

1. p(c), the bit-level offset of ¢ in memory
2. b(c), the contents of c before executing the block.
3. a(c), the contents of c after executing the block.

We would like to be able to compute the post-state hash using only the
given information: S” = H(S, p(c), b(c), a(c))

Additionally, because we have no mechanism for collision resolution,
it is important to ensure that the hash algorithm H guarantees that there
is a negligible probability of there being any pair-wise collision between
hashed states acceptably low. Specifically, when given a collection M of
items, and a hash length of k, we would like the probability of any intra-set
collision to be proportional to %'

Rabin’s “fingerprinting method” [Rabin, 1981; Broder, 1993] provides
just such a hashing scheme. The overview here is based on both Rabin’s
and Broder’s papers, and in particular, the mathematical overview and
collision-resistance argument are based on Broder’s discussion of the

material.

66

2.3.1 Mathematical Preliminaries

Rabin’s fingerprinting method uses the mathematical properties of poly-
nomials over the Galois field of order 2 (GF(2)) to construct a hashing
scheme with the desired collision properties. In particular, Rabin finger-
printing represents bit-strings as polynomials over GF(2), and performs
basic arithmetic operations over the polynomials to compute the hash.

GF(2) is the set {0,1} augmented with addition and multiplication
defined as follows:

- O+
_ OO
O | =
— O X
O OO
=

Stated in terms of bit-level operations, + is exclusive-or, and X is logical-
and. Moreover, every element is its own additive inverse, so the subtraction
operation in GF(2) is the same as the addition operation. Thus, arithmetic
over GF(2) is easily implemented in hardware.

Next, we define GF(2)[t], the field of polynomials over GF(2). A poly-
nomial P(t) of degree m has the form

P(t) = so+ s1tt + ... + s t™, (2.6)

where each s; is an element of GF(2), and t™ # 0. Moreover, given a
bitstring o, where |o| = n we can define the polynomial o(t) as the poly-
nomial of degree m < n where m is the largest index of a non-zero bit,
and s; is the i bit of o.

It is important to note that we are considering the polynomials merely
as formal polynomials. That is, we have no interest in evaluating them at
any particular t; we are merely interested in the algebraic properties of
the polynomials themselves.

Addition and subtraction are extended to polynomials in the usual way.

Two particular properties relevant to the hardware-level implementation

67

of Rabin fingerprinting are:
e Polynomial addition (+) is bit-wise xor.
e Multiplication by t* can be implemented as an i-bit shift.

These operations are conveniently implemented in hardware, and there is
no space overhead for considering a bitstring as o(t): the bitstring itself is
a perfectly good representation of o(t).

In addition, with respect to multiplication and division, GF(2)[t]is
“well-behaved” in the sense that it has algebraic properties analogous to
those of the integers. The division P(t)/D(t) is well-defined for all P(t)
and non-zero D(t), and hence remainders and congruence modulo D(t)

are as well. For example, (1 + t' + t?)/t! yields a remainder of 1:
th+1
th+0) 4+t +1
+t2+ 0
th+1
+t'+0
1

Thus, t*> + t' + 1 is congruent to 1 mod (t' + 0).

For every m > 0, there exist irreducible polynomials®® of degree m, which
are analogous to prime numbers: they are not divisible by any polynomial
other than themselves and the unit polynomial.™

19Note that while congruence mod D(t) plays the central role in the construction and
analysis of Rabin’s fingerprinting algorithm, we are never concerned with arithmetic in
the ring of polynomials mod D(t). All computations are done in GF(2)[t], and when I
speak of irreducibility, I mean irreducibility in the field GF(2)t].

That is, the polynomial of degree zero, where sy = 1 (in the notation of Eqn. (2.6)).

68

Example 2.1. The only irreducible polynomial of degree 2 is 1 + t' + >
and the two irreducible polynomials of degree 1 are t! and 1 + t!.

Moreover, just as every integer has a unique prime factorization, ev-
ery polynomial in GF(2)[t]has a unique factorization into irreducible
polynomials.

Example 2.2. The unique irreducible factorization of t> +t! is (1+t!)(t!).
The unique irreducible factorization of (1 + %) is (1 + t1)(1 + t1).

For the purposes of this dissertation, it will suffice to observe that
for reasoning about the operations relevant to Rabin fingerprinting, the
algebraic properties of remainders for polynomials over GF(2) are identical
to those for the integers.

As we will see, Rabin fingerprinting consists of (1) randomly selecting
an irreducible polynomial P(t) of degree n, and (2) for each bitstring o to
hash, computing H(o) = o(t) mod P(t). The algebraic properties of mod
for polynomials over GF(2) admit an efficient in-place update of H.

In addition, it will be shown that collision-resistance derives from the
fact that (1) P(t) was chosen at random, and (2) there are more than
(2% — 2%/2) /k irreducible polynomials over GF(2) of degree k.

2.3.2 Rabin’s In-Place Fingerprinting Method

Given a bit-string o = (s, s1,...,5m-1), and an irreducible polynomial
P(t) of degree k, the fingerprint H(o) is defined as

H(o) % (o(t) mod P(t)) (2.7)

The choice of the degree k of the irreducible polynomial P(t) gives us

control of the size of hash values: H(o) is represented by a bit-string of

69

length k. The choice of k also allows us to control the probability of any
intra-set collision. [Broder, 1993; Rabin, 1981].
For the purposes of the running examples in this section, we will

consider a one byte-memory divided into two four bit chunks:

Example 2.3. Consider an 8-bit bitstring o = 1010 0110—corresponding
to the contents of a one-byte memory divided into two four-bit chunks—
and a 3-bit irreducible polynomial P(t) = 1 + t + t2. The corresponding
polynomial for o is o(t) = 1+ t> +t° + t°. Reducing mod P(t), we obtain
the hash value H(o) = 000.

By properties of mod, Eqn. (2.7) implies two useful properties:'?
1. Fingerprinting is linear: H(A + B) = H(A) + H(B).

2. The fingerprint of the product of t* and a polynomial o(t) can be
computed via H(t' * o(t)) = H(H(t") * H(o(t))).

Consider these properties in the case of our one-byte memory. The

memory consists of two chunks:
0 = (5ot + sqt! + sot? + s5t3) + (sat? + s5t° + s6t° + s7t7)
Note that for the second chunk, we can factor out t#, yielding
o(t) = (5ot + s1t! + spt? + s5t3) + t4(s4t° + s5t! + set? + s71%)
By property (1),
H(o(t)) = H(sot® + s1t! + spt? + s5t2) + H(t*(s4t° + sst! + st® + s71%))

12A convenient way of thinking about these two properties is that H is an additive
homomorphism and is "nearly" a multiplicative homomorphism in the specific case
shown in property 2. Were it not for the outer application of H in the right-hand side of
property 2, it would be one.

70

By property (2), and having ¢y = sgt® + s;t! + s,t? + s3t%, then
H(o(t)) = H(co) + H(H(t*)H(s4t® + ss5t! + set? + s7t%))

From this expression, it is easy to see that if the second chunk is
changed, one needs only to update the hash of the affected chunk. Given a
change to the second chunk in pre-state o, the post-state ¢’ can be derived
by subtracting off—i.e., adding—the terms representing the contents of
the second chunk in ¢, and adding in the terms representing the contents
of that chunk in o’

More explicitly, representing the contents of the second chunk of o
with t* factored out as ¢; and the contents of the second chunk of ¢’ with

t* factored out as c¢;, we have

o =cy+ ttcy
o’ = ¢y + thc]

and thus,
o’ =co+ 0+ thc]
o' =co+ (ther + thcy) + tic]
o' =0+ thcy + thc]
and finally,

H(o’) = H(o+thc; +tic))
= H(o) + H(t*c; + t*c])
= H(o) + H(t*(c; +¢f))
= H(o) +H(H(t*)H(c1 + ¢f))

71

Example 2.4. Returning to Ex. 2.3, assume that some writes occur in
chunk 1 (the second chunk), yielding the post-state ¢’ = 1010 0011.
Computing directly, the post-state polynomial is o’ (t) =1+ t* + t° + 7,
and by reducing o’(t) mod P(t), we obtain the post-state hash H(o’) =
1+0xt+0=t*=100.

Alternatively, H(o’) can be computed incrementally from H(o) = 000.
For page 1, the pre-state polynomial is t + t*, and the post-state polynomial
is t* + t>. We have

H(o’) = H(o) + H((t° +t°) + (t* + t7))
= H(o) + H(t*(t + t2) + t4 (2 + t3))
= H(o) + H(t*(t + t> + t2 + t3))
= H(o) + H(H(t*) * H(t + %))
= H(o) + H(t x (1 +1))
= H(o) + H(t + t?)
=H(o)+1+0x*t+0x*t?
= 100

\ 7

It is easy to see that this generalizes to any memory and chunk size. By
properties (1) and (2), H(o’) can be directly computed from H(o) using
only the contents of the i chunks in ¢ and ¢’, thereby avoiding the need
to examine all of o’ to compute its hash value H(o’).

Let w be the chunk size. In addition, let 041, = Sq+Sq1t+...+8sp*t° @
denote the bit-string containing the bits of the substring of o starting at a
and ending at b, inclusively, for both a and b. From properties (1) and
(2), we have that H(o’) equals

H(0) + HE™ * Oty (i 1)sw-1) + HE™ 500 ()00 1)
(0) + HE™ * (O, (14 1)sw—1 F Ofane (i 41)0w-1))

H
H(o) + H(H(t"W) * H(O 4w, (i+1)sw—1 + Gl*w (1+1)*W71))-

72

For a fixed chunk size of, e.g., 2'° bits,'? the only non-constant-time com-
putation is H(t"*") = (t*" mod P(t)), which can be computed in time

log, (i * w) using modular-exponentiation-via-squaring. That is,
H(t?) = H(t*") = H(t*t*) = H(H(t*)?).
For example,
H(t') = HH(t%)?) = H(H(H(t")*)*) = HH(H(H(t*)*)*)?).

Then, letting A(P) = (H(P))?, with A™(P) denoting n nested applications
of A to P in the usual sense, it is easily proved that for any x = 2Y

H(t¥) = H(A%:) (1))

Because the maximum amount of addressable memory is bounded,
log, (i * w) is effectively a small constant. Moreover, it is inexpensive to
precompute and cache hashes of t* where x = 2V for all y up to 64.

In general, the number of chunks that must be hashed to compute the
post-state hash is O(q), where q is the number of unique chunks written
during the execution of the basic block, which is at most O(r), where 1 is

the number of instructions or statements in the compiled basic block.

2.3.3 Collision Resistance.

We now discuss the collision-resistance property of Rabin fingerprinting.
The derivation is based on Broder’s treatment of the material [Broder,
1993].

Recall that to ensure that determining whether a state has been seen be-
fore takes O(1) time, GenXGen does not perform collision resolution. The
following derivation shows that the probability of any intra-set collision
can be made arbitrarily small by adjusting the degree k of P(t). Because

elements of GF(2)[t]are represented as bit-strings, adjusting k is the same

3The size of a page in bits on x86 Linux is 2'°.

73

as adjusting the size of the hash. It can be shown that given a set V of items
to fingerprint, the probability of any intra-set collision is proportional to
|V|/2¥. Thus, given an upper bound on the number of unique states vis-
ited in an execution of a generating extension—for our purposes, sixteen
million—the probability of any intra-set collision is proportional to 2.

Recall that the irreducible degree-k polynomial P(t) was chosen uni-
formly at random. To reason about collision resistance, we need to com-
pute the probability of at least one collision'* given a set of values V to
fingerprint, where n = |V|. More concretely, we are trying to answer the
question, "given a fixed V, and a P(t) chosen uniformly at random out of
all irreducible polynomials of degree k, what is the probability that there
exist at least two items a, b € V that are both congruent to the same value
mod P(t)?"

The derivation of the probability bound that answers this question
exploits the irreducibility of P(t), along with a key algebraic property of
GF(2)[t], namely the fact that every polynomial has a unique irreducible
factorization. Every polynomial A(t) has a set Sa of of irreducible factors,
and the algebraic structure of GF(2)[t]is sufficiently “well-behaved” that
the following proposition holds, which is analogous to the same property
for divisibility by primes in the integers: a polynomial A(t) is congruent
to 0 mod an irreducible polynomial P(t) if and only if P(t) € Sa.

A collision occurs when two polynomials A(t) and B(t) are congruent
to the same polynomial C(t) mod P(t). Thus, if there is a collision,

and
H(A(t) —B(t)) = H(A(t)) —H(B(t)) =0

Now, consider Q, where Q is the product of all (A(t) — B(t)), where

!4That is, we're looking to answer the "birthday paradox" problem for a set of bit-strings
being hashed.

74

(A(t), B(t)) are unordered pairs over A, B € V, where A(t) # B(t), i.e.,

def
Q= J] (A -B).
A(t),B(t) eV,
A(t) # B(t)

Then, there is a collision if and only if Q is congruent to 0 mod P(t).

Example 2.5. Fix P(t) = 1 + t! + t2, and let the set V consist of the
following polynomials:

A(t) =1+t Ay(t) =1+t As(t) =t + 12
Their hashes are the remainders mod P(t):

H(A1(t)) = t!, H(A5(t) =1+ t!, H(A;(t)) =1
Thus, there is no collision. Now, consider Q:

Q = (A1(t) — Az(t)) (A1(t) — Az(t)) (Az(t) — As(t))
Q= +t)1+tH(1 +t?)

The irreducible factorization of each term is:
(A1) = Aa(t)) = () (1 +)
(Ar(t) — Az(t)) = (1 +)
(Ar(t) = Az(t)) = (1 +t))(1+)

P(t) is not a factor of any term in the product Q, and thus P(t) does not
divide Q. Hence Q is not congruent to 0 mod P(t).

75

Example 2.6. Now consider V' where A, is replaced with Aj(t) = t'. We
have:
H(AZ(t)) = H(t!) =t'
Thus, H(A1(t)) = H(A5(t)), and a collision exists.
Now consider the term of Q' corresponding to A1(t) — Aj(t). We have:
A(t) —AJt) = (1+D) +tH) =1+t +¢

The difference is equal to P(t), and hence congruent to 0 mod P(t). Thus,
P(t) is a factor of Q', and so Q' is divisible by P(t).

Thus, by selecting a set of values V to hash, one fixes the product
polynomial Q. Let Fx(Q) be the number of irreducible factors of Q of
degree k, and let Iy be the number of irreducible polynomials of degree k.
Recalling that P(t) was selected uniformly at random, I claim that we have
the following upper bound on the probability C of any pairwise collision

among the elements of V:

Iy
To see why it is an inequality, note the following;:

1. There is a collision if and only if P(t) divides Q, and hence if and
only if P(t) is in Q’s unique irreducible factorization.

2. the unique irreducible factorization of a polynomial may contain

multiple instances of the same factor.

That is, because the set of distinct irreducible factors of Q may be smaller
than the number of factors in Q’s irreducible factorization, the ratio
F(Q)/Ix overestimates the probability of any intra-set collision.

76

Stated dfferently, because P(t) is chosen uniformly at random, the
probability of any given factor A of degree k of Q being P(t) is
1
10
Then, if S is the multiset containing the (possibly duplicated) irreducible
factors of Q, we have |S| = Fi.(Q), and thus obtain the union bound
1 F(Q)

C< — =
— L. L

N

Q has at most deg(Q)/k irreducible factors of degree k, so

¢ < FlQ _ deg(Q)/k

Iy 1

For every pairwise difference A(t) — B(t) in Q, the degree is bounded
from above by the largest degree in the pair (A(t), B(t)). Thus, if m is the
degree of the largest polynomial in V, the degree of every difference is
at most m. In addition, for every A(t) € V, there are at most n non-zero
differences involving A(t).

Note that degree of the product of any set of polynomials is the sum of
their degrees. Thus, the degree of the product of all differences involving

A is at most nm. Then,

deg(Q) < Z nm = n’m.
A(t)EV

Although not proved here, it can be shown that there are at least (2% —

2%/2) /k irreducible polynomials of degree k. Consequently, a bound on

77

the probability of any intra-set collision can be derived as follows:

c < RQ
Iy
deg(Q)/k

S -2k

< n’m k
S\ k 2k — 2k/2

n®m

- 2k _ 2k/2
_ n*m

2k

Discussion. Consider the address space of a 64-bit x86 system. Although
addresses are 64 bits, only the lowest 48 bits are used. Because x86 is byte-
addressable, a virtual address space contains at most 2*9x8 = 2°! bits. If we
use a 256-bit hash, then we select a random irreducible 256-bit polynomial
as our modulus. Now suppose that a generating extension explores no
more than sixteen million states.!® Note that 16,000,000 < 2%*. Then, the
probability of there being any pairwise collision during the execution of a

generating extension that uses up to 16,000,000 states is bounded by
(224)2 % 251 299 1

9256 925 lI57°

Noting that the age of the universe is estimated to be approximately
1.13 % 2%2 nanoseconds, we conclude that 57 is an acceptable probability of
intra set collision—i.e., it is far less than the chance of selecting a random

nanosecond from the lifespan of the universe.

15Tn our experiments, far fewer than four million states are explored.

78

2.4 Pointer Symbolization

Lifting values of a simple non-reference type is straightforward. For exam-
ple, given an arithmetic expression such as dynamic = static + dynamic,
where all operands are int values, and a state [static — 2], a generating
extension can emit dynamic = 2 + dynamic.

However, when specializing C, lifting address values is more challeng-
ing. Due to the source-to-source nature of the specialization algorithm,
we do not have direct control over the memory layout of the compiled
and linked residual program. It is difficult at best to guarantee that the
specialization-time value of an address such as, e.g, &stack_var references
the same variable in the correct stack frame in the residual program.

Even if one could guarantee perfect control over the linker and loader,
heap memory would be even more problematic; one would have to enforce
complete equality between the layout of the statically known portion of the
heap at specialization-time and at execution time of the residual program.

For these reasons, we cannot simply emit lifted pointers verbatim,
unlike, e.g., int or char values.

Consider a concrete example, where g is a static char array, s is a static
char * variable, and d is a dynamic char value, respectively:

(1) s = &gl0];
(2) s += 1;
(3) *s = d;

Because line (3) computes a dynamic result using the static operand s, s
must be lifted. If the base of g is 0x1000, a naive lifting approach would
emit * ((char*)0x1001)= d. However, nothing about our source-to-source
transformation enforces any relationship between the memory layout of
the generating-extension binary and the memory layout of the residual-
program binary. Consequently, we cannot guarantee that 0x1001 refers to
the second element of array g in the residual program.

79

Interpretation-based approaches, such as [Srinivasan and Reps, 2015],
can resolve this issue by treating addresses as symbolic values: operations
such as the reference operator & and malloc yield a pair, consisting of a
symbolic base address and an offset, and subsequent pointer arithmetic op-
erates on the offset. Thus, in our example, at (1), s would hold (g_base, 0),
and (2) would yield (g_base, 1). At (3), with such an approach, one can
symbolically lift s, emitting * (&g + 1) = d.

Because we wish to produce generating extensions that execute na-
tively on hardware, we do not have the luxury of using symbolic values
without resorting to instrumenting all instances of address arithmetic.
However, the fact that generating extensions are C programs affords us the
opportunity to convert addresses to symbolic base/offset pairs at lifting
time. In §5.1.5, I explain this lazy-symbolization process in detail.

80

Chapter 3

OS-Assisted State Management

For generating extensions produced by GenXGen to be able to correctly
produce a residual program, the following two questions from §2.1.5 must

be answered:

How can a generating extension efficiently (1) save and restore native

hardware states, and (2) compare them for equality?

A number of different elements are part of our solution. Fig. 3.1 depicts
how the different ideas that support our memory-management technique
fit together. To address issue (1), we take inspiration from symbolic ex-
ecution tools such as KLEE [Cadar et al., 2008], and use two OS-level

1)

Record all Use incremental Interpose on Use fork() to Retire a
Rabin fingerprinting: . CoW to collect Restore a (basic-block, o)
encountered update fingerprint Need to obtain changes = snapshota (basic-block, o) pair by
(l?asm-block, o) with change-in-state Ssat thg end of 8 available at (ba'sn:»block, o) pairviaa terminating its
pairs as the set of each basic-block pair; copy the .) .
their fingerprints 8 at the end of each the end of fingerprint process switch process; retain
basic-block basic-block the fingerprint

()
Figure 3.1: Diagram of how the ideas that support our memory-
management technique fit together. (1) Ideas used to save and restore
program states efficiently; (2) ideas that support an efficient means for
determining whether a state has repeated.

81

mechanisms—(i) fork() (with copy-on-write (CoW)) and (ii) process
context-switching—to create an efficient mechanism for saving and restor-
ing states. Moreover, the elements in a generating extension’s worklist can
be represented by a set of process IDs.

For issue (2), the main reason why we could devise an efficient solution
was that we changed the requirements slightly. In past work on partial
evaluation, two properties of the method for checking equality of partial
states have been paramount: given a partial state o, the state-comparison
procedure must determine whether o has been previously encountered,
with zero false positives, and zero (or few) false negatives. These properties are
used to ensure that the partial evaluator both produces a correct residual
program and terminates. A false positive is a soundness issue: it folds
together parts of the program that correspond to different partial states, and
hence can cause the residual program to fail to execute correctly. A false
negative, while not desirable, may be tolerable: it would cause extra code
to be created in the residual program (which would thus take up more
space)—although in the worst case, it could cause the partial evaluator to
fail to terminate.

In §3.1, I explain why prior approaches to state-representation are un-
satisfactory for solving (1) and (2) in generating extensions for low-level
languages. §3.2 explains the how Linux implements the processes ab-
straction and the associated copy-on-write mechanism by using hardware
support for virtual memory. In §3.3, I expand on how my approach to (2)
differs from prior implementations of state comparison—particularly my
choice to abandon soundness—and show how the process-based snap-
shot implementation allows me to implement a hash-based approach to
state comparison that provides a strong probabilistic guarantee on the
absence of collisions. I argue that, despite being unsound, the negligible
collision probability is, for any reasonable, physically realizable workload,

indistinguishable from soundness (as justified by the bound presented

82

in §2.3.3 that the probability of there being any pairwise collision during
the execution of a generating extension that uses up to 16,000,000 states is
bounded by 5). In §3.4, I explain how GenXGen generating extensions
use the OS-level information made available from CoW to update the hash

using Rabin Fingerprinting (§2.3).! §3.5 concludes the chapter.

3.1 Issues With Prior Snapshot Approaches

In C-Mix-style [Andersen, 1994a; Makholm, 1999 generating extensions,
such as the ones given in Fig. 2.4 and Fig. 2.5 from §2.1.5, the state snap-
shot is explicitly materialized as a structure. However, this approach is
potentially problematic from a performance standpoint. For example, in
handle_block_4 from Fig. 2.5, the program’s stack state must be explicitly

restored:
char *p = S.p; char *pat = S.pat;

Implementing save and restore via a state structure poses several chal-
lenges for C-Mix-style generating extensions, which must address the full
memory semantics of C. In particular, the key advantage of a generating
extension is that the statically-executing portion of the program is, as much
as possible, constrained to the semantics of compiled C code executing
natively on hardware. Consider the case where, when taking a snapshot,
the stack contains a reference to another stack variable. For example, im-
mediately prior to taking a snapshot, the static statement p = &stackVaris
executed. Whenever a saved subject program state is restored, the memory
layout of the stack must be restored in a manner that ensures all references
to objects on the stack are still valid after restoration.

If this statement is implemented verbatim in the static-code compo-

nent of the generating extension, then—after that code is executed—p

In Chapter 4, §4.4 explains how I adapted the traditional C-Mix style of generating
extension to use GenXGen's process-based state representation.

83

contains the concrete address of a location in the generating extension’s
specialization-time stack. If the generating extension ensures that the stack
base of each snapshot is always at the same location, then the simplest way
to save and restore a state such that the value of p is a valid reference to
stackVar is to save and restore the entire specialization-time stack. How-
ever, this approach is costly in terms of both time and space. A full record
of the stack must be recorded for every saved state, the entire stack must be
copied at the end of every basic-block execution, and when a block/state
pair is de-queued from the worklist, the saved stack must be copied back
to the stack base.

In the presence of heap memory,? the obligation (1) of saving and
restoring states while preserving the correctness of pointers becomes more
difficult. One might consider saving and restoring only reachable memory
objects by performing a mark and sweep from every pointer-typed variable
on the stack. However, due to C’s weak typing guarantees, it is difficult to
come up with a rational and safe implementation of "reachable from the
stack," because an uninitialized reference may contain garbage values, or
references to freed memory. The call free (p) does not zero out p, and even
in the absence of undefined behavior, such as use-after-free, the semantics
of a mark-and-sweep-based snapshot are ill-defined. Thus, generalizing
the stack-copying approach entails copying the entire malloc() arena.

The problem becomes even more difficult for specializing stripped
binaries. In this case, at best, techniques from tools such as CodeSurfer
can extract a very coarse-grained classification of memory regions into ref-
erence and non-reference types. Moreover, the lack of debugging symbols
means that fine-grained information about the internal structure of struct

types is lost, and thus it is not clear what mark-and-sweep means in this

ZHere "heap memory" refers to what is conventionally referred to as "dynamically
allocated memory," i.e., memory allocated via procedures such as malloc (). However,
to avoid confusion with the unrelated notions of "static" and "dynamic" binding times, I
will avoid using the term "dynamic allocation" in this dissertation.

84

context. Thus, to produce a low-level-language-agnostic generating exten-
sion runtime, it is best, for the purposes of a snapshot implementation, to
treat memory as a collection of of undifferentiated bytes. However in the
worst case, this approach entails copying and restoring all live, non-code®
memory for a state.

Interpretation-based partial evaluators for type-safe high-level lan-
guages may be able to take a better approach. Because static instructions
are interpreted, and not executed natively, the implementer of a partial
evaluator is free to choose a state representation suited to the needs of par-
tial evaluation. For example, a state can be represented as a lookup table
mapping symbols to memory objects, along with a collection of memory
objects. When specializing a block at a state, the interpreter can simply
hold a reference to the current state table. Restoring a state, then, is merely
a matter of changing the "current state" reference.

Moreover, research into purely-functional languages* has lead to the
creation of applicative data structures, which are data structures for which
updates produce a new data structure, and do not destroy the old data
structure [Reps, 1984, Chapter 8][Myers, 1984; Okasaki, 1999]. Thus, a
program can insert a value v into an applicative dictionary D, and obtain
the root of a new applicative dictionary D’, such that all references to D
are still valid references to the old dictionary, while D’ is a new dictionary
that (i) contains v, and (ii) shares the bulk of its (tree) structure with D.
Applicative dictionaries can be used to implement the state representation
for an interpreter for an imperative language.

For a partial evaluator, an applicative-dictionary-backed state repre-
sentation admits O(1) state swapping, while also reducing space usage

by sharing unchanged state between structures. However, applicative

3GenXGen does not handle self-modifying code, and in practice assumes all subject
programs conform to a WX protection policy.

#.e., functional languages such as Haskell that do not permit side-effects or other
forms of imperative state update.

85

structures do not easily admit O(1) state-equality checking. In practice,
one can hash, e.g., an AVL-tree in such a way that the hash-value is identical
for different AVL-trees that represent the same state, which yields O(1)
state-inequality tests, but not equality tests.

A state-management technique that improves upon applicative-
structure based approaches by solving both item 1 and item 2 (from the
beginning of the chapter) with O(1) operations—while also being usable
outside of interpreter-based approaches—is a property that would be
desirable in a state-management scheme for GenXGen. However, like
C-MixII, the statically-executing portion of the program is constrained to
the semantics of compiled C code executing natively on hardware. Thus,
for a compiled generating extension, a static statement likea = a + 1,
the symbol a corresponds to some concrete hardware location—either a
memory address or a register. This situation precludes a straightforward
way of representing state via a swapable lookup table that maps symbols
to values, as one would do in an interpreter.

Moreover, the semantics of C and x86 machine code are merely maps
from one hardware state to another. That is, a static state in a GenXGen
generating extension consists of hardware registers, the instruction pointer,
and the contents of memory. Thus, if we wish to produce a language-
agnostic generating-extension runtime, the state-management problems
become a matter of saving and restoring full hardware states. However, by
design, widely-adopted operating systems, in conjunction with hardware,
already provide a means of saving and restoring full hardware states. The
desired behavior is precisely what the process abstraction in, e.g., Linux on
x86-64 provides. We thus take an approach inspired by symbolic execution
engines such as KLEE [Cadar et al., 2008], which represent states with OS

processes.

86

3.2 The Process Abstraction on x86 Linux

Effectively, by working in concert, the OS and the CPU ensure that every
process has an isolated address space. From the perspective of machine-
code-level load and store semantics, each process has exclusive access to a
full, nearly—unbroken5 32 or 64-bit virtual address space. More succinctly, the
CPU and OS present a view of hardware that allows a process to run as if
it were the sole program running on the system. In its ordinary execution,
the operating-system kernel is constantly changing which programs are
actively executing on hardware, and, using special hardware-level mech-
anisms provided by the CPU, the OS is able to swap active processes in
constant time.

The key hardware construct that provides this process abstraction is
virtual memory. Virtual memory decouples the logical® addresses (referred
to as virtual addresses) manipulated and accessed by a program from the
actual hardware locations these virtual addresses refer to (these hardware
locations are referred to as physical addresses). For example, although a
program may execute v = *(0x40000), the virtual address 0x40000 may
correspond to the physical address 0x1000. When executing load and store
instructions, the CPU translates virtual addresses to physical addresses
using lookups into an in-memory address-translation table managed by
the OS, aided by an on-CPU cache of virtual-to-physical mappings.

On x86, virtual memory is implemented by dividing memory into pages.
Both virtual and physical memory are partitioned into 4096-byte regions
called pages; every "live" page in a process maps to a underlying physical
page. For each process, the OS maintains a page table, which contains a

5A small virtual region contains OS-kernel-reserved memory, which is marked as
inaccessible to programs. Ordinary reads and writes to these regions are not permitted.
This region is necessary for the OS to be able to function correctly while also providing
the process abstraction. A given process’s virtual address space is not similarly cluttered
with regions belonging to other processes

®Here "logical address" means "visible to a program at the semantic level," and not
"logical address" in the sense of the (largely obsolete) x86 segmentation model

87

1 2 3

A | A | As B:|B: | B

Pi|P: | Ps | Pa|Ps| Ps| ..
Figure 3.2: An example virtual-memory configuration for two three-page
processes, A and B in a system with n physical pages.

P

list of translations from virtual to physical addresses. The CPU holds
the address of the current page table in a special-purpose register; when
executing loads and stores, the table is used to translate virtual addresses
to physical addresses, and the CPU caches recent virtual-to-physical page
translations to avoid excessive page-table lookups.

For example, Fig. 3.2 depicts a system with n pages of physical memory,
and two processes. Note that adjacent virtual pages, such as A, and A3
need not be physically adjacent: virtual addresses are only guaranteed to
be physically contiguous inside pages.

Swapping from process P to P’ on x86 CPUs thus consists of saving
P’s CPU registers, restoring P'’s registers, and changing the CPU’s "cur-
rent page table" register to reference P’’s page table, and is thus an O(1)
operation.

Moreover, Linux identifies every process with a unique numeric ID,
termed a process id or PID. This PID serves as a handle to a process, and
Linux exposes several APIs that use PIDs to set up communication and
synchronization channels between processes, and to send signals to other
processes.

88

3.2.1 Using Processes to Implement State Snapshots

The generating extensions created by GenXGen use different OS processes
to represent different state snapshots. A set of snapshots is represented
by a set of PIDs. Thus, the generating extension is a multi-process pro-
gram; a single controller process manages a collection of state processes. The
worklist consists of block/PID pairs. From the perspective of the con-
troller, specializing a block consists of de-queuing a pair, and sending an
IPC signal to the process associated with the state-PID, instructing it to
perform specialization at the specified block. The controller then halts
and awaits a signal from the post-state-process. Upon completion, the
post-state-process sends a message to the controller process, consisting of
the PID of the post-state-process, along with the ID of all successor blocks.
The snapshot () operation used in Fig. 2.4, thus consists of spawning a
new process prior to executing a basic block, and using the newly spawned
process to execute the block.

To allow programs to create new processes, Linux provides the fork ()
system call. When a process A calls fork(), a new process A’ is spawned,
and both processes return from fork. At this point both A and A’ have
identical register values, memory contents, and value of the instruction
pointer, except for the return value from fork (), which is 0 in the child,
and the PID of the child in the parent.

To understand the implementation of snapshot via fork, consider the
execution of the process P representing state o at some block b. Process A
receives a message from the controller telling it to perform specialization
of b. P calls fork (). Upon return from fork(), A checks the return value,
and upon seeing that it is non-zero, suspends execution, awaiting further
signals; the child process A’ is reserved as the process to represent the
post-state ¢’ of the execution of b on 0. A’ then executes block b, and
sends a completion signal to the controller, along with its PID, which

is registered as the canonical representation of ¢’, if 0’ has not yet been

89

visited. Then A’ suspends execution and, like A, awaits further execution
signals.

It is important to note that while GenXGen is implemented as a multi-
process program, it is not a parallel application. At any given point, either
the controller process is executing, or exactly one of the state processes
is executing. Thus, there is no need for, e.g., non-trivial synchronization
constructs, and no dependencies that may lead to deadlock.

The call to snapshot () is an O(1) operation, because fork() is imple-
mented in a time and space-efficient fashion through copy-on-write (CoW).
Rather than allocating new physical pages for A’, every page F(a/ ;) in A’
is mapped to the same physical page G as the corresponding to F(a ;) in
A. However, the virtual-to-physical mappings for A’ are flagged as CoW
using hardware support. When A’ writes for the first time to a page Fa/ 1)
inherited from A, a hardware fault occurs, the changed version of the page
is allocated its own page G’ in physical memory, and the hardware state is
updated so that F(a/4) is mapped to G'.

For example, consider the state of memory before and after the CoW
fault pictured in Fig. 3.3. In Fig. 3.3(a), process A has just returned from
fork(), and has spawned a child process A’. Later, A’ writes virtual page
A;, triggering a CoW fault. Before the write, the CPU interrupts A’, and
the OS copies the contents of P; to a free physical page, Ps, and updates
the page table of A’ so that Aj now references Ps, and the write completes,
this time targeting the physical page Ps.

In addition, the copy-on-write mechanism provides a means of imple-
menting a more efficient means of checking state equality, based on an
incrementally-updatable hash algorithm, as discussed in §3.3 and §3.4.

90

A | A | As ALl AL | AL
P[P |Pa|Pi|Ps |Ps| . |P,
(a)

]
3

A LA | A A Az | A
Pi|P: | Ps | Pa|Ps | Ps| ..
(b)
Figure 3.3: The state of virtual memory before (a) and after (b) a CoW
fault. Configuration (a) denotes the state of memory immediately after A

calls fork, and (b) denotes the state of memory immediately after child
process A’ writes to virtual page As.

P

3.3 Using OS Mechanisms to Implement

Incremental State Hashing

In our work, partial states are native hardware states, which caused us to
reconsider the ground rules for checking partial-state equality. Clearly,
determining state equality by full comparison of two process address
spaces—even if constrained to global variables, stack, and heap—is pro-
hibitively expensive. Every state process A must be retained, even if no
instances of A are referenced by the worklist. Moreover, because equality
is determined via full state-comparison, a new state process A, must be
checked against all other state processes. Thus, an end-to-end execution

of a generating extension entails O(N?) state comparisons.

91

One could take a conventional hash-based approach, and retain a hash
table of previously-seen states. However, in the conventional approach,
false positives in the equality check are eliminated by performing direct
comparisons if a collision occurs in the hash table. Thus, if A and A’ have
the same state hash, a full comparison of all live pages in A and A’ must
occur.

Thus we further relaxed the constraints on checking partial-state equal-

ity, and settled on the following properties:

1. The procedure must be space-efficient and time-efficient:

a) We want to store at most a few hundred bits per state.

b) State-equality checks should take constant time.
2. There should be no false negatives.
3. The false-positive rate must be kept acceptably low.

4. One must be able to incrementally update the value that characterizes
a visited state.

Hashing—with the exception of collision-handling—satisfies (1b): the
contents of a previously seen state can be represented as a 256-bit number.
Moreover, item 2 is obtained for free with hashing.

Item 3 deviates from the conventional approach to state management in
partial evaluation. In our approach, we do not insist that there be a mechanism
to resolve collisions, as long as we have control over parameters that ensure
that the probability of a collision ever arising is below a value of our choosing.
In other words, we allow the use of a hash, as long as the parameters of
the hash function can be tuned to keep the collision probability below an
acceptable threshold. As described in §2.3, by choosing a hash-size k, we

can tune the collision probability, which is proportional to 1/2*. Moreover,

92

as we will see in §3.4, by exploiting available OS-level information, we can
use the efficient-incremental-update property of Rabin fingerprinting to
satisfy 4.

Moreover, because we do not need to resolve collisions, we automati-
cally satisfy 1a: to record the set of previously encountered partial states,
during specialization it is only necessary to keep the set of hash values of par-
tial states, rather than the partial states themselves. In our implementation
in GenXGen|[C], a hash value is a 256-bit value, so checking equality of
partial states is performed by comparing 256-bit values.

Why is a Probabilistic Guarantee Acceptable? Although it is possible for
GenXGen[C] to produce an unsound residual program due to a hash colli-
sion, by choosing appropriate values for parameters of the hashing scheme,
the probability of a collision can be made arbitrarily small. The counting
arguments from Rabin [Rabin, 1981] and Broder [Broder, 1993] discussed
in §2.3.3 establish that with the parameter values used in our implemen-
tation, for any single run of GenXGen[C] in a 64-bit byte-addressable
address space that produces a residual program with up to 16,000,000
basic blocks, the chance of an incorrect program being generated due to a

157 and hence negligible.”

hash collision is 2~
The reliance on a probabilistic guarantee runs counter to principles
generally accepted in the PL community, and may be seen as heretical by
some. Nevertheless, there are good reasons for considering the approach.
In particular, similar ideas are used in other systems—some with even
higher risks than the ones we have chosen to accept in GenXGen[C].
One example is the Vesta build-automation tool created at DEC SRC
[Heydon et al., 2006]. Vesta has a sophisticated function-caching system to

avoid rebuilding components whenever possible. Each cached object has

"Note that we are not tripped up by a “birthday-paradox” situation. The circum-
stances are roughly as if we have arranged for a year to have the right number of days so
that, with any randomly chosen group of 16,000,000 people, the chances of winning a
birthday-paradox bet is less than 2717,

93

an identifying fingerprint that is computed according to the object’s build
provenance. A fingerprint collision would lead to the reuse of an out-of-
date object, and hence Vesta provides only a probabilistic guarantee that a
component is built correctly. In particular, “Vesta uses 128-bit fingerprints.
Based on an overall system size of 20 million source lines ... and some
conservative estimates about the number of versions of each source file, the
probability of a collision occurring over the expected lifetime of the Vesta
system is much less than 27#? [Heydon et al., 2006, p. 117].” Moreover,
with Vesta’s 128-bit fingerprints, the probability that a given build reused

2—128

something incorrectly must be at least . Hence, if your invocations of

GenXGen|[C] were under control of Vesta, an erroneous residual program

is at least giﬁ = 2% (= 537 million) times more likely to occur because

of a Vesta issue than a GenXGen[C] issue—and probably more like 22:%
= 215 (~ 42 decillion) times more likely to occur because of a Vesta issue.

Another system that relies on the chance being negligible that there is
ever a hash collision is the Solidity programming language, running on the
Ethereum Virtual Machine (EVM) [Marx, 2018]. Conceptually, the storage
model for a smart contract running on the EVM is a map from 256-bit
indexes to 256-bit values. Whereas fixed-size Solidity values are located in
slots at the low end of memory, the base of a dynamically-sized Solidity
array A is located in a slot computed by hashing on a quantity associated
with A. Similarly, the slot for an element in the range of a Solidity mapping
M is computed by hashing on a quantity associated with M, together with
the value of the key k whose element is to be accessed. (That is, the value
is located in slot hash(M, k).)

If any hash collision were to occur, the operation of the smart contract
could be at odds with the intended (non-hash-based) semantics of Solidity.
However, because the range of hash is a 256-bit integer, the probability
of any hash collision occurring during the execution of a Solidity smart

contract is negligible (at least for the kind of smart contracts being written

94

today).

3.4 Incremental Updating of State Hashes

To create efficient generating extensions, incremental updating of hash val-
ues of states—property 4 from §3.3—is crucial. With an appropriate choice
of hash algorithm, it is possible to satisfy property 4 by taking advantage
of CoW at each end-of-block worklist update. As discussed in §3.2, each
partial state is a separate Linux process. An additional “controller” process
oversees the generating extension’s worklist of (partial-state, basic-block)
pairs, and serves as a dispatcher for the specialization phase. The worklist
of unprocessed (basic-block, partial-state) pairs is implemented as a set of
process IDs. Each time the dispatcher selects a pair (o, b) from the worklist,
it signals the process P, that represents o, and P, begins executing. P,
immediately calls fork (), creating a child process P’. Initially, the logical
address space of P’ contains o, and its program counter is set to b. After
P’ finishes executing block b, its logical address space contains state o”.
However, only the pages that changed during the execution of block b on o
are specific to P’; the rest are shared with process P,.

An invariant of the system is that, except for the current process P’, the
system has in hand a hash value for the state of each process. To compute
the hash value for P’ incrementally and efficiently, the system uses (a) the
known hash value for P, (b) state o of P, (c) state o’ of P/, and (d) a
record of which pages of o and o’ differ.

Item (d) is obtained by interposing on CoW to collect the list of pages
dirtied during the execution of process P’. While P’ executes, the first write
to each page induces a CoW fault. We used eBPF [Cassagnes et al., 2020]
to interpose on each CoW fault to intercept invocations of the kernel’s
page-fault handler and collect a record of all pages dirtied during the
execution of a basic-block process, such as P’. This record—together with

95

states 0 and o’—represents the “delta” between P and P’. Using the
method described in §2.3.2, this information allows the hash value of P’
to be computed in time proportional to the size of the delta. Thus, executing a
basic-block b on a given state o incurs a cost that is linear in the number of
memory-writing instructions in b: each such instruction is executed only
once, incurs at most one CoW fault, and contributes a constant-size entry
to the record of CoW faults (which, in turn, causes a constant amount of

computation in the incremental computation of the hash value for P’).

3.5 Discussion

Using an approach inspired by symbolic-execution engines such as Klee
[Cadar et al., 2008], we represent states with processes. By this means,
we are able to improve upon the state-of-the-art for classical C-Mix-style
generating extensions, and implement a state representation that allows
generating extensions in GenXGen to both (1) save and restore native hard-
ware states and (2) identify repeated states in O(1) time. By exploiting
the copy-on-write feature of Linux processes, we can interpose on CoW
faults, and identify page-level changes, which are used to incrementally
update state hashes. In Chapter 1, I described one of the key advantages
of generating extensions: the fact that they are shallow embeddings of a
program specializer into the subject language. That is, the static portion
of the subject program need not be interpreted: it can simply execute as
is. The process-based state-management mechanisms used by GenXGen
allow GenXGen'’s generating extensions to perform a worklist-marshalled
specialization algorithm while remaining a shallow embedding. The key
insight is that, in practice, the semantics of a low-level language extends
beyond the language itself to the runtime environment provided by the
hardware and operating system. That is, in practice, the process abstrac-

tion and IPC faculties provided by the OS and standard libraries are, for

96

all intents and purposes part of the language semantics for a program
executing on real hardware. It is precisely by taking this less abstract, more
pragmatic view of language semantics that GenXGen is able to exploit OS
features to implement specialization.

In Chapter 6, experimental evaluation show that these technique allows
real-world programs to be specialized in a reasonable amount of time, with

the majority of feature-removal tasks completing in under one minute.

97

Chapter 4

The Ge-Gen Algorithm

In this chapter, I describe the Ge-Gen phase of GenXGen. The standard
approach from the literature[Jones et al., 1993; Andersen, 1994a], as de-
scribed in Chapter 2, uses binding-time-analysis results to instantiate the
classical specialization algorithm in a single program-specific specializer.
This construction rewrites the subject program in a basic-block-by-basic-
block manner, with each block b transformed into a procedure that takes
a partial state o as an argument, and produces a b, a version of b special-
ized on o. These specialized blocks are combined with a top-level control
procedure that marshals the state-space exploration.

Although GenXGen produces generating extensions that are similar
to classical C-Mix-style generating extensions in many ways, GenXGen
differs in a key way: the binding-time-analysis results are polyvariant.
That is, in a classical generating extension, like the one discussed in §2.1.5,
there is one specialization procedure for each basic block, the BTA results
only contain one partition of the vertices into static and dynamic. However,
because GenXGen uses specialization slicing [Aung et al., 2014], there
may be multiple result partitions for every procedure, and hence for every
basic block. In this chapter, I show how GenXGen produces generating
extensions that are binding-time polyvariant. Although polyvariant binding

98

times have been used before in program specialization, for example to
partially evaluate a Scheme dialect [Jones et al., 1993], my work represents
the first time it has been done for a generating-extension-generator for C
or machine code.

In §4.1, I provide a condensed review of the salient ideas from §2.1.2.
In §4.2, I discuss two notions of polyvariance: the first is the classic notion
of data polyvariance—namely, that a procedure or block can be specialized
with respect to multiple states, and contrast that with binding-time poly-
variance. In §4.3, I show how, given a program P and a specialization-slice
result, P can be transformed into a program P’ that is data polyvariant,
but no longer binding-time polyvariant. (For one thing, multiple replicas
of each procedure in P can be materialized in P’.) In §4.4, I discuss GenX-
Gen'’s gegen algorithm for specializing programs that are data polyvariant,
but not binding-time polyvariant. Thus, the pieces fit together as follows:

BTA via specialization slicing (§2.2.3 and §4.1)
— Transformation to eliminate binding-time polyvariance (§4.3)

— Creation of process-based generating extension (§4.4)

4.1 Summary of Slicing as a BTA Algorithm

In §2.1.2, we discussed Binding Time Analysis (BTA), the process of taking
an initial set of binding times for a program P’s inputs, which partitions
the inputs into static and dynamic sets, and propagating this partition to
every program point in P. To produce a correctly-behaving generating
extension, a BTA algorithm must be congruent; any value computed at a
static program point must not depend on values computed by program
points marked as dynamic.

In §2.1.2 and §2.2.1, we discussed the use of forward slicing [Weiser,
1984; Reps et al., 1994] to implement a BTA algorithm. Given a set V of
program points in program P, a forward data-dependence slice of P with

99

respect to V computes the set of all program points in P that may depend
on V. For a single procedure, the standard forward slice from dynamic
inputs produces a congruent BTA result: the slice result is the dynamic
set; the complement of the slice is the static set; and no program point p in
the static set depends on the dynamic inputs (otherwise, p would be in
the slice).

However, due to the parameter-mismatch problem described in §2.2.2,
this result is not congruent for multi-procedure programs. To obtain
congruent results, one must use Binkley’s less precise reslicing algorithm
[Binkley, 1993].

More precise results can be obtained by using specialization slicing
[Aung et al., 2014], discussed in §2.2.3. The issue with standard forward
slicing arises from the monovariance of the underlying SDG program
representation—for every procedure F in P, there is one representation of
F, and thus the slice results for F must incorporate information from all
callsites at which F is called. The key insight of the specialization-slicing
algorithm is that more precise results can be obtained by creating a copy
of F for every callsite, then performing a forward slice.

In the presence of recursion, this inlining is infinite, but the
specialization-slicing algorithm uses an automata-theoretic construction
that only uses finite representations of the entities involved. Program P
is encoded as a pushdown system, and the slice results are returned as a
deterministic finite automaton (DFA) R. R encodes the result of a forward
slice of the infinitely inlined program. In particular, R encodes a representa-
tion of the minimum set M (F) of variants of each procedure F, such that the
structure of the variants and the calling relationship between all procedure
variants encodes a congruent slice result over the infinite inlining. This
produces the most-precise—i.e., coarsest—polyvariant binding-time result:

every procedure may have more than one set of binding-time results.

100

blk_4 4h: blk 4 4a: blk 4 4t:
if(’h’ != *s1) if(’a’ I= %xs1) if(’t? = *xs1)
goto blk_6_6h; goto blk_6_6a; goto blk_6_6t;
goto blk_b5_5bh; goto blk_5_ba; goto blk_5_5t;
[p H ”hat”] [p H llatll] [p H lltH]

Figure 4.1: The data-polyvariant residual versions of block 4 from
Fig. 1.1(b) produced by the generating extension in §2.1.5, along with
the state that produced the variants.

4.2 Polyvariance Overview

In the literature for classical partial evaluation, there are two distinct
forms of polyvariance. The first is what I refer to in this dissertation® as
data polyvariance. Given a single subject-program basic-block b, a data-
polyvariant partial evaluator may produce multiple instances of a given
block. For example, the generating extension in §2.1.5, which performs
the specialization described in §2.1.3, produces multiple instances of the
body of the inner loop of the program from Fig. 2.1(a) by unrolling the
inner-loop body with respect to the target string “hat”, as depicted in
Fig. 4.1.

Conventional C-Mix-style generating extensions are data-polyvariant,
and GenXGen is as well.

The other use of the term “polyvariance” refers to what I will call
binding-time polyvariance. In a binding-time-polyvariant partial evaluator,
a procedure may have multiple BTA-result partitions. In particular, this
property is true of specialization slicing, as described in §2.2.3. For exam-
ple, Fig. 4.2 shows the specialization-slicing results for the procedures rec
and swap from Fig. 2.11.

Prior C-Mix-style generating-extension tools for C have only used

'In works such as [Jones et al., 1993], the term “polyvariance” is used fairly freely,
and there, it is generally clear from context which meaning is intended.

101

void rec(k){

swap(s,d) //csl Stec oada ={swap.a.actual_in@csl1,
if(k > 0) swap.b.actual_in@cs3}
rec(k-1); Stec even ={SWap.b.actual_in@csl,
swap(s,d); //cs3 swap.a.actual_in@cs3}
+
swap(a,b){ Sevap 1 ={swap.a.formal_in,
s = b’ d= a.}
d = a; Sewap r ={swap.b.formal_in,
} s = b}

Figure 4.2: The specialization slice results for rec and swap from Fig. 2.11.
When considered as BTA results, these results are binding-time polyvari-
ant. Each set Syariant nane r€present a single procedure-variant slice result
encoded in the result automaton R.

monoviariant binding-time analyses, and without significant modification,
cannot handle polyvariant result sets represented in an abstract form, as
in Fig. 4.2. Moreover, GenXGen’s ge-gen pass expects a monovariant BTA
result. However, given an appropriate program transformation, one need
not modify the ge-gen algorithm itself to handle binding-time polyvari-
ance. If one can convert a program with polyvariant BTA results—that is,
a program with multiple distinct BTA result sets for each procedure—into
a semantically equivalent program with a single BTA result set for each
procedure, then one can then pass the resulting program and BTA result
set to a standard ge-gen algorithm and obtain the desired results.
Concretely, given the slice results pictured in Fig. 4.2, we would like
to be able to produce the materialized slice shown in Fig. 4.3. In this
dissertation, I refer to producing such a program as slice materialization.

Given appropriately structured polyvariant binding-time results, Jones

void rec_odd(k){
swap_1([s],d)
if(k > 0)
rec_even(k-1);

swap_1(s ,@) ;
}

S1rec_odd

void swap_l([a], b){
s = b;

b

S swap_1l

102

void rec_even(k){
swap_r(s ,@)
if(k > 0)
rec_odd(k-1);
swap_1([s],d);
}

Srec_even

void swap_r(a, |b]{

S swap_r

Figure 4.3: The materialization of the slicing results in Fig. 4.2, pictured
along with the result set corresponding to each variant.

et al. [Jones et al., 1993], suggest an approach to performing slice material-

ization.

Let F be the set of procedures in the original program P, and let F’ be

the set of procedure variants.

e V: Maps each procedure f € F to to the set of BTA result sets for f.

For example, V(rec) = {Srec oad, Srec_even)-

e I: Maps each BTA result set to a unique identifier.? E.g., I(Srec oaa) =

rec_odd

e C: Given a unique identifier corresponding to a result set for some

procedure f € F, and a callsite ¢ in f, C maps c to g, where g’ is

the unique identifier of the callee associated with the appropriate

variant of c’s callee g in f. For example, C(rec_odd, cs1) = swap_1

and C(rec_even,csl) = swap_r

2For clarity, I use the variant names from the example, but in practice the identifiers
are merely the name of the original procedure with a unique integer concatenated to it.

103

Given these three sets, Jones et al. assert that one can convert P to an
equivalent monovariant program P’. However, he does not provide an
explicit algorithm for doing so.

In §4.3, I give an algorithm for performing this transformation. How-
ever, Jones’s algorithm sketch is formulated in terms of result sets. Special-
ization slicing yields an automaton R that encodes the result sets of the
slice, adding another layer of indirection. Although one can extract the
majority of the information to construct V from R, there is one case that
is a notable exception. To rectify this, I show how to slightly adjust the
approach suggested by Jones to produce the desired program.

4.3 A Slice-Materialization Algorithm

Given a program P and a slice-result automaton R, the slice-materialization
algorithm produces P’ by the following steps:

1. Extract functions V, I, and C from R.

2. Produce Py, a rewritten version of P containing n identical versions
of each f € F, where n = [V(f)|. Each copy of f is associated with
S, one of the result sets in V(f), and renamed using I(S), and is
associated with the result set corresponding to the identifier used.
These copies are the set of variants f of f. Moreover, construct an I
such that for all f/, I(f’) maps to the corresponding S.

3. Produce P’ as follows: For each procedure variant f’, map every
callsite s by replacing s with an s’ that calls C(I, c).

4. Create V', where V'(f') = (') is the slice result for f’. Thus, V' (')
is the set of dynamic program points of f’ when V' is used as the

result of binding-time analysis of P’.

104

That is, to materialize the slice results, GenXGen construct a new pro-
gram P, with a sufficient number of copies to reflect the structure of the
slice result. For example, in transforming the program fragment in Fig. 4.2,
the materialization algorithm obtains two identical copies each of rec, and
swap.

However, the copies still contain callsites referencing the original proce-
dures in P. Thus, step 3 performs a fix-up to the callsites reflect the calling
structure of the variants in the slice results, yielding P’. E.g., the first
callsite in rec_even is mapped to swap_r, and the first callsite in rec_odd
is mapped to swap_1.

Note that V' maps each resulting f’ in P’ to a single result set, and is
thus binding-time monovariant.

As stated in §4.2, the automaton R returned by specialization slic-
ing does not quite contain enough information for the standard slice-
materialization algorithm to produce the desired V, I, C. Let S be the null
slice result of a procedure f, where the null result is the empty slice result,
and let the term null variant refer to the version of f in P’ corresponding
to a null result. R does not explicitly encode S¢, and because of this, it is
not clear whether a given procedure has a null slice result. Thus at step
(2), it is not possible to determine if a copy of f corresponding to the null
variant S; needs to be made. Stated differently, given Vg, where Vy is the
version of V extracted from R, it is not clear whether |V s (F)| (in the case
where S ¢ V(F) or |Vg(F)| + 1 (in the case where S; € V(F)) copies of f
need to be made. For example, in Fig. 4.4, a null variant of p is necessary,
while a null variant of q is not.

However, the structure of P coupled with the relational information in
C is enough to recover the correct materialization, because of the following
property of specialization-slicing results (not proven here): whenever a
null result for f exists, and the corresponding null variant is called by

105

int gl,g2;
main(){

void p(int x){ void q(int y){
P - v
a=1; } b

q(a);
¥

Figure 4.4: A program in which p does not have a null slice result, while q
does.

a non-null variant, or the null variant calls a non-null variant®, that call
relation is recorded in C as a call to or from, respectively, the original
version of f. This property is sufficient to ensure that if the materialization
algorithm adds a copy of f corresponding to f for every f € F in (2), then f
corresponds to an extant null result if and only if f is reachable from main.

For example performing the un-modified materialization algorithm,

creates a variant p; of p, and main is rewritten using C, yielding.

main(){
a = 0;
p_1(a);
a=1
q(al;

}

Now consider augmenting the materialization algorithm by creating null
copies p and q at the end. Because the call to p in main is replaced by the
call to p_1, p is unreachable from main. However q is reachable from main,
and the final reachability pruning step removes p, but not q.
Consequently, the GenXGen slice-materialization phase performs the
modified step 2, and then prunes all unreachable procedures. This ap-

3To see why this is possible, note that the source of a slice can occur inside a procedure
p, and code within p can be in the slice, but it is entirely possible for there to be no formal-
out parameters of p to be in the slice. Thus, callers of p need not have any transitive
dependences on the slice results for p.

106

proach yields a monovariant P’ that materializes the specialization-slicing

results, and hence is suitable to be handed to the Ge-Gen algorithm.

4.4 The Ge-Gen Algorithm

Given a program P and a monvariant BTA result, the ge-gen phase of
GenXGen produces a generating extension in a manner largely analogous
to the transformation described in §2.1.5. That is, for every procedure
F in program P, ge-gen traverses the program’s interprocedural CFG—
constructed by CodeSurfer [codesurfer, 2018; Anderson et al., 2003], a
program-analysis tool that constructs program SDG, PDGs, and CFGs—
and produces a basic-block-procedure for every basic block in F.

Within a basic block, the non-control-flow vertices are transformed
based on their binding time, and gegen also adds appropriate code to gen-
erate residual control-flow constructs, and to perform state-management
bookkeeping.

In this section, I will describe how the transformation is implemented
in GenXGen, providing more concrete implementation details for control-
flow, and describing how GenXGen'’s approach to lifting differs from the
classical approach discussed in §2.1.5. I will also note several subtleties,
the full analysis of which will be deferred to Chapter 5. The

GenXGen's gegen phase is, as described, a transformation of each pro-
cedure’s basic-block-level CFG, which transforms each basic block into a
basic block procedure. This basic-block-level CFG is a representation of a
program as basic blocks connected by control-flow edges. Each block con-
tains multiple assignment statements, and optionally a final control-flow
statement. Moreover statement-level structure is normalized. If a state-
ment has multiple assignments, as in *p++ = 5, CodeSurfer decomposes
it into multiple statements, with one assignment for each statement. More-

over, the statement that computes the condition of a conditional branch

107

S wEEe |
T
A

2
s

char *pat = p;
v
if(*pat == 0) |[—

|
F

A v
I;

vw

if(*pat != *s1)

5 v
pat++;

s

return 1 [

return 0

Figure 4.5: the CFG of match from Fig. 2.1
statement is separated from the control-flow construct. For example, the
if statement from block 4 in Fig. 4.5 is converted to the following code:

cond = *pat != x*sl
if (cond)

4.4.1 Block-Procedure Structure and Utility Macros

The conventional Mix-style block-procedure structure. In §2.1.5, each
basic-block procedure in Fig. 2.4 and Fig. 2.5 contains calls to several utility
procedures:

1. snapshot (), which records the current state.

2. printf (fmt_str, ...), which is used to emit residual code

108

3. contains(visited, block, state), which checks if the generat-
ing extension has already visited block at state, by looking up

(block, state) in visited.

4. insert(visited, block, state) inserts (block,state) into

visited

5. worklist_enqueue(worklist, block, state) puts (block,state
into the worklist.

Each basic block procedure takes a worklist and state object as argu-
ments, and has the following overall structure: first, static state is restored
from the state parameter, and a block label is generated. Next, comes
the code corresponding to the subject program’s basic-block body. This
code consists of static code interleaved with emit statements. Finally, the
block contains procedure calls that snapshot and record the post-state,
emit residual control flow, and enqueue successor block/state pairs, if they

have not been seen yet.

The GenXGen block-procedure structure. In Chapter 3, I described how
GenXGen represents states as processes. Because of this, we reconsider the
structure of basic block procedures, exploiting the advantages of the new
state representation, and implement the block structure using a slightly
different and smaller set of utility macros. The implementation of these
macros (and the rationale for them being macros and not procedures)
entails the need to handle several subtleties relating to the process-based
state representation and the full-memory hashing. These implementation
concerns are discussed in more detail in Chapter 5.

The main difference from the overall C-Mix-style implementation is the
fact that GenXGen generating extensions represent each state as a unique
process (a “state process”), managed by a single controller process. More-

over, as described in Chapter 3, the worklist manipulations are handled

109

by the controller process. The controller sends a basic block ID to the
appropriate state process, and the state process executes the procedure
corresponding to the block ID.

Because the state process already contains the relevant state, and also
performs no worklist manipulations, there is no need for an explicit, per-
variable/memory-location restoration of state. Thus, the block procedure
does not take either a state object or the worklist as a parameter. Moreover,
when the controller requests that the process corresponding to state o
perform specialization at block b, the state process calls fork() before
calling the block procedure for b. The new child process executes the
block procedure. The OS copy-on-write mechanism implicitly performs
the snapshot, by making copies of altered pages in the child process.

Thus, GenXGen has a simplified set of utility macros compared to the
C-Mix-style generating extensions depicted in §2.1.5:

1. emit(fmt, ...) is a macro that emits a residual statement, and is

parametric like printf.

2. worklist_enqueue combines the Mix-style utility procedures (3),
(4), and (5) into a single macro. The worklist_enqueue macro
submits an IPC request to the controller, telling it to enqueue the
block/successor-state if it has not been enqueued before, and to
record the pair in the controller process’s visited set if it is success-

fully enqueued.

3. getPreStateID() obtains a unique numeric ID corresponding to the
pre-state’s hash value.

4. getPostStateID() obtains a unique numeric ID corresponding to
the post-state’s hash value. The first time it is called in a post-state,
getPostStateID() also computes the hash of the post-state, and
requests the unique numeric ID corresponding to the hash.

110

The numeric IDs in getPreStateID() and getPostStateID() are pri-
marily used for generating user-readable labels, and mapped in a one-to-

one manner to state hashes.

4.4.2 Producing Residual Block Labels

In §2.1.5, we noted that the residual program is a collection of basic blocks
“stitched together” with gotos. That is, if a block b is specialized at state o,
producing residual block b, there needs to be a label that identifies b as
the residual version of b at 0. The state-management approach described
in Chapter 3 ensures that every state has a single canonical representation:
its hash. Thus a GenXGen generating extension can produce a numeric
label* for every state.

Block-label generation is thus analogous to the version discussed in
§2.1.5. For example, to produce the label for the residual version of block

1, we simply have the following emit statement:

emit("block_1 %d:", preStateID());

4.4.3 Handling Non-Control-Flow Statements

With the exception of lifting, the assignment statements are handled as
described in §2.1.5. Static statements are placed verbatim in the basic
block procedure. Dynamic statements are wrapped verbatim in an emit
statement.

However, dynamic statements that contain static subexpressions that
can be lifted into the residual code, like *pat in the condition *pat != xs1,

are not parameterized on the static portion, unlike the generating extension

*We could use the 256-bit hash as-is. For readability reasons, every canonical state
representation is instead granted a numeric label, starting from 0. The runtime maintains
a map from hash to state label.

111

discussed in §2.1.5. That is, instead of emit("%d !'= *s1;", *pat), the

generating extension contains emit ("*pat != *s1;").

Lifting in GenXGen. GenXGen instead performs lifting at the reaching-
definition level. When producing the IR used to construct the generating
extension, CodeSurfer associates with every statement s the may-use set
U, which contains the set of all memory locations that s might use—and
for every memory location 1 in U, CodeSurfer provides a backwards edge
from the statement to all statements s, that (a) assign to 1, and (b) have
a path from s, to s that does not contain an intervening assignment to 1.
Each static s; is marked as “lifted” in GenXGen'’s binding-time analysis.
For each lifted statement s;, GenXGen’'s gegen phase places the follow-

ing into the generating extension:
1. a verbatim copy of s;

2. a parameterized emit statement that emits residual code that sets 1

to the static value of 1 after executing s, in the generating extension.

For example, consider the following code, where the boxed statement

is dynamic, and the unboxed statement is static.

s = 10;

The generating extension contains:

s = 10;

emit("s

%d" , S) ;
emit("d = d + s");

This code is functionally identical to the equivalent parameterized emit
statement one would obtain in classical lifting. This approach does have
one subtlety due to the fact that the left-hand side of an assignment in C

112

cond = pat == 0; ’cond = *pat != *sl‘

’char *sl = s; 1f (cond)

//True successor: 77
p—— True successor:
char *pat = p; //Block 7 //Block 6

//successor: Block 3 .
//False successor: //False successor:
//BlOCk 4 //BlOCk 5

Block 2 Block 3 Block 4

Figure 4.6: Blocks from Fig. 2.1.

may be an arbitrary expression. Thus, the left-hand side of the expression
may also be computed from static values, and thus the left-hand side of
the statement may need to be lifted as well. A full discussion is provided
in Chapter 5, but for now it suffices to note that one can avoid infinite
regress by using the observation that it is always legal to take the address

of the left-hand side of a C assignment.

4.4.4 Handling End-of-Block Control-Flow

When a generating extension executes, handling end-of-block control-flow
entails two disjoint but related actions: (1) updating the worklist, and
(2) emitting residual code that produces the desired control-flow in the

residual program.

Blocks Without a Final Control-Flow Statement, or With an Uncondi-
tional Control-Flow Statement. For a block that does not have a final
control-flow statement, producing generating-extension code to handle
control flow is straightforward. For issue (1), the ge-gen algorihm pro-
duces a worklist-update statement, which takes the successor block ID
(which is known at ge-gen construction time), and the successor state id
(known at specialization time—i.e., ge-gen execution time), and checks
to see whether the state/block pair has been enqueued before. If it hasn't,

113

the pair is enqueued in the worklist. For example, for block 2 in Fig. 4.6,

the following code is produced:
update_worklist (3, getPostStateID())

Moreover, as observed in §4.4.2, the state-hashing technique ensures
that GenXGen can obtain canonical labels for all program states, and
specifically, after executing all static statements in a block, the post-state
ID can be produced. Thus, ge-gen produces a similarly simple block-final

goto statement:

emit("goto block_3_%d;", getPostStateId());

Blocks With a Static Control-Flow Statement. For a block with a static
control-flow statement, although the successor cannot be determined at ge-
gen time, the generating extension will be able to determine the successor
using the static state. Thus, ge-gen produces an if statement that checks
the control-flow condition and selects the appropriate successor value.
The worklist update and goto-emitter are produced in a manner similar
to the unconditional case, except it is now parameterized on the statically

successor block variable. For example, for block 3 in Fig. 4.6

cond = *pat == 0;

if (cond){
static_successor = 7;
telse{
static_successor = 4;

}
update_worklist(static_successor, getPostStateID());

emit("goto block_%d_%d;", static_successor, getPostStateID());

114

Blocks With a Dynamic Control-Flow Statement. As noted in Chapter
2, for a block with a dynamic control-flow statement, the generating ex-
tension must execute both successor blocks, and thus ge-gen must visit
both successor blocks. Thus, to handle issue (1), ge-gen must produce
two worklist updates. Moreover, to handle issue (2), code to emit an if
statement must also be produced. However, the if statement must respect
the basic-block structure of the residual program. Thus, the only action in
each branch of the if statement must be a goto targeting the appropriate
residual block. For example, given block 4 in Fig. 4.6, ge-gen places the

following code in the generating extension:

update_worklist (6, getPostStateID());
update_worklist(5, getPostStateID());
emit("cond = *pat != *s1");

emit ("if (cond){");

emit (" goto block_6_%d;", getPostStateID());
emit("}else{")

emit (" goto block_5_%d;", getPostStateID());
emit ("}")

Blocks that End With a Procedure Call. Consider the following basic
block for some block c in a program:

I

’prod =5 *xd

S++;

oo, [prod)
//callee block is some block n
//start of block c + 1

where p has formal parameters a and b.
There are two main ways of handling code generation for called proce-

dures in a generating extension:

115

1. Inlining: One way of specializing procedures is to perform automatic
inlining. That is, when a procedure is called during the execution
of a generating extension, the procedure call can be removed and

replaced with a jump to the specialized version of the first block.

2. Call a specialized procedure: Produce a call to a version of the callee
procedure specialized with respect to the post state of the current
block.

Both are acceptable approaches, but each poses its own set of challenges. In
practice GenXGen[C] uses approach 2 and GenXGen|[MC] uses approach
1. A full discussion of the implementation of each is deferred to Chapter 5,
because there are several subtleties to each implementation. In particular,
in both cases, the immediate textual successor of the block is not the
successor during the execution of ge-gen. That is, the immediate textual
successor to the pictured block c is block ¢ + 1, but the immediate successor
in terms of execution is block n, the first block of p.

If the generating extension finishes executing block c in state o, then
in approach 2 the generating extension will emit a call to p_I;, where I,
is the numeric ID of post-state 0. However, in the emitted block text, the
emitted call to p needs to be followed with a goto targeting the version(s)
of block ¢ + 1 specialized with respect to one or more post-states of the
specialization of p, which cannot be known yet. I call this problem the
exit-splitting problem, which will be covered in Chapter 5.

Conversely, if we were to use the inlining approach,” the generating
extension will emit a goto targeting block_n_I,. However, consider what
happens at some block m that is a return block for p. For p’s return block,
block m, there is no immediately available successor in the CFG that
represents the successor to m. The return block for the call to p is encoded

SIgnoring various variable naming and scoping issues inherent to using this approach
for C code.

116

in the calling context, and no successor can be produced at ge-gen-time; it
can only be determined at ge-execution time.

This information must be made available to the generating extension
in some way. The solution to this problem will also be covered in Chapter
5.

However, the callsite control can be handled in a straightforward way
in either approach. For approach (1), ignoring variable renaming issues
that are deferred to Chapter 5 (i.e., assuming here that procedure p is
non-recursive, and that formal parameters a and b are globally unique
names and can be globally defined), the following generating extension
code is emitted:

emit("prod = s * d;")
S++;
a=s;

emit("b = prod")

update_worklist(n, getPostStateID());
emit("goto block n_%d", getPostStateID());

Assume that, again, a is a globally unique name identifying a formal
parameter of p, and it is correctly handled as a parameter to p in the static
state. Then, for approach (2), everything is identical, except the final
emit. Note that because the first argument is part of the static state, the
residual version of p specialized with respect to o only needs the value for
parameter b:

emit("p_%d(b)");

4.5 Discussion

In Chapter 5, I discuss concrete implementation details of each of the

utility macros, and subtleties relating to state representation and residual-

117

program construction.

In Chapter 6, I discuss the experimental evaluation of the implementa-
tion of specialization slicing. In particular, as part of RQ1, I investigate the
time taken to perform specialization slicing. In practice, the specialization-
slicing algorithm takes a negligible amount of time compared to the overall
time taken by ge-gen. In particular, the construction of the program repre-
sentation used for slicing dominates the actual specialization-slicing time.
Because specialization slicing can produce an exponentially large number
of result sets, and because BTA materialization converts slice results into
a program, I also examine the size of the programs produced by mate-
rializing specialization slices. In practice, exponential blowup does not
occur.

118

Chapter 5
Pragmatics

This chapter covers various practical concerns that must be addressed in
implementing a generating extension-based specialization system, empha-
sizing aspects related to GenXGen’s low-level, language-agnostic runtime,
and process-based state representation. In §5.1, I discuss issues relating to
implementing the generating-extension runtime. In §5.2, I discuss issues
relating to the construction of generating extensions, as well as the main
differences in constructing GenXGen|[mc] generating extensions. §5.3
elaborates on the subtleties that must be addressed to generate residual
code for procedure calls (and thus is related to §4.4.4).

5.1 Generating-Extension Runtime

In §5.1.1-85.1.4, I describe how GenXGen state-representation processes
implement IPC and residual-code-generation without contaminating the
subject-state hash with the contents of memory related to these meta-tasks.
§5.1.1 presents the meta-state isolation issue, and the mechanisms for
passing information between the subject state and the wrapper context that
maintains the meta-state. §5.1.2 discusses how the subject-program state is
partitioned and isolated from the wrapper, so that CoW faults can correctly

119

be identified for the subject program. §5.1.3 describes the mechanism for
switching between the subject-program state and the wrapper context.
§5.1.4 discusses how information is passed between the subject-program
and wrapper context.

The remainder of the chapter discusses other issues that arise in the
implementation of the generating-extension runtime. §5.1.5 discusses the
lazy symbolization technique used to lift pointers, and §5.1.6 explains
how GenXGen[C] lifts arbitrary non-pointer data-types. §5.1.7 describes
transition-compression, a technique that improves the performance of the
generating extension and the residual program. §5.1.8 discusses the need
to zero out stack frames when a procedure call returns, and explains how
GenXGen performs this action.

5.1.1 State-Representation Process and Meta-State

In Chapter 3, the runtime environment for GenXGen generating extensions
was described as a collection of state-representation processes managed by
a single controller process. Recall that each block procedure in GenXGen
performs, e.g., worklist and code-gen operations via a set of utility macros,
as described in §4.4.1. Because the GenXGen runtime is a multi-process
system, these operations require performing IPC between the state pro-
cesses and the controller. In addition, the state process needs to perform
various bookkeeping operations, and set-up and tear-down of various data
structures in the process of being shepherded by the controller process.

Moreover, the GenXGen runtime identifies changed memory and up-
dates by identfying CoW faults since fork. This task poses a challenge: each
state process necessarily maintains important state that is not part of the
subject program state. This meta-state information is part of of the same ad-
dress space, but it must not be included in the state-hash. Thus, care must
be taken to partition the address space so that only the static-state-relevant
CoW faults are used to update the hash.

120

To avoid contamination of the hash with meta-state information, the
state-representation process is partitioned into two contexts: the subject-
program context, which represents the static state of the subject program,
and the wrapper context, which is the meta-state that implements the
utility macros and IPC needed to perform specialization. The binary
for the state-representation process is implemented so that the memory
regions are partitioned with no overlap—the subject program and wrapper
context have their own global memory regions, stack, and heap. In effect,
to achieve isolation, inside each state-representation process, the GenXGen
runtime implements a special-purpose version of green threading,! where
the threading library only ever manages two threads: one for the subject-
program state, and one for the single wrapper program state that an
individual state process represents.

5.1.2 Subject-Program State Isolation

Because every state process includes wrapper code, the address space
must be partitioned to ensure that meta-state does not contaminate the
hash of the subject-program state.

Specifically the subject program’s stack, heap, and globals, must be
placed in locations completely disjoint from the meta-state. Because we
hash memory at the page granularity, each region must be page-aligned,
and the size of the region must be a multiple of the system page size. Each
region is allocated as follows:

Stack Isolation. To implement the subject program’s stack, we mmap an
appropriately sized, and non-file-backed, region into the address space,
supplying the appropriate flags to ensure page-alignment. The mechanism
for swapping between the subject program’s stack and the meta-state stack
is described in §5.1.3.

'User-space threads that do not use any OS facilities (see [Sung et al., 2002]).

121

Heap Isolation. We implement a subject-program version of malloc
backed by a page-size-multiple sized and page-aligned mmap region, as
with the stack. We chose to use our own allocator instead of, e.g., multiple
malloc arenas because we need to inspect allocator state to support lifting
of heap references, as described in §5.1.5

Global Isolation. To isolate the subject .global and .bss regions, we
link the code for the subject-program representation in its own object
file. When we link the state-process program, we use a custom linker
script, which places the subject-program representation’s globals in their
own .subject_globals and .subject_bss regions, with the appropriate

parameters set to ensure suitable sizes and alignments.

5.1.3 Switching Between Subject-Program State and
Meta-State

Because the wrapper and the subject program have separate stacks and
instruction pointers, the state-process program needs to be able to switch
stacks and jump to a saved instruction pointer on demand. This require-
ment is similar to the functionality provided by set jmp and longjmp. How-
ever, in GNU libc, setjmp and longjmp are implemented as procedures
that wrap architecture-specific assembly code. Thus, if either is called
while executing in the subject-program context, some amount of subject-
program-irrelevant information will be written to the subject program
stack, violating our state isolation.

To prevent this contamination, we use inline assembly to implement a

pseudo-context-switch macro that acts as a combined set jmp and longjmp.
1. Save all general purpose registers.

2. Save the stack pointer and base pointer.

122

3. Save the instruction pointer. Adjust it to point to the first instruction

after the macro.

4. Restore all general purpose registers stashed during the previous
pseudo-context-switch.

5. Restore the stack and base pointer stashed during the previous
pseudo-context-switch.

6. Jump to the instruction pointer saved during the previous pseudo-

context-switch.

This macro is crafted to avoid contaminating the subject stack with any
meta-context-data, and only uses registers and global variables that are
located in the meta-state, but are known to both the subject and wrapper
code.

Note that because every basic block is implemented as a procedure in
the GenXGen[mc], it suffices to only save the registers and stack context,
and in fact, saving the instruction pointer would be incorrect, because the
context switch would simply cause execution to jump to the exit point of the
previous basic block executed by the state process. Thus, GenXGen[mc]’s

version of the macro does not save and restore the instruction pointer.

514 Communication Between Subject-Program State and

Wrapper State

To implement the utility macros described in §4.4.1, information needs to
be passed between the subject-program state and the wrapper state. This
section concentrates on the implementation of emit, because every other
operation is a simpler instantiation of the same basic principles.

Recall that a state-representation process must avoid leaving any meta-
state-relevant information in the subject-program stack. Thus, the macros

must not invoke any procedure calls, and in particular emit cannot, e.g.,

123

invoke printf inside the subject-program context. Instead, the emit state-
ment communicates necessary information from the subject-program state
to the wrapper.

To appreciate when such communication is necessary, consider the
following block, where the boxed instructions are dynamic, and all variable
types are char:

staticl++;

static2++;

’dynamic += staticl + static2;

Noting that static reaching definitions are lifted, the generating extension
contains the following code:

emit ("dynamic--;\n")

staticl++;

emit("staticl = %d\n", staticl); // A lifting operation
static2++;
emit("static2 = %d\n", static2); // A lifting operation

emit("dynamic += staticl + static2");

Only the two emits that perform lifting need to pass values back to the
wrapper context. Moreover, other than the lifted values, the code emitted
for a basic block is fixed, regardless of the state in which it executes, because
basic blocks, by definition, contain no control flow. Thus, if the lifting-
operation emits simply pass the associated values to the wrapper context,
the remaining portion can be performed in the wrapper context.

The scheme sketched above is how code generation is implemented in
GenXGen[C]. In effect, the print portion of emits—and by extension the
entirety of emits with no lifted value—are no-ops that are deferred until
after the pseudo-context-switch back to the wrapper context takes place.

124

To pass the lifted values to the wrapper context, a region of memory
outside of the hashed subject program memory is reserved. The base of
this region is stored in a variable known to both the subject and wrapper
context, 1ift_loc. Because the number of lifts in a block are known at
ge-gen time, each lift in a block can be assigned a specific offset in the

region. For example:

staticl++;
x(1ift _loc + 0) = staticl;
static2++;
x(1lift_loc + 1) = static2;

After switching back to the wrapper context, the lifted values are simply

inserted into a residual-block template and emitted:

printf ("dynamic--;\n");
printf ("staticl = %d\n", *(lift_loc + 0));
%d\n", *(lift _loc + 1));

printf("dyamic += staticl + static2");

printf("static2

In general, whenever information, such as the numeric state-id, is
passed between the subject and the wrapper contexts, a privileged, lo-
cation outside hash-influencing memory is used. Moreover, to avoid ex-
cessive pseudo-context-switching, “heavyweight” operations that involve
significant IPC, such as the worklist update, are implemented as deferred

no-ops performed in the wrapper context, after executing the basic block.

5.1.5 Lifting Pointers

As described in §2.4, because GenXGen[C] performs a source-to-source
transformation, static addresses cannot simply be used verbatim in the

lifted program—there is no guaranteed way to preserve memory layouts

125

(1) s = &global_arr[0]; (1) s = malloc(10); (1) s = &stack_arr[0];
(2) s +=1; (2) s += 1; (2) s +=1;
(3) *s = d; (3) *s = d; (3) *s = d;

(a) (b) (c)

Figure 5.1: The three classes of lifts.

between the original and residual program. Interpretation-based special-
ization approaches can simply treat all addresses as symbolic-base/offset
pairs. However, because the GenXGen[C]’s representation of the static
portion of the subject program is C code compiled to execute natively on
hardware, without any instrumentation of pointer arithmetic, we do not
have the ability to implement address arithmetic in this manner.

Instead GenXGen performs lazy symbolization. I make the simplifying
assumption that programs specialized by GenXGen are sufficiently correct
as to lack undefined behavior,? and that all lifted pointer values are a
valid reference to some memory object, either on the stack, on the heap,
or in the global regions. Thus, GenXGen[C] can simply introspect on the
subject program’s static state to identify which memory object a pointer
references. More concretely, when constructing a generating extension,
GenXGen[C] can examine debugging symbols, stack configuration, and
memory-allocator state to obtain a “reverse map” from memory ranges to
the corresponding symbols or allocated regions in the residual program.

Consider the three classes of lifts shown in Fig. 5.1. For all three cases,
the lifting code placed in the generating extension for statement (3) is

base_t base_info = get_base(s);
record_base_decl(base_info);

printf ("*x(%s + %d) = d;\n", base_info->name, get_offset(base_info, s));

ZMoreover, I assume that subject programs do not engage in any forms of type-
punning or pointer forgery that violate surface-level assumptions about whether or not a
given value is a pointer or non-pointer type.

126

The get_base procedure obtains information that uniquely identifies the
variable or heap region referenced by s. The name field is the name of a
global variable that, in the residual program, will contain the appropriate
base address. It also contains the information necessary to compute the
offset of s in the region or variable.

The record_base_decl procedure places a declaration of the global
variable named by base_info->name in a special header, if the declaration
has not yet been recorded.

The procedure get_base handles the pointer differently depending
on whether it is a global, heap, or stack reference. It checks whether s
is within the bounds of the subject’s global, heap, or stack regions, and
acts in the appropriate manner. As explained below, for global and stack
references, the generating extension can obtain the base by using a combi-
nation of debugging symbols and program state; for heap variables, the
generating extension uses a special malloc implementation to determine

which allocated region the pointer falls into.

Identifying Global-Variable Bases

The generating extension’s subject-wrapper process contains a lookup
table initialized with the debug information for all of its global variables.
The get_offset procedure simply searches the information to find the
variable referenced by s, and produces the specification for the appro-
priate global variable. In the case of Fig. 5.1(a), we would obtain char
**_base_global_arr, which would be initialized in the residual program
with the base of global_arr.

127

Identifying Heap-Region Bases (Dynamically Allocated
Storage)

In the case of a heap pointer, like the one lifted in Fig. 5.1(b), all calls to
malloc in the subject program are replaced in the generating extension
with calls to a special subject_malloc procedure. This procedure is a
conventional memory allocator extended with additional bookkeeping
that allows us to implement a procedure lookup (s), which identifies the
memory region within which s falls.

Each region is uniquely identified by the (program point, state) pair
at which the region was allocated. The base_info->name field is uniquely
determined by this pair. When the residual program begins execution,
each malloc-region-base variable associated with the base of a lifted value
is initialized by a call to malloc, to produce an appropriately sized region.

For example, in Fig. 5.1(b), if the program point in (1) is point_1,
and the state is 0, we will have a global region-base-variable named
_malloc_base__1_0, which will be initialized in the residual program

by a call to malloc(10) when the residual program starts execution.

Identifying Stack-Variable Bases (Local Variables)

Similar to the global-variable case, debugging information about symbols
is used to obtain the variable associated with a given pointer. However,
each process needs to track a small amount of additional information
to allow the use of debugging information. Each state-wrapper process
tracks the name of every procedure call on the call stack, the ID of the
state at which each call occurred, and the frame-base pointer for each call
on the stack.

When the generating extension performs the lift associated with state-
ment (3) in Fig. 5.1(c), it scans the stored stack information for the current

state, until it finds the stack frame that s’s value falls within, obtaining

128

both the name of the procedure P and the state S associated with the call to
P. To determine which variable V with which s is associated, it then uses
s’s offset within the stack frame to search the debugging symbols for that
procedure. It uses the (P, S, V) triple to produce the name of the global vari-
able associated with the base of the reference to that “instance” of V in the
residual program. For example, assume that in Fig. 5.1(c) one has P =p,
and S = 1. The generating extension will emit “*(_base_stack_arr_p_1
+ 1) = d;”,where base_stack_arr_p_1 is a variable that holds the base
of variable stack_arr from Fig. 5.1(c) in the version of p associated with
state 1 in the residual program. Variable _base_stack_arr_p_1 is initial-
ized with the base address of stack_arr upon entry to the residual version
of p associated with state 1.

5.1.6 Lifting Arbitrary C Types

A particular challenge specific to GenXGen|[C] is the handling of com-
pound data types, such as structures. For example, consider the following
code, where dyn is marked as dynamic in the BTA:

struct s {
int n;
char c[2];
I
struct s v[3]
void pO{
int dyn; /*dynamicx*/
struct s orig, lifted;
orig.n = 1;
orig.c[0];
orig.c[1];
lifted = orig; // This assignment is lifted.

129

v[dyn] = lifted; // dynamic assignment
}

As described in §4.4.3, lifting is performed for all reaching definitions of a
dynamic expression. Thus, the assignment 1ifted = orig is lifted. Recall
that all lifted objects are transferred to the meta-state region by writing
them to an unhashed location visible to the wrapper-context code. The
region is essentially untyped, so for structs, a lift could be performed in
the following manner:

*(struct s *)(lift_loc + orig_offset) = orig;

However, due to difficulties with CodeSurfer’s AST representation (de-
scribed in §8.2), obtaining the type specifier for the cast is challenging
for compound data types. Moreover, the corresponding emit statement
is also challenging to implement. C99 permits compound literals, so the
following would work:

int lifted n = *(int *)(1ift_loc + lifted_offset)

char lifted cO = *(char *)(1ift_loc + lifted offset + 4)

char lifted_cl = *(char *)(1ift_loc + lifted offset + 5)

emit("lifted = (struct s){%d, %x, %x};\n", lifted n ,
lifted cO , lifted cl1);

This operation also requires a cast, which, again runs up against the same
limitations of CodeSurfer’s AST representation.

CodeSurfer, however, does provide ready access to the size of all com-
pound types in the program representation. To expedite the implementa-
tion of GenXGen[C], I chose to use this information and perform lifting at
byte-level granularity. Thus, for example, instances of struct s are lifted
as follows:

*(1lift_loc + lifted offset + 0) = *(((char *)lifted) + 0);

*x(1lift_loc
*x(lift_loc
*x(1lift_loc
*x(1lift_loc

+

lifted offset
lifted _offset
lifted_offset
lifted offset
x(1ift _loc + lifted offset

+ o+ o+ o+ o+

1)
2)
3)
4)
5)

*(((char
*(((char
*(((char
*(((char
*(((char

The corresponding emit statements are:

emit ("*x(((char
emit ("*(((char
emit ("*x(((char
emit ("*x(((char
emit ("*x(((char

emit ("*(((char

*x)1ifted)
*)lifted)
*x)lifted)
*x)1ifted)
*x)1ifted)
x)lifted)

+ o+ o+ o+ o+ o+

0)
1)
2)
3)
4)
5)

%x\n", *(1lift_loc
hx\n", *(lift_loc
%x\n", *(1lift_loc
%x\n", *(1lift_loc
%x\n", *(1ift_loc
%x\n", *(1ift_loc

*x)1lifted)
x)1lifted)
*x)1lifted)
*)lifted)
*x)1lifted)

+ o+ 4+ o+ o+ o+

130

1);
2);
3);
4);
5);

+ + + + 4+

lifted_offset
lifted offset
lifted offset
lifted_offset
lifted offset
lifted offset

In GenXGen[C], all lifting, even for scalar types is performed at byte

granularity. This approach produces correct code; however, as seen in

§6.3.4, the approach can have detrimental effects on a residual program’s

performance. Thus, in future versions of GenXGen[C], it would be desir-

able to find a way to rectify the issues with CodeSurefer’s AST representa-

tion and implement the compound-literal lifting scheme.

5.1.7 Jump Compression

One of the primary advantages of partial evaluation is the elimination

of branches controlled by static predicates. For example, consider the

specialization of the following code:

if (static_cond){

dynt++;
Yelseq{
dyn--;

+ o+ o+ o+ o+ o+

0);
1));
2));
3));
4));
5));

131

dyn *= 2;

If static_cond is true when the block is evaluated (and the worklist is
empty other than the entries for the specialization of the pictured code)

the emitted code will have this structure, with the if statement eliminated:

block m_sli:

dyn++; //The true branch
goto block_n_s2;

block _n_s2:

dyn *= 2;

However, this code still contains a spurious goto, because the target label
immediately follows the goto. In practice, residual code often contains
long chains of these goto/target pairs; when a program has large runs
static basic blocks, this situation often results in sections of the residual
program that consist solely of chained jumps with no intervening static
code.

To eliminate these chains of gotos, GenXGen[C] performs online jump
compression [Jones et al., 1993]. Jump compression (also known as tran-
sition compression in the partial-evaluation literature), can be performed
either online or offline, depending on whether it is done as part of the
partial-evaluation process, or as a transformation of the residual program.
I chose to implement the online jump-compression method used in C-
MixII[Makholm, 1999], because this technique has the added advantage
of significantly improving the time taken to specialize a program.

The key idea of C-MixII’s jump-compression technique is that at every
block with a statically-known successor, the generating extension need not
enqueue a state/block pair in the worklist. In fact, the generating extension
can simply continue producing residual blocks until a dynamic condition
is reached. Only upon reaching a dynamic branch does the generating

extension halt specialization and enqueue the necessary block/state pairs.

132

The potential downside of this approach is that there may be some
amount of duplicated code and work. For example if in two different
unrollings of a loop with a single block in its body, specialization reaches
static state s after the first iteration, jump compression will cause the loop
to be unrolled completely, and the duplicate state will not be recognized
until the first dynamic control after the unrolled loop. In practice, such
duplication is uncommon, and the advantage in improving specialization
time and performance of the residual program outweigh the small amount
of code duplication that may occur.’?

5.1.8 Stack Zeroing

Due to the use of full-memory hashing, care must be taken to ensure
generating extensions converge in a reasonable amount of time in the
presence of procedure calls. When procedures return, data that is no
longer semantically relevant is left on the stack. Consider specializing the
code in Fig. 5.2 when d is dynamic. Assume that all stack memory below*
the stack frame for do_loop prior to loop entry is zero.

Because the loop is controlled by the dynamic parameter d, the gen-
erating extension will repeatedly evaluate the loop body until the state
exploration converges. The if statement is also governed by d, and so
the generating extension will evaluate all three branches of the if, each
of which calls one of p, q, and q with a statically known parameter. Note
the call relationship of the three procedures: p calls g, which calls r, and
assume p, q, and r have identically sized stack frames. Then, after stati-

cally executing the three branches in the loop body, we have performed

3Because of internal implementation details not discussed here, it is currently not
easy to deactivate this jump compression, and no formal evaluation was performed in
Chapter 6 to compare specialization time with and without jump compression, but in my
work developing GenXGen, I observed substantial improvements in specialization times
and residual-program execution times using this technique.

4The x86 stack grows downwards.

133

int d2 = 0;//make global;
void do_loop(int d){}

while(d > 0){ p{int d,int i){

if(d % 3 == 0){ q(i);
//branch 1 }

r(1)

Yelse if(d % 3 == 1){ q(i){
//branch 2 q(i);
q(2); }

Yelse{

//branch 3 r(i){
p(3 d2 += i;

} }

d--;

}

Figure 5.2: Without stack zeroing, specialization of procedure do_loop
explores many semantically redundant states.

all possible specializations in the loop body—the static parameters are
hard-coded.

However, the generating extension ends up enqueueing the three dis-
tinct post-states shown in Fig. 5.3, none of which have been seen before
(because the stack below do_loop’s call frame was all zeros).

Thus, the generating extension must specialize the loop body again,
with respect to all three post-states. Consider specializing the body with
respect to the state resulting from specializing branch 1. This post state
contains the three stack frames for p, q, and r with their parameters set to
3. Branch 1 has never been specialized with respect to this state, and thus,
it is not until the generating extension returns from the call to p that the
generating extension encounters a (state, block) successor that has been
seen before.

Worse, consider the post states for branches 2 and 3 in Fig. 5.4. The
loop body has never been visited in these post-states either, and thus all
three paths through the loop body must be specialized yet again with
respect to each of these. Doing some scratch work, it can be seen that in

134

> > >
P:i=3 Q:i=2 R:i=1
Qi=3 R:i=2 0
R:i=3 0 0
(a) (b) (c)

Figure 5.3: The post-states after executing branches 1, 2, and 3, respec-
tively. The arrows denote the stack-frame pointers after returning from the
respective procedure calls in each branch. The x86 stack grows downward,
so the contents of memory below the pointer are no longer valid.

> >
P:i=2 P:i=1
Qi=2 Qi=3
R:i=3 R:i=3

Figure 5.4: The post-states enqueued after specializing the loop body with
respect to Fig. 5.3(a). The arrows denote the stack-frame pointer after
returning from the procedure calls in each branch. The x86 stack grows
downward, so the contents of memory below he pointer are no longer
valid.

135

total there will be 21 specializations of loop branches, seven times as many
as are necessary.

The problem is that despite not being semantically relevant (referenc-
ing the contents of a stack frame after returning is undefined behavior in
ANSI C) old stack frames are still incorporated into the state hash. If, on
return from the calls in each path, the generating extension had zeroed
out everything below the do_loop stack frame, the post-state of each path
would have been identical to the state at loop entry.

Thus, we extend our generating-extension infrastructure to zero out
all memory below the address referenced by the stack pointer rsp after
a procedure returns. We implement this by tracking rsp in the meta-
state, along with the identity of all return blocks. Upon returning from a
procedure, the range between the old and new rsp is zeroed out.

Because our representation of the static portion of the subject program
is compiled at -00, it is safe to zero out that portion of memory, as long as

the use of the "red zone" is disabled.’

5.2 Ge-Gen

This section covers issues related to constructing generating extensions
for real-world C programs built using tools such as make (§5.2.1), and
also describes how GenXGen[mc] produces generating extensions for x86
binaries, emphasizing the ways that the binaries for generating extensions
created by GenXGen[mc] and GenXGen[C] differ (§5.2.2).

136

Produce Codesurfer > . > Compile Run Build
Representation Sice Program St > Generating Extension > Generating Extension > Residual Program

(1)) @)

Figure 5.5: The sequence of steps for specializing a program with GenX-
Gen[C]. The boxed items, (1), (2), and (3) require the ability to replay the
build of a C project.

5.2.1 Build Tracing for C Generating Extensions

One primary goal in our implementation of GenXGen[C] was the ability
to specialize non-trivial projects in, as much as possible, a turn-key man-
ner. Specializing a subject program using generating extensions requires
producing three key artifacts, the structure of each of which is intimately
related to the structure of the subject program. Fig. 5.5 shows the steps
that GenXGen[C] goes through when specializing a C program. The
boxed items (1), (2), and (3) are the steps that build the key artifacts.
Artifact (1) is the CFG and SDG representation of the subject program,
which is used to perform the slicing-based BTA, and to perform the ge-gen
phase. Artifact (2) is the generating extension itself, which is a trans-
formed version of the static portion of the subject program, intermingled
with program-specialization code. The generating extension executes, pro-
ducing residual code in the form of transformed versions of the original
subject program’s source files. To produce the residual program binary,
these files must be compiled in a manner consistent with the build process
for the original program.

Performing step (1) requires identifying all source files used to com-
pile® the subject program. Because the generating extension’s subject

representation contains, e.g., all global variables and procedures relevant

°By default, the System V AMD64 ABI reserves the 128 bytes below the stack frame
as scratch space, particularly for leaf functions. This feature can be disabled in GCC via
the -mno-red-zone flag [gcc, 2019, §3.1].

®Note that I am not, in general, concerned with the binary that is built for the original
subject program per se; as will be seen, to goal is to capture the process by which it is built.

137

to the execution of the static portion of the subject program, the compi-
lation in step (2) needs to be done in a manner that respects the overall
source-code structure of the subject program. For the generating-extension
source code produced by GenXGen[C], the simplest way of achieving this
goal is just replaying the compilation of the subject program, with the
original subject-program source files replaced by corresponding source
files in which each original procedure is replaced by appropriate basic-
block procedures for its constituent basic blocks (a la Figs. 2.4 and 2.5). In
step (3), the residual source code consists of transformed versions of the
source-code files from the original program; thus, step (3) also requires
replicating the original program’s build process, with the original subject
program’s source-code files replaced with the residual source-code files.

In GenXGen|[C], performing step (1) is also carried out by replicating
the build process of the subject program. CodeSurfer, the tool used to
implement slicing and ge-gen, produces the CFG and SDG of complex
projects by performing a hook build. A hook build is a CodeSurfer feature:
when invoked in hook-build mode, and given a command that constructs
a C program, such as a single compiler invocation, or a bash script, or
a makefile, CodeSurfer traces every compiler invocation, and collects a
list of all source files used to produce the resulting program. CodeSurfer
parses these files to construct its program representations.

In practice, large C programs built to run on Linux, such as the BusyBox
applets used to evaluate GenXGen|[C], are built using a build-automation
tool such as make. The build for a large project generally consists of a series
of compilation commands, suchasgcc -b -o f.o f.c,where, rather than
producing a standalone executable binary, gcc is invoked with the -b flag
to produce a static object file (here named £ . o), which is linked into the
final program. Individual object files are sometimes linked together into
archive files, which themselves are not stand-alone programs, but larger

compilations of static objects intended to be linked into a final binary:.

138

Thus, the final build command in a large project is generally a (nominal”)
compiler invocation, gcc -o p f.o g.o h.a, which produces the output
program® (here named p, the item after the -o flag) by linking together
object and archive files into an executable.

Thus, the builds for large C projects tend to consist of a partially ordered
set of dependencies. Build-automation tools, like make, take a declarative
list of objects to produce, along with rules to produce them, and the objects
those rules depend on. These systems automatically resolve dependencies
and produce the appropriate output program.

Prior classical C specializers, such as C-MixII[Makholm, 1999] cannot
handle these builds in a turn-key fashion. To operate on programs that are
built using make, a user of C-MixII must provide three different manually
edited makefiles for, respectively, steps (1), (2), and (3) from Fig. 5.5. A
user of C-MixII manually selects source files of interest within a program’s
build process to specialize, and alters the original program’s makefile
accordingly [Makholm, 1999].

Existing classical specializers, such as LLPE, that handle multi-file
projects more organically generally operate at the IR level [Smowton, 2014].
For example, LLPE interposes on the compilation of software projects, and
extracts LLVM IR, and specializes the LLVM IR using an interpreter-based
specializer. The residual program is emitted in LLVM IR form, and the
emitted IR is used to produce the residual program. Because the goal
with GenXGen|[C] was to implement a classical Mix-style source-to-source
partial evaluator, an approach similar to LLPE was not an acceptable
solution

Instead, I chose to design GenXGen[C] with an emphasis on being

able to correctly parse and transform large multi-file projects. Specifically,

’In practice, a compiler command such as gcc is actually a wrapper that provides a
unified interface to a system’s linker, loader, and assembler, and the appropriate program
is invoked based on the flags passed to gcc. Here gcc actually invokes the linker.

8Note that the lack of a -b flag here causes gcc to produce an executable.

139

my goal was to be able to produce generating extensions for projects that
contain hundreds of source files, such as BusyBox. Performing this task
correctly requires performing a program build that, for steps (2) and (3)
reproduces the build process, but with various source files substituted
with either generating-extension or residual-program source code, and
for step (1) creates the SDG and CFG for the correct set of source files of
the subject program. In practice, one cannot simply invoke make on, e.g.,
an automatically transformed version of the subject program to perform
steps (2) or (3), and moreover, for step (1) performing a CodeSurfer hook
build on complex projects frequently causes spurious information to be
included in CodeSurfer’s representation of the subject program. Instead,
GenXGen performs build tracing, which traces an invocation of the subject
program’s build command, and produces the sequence of commands that
produce the subject program.

To see why build tracing is necessary, first we consider (1): producing
the CodeSurfer SDG and CFG for the subject-program.

Recall that makefiles define a partially-ordered collection of actions
that are performed to build the output program. These actions need not
merely consist of compiler and linker invocations. In the builds of many
large programs, such as BusyBox and GNU Coreutills’, other ancillary
C programs are compiled, and various scripts are run to produce, e.g.,
header files derived from various host-system configuration settings. For
example, during the compilation of a BusyBox applet, several ancillary C
are compiled, such as a small program that parses portions of an applet’s
source code to produce files containing documentation about a program'’s
usage. These ancillary C programs are essentially disposable parts of the
build process that are only used during compilation of the target program.

This approach to program construction is problematic, because

9Even in the case where a single BusyBox applet or program from the GNU Coreutils
collection are built, these ancillary C programs are still built, as they are considered a
necessary component of the build process..

140

CodeSurfer’s hook-build feature, when used to trace the evaluation of
a makefile that builds multiple distinct programs, does not differentiate
among the programs being built: CodeSurfer’s hook build mode cannot
determine which compiler invocations produce objects relevant to the final
target program of a makefile is, and hence which source files are truly rel-
evant. Codesurfer simply traces all C-compiler invocations, recording all
source files used, and incorporating them into its SDG and CFG. Thus, the
representations of multiple disjoint programs are merged into a single pro-
gram representation. Thus, the resulting SDG and CFG represents a single
“conglomerate” program with multiple distinct entry points named main.!”
Thus, manual intervention is required to select the appropriate entry point
and build a generating extension in many cases. Even disregarding the
need for manual intervention, CodeSurfer projects are quite large, over a
gigabyte for BusyBox applets, and the incorporation of spurious programs
into the SDG and CFG structure constitutes needless bloat.

In addition, running a complex project’s makefile to perform steps (2)
or (3) does not work correctly. BusyBox’s makefile also executes several
ancillary scripts to parse the source code and produce several internal
tables that are used to construct various header files. In practice, these
scripts are not compatible with specialization: if they are executed on spe-
cialized code, they produce incorrect tables, and the residual program’s
build will fail. Moreover, from the view of GenXGen[C], the program-
matically generated files are already part of the program’s source code,
having been incorporated into CodeSurfer’s SDG that is used to perform
ge-gen, and thus are part of the subject-program representation. The files
will be emitted when the generating extension produces residual code,
and consequently, they do not need to be generated again.

Because of these issues, GenXGen needs to collect an executable script

10The representations of main are given numerical suffixes to disambiguate the repre-
sentation, but manual intervention is required to select the correct one to produce the
generating extension.

141

that produces the desired binary without producing or running unnec-
essary binaries and scripts. One potential approach would simply be
invoking make with the -t flag and extracting all necessary compiler and
linker invocations, and discarding unnecessary ones. However, the -t flag
does not capture the behavior of subsidiary, non-make scripts.

Instead, I implemented a make-tracing-and-filtering script. Before
GenXGen[C] is run, the trace script invokes the project’s makefile, which

produces the binary as usual.!!

The trace script attaches to the build via
strace. Strace is used to record every call to exec by make and its descen-
dants. From this trace, every exec call that launches gcc, ar,'? or 1d is
extracted, along with their arguments.

After the trace is collected, the invocations are used to construct a
DAG. An invocation A has an edge to another invocation B if and only if
A uses B’s output. For example, A = gcc -o p f.o g.o, which produces
p by linking together f .o and g. o, would have an edge to B = gcc -b -o
f.o f.c, which produces object file f.o from f.c, because A depends
on the output of B.13 Then, all items in the DAG that are not reachable
from the target binary are removed from the trace. This approach ensures
that the trace contains only the invocations needed to produce the target
binary. The resulting trace is suitable for use with CodeSurfer’s hook-build
mode (to accomplish step (1)), and is also used to compile the generating
extension (step (2)) and to crate the residual binary (step (3)).

U1t is important that make be invoked on the subject-program makefile exactly once.
All programatically-generated source code needs to be produced, or we cannot construct
a correct generating extension.

12ar is an archival program that bundles multiple .o files into a single archive that can
be passed to the linker at a later time

13Recall that gce produces an object file, and not a binary file, when invoked with -b.

142

5.2.2 Constructing Machine-Code Generating Extensions

In this section, I describe how GenXGen[mc] produces generating exten-
sions for x86 machine code. The core ideas and architecture are essentially
identical to that of GenXGen[C], with only slight changes in implementa-
tion. The utility macros from §4.4.1 are generally implemented as pseudo-
instruction macros that are functionally identical to the C equivalents. In
general they function as described in §5.1.4, with values communicated to
the wrapper state via privileged, unhashed memory locations, and “heavy-
weight” operations such as emitting code and communicating worklist
updates to the controller being deferred until the end-of-subject-block
pseudo-context switch back to the wrapper.

Thus, the description of generating extensions for x86 code presented
in this section focuses on the salient differences between GenXGen[C] and
GenXGen|[mc], which are primarily related to lifting. The key difference
between GenXGen[C] and GenXGen[mc] (besides the obvious difference
in languages) is that GenXGen|[mc] processes stripped binaries; i.e., bina-
ries with all debugging symbols removed. That is, GenXGen[mc] does
not expect to have access to fine-grained symbol or type information.

Like GenXGen[C], GenXGen[mc] performs BTA using slicing'* —in
this case, slicing as supported by CodeSurfer/x86 [Balakrishnan et al.,
2005b; Anderson et al., 2003; codesurfer, 2018]. CodeSurfer/x86 can re-
cover information about variable-like locations, as well as information
about structural properties for compound data-types such as structures
through an analysis known as Value Set Analysis (VSA) (see §8.2 for a
discussion of the implementation of VSA and its limitations). Thus, it is
generally possible to to identify variables to slice from, and to identify a
division between pointer and non-pointer types for the values held by

variables and CPU registers at a given program point.

4However, the initial implementation of GenXGen[mc] predates the use of special-
ization slicing in GenXGen[C].

143

L3: ‘mov dl, [ebx]‘ -- dereference pat

cmp dl, O —— check first if condition

jz L7 -- if (xpat == 0) return 1
L4: |mov cl, [eax]‘ —-- dereference si

cmp cl, dl —-— check second if condition

jne L2 —-- if(xpat != *sl1) break;
L5: |incr eax -- sl++

incr ebx -— pat++

jmp L3 -- while(1)

Figure 5.6: Body of the naive string matcher’s inner loop. Boxed in-
structions are dynamic, double-boxed instructions have their destination
operands lifted, and the remainder are static.

The partitioning between static and dynamic occurs at the instruction
level. Thus, a standard forward slice is computed to determine the set
of dynamic instructions. To identify lifted values, reaching-definitions
analysis is performed for the operands of each instruction I in the dynamic
set. Any static instructions that define an operand used by I must have
associated code to lift the value of the operand.

In Fig. 5.6, BTA results are illustrated for the code that implements
the innermost loop of match from Fig. 1.1."° Register eax contains the
address of the current offset in the string that is being searched, and ebx
contains the address of the current offset in the pattern to be matched.

The registers c1 and d1 contain the current characters in the string and

15The 32-bit Intel x86 instruction set (also called IA32) has six 32-bit general-purpose
registers (eax, ebx, ecx, edx, esi, and edi), plus two additional registers: ebp, the
frame pointer, and esp, the stack pointer. In Intel assembly syntax, which is used in the
examples in this paper, the movement of data is from right to left (e.g., mov eax,ecx sets
the value of eax to the value of ecx). Arithmetic and logical instructions are primarily
operand instructions (e.g., add eax,ecx performs eax := eax + ecx). Anoperand in
square brackets denotes a dereference (e.g., if a is a local variable stored at offset -16,
mov [ebp-16],ecx performsa := ecx). Branching is carried out according to the values
of condition codes (“flags”) set by an earlier instruction. For instance, to branch to L1
when eax and ebx are equal, one performs cmp eax, ebx, which sets ZF (the zero flag) to
1 iff eax — ebx = 0. At a subsequent jump instruction jz L1, control is transferred to L1
if ZF = 1; otherwise, control falls through.

144

L3:
UTEX_E}:_EEEEEJ L4: ’Emit("mov cl, [eax]")‘ L5: ’Emit("incr eax")‘
’Emit("cmp cl, dl")‘ incr ebx

cmp d1, O

Figure 5.7: The machine-code generating extension block-procedures pro-
duced for the code in Fig. 5.6, with label-generation, jump-generation, and
worklist-manipulation pseudo-instructions elided.

pattern, respectively. Basic blocks L3, L4, and L5 correspond to the inner
loop blocks in Fig. 1.1. L7 is reached only if a match is found. L2 is the
target of the inner loop’s break statement, which starts another iteration
of the outer loop.

In lifted instruction mov dl, [ebx], register d1 must be lifted, because
cmp cl, dl in block L4 compares the static pattern character in d1 to a
character from the dynamic string.

Given the partitioning of instructions in Fig. 5.6, the generating-
extension-generator emits x86 code augmented with pseudo-instruction
macros analogous to their C counterparts. We elide the state snapshotting
as well as jump and label-generation code, because it is analogous to the
C equivalents.

Fig. 5.7 illustrates the machine-code generating extension produced
from match.

The lifted instruction I = mov dl, [ebx] is executed, just like a static
instruction. After I is executed, Lift emits code that sets the value of d1
in the residual program to the value that d1 holds immediately after the
execution of 1.

Note that the approach taken in GenXGen|[mc] differs from that used
in GenXGen[C] in a significant way: in the example above (for GenX-
Gen[mc]), what is lifted is a register, and consequently a memory access
is eliminated. In contrast, in GenXGen[C], the entire branch condition for

the comparison of a character in the pattern with a character in the string

145

being searched in the C program is tagged as dynamic:

if (xpat != *sl) goto 1;

The definition of pat that reaches the branch condition is the increment
statement pat++;, so that statement (as a whole) is what is lifted. When
compiled, the unoptimized'® residual program would contain a load from
memory (to obtain the value of pat).

Even if the value of *pat were stored in an intermediate variable, e.g.,

char c = *pat;

’if(c I= *s1) goto 1;

the behavior of GenXGen[C] would be the same: when compiled, the
(unoptimized) residual program still contains a load from memory—in
this case, to obtain the value of c.

As these examples illustrate, GenXGen|[mc] is capable of more fine-
grained lifting than GenXGen[C]. That is, at the machine-code level, be-
cause a source-code statement is typically broken into a sequence of finer-
granularity instructions, reaching-definition-based lifting can improve
the performance of residual programs in ways that are not available to
GenXGen[C].

Lifting Pointers. Like the Lift macro used in GenXGen|[C], the imple-
mentation of the Lift macro in GenXGen|[mc| needs to handle correctly
pointers to stack and heap objects. However, GenXGen[mc] processes
stripped binaries and produces a residual program in machine-code form.
This situation differs from the one we face with in a significant way: GenX-
Gen[mc] is not performing a source-to-source transformation that needs

to preserve source-level symbols. Thus, GenXGen[mc] does not need to

16Tn our experimental evaluation in Chapter 6, to avoid conflating the effects of GCC’s
optimization with the effects of GenXGen, the original and residual programs are com-
piled at -00.

146

perform the symbol-preserving lift techniques described in §5.1.5. Instead,
GenXGen|[mc] performs a more light-weight form of lazy symbolization
in a manner analogous to the eager symbolization performed by WiPEr
[Srinivasan and Reps, 2015].

For every lifted operand, I assume CodeSurfer/x86’s value set analysis
can reliably'” recover information about whether or not a given operand
holds a pointer type. Making the simplifying assumption that the subject
program being specialized is correct, I assume that all lifted pointers
reference a valid memory region. At a coarse-grained level, such a pointer
either references the heap, the stack, or a global variable. Thus, every
pointer can be treated as an offset into a heap object, the stack, or the heap,
simply by examining the address to see which region it falls into.

Because GenXGen produces machine-code, I have sufficiently fine-
grained control over the residual code that I can ensure that when the
residual program is assembled and linked, all global references are still
valid in the residual program.

Heap references are handled identically to GenXGen|[C], as described
in §5.1.5. Each heap address is checked using the data held by the special
purpose malloc implementation; the base/offset pair is recorded; and the
residual code is produced in the same way as the C version.

For stack references, I take the same approach as WiPEr, except that the
symbolization is performed lazily. When generating residual code, WiPEr
preserves the stack layout between the original and residual program.
Thus, WiPEr can treat all references to the stack as a symbolic stack_base+
offset pair. Then, when the residual program is executed, the lifted value
in the residual program is recomputed by adding the residual program’s
stack base to the recorded offset.

Thus, when a stack pointer is lifted in GenXGen[mc], the offset into the
stack is recorded, and code in the residual program is emitted to obtain

7The VSA implementation reliably identified whether a memory location or register
holds a pointer to the stack or heap at a given program point in all of the programs tested.

147

' void p(int a, [int b]{

int g = 0; g++; //block 3

void f-(int s, [int d]{ £ > 0){

’prod = s * d; g = a; //block 4
s++ Yelse{

p(s, [prod]); //end of block 1. e - a+1; //block 5

’printf("%d", g);| //end of block 2 }
return; //block 6

}

Figure 5.8: Code that illustrates several subtle issues with code generation
for procedure calls. Note that the printf statement in block 2 is tagged as
dynamic even though its arguments are static, so that an occurrence of the
printf statement will appear in the residual program.

the residual program stack base and add it to the offset.

5.3 Handling Procedure Calls

In §4.4.4, I noted that there are two ways of emitting residual code for calls
to a procedure p. In particular, a specializer can (i) inline the specialized
version of p, eliminating the call, or (ii) emit a specialized version of p, and
replace the original call with a call to the specialized version. I noted that
both approaches require solving several subtle code-generation issues.

To appreciate the subtleties, consider specializing procedure f in Fig. 5.8
with respect to the initial state s = 1. Note that the first basic block in £
consists of all code up to and including the call to p, and that the call to p
is the end-of-block control construct for block 1.

Regardless of whether we choose to inline the specialized version of
p, or emit a call to a specialized version of p, a peculiar non-locality issue
arises. The immediate textual successor of the callsite that calls p in the
residual program will be block containing printf ("%d", g). However,
the immediately-executed successor in the specialization of the program
in Fig. 5.8 is block 3, the first block of p. In fact, block 2 will not be reached

148

void p_1(){
goto block_4_2;
Yelse{
int g = 0; goto block_5_2;
void f(int s,){ }
’prod = s * d; block_4_2:

p_1(prod)D; //end of block 1. blgOEOSb;OCk—G—B;
oc :
” —o_
//What goes here? goto block 6_4;

¥ block_6_3:
//What goes here?

block_6_4:
//What goes here?

}

Figure 5.9: Incomplete code for the specialization of f on's = 1.

at all until the return statement in block 6 has been specialized, and its
successor enqueued.

This situation poses several problems. Consider the case where GenX-
Gen|[C] emits a call to a specialized version of p, say, p_1. Assume that the
state at the end of block 1 has state id 1. Then, the next block to execute
is block 3, the first block of p. The variable g is incremented, so the suc-
cessor state has id 2. Block 3’s successor is dynamically determined, so
both block 4 and block 5 must be specialized on state 2, yielding empty
residual blocks for both. Moreover, because g has different values at the
end of block 4 and block 5, their post-states differ, and thus block 4 ends
in post-state 3, while block 5 ends in post-state 4. Thus, block 6, the return
block for p must have two residual versions, one specialized on state 3 and
one specialized on state 4.

This situation leaves us with a problem: how is the return from p_1
handled in the residual program? The static states at the return differ; in
particular, block 2 contains a residual printf whose output is governed

by the static value g, and g differs in the two post-states of the call to p_1.

149

Thus, somehow, after the call to p_1, some code needs to be added that
can select the appropriate post-state block to execute. Moreover, somehow,
p_1, at each return block, needs to communicate which static post-state
state the return block corresponds to. This problem is referred to as the
exit-splitting problem[Bodik et al., 1997]. As pictured in Fig. 5.9, this poses
a challenge because a procedure returns to a single point, control needs to
flow to two different control points, depending on the return.

To solve the exit-splitting problem, we augment the residual program
with a global variable, state_tag, which contains the static post-state id
at the return site. Thus, blocks_6_3 and block_6_4 are emitted as:

block _6_3:
state_tag

3;
return;
block _6_4:

state_tag

4;

return;

Each call to a specialized procedure in the residual program is followed
with specialized exit-splitting code. For example, each call to p_1 would
be followed by code that dispatches control to the appropriate residual
version of block 2:

p_1(s);

switch (state_tag){
case 3:
goto block_2_3;
case 4:

goto block_2 4;

Characterized more generally, due to a dynamic branch in a called pro-
cedure, there can be multiple static return states from a call-site associated

150

with a given static state. However, in classical partial evaluation, every
residual program point is associated with a single static state. Thus, a
residual procedure called at a given callsite can return to one of several dif-
ferent program points in the caller. This situation is non-standard, because
in a conventional program, every call-site has exactly one return point
(typically the location following the call instruction). Thus, call-return
linkages in the residual program need exit splitting[Bodik et al., 1997],
where control can be returned to one of several return points in a caller.
In the residual programs created by GenXGen[C], this is done by having
each exit from a procedure pass, by means of a global variable, an exit num-
ber denoting the static state associated with the residual procedure’s exit
point. At the corresponding (standard) control-site in the caller, a switch
statement dispatches control based on the exit number to the appropriate
point in the residual caller for the matching static state.

In addition, there is a more subtle problem that occurs in both the
inlining and specialized-call approaches. At the end of block 6, a successor
block needs to be identified. But block 6 is a return, and there may be
many callsites for a procedure. In all other cases, the set of successors is
known from a combination of immediately available syntactic information
from the subject program in combination with static state that is visible
in program variables—thus, it is relatively straightforward to produce
generating-extension code that enqueues the correct state/block pair (see
§4.4.4). However, the block that a procedure call returns to is encoded in
the call stack, which is not (within the bounds of most language standards)
explicitly available in the program text.'®

Thus, for both procedure-specialization approaches, we need to make
call-stack information available to the residual-code-emission procedures.
Specifically, GenXGen maintains, for each state, in the wrapper context
(i.e., outside of hashed memory), a shadow-stack that contains the block to

8Even if it were, mapping from code-section-address to the basic-block ID produced
from the CodeSurfer representation of the subject program is, in practice, a difficult task

151

return to for each procedure call. This approach allows the next successor
to be enqueued correctly, and also in the case where the residual procedure
is inlined, to determine the goto target for the jumps that replace the returns
in the inlined residual procedure.

152

Chapter 6
Experimental Evaluation

The promise of generating extensions is their potential to specialize real-
world programs, by optimizing performance through simplification and
unrolling, and debloating programs by removing unreachable code. Thus,
there are two main concerns: first, given GenXGen’s new OS-assisted
state-management techniques, are the generating extensions produced by
GenXGen capable of specializing real-world programs in a timely manner,
and second, does GenXGen perform reasonable debloating and optimiza-
tion in practice? Thus, we evaluate GenXGen on a set of microbenchmarks
and real-world programs.

The majority of the experiments, covered in §6.1-§6.3, focus on GenX-
Gen|[C]. GenXGen[mc], for x86 machine code, was the earliest iteration
of GenXGen, but does not implement all of the features described in this
thesis; of particular importance, GenXGen[mc|] does not use specialization-
slicing for its BTA, only regular forward-dependence slicing. Moreover,
for reasons described in more detail in Chapter 8, various limitations on
CodeSurfer’s x86 library models and static binary-analysis tools made it
significantly more difficult to obtain slices of useful precision on real-world
programs. Thus, I discuss GenXGen[mc]’s experiments separately from
those for GenXGen[C].

153

§6.1 explains the six research questions aimed at addressing these
concerns. §6.2 explains the design of the experiments, and the specific
hardware and software platform used for the experiments. §6.3 discusses
the evaluation for each experimental question, and gives an in-depth

discussion of the results. §6.4 discusses the evaluation of GenXGen[mc].

6.1 Research Questions

The goal of the state-management and lifting techniques presented in
§3 is to enable GenXGen[C] to specialize real-world programs that use
stack, heap, and global memory. A partial evaluator should be able to
specialize non-trivial programs in a “reasonable” amount of time, while
also producing meaningful reductions in program size, as well as residual
programs that are faster than the original. To evaluate our tool with respect
to these criteria, our experiments were designed to answer the following
research questions:

154

Research Questions

e RQ1. How long does it take to produce a generating extension?
How much does specialization slicing contribute to the time?

e RQ2. What increase in program size occurs from slice materi-
alization (§4.3) when binding-time analysis is performed via

specialization slicing?

e RQ3. What are the execution-time characteristics of a generat-
ing extension produced by GenXGen[C]?

e RQ4. How does specialization affect the run-time performance
of the residual program? In programs for which it is relevant,
how does the difference in run-time performance change as

the size of the dynamic input increases?

e RQ5. How does specialization affect the size of the residual
program?

e RQ6. How much code does specialization remove from a
program?

\ 7

RQ1. How long does it take to produce a generating extension? How much does
specialization slicing contribute to this time?

Rationale. Our base slicing-based BTA relies on the use of CodeSurfer
to perform, e.g., points-to-analysis and reaching-definitions analysis to
construct an SDG representation of the subject program. The phase of
BTA during which specialization slicing is carried out (to sidestep the
parameter-mismatch problem) requires non-trivial automata-theoretic
operations, and in the worst case the output program size is exponential
in one of the parameters that characterizes the size of the input program.

Moreover, given these slicing results, producing the generating ex-

155

tension requires a non-trivial source-to-source transformation. Thus, it

is reasonable to investigate the time to produce a generating extension,

particularly in terms of the individual tasks that comprise the process.

Metrics. To evaluate this cost, we track the amount of time required to

produce a generating extension for every BusyBox applet in our evaluation

suite. We break these times down by the seven phases of the generating-

extension generator.

The specialization process is an eight-phase process:

1.

The recording of compiler and linker invocations in the program’s
makefile. This process produces a repeatable script that can be used

in later ge-gen phases.

. The C-preprocessor expansion of all source files identified in (1), to

simplify the source-to-source transformation in later phases.

. The construction of the CodeSurfer representation of the program.

This phase constructs the PDG and SDG used for specialization
slicing, as well as internal AST representations used for source-to-

source rewriting.

. Invocation of the specialization-slicing algorithm itself to perform

binding-time analysis.

. An additional code-rewriting pass based on the specialization-slicing

results, to create variants of each procedure identified by specializa-
tion slicing. This pass is necessary due to limitations in CodeSurfer’s

internal program-rewriting facilities.

. Build a new CodeSurfer representation of the rewritten program.

. The source-to-source transformation that produces the generating

extension’s source code.

. Compilation of the generating extension.

156

RQ2. What increase in program size occurs from slice materialization (§4.3)
when binding-time analysis is performed via specialization slicing?

Rationale. GenXGen[C]’s binding-time analysis uses specialization
slicing to sidestep the parameter-mismatch problem that can occur with
conventional slicing. However, specialization slicing produces programs
that are, in the worst case, exponential in one of the parameters that char-
acterizes the size of the original program—mnamely, the maximum number
of formal-in or formal-out vertices in any procedure’s PDG.! Such blowups
would carry over from binding-time analysis to the generating extension:
each procedure variant found during specialization slicing would yield
a different variant of the procedure in the generating extension. More-
over, before the generating extension is created, the slice-materialization
step (§4.3) creates an elaborated version of the program that, in general,
contains multiple replicas of the program’s procedures—i.e., a replica of
each procedure q for each different binding-time pattern of q’s formal-in
vertices. If such blowups occur in practice on the real-world programs we
specialize, it could unacceptably increase the time required to construct
generating extensions.

Metrics. As described in §4.3, GenXGen[C]’s use of specialization
slicing adds a full copy of procedure P for every unique result set for
P in the slice. Thus, the most important metric for assessing the code-
size effects—particularly the presence or absence of exponential blow-
up—is simply the number of procedures before and after specialization
slicing. However, even in the absence of exponential growth in code size,
specialization slicing might, e.g., produce an unacceptable number of
copies of very large procedures. Therefore, we also include other code-
size metrics, such as lines of code and number of basic blocks. In principle,

Recall from §2.2.1 that formal-in vertices capture the passing of parameters from
caller to callee when a procedure is invoked (including the “passing” of global variables
as a kind of extended set of parameters), and formal-out vertices capture the passing of
return values (including globals) from callee to caller when the procedure returns.

157

it would have been natural to compare specialization-slicing-based BTA
with BTA based on Binkley’s reslicing algorithm. However, on the Busybox
programs Binkley’s Algorithm generally produced overly conservative
results that admitted no useful specification, largely due to global variables
such as errno being included in the slice.

RQ3. What are the execution-time characteristics of a generating extension
produced by GenXGen[C]?

Rationale. Generating extensions created by GenXGen[C] execute in
a complex runtime environment, as described in §3 and §4.4. Thus, it is
reasonable to investigate the performance of the generating extensions
produced by GenXGen|[C] on microbenchmarks and real-world programs.

Metrics. For each program, we record the execution time of the gener-
ating extension on a single representative static input. We also record the
average time taken to perform a hash-update operation in each program’s
generating extension.

RQ4. How does specialization affect the run-time performance of the residual
program? In programs for which it is relevant, how does the difference in run-time
performance change as the size of the dynamic input increases?

Rationale. Program specialization is useful to the extent that it can
“improve” the program in some observable way. Partial evaluation can
eliminate the computation of values known at specialization time, allowing
for, e.g., loop-unrolling and elimination of large parts of the program.
Such transformations can speed up the residual program. On the other
hand, transformations such as full unrolling can have negative effects on
instruction-cache locality, and the reaching-definition-based lifting can
introduce unnecessary lifts into the program, both of which can have
negative effects on performance. To determine how much improvement
(or degradation) occurs in practice, we compare the performance of the
original and residual programs.

Moreover, for many programs, the size of the input that is tagged as dy-

158

namic is not necessarily constant—e.g., the dynamic input could be a file of
arbitrary size. Thus, it is natural to inquire if, given a program specialized
on a fixed static input s, whether the difference in performance between
the original and residual program grows as the size of the dynamic input
increases. Thus, we also investigate how the execution times of the original
and residual programs scale as a function of the size of the dynamic input.

Metrics. For each program, we measure the execution time of the origi-
nal and residual program for a single representative static and dynamic
input pair. For a fixed static input, we measure how the performance scales
with respect to changes in the size of the dynamic input.

RQ5. How does specialization affect the size of the residual program?

Rationale. The other way partial evaluation can improve programs is
by decreasing program size by eliminating code that is impossible to reach,
given a specific static input. On the other hand, many of the potential
speed-ups available through specialization come at the cost of increasing
the size of various parts of the program. Thus, we measure the effect of
program specialization on program size.

Metrics. For each program, we record the change in size between the
original and specialized versions.

RQ6. How much code does specialization remove from a program?

Rationale. There is a subtlety to the size-change metrics discussed in
RQ5. Program specialization can be used to remove features. For a given
static input, if code corresponding to a given feature is unreachable, that
feature will not be present in the residual program. However, the spe-
cialization produced for a feature that is present can involve, e.g., loop
unrolling, which creates multiple copies of one or more basic blocks. Con-
sequently, a residual program can have fewer features than the original
program, despite being larger than the original. Thus, we also investigate
the amount of code from the original program that has been completely
eliminated from the subject program.

159

Metrics. To determine what code has been removed, we record the
percentage of blocks from the original program that do not occur (in any

specialized form)? in the residual program.

6.2 Experimental Setup

We evaluated GenXGen[C] using six microbenchmarks, an additional
seventh benchmark for evaluating the worst-case (blow-up) effect of spe-
cialization slicing, and ten BusyBox applets. These programs are described
below.

Four of the microbenchmarks were previously used to evaluate WiPER
[Srinivasan and Reps, 2015]. The fifth, str_match, is the O(|s||p|) string
matcher given in Fig. 1.1. The sixth is another string matcher, specially
structured to produce the Knuth-Morris-Pratt string matcher, as described
in [Consel and Danvy, 1989].

Microbenchmarks.
e power computes x™
e dotproduct computes the dotproduct of two n-dimensional vectors.

e interpreter is an interpreter for the minimalist language
“Brainf*ck”

e filter applies a convolutional filter to an image.

e str_match is an O([s|[p|) substring matcher, where s is the subject

string, and p is the pattern string being searched for.

There is one subtlety about the concept of “does not occur.” Consider the case where
a generating extension executes a block that consists entirely of static code. The code
from the block will not occur overtly in the residual program. However, because the
block affects static program state, the block’s effects may be materialized in the residual
program at some other location via lifting. Thus, for our purposes "does not occur in any
specialized form" means "never visited by the generating extension."

160

e KMP is an O(]sl|[p|) substring matcher structured such that the special-
ized version’s residual code implicitly encodes the finite automaton
produced in the Knuth-Morris-Pratt substring-matching algorithm.

The residual program’s runtime is O(|s]).

Microbenchmark Specialization. For power, the static input is the ex-
ponent, leaving the base as the dynamic input. For dotproduct, the static
input is the set of coefficients of one vector, as well as the dimension of
both vectors, n. The other vector is dynamic. For Interpreter, the static
input is the source code of a Brainf*ck program. For filter, the static
inputs are a parameter that selects one of four fixed m x m filter matrices,
and n, which specifies the width and height of the n x n image the chosen
filter is applied to. The dynamic input is the array containing the image
pixels. The static input for both str_match and KMP is the pattern string,

and the dynamic input is the subject string.

Specialization-Slicing Exponential-Case Microbenchmarks. To eval-
uate the worst-case effect of specialization-slicing, we use an additional
family of programs that produce the worst-case exponential blow-up in
program size when specialization slicing is performed. We separate these
programs from the other microbenchmarks because they have no semanti-
cally meaningful utility; they are merely programs that are structured to
induce the worst-case slice result.

Each program P,, in the worst-case family contains a single main proce-
dure and n auxiliary procedures, which have a nested calling relationship.
That is, each P; calls P;_;, and the exponential blowup is a function of
nesting depth n. Specialization slicing yields a program with 2™*! proce-

dures.

161

unsigned int gi, g2; unsigned int gl, g2;

void ROO{ void ROO{
tl = gi; tl = gl; t2 = g2;
gl = ti; gl = t1; t2 = g2;
¥ }
void R1(0){ void R10){ void R20){
v = 2; v = 2; v = 2;
if(v > 0){ if(v > 0){ if(v > 0){
gl = v; gl = v; g2 = v;
POQ); ROQO); R1Q);
Yelse{ Yelse{ Yelse{
POQ); ROQ); R10);
} } }
} } ¥

int main(){ int main(O{

RO, R20);
return 0; return O;
} }
ROy =0
R0O; ={RO.gl.formal_in,t1 =gl,gl =t1
ROp —0 1 ={R0.g _ glg }

RO, ={RO.g2.formal_in, t2 = g2, g2 = t1}
RO; ={(RO.gl.formal_in,t1 =gl,gl =t1,
RO.g2.formal_in, t2 = g2,g2 = t1}

RO; ={RO.gl.formal_in,t1 =gl,gl = t1}

(a) (b)

Figure 6.1: The first two programs (a) P; and (b) P, in the worst-case-
slice program family, along with the sets of slice results for the different
variants of procedure R, (at the bottom of the call hierarchy) produced by
specialization slicing. The boxed lines denote the source statements for
the specialization slice.

Fig. 6.1 shows the first two programs in the family. The key idea under-
pinning the exponential blowup in P, is that the program is structured
such that the slice results for the assignments to g1 through gn in RO en-
code the binary representation of every integer from 0 to 2™ — 1. Stated

differently, the presence or absence of gi’s assignments in RO encodes the

162

R20){ R1_00{
v o= 2; v =25
1fé; > 3?{ 1fé¥ > 3?{ R_000{
R1_0(0) RO_000); LE e
Yelse{ Yelsed{ } & = ’ T &
R1_1(0); RO_01Q);
} }
} }

Figure 6.2: Three example procedures from the materialization of the
specialization slice of P2 in Fig. 6.1

i bit of an n-bit binary number.

EachRi contains a single if statement where, in one path, gi is assigned
a value not in the slice, thus ensuring that there will be slice results for
all gj,j < i, that do not have gj in the results. Conversely, the other path
does not contain an assignment to gi, so there must also be slice results
for all gj, j < 1, that do contain gi. Thus, the size of the polyvariant result
set is exponential in the size of P,,. Moreover, this structure also ensures
that every Rj has 2™ slice results. Thus, the materialized slice results
contain 2™ copies of each R;. In total, with the inclusion of main, the
results contain 1+) ' (i =2""! procedures.

Discussion of the Materialized Results and Their Specialization. We
include the worst-case microbenchmarks to illustrate the worst-case blow-
up issue with specialization slicing, and to see whether there are similar
effects in the sizes of the materialized slice results obtained in practice.
However, we do not produce generating extensions for these results—and
we do not include them in any other experiment—because semantically
each P,,, in and of itself, is not very interesting; the programs exist solely to
force the “binary encoding” in the slice results, which induces the blow-up.

Moreover, the specialization of the materialized slice results is straight-
forward. Consider the two procedures from the materialization of the

163

results for P2 pictured in Fig. 6.2. The dynamic “inputs” are the assign-
ments to g1 and g2 (in main, which is not shown). The local variables v are
necessarily static “inputs,” because they are used to kill the dynamic slice
variables and induce the appropriate control flow that yields the expo-
nential blow-up. Because every local v is static, the specialization simply
follows a single chain of calls: R2, to R1_0, to R0_00, yielding a program
that contains only those procedures and main. Because the variables v
must be static, every specialization of the materialized slice result for P,,
yields a program with n + 2 procedures. Thus, we do not consider the

specialization of the materialized slice results for P, further.

BusyBox Applets. We use ten applets from BusyBox, which perform the

following computations:

e yes repeatedly prints its argument to stdout (y if no argument).

There is no dynamic input.

e base64 encodes/decodes a base64 string depending on whether a

flag is absent or -d, respectively.

e dos2unix converts line endings of a file read from stdin from DOS-to-
Unix convention or Unix-to-DOS convention, depending on whether

the -u or -d flag is given, respectively.

e cat prints the standard input to standard output. Cat provides
additional behavior, such as numbering lines, depending on what

flags are supplied.

e env takes a list of assignments to environment variables and then
invokes a specified program. The flag -i clears all other existing
environment variables before invoking the specified program.

164

e shuf computes random shuffles based on specified input. The -i flag
takes a numeric range m-n as an argument and produces a shuffled

list of all numbers from m to n.

e odis a binary-dump program that supports a variety of output for-
mats. The -x and -X flags are standard hex dump formats, with 16
bytes per line divided into two or four byte clusters, and -b dumps
the input as octal bytes. The -e flag dumps the input as 64-bit IEEE
floating-point numbers. The flags can be combined arbitrarily; in
this case, each "chunk" of the input stream is printed multiple times,

once in each format.

e tr "translates" a character stream based on the provided parameters
and character sets. When given a pair of character sets, such as ab
cd, tr maps the nth character in the first set to the nth character
in the second. The -d and -s flags delete and squeeze a specified
character set, respectively, where "squeezing" is the deletion of all but
one instance of a character ¢ in every contiguous run of a repretition

of c.

e cut removes specified items from each line of its input. The -b flag
takes a comma-separated list of integers, and removes the n char-

acter in a line unless n is one of the positions specified in the list.

e xxd is a binary-dump program that also supports patching. xxd
provides a more limited set of dump-formatting options than od,
always producing hexadecimal output. The -g flag specifies the size
of bytes per group in a line, and the -c flag specifies the number of
bytes per line. The -r flag supports patching, however, we did not
with respect to this capability.

BusyBox applet Specialization. dos2unix, cat, and base64 represent

feature-removal tasks, in which a single operation mode is chosen from a set

165

of potential modes, and the code for other modes is removed.

yes, shuf, and env are in-lining-and-unrolling tasks, unrolling the inner
loop of the program, and inlining specific actions based on the specified
flags.

The programs od, tr, cut, and xxd have an interpreter-like structure and
combine elements of both feature-removal and in-lining-and-unrolling
tasks. In particular, the main loop of the program iterates over the dynamic
input stream, and the inner loop iterates over a static structure specifying
a set of operations to be performed on the stream. For example, the two
hex-dump programs od and xxd take their command-line arguments, and
construct a linked list of structures containing, e.g., format specifiers for
printing "chunks" of the input stream in the specified format(s).

Many Unix command-line utilities can be run as filters, typically docu-
mented as follows:

< command > [OPTION]...[FILE]...

With no FILE, or when FILE is -, read standard input.

Consider such a program P, where the static parameter set S is {argc, argv}.
Suppose that P’s generating extension ge;, is supplied with an assignment
A(S) in which the argv value either (i) contains zero or more options and
no file name, or (ii) contains zero or more options followed by "-’. The
specialized program P, s) produced by GenXGen|[C] is a filter program
that receives input from stdin and behaves according to the options that
were specified in the static argv value. In our experiments, the appli-
cation of GenXGen|[C] to dos2unix, cat, and base64 carries out such a
specialization; e.g., the specialization of “base64 -d -” creates a decoding
command-line filter.

yes, base64, dos2unix,cat, env, shuf, od, and tr are BusyBox analogs

of coreutils command-line utilities that we isolated from BusyBox prior to

166

specialization. The xxd command was also isolated from BusyBox, but is
an analog of a Vim component.

BusyBox is a single binary that provides the functionality of coreutils
and other standard Unix utility packages in a single binary. Ordinarily,
the top-level main procedure of BusyBox dispatches into the entry proce-
dure of a given applet based on flags passed to BusyBox (or the binary
name). However, for each experiment, we created a modified version of

the BusyBox source that only enters the desired applet.

6.2.1 Scaling Experiments

To answer the second part of RQ4—how does the difference in run-time per-
formance change as the length of the dynamic input increases?—we select the
relevant subset of the subject programs for which GenXGen[C] can special-
ize the program with respect to a static input and then accept an arbitrarily
large dynamic input. For each of these programs P, we select a static input
s and specialize P, yielding P,. Given P and P, we run the pair of them
on dynamic inputs of various sizes, and compare their performance. (For
each of the dynamic inputs, P also receives s as the value of the static
input.)

The seven programs for which we can perform the scaling experiment
are base64, dos2unix, cat, od, tr, xxd, str_match, and KMP. All of these
programs take as static input their command-line arguments—the argu-
ments used for each experiment are shown in Fig. 6.10—and take stdin
as their dynamic input which can be scaled arbitrarily.

For these programs, we scale the size of the input from 5,000 bytes
to 95, 000 bytes in 5, 000-byte increments. For each size, we perform the
100-trial experiment described in §6.2.2.

167

6.2.2 Experiment Timing

We timed the end-to-end execution time of each program on an input,
collecting the 10% trimmed mean of 100 executions: i.e., we ran the pro-
gram 100 times, and discarded the 10 shortest and 10 longest execution
times. To time the programs, we instrumented the beginning and end of
main in each program with calls to a rdtscp-based timer. rdtscp is an x86
instruction that returns the time since boot as the number of clock cycles
in terms of the CPU’s base frequency (i.e., the rate that timestamps increase is
invariant, and not tied to changes in the processor’s operating frequency
due to, e.g., power-saving or thermal factors). In practice, rdtscp provides
~40-clock-cycle resolution [Paolini, 2010].

Evaluation platform. We used a VMWare Fusion 13.0.1 VM on a MacOS
12.1 computer with 16 GB of RAM, and a 2.5 GHz, 4-core, Intel Core i7
CPU (model 4870HQ). The guest OS is Fedora Linux 31, running the 5.3.7
Linux kernel, and the VM is allocated two cores and 8 GB of RAM. The
times collected via rdtscp, as described above, are not virtualized: they
sample the host OS timestamp counter. Thus, times may include host-OS
context-switching overhead. To mitigate this effect, the results for the
end-to-end execution of the original and residual programs are collected
when the host and guest OS have a minimal process workload. When
done this way, and when 10% trimmed means are used, the experiments
are repeatable, and fine-grained timing information can be extracted from

the results.

6.3 Evaluation

This section discusses the evaluation of each of the experimental questions,

and presents our findings.

168

6.3.1 Answer to RQ1: How long does it take to produce a
generating extension? How much does

specialization slicing contribute to the time?

Fig. 6.3 and Fig. 6.4 show the time required for each phase of GenXGen[C]’s
generating-extension generator. The plot in Fig. 6.4 is the time required
to produce a generating extension from specialization results, and corre-
sponds to the top bar in the stack plot in Fig. 6.3

For the BusyBox applets, tracing compiler and linker invocations, ex-
pending source code, and producing the Codesurefer program repre-
sentation dominates the time taken, largely owing to the complexity of
BusyBox’s build system, and the large number of compiler invocations
performed in each of these steps.

As shown in Fig. 6.4, for the BusyBox applets, the amount of time
required to perform both BTA via specialization slicing and generate
the generating-extension source code is comparatively negligible. The
worst-case complexity of specialization slicing does not occur in these
(real-world) programs, and the automata-theoretic operations performed
during specialization slicing comprise a negligible proportion of the over-
all ge-gen time. The longest specialization-slicing pass was for cut, which
required 17 seconds.

For the microbenchmark experiments, we do not perform
specialization-slicing. No programs in the microbenchmark suite
have polyvariant BTA results, and the specialization-sliced and forward-
dependence slice results are identical.

For all six of the microbenchmark programs, ge-gen takes less than
two seconds, nearly half of which is taken up by the construction of the

generating extension.

Specialization Slicing. The worst-case-blowup experiment, the timings

for which are shown in Fig. 6.6, contrasts sharply with the BusyBox exper-

169

I Ge Construction
600 mmm second Codesurfer Build
B Reachability Pruning
B Spec Slice
B First Codesurfer Build
so0 4 = Source Setup
B Make Trace
400
%]
=l
c
S
@ 300
200 A
100
n .
yes b64 dos2unix cat env shuf od tr cut xxd

name

Figure 6.3: Time to perform a full ge-gen on the BusyBox applets. The
colored regions break the time down into the eight phases described in
RQ1 in §6.1: The bottom bar is the make tracing step (step 1). The orange
bar is the preprocessor expansion (step 2). The green bar is construction
of the SDG and PDG (step 3). The red bars are for specialization slicing
(step 4). The purple bar is reachability pruning (step 5). The brown bar
builds a new CodeSurfer project for the materialized slice (step 6). Steps
7 and 8 are folded into a single light pink bar, and the times for those two
steps are shown in Fig. 6.4.

170

B Produce GE Src
351 mm compile GE

25 7

20 1

seconds

15 4

10 A

yes b64 dos2unix cat env shuf od tr cut xxd
name

Figure 6.4: Time to produce generating extensions for the BusyBox applets
from specialization-slicing results.

iments; a ten-procedure program required 45 seconds for a specialization
slice; over twice as long as the 17 seconds for cut, a 13-procedure program.
Moreover the exponential trend is immediately clear from the plot.

171

seconds

1.4 {1 EEE Ge Construction
m Codesurfer Build
Il Make Trace

1.2 1

1.0

0.8

0.6 1

0.4

0.2

0.0

kmp

power interpreter filter str_match
name

Figure 6.5: Time to produce generating extensions for the microbench
programs.

The time required to produce a generating extension is largely due
to the time required to trace compiler and linker invocations, as well
as the time required to produce an SDG. The time for traversing the
SDG (e.g., BTA), generating source code for the generating extension,
and compiling the generating extension contribute comparatively
little to the overall time.

For the BusyBox applets, the specialization-slicing algorithm
contributes little to the overall ge-gen time, and the performance
does not exhibit the characteristic time explosion seen in the micro-
benchmark that provokes worst-case behavior for specialization
slicing.

172

40 - B Specialization Slice Time

35 A
30 4
25

20 4

seconds

15 ~

10 ~

D—F—F-F—-l
g & & 2 & & & & 3

nth member of the worst-case family

P

Figure 6.6: Timing results for the worst-case microbenchmark family.

6.3.2 Answer to RQ2: What increase in program size
occurs from slice materialization when binding-time

analysis is performed via specialization slicing?

Fig. 6.7 shows the effects of specialization slicing on program size from
slice materialization (§4.3). The overall code-size increase caused by slice
materialization was modest, amounting to 31% in the worst case for tr.
In the worst case for procedure duplication—xxd—specialization slicing
increased the number of procedures by 32.6%; however, the size of the

173

Name Nodes Blocks Edges Procedures Callsites Branches Stmts
yes org 77 20 34 11 11 14 41
spec-slice 77 20 34 11 11 14 41
% change 0.0 0.0 0.0 0.0 0.0 0.0 0.0
base64 orig 599 99 268 42 89 169 299
spec-slice 615 101 275 44 88 174 309
% change 2.7 2.0 2.6 4.8 -1.1 3.0 3.3
dos2unix orig 604 136 293 50 128 157 269
spec-slice 623 147 304 54 132 157 280
% change 3.1 8.1 3.8 8.0 3.1 0.0 4.1
cat orig 684 117 304 51 112 187 334
spec-slice 718 127 321 56 116 194 352
% change 5.0 8.5 5.6 9.8 3.6 3.7 5.4
env orig 444 78 203 33 74 125 212
spec-slice 463 85 213 36 77 128 222
% change 4.3 9.0 4.9 9.1 41 24 47
shuf orig 651 139 311 56 130 172 293
spec-slice 776 179 376 67 160 197 352
% change 19.2 288 209 19.6 23.1 145 201
od orig 876 227 492 47 158 245 426
spec-slice 987 264 550 58 185 266 478
% change 12.7 16.3 11.8 23.4 17.1 8.6 122
tr orig 731 86 293 41 95 207 388
spec-slice 935 91 357 49 111 266 509
% change 27.9 58 218 19.5 16.8 285 312
cut orig 619 92 274 39 100 182 298
spec-slice 657 110 297 47 111 187 312
% change 6.1 19.6 8.4 20.5 11.0 2.7 4.7
xxd orig 775 198 426 43 138 208 386
spec-slice 893 240 489 57 168 229 439
% change 15.2 21.2 14.8 32.6 21.7 10.1 13.7

Figure 6.7: The effects of specialization slicing on code size.

replicated procedures comprised a smaller proportion of the overall code,
because the change in code size was closer to 15%.

Four of the five programs that exhibit the largest amount of proce-
dure duplication are the four interpreter-like programs, od, tr, cut, and
xxd. The core behavior in each of these is implemented in a dynamically-

controlled inner loop that interprets instruction objects stored in a list

174

structure. The bodies of these loops tend to be nested conditional state-
ments that dispatch to a variety of auxiliary procedures. Because dynamic
input data can flow through the loop body via a multitude of instances of
auxiliary procedures, there are more opportunities for varied binding-time
patterns in their call-sites compared to the non-interpreter-like programs.
Even in these cases, the increase in the number of procedures is modest,
ranging from 19.5% to 32.6%.

Worst-Case Slice-Materialization Microbenchmark. As previously de-
scribed, the worst-case slice-materialization microbenchmark consists of
programs P,,, where P,, is the n* member of a family of programs that
contain 2™*! procedures in their materialized specialization slice results.
By n = 6, the size of the materialized slice exceeds the size of the largest
specialization-sliced version of a real-world program, od, despite the base
worst-case slice-materialization benchmark being less than 10% the size of
od before slicing.

Fig. 6.8 shows the sizes of the base program and the materialized
slice results for programs P; through Pjy from the slice-materialization mi-
crobenchmark. The columns labeled "Procedures” and "Callsites" illustrate
the exponential growth particularly clearly.

This growth pattern is strikingly in contrast to the modest changes in
size of the BusyBox applets. No specialization-sliced version of a BusyBox
applet introduces more than thirty procedure copies. The worst-case
slice-materialization benchmark exceeds that increase at n = 5.

175

“2’9§ UI PaqLIdSapP FILWYDIUSOIITU UOHRZI[RLIS}RW-IDI[S S} WOLJ
014 y3noayy ¢4 swrerdoad 10y sjnsax ad1[s pazijeriajewr a3 pue werdord aseq a3 Jo 9z1s 9], :8°9 9INIL]

8YZ0T 11§ €201 201 [V0T 96ST 908TT PdzZI[eldjey 6d
9% 6 61 I 0¢ Iz S8 6d
SI9% &5¢ 116 IS €201 894 €689 pazI[eLlely 84
w8 L1 01 Yrd 61 9/ 8d
¥S0T /21 Slerd 96T IIS ¥8€ T69C PozIelajelN 4d
9 Z ST 6 174 LT 9 ‘d
106 €9 prat 8Tl 65 T6L 6ITT PazI[eLRIeIN °d
£ 9 €l 8 Iz ST 8g %d
88e I¢ €9 79 1 9 OFS PpazZIeralel Sd
9 S A L 81 €1 6V <d
€91 oI 1€ 43 €9 8% IFC PozI[eLdieIN id
| A 6 9 ST I i 7d
9 Z ST 91 I€ T YOI pazZIferaey &d
91 € / S 4! 6 1€ £d

Sjung saypuelyg S9YIS[[eD) SAINPAd0IL] SIZPH SYOO[d SOPON “d

176

In practice, the code-size increase from slice materialization when
binding-time analysis is performed via specialization slicing is small,
and the real-world BusyBox programs exhibit at most a 32.6% in-
crease in procedure count.

Similarly, the overall effect on code size is small—at most 31.2%.

This finding contrasts sharply with the effects of specialization
slicing on the worst-case slice-materialization benchmark. For Pg,
the program experiences a 16 x increase in procedure count, with
more than 100 procedures added, and a 21 x increase in code size.

6.3.3 Answer to RQ3: What are the execution-time
characteristics of a generating extension produced by
GenXGen|[C]?

Time to Specialize a Program. The columns labeled “Generating-
extension execution time” in Fig. 6.9 and Fig. 6.10 show the amount of
time taken for a generating extension to produce a residual program for a
given static input.

The four microbenchmarks also exhibit sub-second specialization times,
though all of them can in principle be scaled arbitrarily> Moreover, power,
dotproduct, interpreter, and filter unroll a static loop. As described
in §5.1.7, the generating extension only takes state snapshots at dynamic
control points or procedure calls. Thus, power and dotproduct only tra-
verse 14 unique states, despite unrolling 10,000 and 15,000 iteration loops,
respectively.

50ther than str_match and KMP, the microbenchmarks are taken, with a few small
modifications, directly from the WiPER experiments|Srinivasan and Reps, 2015]. In
those experiments, the static input size can in principle be modified, but was hard-coded
into the program, along with the size of any relevant arrays.

177

*(S[eAIdIUT 2OUSPHUOD 9,G6 YIM) surerdoxd renprsar pue eurdrio
31} 10J SAWIT} UNI Y3IM SUO[e “SHILUIOUGOIOTW 31} I0J SUOTSU)IX3 uneraudd 9y} 10 sawr) uny :6'9 3In3Ly

[X690 st Gg'ZbT F €6'6G2ST | ST €816 T 9T'THILL || 610 | #8¢ [000001 | 2qeqeqe duny]
[xTT s H1°G6 T #6'6¥S9T | S 2664 T 6£69861 || SE€T0 [19 [000001 | 2qeqeqe yojewr xs|
[X501 st 9z'0 F S1'92 sis€T0 T 6I4C 61°0 v |6 I 31y
[X401 s 6z'0 F $£81 s 60’0 F £'61 $ 620 gz [| <3x9) urerBoxd> | 1opo1d oy
| X820 st 646 T 86'8¢€ st $2°1 T 28401 S €50 R [000°ST pnpoidiop|
[X460 s z'0 F 24'8¢ s Z1'0 F 95'4€ SE10 L [00001 1omod|

dnpaads | renpisoy reurduQ AW} UOTNIaXd paysia | azis ndur s3re

mewm ouin} EOH—SUQXW QoﬁmﬁwaQIMQMHGHOCOU Sajels UMEGC%U onels

178

‘wrer3oxd

[enpIsal a} 10§ eyep JUrwi) 199[[0D O} S[]e JOU SeM [‘PXX JO uoneziferdads oy} Yiim anssi 20Ua3IoAIp pasouderpun ue 03 an(] c
"V/N PodIeul are sowr} 0s ‘“pa[y [Iun

Apayeadar syurrd yeyy wrex3oid e st saf " (S[eATISIUT OUSPHUOD 9,66 UM) swrerdord enprsal pue [eurdrio
3y} 10§ sawmy uni yim 3uore ‘sjardde xogAsng a3 105 suorsuaixe Surjerausd ayj 10§ sawr} uny :01°9 9m3Ly

[e/u e/u e/u e/u [e/u [e/u [e/u Pxx|
| X160 sl ITZEL T €91661 | SHIT'OFL T S0EI8T || S€T0 (18 |oo0001 | €a- mno|
X290 sl y'6SPL F 6€'188GL | ST 87947 F 8F'€066 || S61°0 9 000001 | qe ‘ 1
X€6'0 st 9G'88€ T Ge'Z60FL | SH LT'LFF T T6'9T1EL || S61°0 L9 000001 | es- n
X1C'T st 16'00% T 82°0S9¢T | 1 91268 T 0'STEST [s20 €9 000°00T e p- [1
X860 st 28166 T £L'72S641 | ST 8G'€0S T 86'S69941 || 88'ST 898 | 000'001 | @ po
X260 st €0'96€ T €0°£4106 | ST €4°20% T 80'8¥148 || S88'6T €985 | 000°001 | 9- po
X860 st 9Fhe F €64469€ | ST H6T6L T LFELSSE || SET6T €985 | 000°001 | X- po
X¥60 st 99'60% T SS'0¥€LS | ST 2h96C F ¥¥¥86S || SO'TH €985 | 000°001 | X- [po
[XI0°T st 69°GL T 6’106 s [THL T L0E16 SHE0 (131 | V/N | 0001-T - ys|
[V/N V/N V/N SZI'0 (st Jo | aus g=q e=e AUR)|
X460 st G0'€8 T 85229¢ st 95°09 T £0°SeST 5600 |52 000°00T jed
X101 st 2£°0ET F S8'14€6C | ST 66'£0C F 6800962 || SET0 9g 000001 | u- [1ed
X1 sl $9°/8 T €4°€8SF | ST 8T'68 T I¥'L¥ES SE0 v 000001 | - Xungsop
X260 st e'eET F ZF62¥S | ST IE'60L F 60°T10S || SET0 8¥ 000001 | P- [xrungsop
X6'0 s ZOFLL T $£'02011 | S1 £F 46 T 940566 SGI'0 99 000001 | p- p9eseq
X660 st 26'92 F £5°9£29 sl go6h F€82029 || s410 LL 000°00T | $99seq
V/N V/N V/N $90°0 LT 0 oY soh
V/N V/N V/N | sco0 T 0 [s34
dnpoads | renprsay reur3riQ AW} UOTINIAX pausta | azis mndur s3ie
@wmwvH ouIr} uonndaxy EOMmC@axwleﬁwH@ﬁwU Sojels Uﬁgﬁﬁ%_u onels

179

static average total average hashes average hashes min hashes max hashes

args | hash time hash time per block per snapshot per snapshot per snapshot

power 112.38 us 2.02ms 0.01 1.29 1 2
dotproduct 97.82 us 2.05 ms <0.01 1.50 1 3
interpreter <none> | 126.95us 19.93 ms 126 1.03 1 2
filter 2| 91.70 us 7.24 ms 0.05 1.93 1 3
str_match abababc | 142.05 us 9.38 ms 0.35 1.08 1 2
kmp abababc | 133.51 us 59.01 ms 0.64 1.15 1 2

Figure 6.11: Average time to hash a single page, average number of page
hashes per block, and minimum and maximum hashes computed in a
single block for the generating extensions for the microbenchmarks.

static average total average hashes average hashes minhashes max hashes

args | hash time hash time per block per snapshot per snapshot per snapshot

yes y 143.7 us 4.74 ms 0.37 1.20 1 3
yes hello 135.1 ps 4.46 0.32 1.22 1 2
base64 14518 us 19.92ms 0.47 1.16 1 3
base64 -d | 140.73us 11.12ms 0.40 1.20 1 3
dos2unix -u | 13271 us 7.30 ms 0.21 1.22 1 3
dos2unix -d | 129.37 ps 7.24 ms 0.21 1.22 1 3
cat 127.78 us 6.26 ms 0.21 1.26 1 3

cat -n | 13257 us 7.95 ms 0.22 1.22 1 3
env a=ab=benv | 127.200 us 7.37 ms 0.27 1.20 1 3
shuf -11-100 | 144.63 us 22.27 ms 0.36 1.09 1 3
od -x | 14858 us 947.81 ms 0.75 1.09 1 2

od -X'| 148.64 us 948.15ms 0.74 1.09 1 2

od -b | 148.75pus 948.86 ms 0.76 1.09 1 2

od -e | 148.75us 948.86 ms 0.76 1.09 1 2

tr -d | 116.64 ps 6.77 ms 0.08 1.45 1 4

tr -sa | 12537 us 11.03 ms 0.12 1.31 1 4

tr ab| 12351us 10.75ms 0.12 1.34 1 4

cut b3 | 13542pus 13.00 ms 0.18 1.18 1 3
xxd* n/a n/a n/a n/a n/a n/a

Figure 6.12: Average time to hash a single page, average number of page
hashes per block, and minimum and maximum hashes computed in a
single block for the generating extensions for the BusyBox applets.

*Due to an undiagnosed divergence issue with the specialization of xxd, I was not able
to collect size data for the residual program.

180

For the three feature-removal programs, base64, dos2unix, and cat,
i.e., those programs whose specialization times do not scale with the size of
the input, specialization times are under a second. Overall, specialization
times are reasonable, with every specialization taking under one minute,
except for od. Due to an interaction, described in §6.3.5, between structural
properties of od and slicing, the generating extension explores a large
number of state-block pairs that are functionally redundant, and explores
far more states than the other programs tested.

In addition, due to a divergence issue that I have not been able to
diagnose the cause of, specialization of xxd does not terminate after a five-
minute timeout. For the other interpreter-like programs, specialization
times are more in line with a feature-removal task. These results suggest
that specialization times in practice are reasonable, because even though
arguments can be combined arbitrarily in a large list, programs like od
and tr tend to most frequently be used with a small set of parameters to
perform simple tasks.

Unlike the other BusyBox programs, which accept arguments from a
finite set of flags, the BusyBox programs yes and env accept a list of strings
as input; both the set of strings and the individual strings can become
arbitrarily large. Each of the programs loops over the list of strings, passing
each to a library call. Thus, in practice the time consumed by specialization
scales with the size of the input. For the examples tested, the specialization
times are fast, both completing in under a second.

Shuf’s static inputs can grow arbitrarily as well, but as discussed in
§6.3.5, in practice, static loop unrolling does not occur, so specialization

behaves more like a pure feature-removal task.

Hash Times. Fig. 6.11 and Fig. 6.12 show various hashing statistics for
the BusyBox programs and microbenchmarks, respectively. For the mi-

crobenchmarks, the times range from 91.70 to 142.05 microseconds, and

181

similarly for the BusyBox applets, the average time to hash a single page
is 116.64-148.75 microseconds. For every program tested, even od (which
runs for over forty seconds in one case), the overall amount of time spent
on hashing is less than a second.

A comparison of the proportion of total hash time from Fig. 6.12 rela-
tive to overall generating-extension execution time in Fig. 6.10 reveals that
for the BusyBox applets, the total time spent computing hashes constitutes
3.8% to 11.7% of the total generating-extension execution time The gen-
erating extension for filter spends the smallest proportion of execution
time on hashing, and base64’s generating extension with no static argu-
ments spends the largest proportion of execution time on hashing. Thus,
the bulk of the specialization time is taken by other factors, such as IPC,
process-management, and generation of residual code.

We also track several metrics that measure the relative volume of hash-
ing performed per basic block/state pair de-queued by the worklist. In
particular, we track several per-snapshot-operation metrics, including the
number of pages hashed and used to update the state hash. At least one
page was always updated per hash, which is due to how the switch be-
tween subject and meta-state is implemented, as described in §5.1.3, and
in all cases, the average number of pages per snapshot is less than two. At
most, four pages were hashed in a single snapshot operation. This number
is reasonable, because individual basic blocks tend to be small, and handle
a fairly focused set of operations.

Because a snapshot may occur after several basic blocks have been
specialized, due to our on-line jump compression, we also measure the
average number of pages hashed per block. For programs that consist of a
simple statically-controlled loop, like power and dotproduct, the average

hash count is extremely low. For all programs, the average is less than one.

182

For all the programs tested, specialization times are reasonable,
taking less than a minute on inputs corresponding to typical use
cases.

Moreover, page hashing is a comparatively small part of execution

time, and other state-management and IPC factors contribute over

70% of the execution times in the BusyBox applets.

6.3.4 Answer to RQ4: How does specialization affect the
run-time performance of the residual program? How
does the difference in run-time performance change

as the size of the dynamic input increases?

Execution on Representative Inputs. The last three columns of Fig. 6.9
show the execution times of the original and residual microbenchmark
programs on representative dynamic inputs, along with the speedups
of the residual programs. The non string-matching programs power and
dotproduct both exhibit some degree of slowdown. In the case of power,
we believe that this is largely due to poor instruction-cache locality: the
residual code is 15, 000 repetitions of acc *= acc, and we believe that the
cost of instruction-cache misses outweighs the elimination of the evalua-
tion of the loop condition.

In the case of dotproduct the original program is over three times
as fast as the residual. We believe that this is partially an artifact of the
byte-granularity lifting performed in §5.1.6. Both the original and residual
programs are compiled at -00, and are thus completely unoptimized, so
there will be four memory loads or stores for every lift of an integer value.
However, dotproduct also loads or stores from three memory locations in

every iteration of the loop, and thus increased cache pressure may also

183

play a role in the slowdown.

The fact that interpreter, which is also a loop-unrolling task, but
in which the loop body performs character-sized writes exhibits a small
speeedup suggests that lift size plays a role in residual-program perfor-
mance. The residual version of filter also exhibits a modest speedup.
However, filter is a much shorter-running program, manipulatinga 3 x 3
image, suggesting that the elimination of startup overhead dominates the
other effects on residual-program speed.

The two string matchers str_match and kmp exhibit interesting behav-
iors. Str_match exhibits a 20% speedup. This program seems to be an
ideal case for loop-unrolling: all the operations are byte-granularity, and
the unrolled inner loop is small enough to exhibit good cache locality,
which yields the upsides of eliminating a static loop-condition check,
while avoiding the detrimental effects of loop unrolling and GenXGen's
lifting strategy.

Interestingly kmp, whose residual program is, in principle, asymptoti-
cally faster than a naive string matcher, is 30% slower than the original.
The code generated is a set of jumps and procedure calls that encode the
finite automaton produced by the Knuth-Morris-Pratt string-matching al-
gorithm[Knuth et al., 1977; Consel and Danvy, 1989]. In particular, kmp has
a sub_match procedure, which in the residual program can return to one
of a variety of blocks corresponding to various static states, depending the
contents of the dynamic string in which the search is carried out. Thus, the
residual program calls a series of disjoint procedures, and after returning
from each one, the program executes a jump to a target in an exit-splitting
table. Consequently, the code is large and non-local, likely creating large
amount of instruction-cache pressure not present in the original program.
In particular, it appears that for short strings, the overhead inherent in the
specialized code outweighs the asymptotic advantage.

Overall, the BusyBox programs largely exhibit a small slowdown of

184

several percent, likely due to the aforementioned lift-granularity issue.
The two that do exhibit a speedup, dos2unix -uand tr -d a, operate on
the contents of their respective input streams at byte granularity, further
indicating the importance of lift size.

Scaling Dynamic Inputs. Figs. 6.13, 6.14, and 6.15 show the execution
times for the original and residual programs (in nanoseconds) as the size
of the dynamic input is increased to 10,000 bytes.

(Note: Figs. 6.13, 6.14, and 6.15 use smaller dynamic inputs than were
used in Fig. 6.10.)

Somewhat surprisingly, the two microbenchmarks for which I ran
input-scaling experiments, the string-matching programs str_match and
kmp, exhibit different scaling behaviors. The residual version of kmp ex-
hibits a clear trend towards the residual program being much slower, due
to the previously discussed factors, while the base string matcher performs
better as input scales.

Overall, the programs that represent feature-removal tasks (Fig. 6.13)
exhibit scaling indicative of near-parity in performance between the origi-
nal and residual program. This result is reasonable, because, structurally,
the static input selects one of several loops; the selected loop itself is dy-
namically controlled, and generally the loop body cannot be specialized
in any non-trivial way. For base64, the residual version specialized with
respect to —u performs similarly to the original, while for the residual
version specialized with respect to -d, the original version is faster.

Both cat and cat -n trend towards performance parity between the
original and the residual program. Interestingly, for cat with no argu-
ments, we see a pronounced step-wise increase in times, which appears to
be due to the fact that in this case cat reads input in larger buffers than
the other programs. Similarly, dos2unix appears to scale similarly, with

the residual program for the -d case being slightly slower.

185

N orig
 resid

base64 -d

T T T T T
w0 e n
e e 5 & T o
— =]

0.0 -

T
N
—

135
0.15 1

<
Spued3SI||IW

N orig
 resid

base64

0.339
0.229

0.11 1
0.0

@ @ ~ © n g

@ © ~ © u %

[S] =] S o o S
SpuUBI3SI||IW

00S6
0006
00sg
0008
00SL
0004
0059
0009
0058

0005 -
oost

000t
00SE
000€
00§z
000Z
00ST
000T
005

0056
0006
oose
0008
00SL
0004
0059
0009
008sS

000 -
oot

000t
00SE
000€
00sZ
0002
00ST
000T
00S

cat-n

. orig
 resid

3.24
2.88 4
2.52 4
0.72 1
0.36
0.0 -

. orig
mm resid

cat

0.252
0.224 4
0.196 4
0.168 4
.112 4
0.084
0.056
0.028

0.0

0056
0006
00s8
0008
00SL
000L
0059
0009
00sS

0005 -
oost

000t
00sg
000
0082
0002
00ST
000T
008

dos2unix -u

0.585 A
0.52 +
0.455 +
0.39 4
0.325 4
0.195
0.13 1
0.065 -
0.0 -

. orig
- resid

dos2unix -d

0.738
0.656 -
0.574 +
0.492 +
0.328 4
0.246 -
0.164 4
0.082 4
0.0 -

0056
0006
o058
0008
005t
000z
0059
0009
005
0005 -
[
000t
00gE
000€
ooz
0002
00T
0001
005

In nanosec-

1 and residual programs

onds as input size in bytes is increased. Black lines denote 95% confidence

intervals.

igina

times of ori

ion

Execut

Figure 6.13

186

tr-da trsa
0.648 0.684
. orig . orig
0.576 4 mm resid 0.608 { ™ resid
0.504 4 0.532 1
0.432 4 0.456 4
] 3
£ 036 £ 038
: :
g g
2 g
= 0.288 4 = 0.304 4
E E
0.216 4 0.2281
0.144 4 0.152 1
0.072 4 0.076 4
0.0 - 001
A g s A
S O Q@ ©Q O 60 2 © &6 6 Q Q© 6 o e Q Q9 C S 0 @ © 0 OQ Q & & Q@ Q &6 o e o o Q
RERE088SE8888 2888888 RERER38S58825282858¢858%
trab cut-b 3
0.729 2.34
. orig . orig
0.648 1 e resid 2.08{ W resid
0.567 1 1.82 1
0.486 4 1.56 4
3 3
c 0.405 4 c 134
H 5
& &
8 g
= 0.324 = L044
E E
0.243 4 0.78
0.162 0.52 1
0.081 1 0.26
0.0 - 001
A A A A
o O © 0O o o 2 0 o o © O o o © © o O o © © © o O © O o o ©@ 0O ¢ o © © © o
RSRS288S588c888¢c88 %8 RSES823Rs588c82888¢883

Figure 6.14: Execution times of original and residual programs in nanosec-
onds as input size in bytes is increased. Black lines denote 95% confidence
intervals.

The three specializations of interpreter-like programs, shown in
Fig. 6.14, except for tr -d a, exhibit scaling behavior that favors the orig-
inal program. In the case of tr -d a, the residual program appears to
remain faster, although the gap appears to close as the input size increases.

As input size increases, all four specializations of od become slower
than the original. In od, dynamic dependences are carried into the control-
flow predicates within the loop body, and moreover, as will be discussed
in §6.3.5, many duplicate residual copies of blocks and procedures are
produced, which likely affects instruction-cache locality.

With the exception of od and kmp, every figure clearly shows the effects

187

od -e

od -b

23
58
—
N T e @ 9 N ¢ ©
©° s o~ (=1 o ~ o Il —
g % 4 s

SpuoI3SI||IW
= g
58
a @ N e w T o m Ny = g
o © ~ o wi - Ll ~ - [=]

SpuoI3SI||IW

0056
0006
oose
0008
00SL
0004
0059
0009
00sSs

000 -
0ot

000t
00SE
000€
0082
0002
00ST
000T
00S

T T T T T T T T

© N o®m T N w N o®m ¥ g

3 5 @ g KR M @® T g

P B B 4 4 & <
spuodasiiw

od -x

. orig
m resid

5.2 4

noa w e 0
v\ NN 9 4 2 o
<+ — =1

5.85

o
SpUOdSSIfjIL

kmp abababc

. orig

e resid

3.15

2.8

T
n
=
N

T
-
o

T T
0=
~ —
—
SpUOI3SI|[IL

T
0
=
—

0.35

0.0 -+

str_match abababc

. orig

- resid

.53

1.36

119 4

1.02 4

85
0.68 4

=]
SpUOI3SI|[IW

0.51 4

0.344

0.17 4

0.0 -

00S6
0006
0058
0008
006
000
0069
0009
0088

000 -
oost

000F
00GE
000€
00se
0002
00ST
000T
005

0066
0006
0068
0008
0064
000£
0059
0009
0085

0005 -
oost

000t
008€
000€
0062z
0002
008T
000T
008

1N nanosec-

1 and residual programs

igina

times of or
onds as input size in bytes is increased. Black lines denote 95% confidence

intervals.

ion

Execut

.

Figure 6.15

188

of eliminating initial setup overhead due to, e.g., eliminating argument
parsing, although in the majority of cases that advantage is small compared
to other factors as input size scales.

On this set of programs, the speedup results are mixed. In particular,
the naive loop unrolling performed as part of specialization is often
detrimental, due to poor instruction-cache locality. Moreover, the
byte-granularity lifting may be detrimental to performance in the
residual program, as suggested by the microbenchmarks.

Specialization does not have a significant impact on execution time
for “feature-removal” tasks.

6.3.5 Answer to RQ5: How does specialization affect the
size of the residual program?

Figs. 6.16 and 6.17 show the sizes of each program, and the numbers of
different kinds of program elements.

For all six microbenchmarks, shown in Fig. 6.17, specialization pro-
duces a significant increase in program size, which is reasonable, because
in all six cases, the specialization task contains one or more loops that are
unrolled based on the static input. In the case of power, dotproduct, and
interpreter, the program is completely unrolled, eliminating all condi-
tional branches. Specializing filter selects one of five algorithms, and
unrolls the main loop, emitting code only for the selected algorithm, with
the unrolling outweighing the effect of removing the other algorithms
(“feature removal”). In str_match, the inner loop is unrolled.

For the three feature-removal tasks from BusyBox, dos2unix, base64,
and cat, the relative paucity of loop-unrolling combined with feature re-

moval yields a significant reduction in code size, as well as lower numbers

189

Name Static Args | Nodes Blocks Edges Procedures Callsites Branches Stmts
yes orig 77 20 34 11 11 14 41
yes y | 80 39 47 9 13 8 50
yes hello | 114 140 152 10 30 12 62
base64 orig 599 99 268 42 89 169 299
base64 <no argument> | 284 148 212 24 49 64 147
base64 -d | 310 170 232 22 70 62 156
dos2unix orig 604 136 293 50 128 157 269
dos2unix -u | 120 64 79 12 17 15 76
dos2unix -d | 152 117 133 13 44 16 79
cat orig 684 117 304 51 112 187 334
cat <no argument> | 389 121 253 32 60 132 165
cat -n | 383 191 245 32 91 54 206
env orig 444 78 203 33 74 125 212
env a=ab=benv | 342 107 250 23 44 143 132
shuf orig 651 139 311 56 130 172 293
shuf -11-1000 | 416 146 173 23 60 27 306
od orig 876 227 492 47 158 245 426
od -x | 37745 26514 39092 219 4421 11930 21175
od -X' | 43324 37572 51216 239 8904 11268 22913
od -e | 47341 39450 53606 380 9696 11773 25492
od -b | 38941 39253 51929 242 8029 10363 20307
tr orig 731 86 293 41 95 207 388
tr -da | 2025 666 1076 31 317 410 1267
tr -sa | 2035 760 1084 33 360 326 1316
tr ab | 2021 747 1064 32 358 319 1312
cut orig 619 92 274 39 100 182 298
cut -b3 | 659 108 297 44 111 189 315
xxd orig 775 198 426 43 138 208 386
xxd resid® n/a n/a n/a n/a n/a n/a n/a

Figure 6.16: Sizes of original and residual BusyBox applets. The column
labeled “size,” which gives the sum of the values in the columns to the
right, is a measure of overall program size

®Due to an undiagnosed divergence issue with the specialization of xxd, I was not able
to collect size data for the residual program.

190

Name Static Args | Nodes Blocks Edges Procedures Callsites Branches Stmts — Size
power orig 70 20 30 10 11 10 39 151
power resid 10000 | 1057 54 59 9 23 5 1020 1207
dotproduct orig 83 20 34 10 11 14 48 172
dotproduct resid 150002 | 11077 57 63 10 24 6 11037 11237
interpreter orig 106 25 46 10 12 21 63 220
interpreter resid <program> | 222 171 177 10 25 6 181 611
filter orig 127 26 46 10 11 20 86 240
filter resid 2 | 1305 87 110 10 25 23 1247 1560
str_match orig 95 27 43 11 16 16 52 208
str_match resid abababc | 176 114 146 12 31 32 101 511
kmp orig 123 32 54 14 17 22 70 262
kmp resid abababc | 1009 684 899 26 76 129 778 2823

Figure 6.17: Sizes of original and residual microbenchmark programs. The
column labeled “size,” which gives the sum of the values in the columns
to the right, is a measure of overall program size.

for all the different kinds of program elements, except for the number of
basic blocks.

In the case of yes with an argument, although still smaller than the
original version, we see an increase in code size over the no-argument
residual program, due to the lifting of the contents of the argument into
an unrolled loop.

In the case of shuf -i, the shuffle loop is not unrolled—the dynamic
dependence is propagated to the loop control. Overall, specialization
reduces the code size because argument parsing (and corresponding error
handling) is eliminated, and all code relating to shuffling a specified input
file is eliminated.

The four interpreter-like programs, od, tr, cut, and xxd exhibit some
degree of code-size increase, especially od. All four of these programs
have a dynamically controlled loop; they read stdin until reading end-of-
tile. However, the loop body has multiple static components that can be
specialized inside the loop, namely lists or tables that contain instructions
on how to process the input—these static lists and tables are constructed
from the static input. However, the dynamic data that flows through the

loop forces many of the static control constructs to become dynamic.

191

This effect can be quite large. In the case of tr, and especially od, there
are multiple if statements in series inside the loop body. Each branch of
one of these if statements sets one or more flags to a different value than the
other branch. Moreover, some of the flags set by each of these statements
differ from all other if statements in the series. Thus, the post-states of
every branch of the if statement in the series is distinct from all others.
This situation means that at the end of the loop body, the number of post-
states is exponential in the number of serial if statements in the loop body.
Because the flags are Booleans or enums, the number of possible states is
finitely bounded, and the specialization loop converges, but produces a
large number of functionally redundant blocks.

For the programs examined, we see significant reductions in code
size in some programs, due to the elimination of unreachable code.
In particular, specialization is useful for “feature-removal” tasks.

Conversely, as expected, unrolling tasks induce a significant in-
crease in size.

Due to dynamic data dependencies being carried into a loop under
dynamic control, a significant amount of redundant code can be
produced for the “interpreter-like” programs.

6.3.6 Answer to RQ6: How much code does specialization

remove from a program?

To evaluate the degree of “debloating” performed by the generating exten-
sion, we recorded the percentage of procedures from the original program
that are not present in the residual program. We report the results in
Fig. 6.18. Specialization of dos2unix, cat, base64, and shuf performed a

substantial amount of debloating: in all three programs, more than 40%

192

fraction of procedures removed

AL A T T A E =2 oQ X x» o O m W O 9 m
mw = w T ' ' c o v 1 "
T o> F x x oD <2 ¢ o v v w w ¢ P = [
o o T
= £ = W = m ~ o 5 o o -5
sy s g5 5 s 8oy -
i

o @ o o — L..l
:hcgal}c a0
" W _g_g\a' "U";
wn = b~ ”.:
4] w 8 [I
== 1] =

] c

g @

program and arg

Figure 6.18: Procedures not present in the residual program, as a fraction
of procedures in the original program. (Larger numbers are better. The
horizontal line shows the geometric mean.)

of the original procedures were eliminated by specialization.

All four of these programs typify standard “feature-removal” tasks.
Both dos2unix and base64 are bidirectional encoders, where the direction
of encoding is selected by a command-line flag. Thus, in both cases, se-
lecting one flag excludes code associated only with the complementary
case. Like the other two, cat is also a feature-removal task. cat can do
a lot more than just echo its input, such as numbering the output lines
and showing non-printing characters, and much of the printing code for a
given case is disjoint from the other cases.

Similarly, shuf produces a random permutation of a variety of items:

193

0.9
0.8
0.7

fraction of blocks removed

A2 AT ?PT A ZE XX e P s o® oamnm
o U o T x x o <€ ¢ © v w w v ¢ O @ 82
= = = W = M ~ o o o O - 5
sy s g e85 aq 55083
0

o @ o o — L_.I
:hcgrﬁl}c a0
v v _g_g\! .
w o} — I 2
u s}] W
=] o

0

fisd

L0

env a

program and arg

Figure 6.19: Blocks not present in the residual program, as a fraction of
blocks in the original program. (Larger numbers are better. The horizontal
line shows the geometric mean.)

input files, discrete tokens in the arguments, or numbers in a specified
range passed as arguments. When specialized with respect to the range
1 — 1000, specified by the flags -1 1-1000, all file input procedures are
eliminated.

Now consider the kinds of actions that can be specialized away in
dos2unix. To follow symbolic links, a procedure that resolves filenames is
called, which must, among other things allocate heap space for a string
large enough to contain the final filename. Moreover, to create a temporary
file, yet more space must be allocated to serve as a template for the tempo-
rary filename, and then the file is created, opened, has flags and attributes

194

set, and so on. At the end if dos2unix, everything must be closed, the
temporary file must be renamed to the target filename, and all allocated
strings must be freed. Many of these operations can fail, and thus ancillary
error-handling procedures can be called. In all, these activities comprise
over half of the procedures in dos2unix, and none of it is retained in the
residual program.

In addition, dos2unix, cat, and base64 were specialized with respect
to arguments that cause them to be used as filters that read standard
input and print to standard output. In contrast, if a filename is passed
as an argument (to the original programs), a significant amount of file-
IO boilerplate is invoked, such as code to check for the existence of the
input and output files. The generating extension never visits this code—
the partial state is sufficient to establish that the code could never be
executed by the residual program—and thus it is not present in the residual
program.

Out of these, the removal of 80% of dos2unix’s procedures is remark-
able enough to warrant further consideration, particularly because the
clusters of procedures removed typify the feature-removal results seen in
all the BusyBox experiments. As with all other BusyBox programs tested,
arguments are parsed with the standard Uinix-style getopt procedure,
which contains a variety of procedures for parsing, e.g., integers from
strings. Because the only argument is -d or -u, the majority of this code is
never reached, and thus specialized away, leaving only a small number of
residual procedures that contain lifts of the computed argument-parsing
results.

In addition, as specialized, dos2unix reads from stdin and write to
stdout. However, dos2unix can also take a single filename as an argument.
When invoked in this way, dos2unix converts the line endings in the file.
Because the input and output file are the same, it is necessary to create a

temporary file. Although conceptually simple, this task requires a whole

195

host of procedures to function, particularly in the presence of symbolic
links (because the temporary file is placed in the same directory as the final
output file). In general, unused flags often correspond to large clusters of
utility code and error-handling code that is often not shared with other
portions of the program. This effect is amplified in dos2unix, because the
core loop of the program is straightforward, mapping Unix line endings
to or from DOS conventions, which it does character-by- character, using
only getc/putc, and no memory allocation or complex error handling is
needed.

GenXGen[C] removes less code in yes, which is reasonable because
yes does not expose any switch-configurable features. Moreover, yes is
smaller than the other BusyBox applets programs, so set-up code that is
shared across all BusyBox applets (and retained in the residual programs)
takes up a larger proportion of the code for yes.

For od and cut, two of the three interpreter-like programs, GenX-
Gen|[C] removes a much smaller proportion of features. For the argu-
ments on which they were specialized, both programs have a dynamically-
controlled loop, and a loop that performs static actions from a list provided
as a static parameter. In contrast, tr—the third interpreter-like program—
has a significant number of dynamic data dependencies carried through
the loop body, which reduces the amount of code that can actually be re-
moved. This observation suggests that partial evaluation under dynamic
control causes more difficulties for generating extensions produced from
specialization-slicing-based BTA than other partial-evaluation tasks.

The ratios shown in Fig. 6.19—of blocks not present in the residual
program, as a fraction of blocks in the original program—are an under-
count of the actual ratios. The ratios shown in Fig. 6.19 are computed as
the total number of blocks in the removed procedures as a fraction of the
overall number of blocks in the residual program. That is, they do not

count any of the blocks that may have been removed in the procedures

196

that remains in the residual program. The reason we chose this metric
is due to limitations of CodeSurfer’s program representation, discussed
in§8.2, which make it time-consuming to easily obtain the relationship
between statements in a materialized specialization-slice result and the
original procedure.

However, the ratios as computed in Fig. 6.19 are still a useful metric,
and a reasonable proxy for overall blocks removed. For example, it could
be the case that although a large number of procedures are removed, they
are all quite small, and the overall reduction in block count is quite small.
Thus, given two programs A and B of roughly identical size, program A
could have a large number of procedures removed, but program B has one
procedure removed which contains more blocks than all of the removed
procedures combined.

This phenomenon does not show up in the BusyBox programs. Overall,
the percentage of blocks removed seems proportionate to the percentage
of procedures removed. The feature-removal tasks still have the greatest
reductions, and, e.g., dos2unix still has the largest proportion of blocks
removed. Overall, the eliminated procedures tend to be smaller utility

procedures,

197

GenXGen|[C] is able to remove a substantial fraction of the subject
program’s code when used to specialize a command-line utility with
respect to command-line flags that control which options of the
command-line utility are invoked.

For six of the nine programs, GenXGen[C] removes over thirty
percent of the available procedures. These removed clusters of pro-
cedures that correspond to functionality irrelevant to the passed
command-line flags, which indicates that GenXGen|[C] is suitable
for feature-removal debloating.

For the same six of the ten BusyBox applets, GenXGen[C] removes
over twenty percent of the original program’s blocks. This number
is a smaller, but still significant, reduction in size.

Results are mixed for the interpreter-like programs. Over thirty
percent of procedures are removed from tr, but fewer are removed
for od and cut. In particular, this finding suggests that specialization
of static code under dynamic control is difficult, even with special-

ization slicing.

198

6.4 Experimental Evaluation of GenXGen|[mc]

Although GenXGen|[mc] does not implement specialization slicing-based
BTA, and struggles to scale to programs comparable in scale to those spe-
cialized by GenXGen[C], the evaluation of GenXGen[mc] is nonetheless
interesting and elucidates important details about my overall design and
implementation choices for GenXGen. In §6.4.1, I describe the smaller set
of experimental questions addressed in my evaluation of GenXGen[mc],
and the metrics used to evaluate the questions. In §6.4.2, I describe the
GenXGen[mc]-specific aspects of the setup, and identify which parts are
shared with GenXGen[C]. In §6.4.2.1, I explain the modified state man-
agement strategies that I use to assess the impact of hashing and CoW on
generating extension performance. In §6.4.3, I discuss the experimental

results.

199

6.4.1 Experimental Questions.

Research Questions

e RQ1-MC. What are the individual improvements contributed
by CoW and fingerprinting to memory usage by a generating

extension?

e RQ2-MC. What are the individual improvements contributed
by CoW and fingerprinting to the time taken by a generating

extension to emit a residual program?

e RQO3-MC. Compared to the original subject program, how

much does specialization speed up execution?

e RQ4-MC. How does specialization affect the size of a program
in terms of number of instructions? Moreover, for the subset
of programs that correspond to feature-removal tasks, what is
the degree of debloating performed?

\. J

RQ1-MC. What are the individual improvements contributed by CoW and fin-
gerprinting to memory usage by a generating extension?

Rationale. Because the generating-extension runtime uses the operating
system’s underlying CoW mechanism, unchanged pages are shared be-
tween parent and child whenever a process is forked to create a snapshot.
Thus, a GenXGen generating extension may use less memory per state
snapshot than a strategy that doesn’t use CoW. In addition, because a
GenXGen generating extension can determine whether a state has been
visited previously by retaining state hashes, it is free to garbage-collect
state processes that do not have a corresponding state/block pair in the
worklist. Consequently, overall memory usage may differ significantly
from naive state-management strategies.

Metrics. For each program, I record the memory usage of the generating

200

extension on a single representative static input. I also record the number
of live non-code pages used by all state processes across the execution of a
GenXGen[mc] generating extension. In addition, I also added alternative
state-management modes that did not use copy on-write, and did not
garbage-collect unneeded states. I compare memory usage between the
four possible strategies: The standard GenXGen behavior with both active,
GenXGen with hashing disabled (hence disabling garbage collection),
GenXGen without CoW, and GenXGen with both disabled.

RQ2-MC. What are the individual improvements contributed by CoW and finger-
printing to the time taken by a generating extension to emit a residual program?

Rationale. Like RQ3 for GenXGen[C], GenXGen|[mc] uses the same
language-agnostic runtime to implement its state-management mecha-
nisms. Thus, it is prudent to investigate the time taken to execute a gen-
erating extension, as with GenXGen[C]. In particular, GenXGen uses a
proabilisitic hashing scheme to provide O(1) state-repetition checking,
which is asymptotically faster than non-hashing schemes. Thus I also
choose to compare against the three naive strategies described in RQ1-MC.

Metrics. As with GenXGen[C], for each program I record the execu-
tion time of a generating extension on a representative static input. I also
chose to compare the performance of GenXGen[mc|’s generating exten-
sions against generating extensions that use naive strategies; i.e., the three
versions that disable at least one of (a) hashing, and (b) CoW.

RQ3-MC. Compared to the original subject program, how much does specializa-
tion speed up execution?

Rationale. In addition to the speedups described in RQ4 for GenX-
Gen[C] (see §6.1), GenXGen[mc], as described in Chapter 5, performs
procedure inlining, and fine-grained lifting at the register level, potentially
eliminating a significant number of memory reads and writes. However,
optimizations such as loop-unrolling may be detrimental to cache local-

ity. Because of the potentially complex interplay between these factors, I

201

compare the performance of the original and residual programs.

Metrics. For each program, I record the execution time of the original
and residual program for a single representative static and dynamic input
pair.

RQ4-MC. How does specialization affect the size of a program in terms of number
of instructions? Moreover, for the subset of programs that correspond to feature-
removal tasks, what is the degree of debloating performed?

Rationale. As described in RQ4 for GenXGen[C] (see §6.1), there is a
tension between specialization as a tool for unrolling and inlining—which
can increase program size—and as a tool for feature removal—i.e., for
eliminating calls to code unrelated to the features invoked by the static
input. Thus I measure the effect of program specialization on program
size.

Metrics. For every program specialized, I measure the instruction
count of the original and residual program. For the two feature-removal
tasks, gnu-wc and 1zfx, I also measure the change in procedure count and

number of call-sites between the original and residual programs.

6.4.2 Experimental Setup.

I evaluated GenXGen[mc] using the binaries of six microbenchmarks, and
four non-microbenchmark binaries, corresponding to simple command-
line utilities. These programs are described below.

Microbenchmarks. The microbenchmarks include five of the GenX-
Gen[C] microbenchmarks from §6.2: every one but KMP, i.e., power,
dotproduct, interpreter, filter, and str_match. The new sixth mi-
crobenchmark is

e sha is a simple implementation of the shal algorithm, which com-
putes a digest of a 1024-bit string. The static input is the first 512
bits.

202

Command-Line Utilities. Ialso evaluated four other binaries: two GNU
coretuils programs, a compression algorithm, and one program that uses
a simple statically-linked version of printf:

e gnu-wc counts lines, chars, or words in stdin. The static input speci-

fies which quantities are counted; the dynamic input is stdin.

e 1zfx is an implementation of the LZFX compression algorithm, and
contains both compression and decompression routines [Collette,
2013; Ziv and Lempel, 1977, 1978]. It was also used to test feature
extraction in WiPER. The static input determines whether the input
file is compressed or decompressed; the dynamic input is the input
file.

e printf is a program that calls into a simple printf library. The static
input is a format string; the dynamic input is the remaining argu-

ments.

e gnu-env runs a program with a specified assignment to environment
variables. The static input is the assignment to environment variables;
the dynamic input is the name of the program to invoke.

Command-Line Utility Specialization. These programs present a cross
section of real-world specialization tasks. Both gnu-wc and 1zfx represent
a feature-removal task, in which a single mode of operation is chosen out of
a set of potential modes.

The program printf is an instance of the class of loop-unrolling and
inlining tasks, in which a specialized library call is in-lined into a program.
The fourth program, gnu-env, features aspects of both tasks, because the

core environment-update loop is unrolled, and features corresponding

203

to unused command-line flags are excised.” Fortunately, in many circum-
stances, the subject program can be adapted to overcome the limitations,
e.g., by manually unrolling a loop. However, the effort required to iden-
tify appropriate rewritings to overcome current limitations of the static
analyses in CodeSurfer/x86, as well as to model calls to library functions,
limited the number of real-world programs that we were able to use for
our study.

For gnu-wc, specializing with respect to the static input selects one of
three main application loops, each of which is optimized for a different
counting task. The generating extension eliminates the other two loops.
Similarly, for 1zfx, specializing on the static input selects either the com-
pression or decompression routine, removing the routine not chosen.

In the case of printf, the specialization unrolls the format string, elim-
inating run-time parsing and logic for unused format specifiers. Similarly,
in gnu-env, the argument-parsing loop is unrolled, emitting a program

that runs a program in a pre-defined environment.

6.4.2.1 Disabling CoW and Hashing

To evaluate RQ1-MC and RA2-MC we implemented GenXGen[mc] so that
CoW and state fingerprinting can be independently disabled in generating

extensions, yielding four possible execution modes (see Fig. 6.20).

"The reason we used only four command-line utilities in our study was because of
limitations (described in more detail in Chapter 8) of CodeSurfer/x86 [Balakrishnan and
Reps, 2010; Balakrishnan et al., 2005a], which GenXGen[mc] uses to implement BTA.
Because CodeSurfer/x86’s analysis results are based on an overapproximation of the
set of states that can actually arise during execution, the dependence graph constructed
by CodeSurfer/x86 often contains spurious dependence edges—i.e., the graph contains
an overapproximation of the actual dependences that exist among program elements.
When BTA is performed on such a graph, some variables and instructions are identified
as being static that one would like to be identified as dynamic. The previous sentence has
it backwards: with extra dependence edges, a forward slice from the dynamic input(s)
would identify elements as dynamic that you would have liked to have been static. The
consequence is that the resulting generating extension cannot do much to specialize the
subject program.

204

To simulate disabling of CoW, we added a mechanism to force the copy
of an entire process address space. When CoW is “disabled,” we dirty
each page without altering the state by (i) writing a single byte to each
page in the address space, and then (ii) reverting the page back to its
original state. These actions force every page to incur a CoW fault, causing
the OS to create a copy of every page in the address space. This approach
provides an upper bound on the time required because, by forcing the CoW
mechanism to make the copy, a page fault must be handled by the kernel
for every page, adding some overhead. We chose to estimate the cost in
this way because our generating extensions are inherently multi-process:
each process holds a single state. Implementing a true CoW-free approach
would have required modifying the OS to eliminate CoW, which seemed
unwarranted, given that the technique is not likely to be competitive.

To disable fingerprinting, we implemented an alternative version of
the generating extension’s state-comparison and worklist-management
algorithm. Without fingerprinting, the only way to compare the states of
two processes is to do a direct comparison of process memory. Moreover,
we no longer have a convenient means of indexing into a table of previously
seen states. Consequently, the state manager must retain a process for every
state previously seen, and must compare every newly created process state
with every retained state, comparing full address spaces. In contrast, in the
fingerprint-based approach, we only need to store the 128-bit fingerprint;
any process that does not have outstanding worklist entries can be garbage-
collected.

To measure memory usage, the generating extension tracks the number
of pages in use across all processes in the generating extension. Because
all processes must be retained when fingerprinting is disabled, determin-
ing the memory usage across all processes is straightforward: it is the
sum of all live pages across all processes. When fingerprinting is used,

memory usage is the maximum number of live pages at any given point

205

in the program’s execution. To evaluate the execution time of a generating
extension, we time its end-to-end execution, from the beginning of the
first basic block to the end of the last basic block.

We allowed the generating extensions to run end-to-end for the “real-
world” examples. However, for the microbenchmarks, we added a time-

out after 90 minutes of specialization

Experiment Timing As with GenXGen[C], timings are collected us-
ing RDTSCP, and I collected the 10% trimmed mean over 100 trials, as
described in §6.2.2.

Evaluation Platform. The host hardware configuration is identical to
the one described for GenXGen[C] in §6.2.2: a 2.5 GHz, 4-core, Intel
Core i7 CPU (model 4870HQ), and the guest VM was allocated the same
proportion of hardware resources. However, the software configuration
differed. The guest OS ran as a VMWare Fusion 11 VM running on Mac OS
10.13. The guest OS was Slackware Linux 14.2, running a modified version
of the 4.4.12 Linux kernel. The kernel is modified, because GenXGen|[mc]
was implemented prior to the decision to use eBPF to interpose on the
pagefault handler. Instead, a small amount of code was added to the
kernel to (i) implement a data structure for storing the CoW page-fault
history for processes, and (ii) implement a system call to extract all virtual
addresses of CoW faults for a process ID since fork.

6.4.3 Evaluation

This section discusses the evaluation of each of the experimental questions
for GenXGen[mc], and presents our findings.

206

Generating-extension performance Execution time
[CoW, Fingerprint orig. resid. Speedup
[no,no] [[yesno] [[no,yes] | [yes,yes] prog. prog. (Slowdown)

gnu—wc8 time || 45m 36s | 50m 11s | 2.755s 1.190s 283 +7.8 us | 106 +5.1 us 2.67x
pages| 146901 46 2129 9 — —

1zfx® time 2m 52s | 2m 38s 1.065s 167s 8+0us 3+0us 2.67x
pages| 76664 36 8516 1 — —

printf time | 68m23s | 66m 11s | 6.138s 744s 90.6 +5.1us | 77.7 + 4.8 us 1.16x
pages| 240577 48 12774 6 — —

gnu-env time || 13h12m | 12h 26m | 15.692s 3.332s 365+ .1us | 31.0+ .1 us 1.18x
pages | 958050 129 2129 2 — —

power time || 74m 39s | 64m 36s | 2.241s .679s 31+ .1upus 29+ .1us 1.06x
pages| 221416 102 2129 1 — —

dotprod. | time >90m >90m 11.366s 2.364s 33+ .1ups 2.7+ .1us 1.22x
pages — — 2129 1 — —

interp. time >90m >90m 13.638 6.186s 359+ 2us | 362+ .1pus (1.01x)
pages — — 2129 1 — —

filter time >90m >90m 16.391 6.370 3.8+ .1us 2.6+ .1us 1.46x
pages — — 4258 2 — —

str_match’| time 28m 30s | 26m 13s 1.652 .839 51.1+.1us | 388+ .1us 1.32x
pages | 185223 22 31935 3 — —

shal time >90 m >90 m 24.223 11.783s 4.6 +0ps 33+0us 1.39x
pages — — 2129 2 — —

Figure 6.20: Run times and space usage for each generating extension, with
and without CoW/fingerprinting. Run times for original and residual
programs are also included, with 95% confidence intervals (“—” means
“not measured.”)

81 performed these experiments at a small scale, comparable to the original WiPER
paper, and did not perform the scaling experiments that I performed later with WiPER.
Consequently, the speedups reported here over-weight the elimination of the boilerplate
setup code at the start of the program, which would take on diminishing importance as
the size the dynamic input increases.

“I revisited this result to obtain a more detailed comparison of performance between the
original and residual program. Due to changes in the GenXGen runtime over the past
year, I was not able to re-run the machine-code generating extension directly. However,
I do have the BTA results, and can manually reconstruct the program that would be
produced. Iran the hand-constructed program to produce the results in the two rightmost
columns. I also re-ran the original program to ensure the comparison and speedup was
fair across VM states.

207

6.4.3.1 Answer to RQ1-MC: What are the individual improvements
contributed by CoW and fingerprinting to memory usage by a

generating extension?

The experimental results for RQ1-MC are presented in the pages rows of
Fig. 6.20. Both fingerprinting and CoW play a significant role in reducing
memory usage. Using CoW, however, yields the most significant reduction
for every application This improvement is due to the fact that for all ten ap-
plications, the instructions that are evaluated during generating-extension
execution perform the majority of their writes within a single stack page.
Even when fingerprinting is not used, CoW ensures that the number of
pages needed to retain all previously visited states is small, roughly the
number of basic blocks that executed at least one memory write. (See the
column labeled “[yes,no]”.).

For all programs, CoW yields a pronounced improvement, because
the programs used to test GenXGen[mc| write a relatively small
number of pages in their overall live address space, and thus there
is a high degree of sharing across all processes.

Hashing also produces a smaller, but still significant decrease in
page usage, by allow garbage collection, but the effects of garbage
collection are lessened by the high degree of sharing between state

processes.

6.4.3.2 Answer to RQ2-MC: What are the individual improvements
contributed by CoW and fingerprinting to the time taken by a

generating extension to emit a residual program?

Fingerprinting plays the most ignificant role in reducing generating-

extension execution time. This result is unsurprising, because, without

208

fingerprinting, the amount of time needed to identify whether a state has
been previously visited scales linearly with the number of states previously
visited. Thus, the execution time scales quadratically with the number of
states. In every case, when hashing was was used, specialization was com-
pleted in under 20 seconds, with all but one program, sha1, completing
in under 10 seconds. In seven of the ten cases, hashing improved special-
ization times by over an hour, and in the case of gnu-env, a specialization
task that took over twelve hours without hashing took only 3.33 seconds
with hashing.

Using CoW also improves the execution times of generating extensions;
the improvement is most pronounced in the case where fingerprinting is
also used. When fingerprinting is used, but CoW is not used, the overhead
of copying an entire process begins to dominate the execution time of the
generating extension.

For the gnu-wc generating extensions without fingerprinting, the exe-
cution time with CoW enabled was greater than when CoW was disabled.
We do not have a full explanation why, but we believe that the extra cost
is due to the cost of collecting memory-usage data. When we measure
memory usage with CoW enabled, we track every process currently using
a given page. For certain workloads, especially when fingerprinting is not
used—and thus page mappings are retained for every state visited—the
cost of maintaining this data structure may become relatively large.

209

Hashing yields a significant speedup over the non-hashed state-
management strategies. In particular, because non-hashed strategies
require O(N?) comparisons of live memory pages, hashing allows
specialization tasks that would otherwise take hours to complete in
seconds.

By eliminating spurious page copies, CoW also yields mod-
est specialization-time improvements—on the order of seconds—
though not the pronounced asymptotic improvement seen with

hashing.

6.4.3.3 Answer to RQ3-MC: Compared to the original subject program,
how much does specialization speed up execution?

For RQ3-MC, the results are presented in the three rightmost columns
of Fig. 6.20. Specialization produced a speedup in all but one program.
Dotproduct and power, however, exhibit larger speedups relative to GenX-
Gen[C], with dotproduct exhibting a 1.22x speedup, which contrasts
with the .28 x speedup obtained with GenXGen|[C] (cf. Fig. 6.9). When
specialized with GenXGen[mc], str_match exhibits a 1.35x speedup (ver-
sus the 1.2x speedup obtained with GenXGen[C]). These speedups are
attributable to the difference between lifting strategies in GenXGen|[C]
and GenXGen[mc], and the finer-grained specialization available when
performing machine-code specialization.

The difference in lifting typifies the opportunities for better optimiza-
tion available to GenXGen[mc]. Consider the specialization of the follow-
ing line of code in str_match, where pat is the static pointer into the static

pattern string, and where pat references *h’:

if (xs == xpat){

210

The generating extension created using GenXGen[C] does not produce
if (*s == ’h’), but instead emits code to lift the reaching definition of
pat, as well as the reaching definition of the item located at pat. To avoid
conflating the effects of compiler optimization with the performance effects
of specialization, recall that the residual C programs are compiled at the
00 optimization level—that is, no optimization is performed. Thus, the
emitted machine code is

il: mov eax, [<address of pat>] ;eax := pat
i2: mov dl, [eax] ;dl := *pat

i3: mov eax [<address of s>] ;eax := s

i4: mov al, [eax]; al := *s

i5: cmp dl,al

However, when the generating extension created using GenXGen[mc]
specializes the binary for str_match, the instructions i1 and 12 are static,

and the contents of d1 are lifted, instead yielding the following residual

code:

i’: 1i d1, O0x68 ;dl := ’h’

i3: mov eax [<address of s>] ;eax := s
i4: mov al, [eax]; al := *s

i5: cmp dl,al

This code has two fewer instructions that load from memory, and hence
avoids two trips to the CPU cache that the C version performs, yielding a
smaller and faster inner loop than GenXGen|[C]. This inner loop is repeated
once for every offset in the subject string until a match is found, and hence
the speedup of the overall program is proportional to the speedup of the
inner loop.

211

The dramatically different results for dotproduct — a 1.22x speedup
with GenXGen[mc] versus a .28 x speedup with GenXGen[C] — is due
to the fact that the vector length is static, and thus GenXGen[mc] can lift
vector-indexing computations at the register level, eliminating all loads
and stores of index variables. Due to reaching-definition lifting in GenX-
Gen[C], the residual program’s use of the vector index variable still entails
a memory access. In addition, GenXGen[mc] can lift the loads from the
static operand vector to a register, eliminating a memory read for every
multiplication. Moreover, this effect is amplified relative to GenXGen|[C],
because GenXGen|[c]'’s lifting occurs at the byte-granularity.

The specialization of filter significantly optimizes the inner loop of
the image-filtering procedure, eliminating the if statement that selects
which image filter is applied to each pixel, as well as inlining loads from
lookup tables that encode properties of the selected filter algorithm.

Both gnu-wc and 1zfx have a speedup of 2.7x. In the case of gnu-wc,
specialization eliminates the argument-parsing loop, as well as setup
code that (i) sets locale information and (ii) obtains system-dependent
configuration information. Similarly, the specialization of 1zfx eliminates
initialization code, in addition to inlining several functions that cannot be
completely eliminated.

printf and gnu-env enjoy more modest speedups, roughly 16-18%.
Most of these speedups is due to the unrolling of the core loop in each
program: the format-string-parsing loop in printf, and the argument-
parsing and environment-setup loops in gnu-env.

shal obtains a 1.4x speedup from the elision of loads inside the main
loop, along with the elision of the initial code that initializes the static
data.

However, interpreter experiences a slight slowdown (1.01x), possibly
due to the effects of aggressive unrolling on cache performance.

212

GenXGen[mc] yields larger speedups than GenXGen[C]. This out-
come is because GenXGen[mc] can lift registers, and thus can elim-
inate memory operations that GenXGen[C] cannot eliminate. In
cases where static memory operations are a large proportion of a
subject program’s execution time, such as in tight inner loops, GenX-
Gen[mc] can yield significant improvements in execution time. In
addition, the speedups seen in 1zfx and gnu-env suggest that the
procedure inlining available to GenXGen[mc] can also play a role
in improving performance.

The slight slowdown for interpreter suggests that unrolling’s ef-
fects on instruction-cache locality may still offset other performance

benefits.

6.4.3.4 Answer to RQ4-MC: How does specialization affect the size of
a program in instructions? Moreover, for the subset of
programs that correspond to feature-removal tasks, what is the

degree of debloating performed?

To evaluate RQ4-MC, we measured the number of instructions in the
original and residual versions of each program. The changes in the number
of instructions are reported in Fig. 6.21. Specifically, we measured the
number of instructions reachable from the body of main, including the
text of main. The microbenchmarks power, dotprod, interpreter, filter,
and sha1, are all “loop-unrolling” tasks, and thus experience a significant
growth in program size when specialized. Similarly, in the specializations
of str_match and printf, the respective core loops are unrolled according
to the values of the sought substring and the format string, respectively,
enlarging both programs. The specializations of 1zfx and gnu-wc extract

a single feature from a collection of “subprograms,” and thus reduce

213

| program || original | residual |

gnu-wc 2969 1326
lzfx 1986 1094
printf 754 1038
gnu-env 1820 1123
power 30 323
dotprod. 307 1123
interp. 146 558
filter 287 1207
shal 332 2823
str_match 34 410

Figure 6.21: Comparison of the number of instructions in the original and
residual programs.

program || no. procedures | no. procedures | no. call-sites | no. call-sites
in orig. in resid. in orig. in resid.
gnu-wc 16 4 125 24
1zfx 15 9 63 24

Figure 6.22: Comparison of the number of procedures and call-sites in the
original and residual programs for the feature-removal examples.

the size of both programs. Although gnu-env is a loop-unrolling task, a
large amount of error-handling code—which checks the static input for
correctness—can be eliminated, yielding a net size reduction for the inputs
that we supplied.

To evaluate RQ4-MC with respect to feature-extraction abilities, we
examined a subset of the programs used to evaluate feature extraction
in WiPER. In particular, we worked with gnu-wc and 1zfx—specializing
gnu-wc to only count words, and 1zfx to only perform compression.

One effect of feature extraction on gnu-wc and 1zfx is already shown
in Fig. 6.21, which gives the decrease in the number of instructions in the
specializations of both programs. In addition, Fig. 6.22 shows the decrease

in the number of procedures and call-sites.

214

When gnu-wc is specialized to produce a residual program that only
counts words, the number of instructions is reduced by 55%, the number
of procedures is reduced by 75%, and the number of call-sites is reduced
by 81%. Gnu-wc is organized so that the procedure in which the bulk of the
work is performed has three disjoint loops, depending on whether words,
characters, or lines are to be counted. The size reduction for gnu-wc—in all
size metrics—is due to specialization removing the two unneeded counting
loops, as well as initialization code not needed for counting words. The
residual code consists of the remaining initialization code, and auxiliary
arithmetic-utility procedures shared among all three loops.

When 1zfx is specialized to produce a residual program that only
performs compression, the number of instructions is reduced by 74%,
the number of procedures is reduced by 40%, and the number of call-
sites is reduced by 62%. Because 1zfx has several utility procedures that
are shared between the compression and decompression routines, the
reduction in the number of instructions is proportionally larger than the
reduction in the number of procedures. For example, if the compression
loop is removed, the shared procedures still remain.

In both cases, specialization is able to significantly reduce the complex-
ity of the subject program, by eliminating all unused procedures, as well

as all call-sites not used in the residual program.

215

The loop-unrolling tasks, yield a significant increase in instruction
counts.

For the two feature-removal programs, gnu-wc and 1zfx, 55.3%
and 44.91% of instructions are removed, respectively. Both programs
also exhibit a significant reduction in the number of procedures and
the number of call-sites as well, with 75% of gnu-wc’s procedures
removed and 40% 1zfx’s procedures removed. In both cases, over

half of all call-sites are removed.

216

Chapter 7

Related Work

This chapter discusses related work not covered in previous sections, and

provides additional detail about several works discussed earlier. The

related work can be divided into five categories:

1.

Specialization of C and LLVM bytecode (§7.1), which includes tech-
niques for specializing C programs either via a source-to-source

transformation, or as a transformation of LLVM IR.

. Specialization of machine code (§7.2), including techniques for spe-

cializing both x86 machine code and JVM bytecode.

. Manipulations of memory snapshots (§7.3), including prior memory-

hashing techniques, and mechanisms for canonicalizing memory

states to detect duplicates.

. Recording states (§7.4), which discusses record-and-replay debug-

ging techniques, which provide mechanisms for saving and restoring

states.

. Symbolic and concolic execution (§7.1), two program-analysis tech-

niques, which like classical specialization, are explorations of a rep-

217

resentation of a subject program’s state-space, and hence must save

and restore state representations like classical specializers.

7.1 Specialization of C and LLVM Bytecode

There have been a number of systems that apply partial-evaluation tech-
niques to C, including C-Mix [Andersen, 1994b; Makholm, 1999], ‘C [En-
gler et al., 1996], DyC [Grant et al., 2000], and Tempo [Consel et al., 2004].
Other systems, such as LLPE [Smowton, 2014], TRIMMER [Sharif et al.,
2018b; Ahmad et al., 2021], and LMCAS [Alhanahnah et al., 2022] can
be applied to C programs indirectly, by first compiling C source code to
LLVM bit-code.

The influences of C-Mix on GenXGen, and the differences in the tech-
niques used in the two systems, have been covered thoroughly in the body
of the dissertation.

‘C, DyC, and Tempo support dynamic code generation, which makes
them not classical partial evaluators per se. Because the specialization of
(a portion of) a program is performed at runtime, they avoid a costly
compilation step by emitting residual code in the form of machine code.

With ‘C, the user creates code generators via a DSL with primitives to
specify dynamically generated code that can be statically type-checked.
The burden is on the user to avoid redundant states and ensure that code
generation terminates.

In DyC, the algorithms for identifying specialization opportunities use
many of the concepts employed in classical two-stage (off-line) partial
evaluators—i.e., partitioning program elements into static/dynamic sets,
and specializing as needed along all control-flow paths. User annotations
specify the variables for which portions of a program should be specialized,
and a static pass then equips the program with generating extensions that

are invoked, at run time, to create the specialized code (as machine code).

218

Tempo supports run-time specialization in a manner similar to DyC,
using generating extensions, but also supports classical compile-time spe-
cialization, data specialization [Chirokoff et al., 1999], and their combina-
tion. There are differences in the approaches that Tempo and GenXGen
take to lifting. For instance, the Tempo paper says [Consel et al., 2004,
§2.1.2], “When a static expression occurs in a dynamic context, the value of
this expression must be residualized. Nevertheless, some values are non-
liftable, i.e. they cannot be meaningfully represented in the specialized
code. A pointer to a local variable is always non-liftable. When special-
ization is carried out at compile time, pointers to global variables are also
non-liftable. Floating-point numbers may be considered non-liftable, be-
cause of the difference between the precision of the textual and internal
representations.”

Pointers to local variables are often used in C to simulate call-by-
reference, and GenXGen does support lifting pointers to local variables, as
described in §5.1.5. With respect to floating-point numbers, GenXGen lifts
all values (except pointers) byte-by-byte, so there is no loss of precision.
(Admittedly, this approach does not support changing architectures or
compilers between the generating extension and the residual program.)

TRIMMER and LMCAS are partial evaluators for LLVM bit-code. Both
rely on LLVM optimization passes, such as loop-unrolling and constant
propagation, rather than performing classical partial evaluation. By doing
so, they avoid the need for a general-purpose state-management strategy,
but value propagation is limited to local and global variables.

LLPE performs online partial evaluation of LLVM bit-code. It functions
more like an interpreter over partial programs. LLPE also merges partial
states—i.e., after “if(...) {x =1,y =5; } else { x =2,y = 6; }” one would
have a merged state in which x is either 1 or 2 and y is either 5 or 6—which
has an effect on the ability to specialize the program downstream. State

merging would not be compatible with our approach of exploiting OS-level

219

primitives and operating on native hardware states. (In practice, LLPE
requires a substantial amount of hand tweaking by the user [Smowton,
2020].)

Not all of these systems share the same goals as GenXGen. However,
in principle, the three systems that employ generating extensions—C-
Mix, DyC, and Tempo—could benefit from the two contributions of our
work, namely, (i) a new technique for state management in a generating
extension that runs natively (§3), and (ii) a new software architecture for
generating extensions (§4.4). For one thing, the papers on DyC and Tempo
make no mention of handling heap-allocated storage, and Andersen’s
thesis on C-Mix states [Andersen, 1994b, §3.10.7], “Since heap-allocated
data structures tend to be rather large, copying and comparing of heap-
allocated data structures should be kept to a minimum. We have currently
no automatic strategy for when side-effects on heap allocated objects
should be allowed.” The approach presented in this dissertation supports
programs that use and destructively update linked data structures, with

no need to perform a mark-and-sweep traversal to capture program state.

7.2 Specialization of Machine Code

Run-time code generation is a generating-extension-like approach to pro-
gram specialization that produces machine code on-the-fly during pro-
gram execution. Unlike our approach to machine-code specialization,
which operates on stripped binaries without source code or symbol-table
information, run-time code generation systems take user-annotated source
code as input and perform BTA and generating-extension construction as
part of compilation. In the Fox [Leone and Lee, 1996; Lee and Leone, 1996 |
and Lancet [Rompf et al., 2014] systems, type-level information in the
source code is exploited to produce run-time machine-code generators.

These systems avoid the state-management issues from §3 by exploiting

220

the availability of high-level semantic information from the source lan-
guage. In contrast, Klimov [2009] describes a run-time code generator for
Java bytecode that does not rely on information from source code. How-
ever, Klimov can only determine state equality for programs that do not
use the heap; the approach identifies semantically identical states based
on structural properties of Java Virtual Machine heap configurations. JIT
compilation [Aycock, 2003] is an example of run-time code generation
in widespread use. However, because it is performed at run-time, the
emphasis is on recouping the cost of translation, which limits the kinds of
optimization techniques that can be performed.

Turning to interpretation-based approaches, WiPER is a partial evalu-
ator for x86 binaries. WiPER uses CodeSurfer/x86’s semantic models of
the 32-bit x86 instruction set to evaluate instructions. WiPER represents
states using an applicative-map-based data structure that does not use
hash-consing. Thus, state equality is determined by directly comparing
the contents of the data structure.

Although GenXGen|[mc] is quite different from Fox [Leone and Lee,
1996; Lee and Leone, 1996 in most respects, their use of pseudo-instruction
macros inspired the approach to constructing machine-code generating
extensions used in GenXGen[mc]. GenXGen[mc] uses similar macros
to produce residual assembly code, but extends the approach to include

various other state-management actions.

7.3 Manipulations of Memory Snapshots

A huge number of PL techniques rely on recording and manipulating
snapshots of memory states; thus, we can only highlight a few items of
related work.

Patent US7469362B2 [Hudson et al., 2008] uses hashes of the stacks of

a program’s threads to support associating failures to known root causes.

221

This technique has a number of differences with the hashing method
used in GenXGen. First, it only hashes stack memory, ignoring code,
globals, and heap-allocated storage. Second, it deliberately leaves out
some information “... to minimize the affect of patches and minor changes
to the code.” Third, the hash is performed as a batch computation; in
contrast, GenXGen uses incremental hashing.

Model checking is a method to check properties of programs statically
by exploring the state space of a transition system. To achieve acceptable
performance, model-checking algorithms must avoid exploring redundant
states, and Rabin’s fingerprinting technique has been used to implement
incremental hashing of program states in SPIN [Nguyen and Ruys, 2008
and StEAM [Leven et al., 2004; Mehler and Edelkamp, 2006]. However,
those systems are interpreters (for Promela and assembly language, re-
spectively). In contrast, incremental hashing in GenXGen uses OS-level
primitives to perform incremental hashing to hardware states, with code
that executes natively.

Musuvathi and Dill [Musuvathi and Dill, 2005] developed an incremen-
tal heap-canonicalization algorithm, which allows states to be detected as
duplicates when they differ only in the addresses of heap objects. There is
no analog of heap canonicalization in GenXGen; moreover, heap canonical-
ization would appear to be incompatible with our approach of exploiting
OS-level primitives and operating on native hardware states.

The runtime environment for our generating extensions was originally
designed for GenXGen[mc]. Unfortunately, as described in §8.2, the tech-
nology for very precise static analysis of machine code does not scale
well, and limited the applicability of GenXGen[mc] to small binaries. In
contrast, because GenXGen[C] works on source code—and employs less
fragile static-analysis techniques—it is capable of specializing larger pieces

of code than our earlier system.

222

7.4 Recording States

Program execution record-and-replay debugging has been the subject of
an extensive body of research, dating back to EXDAMS [Balzer, 1969],
and subsequent systems such as PTRAN [Choi and Stone, 1991] and FDR
[Xu et al., 2003], and instantiated in contemporary debuggers such as rr
[O’Callahan et al., 2016, 2017], Microsoft Visual Studio’s debugger [Barr
and Marron, 2014], and gdb [gdb, 2023, Process Record And Replay]|
In record-and-replay debugging it is necessary to record states for pos-
sible replay in reverse. The needs for record-and-replay debugging are
somewhat different than what is needed in our context. First, for record-
and-replay debugging it is necessary to log all of the changes. In our work,
the changes do not need to be logged because they are needed only to
update the hash-value, and the actual changed state is the state of a process
controlled by the OS. Second, record-and-replay debugging works with a
strictly linear history of states, whereas during specialization, the states
in the worklist are the frontier of a tree of states; the states at the interior
nodes are discarded, although hash values for all such states are retained.

7.5 Symbolic/Concolic Execution

Partial evaluation has some resemblance to symbolic execution [King,
1976]. Moreover, our fork-based method for managing partial states
was inspired by the state-management mechanism in the EXE symbolic-
execution system [Cadar et al., 2006]. As originally formulated, partial
evaluation [Futamura, 1971; Jones et al., 1993] differs from symbolic/-
concolic execution [King, 1976; Godefroid et al., 2005] in several ways.
Symbolic/concolic execution tools are bug-finding tools that attempt to
identify bugs by driving a program’s execution to a specific subset of the
state space. These tools implement path-exploration algorithms that use

223

calls to constraint solvers to drive the program down as many new paths
as possible within some time limit.

The closest connection is actually between symbolic execution and a
generalization of partial evaluation, called generalized partial computation
(GPC) [Futamura, 1988; Futamura et al., 1991] in the partial-evaluation
community. GPC extends classic partial evaluation to track constraints
on the dynamic portion of a partial state. A method similar to GPC was
developed by Coen-Porisini et al. [Coen-Porisini et al., 1991] who applied
symbolic execution to the problem of program specialization. With respect
to our work, the connections are weaker: while GPC is a more powerful
program-transformation method than partial evaluation, the required
manipulations of the symbolic state during GPC appear to require an
interpreter-based approach, and thus are not compatible with our approach
of exploiting OS-level primitives, and operating on native hardware states.

A different, but weaker, connection has to do with partitioning in states.
In partial evaluation, states are partitioned into static and dynamic vari-
ables. Partial evaluators do not track any information about the dynamic
(i-e., non-concrete) parts of partial states; the congruence property of the
BTA algorithm ensures that the dynamic state is never needed to update
static variables. In concolic execution [Godefroid et al., 2005, 2008], states
are partitioned into concrete and symbolic variables; as in symbolic execu-
tion, the symbolic part of the state is represented with symbolic values,
which are logical formulas in some theory. A concolic-execution engine
attempts to construct a symbolic approximation of the values in the sym-
bolic (i.e., non-concrete) portion of the state at every program point. In
other words, it attempts to leverage, to the extent that it can, precisely the
portion of the state that a classic partial evaluator ignores. Again, such
techniques appear to require an interpreter-based approach, in contrast with
our approach of operating on native hardware states.

Bubel et al. [Bubel et al., 2009] have exploited the complementary

224

capabilities of symbolic execution and partial evaluation to improve the

performance of a program-verification tool.

225

Chapter 8
Conclusion

In this thesis, I described GenXGen, a tool for specializing programs
written in low-level! languages such as C and x86 assembly. GenXGen
consists of two main components: (i) a generating-extension generator,
which produces program-specific specializers, and (ii) a language-agnostic
generating-extension runtime that efficiently implements the state-space
traversal necessary for classical program specialization. More concretely,
the generating-extension runtime supports the implementation of gener-
ating extensions for any low-level language that implements the System V
AMD64 ABI [Michael Matz, 2012], or other similar conventional C/Unix-
style ABL The techniques used in (i) are also language-independent, al-
though they require a means for computing slices of programs written in
the language that the specializer is to support.

T use “low-level” here—for lack of a more accurate term that is equally concise—
as a shorthand for a general class of languages, such as C and x86 assembly, which
do not have a sophisticated runtime environment, and do not hide information that is
traditionally considered “hardware-level,” such as pointers. The term “low-level” is, at
best, contentious [Chisnall, 2018] and of dubious accuracy in the context of modern CPUs.
Even the interface exposed by the x86 ISA, which persists because of the unavoidable
necessity of backwards compatibility, abstracts away microarchitectural details that are,
especially in a post-Spectre/Meltdown world, of significant importance.

226

8.1 Contributions

In implementing GenXGen, I made several contributions. To implement

(i), the generating-extension generator, I made the following contributions:

e I implemented a polyvariant binding-time-analysis algorithm us-
ing a technique from the slicing literature, specialization slicing
[Aung et al., 2014]. I implemented a slice-materialization algorithm,
which converts a program with polyvariant slice results (i.e., a pro-
gram with multiple slice results for a given procedure) to a program
with monovariant slice results (i.e., a program with a new copy of
a procedure P for every slice result for P in the polyvariant result),
allowing the remaining passes of GenXGen to use a conventional
ge-gen algorithm and generating-extension runtime that expects

monovariant BTA results.

e I implemented a build-tracing tool that allows GenXGen to pro-
duce generating extensions for real-world software projects built
using tools such as make. Prior systems based on generating exten-
sions, such as C-MixII[Makholm, 1999], did not handle non-trivial
software projects in a satisfactory manner, and required hand-made
makefiles to produce generating extensions. My build-tracing tool
traces builds with hundreds of source files, allowing GenXGen to
successfully produce generating extensions for real-world programs,

such as Busybox applets.

To implement (ii), the language-agnostic generating-extension runtime,
I made the following contributions:

e Inspired by program-analysis tools such as KLEE [Cadar et al., 2008],
I implemented a process-based representation for hardware-level
program states. A Linux process is a perfectly usable representation

of the state of a low-level program; one can obtain efficient saving and

227

restoration of program state through a standard context switch. This
approach obviates the need to impose any interpreter-like operations
on the static-program portion of a generating extension created using
GenXGen: the statically executing portion of the subject program

executes natively.

e Eschewing the traditional PL insistence on soundness, I imple-
ment an incrementally updatable hashing-based mechanism for
identifying redundant program states in O(1) time. Though nomi-
nally unsound, I show that the probability of a generating extension
producing an erroneous residual program is negligible: at most 2>’
for a reasonable choice of parameter settings. Moreover, because I
chose to use processes to represent program states, I can exploit the
underlying CoW mechanism provided by the OS to identify state-
changes at hardware-page granularity; consequently, GenXGen’s
generating extensions need only incorporate changed pages into the
hash.

e I evaluated GenXGen’s performance on microbenchmarks and
real-world programs, which showed that GenXGen can perform
real-world specialization tasks on non-trivial Linux programs. In
practice, to create a version of a command-line program with un-
used features removed (for example, creating a base64 program
that contains only the base 64 encoder), specialization completes in
under a second. I also show that GenXGen is capable of performing
significant “debloating” in these feature-removal tasks.

8.2 Limitations and Challenges

My goal with GenXGen was to produce a “turnkey” generating-extension
framework for real-world programs. Initially, I began with the goal of pro-

228

ducing generating extensions for stripped executable binaries, i.e., binaries
with all debugging symbols removed. To produce the SDG representa-
tions needed to perform slicing-based BTA and the CFG structures needed
produce the generating extension, I used CodeSurfer/x86 [Balakrishnan
et al., 2005b], a version of CodeSurfer [codesurfer, 2018; Anderson et al.,
2003] with binary analysis capabilities. However, the technical challenges
in producing slices suitable for BTA of real-world command-line pro-
grams, such as the ones in GNU Coreutils, exposed several limitations in
CodeSurfer/x86’s binary-analysis features.

8.2.1 The Limitations of Library Modeling

In the typical case, to avoid producing binary programs with a large
amount of duplicated library code, x86 binaries on Linux server and desk-
top systems are dynamically linked. That is, many of the general-purpose
systems-level libraries, such as the C standard library, are not part of the
program binary. Instead, when a dynamically linked program is run, a
program known as a loader finds for each dynamically linked library a
shared-library file containing the system’s library implementation. More-
over, many library procedures invoke system calls, and thus such a library
procedure’s behavior cannot be analyzed from the contents of the binary
alone, even if it were statically linked. Because of this, library code may
not be present in the binary, and thus unavailable for analysis.

To address this issue, CodeSurfer/x86 uses library models, which con-
sist of C code that model relationships between input and output pa-
rameters, while being simpler to analyze than the full source code of
library procedures. However, these model procedures sometimes lack
the accuracy required for performing slicing-based BTA. For example, the
CodeSurfer representation of abort procedures such exit do not correctly
model the effect of program termination on global variables. For example,

errno is a parameter to many abort procedures, and if errno is in the

229

slice before a call to one of these procedures, errno is in the slice after
the (impossible) return from the abort procedure. Thus, dependencies are
propagated through procedures that do not actually return.

Moreover, in practice there are simply too many software libraries, and
one cannot reasonably expect CodeSurfer’s developers to provide mod-
els beyond, e.g., 1ibc. Thus, for many real-world programs, the default
CodeSurfer representation contains calls to procedures that lack a repre-
sentation (by default). Because of this deficiency, and the inaccuracies in
the existing C library models, it was often necessary to supply additional
library models for each program added to the suite of programs that I
tried to use for evaluation. Dealing with this situation required signifi-
cant debugging and development effort to identify deficiencies in existing
library models, and to develop reasonably accurate replacement model
procedures or to develop new model procedures for unimplemented mod-
els.

8.2.2 The Limitations of Binary Slicing

CodeSurfer/x86 [codesurfer, 2018; Balakrishnan et al., 2005b; Anderson
et al., 2003] does an admirable job of slicing stripped binaries. That
CodeSurfer/x86 is as capable of providing such high-quality slices as
it is is a testament to the multiple Ph.D. theses worth of research under-
pinning its implementation. However, in practice, the general task of
constructing generating extensions for stripped binaries is one that runs
up against the limitations of CodeSurfer/x86’s capabilities. In the standard
framing, (forward) program slicing answers the following question: given
a program P, and a set S of program point/variable pairs, (p,v) what
program points in P depend on S? For a binary program P that has had
all debugging information stripped, simply answering the question “what
are the program points of P?” is already undecidable in the general case.

Identifying “variables” to slice with respect to is even harder; answering

230

that question requires performing not just disassembly, but one of the
hardest aspects of decompilation: recovering program variables.

CodeSurfer identifies abstract locations, which include variables, heap
objects, structure fields, arrays and their constituent elements: roughly
speaking, anything that is a valid Ivalue in C. To identify abstract locations,
CodeSurfer performs value set analysis [Balakrishnan, 2007], or VSA, a type
of abstract interpretation. Informally, for every variable/program-point
pair (v, p) in a program, abstract interpretation computes a conservative
overapproximation of all values v can take on at p. The approximation is
computed in an abstract domain that (generally) encodes a concise summary
of all possible values in the over-approximation. That is, if L(,,, is the
set of concrete values that v could take on at p, abstract interpretation2
computes an abstract summary S = «(L ;) such that given y(S), where
Y maps abstract summaries to the set of concrete values they represent,
Lipv) € v(S). The hope is that, for a given program-analysis task, with a
good choice of abstract domain, even if L,, ,, cannot be computed exactly, a
useful overapproximation in the abstract domain may still be effectively
computable.

The abstract domain of VSA is constructed so that it represents the
collections of integer values that typically characterize addresses used
for memory accesses in real-world programs. For example, consider the
following code:

struct s {
int first;
int second;

int third;

“This description is a slightly simplified one, and not representative of the full breadth
of analyses possible with abstract interpretation: in general, abstract interpretation need
not be concerned with the valuation of specific program variables: in general « is some
kind of abstraction of program behaviors, and « can, for example, map program point p
to an approximation of the set of program points that are reaching definitions for p.

231

};
struct s arr[33];
void init(){
for(int idx = 0; idx < 33; idx++){

arr[idx] .second = 10;

3

When compiled to machine code, the instruction that writes 10 to the

second field for each element in arr will be something like this:
mov [rax], Oxa

That is, the address of the second field of the struct at offset idx is stored
in register rax, and the instruction writes 10 to the location at that address.
Consider the set of addresses rax could take on at this instruction. Assum-
ing four-byte integers, the first two addresses will be arr +4 and arr + 16,
because struct sis a 12-byte structure. In general, at this program point,
rax takes on the values {arr + 121 + 4]0 < i < 33}.

The key observation is that memory access patterns in real-world pro-
grams tend to take on this “base plus stride within some bounds” pattern.
Thus, VSA represents the values that variables® can hold as a triple of
(lower bound, upper bound , stride) values. In practice, VSA can recover
abstract locations for individual variables, heap objects, struct fields, and
can also infer the layout of arrays.

The difficulty with VSA as it relates to slicing is due to the difficulty of
identifying the bounds of the value-sets. In the presence of loops, identi-
tying the bounds on a range of memory accesses is undecidable, and thus,

3The careful reader may note an apparent circularity here. The impetus for this
discussion of VSA was discovering abstract locations. In practice, the analysis can be
thought of as being “bootstrapped” with CPU registers as the only initial abstract loca-
tions, and, by interacting with several other analyses (described in Balakrishnan and Reps
[Balakrishnan and Reps, 2010]), the overall analysis gradually discovers more abstract
locations.

232

with infinite abstract domains, abstract interpretation may not converge
without assistance. Even in finite domains, abstract interpretation may be
slow to converge in the presence of loops. Thus, VSA, like other forms of
abstract interpretation use widening operators to aid convergence in loops.
These operators overapproximate the values that variables in a loop may
take on. However, the overapproximation can be extremely coarse, with,
e.g., the final VSA result for an array index in a loop taking on a lower
bound of b, and an upper bound of b + 231

Such results are problematic when using using slicing as a BTA. VSA
can successfully recover, e.g., global variables and array bounds in prac-
tice. However, pointer arithmetic inside loops often induces spurious
dependencies. Consider a program that, inside a loop, repeatedly writes
through a pointer p, and that p always points inside of an array a. Widen-
ing, nonetheless, may yield results suggesting that p overruns the array
bounds and overwrites, e.g. global variables, such as global flags that
enable or disable features, or other utility values such as errno. Thus,
spurious data dependencies between writes through pointers and global
variables are common in practice, which erroneously taint large portions
of a program as dynamic.

Obtaining slicing results for real-world binaries, even the smallest GNU
Coreutils programs, is thus quite difficult. In practice, it requires enough
understanding of the program’s internals to identify the origin of spurious
dependencies, and enough understanding of VSA to tune, e.g., widening
parameters to avoid the worst-case behavior. Thus, in practice, simply
getting slice results suitable for specialization from a single non-trivial
real-world program often took several days or more of effort.

8.2.3 Limitations on CodeSurfer’s C Rewriting

Because of the difficulty in producing generating extensions for larger and
more complex x86 binaries, I decided to implement GenXGen[C]. The

233

availability of rich and accurate type information meant that producing
accurate slices for large programs was much easier. However, my use of
CodeSurfer/C to produce C generating extensions was somewhat of a mis-
match with CodeSurfer/C’s expected use cases. In particular, CodeSurfer’s
program representation is oriented towards program-analysis tasks, and
less so for program rewriting. While CodeSurfer provided prototype
rewriting APIs to manipulate program ASTs and CFGs, they are largely
suited for rewriting the internal representations, and it is difficult to use
CodeSurfer to rewrite a procedure p in a source file f, and produce a
syntactically valid source file f’ that is unchanged from f, except for the
rewritten p’.

For example, the "null transformation” of simply taking CodeSurfer’s
representation of a procedure p and converting it back to syntactically
valid C code fails in several corner cases, because the AST-printing API
occasionally produces incorrect type specifiers for certain compound types.
For program-understanding tasks, such as reverse engineering or man-
ual refactoring, the output is perfectly comprehensible to a developer or
analyst,* but is unsuitable for general-purpose program rewriting.

Moreover, because of several other AST-related issues, it was not feasi-
ble to do C-Mix-style lifting of this form:

printf("dynamic = dynamic + %d\n", static);

Moreover, it was also difficult to ensure that I could correctly produce,
e.g., valid C99 structure literals. Thus, to expedite implementation, I chose
to use the byte-granularity reaching-definition lifting for GenXGen[C].

In practice, due to the difficulty of obtaining other information relating
to global variables, the source-to-source transformation in the ge-gen phase
used information from CodeSurfer/C to produce individual procedures,

The syntactically invalid C produced is also arguably a better textual representation
than C’s notably peculiar type-specifier syntax (see [Kernighan and Ritchie, 1988, §5.2]),
and is easily produced from a linear walk of the type signature AST.

234

but the actual transformation of the original program’s source files into
generating-extension source at the project level was performed via a set of
rewriting scripts implemented in a combination of Bash and Python.

8.3 Future Directions

8.3.1 Analysis and Improvement of Performance in

Specialized Programs

In §6.3.4, I noted that specialized C programs often exhibited worse per-
formance than the original program. Generally the degradation was only
a few percent, though several programs exhibit significantly higher degra-
dation in performance. For example, the residual version of dotproduct
takes three times as long to execute as the original. This degradation is
particularly striking when compared with the performance improvements
seen in the residual programs produced by machine-code specialization
described in §6.4.3.3. Additionally, kmp, which is a naive string matcher
that specialization should transform into a program that is asymptotically
faster than the naive string matcher, instead exhibits worse performance
than the original program.

The structural properties of the residual versions of dotproduct and
kmp lead me to hypothesize that there are three main issues causing the
performance degradation seen in residual programs produced by GenX-
Gen[C]:

1. Reaching-definition lifting, described in §4.4.3 and §5.1.6, addresses
limitations in CodeSurfer’s AST-rewriting and pretty-printing ca-
pabilities, described in §8.2.3, by introducing additional memory
references into the residual program.

235

2. Excessive loop unrolling may harm instruction-cache locality, de-

grading program performance.

3. In the ordinary course of execution, a generating extension performs
control-flow destructuring. As described in §2.1.3 and §4.4, a pro-
gram is specialized basic-block-by-basic-block, and residual blocks
are “stitched together” via goto statements. Moreover, because resid-
ual procedures may have returns corresponding to distinct static
states, additional control flow is introduced to the residual program
in the form of exit splitting (§5.3). Both of these aspects may degrade
the effectiveness of the CPU instruction cache and branch predictor.

Performance Degradation in Dotproduct. In §6.4.3.3, I hypothesize that
the performance degradation seen in dotproduct is due to issues (1) and
(2). As described in §4.4.3 and §5.1.6, given the following code,

s =5+ 5;

where the boxed code is dynamic and the unboxed code is static, GenX-
Gen[C] cannot produce the desired simplification of the dynamic line: d
= d + 10;. Instead, the value of s after the assignment in the unboxed
statement is lifted. Moreover, as described in §5.1.6, lifting is done at
byte-level granularity, and the assignment is done through a reference to
the base address of s. Thus, a GenXGen[C] generating extension would

emit the following code:

*x(s_base + 0) = 10;

*(s_base + 1) 0;

*(s_base + 2) = 0;

*(s_base + 3) = 0;

d=d + s;

236

In the experimental evaluation, both the original and residual programs
are compiled at -00, and thus, the residual program’s assignment to s is

implemented as four operations, each of which must:
(i) Compute the address of s from s_base
(ii) Store one byte of s in memory.

In the compiled residual program, each of (i) and (ii) requires one instruc-
tion, each of which entails a memory access, so the residual assignment of
the lifted value to s requires eight instructions that access memory.

Modern processor architectures are sufficiently complex that instruc-
tion count is, at best, a poor proxy for performance metrics. However,
the increase in instruction count, where the introduced instructions are
memory accesses, coupled with the sharp contrast with the results for
the machine-code version of dotproduct, which exhibits performance
improvement, suggests that excessive memory accesses are problematic
from a performance standpoint. As described in §6.4.3.3, GenXGen|[mc]|
is capable of performing much finer-grained lifting than GenXGen[C];
in particular, GenXGen[mc] can lift registers, potentially eliminating ad-
ditional memory operations. Because one of the integer operands in the
element-wise vector multiplication can be eliminated, an improvement in
performance is reasonable to expect in the machine-code version. That
result suggests that resolving issue (1) via a better implementation of
lifting in GenXGen|[C] is worth pursuing.

In addition, it may be the case that issue (2)—loop-unrolling—is detri-
mental to residual-program performance, and that GenXGen[mc]’s elimi-
nation of stores outweighs this effect in many cases, such as dotproduct,
and thus the issue is more readily seen in the residual programs produced
by GenXGen|[C]. In particular, a large amount of loop unrolling may harm
instruction-cache locality on the CPU and degrade performance, by forcing

more reads from lower cache levels or system memory.

237

Performance Degradation in KMP. In contrast with dotproduct, the
two string matchers, str_match and kmp are not subject to the byte-level
lifting described in issue (1). The predominant lifted values in the residual
matchers are type char, and thus one byte wide in C. Indeed, the naive
string matcher, str_match, exhibits a performance speedup when special-
ized, while kmp, whose specialized version should be asymptotically faster,
exhibits a significant slowdown. I hypothesize that the distinguishing
factor is issue (3), the degree of control-flow destructuring performed in
the specialization of kmp.

In particular, kmp matches the target-pattern string against the subject
string at each offset using a carefully constructed test procedure and
some additional state that, upon return from the test procedure, encodes
the state of the finite-state automaton produced in the KMP algorithm.
When specialized on a given target-pattern string, the residual basic blocks
and procedure calls encode the transition relation of the finite automaton
(see [Consel and Danvy, 1989] for a detailed discussion).

Critically, the residual procedure calls have control-flow paths that
reach distinct static states, each of which corresponds to a finite-state-
machine state. Thus, exit-splitting must be performed for kmp: each call to
a residual version of the test procedure is followed by a switch statement,
where each branch of the switch statement itself contains a goto targeting
a basic block. Consequently, in the residual program, for each character in
the dynamic input (i.e., the subject string), a procedure call is performed,
as well as a return, a computed jump (i.e., the switch statement), and an
unconditional goto. The top-level loop, which repeatedly calls the variants
of this test procedure, thus consists of “spaghetti code”: that is, it consists
of a group of basic blocks that encode finite-state-machine states, and the
residual program must repeatedly jump to and from blocks that are not
adjacent in the text section of the compiled program.

This behavior is potentially problematic for performance. The utility of,

238

e.g., the instruction cache, is contingent on an assumption of locality, and
the code destructuring performed by GenXGen[C] may yield a program
that has poor cache behavior. Similarly, because specialization produces
multiple variants of basic blocks and residual procedures, and also per-
forms exit splitting, which introduces additional control-flow structures
not present in the original program, the residual program may have sig-
nificantly more control-flow locations, which may harm the performance

of both the branch predictor and the branch-target predictor.

Evaluating the Hypotheses and Rectifying Performance Issues. If there
was more time to devote to this research, I would carry out the following
plan to evaluate these hypotheses. I would first rectify the byte-level-
lifting issue described in issue (1). As described in §5.1.6, the primary
reason for byte-level assignments was the difficulty in obtaining properly
formatted structure literals. However, for standard numeric types—i.e., nu-
meric types of standard hardware-supported sizes— one could implement
reaching-definition lifting using a standard assignment of the given type.’
In addition, the “lvalue lifting” through a reference to a variable base is
only necessary for e.g., lifted array assignments and lifted assignments
to structure fields. For cases where the original program’s assignment to
a variable simply assigns a full-sized value to the variable at offset 0, the
use of the base pointer can be eliminated. With these fixes, the lifting of s
= 5 + 5, for example, can be emitted as s = 10, thereby eliminating the
introduction of memory accesses not present in the original program.

To evaluate whether hypotheses (1), (2), and (3) explain the perfor-
mance degradation in specialized programs, I would also perform a wider
variety of experiments and collect more detailed and robust performance

metrics for the residual programs.

°In fact, for any type of, e.g., 4- or 8-byte width, lifting can be implemented by
type-casting an assignment of an unsigned int or long int, respectively.

239

For issue (1), I would evaluate the performance of residual programs
after the improved byte-level lifting is implemented. In addition, to gain
an estimate of the best-case performance for lifting in GenXGen[C]—i.e.,
the lifting that could be done with access to full-fledged AST rewriting—I
would manually construct simple generating-extension programs for the
microbenchmarks, akin to the one pictured in Fig. 1.2, which perform the
best-case lifts.

My hypotheses about issues (2) and (3) are predicated on the micro-
architectural performance characteristics of the compiled versions of resid-
ual programs, and thus evaluation would require collection of fine-grained
performance metrics about, e.g., cache hit rates, and the accuracy of branch
and branch-target prediction. To collect these metrics, would use the hard-
ware performance counters made available in AMD and x86 CPUs. These
counters are special-purpose registers that store a variety of fine-grained,
per-core performance information, such as data- and instruction-cache
misses at the various levels of caching, TLB misses, and branch mispredicts.
Tools such as perf, Intel’s vIune, and AMD’s pProf provide access to these
counters, along with other sophisticated microbenchmarking capabilities.
To ensure accurate results, and to improve experimental timings, I would
run these experiments in a non-virtualized context, and I would use the
chrt command to force the kernel to run the profiled program with, e.g.,
a FIFO scheduling policy, which causes the CPU to run the program to
completion without preempting it, thereby giving it exclusive access to
the CPU. That approach should reduce variance in timing, and ensure bet-
ter accuracy for the performance-counter measurements in the analyzed
program.

Moreover, for the real-world programs analyzed, I would perform
further benchmarking using perf to identify the most heavily executed
portions of, e.g., the busybox applets. In doing this, I would hope to
manually extract portions of the programs, such as time-consuming inner

240

loops, which could be used to construct further microbenchmarks for
diagnosing performance issues caused by specialization.

If the hypotheses about issues (2) and (3) were confirmed, I would
then modify GenXGen[C] to constrain the degree of data-polyvariance®
in the residual program. Both the loop-unrolling and "spaghetti-code"
properties arise from a single block being specialized with respect to many
static states. One possible way of reducing the amount of reducing extreme
data polyvariance would be via a re-rolling approach similar to that taken
in systems such as Trimmer [Sharif et al., 2018a]. In this approach, for each
original-program basic block b in a residual procedure P,, the number of
copies of b produced for P,, at specialization time is recorded. If the number
of copies of any block exceeds a threshold, P, is “re-rolled”. Instead of
containing multiple variants of each block b, a version of P, is produced
containing a single copy of each b reached. However, the underlying state-
space exploration will still continue to be performed, to identify the set of
blocks reachable in P,,. Because static state can no longer be incorporated
into the blocks in P,, all code is nominally dynamic for the purposes of code
generation, and the original version of each block b is emitted verbatim
(and linked to the others appropriately). Thus all static parameters to the
re-rolled P, must be lifted. This compromise solution constrains unrolling
and the degree of available specialization, while still allowing for feature
removal, because even though the residual blocks cannot be specialized
further via lifting, only blocks reached in the generation of P, are emitted.

Because a given data-polyvariant block b in P, may call some procedure
Q, and hence for each state v on which block b was specialized, multiple

procedures Q. will be emitted. Thus, if P, is rerolled, the rerolling must

®Recall that in §4.2, there are two uses of the term “polyvariance” in the literature on
specialization. One, which we are not concerned with here, is binding-time polyvariance,
which is when there are multiple binding-time-analysis results for a procedure. Data
polyvariance, on the other hand, is a property of the residual program—namely, there
may be multiple versions of a residual bock or procedure, each of which is associated
with the static state on which it was specialized.

241

be performed recursively “downwards” for each Q, produced, and every

Q. called at a single block b must be unified into a single procedure.

8.3.2 Generalized Partial Computation

Chapter 6 exhibits GenXGen'’s ability to analyze and produce generating
extensions for non-trivial Linux programs, and shows that the OS-assisted
state-management techniques permit sub-second specialization times for
complex specialization tasks. Moreover, as seen in §6.3.6, GenXGen is
capable of performing feature removal/debloating on non-trivial real-
world programs, such as dos2unix and base64. However, the lack of
debloating performed for od, and the blow-up in program size for od seen
in Fig. 6.16 in §6.3.5, demonstrates the limitations of classical program
specialization in the presence of complex control that is dependent on
dynamic input.

Examination of the difficulties that GenXGen has with interpreter-like
programs, such as od, suggests that techniques from generalized partial com-
putation [Futamura et al., 1991] may be useful for improving specialization.
Generalized partial computation essentially extends classical partial evalu-
ation by augmenting the static-state representation with logical predicates,
and uses a theorem prover to further simplify code, and to further prune
unreachable paths by using the additional state information to prove the
unreachability of some dynamic branches.

For example, the blow-up in size of the residual code in od is due to
multiple dynamic branches in series. In a simpler form, many of these

series of dynamically-controlled if statements have structure like this:

if (dyn_cond1){
vl = 1;
Yelseq{

242

if (dyn_cond2 && dyn_condl1){

v2 = 3;
Yelsed{
v2 = 4;

Standard partial evaluation yields four post-states, because both paths

must be taken at each if statement, due to the dynamic predicate:

{vim—1,v2 +— 3}
{vi—1,v2— 4}
{vi—2,v2— 3}
{vi— 3,v2 — 4}

However, the static state correlates with the dynamic state, and two
of the post-states are impossible: {v1 — 1,v2 — 4}, and {vl — 2,v2 — 3}.
In particular, even though dyn_condl and dyn_cond2 are not statically
known, their value in a given static state can be inferred from the path
taken through the if statements. Thus, if the static state is augmented with
logical propositions about the dynamic states, the two post-states for the

first if statement are:

{vi+— 1} Adyn_cond1
{vl+— 2} A—dyn_cond1

Thus, a straightforward application of a theorem prover to the post-
state facts and the predicate dyn_condl && dyn_cond2 would allow the
specializer to avoid taking the two spurious paths at the second if state-
ment. This example suggests that for complex programs, the application
of generalized partial computation may yield significant improvements in
the size and speed of specialization results.

Historically, generalized partial computation has not found widespread

243

use, due to the computational cost of theorem-proving. However, the ad-
vent of powerful and comparatively fast SMT solvers such as Z3 [de Moura
and Bjorner, 2008] suggests that techniques from generalized partial com-
putation may now be more readily applicable. By augmenting the state
representation with facts gleaned from dynamic predicates on the path to
a given state, it may be possible to produce better specialization results

for programs such as od.

8.3.3 Layer Collapsing Across the Kernel Boundary

One of the most interesting advances in the development of the Linux
kernel over the past several years has been the advent of eBPF [Borkmann
and Starovoitov, 2014]. While originally, the Berkeley Packet Filter was a
kernel-memory-space virtual machine for implementing fast firewalls, it
has been extended to become a general-purpose kernel-side VM that runs
trusted and verified code in kernel space to implement, e.g., zero-copy
I/O [Begunkov, 2021b,a; Begunkov and Wei, 2023]. The code produced
by classical program specialization has structural properties that make it a
candidate for use with eBPF. First, partial evaluation can “collapse layers”
in programs, inlining procedures, and intermingling caller and callee code.
Second, partial evaluation unrolls static loops; the eBPF verifier requires
all code to be loop-free. Moreover, by virtue of simplifying code, partial
evaluation may be able to produce code that is easier for the eBPF verifier
to analyze.

For programs that already run in a trusted context, these factors sug-
gest opportunities for significant performance improvement. For example,
consider a case where a generating extension can operate on a represen-
tation of the kernel-side portion of an IO call, where the actual writes or
reads are treated as dynamic. A generating extension can intermingle the
caller and callee code, producing loop-free code, which can be compiled
to eBPF bytecode. In effect, one can think of the opportunity as one to

244

create a tool that performs an automated version of the sort of program
“re-architecting” suggested by research into exokernels [Engler et al., 1995].
This prospect poses several interesting questions and challenges: clearly,
moving an entire program into kernel space is infeasible, even if it is a
program of trusted provenance. Thus, some means of identifying clear
boundaries at which one could expose a reasonable interface would be
important. On the other hand, the specialization tasks may be simpler; in-
stead of specializing a full program, one might instead specialize a subset

of a library, starting at a relevant procedure call.

8.4 Concluding Notes

GenXGen demonstrates the advantages of “cross-pollination” in
programming-language research. By incorporating features available at
the OS and hardware level, and by eschewing the traditional insistence
on an absolute guarantee of soundness in favor of a probabilistic one,
GenXGen is able to perform non-trivial specialization tasks in a reason-
able amount of time. Moreover, though this work is not by any means Al
research, it has the “flavor” of a corollary of “The Bitter Lesson” [Sutton,
2019]. Classical program specialization is a “meta-technique” for pro-
gram rewriting—essentially a search over a tacit graph induced by the
program points and static states of a program—which has intermittently
fallen in and out of vogue, generally due to the difficulty of the underlying
program-analysis tasks, as well as the computational infeasibility of per-
forming specialization at scale. As the resurgence of theorem proving and
logic programming shows, when given improved computing resources,
revisiting these out-of-fashion techniques can bear significant fruit. The
successes seen in this dissertation suggest that, coupled with decades of
advances in computational power, further efforts to improve the quality of

BTA results and improving the general efficiency of state-space exploration

245

are tasks that may well yield even more interesting results.

246

Bibliography

2019. Using the GNU Compiler Collection (GCC). https://gcc.gnu.
org/onlinedocs/gcc-9.2.0/gcc/

2023. Debugging With GDB (10 ed.). https://sourceware.org/gdb/
current/onlinedocs/gdb.html/Process-Record-and-Replay.
html#Process-Record-and-Replay

Aatira A. Ahmad, Abdul R. Noor, Hashim Sharif, Usama Hameed,
Shoaib Asif, Mubashir Anwar, Ashish Gehani, Junaid H. Siddiqui,
and Fareed Zaffar. 2021. TRIMMER: An Automated System for
Configuration-Based Software Debloating. IEEE Trans. on Softw. Eng.
(2021). Early access.

Mohannad Alhanahnah, Rithik Jain, Vaibhav Rastogi, Somesh Jha,
and Thomas W. Reps. 2022. Lightweight, Multi-Stage, Compiler-
Assisted Application Specialization. In 7th IEEE European Symposium
on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022.
251-269. https://doi.org/10.1109/EuroSP53844.2022.00024

L. O. Andersen. 1994a. Program Analysis and Specialization for the C
Programming Language. Ph.D. Dissertation. DIKU, Univ. of Copen-
hagen.

Lars Ole Andersen. 1994b. Program analysis and specialization for the
C programming language. Ph.D. Dissertation. University of Cophen-
hagen.

https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Process-Record-and-Replay.html#Process-Record-and-Replay
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Process-Record-and-Replay.html#Process-Record-and-Replay
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Process-Record-and-Replay.html#Process-Record-and-Replay
https://doi.org/10.1109/EuroSP53844.2022.00024

247

Paul Anderson, Thomas Reps, and Tim Teitelbaum. 2003. Design and
Implementation of a Fine-Grained Software Inspection Tool. Trans.
on Softw. Eng. 29, 8 (2003), 721-733.

Min Aung, Susan Horwitz, Rich Joiner, and Thomas Reps. 2014.
Specialization slicing. ACM Transactions on Programming Languages
and Systems (TOPLAS) 36, 2 (2014), 1-67.

John Aycock. 2003. A Brief History of Just-in-time. ACM Comput.
Surv. 35,2 (June 2003), 97-113. https://doi.org/10.1145/857076.
857077

G. Balakrishnan. 2007. WYSINWYX: What You See Is Not What You
eXecute. Ph.D. Dissertation. Comp. Sci. Dept., Univ. of Wisconsin,
Madison, WI. Tech. Rep. 1603.

G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. 2005a.
CodeSurfer/x86 — A Platform for Analyzing x86 Executables, (Tool
Demonstration Paper). In Comp. Construct.

Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teit-
elbaum. 2005b. CodeSurfer/X86—A Platform for Analyzing
X86 Executables. In Proceedings of the 14th International Confer-
ence on Compiler Construction (Edinburgh, UK) (CC’05). Springer-
Verlag, Berlin, Heidelberg, 250-254. https://doi.org/10.1007/
978-3-540-31985-6_19

G. Balakrishnan and T. Reps. 2010. WYSINWYX: What You See Is
Not What You eXecute. Trans. on Prog. Lang. and Syst. 32, 6 (2010).

Robert M. Balzer. 1969. EXDAMS: extendable debugging and mon-
itoring system. In American Federation of Information Processing Soci-
eties: AFIPS Conference Proceedings: 1969 Spring Joint Computer Con-
ference, Boston, MA, USA, May 14-16, 1969 (AFIPS Conference Pro-
ceedings), Harrison W. Fuller (Ed.), Vol. 34. AFIPS Press, 567-580.
https://doi.org/10.1145/1476793.1476881

Earl T Barr and Mark Marron. 2014. Tardis: Affordable time-travel
debugging in managed runtimes. ACM SIGPLAN Notices 49, 10
(2014), 67-82.

https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/857076.857077
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1145/1476793.1476881

248

Lennart Beckman, Anders Haraldson, Osten Oskarsson, and Erik
Sandewall. 1976. A partial evaluator, and its use as a programming
tool. Artificial Intelligence 7, 4 (1976), 319-357.

Pavel Begunkov. 2021a. add BPF-driven requests. https:
//lore.kernel.org/io-uring/cover.1613563964.git.asml.
silence@gmail.com/ Request for Comment on proof-of-concept
Linux kernel patch.

Pavel Begunkov. 2021b. io_uring zero-copy-send. https:
//lore.kernel.org/io-uring/cover.1638282789.git.asml.
silence@gmail.com/ Request for Comment on proof-of-concept
Linux kernel patch.

Pavel Begunkov and David Wei. 2023. Fast ZC Rx Data Plane using
io uring. (2023).

D. Binkley. 1993. Precise Executable Interprocedural Slices. Let. on
Prog. Lang. and Syst. 2 (1993), 31-45.

Ras Bodik, Rajiv Gupta, and Mary Lou Soffa. 1997. Interprocedural
Conditional Branch Elimination. In Prog. Lang. Design and Impl. 146—
158.

Hans-Juergen Boehm. 1993. Space efficient conservative garbage
collection. ACM SIGPLAN Notices 28, 6 (1993), 197-206.

Daniel Borkmann and Alexi Starovoitov. 2014. BPF
Updates. https://lore.kernel.org/netdev/
1396029506-16776-1-git-send-email-dborkman@redhat.com/
Linux kernel patch adding the eBPF virtual machine.

Andrei Z. Broder. 1993. Some applications of Rabin’s fingerprinting
method. In Sequences 1I. Springer, 143-152.

Richard Bubel, Reiner Hihnle, and Ran Ji. 2009. Interleaving Sym-
bolic Execution and Partial Evaluation. In Formal Methods for Compo-
nents and Objects.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee:
Unassisted and automatic generation of high-coverage tests for com-
plex systems programs.. In OSDI, Vol. 8. 209-224.

https://lore.kernel.org/io-uring/cover.1613563964.git.asml.silence@gmail.com/
https://lore.kernel.org/io-uring/cover.1613563964.git.asml.silence@gmail.com/
https://lore.kernel.org/io-uring/cover.1613563964.git.asml.silence@gmail.com/
https://lore.kernel.org/io-uring/cover.1638282789.git.asml.silence@gmail.com/
https://lore.kernel.org/io-uring/cover.1638282789.git.asml.silence@gmail.com/
https://lore.kernel.org/io-uring/cover.1638282789.git.asml.silence@gmail.com/
https://lore.kernel.org/netdev/1396029506-16776-1-git-send-email-dborkman@redhat.com/
https://lore.kernel.org/netdev/1396029506-16776-1-git-send-email-dborkman@redhat.com/

249

Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Daw-
son Engler. 2006. EXE: A system for automatically generating inputs
of death using symbolic execution. In Proceedings of the ACM Confer-
ence on Computer and Communications Security. Citeseer.

Cyril Cassagnes, Lucian Trestioreanu, Clement Joly, and Radu State.
2020. The Rise of eBPF for Non-intrusive Performance Monitoring. In
IEEE/IFIP Network Operations and Management Symposium (NOMS).
IEEE, 1-7.

Sandrine Chirokoff, Charles Consel, and Renaud Marlet. 1999. Com-
bining Program and Data Specialization. Higher-Order and Symbolic
Computation 12,4 (1999), 309-335.

David Chisnall. 2018. C Is Not a Low-Level Language: Your Com-
puter is Not a Fast PDP-11. Queue 16, 2 (apr 2018), 18-30. https:
//doi.org/10.1145/3212477.3212479

Jong-Deok Choi and Janice M. Stone. 1991. Balancing Runtime
and Replay Costs in a Trace-and-Replay System. In Proceedings of
the ACM/ONR Workshop on Parallel and Distributed Debugging, Santa
Cruz, California, USA, May 20-21, 1991, Barton P. Miller and Charles E.
McDowell (Eds.). ACM, 26-35. https://doi.org/10.1145/122759.
122761

codesurfer 2018. CodeSurfer System.
https://web.archive.org/web/20180829033330/https:/ /www.grammatech.com/products/c

Alberto Coen-Porisini, Flavio De Paoli, Carlo Ghezzi, and Dino Man-
drioli. 1991. Software Specialization Via Symbolic Execution. Trans.
on Softw. Eng. 17,9 (1991), 884-899.

Andrew Collette. 2013. LZFX Data Compression Library.

Charles Consel. 1990. Binding Time Analysis for High Order Un-
typed Functional Languages. In Proceedings of the 1990 ACM Confer-
ence on LISP and Functional Programming (Nice, France) (LFP '90).
Association for Computing Machinery, New York, NY, USA, 264-272.
https://doi.org/10.1145/91556.91668

https://doi.org/10.1145/3212477.3212479
https://doi.org/10.1145/3212477.3212479
https://doi.org/10.1145/122759.122761
https://doi.org/10.1145/122759.122761
https://doi.org/10.1145/91556.91668

250

Charles Consel and Olivier Danvy. 1989. Partial evaluation of pattern
matching in strings. Inform. Process. Lett. 30,2 (1989), 79-86.

Charles Consel, Julia L. Lawall, and Anne-Francoise Le Meur. 2004.
A Tour of Tempo: A Program Specializer for the C Language. Sci. of
Comp. Prog. 52 (2004), 341-370.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337-340.

Dawson R Engler, Wilson C Hsieh, and M Frans Kaashoek. 1996. C: A
language for high-level, efficient, and machine-independent dynamic
code generation. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 131-144.

D. R. Engler, M. F. Kaashoek, and J. O"Toole. 1995. Exokernel: An
Operating System Architecture for Application-Level Resource Man-
agement. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (Copper Mountain, Colorado, USA) (SOSP '95).
Association for Computing Machinery, New York, NY, USA, 251-266.
https://doi.org/10.1145/224056.224076

Andrey P. Ershov. 1977. On the Partial Computation Principle. Inf.
Proc. Let. 6, 2 (April 1977), 38-41.

Yoshihiko Futamura. 1971. Partial Evaluation of Computation
Process—An Approach to a Compiler-Compiler. Higher-Order and
Symbolic Computation 2, 5 (1971), 45-50. (Updated and revised
version published as [Futamura, 1999].).

Yoshihiko Futamura. 1988. Program Evaluation and Generalized
Partial Computation. In Proc. of the Int. Conf. on Fifth Generation Com-
puter Systems (FGCS). OHMSHA Ltd. Tokyo and Springer-Verlag,
685—692.

Yoshihiko Futamura. 1999. Partial Evaluation of Computation
Process—An Approach to a Compiler-Compiler. Higher-Order and
Symbolic Computation 12,4 (1999), 381-391.

https://doi.org/10.1145/224056.224076

251

Yoshihiko Futamura, Kenroku Nogi, and Akihiko Takano. 1991.
Essence of Generalized Partial Computation. Theor. Comp. Sci. 90, 1
(1991), 61-79.

Jeremy Gibbons and Nicolas Wu. 2014. Folding domain-specific
languages: deep and shallow embeddings (functional pearl). In Pro-
ceedings of the 19th ACM SIGPLAN international conference on Functional
programming. 339-347.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART:
Directed Automated Random Testing. In Prog. Lang. Design and Impl.

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Auto-
mated Whitebox Fuzz Testing. In Network and Dist. Syst. Security.

E. Goto. 1974. Monocopy and Associative Algorithms in an Extended
LISP. Tech. Rep. TR 74-03. Information Science Laboratory, Univ. of
Tokyo, Tokyo, Japan.

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and
Susan J.Eggers. 2000. DyC: An Expressive Annotation-Directed Dy-
namic Compiler for C. Theor. Comp. Sci. 248, 1-2 (2000), 147-199.

Allan Heydon, Timothy Mann, Roy Levin, and Yuan Yu. 2006. Soft-
ware Configuration Management Using Vesta. Springer-Verlag.

S. Horwitz,]. Prins, and T. Reps. 1988. On the Adequacy of Program
Dependence Graphs for Representing Programs. In Princ. of Prog.
Lang. 146-157.

Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interproce-
dural Slicing Using Dependence Graphs. Trans. on Prog. Lang. and
Syst. 12,1 (Jan. 1990), 26-60.

William H. Hudson, Vamshidhar R. Kommineni, Yi Meng, Ken-
neth Kai-Baun Ma, and Gerald F. Maffeo. 2008. U.S. Patent Number
7.469,362 B2, Using a Call Stack Hash to Record the State of a Process.

Neil Jones, Carsten Gomard, and Peter Sestoft. 1993. Partial Evaluation
and Automatic Program Generation. Prentice-Hall, Inc.

252

Neil D Jones. 1988. Automatic program specialization: A re-
examination from basic principles. In Partial evaluation and mixed
computation. 225-282.

Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming
Language (2nd ed.). Prentice Hall Professional Technical Reference.

James C. King. 1976. Symbolic Execution and Program Testing. Com-
mun. ACM 19, 7 (1976), 385-394.

Andrei V Klimov. 2009. A Java Supercompiler and its Application to
Verification of Cache-Coherence Protocols. In International Andrei Er-
shov Memorial Conference on Perspectives of System Informatics. Springer,
185-192.

Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt.
1977. Fast Pattern Matching in Strings. SIAM]. Com-
put. 6, 2 (1977), 323-350. https://doi.org/10.1137/0206024
arXiv:https://doi.org/10.1137 /0206024

P. Lee and M. Leone. 1996. Optimizing ML with Run-Time Code
Generation. In Prog. Lang. Design and Impl.

Mark Leone and Peter Lee. 1996. A declarative approach to run-time
code generation. In Workshop on Compiler Support for System Software
(WCSSS), Vol. 73. Citeseer.

Peter Leven, Tilman Mehler, and Stefan Edelkamp. 2004. Directed
Error Detection in C++ with the Assembly-Level Model Checker
StEAM. In Spin Workshop.

J. Lim. 2011. Transformer Specification Language: A system for generating
analyzers and its applications. Ph.D. Dissertation. Comp. Sci. Dept.,
Univ. of Wisconsin, Madison, WI. Tech. Rep. 1689.

V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security
Vulnerabilities in Java Applications with Static Analysis. In USENIX
Sec. Symp.

Henning Makholm. 1999. Specializing c-an introduction to the prin-
ciples behind c-mix. (1999). This work discusses C-MixlI, a full
rewrite of C-Mix.

https://doi.org/10.1137/0206024

253

Steve Marx. 2018. Understanding Ethereum Smart Contract
Storage. https://programtheblockchain.com/posts/2018/03/09/
understanding-ethereum-smart-contract-storage/. Accessed:

2022-04-13.

Tilman Mehler and Stefan Edelkamp. 2006. Dynamic incremental
hashing in program model checking. Electronic Notes in Theoretical
Computer Science 149, 2 (2006), 51-69.

Andreas Jaeger Mark Mitchell Michael Matz, Jan Hubicka. 2012. Sys-
tem V Application Binary Interface, AMDG64 Architecture Processor Supple-
ment. https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.
pdf

Madanlal Musuvathi and David L. Dill. 2005. An Incremental Heap
Canonicalization Algorithm. In Spin Workshop.

E.W. Myers. 1984. Efficient Applicative Data Types. In Princ. of Prog.
Lang.

Viet Yen Nguyen and Theo C. Ruys. 2008. Incremental hashing for
Spin. In International SPIN Workshop on Model Checking of Software.
Springer, 232-249.

Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2016. Lightweight User-Space Record
And Replay. arXiv preprint arXiv:1610.02144 (2016).

Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2017. Engineering record and replay for
deployability. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17).377-389.

Chris Okasaki. 1999. Purely functional data structures. Cambridge
University Press.

Gabrielle Paolini. 2010. How to Benchmark Code Execution Times on
Intel IA-32 and 1A-64 Instruction Set Architectures. Technical Report.
Intel Corporation.

Michael O Rabin. 1981. Fingerprinting by random polynomials.
Techmnical report (1981).

https://programtheblockchain.com/posts/2018/03/09/understanding-ethereum-smart-contract-storage/
https://programtheblockchain.com/posts/2018/03/09/understanding-ethereum-smart-contract-storage/
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

254

T. Reps. 1984. Generating Language-Based Environments. The M.LT.
Press.

T. Reps. 1998. Program Analysis via Graph Reachability. Inf. and
Softw. Tech. 40, 11-12 (1998), 701-726.

T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. 1994. Speeding Up
Slicing. In Found. of Softw. Eng. 11-20.

T. Reps, T. Teitelbaum, and A. Demers. 1983. Incremental Context-
Dependent Analysis for Language-Based Editors. TOPLAS 5, 3 (July
1983), 449-477.

Tiark Rompf, Arvind K Sujeeth, Kevin] Brown, HyoukJoong Lee,
Hassan Chafi, and Kunle Olukotun. 2014. Surgical precision JIT
compilers. In Acm Sigplan Notices, Vol. 49. ACM, 41-52.

J. H. Saltzer, D. P.Reed, and D. D. Clark. 1984. End-to-End Arguments
in System Design. ACM Trans. Comput. Syst. 2,4 (nov 1984), 277-288.
https://doi.org/10.1145/357401.357402

Peter Sestoft and Harald S: Gfndergaard. 1988. A bibliography on
partial evaluation. ACM Sigplan Notices 23, 2 (1988), 19-26.

Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed
Zaffar. 2018a. TRIMMER: application specialization for code debloat-
ing. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 329-339.

Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed
Zaffar. 2018b. TRIMMER: Application specialization for code de-
bloating. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 329-339.

Christopher S.F. Smowton. 2014. I/O Optimisation and Elimination via
Partial Evaluation. Ph.D. Dissertation. Computer Laboratory, Univ. of
Cambridge, Cambridge, UK. Tech. Rep. UCAM-CL-TR-865.

Christopher S.F. Smowton. 2020. Personal communication.

https://doi.org/10.1145/357401.357402

255

Venkatesh Srinivasan and Thomas Reps. 2015. Partial Evaluation of
Machine Code. SIGPLAN Not. 50, 10 (Oct. 2015), 860-879. https:
//doi.org/10.1145/2858965.2814321

Minyoung Sung, Soyoung Kim, Sangsoo Park, Naehyuck Chang, and
Heonshik Shin. 2002. Comparative Performance Evaluation of Java
Threads for Embedded Applications: Linux Thread vs. Green Thread.
Inf. Process. Lett. 84, 4 (nov 2002), 221-225. https://doi.org/10.
1016/50020-0190(02) 00286-7

Richard Sutton. 2019. The bitter lesson. Incomplete Ideas (blog) 13, 1
(2019).

Valentin F Turchin. 1986. The concept of a supercompiler. ACM
Transactions on Programming Languages and Systems (TOPLAS) 8, 3
(1986), 292-325.

M. Weiser. 1981. Program Slicing. In Int. Conf. on Softw. Eng. IEEE
Comp. Soc., Wash., DC, 439-449.

M. Weiser. 1984. Program Slicing. Trans. on Softw. Eng. SE-10, 4 (July
1984), 352-357.

Min Xu, Rastislav Bodik, and Mark D Hill. 2003. A" flight data
recorder” for enabling full-system multiprocessor deterministic re-
play. In Proceedings of the 30th annual international symposium on Com-
puter architecture. 122-135.

Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for
sequential data compression. IEEE Transactions on information theory
23,3 (1977), 337-343.

Jacob Ziv and Abraham Lempel. 1978. Compression of individual
sequences via variable-rate coding. IEEE transactions on Information
Theory 24, 5 (1978), 530-536.

https://doi.org/10.1145/2858965.2814321
https://doi.org/10.1145/2858965.2814321
https://doi.org/10.1016/S0020-0190(02)00286-7
https://doi.org/10.1016/S0020-0190(02)00286-7

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Overview of Problems
	Overview of Results
	Thesis Organization

	Background
	A Précis on Partial Evaluation
	Slicing Overview
	Rabin fingerprinting
	Pointer Symbolization

	OS-Assisted State Management
	Issues With Prior Snapshot Approaches
	The Process Abstraction on x86 Linux
	Using OS Mechanisms to Implement Incremental State Hashing
	Incremental Updating of State Hashes
	Discussion

	The Ge-Gen Algorithm
	Summary of Slicing as a BTA Algorithm
	Polyvariance Overview
	A Slice-Materialization Algorithm
	The Ge-Gen Algorithm
	Discussion

	Pragmatics
	Generating-Extension Runtime
	Ge-Gen
	Handling Procedure Calls

	Experimental Evaluation
	Research Questions
	Experimental Setup
	Evaluation
	Experimental Evaluation of GenXGen[mc]

	Related Work
	Specialization of C and LLVM Bytecode
	Specialization of Machine Code
	Manipulations of Memory Snapshots
	Recording States
	Symbolic/Concolic Execution

	Conclusion
	Contributions
	Limitations and Challenges
	Future Directions
	Concluding Notes

	Bibliography

