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Since impoundment in the 1850s, thousands of acres of abundance of wildrice. A revised water level management 

aquatic and wet meadow vegetation have.disappeared from — plan implemented in 1982 failed to reduce late spring and 
the Upper Winnebago Pool Lakes (UWPL) of Poygan,._early summer water levels. 
Winneconne, and Butte des Morts and from adjacent areas. Low light availability (restricted by water turbidity and 
Several periods of rapidly declining macrophytes (the last - epiphyte communities) apparently was the ultimate limiting 
one occurring in the 1960s) led toa large, turbid, open-water factor determining long-term, system-wide abundance of 
system by the 1970s. In response to this severe habitat degra- submerged macrophytes.. Poor water clarity and high-water 
dation and uncertainty about decimating factors,astudy was —_ levels in May-June limited the distribution of submerged 
undertaken from 1974-82 to investigate historical changes | macrophytes to maximum summer depths of 55-61 inches in 
since impoundment, and general abundance, ecology, and Lake Poygan and 47-53 inches in Lake Butte des Morts. 

factors limiting macrophytes in the UWPL. These maximum depth limits approximated the 5% photic 
Changes in abundance of macrophytes were assessed from _zone for Lake Poygan (57-67 inches) and the 5-10% photic zone 

historical records and compared to annual and seasonal water for Lake Butte des Morts (46-60 inches). However, because 

level changes from U.S. Army Corps of Engineers’ records. _ of consistently high turbidity throughout the study, late 
Aerial photography, surveys by boat, and rake sampling _ spring and early summer water levels determined the amount 
transects provided information on present abundance and _ of lake bottom within the photic zone, and thus the annual 
distribution of macrophytes, growth and phenological abundance of submerged macrophytes. Primary sources of 
stages, water depth tolerances, and sediment relationships. turbidity for Lake Butte des Morts included the Fox River, 

Investigation of factors that affected abundance of macro- __ the Wolf River at Winneconne, lesser tributaries, and in-lake 
phytes included assessment of annual water level and water — phytoplankton populations. For Lake Poygan, in-lake 

3 clarity variations, sources of turbidity, physical impact of _ sources and lesser tributaries accounted for most turbidity. 
waves and common carp, and insect infestation of bulrushes. Sediments and undesirable fish—primarily carp and 

Long-term high water levels and extreme seasonal fluc- freshwater drum—may be more important sources of nutri- 
tuations (especially an amplified frequency and magnitude _ents than external sources leading to high phytoplankton 
of flooding). after impoundment, coupled with severe wave . and epiphyte communities. Wave action and undesirable 
and ice action, destroyed thousands of acres of macrophytes —_ fish probably have a greater impact on submerged macro- 
in the UWPL in the late 1800s and early 1900s. Additional | phytes in the UWPL by contributing to turbidity than 
factors, including eutrophication, sedimentation, and unde- through direct physical damage to plants. Injury to new 
sirable fish (primarily carp and freshwater drum) interact- shoots and rhizomes by wave action, boats, and undesirable 
ing with the initial decimating agents led to a slow decline _ fish may restrict expansion of established stands or prevent 
in macrophytes during the 1930-60 period. Anaccelerated re-establishment of perennial emergents in some locations. 
decline occurred during the 1960s, possibly due toextreme_ Furthermore, wave action severely.erodes unprotected 
flooding and water turbidity in several years. shorelines, adjacent marshes, and shallow littoral sediments. 

Important macrophytes in the UWPL during 1975-82 Management recommendations are: (1) revise the water 
included wildrice, common reed, round-stemmed.bulrushes, ~_ level management plan by establishing a new spring-sum- 
wildcelery, and sago pondweed. Wildrice abundance varied mer target level under 2.5 ft at the Oshkosh gage, but allow 
considerably among sites and years in 8 major stands total- _ periodic seasonal and annual fluctuations above and below 
ing approximately 350-475 acres in 1976-78. Small, widely _this level to simulate seasonal and longer-term drought and 
scattered stands of common reed and round-stemmed bul- _flooding’phases of a natural hydrologic cycle; also moderat- 
rushes were present during this study. Of these, the mid- ing winter drawdowns; (2) continue research to identify 
lake stands of common reed remained quite stable. Lakes _ sources of turbidity and nutrients, especially from nonpoint 
Butte des Morts and Poygan supported approximately 1,650 _ sources including tributaries, lakeshore and side-channel 
acres of submerged macrophytes in 8 major beds, but the developments, sediments, wave action, and undesirable fish; 

abundance of these macrophytes appeared to vary inconsis- (3) determine factors limiting expansion of existing emergent 
tently among beds and years from 1975 to 1981. macrophyte stands, especially long-term high water levels 

The primary factors limiting overall abundance of macro- and extreme short-term fluctuations, wave action, boats, 

phytes during this study likely included high spring-sum- _and undesirable fish; (4) develop and implement watershed 
mer water levels, abnormal timing and magnitude of water —_ and lake management plans, including large-scale breakwa- 
level fluctuations, and turbidity. Consistently high water _ ter projects to reduce water turbidity and improve water 
levels in May and June of 1975-84 probably controlled abun- _ level management; (5) monitor water quality, macrophytes, 
dance of most emergent macrophytes system-wide. Rapidly _ and shoreline erosion to evaluate management efforts; and 
rising water levels during the floating-leaf stage throughout _—_ (6) evaluate harvest and planting techniques for propagules 
June and early July apparently determined system-wide of macrophyte species important to these lakes.
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INTRODUCTION 

Management of the Upper Winnebago Pool Lakes (UWPL) Michigan District of the Wisconsin Department of Natural 
of Butte des Morts, Winneconne, and Poygan for fishand — Resources (WDNR) formed the Fox-Wolf Lakes Task 
wildlife is tantamount to management of macrophyte Force in 1974. Their charge was to assemble baseline 
communities in this large shallow-lake ecosystem. Yet, data on habitat deterioration, assess the impacts of habi- 

uncertainty over causes of a major decline in macro- tat loss on fish and wildlife resources, and discuss prob- 

phytes and factors preventing their recolonization of lems associated with water level fluctuations and 

most areas hinders effective management of this unique improved water level management. As part of the task 

and valuable resource. force, the WDNR Bureau of Research initiated a study of 

From the late 1800s through the 1950s, the UWPL sup- macrophyte changes and associated limiting factors in 
ported lush stands of emergent and submerged macro- _1974. The project ended in 1983. Specific objectives of 
phytes and provided optimum migrational habitat for this study were to: (1) document historical changes in 

many waterfowl species, especially canvasbacks (Zimmer- _ the quantity and quality of macrophytes related to water 

man 1953, Jahn and Hunt 1964, Linde 1979). In conjunc- level management, (2) determine the ecology, quantity, 

tion with abundant adjacent marsh habitat, these lakes and quality of existing macrophytes, (3) identify factors 

also furnished prime breeding and migrational habitat —_ affecting distribution and abundance of macrophytes, 

for many other species of waterfowl and water birds. _ and (4) evaluate restoration techniques for macrophytes. 
By the late 1960s, most of the macrophytes and adjacent Due to the size and complexity of this ecosystem and 
marshland had disappeared. Subsequently, waterfowl the very modest level of funding for this project, these 

migrational populations also declined precipitously objectives could only be approached in a general manner 

(G. Jolin, Wis. Dep. Nat. Resour., unpubl. data). during the 1975-82 study period. The first 2 objectives 

Artificially high water levels and extreme seasonal _ received the most attention. For the third objective, this 
and annual fluctuations were widely suggested as major _ study investigated relative impacts of water level fluctu- 
decimating factors in these lakes. However, primary _ ations, water clarity, and exposure to waves and undesir- 

determinants of distribution and abundance of macro- _ able fish on macrophytes in the UWPL. Additionally, a 

phytes elsewhere included water depth and water level serious insect infestation on round-stemmed bulrushes 

fluctuations (Sculthorpe 1971), water clarity (Spence provided an opportunity to assess potential impacts of 

1982, Chambers and Kalff 1985, Barko et al. 1986), epi- insects on macrophytes. For the fourth objective, this 

phytic communities (Wetzel and Neckles 1986), exposure _ study investigated several methods of transplanting 

to wave action (Sculthorpe 1971, Jupp and Spence 1977), common reed rhizomes. This report summarizes the lim- 

carp (Threinen and Helm 1954, Tryon 1954), sediments ited findings of the study and liberally interprets them 

(Sculthorpe 1971, Barko et al. 1986), and water chemistry through integration with information from an extensive 

(Sculthorpe 1971, Barko et al. 1986). Since considerable literature review to develop management recommenda- 

speculation existed about the relative importance and tions applicable to the UWPL, as well as other large shal- 

mode of action associated with these and other factors low lakes in the Upper Midwest. 

responsible for recent declines of macrophytes, the Lake 
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METHODS . 
Review of Historical Records 

Information on historical changes in macrophytes from — were sampled at irregular intervals from April-August of 
the early 1800s through the early 1970s was assembled 1977 and 1979-82 and are referred to as “phenology” 
from written historical accounts, maps (especially U.S. _ transects. For each area, data were pooled for all dates in 
Army Corps of Engineers and U.S. Geological Survey § May-June (3-16 dates over 1-5 years) and in July-August 
maps), photographs (especially U.S. Department of | (4-12 dates over 1-4 years) to document species composi- 
Agriculture, Agricultural Stabilization and Conservation __ tion for early- vs. late-maturing species. 
Service high altitude aerial photos), and personal accounts Along the phenology transects, submerged macro- 

of long-time residents. Major changegin macrophytes | phytes were sampled 1-12 times during a growing sea- 

documented from these sources were then examined in son witha rake modified after Jessen and Lound (1962). 

relation to annual and seasonal water level changes | While motoring at a constant speed along a subjectively 

(measured at the Oshkosh gage station) derived from _ selected course through each submerged macrophyte bed, 

daily water level records maintained by the U.S. Army 3-15 rake samples were obtained by dragging the rake 
Corps of Engineers since the late 1800s. behind the boat for 3-10 sec. Vegetation was sorted to 

species, and wet volumes were estimated for samples 
| patted dry with paper towels to determine relative contri- 

Documenting Ecology bution of each species to total vegetation. Phenological 
| status was determined for all stems apparently broken 

of Macrophytes off near the sediment surface. 
oo, More specific information on timing of various pheno- 

Distribution and abundance of emergent and submerged logical events of both submerged and emergent macro- 
macrophytes during the study period were determined —_ )hytes was obtained from observations recorded in 
from low altitude (1,500-2,500 ft), vertical color photogra- journals kept whenever field assistants visited the lakes. 
phy in July-early September 1975-76 and 1978-79. Field Changes in abundance of submerged macrophytes 

surveys verified species composition and location, and = were monitored annually from 1975-80 along 5 additional 
monitored phenology, growth, and density during April- transects, referred to as “relative abundance” transects, 
September 1975-82. in the UWPL (Fig. 2). The starting point and direction of 

Phenology and growth rates of 5emergent species _ transects were subjectively selected at the north shore of 
were determined by sampling plants at irregular inter- —_ Lake Winneconne, the west shore of Lake Poygan, and in 
vals during mid-April to early September 1976-82 at sev- 3, bays of Lake Butte des Morts in 1975. Once each sum- 
eral locations to account for variability throughout the _ mer thereafter, transects were reestablished using a transit 
system. A maximum of 16 locations for wildrice,8 for and identifiable landmarks. Abundance of submerged 

~ common reed, 12 for round-stemmed bulrushes (Scirpus macrophytes was estimated for 100 points located at 53-ft a 
acutus and S. validus combined due to difficulty distin- intervals along 1-mile-long transects. At each point, 

guishing these species in the field), 4 for spike rush, and —_ samples were collected by dragging a rake the length of 
14 for stiff arrowhead were monitored at various times _its handle along the bottom. Relative coverage (%) of the 

during the study period. Beginning and ending datesfor _ rake tines was estimated for each rake sample in all 
major phenological events represent 4-23 observation years, and in 1979-80, wet volumes also were determined 

dates variously spread over the 7-year period. Typically, as above. Chi-square tests examined differences in fre- 
10-20 stems (but ranging from 5-90 stems) were subjec-  — quency of occurrence among years. Precision of estimat- 
tively selected at representative sites within a stand of ing rake coverage was evaluated by comparing wet 
each species on each sampling date. Water depth and volume estimates for 5 classes of rake coverage (1-12%, 
stem height above the sediment were measured and phe- —- 13-37%, 38-62%, 63-87%, and 88-100%) with 1-way 
nology (flowering, fruiting, senescence) noted. Although = Analysis of Variance (ANOVA), followed by Tukey’s 
observer bias associated with subjective stem selection  Studentized Range Test (TSRT). 
contributed an unknown amount of variability, these A continuous recording thermograph monitored water 
data provided a general description of growth patterns temperature at a mid-column and a sediment-water 
and phenology. Relationships between average height of interface point during the growing season at the Lake 
mature stems measured in July-August 1981 and water — Poygan west shore site in 1976-77 and 1981, and at 2 sites 
depth among several different stands for4emergent in Lake Butte des Morts: Nickel’s Marsh-west in 1976 
species (common reed, round-stemmed bulrushes, spike and the Allen’s Marsh Study Area (AMSA) in 1979 and 
rush, and stiff arrowhead) were analyzed with simple lin- 1981 (Fig. 3). Growth stage of several species was then 
ear regression analysis (SAS Institute 1982). related to water temperatures at these sites. 

Phenology, species composition, and relative abun- Water depth tolerances for 5 emergent species (wildrice, 
dance of submerged macrophytes were documented common reed, round-stemmed bulrushes, spike rush and 
along transects in 8 areas of the UWPL (Fig. 2). Transects _ stiff arrowhead) were derived from depths measured at 
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the lakeward edge of plant beds at least once during = were evaluated for stabilizing sediment around the 
summer, 1981. Water depth tolerances for submerged plantings: (1) sandbags containing sediment and rhi- 
macrophytes were derived from measuring water depth §zomes with stems protruding through holes placed in 
at every 10th station along the relative abundance tran- | excavated depressions or on the sediment surface, and 
sects and at the outer margins of plant beds elsewhere —_ additional sandbags placed around the surface plantings; 
during 1975-80. Differences between these water depth (2) burlap bags containing sediment and rhizomes 
measurements and water level readings at Oshkosh placed inside old tires filled with sand; and (3) rhizomes 
yielded a correction factor to extrapolate maximum toler- _ buried in the sediment then covered by a piece of chicken 
ances from mean monthly water levels in each month — wire witha hole in the center for protruding shoots, and 
during spring and summer of that year. Water level data _—held flush with the sediment surface by 7-inch wire staples. 
were averaged for 5 days surrounding the date of sam- Rhizomes were harvested and transplanted from late 
pling, but severe outliers were eliminated as these likely | April to late June 1977-78. Some extracted rhizome clumps 
reflected major seiche events. This extrapolation method — were stored for up to 10 days by anchoring them in the 
also provided correction factors for comparison of monthly — parent stand. Rhizomes planted in Lake Winneconne on 
water depth tolerances of several species from August 16 May 1978, however, were stored submersed in plastic 
1969 (Harriman 1970) to tolerances during this study. pails in an unheated shed for 3 weeks. Rhizome clumps 

Sediment types for 3 emergent species were determined contained 1-50 green stems with a height varying from 
by collecting 6-inch sediment cores at 21 sites from _—_0.2-5.0+ ft at harvest. Number and height of stems were 
2 stands of wildrice, 8 sites from 1 stand of common reed, monitored at irregular intervals throughout each growing 

and 19 sites from 2 stands of round-stemmed bulrushes. season until the planting failed. For Lake Winneconne 
For submerged macrophytes, sediments were sampled at = plantings, stem height was also measured in a nearby 
every 10th sampling point along the relative abundance control plot of naturally established common reed. 

transects in 1977. Feel, appearance, and color of moist Planting site depth ranged from 0.2-2.0 ft at the Winne- 
samples provided subjective criteria for classification to | conne site and 2.0-3.0 ft at the Poygan site. 
major texture classes (sand, clay, silty-organic, or fibric). | 

Percent organic content of sediments was determined . . 
from changes in weight of samples oven-dried at 103 C Assessing Factors Affecting 

to a constant weight, then ashed at 550 C for 1 hour. 

Fisher’s Exact Test was used to analyze the relationship Macrophyte Abundance 
between frequency of plots with and without submerged = Watery Levels 
macrophytes between the 2 most common texture classes, 
sand vs. silty-organic. Rake coverage of submerged Daily water levels were obtained from a water level 
macrophytes was compared between these 2 texture gage in Oshkosh operated by the Corps of Engineers. 
classes with t-tests employing the arcsine-square root | Differences in mean water levels among months and for 

transformation. T-tests employing the arcsine-square each month among years were analyzed with 2-way 
root transformation were also used to compare organic ANOVA. TSRT was used to test differences among 
content for plots with vs. without submerged macro- | months for each year and among years for each month. oO 
phytes and for sand vs. silty-organic texture classes. The frequency of excessively high daily water levels 

Total nonstructural carbohydrate (TNC) content was | 4mong months and years was analyzed with Chi-square 
determined for rhizomes of round-stemmed bulrushes __ tests. Excessively high water levels were defined as days 
collected during the growing season of 1978 from the with levels greater than 3.0 ft at the Oshkosh gage. This 

AMSA (Fig. 3). For 12 sampling dates, 4-10 sections of 1- | Was the target summer water level of a management 
inch length were extracted from 2-5 rhizomes for analysis | Plan implemented in 1982-83 to stabilize water levels and 
following techniques described in Smith (1969). Changes Protect macrophytes (Append. A). 
in TNC content were then related to phenological events The short-term effects of varying water levels on abun- 
and growth of round-stemmed bulrush stems sampled in dance of macrophytes were assessed by comparing the 
9-10 systematically located circular plots (6.9 or 6.4 ft2) | abundance of submerged macrophytes and wildrice to 
during 1978-81, and to all round-stemmed bulrush stems Water level differences among years. Annual changes in 

within a 625 ft? wave and carp exclosure in the same gen- _ frequency of occurrence of submerged macrophytes along 
eral area during 1976-77. relative abundance transects were compared to annual 

differences in mean monthly water levels, frequency of 
high water levels in spring (May-Jun) and summer (Jul- 

° ° Aug), and minimum winter levels using Spearman’s rank 
Evaluating Techniques for corvalation analysis. Combined effects of mean monthly 
Common Reed Re-establishment water levels and turbidity vs. annual changes in rake 

coverage of submerged macrophytes were evaluated with 
The feasibility of transplanting common reed rhizomes _ multiple linear regression analysis. Spearman’s rank cor- 
was evaluated by separating small clumps of rhizomes relation analysis assessed the relationship between 
and shoots from established stands and transplanting annual abundance (acreage documented from aerial pho- 
them to the north shore of Lake Winneconne and the west —_ tography) of wildrice in the AMSA and annual differ- 
shore of Lake Poygan (Fig. 2). Three planting techniques —_ ences in mean monthly water levels for 1975-79. 
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Effectiveness of a water level management plan in Linear regression analysis was used to examine rela- 
modifying monthly and annual water level patterns was _‘ tionships among water clarity parameters (5% photic 
evaluated by comparing mean monthly water levels for = zone, turbidity, and Secchi transparency) for several 
1975-81 (prior to plan implementation) and 1982-84 (dur- _ transformations, including inverse-untransformed, 
ing plan implementation) with Wilcoxon rank sums test. inverse-inverse, log,,-untransformed, and log,,-log,, 

| | (Lillie and Mason 1983). | 

Water Clarity | Turbidity measured at the mouths of lesser tributaries, 
at major inlets and outlets, and at various in-lake sites of 

Mean monthly and annual differences in water clarity =| a, Poygan and Butte des Morts was compared among 
were evaluated for photic zone depths, turbidity, Secchi jyace potential sources. Turbidity was sampled irregu- 
transparency, and suspended solids. Data for these para- arly from April-July 1975-78 and 1981 at the mouths of 
meters were analyzed to determine differencesinmean __¢ tributaries (Pine River and Willow and Pumpkinseed 
monthly photic zone depth and turbidity among months, creeks for Lake P oygan; Spring Brook and Dagett’s and 

years, and lakes, relationships among water clarity pata” Slough creeks for Lake Butte des Morts; Fig. 2). Mean 
meters, sources of turbidity, and effects of annual varia- monthly turbidity for these tributaries was derived from 

fons in water clarity on macrophytes. weighted daily means for a variable number of tributary 
Sampling sites and sampling frequency varied consid- sampling sites (1-3) per day, and a variable number of 

erably throughout the study. ‘Therefore, comparisons of sampling dates (1-6) per month. Also, turbidity and sus- 

photic zone depths and turbidity amons lakes and months pended solids were sampled weekly near the major inlets 
for each lake were weighted by a daily mean for all sites ang outlets of the Wolf River at Fremont and Winneconne 
sampled each day. Each daily mean was calculated from ang the Fox River at Omro and Oshkosh, from M ay- 
data for a variable number (1-4) of sampling sites from a August 1975 and during April 1976 (Fig. 2). Analysis 
total of 4 different sites for Lake Winneconne, 8 for Lake of water samples for total suspended solids (TSS) and | 

Poygan, and Wh for Lake Butte des Morts. Sampling sites organic suspended solids (OSS) followed standard meth- 
were subjectively selected in all areas of macrophyte — 4ds (American Public Health Association et al. 1971), 
investigations shown on Figures 2 and 3, plus Terrell’s a, cent filters and non-filterable residue were ashed at 
Island and Nickel’s Marsh areas of Lake Butte des Morts, 450 C for 6 hours instead of 550 C for 1 hour. 

Clark's P oint area of Lake Winneconne, and the common Water clarity differences were tested among months 
reed stands in north-central and east-central Lake Poygan. —_ sing pooled data for all lesser tributaries, and among 
Analysis of differences in mean monthly photic zone _ Jeger tributaries using pooled data over all months by 
depths and turbidity among months, years, and lakes 1_wWay ANOVA and TSRT. Sample sizes were too vari- 
utilized a factorial model ANOVA, followed by TSRT or —_anle and small to test differences among tributaries by 
t-test for differences among lakes by month. month or among months by tributary. Differences 

Photic zones were defined for this study as the depth = among major inlets and outlets and among months for 
at which 95% of surface light has been attenuated by turbidity, TSS, and OSS were assessed with a factorial 
reflection and absorption of water and dissolved and — jjodel ANOVA, followed by TSRT. 
suspended constituents. Thus, only 5% of surface light = -Ror Lakes Poygan-and Butte des Morts separately-mean = 
remained at this depth. Light penetration was measured monthly turbidity was compared among major inlets, 

with a Montedoro-Whitney light meter (sensitive to light major outlets, all in-lake sites pooled, and all lesser tribu- 
in the 380-720 nm range) at 2-inch increments through  jarsjec pooled for each lake for May-August 1975 and 
the water column. The depth of 5% light penetration April 1976 using 1-way ANOVA and TSRT . This subset 
was then estimated from linear regression equations for _ included data from various sites (1-3) per day anddays ~ 

| each sample site and date. The regression model used a (1-5) per month for each source. 

log transformation for percent light (0% penetration Spearman’s rank correlation analysis examined rela- 
points deleted because of the undefined log transforma- _ tionships between annual frequency of occurrence of 
tion for 0) and an intercept of 0. This relationship is submerged macrophytes along relative abundance tran- 
based on the equation: sects B and C and annual turbidity and photic zone 

log, (%/100)=-nz depth for spring (Apr-Jun) and summer (Jul-Aug) of the 
same and the previous year. Water clarity data for this 

where: analysis utilized the weighted daily means calculated from 
% = percent light penetration at depth z, all in-lake sites sampled each day and used in the analy- 
-n = slope of regression equation, and sis of water clarity differences among lakes and months. 

z = depth. 

This equation was derived from the formula for calcu- Impacts of Waves and Undesirable Fish 
lating the light extinction coefficient in pure water The contribution of suspended sediments to water tur- 
(Wetzel 1975). Several other transformations also were __ bidity by wind-generated wave action was assessed by 
evaluated (log -log,, inverse-inverse, square root-square | comparing daily wind speeds to in-lake turbidity and 
root). Turbidity was measured with a Hach Model DR __ photic zone depths. Wind speed and direction data for 
Colorimeter. every half hour during April-September 1977-82 were 
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obtained from the Oshkosh Municipal Airport, located Boies] . 

approximately 4 miles southeast of Lake Butte des Morts. ane cl : Pe 

For each day, the prevalent wind direction, mean wind Oe ; (ah 
speed, maximum wind speed, and maximum gust speed Se ee 
were determined. Gusts were defined as infrequent and oe A | ee Pee ie 
atypically strong winds compared to average wind speed = | é pe ag | i 2: sauces 
measured throughout the day. One-way ANOVA and \ , Po “y 
TSRT distinguished differences among mean monthly : BN Bes rae. , ane a! > 

wind speeds for data pooled over all years. oe i ne Fe) sh oon id oy } isn ad 

Simple linear regressions assessed relationships between Mee ee Or: 8 Cake Li ot 
mean daily turbidity and photic zone depth vs. mean daily Oe hae 17 eam eer, Cd 
wind speed, mean daily wind speed incorporating gusts, mee : a ao Saas Die 3 Mera 3 
mean daily gust speed, and maximum daily wind speed. aia Ng sca a WM Mead Cie 

" * * * 4 ws G i Cae Oo IU 1 Ny BA Si we 
These comparisons incorporated all water clarity sampling eee ee OI ca hse ead ape 3 
days from April to August and used mean turbidity and Oe pee Ts By Me hae x 

photic zone depths calculated from all in-lake sites sam- in gts Pr NN tae! Fae S 
pled each day (1-4 sites). Additionally, mean daily turbid- | ee ' 
ity and photic zone depth were regressed on mean daily A solid panel wave barrier (middle), a wire mesh carp exclosure 
wind speed in April-May only. Using only spring data (right), and a control plot (located equidistant to the left of the 
reduced the confounding effect of frequent phytoplank- solid panel exclosure) tested the direct physical impacts of waves 
ton blooms and sampling bias in vegetated areas during and carp on macrophytes in the Allen’s Marsh Study Area of 

summer. Lastly, mean daily turbidity and photic zone Take Butte des. Marts. 
depth for sites in western Lake Poygan and sites in the 
Sunset Bay area of Lake Butte des Morts were regressed For each plot, macrophytes were sampled at 20 sys- 

on mean daily wind speed for days with onshore winds. _tematically located points by harvesting all vegetation in 
These were the only nearshore sites with adequate sam- a 0.67-ft? area during late July through mid-August 1975- 
pling days to assess the impact of waves over long fetches. 80. The wire mesh exclosure was not sampled in 1975-76 

Water clarity differences associated with wave attenu- and 1980, and emergent macrophytes were not sampled 
ation by macrophytes allowed further examination of in any plot in 1976. Sorting samples to species and dry- 
the relationship between wave action and water clarity. ing for 4 hours at 75 C yielded dry weight biomasses. 

Turbidity was measured at irregular intervals from Differences among treatments and years for total biomass 
April-September at 3 sites: a submerged macrophyte bed _ of macrophytes were determined with a factorial model 
at Lake Poygan’s west shore during 1976-77 (1-7 sam- ANOVA. A differential response by emergent vs. sub- 
pling dates per month), a mixed wildrice-submerged merged macrophytes led to a second, separate analysis of 
macrophyte stand at the AMSA during 1978-79 (1-3 sam- each group using a factorial model ANOVA. Finally, 
pling dates per month), and a common reed standin —_'TSRT examined differences among years by treatment and 
Sunset Bay during 1975-76 (1-5 sampling dates per month). among treatments by year for the 2 macrophyte types. 
At each site, turbidity was measured at the shoreward 

margin of macrophytes, the interior of the stand, and Insect Infestations in 

beyond the lakeward margin of macrophytes. TSS and oss : Round-stemmed Bulrushes 
were also measured for the 3 common reed sites. 

Differences among sites and among sampling dates were Premature discoloration, death, and loss of stems within 
analyzed with 2-way ANOVA, followed by 1-way ANOVA the solid-panel exclosure in 1977 prompted closer scrutiny 
and TSRT of sampling site differences in each month. of insect damage in the AMSA during 1977-80. Green and 

Direct physical impacts of waves and carp on macro- _ discolored stems were subjectively collected on 3 days in 
phytes were investigated from 1975-80 with an exclosure July-August 1977 (48 stems) and 11-12 days in early June- 
experiment incorporating 2 protection treatments and a early September 1978 and 1979 (225 and 261 stems, 

control plot at the AMSA (Fig. 2). Exclosures were 25 ft respectively). Each stem was split open and checked for 
by 25 ft in size. Theoretically, a solid panel structure _ boring insects and signs of insect damage. William H. 

excluded both waves and. carp, whereas a wire structure Hilsenhoff (University of Wisconsin-Madison) initially 
excluded only carp. The original experimental design _ identified several larvae and pupae used as references 
involved sets of these plots at 5 different locations in the for future identification. Variations in stem density and 
UWPL in 1975, but waves and ice severely damaged __ phenology of stems sampled during 1977-80 in 9-10 sys- 
structures at all locations except the AMSA during 1975-76. _ tematically located plots (6.9 ft? and 6.4 ft? circular plots 
Treatment and control plots at this site were subjectively for 1977 and 1978-80, respectively) were then related to 
located in a littoral zone surrounded by a heterogeneous __ insect infestation rates. Plots were spaced 10 ft apart 
mix of emergent and submerged macrophytes. In April along a transect perpendicular to the shoreline with the 
1979, both exclosure structures were removed and plots _ first plot located about 10 ft inside the shoreward edge of 
permanently marked for subsequent sampling in 1979- a bulrush stand. One-way ANOVA evaluated differences 
80. Water depths were similar among all 3 plots, but in stem density among sampling dates within a year and 

ranged from 16-30 inches during the study. among years for similar sampling dates. 
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History of Macrophyte Changes 
and Water Level Management 

Prior to impoundment in the 1850s, the UWPL were nat- Major changes in species composition, abundance, and 

urally eutrophic, large riverine marshes supporting dense _ distribution of macrophytes occurred from the 1850s to 
emergent macrophytes dominated by wildrice (Linde _ the 1960s. The transition of the UWPL from a riverine 
1979). Large sedge meadows and lowland prairies sur- marsh ecosystem to a large, turbid, open-water lake sys- 
rounded the marshes. Fish and wildlife populations tem encompassed 3 phases: (1) formation and disintegra- 
thrived in these optimal habitats. tion of floating bog after impoundment from the 1850s to 

Settlement and fur trading on the Lower Fox River in _ the 1920s; (2) replacement of bog by other emergents and 

the late 1700s through the early 1800s produced a strong —_ submerged macrophytes from the 1930s to the 1950s; and 
demand for transportation routes (Linde 1979). One such —_(3) disappearance of these successional macrophytes in 
waterway extended from lower Green Bay upstreamon the 1960s. 
the Fox River to Portage, then across land and water via 

a canal to the Wisconsin River, and finally down to the 1850 to 1930 
Mississippi River (Fig. 1). This route required locks and 
dams throughout the Fox River system and a canal at The first major transition in macrophytes occurred from 

Portage. Power generation was a secondary consideration the 1850s to the 1920s and resulted primarily from 
(Linde 1979). Dams built in the 1850s on the Fox River at increased water levels and extreme water level fluctua- 
the Neenah and Menasha outlets on the north end of __ tions after impoundment, especially in years of severe 
Lake Winnebago created the Winnebago Pool consisting flooding (Linde 1979). Impoundment of the Winnebago 

of Lakes Winnebago, Butte des Morts, Winneconne, and Pool increased summer water levels by an average of 2 ft 

Poygan (Fig. 1). 
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a : Fox River channel and directed it far out 
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ero ; declined or disappeared over the next 30 
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| lake by the 1970s. This series of aerial 

5 ag photos shows changes from 1941 to 1971. 

cae | (Photos continued on pages 12-13.) 
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| Figure 4. Long-term changes from natural stage and annual fluctuations in mean late-spring and summer (May-Aug) water 
levels of the Winnebago Pool Lakes as measured at Oshkosh, 1883-1984 (modified from Linde 1975). 
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Floating bogs are created when (a) high and fluctuating water lev- (b) rising water levels in spring prior to ice-out lift the ice layer 
els lift dense rhizomatous mats away from underlying substrates; formed within rhizomatous mats, tearing them away from bottom 

substrates; 
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in the 1850s, and subsequent modifications and improve- | mats when water levels rose before ice-out in spring 
ments raised summer water levels an additional 0.5 ft in (Penko 1985); and (3) erosion of soft, unstable sediment 
1937-38 (Fig. 4) (Linde 1979). The resulting high water from beneath rhizomatous mats by wave action and ice. 
levels flooded thousands of acres of lowland marsh, sedge = scour. Wave and ice action later disintegrated floating 
meadow, and prairie. Human development of land sur- bogs and created small, floating islands of emergent 
rounding this large reservoir and diminished storage | macrophytes that severe flooding readily swept away. 
capacity of marshes for spring run-off necessitated water As floating bogs and emergent macrophytes declined, 
level management for flood control in the early 1900s. _ the area of open water expanded, allowing greater wave 
High water levels were maintained during late spring action that further exacerbated the problem (Linde 1979). 
and throughout summer for navigation and power gen- Total bog and marsh loss prior to 1961 approximated 
eration. A gradual drawdown beginning in October or 5,200 acres on Lake Poygan, 1,500 acres on Lake Winne- 
early November (the end of the navigation season) pro- —- conne, and 3,800 acres on Lake Butte des Morts (Figs. 5 
vided storage capacity for spring run-off and augmented and 6). Most of the bog and marsh disappeared prior to 
flow for power generation during the low-flow winter 1937, with the greatest losses occurring in years with 
period. During spring runoff, water levels increased | exceptionally high spring-summer water levels (Linde 
rapidly, and often rose uncontrollably prior to ice-out 1979). In 1881, water levels were 2.0 ft above the legal 
due to inadequate outflow capacity, insufficient reservoir © maximum water level or 3.0 ft above normal summer 
storage capacity, increasing quantity and rapidity of runoff levels; in 1922, water levels were 1.3 ft above the legal __ 
with watershed development and destruction of wetlands, | maximum or 2.4 ft above normal summer levels as mea- 
and slow response to major runoff and precipitation | sured at the Oshkosh gage (Fig. 7). 
events. Severe flooding and ice damage often ensued. As floating bog and emergent macrophytes disap- 
Late spring and summer water levels fluctuated widely | peared, wave action and ice-scour eroded unstable 
among years for these same reasons (Fig. 4). organic sediments formerly held in place by dense root 

The 2.0-ft rise in water levels in the 1850s apparently § systems (McKee and Laudon 1972). This created deeper 
eliminated emergent macrophytes from the deepest areas __ water areas, further limiting re-colonization by emergent 
and created large expanses of floating bog consisting of | macrophytes. From 1918 to 1968, water depths increased 
wet meadow, lowland prairie, and emergent marsh as much as 3 ft over most of the western half of Lake 

macrophytes (Linde 1979). Bog formation likely occurred § Butte des Morts in areas formerly occupied by emergent. 
through several mechanisms: (1) buoyancy of dense rhi- = macrophytes (Fig. 8). Re-distribution of sediments prob- 
zomatous mats due to excessive accumulation of gases ably continued through a second major loss of macro- 
from premature senescence of stressed plants and anaero- —phytes in the UWPL during the 1960s. 
bic decomposition; (2) lifting of ice layers frozen into the | | 

VN A os WY NAA A OB OV 
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(c) substrates under rhizomatous mats are scoured away. (d) Wave and ice action then break these bogs into small islands 
that float downstream (illustrations by Arlyn Linde and Tom 
Jantsch). 
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Figure 7. Frequency and magnitude of water levels above the legal maximum of 3.45 ft at Oshkosh for the Winnebago 
Pool Lakes, 1858-1980 (includes only years in which water levels exceeded 3.45 ft) (modified from Linde 1979). 

| 1930 to 1960 | 
Less drastic changes in water levels, water depths,and = macrophytes probably colonized the optimum habitat 
abundance of macrophytes marked the second transitional created in deeper areas by loss of competition and shad- 
phase in macrophytes from the 1930s through the 1950s. —s ing from floating bog and emergent macrophytes. 
Water level management shifted from commercial naviga- Wildrice, round-stemmed bulrushes, river bulrush, and 

tion to water storage for municipal and industrial use, | arrowheads (mainly stiff arrowhead) likely colonized 
waste dilution, and power generation. Commercial navi- _ shallow zones. In 1940-43, Lakes Winneconne and Poygan 
gation had ceased by the 1940s (Linde 1979). Other goals — supported a greater profusion and diversity of macro- 
included flood control and an emerging emphasis on _ phytes than most other large wetlands in Wisconsin with 
recreation. This did not alter the general water level pat- the exception of the Upper Mississippi River; but carp 

tern seasonally. . and fluctuating water levels, especially winter draw- 
Although late-spring and summer water levels contin- down, had already contributed to a noticeable decline 

ued to fluctuate annually, the long-term average increased (Zimmerman 1953). Submerged macrophytes and deep- 

by only 0.5 ft during this period (Fig. 4) (Linde 1979). water species of emergent macrophytes slowly declined 

Excessive flooding during late Spring and summer through the 1950s. This decline probably was due to stress 
occurred infrequently during this period with the worst —_ from long-term high water levels and excessive seasonal 
flooding in 1960 (Figs. 4 and 7). This flooding andcon- fluctuations over previous decades, slowly increasing 
tinued high water levels above the pre-impoundment water depths from continuous erosion of sediments in 
stage during the 1930-60 period, coupled with the 0.5 ft —_Jittoral zones, and slowly increasing turbidity. 
increase in 1937, led to more bog formation and disinte- 
gration. Wave action and flooding apparently continued 
to erode and re-deposit large shoal and delta areas in the 1960 to 1973 

| western half of Lake Butte des Morts andinnorthern Water level management in the 1960s and 1970s followed 
Lake Poygan. Remnant stands of common reed in these the annual cycle dictated by management goals in the 
areas mark the historical marsh and shoal boundaries —_ 1930-60 period. Average late-spring and summer water 
(Figs. 5 and 6). levels did not differ in the 1960s and 1970s from levels in 

These water level fluctuations and depth changes from the 1940s and 1950s. However, an accelerated decline in 
the late 1930s to late 1950s altered species composition and = macrophytes in the early to mid-1960s created the large, 
abundance of macrophytes. In the early 1900s, submerged __ turbid, open-water lakes evident during this study (Sloey 
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1970). This decline probably was influenced by extreme _ phyte loss. Trawling and boom-shocking in 1974-75 indi- 
flooding and water turbidity, especially resulting from cated that freshwater drum and carp comprised 67-68% 
nutrient loading from municipal waste water, agricultural of the total fish biomass collected in Lakes Butte des 
lands, unstable shorelines, lake shore developments, carp Morts and Poygan (Weber 1975). . 

and freshwater drum, and wave action. In particular, Fall duck use declined noticeably during this period 
severe flooding in late spring and summer of 1960 —_ (G Jolin, unpubl. data). Peak fall duck populations ranged 
resulted in higher water levels (1.6 ft above normal) that from 108,500 in 1956 to 15,000 in 1962, but rebounded to 
persisted longer (31 days) than in any year since 1922 45,000 in 1964 and 1965 (Fig. 9). Censuses were discon- 
and 1929 (Fig. 7). Furthermore, high turbidity from non- __ tinued until 1968-69 when a maximum of only 2,200 
point sources and erosion of previously unexposed ducks were counted in both years. Continental breeding 
shorelines likely accompanied flooding. These conditions populations of ducks (pooled for 10 common species) 
could have greatly reduced the photic zone during May- _also declined in the early 1960s and remained low through 
June, eliminating macrophytes from all but the shallow- __ the mid-1960s (U.S. Fish Wildl. Serv. 1985) in response to 
est and most protected areas. Turbid floodwaters during — severe drought conditions on the breeding grounds (Fig. 
1943-44 in Lake Chautauqua along the Illinois River 9). Unlike migrational populations on the Winnebago 
(Mills et al. 1966) and during 1978 in Pool 8along the _ Pool Lakes, continental breeding populations rebounded 
Upper Mississippi River (C. Korschgen, U.S. Fish and __ in the late 1960s and early 1970s. Furthermore, migra- 

_ Wildl. Serv., pers. comm.) probably caused adecline of tional populations on the Winnebago Pool Lakes declined 
submerged macrophytes in these areas. _ considerably more than continental breeding populations 

After loss of macrophytes in the 1960s, high turbidity | during the mid-1960s. 
prevailed. Plant growth no longer stabilized bottom sed- Despite extreme flooding in 1960 that possibly deci- 
iments, dissipated wave action, and competed with phy- |= mated macrophytes, populations of migrating waterfowl 
toplankton for nutrients. Finally, severe flooding of long — did not decline until the mid-1960s. A strong migratory 
duration occurred again in 1969 and 1973 (Fig. 7), which —_ instinct may have delayed waterfowl avoidance of these 
probably further reduced the abundance of macrophytes. lakes after habitat deteriorated. Canvasbacks comprised 
A noticeable disintegration and loss of floating bog from the majority of ducks using these lakes in the late 1950s 
adjacent marsh habitat accompanied a severe wind storm and early 1960s. Strong site fidelity of canvasbacks dur- 
in 1968 and excessive flooding in spring and early sum- _ ing migration could explain continued canvasback use of 
mer of 1969 (Sloey 1970). the UWPL for several years after loss of macrophytes, 

Flooding of greater magnitude than in any year since _ especially wildcelery and sago pondweed, both impor- 
1929 occurred 3 times within 14 years from 1960-73. — tant foods. Perhaps macrobenthos (an alternative food 
However, high water in most years apparently created = source) remained abundant for several years after the 
and eroded more floating bog (McKee and Laudon 1972); = macrophyte decline (see Kahl 1991), although macroben- 
but marsh and bog loss occurred more slowly and there- _ thos densities were low in these lakes during 1990-91 (R. 
fore was not very noticeable. Kahl, unpubl. data). After a major decline in wildcelery 

As macrophytes disappeared in the UWPL, wildlife | on many pools of the Upper Mississippi River during 
populations declined. Predator fish populations presum- 1988, peak populations of canvasbacks also decreased 
ably also declined due to decreased habitat, reproductive __ significantly, but relatively large numbers of canvasbacks 
success, foraging efficiency, and food resources. Their continued to visit these pools during 1989-90 in spite of 
reduction could have allowed carp and freshwater drum low food availability (C.E. Korschgen, U.S. Fish and 
populations to expand, adding to turbidity and macro- _—_ Wildl. Serv., pers. comm.) 

ee eee eee 
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120 
| Ecology of Macrophytes 

110 Winnebago Poo! Lakes (x1,000) Wildrice 

100 --@- Continental (x1,000,000) Distribution and Abundance. During 1975-79, Lakes 
Butte des Morts and Poygan supported relatively large 

90 | stands of wildrice at 8 sites (Fig. 3). There were approxi- 
mately 475 acres of wildrice of mostly sparse to moderate 

30 density at these locations in 1976 and 350 acres in 1978 
(Table 1). Sparse stands of wildrice also occurred in most 
shallow-bay and adjacent marsh-edge habitats. The 

o Poygan Land Company and Boom Bay areas of Lake 
3 Poygan, and the Nickel’s Marsh and Scott’s Bay areas of 
Q 60 | Lake Butte des Morts supported the largest stands in 
S | 1976 and 1978. 

50 Wildrice apparently was more abundant at lake sites | 
at ‘ during 1974-79 than in 1969. In August 1969 wildrice was 

40 N an ae Ny widely distributed in the UWPL, but the stands were small 
Vi, <8 + (Harriman 1970). Adjacent marshes supported larger 

30 vb fea e *é | populations of wildrice. Prolonged, severe flooding in 
May and June 1969 (Fig. 7) could have eliminated or 

20 , reduced the density of wildrice at most sites. 
Wildrice nearly disappeared during the summer of 

1984 at lake sites that had abundant wildrice during 
10 1976-82; these sites supported little or no wildrice in 1985 

—. ; (A. Techlow, Wis. Dep. Nat. Resources, pers. comm.). 

Several severe thunderstorms with strong winds and 
W470 WHT 1955 HG 19S WEF INT 1975 heavy rainfall that increased water levels 0.5 ft from 9 to | 

Year 21 June 1984 may have stressed or uprooted plants. 
| Figure 9. Peak fall populations of all species of ducks on Wildrice cannot tolerate water level increases greater 

the Winnebago Pool Lakes, 1947-74 (determined by1-5aer- than 0.5 ft, especially during the floating-leaf stage 
ial censuses each fall; from G. Jolin, Wis. Dep. Nat. Resour., (Moyle and Hotchkiss 1945). Their shallow roots are sus- 
Oshkosh, unpubl. data), and continental breeding popula- ceptible to uprooting, particularly when their floating 

: tions pooled for 10 common species of ducks, 1955-75 (U.S. leaves are pulled upward by rising water (Stoddard 1960) 
Fish and Wildl. Serv. 1985). 

Table 1. Acreage of wildrice for 8 locations in Lakes Butte des Morts and Poygan determined from 
aerial photography in July to early September, 1975-76 and 1978-79. 

Acreage by Year* 

Location 1975 1976 1978 1979 . 

Lake Butte des Morts 
Allen’s Marsh 6.8 16.6 35.9 35.8** 

Sunset Bay - 35.4 38.4 35.8 
Scott’s Bay — 116.2 39.8 42.7 

Nickel’s Marsh-west - 135.00** 23.0** - 
Terrell’s Island - - 39.0 - 

Total - 303.2 176.1 - 

Lake Poygan 

Poygan Land Co. (1 and 2) 124.5 89.8 100.2** 63.2 | 

Boom Bay 35.8 80.6 92.9 13.2 

Willow-Pumpkinseed Cr. 0 0 19.28 ~ | 

Total 160.3 170.4 171.9 - 

Grand total - 473.6 348.0 - 

* In 1977, only the Allen’s Marsh Study Area was photographed, and it had 24.0 acres of wildrice. 
** Most of stand comprised of relatively low stem density. 

@ Minimum acreage; total acreage not determinable due to incomplete aerial photography coverage. 
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and wave action. Furthermore, | 

physiological changes in floating A : | : : : : : : : ee Fruiting 7 

curtails respiration and photo- ‘6 Ss Foliage atsurface 
synthesis when rising water levels 8 : Initial growth 
inundate these leaves (Aiken ° ee DO DS BO DS 
et al. 1988). a so 

Site specific factors probably 5 30 Bo 
account for the variability in D> BO DS Do Ss DO : DO ar wildrice abundance and density 25 aR 

among areas. These factors prob- — § ON | ably included sediment nutrient B20 foe oe een a STEIN soins 

availability (Fannucchi 1983), A | water turbidity, exposure to wave 3 1B for ford aed ee a aa a 

action, carp feeding andspawn- & NA 

activity (Dore 1969), and wildrice a 
plantings by conservation clubs 6 EN a 
(A. Techlow, pers. comm.). How- = Co : pm a TS _ 

ever, water level fluctuations ©.) 7 eet 
likely dictated abundance of %& UA pntheight 2 
wildrice on a system-wide basis. = 4 SY Re 

Phenology. Wildrice seed germi- s A 

May at various sites during 1976- s FU Vv DO | Bo! BE ae 
' 82 (Fig. 10a). Water temperatures B24 Li TT eg oe eer oe deceeedeeee beeen 

averaged for severallocations 9 pe 1977: 
and years were 10-15Catthis 2 44.2 RA bch hecscbesses besssesdishssusfedeed tenes 
time (Fig. 10b). Wildrice plants = ae U a7: DO BO! BO DO 

grew rapidly during May and SS 
early June as water temperature 100 a a a a a a a 
increased from 15 C to 23C (Fig. a 
10b, 10c). Foliage reached the @ 80 a a co fr pe 

water surface in mid-May to mid- 8 | : : : : \ : of: : : / : | 
June, and the floating leaf stage  % 60 EE pn 

continued through mid-June to s BO a stems | 7 Flowering / BS SS 
early August (Fig. 10a). Plant SAG eb bpd dpe Ao SLES po 

stems then erected from the water g BO OF i a J] a } ag: 
surface in mid-June to early 2 20 Senne acc ee ee ncaa yt ances sence 

August (Fig. 10a, 10d). Flowering ge 
began in July when water tem- tt ee 
peratures reached their summer 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

maximums of 23-25 C, and most Apr May Jun Jul Aug Sep 

plants flowered by mid- to late- Figure 10. Wildrice phenology for various locations during 1976-82 (a), water tem- 
August (Fig -10a,10b, 10d). In perature averaged for several sites and years (b), and wildrice stem growth and phe- 

most wildrice stands, seed devel- nology for systematically sampled stems from a “representative” stand at Allen’s 
opment was evident by mid- Marsh Study Area during 1977 (N = 20-31 stems) and 1980 (N = 11-21 stems) 
pues ane seed’ and shed (c and d) in the Upper Winnebago Pool Lakes. 
throughout September and early 
October (A. Linde, Wis. Dep. Nat. 

Resour unpubl. cata) logical This delayed emergent and flowering stages 2-3 weeks. Delayed phenology in 
events varied by 23 ncke © diving 1980 possibly was due to colder water temperatures in spring (although no data 
the study, depending on year, site were available for 1980) that delayed germination and to greater water depths at 
and wa ler depth. Wildrice on the sampling sites (Fig. 10c). Deeper water prolonged the floating leaf stage, delay- 
AMSA reached the water surface ing flowering in a Lake Erie marsh (Thomas and Stewart 1969). 

about 7-10 days later and plants Sediments. At the AMSA and the Willow-Pumpkinseed creeks area (Fig. 3), 
remained in the floating-leaf sediments underlying wildrice stands were primarily silty and sandy with a 
stage about 3 weeks longer in mean organic content of 10% (Table 2). Wildrice displayed wide tolerance for 
1980 than in 1977 (Fig. 10c, 10d). various bottom sediments, except gravel, in the UWPL in 1969 (Harriman 1970). 
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. co . . ° o J 

In other North American locations, silty-organic sedi- remained stable from 1978 to 1979, but density appeared 
e e . . ° C7 

ments provided optimum habitat, but most substrates _ to decrease in 1979. Low and declining water levels from 
provided suitable habitat (Dore 1969, Kah] 1991). — July to September in each year of 1975-77 may have | 

e e ° . ° e e e . e e . . 

Sediment fertility and micro-nutrient availability can induced greater seed productivity, as found in Minnesota 

ff ildrice distributi d abund F i affect wildrice distribution and abundance (Fannucchi = (Moyle 1944). In 1978, water levels remained relatively 
1983, Aik 1. 1988 , Ausen et al. ). | : high from May-September, perhaps reducing seed pro- 

ducti d sub lant density in 1979 Water Depth. Wildrice tolerated maximum water depths uction and subsequent plant density in 
of 5.9 ft and 4.4 ft in May-June, and 5.8 ft and 4.3 ft in July- Extrapolation of water depths for wildrice stands from 

. e ° ° 

August at the AMSA in Lake Butte des Morts in 1978 and §measurements taken in August 1969 (Harriman 1970) to 
at the Poygan Land Company area in Lake Poyganin other months that year yielded depth maxima of 3.9 ft in 
1981, respectively (Fig. 2). Depth tolerance of wildrice at April, 4.5 ft in May-June, and 4.6 ft in July 1969 for the 
the AMSA in 1978 likely reflected maximum depth for © UWPL. Optimum water depths for several varieties of 

_ the entire period of 1975-79. wildrice in other North American locations were 0.3-3.6 ft, 
° e 

The wildrice stand at the AMSA expanded lakeward and the range was 0.3-4.5 ft (Stoddard 1960, Dore 1969 
y J 

e ° . 

annually from 1975 to 1978 (Table 1). Size of this stand Thomas and Stewart 1969, Kahl 1991). 

Table 2. Texture and organic content of sediments at wildrice, common reed, and round-stemmed bulrush stands in several locations o y J 

the Upper Winnebago Pool Lakes, 1975-79. 
nn el 

e 

Texture Organic Content | 
e e 

No. of Sand Silt-sand Silt No. of 
; + oO oO oO + Oo Species Samples (mean %) (mean %) (mean %) Samples Mean %** 

a 

Wildrice 21 24 29 48 20 10 (16.8) 

Common reed 2 — 50 0 50 8 15 (10.2) 

Bulrush 12 33 67 0 19 10 (10.3) 
meee 

. . . ; : : 
* Number of 6-inch core samples for 2 stands of wildrice (Allen’s Marsh Study Area, Lake Butte des Morts and Willow-Pumpkinseed I 

, 
Creeks Area, Lake Poygan) and bulrush (Allen’s Marsh Study Area and Sunset Bay of Lake Butte des Morts), and 1 stand of com- v J, 

/ mon reed (northeast of Terrell’s Island). 
eo sae . 

Standard deviation in parentheses. 
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A dense stand of wildrice increased in size annually from 1975-78 in the Allen’s Marsh Study Area, Lake Butte des Morts.



Common Reed . o = i -aeiacaemummailias sein 

Distribution and Abundance. ie a oo ee 
Common reed was abundantin gj. 0, 9 glad ie aes "Ce gh hae a." a 
adjacent marshes during the pte, AaB oe aa Seema Ree MSTA I Pers: PON Bi Say 5, 
study but occurred only at widely it. = Se PS = Ee feo ee me Wf 
distributed sites within thelakes. 9 ©) ae — 
Typieally u pemued 2 mall rns a nae aa ees 5 Se bit AE ier 

ense monotypic stands. Mos | OMS hae oe IRM erty ME Big eo cig GE Ie a 
stands within the lakes repre- eve wae ot deere eS) ae waa ee cl 
sented remnant margins of Beg OUR ee eee ne aaa aceale ieee, aaa 
marshes and shorelines from the Hey /pagug pas aes sh Cie es meee hte “ie 2 Wy 
mid-1800s (Figs. 5,6). These rem- Mle 5 20 Meese ce = 5 cea Oi = 
nant stands of common reed have Se fy ec. age Mes at: Aton 
remained quite stable since the Seco ft eo ae wee el Al hi? \ ry 
late 1930s (Linde 1975). However, See ere, — es NY Go Pe 
long-term high water levels pro- Pe i ems — a Wai fe alae 
ducing water depths of 3.0-4.5 ft re 
at the outer margins of most , me oo 

stands probably constituted the 
primary factor limiting expan- 

sion. These water depths stress ee 
plants and make them vulnerable . iat . bce. 
to many other harmful agents. oe: ger 2 * Lic an 

Wave action, boating, snOW- er anil 
mobiling, and carp may have  gqesggt eee (655) | a a aN a ha Ni ADR SS LS 

interacted with high water levels f ys Ae i ‘ a ia Age Wey x wi 
to restrict expansion of these iso- aK v Rats a a Ue RS ae UE LR | 
lated stands into adjacent areas a d ING At 4 BN a am RA 
with comparable water depths, ; ‘= : E >i wale evar | 
and may have prevented reestab- } / ‘ oS ) 4 
lishment of stands in other loca- 2 . y ng Hee | 
tions. Waves damaged new \ CUS i A CSNY 
shoots from transplanted rhi- < Wena ae; is AD sot: amr aly 
zomes of common reed directly ae = 2 4 

and indirectly by depositing algae Se " 
and other debris on these stems, ste : . aa 
subsequently submerging or sev- a oo ee = a cae 
ering them during this study. : eee OO 

Boats and snowmobiles appar- 
ently have damaged stems along i 
the margins and withincommon figeraa 3 
reed stands. Numerous damaged gaa 1 
stems along the margins of stands fea atte neg 
and paths through stands bor- jg ie thew ot 
dered by many damaged stems os Rng aR ree Se eo 
were associated with heavy fish- Pe 6 sce gl e PELE TAT Sef Ubud Se 
ing pressure along the edges and % ps Khe A ae ds i is - x Va , ‘dh yn) eh ae 

within stands during this study. aaa gers oe Roane al a aa Sea SOE So sc nh Ange 
Furthermore, several narrow SS hey fc: ke a Rey ee pn I S27 7 eta ’ 
paths through common reed By: See RES 2 ce pi et Day Mi ee Aa 

‘ SOA Neon Se co Aa RIT Ae lhe et 
sponded to location of snowmo- ee oie a Pek os Note RP CREA kx 

bile paths during winters of this Sa a Be ae re aan a eas 

study (A. Linde, unpubl. data), Cai ts 2 eRe ean 
although snowmobiles may have OMS 7 AS A ANECRS ey « 
used existing paths created by : a eter , g 

other activities, such as boating. MY a 

Frequent boat passage through _ Broken, flattened residual stems of common reed in spring provide evidence of a snowmobile 

these paths may be maintaining _ path from winter (top) that remains throughout summer in Sunset Bay, Lake Butte des Morts 

and widening them. (middle), where numerous paths are evident through the same stands (bottom). 
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Several obvious boat channels were investigated during =a eS Ni a sae Wy es 
summer 1991, and numerous green stems were found cut ee) ae iN + aS ie 
or broken below the water surface (R. Kahl, pers. obs.). : NS Se Nee 
Anglers noticing these rudimentary paths likely followed gy TE R70 eS === 

them, damaging more stems and further widening paths. SSS ee eC ae) 
Lastly, extensive carp activity apparently damaged and Sees id [ria ea ON st =a [Ss 
severed many small shoots in several common reed stands Be FILM a a TS AY, = 
along the northeastern shore of Lake Winneconne during —_geaauy Sees " hes o Sn As CH 
May 1980 (A. Linde, unpubl. data). ZOIEIZE SIE HON EE 

These factors may have damaged established common Bre ae SS SENS SI 
reed stands by breaking off aerial stems that transport an WRG ON aR SS, ow 
oxygen to rhizome systems. Cutting or breaking green Xt Ss Sage KPa = ge - a WN 
stems in mid-summer probably causes greater damage = a Cs Gt ken 4 a SNE ~ 

by reducing photosynthetic tissue, thus reducing energy te WHE 7 aca a WSS )\ 
to rhizomes as well as reducing aeration. Cutting aerial i — en 

stems of common reed below water reduced aeration to | oe i 
rhizomes and decreased bud and new shoot formation _ : = aaet 2 eae 
with the worst damage resulting in July and relatively little iva el a y Patek 
damage occurring in October-November in a European as oo Po tae ob ak as ‘cee 
study (Haslam 1970). Reduced bud formation in mid-to _ aa 7 UR i Md er Sy . : 
late-summer can result in fewer viable stems produced ae eee ie ae awe Saeetien 
the next year. Most damage likely occurs along outer Wi 4 1 Rg sree a Pe » 
margins of stands and this could limit bud formation and eh eee gut sre woes 
rhizome elongation at the terminal portion of existing | sy capa he cs 
rhizomes. Sediment fertility differences (Haslam 1970) at _ a | Ve 
edges of exposed common reed stands could alsolimit = ea if 
their expansion. Lastly, ice shoves during spring breakup po 2 : 2 3 a Craw , ai 
may damage rhizomes and shear off buds resulting in ae 
thinner stands that growing season. OO . — 

Dense common reed stands within the lakes provide ee oars Roe Ge cas on 

living breakwaters, cover, and nesting and egg-laying Be ih nai we oa Bid Ni. So yal stadt 
substrates for fish and wildlife, thereby constituting an Kt AEA ‘ is Sh Whit | 
extremely valuable resource in the UWPL. The endan- PEERUEY TANIERNG DR rei-eA Gat \ NS ye 
gered Forster’s tern formerly relied on mats of residual xs 200 pega EE Bee ENT ANS) A 
stems in common reed stands in the UWPL for nesting Ba ees =a ART ach 
material and for protected nesting sites. In recent years, aaa eee eae od AD Na 
artificial platforms have largely replaced natural substrate a ee ee Svan Sea. eee 
as safer, more reliable nest sites because rising water lev- Mhod linea i eee ety at } 
els in spring and typically high late-spring and summer ne fat (i ‘ee. \. AN in F 5 ae { 

water levels break apart natural nesting mats and flood RAY Hi \ tte meee og rn it Nob ah { 
nests (A. Techlow, pers. comm.). However, artificial plat- i He AE asad Weave 
forms are still placed in the protected interior of common Arent § ks oom MARTE Lk t 
reed stands. Common reeds also provide important fish- i an MEL ae » MR 
ing and hunting areas for sportspersons. 

Forster's terns typically nested on mats of Se” Apres re gt ees 

residual stems within common reed 4 pr ioe Laila ania - 
stands, but high water levels in May-June et es as el at cert fan” Ae a 
of most years destroys these mats and nests oe aw gs oe ae 4 eae ae é 
(top). Artificial nesting platforms have sub- wet i ks ae 2 ht |. 

stituted for the natural substrate (middle i Shae m2 
photos), but success of these platforms still a 4 at le Le Bs ae % ae za 
relies on placement within the protective he eae EO gt 5 os cee 

; ; - A ihe hs OA Aud g interior of common reed stands (bottom). lod ‘ ee ayy - poe . é 
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Phenology. Common reed is a So pO St a 
perennial that produces new | A: : : ae : : DO BO 

| shoots in spring from rhizome 5 ee A Flowering 
buds formed primarily in late ‘6 _  Troiageatsurtace: 

| summer of the previous year. 2 I Initial growth : BE BE OG 

Growth of these shoots depends ™ a 
on energy stored in over-winter- $$ > re 
ing rhizomes. Rhizomes in the 30 BO BS BS Dt 

UWPL initiated growthin mid- @ Bo 

atures reached 10-15 C (Fig. lla, 2 pee Na 

was not measured near anycom-  § GF 

from the water throughout May, NF 
and grew rapidly during late May = 10 a SE 

through mid-June (Fig. 11a, 11c). a 
Maximum stem height was IS 
attained in mid- to late-June (Fig. 8 C : : : : : 

lic). Inconsistent stem heights : : : : : /. HN : : - : Flowering first : : from mid-June through August _ 7 a a a ever 
° | e — : : : : : : : . ‘ : : :f \: - : : 

reflect the variable locationof £ pT DG 

| and the inherent bias associated @ BGS Df: ‘Stemiheight — BG ae DO 

for measurement. Plantsindeep <= : re Hees EE tee: 

stems than plants in shallow & a 
water. Average stem height was a 3 chee Cece ea fanaa gs ge Hosea bbe hee redecee 

weakly correlated with water 9% ae apt - o : : : Water: depth: : ; 
depth (r? = 0.33, P = 0.08) among Dhl Lhe beets tbeteter doesnt dieerescbissrersan sig eee. 

8 common reed stands in1981. = ES 
Seeds are rarely produced and fo ce ee ee ee icc bce dee cee bese loecse bce edeselcedenen 
require very shallow water (less ee 
than 0.5 inch) or moist mudflats ee ee oo ae 

to germinate (Haslam 19712). 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 
| Common reed flowered from Apr | May Jun Jul Aug Sep 

mid-July to mid-September in ) 
various locations and years (Fig. Figure 11. Common reed phenology for various locations during 1976-82 (a), water 
11a). Panicles collected through- temperature averaged for several sites and years (b), and common reed stem growth and 
out September 1976 yielded few phenology for systematically sampled stems from a “representative” stand in Sunset 
seeds, mostly in late September. Bay, Lake Butte des Morts, during 1976 (N = 53-90 stems) and 1977 (N = 30-39 
Phenology varied considerably stems) (c) in the Upper Winnebago Pool Lakes. | 

among sites and years. Plants in 
shallower water generally devel- 
oped earlier, probably due to 
faster rising sediment tempera- mean organic content of 15% (Table 2). Sand and gyttja (dark, fine-grained 
ture and a greater proportion of | organic sediments with high moisture content) supported common reed stands at 
stem emerged than in deeper _ several locations in the UWPL in 1969 (Harriman 1970). Sediments at common 
water. Unfavorable temperatures reed stands in the deepest waters were always sand. In several other localities, 
or water conditions delay emer- | common reed occurred on most substrates but demonstrated a preference for 
gence of buds (Haslam 1969b) sandy-organic sediments (Haslam 1972, Hutchinson 1975, Kahl 1991). 

and water depth one ty grazing Water Depth. Common reed tolerated maximum water depths of 4.3 ft in April, 

linj eg , 4.7 ftin May, 4.6 ft in June, and 4.1 ft in July and August at Sunset Bay, Lake Butte 
salinity, and stability of the stand d durine 1976. C din mid-lak d ‘call ; 
affect stand height (Haslam es Morts during - Common reed 1n mid-la e stan s typica y grew in water 

6 depths of 3.0-4.5 ft. During August 1969, water depths at various common reed 1971). epee 5 20s , Water aepis a 
stands in the UWPL were 1.8-4.8 ft (Harriman 1970), which were extrapolated to 

Sediments. Sediments at a com- maximum monthly means of 4.7 ft in April, 5.3 ft in May and June, and 5.4 ft in 

mon reed stand inthe AMSA _ July 1969. At several other localities, optimum water depths were 0-3.3 ft, and 
consisted of sand or silt witha | the maximum water depth in the temperate zone was 6.6 ft (Haslam 1970, 1972). 
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Common Reed Re-establishment | | 

Attempts to re-establish common reed resulted in vary- The longest-surviving transplants stabilized with tires 
ing degrees of success depending on size and develop- —_ in Lake Winneconne (B and I) produced additional rhi- | 
ment of harvested clumps, storage time and method, and = zomes and stems each year (Table 3). Phenology and 
transplanting method. The size of rhizome clumps and maximum height of the most vigorous planting (B) were 
degree of damage to rhizomes and shoots during trans- _ similar to stands at other locations, although height was 
plantation determined initial planting success. . approximately 1 ft less than maximum height in the con- 

Plantings stabilized and surrounded with sandbags in __ trol plot of a nearby established stand. In contrast, plant- 
Lake Winneconne produced no new green shoots, ing I produced stems with an average height of about 3 ft 
although the sandbags effectively protected plantings. | shorter than stems in the control plot. Furthermore, 
Rhizome clumps were harvested and transplanted on the these stems attained maximum height in late August to 
same day (26 April 1977), but transplanting resulted in early September, or approximately 2 months later than 
severance of all residual stems and new shoots. This _ the control plot. Both of these plantings probably | 
severe damage probably contributed to complete failure shunted energy into production and growth of new 
of these plantings. | shoots and rhizomes, which reduced maximum stem 

Only 2 of 16 plantings on 6 and 13 May 1977 stabilized —_ height, especially of planting I during the first season. 
with tires in Lake Winneconne survived into the fourth Although plantings B and I (Table 3) appeared vigor- 
growing season (Table 3). Nine plantings failed during ous at the end of the third growing season, both failed in 
the first growing season, 3 died the second growing sea- _ late spring and early summer of the fourth growing season 
son, and 2 perished the third season. Early failureof 1980. Inadequate planting depth inside tires partially 
transplants was related to size of the rhizome clump and contributed to early demise of plantings. Plantings B 
especially to the number of intact stems at planting. | and I produced horizontal rhizomes that were forced over 
Rhizomes and shoots sustained varying degrees of dam- __ the top of the tires and into the water column, reducing 
age during harvest and planting, but at least 1 green rhizome and root absorption of nutrients and minerals 
stem remained intact for each of these plantings. All from sediments. This misdirection of rhizomes probably 
plantings failing the first season had 5 or less stems at _—_ also wasted energy in growth of new rhizomes that pro- 
planting. Only 1 planting with fewer than 5 stems sur- | duced fewer new stems. : 
vived into the second season. | 

Table 3. Relative vigor of common reed rhizome transplants at the end of each growing season, Lake Winneconne, 1977-79.* 

Planting Method, Initial No. Stems 1977 1978 1979 

Date, and Site Transplanted No. Stems Height (ft)** |= No. Stems Height (ft)** No. Stems Height (ft)** 

Tire Stabilization 
= Many 49 FF 8 ncn te nee noice nis san ctcnnannineneninnn Son) of nies eee cane 

B 10 46 7.7 61 7.0 148 7.0 

C 9 16 5.4 0 - 0 - 

D 8 9 3.6 4 3.4 0 - 

13 May 1977? 
H 9 45 6.2 13 3.9 0 - 
I | 3 16 5.3 22 5.8 39 6.4 

J 7 2 3 4.0 0 - 0 - 
K 1 3 4.0 0 - 0 - 

Wire Stabilization 
26 Jun 1978? 

1 50 108 8.8 115 7.4 
2 - | 10 3.6 0 - 
3 - 20 7.0 0 - 
4 - 16 7.3 0 - 

5 - 4 7.4 9 3.9 

* All of 5 plantings on 26 April 1977 (sandbag-stabilized) died during the first season, and all of 4 plantings on 16 May 1978 
(tire-stabilized) washed out during the first season. 

** Height of tallest stem. 
4 Two plantings on 6 May 1977, 7 plantings on 13 May 1977, and 6 plantings on 26 June 1978 died during the first season. 
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Of the 11 Winneconne plantings stabilized with wire, | Few new buds emerge and produce stems outside this 
2 survived through the second growing season, but only _ period, and cutting of stems outside the emergence 
1 of these appeared vigorous at that time (Table 3). Six period severely injures the plant by eliminating most or 
plantings perished the year of planting, and 3 more died _all photosynthetic tissue (Haslam 1969b). Transplants in | 
during the second growing season. Harvesting and __ this study either seriously depleted rhizome reserves for 
transplanting in late June probably severely stressed = production of new shoots after loss of original shoots, 
these rhizome clumps. Stems in established stands at | which delayed and reduced nutrient storage, orhad_ 
various locations attained maximum height by mid- to | completed the bud emergence stage and produced no 
late-June (Fig. 11) and probably had depleted rhizome new stems. Both alternatives would leave rhizomes with 
nutrient reserves. relatively low nutrient stores at the end of the growing 

Plantings made on 1-2 June 1978 stabilized with tires season. Furthermore, low nutrient reserves probably 

in western Lake Poygan were less successful thanin preempted rhizome growth that typically occurs in late 
Winneconne; none survived through the third growing | summer (Fiala 1976). Cattail rhizomes produced in pre- 
season. Of the 46 plantings, 35 survived through the first | vious years comprise the principal storage organ (Linde 
season, but 17 of these had less than 5 viable green stems et al. 1976), and stress from injury that limits growth of 

at the end of that season. Surviving plantings at this time | new rhizomes over one to several seasons could affect _ 
supported a mean of 7.1 green stems (SD = 5.8). Mean _ long-term survival. 
height of the tallest stem in each planting was 5.7 feet | 
(SD = 1.5). By the end of the second season (1979) only Round-stemmed Bulrushes 

17 plantings remained alive with 7.8 green stems/plant- oe . 
ing (SD = e 4) and a mean maximum height of only 3.7 ft Distribution and Abundance. The UWPL supported 
(SD = 0.9). Green stems in all plantings except 1 were small, widely distributed stands of round.stemmed 

less than 5 ft tall in 1979, indicating that these plants bulrushes during 1975-82. Abundance of these species 
were severely stressed. In late spring of the third season apparently declined from the 1930s the ous Ut 
(1980), all surviving plantings produced only 3 small, Techlow, pers. comm.). However, round-stemmed bul- 
green stems, and algae accumulations bent and severed rushes were some of the most abundant emergents 

| these stems in early June. Greater water depth at the remamng the UWPL during 1968-69, growing mainly 
Poygan site likely stressed transplants more than at the _ The fac exposed to ane abunda action (arnman 07). 
Winneconne site (2.0-3.0 ft vs. 1.0-2.0 ft, respectively). e factors Pere sh athe an Astrl ee 1 

Accumulation of filamentous algae and plant debris common reed’ probably also had the same impact on bul 
; .; . rushes. These include long-term high water levels, boats, 

on emerging green shoots in June of all years possibly snowmobiles, carp, and deposition of algae and detritus 
contributed to decline of the plantings. Weight of this b , CATP, P 8 

algae and debris, coupled with wave action, bent, sev- y waves: 
ered or submerged shoots. This problem was acute in Phenology. Round-stemmed bulrushes are perennials 
June 1980 when the last surviving shoots disappeared. that regrow from overwintering rhizomes. In the UWPL, 
Long-term stress and inadequate production of new _ rhizomes produced new shoots in mid- to late-April when 
shoots and horizontal rhizomes probably drained energy water temperatures reached 10-13 C at the sediment sur- 
stores from planted rhizomes over several years, con- _ face (Fig. 12a, 12b). Stems grew rapidly during late April 
tributing to weaker stems and eventual transplant failure. through early June, emerged from the water in early to 
Horizontal rhizomes, such as those planted, typically live | mid-May as water temperature quickly increased to 20 C, 
for only 3-6 years (Haslam 1969a), and rhizomes sur- _and attained maximum height in early to mid-June (Fig. 

| vived a maximum of 3-4 years in this study. Furthermore, 12a, 12b, 12c). Subjective selection of stems and variable 
low water levels in winter could have exposed frail, over- | sampling locations probably accounted for most of the 
wintering rhizomes to damage from freezing (Haslam _ variability in stem height after mid-June. 
1969b). Lack of residual stems necessary for gas exchange Water depth dictated maximum stem height and 
possibly caused further physiological stress tooverwin- height above water of the emerged stem among 8 differ- 
tering rhizomes. ent stands (r? = 0.98, P < 0.001; r? = 0.60, P = 0.01, respec- 

Transplanting rhizomes after substantial growthof tively) in 1981. Other site characteristics such as 
new shoots probably severely stresses plantings, espe- | sediment type or site exposure had little affect on stem 

cially if shoots have reached near maximum height and _ height. Round-stemmed bulrush plants in deep water 

are damaged during transplanting as in the June plant- |§ compensated photosynthetically by producing taller 

ings of this study. Rhizome carbohydrate reserves typi- stems at the rate of about 1.2 ft additional stem length for 

cally are depleted to near seasonal lows when stems _ each 1.0 ft increase in water depth (y = 2.86 + 1.19 x). 

reach maximum height (Fiala 1976). Afterwards, estab- Although total stem length increased at a greater rate 

lished plants probably initiate storage of nutrients and —_ than water depth, the emerged proportion of total stem 

carbohydrates in rhizomes and formation of new buds _ length actually declined with increasing water depth (r? 

for growth of stems in the following year, as documented = = 0.98, P < 0.001). Round-stemmed bulrushes produced 

for cattails in Wisconsin (Linde et al. 1976). In spring, buds 69% of the stem above the water surface in the shallow- 

emerge rapidly over several weeks to several months. _ est areas (1 ft water depth) and exhibited an 8% reduction 
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in the proportion of stem > 
emerged for each 1.0 ft increase 3 A Fruiting in water depth (y = 0.77 - 0.08 2 ——— EP _EEe Flowering 

we z Foliage at surface 
x). The minimum proportion of = Initial growth 
stem emerged—or compensa- 
tion point—was 43-44% at max- _ 30 
imum water depths of 4.3-4.5 ft Q B 
during June to August. Round- 5 25 
stemmed bulrush plants proba- § 
bly augmented the amount of £20 peers : ‘ 
photosynthetic stem tissue e 
above the surface to compen- § 15 : 
sate for greater energy demand = 
in producing and maintaining a 10 : my : : 
taller stem at greater water 
depths and to enhance nutrient 7 
storage in rhizomes through Cc 
this longer pathway. 6 i /\ 

Floral development com- = ln ae 
menced in late May to early £5 : Lesa : aN 
June, and continued through 3 Lo Plant height 
early September (Fig. 12a, 12d). 24 fr i 
Peak flowering over the entire = / 71978 ; / —— 1981 lake system occurred from mid- z 3 fs bocedaedesesed : 
June to mid-August when water s we Water depth 
temperature was >20 C (Fig. é 2 cool a Rt eT 
10b, 10d). Timing and intensity 5 
of flowering varied among sites g 1 

each year, but when averaged 

for all sites, flowering remained 
fairly constant among years g 30 x 
from 1979-81 (Fig. 12d). 2 D cod : ~ 

Rhizomes of round-stemmed % 20 AGS 
bulrushes stored nonstructural 2 Ze “s tases 
carbohydrates over winter. 3g 10 : wy pod : 1981 
Plants mobilized and quickly 3 _ -Y 
depleted these energy stores in * ag 
spring for rapid growth of E 
stems to maximum height by 3 30 ae : 
early to mid-June (Fig. 12c, 12e). se 

Total nonstructural carbohy- Za eo : 
drates (TNC) reached a seasonal 7 5 20 < 
low in early to mid-June at the ae 
onset of flowering. However, 2 = is —— TNC 
plants had attained maximum oO 8 10 [oon gpl Trager ONEMNG sions 
height and probably maximum ce LZ ee 

photosynthetic tissue, so they 5 y 
could shunt sufficient energy 
into flowering and rhizomes. 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 
Rhizomes then accrued TNC Apr May Jun Jul Aug Sep 

from mid-June to a Beak mn PEP Figure 12. Round-stemmed bulrush phenology for various locations during 1976-82 tember at the onset of senes- * ‘ ‘ (a), water temperature averaged for several sites and years (b), round-stemmed bul- 
SENes Cattail, common reed rush stem growth for systematically sampled stems from a “representative” stand at 
(Fiala 1976), and a bulrush, Allen’s Marsh Study Area during 1979 and 1981 (N = 20-30 stems except on 22 June 
Schoenoplectus lacustris (Stein- 1979 and 4 May 1981 when N = 12 and 5, respectively) (c), flowering phenology 
mann and Brandle 1984), dis- of systematically sampled stems for irregular sampling dates averaged by 2-week 
played similar patterns of intervals for 3 locations during 1979-81 (d), and total nonstructured carbohydrate 
carbohydrate storage and (TNC) content of rhizomes during late spring and summer 1978 at Allen’s Marsh 
metabolism in rhizomes that Study Area, Lake Butte des Morts (e) in the Upper Winnebago Pool Lakes. 
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were associated with rapid growth in spring. Severe | Spike rush produced a basal stem 1.43 ft tall in the shal- 

damage to photosynthesizing stems during the period of — lowest zones compared to 2.86 ft for round-stemmed bul- 

minimum rhizome TNC could prove fatal to plants,as. rushes at similar depths. At water depths of 3.8-4.0 ft, 

suggested for cattail (Linde et al. 1976). round-stemmed bulrushes had a compensation point of 

Moderate to severe damage to stems over several 45% vs. 29% for spike rush. Such differences suggest that 
years in June and early July could reduce long-term sur- _ spike rush photosynthesizes and assimilates energy and 
vival, and thus reduce stand size and density, by reduc- nutrients more efficiently, produces more stems per 
ing energy assimilation and slowly decreasing energy length of rhizome, or relies on a less elaborate rhizome 
reserves in rhizomes. Other limiting factors, such as high system than round-stemmed bulrushes. Spike rush tol- 
water levels, would further stress plants and diminish — erated a maximum water depth of 3.5-3.6 ft in April and 
survival. During favorable conditions, especially years.  3.8-4.0 ft in May-August for 9 stands in 1981. 
of low spring-summer water levels, re-colonization ‘Spike rush demonstrated growth form, phenology, 
would proceed slowly because the plant relies on rhi- —_ and habitat requirements similar to round-stemmed bul- 
zome migration at these inundated sites. rushes. These species often grew in close association, 

Although seed production ig common and often pro- _—_ suggesting that the same factors limit both species. Spike 
lific, seeds require very shallow water or exposed mud- _ rush can survive at wind-swept, exposed locations and 
flats for germination and survival of seedlings(vander comprises a valuable component of the macrophyte com- 
Valk and Davis 1978). Consistently high water levelsin munity in the UWPL. : 
the UWPL during the growing season prevented most - | 

| reproduction from seeds at shoreline and in-lake sites. Stiff Arrowhead | | 

Sediments. Round-stemmed bulrushes in 2 representa-_ _ This species occurred in small, scattered patches through- 
tive stands in the AMSA and Sunset Bay of Lake Butte - out the UWPL during 1975-82. Stiff arrowhead was 
des Morts grew in sand or silty sand sediments witha abundant and widely distributed during the 1930-60 
mean organic component of 10% (Table 2). Hard- _ period, apparently having colonized many of the loca- 
stemmed bulrush stands surveyed in the UWPL during tions formerly supporting floating bog and shallow- 

1968-69 inhabited areas only with sand or gyttja sedi- — water marsh (A. Techlow, pers. comm.). Stiff arrowhead 
ments (Harriman 1970). Hard, compacted sediments, remained abundant in the lakes during 1968-69 (Harriman 
especially sand, contributed to optimum habitat for 1970). This species preferred somewhat exposed sites 

hard-stemmed bulrush in several other water bodies with relatively deep water (Harriman 1970). 

(Martin and Uhler 1939, Kah! 1991). This perennial species typically overwinters as a 

Water Depth. Round-stemmed bulrushes in 8 stands tol- starchy tuber. Phenology of stiff arrowhead was docu- 
erated a wide range of water depths ranging from 1.5-4.5 mented only after leaves reached the water surface in 
ar 5 Pins Fanei'e id- . Plants quickly attained maximum 

ftin April-June and 1.7-4.4 ft in July-August 1981. late May to mid June > quics’y 
Durine Aucust 1969, hardstem bulrush occurred in height and initiated flowering in late June to mid-July. 

6 oS ees a. Flowering continued through mid- to late-August. 
water depths of 1.0-4.1 ft in the UWPL (Harriman 1970). Wat 5 th det 5 tem hej ht ( 3! 0.93. P< 
Maximum depth of colonization extrapolated from 0 001) for ae d . nad ctor , “ot rel eda a 
August 1969 reached 4.0 ft in April, 4.6 ft in May-June, or / stands, and stem heignt increased at approxi- 
and 4.7 ftin July 1969. At other locations, optimum mately the same rate as water depth (y = 1.38 + 1.0 x) i" 

1981. Stiff arrowhead expended only enough additional 
water depths for hardstem bulrush were 1.0-3.0 ft, and xP ¥ ENOUS 
maximum water depth was 5.0 ft (Moyle and Hotchkiss energy ins tem elongation to keep the slightly expanded 
1945, Dabbs 1971). leaf blade emerged. At maximum water depths of 3.9-4.0 

ft during June-August, stiff arrowhead maintained a 

. minimum proportion of 22-23% of the stem and leaf 
Spike Rush blade above the surface. This represented the apparent 
During 1975-82, spike rush was sparsely distributed in | compensation point of photosynthetic tissue required to 
small stands at 6 locations in the UWPL. Informationon support the plant and produce overwintering propagules. 
abundance prior to 1975 is lacking. The lower compensation point for this species vs. 

‘Spike rush initiated growth in mid- to late-April, and | round-stemmed bulrushes probably reflected reliance by 
stems reached the water surface in early to late May. __ stiff arrowhead on expanded leaf blades as the primary 
Stems attained maximum height in late May through photosynthetic tissue and possibly the less demanding 
mid-June. Plants then flowered until mid- to late-July. overwintering strategy of relying on discrete tubers 

Water depth determined maximum stem height among __ rather than on elaborate rhizome systems. 
stands (r7 = 0.96, P < 0.001). However, stem length Stiff arrowhead colonized a maximum depth of 3.5 ft 
incréased at a rate only slightly greater than water depth _in April and 3.9-4.0 ft in May-August during 1981. It tol- 
(y = 1.43 + 1.04 x). Proportion of emerged stem was neg- _—_ erated water depths of 1.5-4.0 ft in the UWPL during 
atively related to water depth (1? = 0.83, P< 0.001) and = August 1969 (Harriman 1970), which extrapolated to 0.9- 
decreased at the rate of 7% for each 1 ftincreasein water 3.4 ft in April, and 1.5-4.1 ft in May-July. 
depth (y = 0.56 - 0.07 x). The apparent compensation During 1968-69, stiff arrowhead exhibited wide toler- 
point for emerged proportion of stem approximated —_ ance of all sediment types except gravel (Harriman 1970). 
28-29% at maximum depths of 3.8-4.0 ftin June-August. Stiff arrowhead in Pool 9 of the Upper Mississippi River 
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produced greater biomass on coarser sediments, and sed-  & Set ae oe. ees ogee ede 
imentation introducing fine clay and silt particles into |= ASME SS Soa i \mateine el eis 
backwaters reduced biomass (Clark and Clay 1985). wee ae foe a ea ! he 

Factors that limited abundance likely include water beast nel caiacel : "Pe a 3 eae 
turbidity, prolonged high water levels, eutrophication, renege pe 2 LS es ae [om 
carp, and deposition of algae and detritus by waves. The Pras eee: tis: Rs i lg yr we 
floating-leaf stage in late May to early June presumably aN i = <ane pee cae Nb eg ivan 
represented a critical period when the plant was vulnera- : ne "A el ON Pres PR. 

ble to damage from rapidly rising water levels, waves, iy ee Aas 1 ae = ween) : 
and algae accumulations. Well-developed root systems 3 | es ae al y Se he ale GaP 

from buried tubers probably limited uprooting from firm A ; Bae OG = &, RG 
sediments. However, carp apparently uprooted many =} Wien, ‘e (ea aaa SA 

mature plants from areas with soft sediments during \, ese fe Ne eae Wy es 
summer 1991 (R. Kahl, pers. obs.), and strong waves pre- Le raed 4 a eae ry SN rT NA 3 

sumably could cause similar uprooting in these areas. WN/ Ae) oe is ale i] | i} {a 
Increasing water levels during and after the floating-leaf ys. vas aan ‘ay ae i Ay kV 2 
stage could submerge the leaf blade and reduce photo- Va J ASA ae yo ama AH & 
synthetic efficiency. Several consecutive years of abnor- fj V Vy) ea ES ‘ i Gee y 6 
mally high water could decimate stands near the " a _ . 
maximum depth limits. Lower water levels would Uprooted stiff arrowhead stems are often noticed in areas with soft 

encourage expansion of existing stands and establish- Sediments and heavy carp spawning activity. 
ment of new stands. Low water levels (2.5-2.7 ft at the 

Oshkosh gage) in spring and early summer 1987 appat- —- Table 4. Acreage of submerged macrophytes for 8 locations 
ently allowed several stiff arrowhead stands in Lake ji Lakes Butte des Morts and Poygan determined from aerial 
Poygan to expand (R. Kahl, pers. obs.). photography in July to early September, 1975-76 and 1978-79. 

Submerged Macrophytes ___Acteage by Year 

Distribution and Abundance. During 1975-79, Lakes Focation 19751976 19781979 

Butte des Morts and Poygan supported about 1,650 acres Lake Butte des Morts 
of submerged macrophytes in 8 locations (Table 4, sunset Bay ~ Cea ROO A 
Fig. 3). Lake Winneconne probably supported another ee ed h ~ toe see 21e/ 
150-200 acres, primarily south and east of Clark’s Point. Nickel’s wale - 794 ae ~ % 
Submerged macrophytes existed elsewhere in scattered, Terrell’s island _ 2 1286 . 
small beds. The abundance of submerged macrophytes Total _ _ 6478 _ 
remained relatively stable in most locations from 1975-79. , 
Varying turbidity on flight dates probably accounted in Lake Poygan 
part for apparent differences in plant abundance among Poygan Land Co. (land 2) 363.8 391.0 416.6 396.2 
years by concealing submerged macrophytes at outer Boom Bay 19S 2B33 (249.9 2627 
margins of beds documented with aerial photography. West shore pn - - 

Species composition along submerged macrophyte etal SE 
transects apparently differed among 
8 ane and between May-June s — ascii _ = 

July-August sampling periods. [79 |) | jsgQQt = ieee. | a 
However, the rake technique and |_—_ agg “ Ce ne ee 
sampling design precluded statistical |g - “a : 
analysis of species composition and ser 5 
abundance differences among sam- 
pling periods, years, and sites. The = 

most abundant species system-wide 
during May-June were coontail, : : 
water milfoil, wildcelery, sago 4 

pondweed, and Canadian water- : ae 7 : rs, 

weed (Table 5). In contrast, wildcel- 3 - es 
ery attained dominance at 4 of 8 ae Sa 
locations and co-dominance at : i - 8 

1 other location during July-August. ‘ : & 
Other important species in July- im 
August included sago pondweed, me 
water stargrass, water milfoil, and Submerged macrophyte abundance was documented with aerial photography, but water 
Canadian waterweed. turbidity often concealed outer margins of beds, as in the lower left of this photo. 

31



Table 5. Species mean percent of total submerged macrophytes collected along rake sampling transects in 8 locations of Lakes Poygan 
and Butte des Morts, 1977 and 1979-82.* 

Wild Sago -—- Canadian Narrow-leaved Water Water Filamentous Clasping-leaf 
Celery Pondweed Waterweed Coontail Pondweeds** Stargrass Milfoil Algae Pondweed? 

Phenology Transects 
May-June 25.7 5.7 10.7 13.2 11.3 3.5 15.3 1.9 | 4.3 

Lake Poygan 91.2 0.8 2.7 17.8 4.7 1.9 0.1 7.6 11.9 

West shore 38.8 7.9 3.2 20.7 2.3 10.5 8.9 0 3.9 

Poygan Land Co. (1) tr 3.6 34.8 7.1 0.7 1.2 49.6 0 0.2 

Poygan Land Co. (2) 12.9 11.0 12.2 17.0 37.6 0.3 2.4 tr 1.0 
Boom Bay 3.3 21.8 6.8 20.4 10.0 3.6 18.1 1.7 1.4 

Lake Butte des Morts _0..6 38.8 0.3 26.2 3.1 1.8 12.5 1.1 2.9 

Springbrook - - -~ - — - - - - 
Scott’s Bay 6.4 21.6 9.8 6.1 1.7 5.7 30.7 3.0 1.6 

Allen’s Marsh 2.9 5.1 10.2 28.9 25.1 3.4 11.2 1.1 tr 
Sunset Bay 

Average 15.6 14.5 10.0 19.1 9.5 3.4 15.9 2.6 3.1 

July-August . 
Lake Poygan 63.4 3.4 12.7 1.4 3.5 7.3 5.4 1.3 1.0 

West shore 86.8 tr 0.8 3.4 0.2 0.7 tr 4.8 4.1 
Poygan Land Co. (1) 84.8 1.3 0.7 0.7 1.5 9.2 1.2 0 0 
Poygan Land Co. (2) 4.9 tr 48.4 0 4.8 19.1 20.3 0 0 

Boom Bay 76.9 12.1 0.8 1.5 7.4 0.1 0.1 0.5 0 

Lake Butte des Morts 37.5 19.1 3.0 7.3 7.9 2.5 11.1 0.6 0.1 

Springbrook 19.3 37.8 4.9 13.7 3.3 9.4 0.8 1.0 0.1 

Scott’s Bay 88.7 0.3 0.4 1.9 0.7 0.1 4.0 0 0 
Allen’s Marsh 14.0 31.0 ~—2.0 2.1 1.3 0.5 38.9 1.2 . 0 

Sunset Bay 28.1 7.3 4.7 — 114 24.8 0 0.8 0 0.1 

Average 50.2 11.0 7.0 3.9 49 — 8.9 7.4 0.9 0.5 

Relative Abundance Transects | 
Lake Poygan 
West shore 85.3 4.5 0.6 3.4 0.8 - 0.8 tr 2.3 0.1 

Lake Butte des Morts 
sunset Bay 11.0 18.4 10.1 12.4 13.9 9.5 13.9 0 0 7 

* Mean percent of wet volume or mean percent rake coverage of total submerged macrophytes, weighted by date and year of sampling 
(3-16 dates over 1-5 years for May-June and 4-12 dates over 1-4 years for July-August). 

** Narrow-leaved Potamogeton spp. 
* Primarily Potamogeton richardsonit, but also P. crispus. 

Lake Poygan supported the largest submerged macro- of submerged macrophytes locally in the UWPL. 
phyte beds (Table 4), which consisted primarily of wild- | System-wide, water clarity probably controlled abun- 
celery during July-August in all locations except the | dance of submerged macrophytes. 
interior marshes of the Poygan Land Company (site 2; 
Table 5, Fig. 3). More heterogeneous beds existed in most Phenology. Differences in relative abundance of sub- 
sheltered bays of Lake Butte des Morts, except Scott’s | merged species between May-June and July-August 
Bay where wildcelery dominated. reflected differing phenology and species interaction 

During August 1968-69 wildcelery occurred most fre- (Fig. 13a). Water temperatures of 10-13 C apparently 
quently, closely followed by sago pondweed and American __ triggered growth of new foliage in mid- to late-April for 
pondweed in the UWPL (Harriman 1970). Lake Poygan __ the earliest species (Fig. 13a, 13b). This group consisted 
consisted of large expanses of open water supporting primarily of species that often overwinter in a vegetative 
few aquatic beds in 1968-69. Habitat conditions possibly | state, such as coontail, water milfoil, narrow-leaved 
improved from 1968-69 to 1975-82; the UWPL apparently pondweeds, and Canadian waterweed (Fig. 13a). In con- 
supported more submerged macrophytes during the lat- _ trast, the latest species, wildcelery and clasping-leaf 
ter period, especially wildcelery in Lake Poygan. pondweed, delayed growth until early to mid-May when 

Site-specific factors such as water clarity, carp spawn- —_- water temperature was rapidly increasing from about 13 
ing and feeding concentrations, or exposure to severe Cto17C. Although sago pondweed began growing 2 
wave action, especially in conjunction with sediment — weeks later than the earliest species, it flowered in early 
type, probably determined distribution and abundance _June about 1-2 weeks earlier than these species (Fig. 13a). 
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Water temperature had reached ADO 

20 C by this time. Wildcelery and = 
water stargrass delayed flower- 3 
ing until mid- to late-July when 2 
water temperature reached the : : : ; 
summer maximum. = 

In other studies, temperature 23 Cd initia growth 

stimulated growth at 10-12 C ES el J Foliage at surtace 

and 10-14 C for sago pondweed a5 HB Flowering 

(Stevenson and Confer 1978) and o* BB Fruiting 

wildcelery (Zamuda 1976, cited 
in Korschgen and Green 1989), 5 8 CHRIST 
respectively. Wildcelery in navi- s 2 
gation pools of the Upper Mis- a ‘ ; : ; : 

sissippi River initiated growth in 
late May to early June, achieved 3 

maximum biomass production a2 
rates in mid- to late-July during aS 
flowering and rosette formation, ° 

and attained maximum biomass 
during fruit development in gs 
early August to early September g z 

(Sefton 1976, Donnermeyer 1982). && CT 
Optimum temperatures for = i : : 
growth of wildcelery were 20-36 = 
C in other studies (Korschgen 2 
and Green 1989). Water temper- = 
ature exceeded 20 C by early 3 
June in this study, or about one 5 
month before foliage appeared 3 i i : : 
at the surface and plants initi- a 
ated flowering (Fig. 13a, 13b). 2s aE 

Sediments. Sediments along the g é 
2 relative abundance transects = 
with the most vegetation (tran- 25 B 
sects B and C), dominated by S 
wildcelery and sago pondweed 5 20 
(Fig. 2), consisted primarily of 5 
silty-organic and sand or silty- B15 : ; : 
sand textures with mean organic ec 

content of 13-19% dry weight. & 10 

Sediments with similar textures  $ 
and organic content occurred 
along similarly shallow portions 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

of the other transects that sup- Apr May Jun Jul Aug 
ported few or no submerged . 
macrophytes. For data from all Figure 13. Phenology of submerged macrophytes (a) and water temperature 
transects and species pooled, (b) averaged for various locations in the Upper Winnebago Pool Lakes, 1976-82. 

there was no apparent rela- 
tionship between presence and 
abundance of submerged macro- 
phytes vs. sediment texture and 
organic content. Presence of 
submerged macrophytes was 
independent of sediment texture 
(P = 0.38) for sandy vs. silty- 
organic sediments. Abundance 
(% coverage of a rake) also did 
not differ (t = 0.58, P = 0.56) 
between plots with sandy (6.8% 
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coverage) vs. silty-organic (8.1%) sediments. Lastly, sedi- | period. Significantly higher water levels occurred in 
ment organic content did not differ for plots supporting June-July 1969 than for any year during 1975-80 (TSRT, P 
vegetation (18.9% organic content) vs. plots without veg- =< 0.05). Abnormally high water throughout May-July 
etation (18.3%) (t = -0.18, P = 0.86). During 1968-69, the 1969 conceivably eliminated submerged macrophytes at 
most important species—wildcelery, sago pondweed, =maximum depth limits by August. Greater flooding in 
and American pondweed—exhibited wide tolerances of | 1973 (Fig. 7) should have reduced abundance of sub- 
sediment from gyttja to peat and sand, yet large areas = merged macrophytes even more than in 1969. If so, sub- 
apparently with similar sediments and water depths merged macrophytes quickly re-colonized outer margins 

| remained unoccupied (Harriman 1970), as during 1975-82. of major beds by 1975-80. 
Both wildcelery and sago pondweed have demonstrated Sago pondweed and wildcelery were encountered at 

- an adaptability to colonize many different substrates with depths exceeding 20 ft, but these species were found , 
widely varying texture and organic content in other loca- | most commonly at depths of 1.5-16 ft elsewhere (Davis 
tions (Korschgen and Green 1988, Kantrud 1990). Other and Brinson 1980, Korschgen and Green 1989). These 2 
factors such as wave action and turbidity probably exert species appear to be among the most turbidity-tolerant 
a greater influence on distribution and abundance of sago —_— species of submerged macrophytes (Robel 1961, Davis 
(Kantrud 1990), and probably also wildcelery. Evidence and Brinson 1980). Sago pondweed produced dense 
from other studies suggests that sediment composition _ foliage at the water surface by late spring to early sum- 
and nutrient and mineral availability usually determine mer before algal blooms drastically reduced water clarity 
abundance and distribution of submerged macrophytes —_in hyper-eutrophic Lake Koshkonong, Wisconsin (R. 
within the photic zone (Barko et al. 1982). Increasing Kahl, unpubl. data). This growth strategy partly explains 
sediment organic matter may reduce sediment density __ the apparent tolerance of turbidity. 
and availability of nutrients (Barko and Smart 1986). In 
conjunction with light, nutrient availability in sediments 
may determine maximum depth of the macrophyte photic Factors Affe cting 
zone by limiting growth and preventing photosynthetic 
tissue from reaching and remaining within the photic Macrophyte Abundance 
zone. Exposure to varying wave energies further com- 
plicates ecological relationships through the influence of | Water Levels | 

| waves on sediment texture (Keddy 1985) and fertility, = The annual cycle of water levels for most years during 
turbidity (Kadlec 1962, Wilson and Keddy 1985), and —_—_ 1975.84 generally followed the water regime adhered to 
physical damage to plants (Jupp and Spence 1977). since the late 1930s. Water levels peaked in May and June, 
Water Depth. Submerged macrophytes at various sam- _ then slowly declined throughout summer and early fall 
pling locations inhabited maximum depths of 47-53 until November or December. A rapid drawdown from 

inches in Lake Butte des Morts, 51-55 inches in Lake | December through February or March provided for flood 
Winneconne, and 55-61 inches in Lake Poygan during storage. However, differing precipitation patterns and 

July-August of 1975-80. Wildcelery and sago pondweed _—_ Slow response time to major precipitation and runoff 
typically occurred at greater depths than other species events resulted in different mean monthly water levels 

| along transects during this time. Maximum depth of col- | among years and among months (P < 0.001 for both) 
onization varied between lakes and among areas within (Table 6). Largest monthly differences among years 
lakes as evidenced along the 5 relative abundance tran- occurred in October, November, December, March, and 
sects (transect A: 37-39 inches, B: 48-53 inches, and E:29 April; smallest differences occurred in May and June. 
inches for Lake Butte des Morts; D: 36-42 inches for Lake | Annually, May and June had the highest mean water lev- 
Winneconne; and C: 60-67 inches for Lake Poygan). els in all years except 1979 and 1982, and February or 

Differing water clarity, species composition, wave expo- _—- March had the lowest levels in all years. 
sure, and sediment nutrient availability probably The greatest frequency of high water levels (daily water 
accounted for these differences. Of most importance, levels exceeding 3.0 ft at the Oshkosh gage) among years 
site-specific factors likely altered water clarity locally. occurred in 1978 (P < 0.005) when water levels exceeded 

These factors included carp spawning and feeding, ero- _—_ 3.0 ft for almost the entire May-July period (Table 7). The 
sion of unstable marsh edge and shorelines, resuspen- lowest frequency of high water days occurred in 1977. 

sion of soft organic sediments by waves andcarp,and Among months, high-water days occurred more fre- 
turbid inflow from tributary streams. Maximum depth quently during May and June than during other months 
of colonization by submerged macrophytes is deter- _ for all years pooled (P < 0.005). May had more high water 
mined primarily by water clarity (Spence 1982, days than all other months in 7 of 10 years, followed by 
Chambers and Kalff 1985). June with the second highest in 4 years (Table 7). Thus 

During August 1969, turbidity limited submerged _ the critical early growth period in May and June for 
macrophytes to water depths less than 4 ftinthe UWPL macrophytes consistently had higher water levels of 
(Harriman 1970). The greater water depths tolerated by — greater frequency than other months in most years of the 
submerged macrophytes, especially in Lake Poygan,dur- — study. For wildrice, June also encompassed part of the 
ing summers of 1975-80, support the suggestion that —_ floating-leaf stage when rapidly rising water levels can 
macrophyte beds expanded from 1969 to the 1975-80 — uproot plants. Lowest water levels coincided with another 
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Table 6. Mean monthly water levels for the Upper Winnebago Pool Lakes, measured daily at the Oshkosh 
gage station, 1975-84." 

Water Level (ft) . 

Year Jan Feb Mar Apr May —§ Jun Jul Aug Sep Oct Nov Dec 

1975 = 2.0 1.5 1.1 2.0 3.2 3.1 2.7 2.5 2.7 2.4 2.3 2.3 | 

1976 =: 11.6 1.0 1.0 2.7 3.1 3.0 2.5 2.4 2.0 1.8 1.7 1.4 

1977) 1.2 1.1 1.4 2.7 3.0 2.9 2.8 2.9 2.4 2.7 2.6 2.3 

| 1978 1.29 1.1 0.5 2.5 3.2 3.1 3.1 2.9 3.0 2.9 2.5 2.6 

1979, 2.1 1.5 1.1 3.5 3.1 2.9 2.9 3.0 2.7 2.4 2.7 2.3 

1980 =—s-1.7 1.1 0.6 2.1 3.0 3.1 2.9 3.0 2.9 24 23 2.3 

1981 1.9 1.3 1.7 2.7 3.1 3.0 2.9 2.9 2.9 2.8 2.5 2.5 

1982 18 0.8 0.6 2.4 3.0 2.9 3.0 2.9 2.9 3.0 3.1 2.7 

1983 18 . 1.1 1.8 2.2 3.1 3.1 2.9 2.8 3.0 2.9 2.8 2.9 

1984 15 #111 1.6 2.0 3.1 3.1 3.0 2.9 — - — — 

* Mean water levels differed among years and months, 2-way ANOVA (P < 0.001). | 

Table 7. Number of days that daily water levels exceeded 3.0 ft during April-September, measured at 
the Oshkosh gage for the Upper Winnebago Pool Lakes, 1975-84. | 

No. Days 

Year Apr May Jun Jul Aug Sep Total Days  Chi-square* 

1975 0 30 25 1 0 0 56 154 

1976 4 27 13 0 0 0 44 105 

1977 6 10 0 1 0 0 17 34 

1978 11 30 25 30 3 13 112 86 

1979 27 22 10 3 13 6 81 58 

1980 0 23 18 2 20 8 71 65 

1981 13 29-2 8 3 6 71 57 | 

1982 0 12 9 15 9 0 45 33 

1983 0 24 21 4 1 10 60 79 

1984 0 24 19 10 6 1 60 70 

Total 61 231 152 74 55 44 - _ 

* In each year, for comparisons among months, P < 0.001. | 

critical period when winter drawdown may have exposed _ highest frequency occurred in 1978, yet frequency of 
overwintering propagules of some species to damage occurrence of submerged macrophytes along both tran- 
from freezing temperatures (Beard 1973, Nichols 1974). sects B and C was similar between these years (22% vs. 

; 23% for transect B and 45% for both years for transect C). 
Relationship Between Water Levels and Macrophytes. Although high runoff, nutrient loading, and turbidity 
Although water levels varied considerably among months are apt to accompany abnormally high water levels, a 

and years, water levels had little discernible impact on _ significant relationship between annual abundance of 
abundance of submerged macrophytes and wildrice as submerged macrophytes (% rake coverage) vs. mean 

evaluated in this study. Annual frequency of occurrence = monthly water levels and turbidity for transect C in 
of submerged macrophytes along transect Bin Sunset — September (7? = 0.99, P = 0.01) provided the only evidence 
Bay, Lake Butte des Morts, and transect C along the west _ of this synergistic effect. (For May-August, r? = 0.28-0.75, 
shore of Lake Poygan (Fig. 2) was not related toannual =P = 0.61-0.25.) By September, submerged macrophytes 
differences in mean monthly water levels for any month — completed most annual growth, and the biological signif- 

from April-September (r = 0.20-0.49, P = 0.87-0.33 andr= _icance of these results seems doubtful. A nearly signifi- 
0.65-0.15, P = 0.16-1.00, respectively). Of the 5 relative cant relationship existed for transect B during May 

abundance transects, only transects Band C encountered —(r? = 0.93, P = 0.07), but macrophyte abundance varied 
enough macrophytes to warrant inclusion in these analy- directly with turbidity. (For June-September, r? = 0.12- 
ses. Further, annual frequency of occurrence of submerged _0.61, P = 0.83-0.25.) High water levels and turbidity 

macrophytes along transects Band C was not related to _ resulting from excessive runoff likely contributed to the 
frequency of high water levels (> 3.0 ft at Oshkosh gage) — decline of submerged macrophyte beds in the Illinois 
in spring (May-June) and summer (July-August) (B: r = River Valley (Mills et al. 1966) and in Pool 8 of the Upper 
0.26, P = 0.62, and r = 0.56, P = 0.32, respectively; C: r = Mississippi River in 1978-79 (C. Korschgen, U.S. Fish and 

-0.09, P= 0.51, and r = 0.11, P = 0.86, respectively). Lowest Wildl. Serv., pers. comm.). 

frequency of high water levels occurred in 1977 and 
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Magnitude of winter drawdown was inconsistently | spite of unfavorable conditions. Wildrice density then 
related to abundance of submerged macrophytes for tran- | declined in 1979 while stand size remained stable (A. | 
sects B and C. Minimum winter water levels were not Linde, unpubl. data), probably due to the unfavorable 

| correlated (r = -0.42, P = 0.41) to frequency of occurrence 1978 water levels, which likely drastically reduced seed 
of submerged macrophytes during the next summer for yields. For several lakes in Minnesota, wildrice and seed 
transect C. A nearly significant negative relationship | production failed on average once every 4 years primar- 
existed (r = -0.78, P = 0.066) for transect B, implying that __ ily due to high water levels during June and July (Moyle 
lower winter levels resulted in more submerged macro- 1944). This analysis did not examine the effect of rapid 
phytes in Sunset Bay. Winter drawdown reduced abun- __ water level increases in June, which could determine 
dance of most species of macrophytes on exposed mudflats abundance of wildrice throughout the lake system. 
in Murphy’s Flowage, Wisconsin, but several species Interaction of the affects of water level variation among 

benefited from this drawdown (Beard 1973). Macrophyte years and with the many other factors affecting wildrice 
| response to winter drawdowns depends on species com- —_ abundance likely confounded results of this analysis. 

position, degree of sediment exposure and drying, and 4 
snow cover (Cooke et al. 1986). In general, the magnitude Water neve’ Management. a “198 water . ve t not 
of winter drawdown in the UWPL did not produce fle ache ond ite 3 nai, © f- (1 “tabili 0 Ine 
exposed mudflats. The Sunset Bay area supported a ed BS 4 ea ue ater oe ‘0 { ) sta i sexe ane 
combination of susceptible and resistant species that fae Ane SUNINET ni 3) eve ( ) Nioher © i" lew. 
could result in variable response depending on magni- OOM MY SPHNG, ah (3) main Se ENE Waren IN 

els in fall to prevent freeze-out of adjacent marshes and 
tude of drawdown. krat val (A dA | 

The consistently high water levels in May and June increase muskrat survival (App oe ) . oars 
. ; ; Mean monthly water levels did not differ significantly 

probably contributed to a lack of strong relationships P > 0.05) betw d post t periods £ 
between seasonal and annual variation in water levels (P> 0. pen hoe pre y tS. vificanee for Octobe ° 4 
and abundance of submerged macrophytes. High spring Ni y mb ’ D GOST fc rae eth, ce r bl © 3) S ar 
levels probably controlled plant abundance more than ovempet (P= 0. of FOF pom mon s) ( ans ) ma 

sample sizes cor cributed to the lack of significant dif- _ 
other components of water levels. In a large southern f nm these 2 ths with the 1 + diff 
U.S. reservoir, water levels dictated light availability to erences My these £ monms Wi Soe eee 

ie ; between pre-and post-management periods. The plan 
submerged macrophytes during the critical growth period . OO, 

; a . _ accomplished the goal of maintaining higher water levels 
of April-May, which in turn determined abundance of 

| ; in fall, but did not fully moderate water levels in May- submerged macrophytes annually (Peltier and Welch Table 8 
1970). Furthermore, rake sampling along only 1 transect J une | able 8). dh to the t t sori 
in each of 2 widely separated locations possibly could OMEN OT CANETENEE BORNE FATE SPINS SUM EET 

. Saree level of 3.0 ft did not reduce water levels in May-June 
not detect the magnitude of variation in submerged f t dj d water level 
macrophyte abundance associated with the magnitude of 4 om aly S oo mb, YEATS, AINE TEASE we <r ot ° 
water level variations encountered in this study. Lastly, f otte J t x 3 Ole - ot * ni " rnined levels i, " 
daily and monthly water level fluctuations differed to an Cee eae ee eee a ey ee ee eS ONE ONS 

term mean levels for May-August 1938-84 (Fig. 4). Thus, 
unknown degree at various sampling locations of Lake hvtes alreadv st d bv hich water level 
Poygan, which were approximately 16-22 miles upstream, IAC TOP IY TES GTEARY SERCSSER BY MSN Water tevels Were 
from those at the Oshkosh gage station. further stressed by this plan’s spring-summer target levels. 

Acreage of a wildrice stand in the AMSA (Table 1) was 
positively correlated with mean monthly water levels in Table 8. C thly water level dat 

July (r= 0.90, P = 0,04) and nearly so for August (r= 0.80, Oshkosh gue, for the Upper Winnebago Pool Lakes prior 10, 
P = 0.10) for 1975-79 (Table 6). No relationship existed (1975-81) and after (1982-84) implementation of a water level 
for April-June and September (r = 0.30-0.40, P = 0.87- management plan. 
0.50), but mean monthly water levels varied litleamong = ————————————————— 
years for May and June. The annual frequency of high Mean Monthly Water Level (ft) 
water days in July-August also varied directly with |= Month 1975-81 1982-84 P* 
annual abundance of wildrice (r = 0.95, P = 0.05). However, 

Jan 1.8 1.7 0.494 
the number of high water days in July-August 0f 1975-77, Ea, 12 10 0.255 
ranged only from 0-1 (Table 7). During the criticalearly yy, 10 13 0.494 
growth and floating-leaf stages in May-June, frequency Apr 26 22 0.172 
of high water days was not related to wildrice abun- May 31 3.0 0.255 
dance during the same year (r = -0.30, P = 0.62). These Jun 3.0 30 0.820 
unexpected results appear to contradict other studies Jul 2.8 3.0 0.172 

that demonstrated greater productivity of seeds (and — Aug 2.7 2.9 0.649 
presumably more vigorous plants) by wildrice in yearsof Sep 2.7 3.0 0.111 
slightly decreasing summer water levels (Moyle 1944), Oct 2.4 2.9 0.057 
such as occurred in 1975-77. Perhaps favorable condi- = Nov 2.4 2.9 0.057 
tions (few high water days and decreasing summer Dec 2.2 2.6 0.107 
water levels) in all 3 years led to high seed productivity, * Pre- vs. post-management years, Wilcoxon rank sums, 

which allowed further expansion of the stand in 1978 in df = 6 and df = 2, respectively. 
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Water Clarity | : 

Water Clarity Parameter Relationships. Turbidity and — variability in Secchi transparency (cited in Lillie and 
Secchi transparency measured in conjunction with light | Mason 1983). Chlorophyll a proved the best single pre- 
availability furnished information on water clarity, the — dictor of Secchi transparency, explaining 76% and 75% of 
accuracy of these parameters as predictors of the 5% photic —_ the variability for Wisconsin and Florida lakes, respec- 
zone depth, and the approximate light requirements of _ tively. Addition of turbidity to the regression equation 
submerged macrophytes. Although light availability | improved the predictability to only 79% for Wisconsin 

measurements did not determine exact depth of the 5% lakes, and addition of true color and turbidity improved 

photic zone, the regression model based on known phys- __ the predictability of Secchi transparency to 89% for 

ical properties of water provided strong predictive capa-_ _- Florida lakes. True color did not improve the relation- 

bility for most month and lake combinations (7? > 0.95 ships for Wisconsin lakes, but true color alone accounted 

for 11 of 18 regressions, and r? > 0.85 for allregressions; for 29% of the variability in Secchi transparency (Lillie 

P < 0.001 for all regressions). Other transformations | and Mason 1983). 

0B OB ar veoroscion coefficients. root-square root) photic Zone Depth. For all months and years pooled, 
yreidea “ower regression cocmaes. er Lake Poygan apparently had the greatest mean photic 

Secchi transparency explained 51% of the variability zone (ANOVA, P < 0.001; TSRT, P < 0.05) of the 3 UWPL 
of 5% photic zone depth in the best of several regression from 1975-81 (overall ANOVA: P c 0.001) (Table 9) 

equations using different transformations (log,, photic yy lative diff 1 k ed wi h 

zone = -0.185 + 1.342 log,, Secchi; P < 0.001). Photic zone owever, relative differences among ‘akes varied wit 
depths reeressed on Soc chi transparencies for Lakes month from April to September (significant interaction: 
Poygan Winn ecomme and Butte te Morts in 1986-87 P <0.001). Differences among months were not signifi- 

yielded higher regression coefficients for untransformed cant v ~ 07). During pene photic vo th extended a 

data (r? > 0.80 for each lake and year) than 1975-81 data significantly deeper in Lake Winneconne than Lakes 
(R. Kahl unpubl data). For adjacent Lake Winnebago in Poygan and Butte des Morts (P < 0.05), but no differences 

summer 1981, Secchi transparency was strongly related existed among fakes during May nh. 7). cone J wel, | 

to the 1% photic zone (r? = 0.96) for untransformed data September, Lake Poygan apparently had a significant'y 
(Sloey an F oscca 1981) , deeper photic zone than did Lakes Butte des Morts and 

Regression equations for the 1% and 5% photic zone Wvanneconn e (P < 0.05). powever curing these montis | 
4 7 water clarity was measured predominantly within dense | 

depths for the UWPL indicated that these depths approxi beds of submerged macrophytes, which modified and 

mated 3.5 and 2.3 times Secchi transparency, respectively. smproved wa ee clarity a ee t sa moling sites in Lake 

However, relationships between Secchi transparency and P lati y £ these d P 1 ° dj 

photic ne depth can vary among yearsand among Pot. Extapolation of dese daa 1 newide condhe 
sites (R. Kahl, unpubl. data). The relationship between For Lake Butte des Morts h tic zone de x5 increase d 

Secchi transparency and the photic zone varied consider- from April to May-June hon declined in jul -Aucust 

ably among other studies, but in general the 1% photic | 1, Wh y hibj d . y b 5 1 

zone depth typically was 2.7-3.0 times Secchi transparency ake Winneconne exhibited an erratic pattern but also 

Winneb duri - 1981 was 1.9 times Secchi August. Considering the eutrophic nature of these lakes, 
transparency (Sloey an Br seat 1985) phytoplankton blooms also should have reduced water 

In the best regression equation of several using differ- vanity Curing J uly August in race teen. ance sue 

ent transformations, turbidity accounted for only 38% of P 6 OPay 5 P 
ere . . _ oygan than in Lake Butte des Morts, Lake Poygan prob- 

the variability in photic zone depths (1/photic zone h ; er 

0.010 + 0.001 turbidity; P < 0.001) for the UWPL during 2>' ad a deeper photic oon but not to the extent indi- 
1975-81. Turbidity better predicted Secchi transparency, cated rom ne Piased "ait, m6 in June August Water 

explaining 68% of the variability (log, Secchi = 3.579- carity proba Nav Sestember. Data for mid lake sites 
0.018 turbidity; P < 0.001). An inverse transformation of cane led biweekly shin 1986-90 indicated that Lakes 

Secchi transparency regressed on turbidity yielded an P oy b dsimil lari 

r> = 0.975 for Lake Winnebago in summer 1981 (Sloey Poygan ang Winneconn ene es} ar water Clarity, wae h 

and Brosseau 1985). After these authors corrected Secchi was better than in Lake Butte es Mors. Seasonally, al 3 

transparency for variation due to true color, the latter jaty. rere eee en hed arity fo a tow in 

regression of Secchi transparency on turbidity improved h y ” bi dit 5 han duri Fi 975-81 (R. Kahl 

to r? = 0.999. Contribution by color to variability in fan bl lat ldities greater than curing 81 (R. Kahl, 

Secchi transparency decreased throughout summer, and unpubl. data). 
their data suggested that highest color effects probably § Turbidity. Turbidity also differed among the 3 UWPL 
occurred in spring due to organic leachate from marshes. (P < 0.001), but not among months (P = 0.22); relative 

Regression equations relating turbidity to Secchi differences among lakes were not the same in all months & q 8 y & 
transparency (inverse and log transformations) for a ran- (interaction between lake and month, P = 0.01) (Table 9). 
dom sample of Wisconsin lakes accounted for only 33% — Lake Poygan apparently had the lowest turbidity (P < 0.05) 
of the variability in Secchi transparency (Lillieand Mason __ of the 3 lakes during 1975-81. However, sampling-site 
1983). For Florida lakes, turbidity explained 71% of the selection for turbidity incurred the same bias associated 
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plankton. In actual field studies of macrophytes, consid- _ relationship to annual differences in water clarity. Of the 
erable variability was found in percent of surface light 5 transects, only transect B in Sunset Bay of Lake Butte 
available at the maximum depth of rooted submerged — des Morts and transect C at the west end of Lake Poygan 
macrophytes. Generally, the photic zone for submerged _— (Fig. 2) encountered enough vegetation for inclusion in 
macrophytes (non-charophytes and isoetids) in field stud- _ the analysis. . | 
ies more closely approximated 5-10% of surface light at Macrophyte frequency of occurrence along transect B 
maximum depth of colonization (Wilson 1941, Davis and was not related to annual changes in spring (May-June) 
Brinson 1980, Howard-Williams and Liptrot 1980, Barko and summer (July-August) photic zone depths and tur- 
et al. 1982, Dennison 1987) instead of the 1% required by __ bidity in the same year nor previous year for Sunset Bay, 
phytoplankton. However, the photic zone for rooted Lake Butte des Morts (P > 0.28) (Table 11). For transect C 
macrophytes varied from 2% to 16% in other studies —in Lake Poygan, high turbidity during spring of the pre- 
(Meyer et al. 1943, Wilson 1941, Bourn 1932). Dissolved — vious year may have reduced frequency of occurrence of 
color differences among sites could account for some of 
this variation among studies (Chambers and Prepas 1988). : 

Timing and intens ity of sampling, p lant Sp ECES COMPOSI Table 11. Summary of Spearman's rank correlation analyses for 

tion, substrate fertility and texture, epiphytic populations annual changes in frequency of occurrence of submerged macro- 
(Wetzel and Neckles 1986), and silt deposition on plants phytes along transects and annual changes in mean spring (Apr- 
(Schiemer 1979) could also account for variability in = yn) and summer (Jul-Aug) water clarity, Lakes Butte des Morts : 
apparent light requirements among studies. and Poygan, 1975-80. 

In particular, species growth strategies and seasonal sii» LSS S——— 
water clarity patterns will influence interpretation of - Dependent : 
photic zone depths and light requirements of submerged Independent Variable Variable r oP UN 
macrophytes (especially if based on light availability at Turbidity Vegetation 
maximum depth of colonization) foreach water body. ___Lake Butte des Morts 
Light availability at the maximum depth of colonization Spring, same year Transect B -0.03 096 6 © 

typically decreases from spring through summer as phy- Summer, same year Transect B 0.03 0.96 6 
toplankton and epiphyton populations increase, but by Spring, previous year Transect B 0.20 0.75 5 
June or July, foliage has grown upward into the water Summer, previous year __Transect B 0.60 0.28 5 
column. Light availability at the bottom is probably Lake Poygan 
unimportant to established plants during summer, but Spring, same year TransectC =» 0.46 0.435 
light availability at the depth of maximum foliage devel- oummer, same year Transect C 0.35 0.49 © 

ages ; pring, previous year Transect C -0.95 0.05 4 
opment probably is critical to growth and reproduction Simmer T Cc 036 055 5 

. : : . “1: , previous year ransec . . 
at this time. Thus, light availability measured at the | 
maximum depth of colonization during summer probably — Photic Zone Depth ~ Vegetation 
underestimates light requirements of plants. Unfortun- Lake Butte des Morts | 
ately, no information is available on plant growth and Spring, same year Transect B O31 05f 6 - 

____ light availability within this photosynthetically active __ Gummer Same year sense oo Ore pring, previous year TransectB = --0.20 0.75 5 oe 
zone (or macrophyte photic zone), and for seasonal vari- Summer T tB 030 062 5 

. ‘ : , previous year ransec . . 
ation in light requirements. 

Lake Poygan 
Relationship Between Water Clarity and Submerged Spring, same year Transect C 041 049 5 
Macrophytes. Apparent abundance of submerged macro- Summer, same year Transect C 0.12 082 6 
phytes along relative-abundance transects B and C varied Spring, previous year Transect C 0.63 037 4 
annually (Table 10), but this annual variation had little Summer, previous year Transect C 0.36 0.55 9 

Table 10. Rake coverage and frequency of occurrence of submerged macrophytes along 5 transects in the Upper Winnebago Pool 
Lakes, 1975-80." | : 

Lake Butte des Morts Lake Winneconne Lake Poygan 
Transect A™ Transect B Transect E Transect D Transect C 

Year Cov. Occ. Cov. Occ. Cov. Occ. Cov. Occ. Cov. Occ. 

1975 0.5 1 4.3 6 - - 0 0 24.9 43 
1976 4.1 8 8.4 15 0.4 0 2.2 2 36.3 61 

1977 2.9 4 14.6 22 3.8 6 2.0 3 26.6 45 
1978 0 0 16.1 23 1.8 3 2.9 5 28.5 45 

1979 — - 5.3 8 - - — - 23.8 31 

1980 | - - 10.2 17 - - 0 0 20.3 43 

* Percent coverage of rake tines and percent frequency of occurrence for 100 plots. 
** Water depth ranges along transects: A = 18-37 inches, B = 14-89 inches, E = 21-27 inches, D = 17-84 inches, C = 21-65 inches. 
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: submerged macrophytes (r = -0.95, P= 0.051). Annual = Table 12. Mean wet volume of submerged macrophytes among 
variation in water clarity apparently had noeffect on —_ 5 coverage classes of rake samples from transects in Lakes Butte 
macrophyte abundance in the same year. des Morts and Poygan, 1979-80. 

This analysis did not investigate the relationship Coverage Class No. Rake Mean Wet 
between annual variation in mean rake coverage and (4 ake covers d) Sam i Vol (ml) 

; Lge . 0 ples olume (m 
| water clarity because of the subjectivity of assigning rake §©_§=£——————______—>__ > 

coverage classes. For instance, varying structural charac- 
teristics among species may affect efficiency of collection 1-12 103 | 271 
by the rake and may affect the appearance of extent of | B 
rake coverage thus increasing observer bias. Accuracy of 19-97 40 1,930 
the rake sampling technique was assessed for transects B A 
and C in 1979-80 by comparing rake coverage to wet vol- 38-62 a2 3,077 
ume of plants sampled (Table 12). For all data pooled, A 
differences in wet volume existed among the 5 coverage _ 63-87 V 3,348 
classes (P < 0.001); but wet volume did not differ among 88-100 on a4 Ff 
coverage classes 3-5 (TSRT, P > 0.05). a 

Water clarity data were obtained from many locations * Means with the same capital letters are not different, Tukey’s 

other than near transects and the sampling pattern was studentized range test (P > 0.05). 
inconsistent seasonally and annually. Furthermore, the . 
rake sampling technique, especially when based on1tran- (TSS) and organic suspended solids (OSS) also differed | 
sect per area and sampled once annually, only detected Significantly among major inlets and outlets (P < 0.001 
gross changes in submerged macrophyte abundance. for both) and among months (P = 0.043 and P = 0.01, 
Modest annual differences in water clarity could effect respectively) (Table 14). In contrast to turbidity, there 
more subtle changes. High turbidity in most years may Was no significant interaction between site and month 

have determined the long-term maximum depth of sub- for TSS and OSS (P = 0.19 and P = 0.22, respectively). 
merged macrophytes in the UWPL. Plant beds would Although the Wolf River at Fremont also generally had 
expand slowly even in years of slightly better water clar- the lowest TSS and OSS, differences among sites and 
ity because suboptimal conditions still existed. months for these parameters did not consistently sup- 

Modest annual changes in water clarity probably effect Port differences in turbidity. - 
a continuum of responses over many years by submerged For all data pooled, significant relationships were 
macrophytes, which is complicated by localized water | found between TSS and OSS vs. turbidity. However, 
clarity differences, concentrations of carp, excessive wave these parameters only accounted for 65% and 63%%0 of the 
exposure, sediment composition, and nutrient availabil- variability of turbidity (P < 0.001). The relationship 

| ity that affect phytoplankton and epiphyton populations. | between turbidity vs. TSS and OSS for the Wolf River- 

Epiphyte colonization on submerged macrophytes may —_ Fremont site (7* = 0.38, P < 0.001; and r? = 0.14, P < 0.014, 
determine long-term growth and survival by limiting | respectively) was the poorest of the 4 major inlet-outlet 
nutrient and gas diffusion and light availability to photo- _—_ locations, indicating that factors contributing to turbid- 
synthetic tissue (Wetzel and Neckles 1986). Nutrient ity varied more at this site. For the other 3 locations, 

loading from internal sources (Laumer 1977,Sloey and _—_—_r*= 0.52-0.67 for TSS and r? = 0.54-0.65 for OSS (P < 0.001 
Spangler 1977, Wiersma et al. 1977) may have led to simi- _ for all comparisons). 
lar epiphyte populations in most years. Since phyto- Mean turbidity of lesser tributaries to Lakes Butte des 

| plankton cause most turbidity in the eutrophic UWPL = Morts and Poygan did not differ among months (P = 0.106) 
(Sloey 1970, Sloey and Spangler 1977), both phytoplank- _ for all sample dates in 1975-78 and 1981 pooled (Table 
ton and epiphyte communities probably act inconcert to 15). There were no significant differences between lakes 
govern light availability and long-term abundance of | in mean turbidity from lesser tributaries for any month 
submerged macrophytes. (P > 0.30). Spring Brook generally had the highest tur- 

bidity (34 JTUs) and Slough Creek had the lowest (9 JTUs) 
Sources of Turbidity of the 6 tributaries (17-23 JTUs for the other 4; see Fig. 2), 

; , ase ge but significant differences did not exist among tributaries 
Tributaries. Turbidity differed significantly among the (P = 0.082) for all months pooled. Sample sizes were 

Wig inlets ane ouriets nt River 3. premont and inadequate to test differences among tributaries by 
UWPL ond a. ox Kiver at Omro and Oshkosh) to the onth. Despite this lack of significant differences, higher 

and among months (P < 0.001 for both) for May- soil erosion rates in spring conceivably resulted in the Aug 1975 and April 1976 (Table 13, Fig. 2). Furthermore, Png fvany Xe 
5 P © 18 enerally higher turbidity from tributaries in April-May the differences among the major inlets and outlets were ee oe ub y 

; age , an in June-July. 
not the same in each month (significant interaction 
between month and site, P < 0.001). The Wolf River at _‘In-lake vs. Tributary Sources of Turbidity. Comparison 
Fremont generally had the lowest turbidity, but differ- of turbidity data among lesser tributaries pooled by lake, 
ences among the other 3 sites varied considerably by _— major inlets and outlets, and in-lake sites pooled by lake 
month. May-July typically had lower turbidity than _for a subset of data only for May-August 1975 and April 
April and August for all sites. Total suspended solids _—_ 1976 (the only period that major inlets and outlets were 
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Table 13. Mean monthly turbidity for major inlets and outlets, lesser tributaries, and in-lake | 
sources to Lakes Poygan and Butte des Morts, May-August 1975 and April 1976.* 

Turbidity (JTU)” 

Tributary Apr May Jun Jul Aug . 

Lake Poygan , 
Major inlet B? A A A A 
(Wolf R.-Fremont) 15 (3) 8 (5) 9 (4) 12 (5) 17 (4) | 

AB A A iB 
Lesser tributaries 34 (2) 44 (3) 4 (1) 3 (2) — 

A A 
In-lake 36 (4) 32 (3) - - - 

Major outlet A A A A B 
(Wolf R.-Winneconne) 40 (3) 11 6) 8 (4) 14 (5) 25 (4) 

Lake Butte des Morts 
Major inlet A B A A A 
(Fox R.-Omro) 21 (3) 15 (5) 20 (4) 23 (5) 41 (4) 

Major inlet A B A A B 

(Wolf R.-Winneconne) 40 (3) 11 6) 8 (4) 14 (5) 25 (4) | 

AD A 
Lesser tributaries - - 9 (2) 7 (2) — 

| A A A A 
In-lake 41 (3) 35 (6) 12 (4) 19 (7) - 

Major outlet A AB A A B | | 
(Fox R.-Oshkosh) 34 (3) 17 (5) 12 (4) 17 (5) 22 (4) 

* Number in parentheses is the total number of measurements used to calculate weighted 
daily means each month for a variable number and location of sampling sites (1-3) per day, 
and variable number of sampling dates (1-5) per month for each source. 

** Jackson Turbidity Units. 
a ---@ Within months for each lake, means with the same capital letters are not different; Tukey’s - -- : : Be 

multiple range test (P > 0.05). 

Table 14. Mean total suspended solids (TSS) and organic suspended solids (OSS) (mg/L) for major 
inlets and outlets of Lakes Poygan, Winneconne, and Butte des Morts, May-August 1975 and April 1976. 
a 

Apr May Jun Jul Aug Pooled 

Site TSS OSS TSS OSS TSS OSS TSS OSS TSS OSS_ TSS OSS 

A** AB AB A A A A A A A A A 
Fox R.-Omro 55 15 33. «13 60 21 49 21 101 38 56 21 

A AB A AB BB A AB A A AB B 

Fox R.-Oshkosh 45 12 39 «10 28 «12 37:16 36 =: 16 36 «13 

A B BB BB A C A A B C 
Wolf R.-Fremont 7 2 14 «#5 21 5 21 8 24 6 18 5 

A A AB B BB A BC A A B BC 
Wolf R.-Winneconne 62 22 21 6 11 5 21 11 45 17 27 11 

* For Apr, N = 3; May, N =5; Jun, N = 4; Jul, N = 5; Aug, N = 4. 

** Within months, means with the same capital letters are not different, Tukey’s multiple range test 
(P > 0.05). 
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Table 15. Mean monthly turbidity contributed by 3 tributaries The Wolf River at Winneconne discharged relatively 
to Lake Poygan and to Lake Butte des Morts, 1975-78 and 1981.* turbid water into Lake Butte des Morts during April 

edt (Table 13), but turbidity did not differ significantly for 
si urbidity TU" the Wolf River at Winneconne, the Fox River at Omro 

Lake Apr May Jun Jul Pooled and Oshkosh, and in-lake sites (P = 0.29) during April. 
Poygan® 34 (1) 31 (4) 15 (7) 20 (6) 19(18) | PSSand OSS data did not fully support this pattern since 
Butte des Morts> 29 (4) 32 (5) 21(10) 19 (6) 24(25) the Fox River at Omro transported higher suspended 
Pooled 30 (5) 32 (9) 19(17) 19(12) 21 (43) solids loadings than the Fox River at Oshkosh although 
* No differences existed among months and between lakes, differences were not significant (P > 0.05) (Table 14). 

ANOVA and t-test (P > 0.05); number in parentheses is total Apparently, Lake Butte des Morts accumulated sus- 
number of measurements used to calculate weighted daily pended solids, especially inorganic solids, from both the 
means each month, for a variable number of tributary sam- Wolf and Fox rivers in April, which the Fox River outlet 
pling sites (1-3) per day, and a variable number of sampling did not flush from the system. During May, the 3 major 
dates (1-6) per month. inlet-outlet locations transported relatively low turbidity 

. Jackson Turbidity Units. . loads (and suspended solids) compared to in-lake 
, paaes: Fine River, Willow Creek, and Pumpkinseed Creek. ssurces of turbidity, but turbidity differed significantly 

ributaries: Dagett’s Creek, spring Brook, and Slough Creek. 0 nly for both inlets vs. in-lake sites (ANOVA, P = 0.012; 

TSRT, P < 0.05). : 
sampled) provided further insight into sources of turbid- Increasing turbidity in the Fox River at Omro during 
ity and turbid-water flow dynamics (Table 13). Meanin- —_ June and July tended to contribute more to Lake Butte 
lake turbidity for Lake Poygan was higher than inflow des Morts turbidity than the Wolf River at Winneconne 
turbidity from the Wolf River at Fremont but similar to —_and lesser tributaries (P = 0.061 and P = 0.131, respec- 
inflow turbidity from the smaller tributaries during April _ tively). By August, inflow of the Fox River at Omro car- 
and May. Turbidity in the Wolf River at Fremont differed _ ried significantly greater turbidity loads than inflow of 

| significantly only from in-lake sites in April(ANOVA, the Wolf River at Winneconne and outflow of the Fox 
P = 0.029; TSRT, P < 0.05). Differences among sources River at Oshkosh (ANOVA, P = 0.005; TSRT, P < 0.05). 
were nearly significant in May (ANOVA, P = 0.072). In Both TSS and OSS supported this pattern for turbidity 
Lake Poygan, water from the Wolf River apparently during June-August. : 
diluted turbidity from smaller tributaries and in-lake However, significant differences in TSS existed only 
sources during spring. _ for the inlet of the Fox River at Omro vs. the inlet of the 

During April, the Wolf River at Winneconne expelled Wolf River at Winneconne and the outlet of the Fox River 
more turbidity, TSS, and OSS from Lakes Poygan and —_at Oshkosh during June (P < 0.05). For OSS, the Fox 
Winneconne than the Wolf River at Fremont contributed River at Omro transported significantly greater loads : 
to these lakes (Tables 13, 14). This outflow turbidity sim- than the Wolf River at Winneconne during June and July, 
ply reflected the relatively high turbidity in Lakes Poygan _and the Fox River at Oshkosh during June (P < 0.05). 
and Winneconne. During May, outflow turbidity from Phytoplankton, especially diatoms, caused most turbidity 
Lakes Poygan and Winneconne decreased to levels below _—_ during this period at these locations (Sloey et al. 1976). 
in-lake and inflow turbidity from smaller tributaries. In summary, inflow from the Wolf River (measured at 
Lakes Poygan and Winneconne possibly acted as sinks — Fremont) to Lake Poygan apparently contributed little to 
for turbidity from smaller tributaries during May. in-lake turbidity during May-August 1975 and April 

All sources for Lake Poygan had relatively low turbid- —_ 1976. Smaller tributaries in spring, and in-lake sources in 
ity in June, and no differences were found among sources spring and summer probably accounted for most of Lake 
(P = 0.51). Turbidity increased slightly in July forthe | Poygan’s turbidity during this period. The Wolf River 
Wolf River at Fremont and Winneconne, resulting insig- _ and lesser tributaries apparently carried low turbidity 
nificantly higher turbidity loadings for these sources _ loads during summer 1975. Internal loading of nutrients 

| than for smaller tributaries (P = 0.005). Sampling bias —_ from sediments, carp, and freshwater drum probably led 
within submerged macrophyte beds prevented assess- _ to high phytoplankton populations (Sloey and Spangler 
ment of in-lake sources of turbidity for June-August. 1977) in summer. 

_ Outflow turbidity, TSS, and OSS levels of the Wolf River Spring turbidity in Lake Butte des Morts resulted 
at Winneconne steadily rose from June through August, from Wolf River inflows (measured at Winneconne) in 
probably due to increased phytoplankton populationsin = April but not May, and possibly from lesser tributaries 
Lakes Poygan and Winneconne. Meanwhile, inflow tur- and various in-lake sources. The Fox River contributed 
bidity increased more modestly, and TSS and OSS little turbidity to Lake Butte des Morts during spring. 
remained similar from June through August for the Wolf |= Phytoplankton and nutrient enriched water of the Fox 
River at Fremont. By August, inflows had significantly | River and in-lake sources contributed most to summer 
less turbidity than outflows of the Wolf River(ANOVA, turbidity in Lake Butte des Morts. 
P = 0.024; TSRT, P < 0.05). Lakes Poygan and Winne- In 1972-73, most tributaries to Lake Poygan and major 
conne apparently served as incubation chambers for __ tributaries to Lake Butte des Morts delivered high nutrient 
phytoplankton (Sloey and Spangler 1977), flushing some _loads to these lakes (U.S. Environ. Prot. Agency 1974, 1975). 
of this phytoplankton downstream into Lake Butte des | Sediments apparently have become nutrient enriched, 
Morts, especially in August. and subsequent release (i.e., internal loading) of these 
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nutrients fuels high phytoplankton populations during |= maximum wind speed (range 7.0-25.0 mph) and gusts 
late spring and summer months (Wiersma et al. 1977). (range 19.0-31.0) did not detect a relationship between 

These conclusions should be considered tentative. All high winds and water clarity for the UWPL. However, 
tributaries were not sampled on the same day orineach days with mean and maximum wind speeds exceeding 
month. Furthermore, sample sites probably did not ade- = 20 mph occurred infrequently from April through June 
quately represent water quality for all tributaries andin- (only 5-8% of all days, or < 3 days/month) so probably 
lake sites. The Wolf River may introduce higher turbidity _had little effect on water clarity. 
loads to Lake Poygan than demonstrated at Fremont by A delayed response, especially by phytoplankton, to 
accruing heavy turbidity loads along the 10-15 miles __ the previous day’s winds from resuspension of nutrients 
from Fremont to Lake Poygan, including additional tur- _ or cells and other fine particles was not evident for the 
bidity from the Rat River Watershed (Fig. 2). UWPL (Table 16). Relatively high turbidity and nutrient 

Wave Action. Relatively strong, prevailing easterly ay ana mety from other have ob mn op 
winds (R. Kahl, unpubl. data) during spring over the 4-6 “Aditi nee 0° f aces may Neve © del ' aan ° 
mile east-west fetches of these large shallow lakes maxi- a ey shan | dae | coe he 3 f ST oe ffmcts 
mized the potential effects of wave action on turbidity. oe her a bl ay wha ell OUnens . ects 
Mean wind speeds were greater during April (x = 11.7 of pnytopiankton blooms that typically occur during 
mph; P < 0.05) than any other month during 1977-82. calm weather in summer and bias associated with sam- 

May and June experienced significantly greater mean pling in macrophyte beds during J une-August may 
“monthly wind speeds than July and August (x = 10.3- part account for the lack of a strong relationship. 

10.4 mph and x = 8.7-8.9 mph, respectively; P < 0.05). However, existing vegetative structure to attenuate wave 

Wind-induced wave action accounted for 28% of the  @c#lon was minimal MN SPMNS: Other important factors 
variation in the photic zone depth during April-May, but confounding or masking the impact of wind-induced 
apparently exerted little influence on turbidity and the turbidity include upland erosion, carp activity, sediment 
photic zone at other times (Table 16). Several other composition, shoreline stabilization, and wave action 

regressions of mean daily turbidity and photic zone _ {f°™m motor boat activity. | 
depth on mean daily wind speed yielded significant Other studies on these lakes have concluded that 
results (P < 0.05), but wind speed never accounted for Wave action may contribute significantly to turbidity 

more than 14% of the daily variability in turbidity and (Laumer 1977, Sloey and Spangler 1977). Wave action 
photic zone depth. However, strong winds reduced the 4% Increase turbidity by resuspending bottom sedi- 
accuracy of water clarity measurements, and often pre- ments and eroding shorelines (Chandler 1942, 
vented safe access to the UWPL. This effectively limited Chamberlain 1948, Mills et al. 1966, Stern and Stickle 
sample size for days with high wind speeds (range for 1978) and by augmenting water fertility and phytoplank- 
mean daily wind speed was 5-20 mph). Analyses using 0M populations by resuspending nutrients (Wiersma et 

| al. 1977, Bates and Neafus 1980) and particulate organic 

Table 16. Summary of linear regression analyses for water tur- me Wemers sh al. ow). these 1 hallow lak 
bidity and photic zone depth vs. daily wind speed parameters, y nh mogerare Wines ‘te nd heen, onan ew ‘ible 

Upper Winnebago Pool Lakes, 1977-82 aye ave resuspended and eroded the more susceptible | — 
—$— silt, clay, organic particles, and nutrients that tend to 

Dependent No. remain in suspension for relatively long periods. Wind 
Independent Variable _ Variable | Days r  P__ velocities of 13.5 mph resuspended particulate organic 
Daily Wind Speed Daily Turbidity matter (primarily diatoms), resulting in higher phyto- 

Mean 3 Mean, all sites 128 0.02 0.08 plankton populations in the water column in a Lake Erie 

Mean with gusts Mean, all sites 128 0.02 0.12 bay (Demers et al. 1987). Greater wind speeds contributed 
Mean, gusts only Mean, all sites 33 0.03 0.34 _—ilittle additional turbidity. Maximum wind speeds 
Maximum Mean, all sites 128 0.03 0.05 exceeded 15 mph at the Oshkosh Airport on 42% of all 
Mean, Apr and May Mean, all sites 21 0.00 0.79 days during April-June. In contrast, winds less than 26 
Mean, south wind days Mean,SunsetBay 13 0.10 030  mphhad little impact on turbidity in Lake Chautauqua, 
Mean, east wind days Mean, WestPoygan 12 0.14 0.23 [Ilinois, but winds greater than 26 mph produced high 
Mean previous day Mean, all sites 129 0.00 0.85 —_Jevels of turbidity (Jackson and Starrett 1959). 

previous day Mean, all sites 129 0.00 0.60 Turbidity Attenuation by Macrophytes. Dense beds of 
Daily Wind Speed Daily Photic Zone submerged macrophytes apparently altered the microcli- 
Mean Mean, all sites 174 0.03 0.02 mate and reduced turbidity within the beds at the west 
Maximum Mean, all sites 127 0.04 0.02 shore of Lake Poygan and the AMSA of Lake Butte des 

Mean, Apr and May Mean, all sites 20 0.28 0.02 Morts, but a dense, narrow stand of emergent macrophytes 

Mean, south wind days Mean,SunsetBay 14 0.04 048 in Sunset Bay of Lake Butte des Morts had no effect on 
Mean, previous day Mean, all sites 129 0.01 0.43 turbidity. After plants developed in the dense bed of 

* Analyses utilized daily means for all sites sampled each day, submerged macrophytes along Lake Poygan’s west shore, 
thus means are derived from variable numbers and locations water clarity improved at the middle and shoreward sites 
of sites. 
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2807 A. Wildcelery within the bed (Fig. 14a). In the overall 2-way ANOVA | 
2605 _ _ Shoreward ~~, (P < 0.001) significant differences in the 5% photic zone 
240 ypo™, depth existed among sites (P < 0.001) and among 33 sam- 

2204 —— Middle y ‘y pling dates (P = 0.002). The inner site had a significantly 
200 ye ‘ deeper photic zone than the middle and outer sites for all 
i890] “777” ~~ Lakeward / \ dates pooled (P < 0.05). Photic zone depths did not differ 
160 / \ significantly in any month, but differences among sites 
140 Y \ steadily increased from virtually no difference in April 
120 y \ (P = 0.68) to nearly significant differences in July (P = 0.055) 

“400 if a . \ and August (P = 0.084). Unexplainably, turbidity data did 
30 / ee aN not support results of the photic zone analysis (overall 

we Met AN 2-way ANOVA: P < 0.001; among dates: P < 0.001; and 
60 Y et A among sites: P = 0.48). Wildcelery, the dominant species 
40 ne * in this area, began growing in early to mid-May, and 
20 probably attained maximum biomass in mid-July to early 

| August. Greatest water clarity at the inner site coincided 
Apr May dun Jul Aug Sep swith near maximum to maximum biomass of wildcelery. 

A mixed wildrice and submerged macrophyte stand 
907 B. Wildrice also improved water clarity at 2 protected sites in the 

~ " AMSA of Lake Butte des Morts during April-September 
3 80 eoN . 1978 (Fig. 14b). Significant differences in depth of the | 
& 70 Uc” ae oor NN 5% photic zone among the outer and 2 protected sites 
4 a ‘V7 \. (P < 0.001) and among 16 sampling dates (P < 0.001) con- 
2 60 tS \. tributed to overall significance of the 2-way ANOVA 
Q 50 oo oe (P < 0.001). The photic zone depth was consistently 
S 40 “ wa greater at the protected middle and shoreward sites in all 
N ee months and led to the significant differences among sites 
= 30 tt for all dates pooled. Turbidity data followed a similar 
a 200 | pattern (P < 0.001 for overall 2-way ANOVA, and for 

comparisons among dates and among sites). 
10 | However, a monotypic common reed stand did not 

improve water clarity at protected sites within and 
Apr May Jun Ju Aug Sep shoreward of the stand in Sunset Bay, Lake Butte des 

Morts during April-September 1976 (Fig. 14c). The 5% 
photic zone depth did not differ among an outer, exposed | 
site and 2 sites protected from wave action (P = 0.25). 

| © Common Reed Turbidity data further substantiated these results (overall 
80 — 4 ~S ANOVA, P < 0.001; among dates, P < 0.001; and among 

70 / sites, P = 0.71). 
60 / (eee TN The common reed stand also had no effect on TSS and 

/ i “err \. ‘ OSS (P = 0.89 and P = 0.86, respectively) for all data 
507 Te ‘ ‘. pooled. In fact, the shoreward site had slightly higher 
40 / \ ‘. TSS (12.9 mg/L) than the lakeward site (11.2 mg/L), and 
30 ; ‘SN SS OSS was similar for both sites (7.2 vs. 7.4 mg/L). Organic 

SO material comprised a greater part of TSS than the inor- 
20 Yess ganic component (57-72% vs. 28-43%) and accounted for 
10 more of the variability in turbidity (r? = 0.68, P < 0.001) 

than TSS (7? = 0.58, P < 0.001) at the common reed sites. 
a Aor May Jun Jul Aug Sep Relatively high OSS around the common reed stand in 

Month Sunset Bay indicated that turbidity consisted primarily 
of phytoplankton and/or suspended organic detritus, 

Figure 14. Mean monthly 5% photic zone depths at exposed possibly from carp activity. Sunset Bay attracted large 
sites lakeward of macrophytes and at protected sites in the mid- carp spawning populations in the late 1970s (Otis and 
dle of and shoreward of the macrophytes during 1976-77 for a Weber 1982). Field notes indicated considerable carp 
wildcelery bed along the west shore of Lake Poygan; 1978-79 activity throughout spring and summer in Sunset Bay 
for a mixed wildrice and submerged macrophyte bed in the and several other common reed stands during this study. 

Allen's Marsh Study Area, Lake Butte des Morts; and 1975- Excessive carp populations were not noted within the 2 
76 for a common reed stand in Sunset Bay, Lake Butte des dense beds of submerged macrophytes investigated dur- 
Morts (N = 1-7 days/month). ing this study. 
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The other notable difference between the common Submerged macrophytes responded differently from 
reed study sites and the wildcelery and wildrice study | emergent forms, partially contributing to the significant 
sites was the lack of dense submerged macrophytes sur- _— interaction and necessitating separate analyses for the 2 
rounding the protected middle and shoreward sampling groups. Biomass of both submerged and emergent 
sites in the area of the common reed stand. Microclimate plants differed among treatments (P < 0.001 for both) and 
modifications attributable primarily to submerged macro- among years (P < 0.001 for both; Table 17). A significant 
phytes likely produced these water clarity improvements _ interaction between treatments and years also existed 
by stabilizing bottom sediments and interfering with for both submerged and emergent macrophyte analyses 
water circulation, allowing suspended solids, phyto- = (P < 0.001 for both). | 
plankton, and nutrients to settle (Stevenson and Confer Submerged macrophytes, primarily wildcelery, domi- 
1978, Canfield and Jones 1984). Submerged macrophytes _ nated the solid-panel exclosure and control plots in late 
produce more underwater foliage than emergent macro- summer 1975. Emergent macrophytes were sparse in 

phytes and would more effectively alter the microclimate. | both plots (Table 17). Emergent macrophytes were not 

Shading and lowered water temperature below the sub- — sampled in 1976. Macrophytes were not sampled in the 

merged macrophyte canopy and macrophyte competition wire exclosure in either year. 
for nutrients likely suppressed phytoplankton populations. Emergent macrophytes increased in the solid-panel 

Lastly, submerged macrophytes may have produced exclosure from 1975 to 1977 (P <.0.05) due primarily to 

phytotoxins, further inhibiting phytoplankton blooms rapid growth of stiff arrowhead and river bulrush stands. 

(Sloey 1969, Phillips et al. 1978). These species comprised 47% and 26% of total emergent 

The common reed stands apparently did not effectively biomass in 1977, respectively. Expanding stands of emer- 

prevent mixing of nutrient and phytoplankton-rich water gent macrophytes supplanted submerged species, which 
outside the bed with water in the bay. Floating tire break- decreased during the same period in the solid-panel exclo- 

waters across mouths of 2 coves in an Oklahoma reser- Sure (P< 0.05). Abundance of emergent macrophytes 

voir induced only minor improvements in transparency peaked in 1977 and remained stable through 1978 in the 
and turbidity even though these breakwaters reduced solid-panel exclosure. 
wave height by 60-70%. This breakwater design appar- In contrast, submerged macrophytes in the control 

ently allowed rapid mixing of highly turbid lake water plot increased during 1975 to 1977 (P < 0.05), but then 

with water in the protected coves (Clady et al. 1979). declined as emergent macrophytes, primarily wildrice, 
increased from 1977 to 1978 (P < 0.05). Wildrice pro- 

Physical Impacts of Waves and Undesirable Fish duced about 10 times the biomass in 1978 as in 1977 in 
the control plot. 

A solid-panel barrier appeared to enhance growth and Biomass of submerged macrophytes also declined sig- 

abundance of stiff arrowhead and river bulrush but not nificantly in the wire exclosure from 1977 to 1978 (P < 0.05) 

the abundance of submerged macrophytes, wildrice,and due toa77% reduction in water milfoil. Unlike the con- 
round-stemmed bulrushes. Dry weight biomass of macro- _ trol plot, the dominant emergents, wildrice and round- 
phytes (all species pooled) differed significantly among a stemmed bulrushes, remained stable in the wire exclosure. 

_.. solid-panel exclosure, wire-mesh exclosure,and control. _ Turbidity, TSS, and OSS did not differ (P >.0.05) between _ a 
plot (P < 0.001) in the AMSA and among years (P< 0.001) _ the exclosure and control plots in 1975-77 (Table 18), and 
from 1975-80. Effects of the protection treatments also _ therefore, did not cause differences in submerged macro- 
deviated among years (significant interaction, P < 0.001). phytes among these plots. Additionally, changes in 

Table 17. Mean dry weight of submerged and emergent macrophytes in solid-panel and wire mesh exclosures and 
a control plot in the Allen’s Marsh Study Area, Lake Butte des Morts, 1975-80 (N = 20). 

Mera Dry Weight (p/0.67 FE) 
1975 1976 1977 / 1978 1979* 1980* 

Treatment Sub. Emer. Sub. Emer. Sub. Emer. Sub. Emer. Sub. Emer. Sub. Emer. 

A* A A BOA BOA BOA BOA 
Solid 8.53 0.06 6.68 — 2.56 25.96 1.05 23.31 0.44 16.40 0.47 15.16 

A B A B A B 

Wire - - - - 9.54 7.14 3.50 6.94 4.63 7.20 _ - 

B A A A B A B A B A A 

Control 5.62 0.41 6.27 — 10.23 =. 2.36 450 9.45 4.97 2.32 5.81 18.57 

* Solid and wire structures were removed in April 1979, and plots were sampled late July to mid-August. 

** Among treatment and control plots for submerged and emergent macrophytes, means with the same capital 
letters are not different, Tukey’s studentized range test (P > 0.05). 
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Table 18. Mean turbidity and total suspended solids (TSS) and organic suspended from 1977-79. An insect infestation on 
solids (OSS) for solid-panel and wire mesh exclosures and a control plot, Allen’s round-stemmed bulrushes reduced 
Marsh Study Area, Lake Butte des Morts, 1975-77. Sample size in parentheses.* stem density of these species in the 

} Turbidity (TU)** “‘Tss (ng/L) OSS (mg/L) AMSA in 1977-79, causing differential 
—_ WT. mortality throughout the area, espe- 

Treatment 1975 1976 1977 Pooled 1975 1975 cially in the solid-panel exclosure plot, 

Solid 9 (12) 27 (17) 11(17) 16 (46) 43 (9) 26 (9) © and probably contributed to these 
Wire 10 (10) 30 (15) 11 (15) 18 (40) 29 (14) 15 (14) inconsistencies. 
Control 12 (12) 28 (15) 11 (18) 17 (45) 22 (13) 11 (12) Possibly the most important factor 

* No differences existed among treatments and control plots, ANOVA (P > 0.05). responsible for the decline in emergents 
** Jackson Turbidity Units. in the solid-panel exclosure plot after 

oo | removal of the exclosure was grazing by 
| | | muskrats. By fall 1978, muskrats had 

abundance of submerged macrophytes in the control plot —_ built several lodges near the solid-panel exclosure plot. 
from 1975-77 did not correspond to varying water tur- |= Arrowheads and river bulrush supply food and lodge 
bidity among these years. building material for muskrats (Bellrose 1950, Sather 

After removal of the solid-panel exclosure in April 1958). Muskrats could have grazed these plants after 
1979, emergent macrophytes declined during the subse- removal of the solid structure. Muskrats severely __ 

| quent 2 growing seasons, producing significantly less | reduced density of a river bulrush stand in Rice Lake, 
biomass in 1980 than 1978 (P < 0.05) (Table 17). In partic- Nebraska (Sather 1958). 
ular, the dominant emergents—stiff arrowhead and river Stiff arrowhead (the dominant emergent species) 
bulrush—declined the most from 1978 to 1980. reportedly tolerates moderate to severe wave action 
Submerged macrophytes did not respond positively to | (Harriman 1970), and this species occurred at various 
the decline of emergents in 1979-80. sites with greater exposure to severe wave action than 

_ Arelatively large, but non-significant (P>0.05) the AMSA. Stiff arrowhead stands at exposed, open- 
decrease in wildrice occurred in the control plot from water sites in Pool 9 of the Upper Mississippi River 
1978 to 1979. Wildrice then increased from 1979 to 1980 = attained greater biomass than stands at relatively shel- 
(P < 0.05) in the control plot. Submerged macrophytes __ tered, backwater sloughs (Clark and Clay 1985). Of the 5 
remained stable from 1978-80 (P > 0.05). Abundance of _ exclosure sites in the Winnebago Pool Lakes during 1975- 
macrophytes in the wire-exclosure plot did not change _—_ 80, only this one survived wave and ice action over 4 
from 1978 to 1979 for both emergent and submerged years due to the relatively sheltered location. Other, 
macrophytes after removal of the structure in spring 1979 more exposed sites in the UWPL supported relatively 
(P > 0.05). Macrophytes were not sampled in the wire- | dense emergent and submerged macrophytes. 
exclosure plot in 1980. For submerged macrophytes in the vicinity of the 

Abundance of macrophytes in the vicinity of the — exclosures in the AMSA, species interaction, especially 
exclosures in the AMSA was apparently affected by | between submerged and emergent macrophytes, appar- 
water level fluctuations, insect infestations, vertebrates, | ently explained changes in abundance in this shallow 
and macrophyte species interactions more than wave _area with firm sediments more than wave action. In con- 
action or undesirable fish. Relatively low water levels 
during each summer from 1975-77 likely contributedto. 

head and river bulrush in the solid-panel exclosure during eT ee 

observed during drought conditions in 1988-89 that pro- AI @ege Ss 8) 

the increasing abundance of emergents (primarily “ee | CaCO 
wildrice) in the control plot over the same period. Then | 9. I 

stressed plants, reducing energy storage in overwinter- ea SS a ae a a oe og es 
ing structures of arrowheads and bulrushes and seed a Ue ar i‘. os eo : 

the solid-panel and control plots in 1979. Relatively late MMM 8 RG gs 0 | 
sampling and early senescence of stiff arrowhead and at 

river bulrush further explain the apparent decline in — Muskrats harvested emergent macrophytes for food and to build 
emergent macrophytes in this plot during 1979. However, _lodges in 1978-79 near the solid panel exclosure plot (marked by 
water level fluctuations do not account for the lack of dif- stakes) in the Allen’s Marsh Study Area, Lake Butte des Morts. 

ferences in emergent biomass (primarily wildrice and —_ This activity in part explained the decline in emergents after 
round-stemmed bulrushes) in the wire exclosure plot — removal of the exclosure in 1978. 
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trast, wave action over a somewhat _— PAL aS itacant = My aes TN 
greater fetch reduced biomass of sago pee De ag ANC 
pondweed and Potamogeton filiformis F cefiet  d7  paae . =... ‘s A 
by as much as 80% over the course of agin ial en NY 
a growing season in an English lake Eee Sermecntin oe = RE ceria 
(Jupp and Spence 1977). Several Jt a a he 
other studies utilizing exclosures r 
(Tryon 1954, Robel 1961, King and 

Hunt 1967) concluded that carp 
directly destroyed submerged macro- 
phytes by uprooting or grazing. 
Their wetlands apparently supported 2 
higher carp populations. « 

An exclosure experiment in 2 other 5 
locations with firm sediments in the . 
UWPL during 1986 provided little The Allen’s Marsh Study Area, Lake Butte des Morts (location of wave and carp exclo- 
evidence that waves and carp directly sures marked by arrow) was relatively protected from west, north, and east winds by 
reduced biomass of wildcelery (Kahl Sunset Point to the north-west and by the U.S. Hwy. 41 causeway to the east. (Photo 

1987). However, soft, unconsolidated taken facing north.) 
sediments may allow greater disrup- 

i f h a . , ‘i 
tion of macrophytes by waves and Table 19. Insect infestation of round-stemmed bulrushes, Allen's Marsh Study Area, 
carp. Furthermore, waves and carp 

: : tae Lake Butte des Morts, 1977-79. 
likely contribute more to turbidity in ©<§ ———_—_—_ sss 
shallow zones with soft sediments. Infestation Parameter 1977 1978 1979 

In general, wave action and unde- No, Stems Examined 48 225 261 
sirable fish had little direct impact on Green stems 25 85 128 
most species of macrophytes in this Discolored stems 23 140 133 

area. Instead, subtle synergistic  Lepidopteran Infestation Rate (%)* 66.0 (30.7)** — 62.4(30.7) 56.8 (22.4) 
impacts of vertebrates (primarily Green stems 55.7 (30.7) 51.6 (34.2) 62.5 (25.4) 
muskrats), water level fluctuations, Brown stems 76.3 (22.8) 72.4 (24.4) 51.1 (18.4) 

insects, wave action, and water clarity _ No, Lepidopterans/Infested Stem* 2.2 (1.2) 1.9 (1.0) 1.8 (0.7) 
differentially affected the abundance Green stems 2.2 (1.6) 2.1 (1.2) 1.8 (0.9) 
of the various emergent and sub- Brown stems 2.2 (1.1) 1.8 (0.8) 1.8 (0.5) 

merged forms in the AMSA. Wave No. Hymenoptera/Infested Stem* 0 0.4 (0.6) 0.1 (0.1) 
action also may affect macrophyte dis- Green stems 0 0.1 (0.4) 0.1 (0.1) 
tribution indirectly through sedimen- Brown stems 0 0.6 (0.7) 0.2 (0.1) 

tary processes leaving coarse, * Based on daily weighted means from a variable number of days that stems were 
nutrient-poor sediments at exposed collected: N = 3 in 1977, 12-13 in 1978, and 11 in 1979. 

sites (Jupp and Spence 1977). ** Standard deviation in parentheses. 

Insect Infestations in / 
Round-stemmed Bulrushes ; Coc | | 

In the AMSA, an insect infestation eA ES ere : 
appeared to decrease stand vigor of ai se ps ra 
round-stemmed bulrushes within the iia a ee ek 

pommtemen ————— a Riemer ny a ml 
solid-panel exclosure and inanadja- | ee igs ai aaa my 
cent stand during 1977-79. Larvae i Ge aang eee y 
and pupae of 2 aquatic moth species 2.) , 
(Lepidoptera) infested more than ee oe ter | 
half of all stems collected fromJune- = — ” ne . 
September 1977-79 (Table 19). Dis- math pei E j : tit 

colored stems had higher infestation =~) 5 | oa | t 
rates than green stems in 1977 and | auneonemeernns 0 07 GIRS 7G SNP cere ae 
1978 but not in 1979. Both green and | ss iiiidiliiadiiteaasiamacamuninn a 
discolored stems contained an average inl erie et ee — Oops cia 2 

. . oa <ieitainanpe a cpe deaeaillorere ee Ne ee ; 
of about 2 lepidopterans per infested /™ SHS eenemnt a i i” 

stem in 1977-79. Lepidopteran larvae [UE teeter em 
hollowed stems, causing premature ~~ , — . oe 
browning and collapse. These data —_Larvne of 2 aquatic lepidopterans channelized and severely damaged stems of round- 
reflect minimum infestation rates stemmed bulrushes in the Allen’s Marsh Study Area, Lake Butte des Morts. 
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because many stems had signs of 80 A | = : : 

channelization but no larvae and : : : / NO: : : : : : : 

heavily infested stems were not 7 ; Of NG : 2 : Bo! : 
sampled because they had col- 60 octet deed eect Ngee, [oc bit eee 
lapsed below the water surface. : : of | ON : : : : : 

Stem density in the solid-panel 50d fo : \ : : : : : exclosure increased throughout : as 

the 1976 growing seasontoamax- $3 : . / : . NV: : : : : 

| (Fig. 15a). During 1977, stem den- @ : Cf : | eV : : ies : 
sity increased toa maximum of 77 39 [Th lected ce etter 
stems by mid-June, presumably — : : : : , : : : : : : 

of the stand apparent in the previ- | : : : : : oS : : : : 
ous year. However, by late May : : : : : : : : : : : 

and by late June, many stems had 

collapsed, greatly reducing stem : : : : : : ____ : , : 
density by early July (Fig. 15a, 15b). 70 B , 3 — : : : : 3 , 
Stems discolored and collapsed 60 : oa Sen 3 : : : T1876 : 

Furthermore, stressed plants in the — 40 : : : NH: PS 

solid-panel exclosure during1977, By] Np 
initiated and terminated flowering a : : ; Collapsed : : : 

earlier than in 1976, and a lower 20 : : : ~ ~ aK Discolored ; : 

| 1977 than 1976 (Fig. 15c). , —— : : : : : : : : 

During summers of 1977-80, an 70 Cc. o : : : ee wering : . : : 
adjacent stand of round-stemmed 60 3 : : : : : aS : : 3 
bulrushes supported the highest s 50 epee deers cesceceedecescsscesdacueseusesbescecseesdaseesseayg —S Bev bee Lecce 

mean stem density in mid-July » 40 : : 2 , : : x criti : : : 

1977 (Fig. 16a). By mid-August, § 39400 Qe eK EN 
this stand experienced a significant © ,. : ys : fp \ Frultirig : : 1976 - 
loss of stems (ANOVA, P = 0.003; : Flowering? NL Od NE > 1977: 

September, mean stem density 1 ) ! ) I | ) 1 1 1 3 
declined further, although non- 10 20-30 10 20 30 1020 30 10 20 30 
significantly (TSRT, P > 0.05). This May Jun dul Aug 

| _ stand produced fewer stems dur- Figure 15. Stem density (a), phenology of discolored and collapsed stems (b), and 
ing each of the next 3 year s than i phenology of flowering and fruiting (c) for all round-stemmed bulrush stems in a 625 ft? 
1977, although differences in max- wave and carp barrier at Allen’s Marsh Study Area, Lake Butte des Morts, 1976-77. 
imum stem density were not sig- 
nificant (P = 0.41). In contrast to 
1978-79, stem density during 1980 —_ proportion of collapsed stems appeared to slowly decline from 1977-78 to 1979-80, 
remained constant from mid-July — possibly accounting for the apparent recovery by late summer 1980. 
through mid-September. This lack Round-stemmed bulrushes also harbored larvae of an unidentified parasitic 
of a decline in late summer 1980 _ wasp, typically attached to lepidopteran larvae, in 1978-79 (Table 19). These 
resulted in nearly significant differ- | larvae occurred in 0%, 38%, and 14% of bulrush stems during 1977, 1978, and 
ences among years for stemden- _ 1979, respectively. Apparently, this parasitic wasp quickly responded to the 
sity in mid-September (P = 0.058). infestation resulting in control and reduction of the lepidopteran population by 1979. 

Annual and seasonal patterns Although the lepidopteran infestation significantly reduced stem density 
in percentage of collapsed stemsin _ over several years, there was no evidence that insects caused long-term injury 
the AMSA supported the conclu- _ to the round-stemmed bulrush stand. Instead, these data indicate that insects 
sion that insect damage caused can negatively impact macrophytes on a short-term basis. This infestation 
stem density declines (Fig. 16b). affected stand vigor by reducing stem density and the rate of flowering, and by 
The proportion of collapsed stems _ altering flowering phenology. Loss of stems for gas transport to rhizomes prob- 
was relatively high in 1977-78 as___ ably further stressed plants. These events likely reduced energy assimilation 
compared to 1979-80, reflecting the — rates of rhizomes and formation of buds for subsequent stem production. 
major stem losses that occurred Severe insect infestations in conjunction with other decimating factors could 
in 1977-78. Infestation rates and — cause long-term reductions in macrophytes. 
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Figure 16. Density of above surface stems (a) and phenology of collapsed stems (b) of 
| round-stemmed bulrushes at Allen’s Marsh Study Area, Lake Butte des Morts, 1977-80 

(N = 9-10 systematically located plots of 6.9 ft? in 1977 and 6.4 ft? in 1978-80). 

oO History of Macrophyte Changes ee re Oe 

and Water Level Management 

Prior to impoundment in the 1850s, the Upper Winnebago — marsh loss prior to 1961 approximated 5,200 acres on 
Pool Lakes (UWPL) were naturally eutrophic, large river- | Lake Poygan, 1,500 acres on Lake Winneconne, and 3,800 
ine marshes supporting dense emergent macrophytes acres on Lake Butte des Morts. Most of the bog and 
dominated by wildrice. Subsequent transition of the | marsh disappeared prior to 1937. 
Winnebago Pool from a riverine marsh ecosystem to a From the late 1930s to late 1950s, spring and summer 
large, turbid, open-water lake system encompassed 3 _—- water levels continued to fluctuate annually, but the 
phases: (1) large-scale formation and disintegration of long-term average increased by only 0.5 ft after 1937. 
floating bog after impoundment, (2) replacement of bog = However, submerged macrophytes and deep-water 
by other emergents and submerged macrophytes from _— species of emergent macrophytes slowly declined 
the 1930s to the 1950s, and (3) disappearance of those through the 1950s. This decline probably was due to 
successional macrophytes in the 1960s. stress from long-term high water levels and extreme fluc- 

Impoundment increased summer water levels by an _ tuations, slowly increasing water depths from continu- 
average of 2 ft in the 1850s and led to extreme short-term ous erosion of sediments in littoral zones, and slowly 
fluctuations, primarily an amplified frequency and mag- _ increasing turbidity. 
nitude of flooding. This rise probably eliminated emer- Average late-spring and summer water levels did not 
gent macrophytes from the deepest areas and created _ differ in the 1960s and 1970s from levels in the 1940s and 
large expanses of floating bog consisting of wet meadow, 1950s. However, an accelerated decline in macrophytes 
lowland prairie, and emergent marsh macrophytes. _ in the early to mid-1960s created the large, turbid, open- 
Wave and ice action later disintegrated floating bog and _ _— water lakes evident during the 1970s and 1980s. This 
created small, floating islands of emergent macrophytes _—_ rapid decline probably was influenced both by extreme, 
that severe flooding readily swept away. Totalbogand _ prolonged flooding (especially in 1960, 1969, and 1973) 
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malls ing water turbidity due ww Aa hl _ =-=—™”~ ; ipal Se = 4 Voit to nutrient loading from municip ee CS Ng  grr—S icultural lands, unsta- _ _ _-. - CC FO —rti—‘“C_iCO__ ble shorelines, lake-shore develop- =. [( £- UC _ _ e shore , - a lh h6hUmUrmrUmUmU _~~=—C._ __ sement carp and freshwater drum, — = a ee i wave action. Use of these waters by a a * ia. ducks also declined noticeably during 
Oo iy | CL SC OO 

— a 
is ae eee ae CU Pe Qt : CD Le yD LL ss ~ 

a  é####é#==, F a ar Mites . Ly 7 a oo cose in ne 

oe oof qi ; ee | M acrop ytes 
ee ee i Cle > fF . . : : 

re a Rie oe ee Wildrice occurred in relatively large roca mene eaet x CrCl _ ee p a «..- ds at 8 sites in Lakes Butte des 

Bo ited ee oe Fe There were approximately 475 acres 
aig ae a ee re £ wildri f mostly sparse to moder- : ne 1s. — i es ate density at these locations in 1976 

< eee . > lrUrrC—GC er i. and 350 acres in 1978. Size and de 
; aa Fr,—UCNRRNN Ss rtrsr——i ie _— ==: Acre ‘ E | a“ 6 lt ti |) __ sity of wildrice stands varied consid- 2 a a oe rr | .  __s=adtisaicéd_é—luié_t_dtlwtw y 

d 

._ Be ee — : se damare erably among he study years an 

Ice shoves from rising water levels and strong winds in spring can cause seve “ g areas. ) 

j idenced by this damage to a boat house in Boom Bay, 4 abundant in to marsh edges and shorelines as evide y / Common teed was 

make Poygan adjacent marshes and shallow bays, 
but occurred only at widely distrib- 

: uted sites within the lakes during this 
: SRS ce ee , study, typically in small, dense mono- —rt—“—is..—UC“—FXKr rt—“‘“RRRONOCOCisC:SCis’s'i‘isiélE typic stands. Distribution and den- i. ==. sity of common reed stands within a  .  .— the lakes remained stable during the ie... past 40 years. The lakes also sup- —  rr—“i“‘OOOOCS—SCSsSsaCi<i<i‘“‘<i‘i‘;irsisésS:S ported small, widely distributed i .j.|U-_gjf = s stands of round-stemmed bulrushes, 

spike rush, and stiff arrowhead dur- = —r——Shsesmsé<—CrmrsFs—hmhs—_sefsF COC“ Cong 1975-82. = hv. ©= .@#&= = Unoccupied habitat for these emer- 
8. ——— | oo a eee ii“, = a |. | a gents, consisting of moderate water 

tee ee Dg eS depths (2-4 ft) with sandy-silty sedi oe oatmmuammrrnmeg meester eek iad ments, apparently existed along many : a eta eee ee ee shoreline and shoal areas in the S, 
ero Mle eee a tine a ee fai d read. Moreover 

oO a ee ee — “Say oe we oy ee i dim EERE OO geet a aile d to expan or sp , 

0 Se Suan tags OR GRR ack gg age iad tion in 
5 ee wee . / ee a : a . bo g formati onan d disinte gr a 
i ~n- “Pa rr ee «2 pO ns . ad J acent marshes continued to 
S -. 2S a ce re 

. . ae 
S Ce os oo oe 6F destroy marsh habitat consisting of 2 ae oe a pre . ~ | a " common reed and other emer g ents. 

° a or & oe - oe Low seed production by comm : = Sl es rrt—i—_ os reed and the lack of very shallowly 

| Lakes in the 1850s created thousands of acres of flooded or exposed mud flats for seed Impoundment of the Winnebago Pool Lake : ° edo s for seed 
ting bog that was disintegrated and swept downstream by flooding and wave an germination of most per ennial sp 

fe sca ia the late 1800s and early 1900s. This photo shows an estimated 300 acres severely restricted colonization of 
of | ver just downstream of bog lodged against the Oshkosh Avenue bridge on the Fox River just new areas. sevele (ean 

| ; - eve - 
from Lake Butte des Morts in spring 1906. Long term high wa ter els Ps 

cially consistently high levels uring 
May-June) and fluctuations (primar- 

| ily rapid rises) likely dictated abun- 
dance of emergents on a system-wide 

| basis. The vulnerable floating-leaf 
stage of wildrice and stiff arrowhead 
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occurred from late May tomid- $997 4309 9 = 8 (TT rr—t™—eEETC="FBdn‘WSN C‘ (a$RENNR—s Cia a wr 

levels could stress and uproot |g II ii MMM ct SU 

zomes and shoots, boating and 4) 

dance of emergent macrophytes. MG GANA G4) je 0 i 
Round-stemmed bulrushes in SATAN) 0 ae a 

drates, which were utilized in |. SAM ata OR SN OE eee 

and initiation of flowering. [7 (ii hice i, (i ne Ome © 
Damage to stems in June, after |) ro... 
the rapid-growth phase and ini- Se ae UAe ee ey © 

lieelt reserves in rhizomes, Algae and organic detritus can accumulate on emergent macrophytes such as these round- 
ikely severely stressed emergent temmed bulrushes, breaking and collapsing stems and stressing plants 
species and caused mortality if ° ’ & pons SP 

damage persisted over several 
years. Injury to stems after late August likely had mini- _ phytes in 1975-80 than in 1969, indicating an improve- 
mal impact because rhizomes already had acquired most —__ment in habitat conditions. 
of the peak energy reserves for winter survival. Low light availability probably limited submerged 

Dense emergent stands within the lakes provide liv- macrophyte growth system-wide. Site-specific factors 
ing breakwaters, food, cover, and nesting and egg-laying that influenced water clarity and thus impacted these 
substrates for fish and wildlife, thereby constituting an species likely included carp spawning and feeding, ero- 

extremely valuable resource. As such, management of sion of unstable marsh edge and shorelines, resuspen- 
the UWPL should emphasize protection of existing sion of soft organic sediments by waves, and turbid 
stands and vigorous restoration efforts. Establishing inflow from tributary streams. Sago pondweed and 

new stands through rhizome or tuber planting is possi- = wildcelery should be used to reestablish submerged 

____ ble, although transplant experiments for common reed _ macrophyte beds in the lakes due to their apparent toler- 
were unsuccessful, and techniques need further study. ance to turbidity. re 

The primary complications were: (1) damage to rhi- 
zomes and green shoots from harvest, storage, and plant- 
ing; (2) deposition of plant material, especially Factors Affecting 
filamentous algae, by waves on new shoots that sub- 

merged or severed stems; and (3) interference with elon- Macrophyte Abundance 
gating horizontal rhizomes by sediment-stabilizing : 
materials, especially tires. Annual fluctuations in water levels had little discernible | 

During 1975-79, Lakes Butte des Morts and Poygan impact on abundance of submerged macrophytes and 
supported about 1,650 acres of submerged macrophytes wildrice. However, consistently high levels in May and 

in 8 locations. Lake Winneconne held another 150-200 June probably controlled plant abundance more than 
acres. The abundance of submerged macrophytes other components of water level fluctuations. 

remained relatively stable during this period. The com- Water clarity probably controlled the abundance of 
monest species system-wide were coontail, water milfoil, | submerged macrophytes system-wide, although the 
sago pondweed, Canadian waterweed, and wildcelery. | annual changes in abundance of submerged macro- 

Lake Poygan supported the largest submerged macro- _ phytes detectable in this study were not related to annual 

phyte beds, consisting primarily of wildcelery. variations in water clarity. The maximum depth of colo- 

Submerged macrophytes grew in maximum water _ nization approximated a May-June photic zone depth of 

depths of 47-53 inches in Lake Butte des Morts, 51-55 5% in Lake Poygan (57-67 inches) and 5-10% in Lake | 
inches in Lake Winneconne, and 55-61 inches in Lake — Butte des Morts (46-60 inches). Submerged macrophytes 
Poygan during the summers of 1975-80. Lake Poygan _in the UWPL, therefore, required 5-10% of surface light 
supported more submerged macrophytes than Lake during May-June. The 5% photic zone depth equaled 
Butte des Morts due primarily to greater water clarity. | about 2.3 times Secchi transparency. While Lake Poygan 
Lake Poygan apparently had more submerged macro- __had better water clarity than Lake Butte des Morts, all 
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EE EEEEEEEEEEEEEEEEEEEEEEE 

MANAGEMENT IMPLICATIONS 
AND SPECULATION 

Lakes (UWPL) comprise a unique and valuable natural = as gs = 
resource in Wisconsin offering tremendous management a, we 

potential. These lakes warrant intensive research and oe i i 

monitoring to further define the scope and impact of all ie Umm 3 

detracting factors and the benefits of management a i a oo 

actions. Furthermore, the size and complexity of these 7 tii 
to management. The DNR has developed a Winnebago _— . | a - 
Comprehensive Management Plan to achieve multidisci- a. rrrr~—C—iaC 
plinary resource management for the Winnebago system OO  . —*=*. 

(Wis. Dep. Nat. Resour. 1989). Many of the management Coe eee 

recommendations presented below simply reiterate sev- Py |, dee ee 

framework for similar efforts to manage other large, shal- ic tee ue Se 

low lakes in Wisconsin. (eo ge See eS 

1. Continuing decline of macrophytes and riparian Nias gee a a ee 

by macrophytes. Rate of macrophyte and marsh loss Mawel Ne 

continue without intensive management efforts. oe eee Revision of the water level management plan for the ) eww 

Winnebago Pool Lakes to reduce spring and summer Strong wind storms can resuspend sediments and erode shore- 

water levels provides the most effective management lines causing turbid waters and damaging shorelines and 

tool for increasing macrophytes system-wide. riparian marshes. 

Furthermore, watershed and lake management plans | 

must be implemented to control water turbidity. these fluctuations in early summer prevents uproot- 

Large littoral zones may also require protection from ing of plants in the floating-leaf stage and, in later 

the physical impact of waves, boats, and undesirable  -—- summer, prevents stress to plants that are flowering — | a 

fish, and these areas may need isolation from the and producing vegetative propagules. Very high 

influence of turbid inflow from tributaries. water of long duration in 1 year could greatly reduce 

. , the abundance of macrophytes for many years. Due 
2. The water level management plan implemented in ; :; ; 

1982 failed to reduce late spring and summer water co revativey poe cniating woter level oer ae omen) 

levels from the long-term average. Consistently high during subsequent vears 5 ansion at outer e areins 

water levels in May-June during all years of the study of remnant macro fh te beds and ve-colonization in 
likely controlled abundance of emergent macrophytes new locations vou d cee d slowly if at all 

and in concert with high turbidity determined abun- P y 

dance of submerged macrophytes, and likely 3. Seasonal and long-term water level fluctuations 

accounted for the lack of a relationship between sea- should be viewed as an integral component of natural 

sonal and annual variation in water levels and abun- wetlands. These fluctuations contribute to healthy, 

| dance of macrophytes. diverse, and dynamic macrophyte communities. 

Lower spring-summer water levels, especially Impoundment of wetlands to create large, shallow 

during the critical growth period from late April reservoirs such as the Winnebago Pool drastically 

through June, would increase sediment temperatures disrupts this natural hydrologic regime. After 

and light availability which encourage earlier and impoundment of the Winnebago Pool, long-term 

faster growth, and might allow plants to shunt more average water levels during spring and summer 

energy into vegetative reproduction and production increased 2.5 feet, and levels were maintained as 

of more overwinter propagules with larger energy closely as possible to this new target level. Although 

stores. Rapid increases in water levels after mid-April water levels oscillated widely about this target level 

must be avoided by better anticipation of water level from year to year, fluctuations below target levels 

rises from runoff and precipitation events and quicker were dampened and those above target levels were 

response time by dam operators. Elimination of often magnified. Short-term seasonal and annual 
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fluctuations below target levels were typically reduced in early spring breaks dormancy of these propagules. _ 
due to conservative water level management result- The extent of ice formation in sediments and effects 
ing from social, political, and economic pressures to on macrophytes require further evaluation. 

intain relatively high but tant levels. Thi ; . ; aa ea nvely: (ert Dur constant leve’s. £n1S 6. Water clarity probably is the most important agent reduced and often eliminated the drought portion of , 
. Oo affecting abundance of submerged macrophytes sys- the natural hydrologic cycle. Meanwhile, short-term ; f " tem-wide, as concluded in many other studies else- fluctuations above target levels often were amplified ; | ; where. Although this study did not demonstrate a above natural fluctuations after major snowmelt and ; é ; ree direct relationship between annual changes in abun- precipitation events. Impoundment and agricul- . . | dance of submerged macrophytes and water clarity, tural /residential development throughout the water- . - Leqeg 4: ae the relatively low annual variability in turbidity shed eliminated most wetlands and much of the . | | .; probably effected more subtle changes in submerged vegetation that stored and slowed runoff, buffering the hyte abundance than detectable in this stud 

pool from extreme flooding. These changes increased macropnyre abundance CPOCTADNE INL NUS STUY: 
the magnitude and rapidity of runoff, leading to 7. Varying maximum depth colonized by submerged 

, excessive flooding that was heightened by the con- macrophytes throughout the system and absence of 
stricted outflow at the dam and often slow response vegetation in some shallow areas suggest that unde- 
by dam operators to runoff events. sirable fish, wave action, shoreline erosion, lakeshore 

Spring and summer water levels have essentially developments, sediment texture and fertility, and tur- 
been maintained at flood stage with drastic curtail- bid inflow from nearby tributaries are also important 
ment of the drought phase of the natural hydrologic locally. Of most importance, these site-specific factors 
cycle. Thus revision of the water level management alter water clarity and nutrient availability to phyto- 
plan provides one of the most effective alternatives to plankton and epiphyton. Both phytoplankton and 
restore macrophyte communities. The revised plan epiphyton communities govern availability of light to 
should maintain lower average spring-summer water submerged macrophytes and ultimately the abun- 
levels and incorporate periodic partial drawdowns dance of macrophytes (Phillips et al. 1978, Wetzel and 
throughout 2-3 growing seasons to simulate drought . Neckles 1986). The relationships among seasonal 
conditions. Occasional fluctuations above this lower water clarity, light availability, submerged macro- 
target level that simulate flood conditions likely will phyte light requirements, and maximum depths of 
continue to occur and areas necessary to healthy colonization remain unclear and require more inten- 
macrophyte communities as drawdowns. However, sive investigation and long-term monitoring. Both 
these flood stages need to be moderated. quantity and quality of light (i-e., water clarity and 

color) should be monitored. These data would allow 
4. Target spring-summer water levels should be reduced _ refinement of management goals and strategies for 

by at least 0.5-0.75 ft (from 3.0 ft to 2.25-2.50 ft) at the improving water clarity and even water levels by bet- 
Oshkosh gage, and be allowed to fluctuate above and ter defining the maximum depths colonizable by sub- 
below this level ina manner reflecting natural sea- merged macrophytes. 
sonal and annual precipitation and run-off patterns. a 
The impact of lower spring-summer water levelson 8. Reducing turbidity requires the development and 
users of the lakes and on macrophytes requires further implementation of water shed and lake management 
evaluation and close monitoring. Strategies should plans (for details of generalized plans for large shal- 
be developed to mitigate any negative impacts of low lakes, see Kahl (1991) and Wis. Dep. Nat. Resour. 

| lower water levels on users, such as dredging and (1989). Delineation of the most effective strategies 
maintaining important boating channels. Models requires more research to supplement the limited that predict system-wide changes in water levels data from this study and confirm its tentative conclu- 
water depths, macrophytes, and area of the lake bot- sions. Specifically, future research must better assess 
tom within the photic zone should be developed and Major sources of turbidity and nutrients, including 
tested before drastic reductions in water levels. contribution by all watersheds, undesir able fish, 

wave action, sediments, and shoreline erosion and 
5. This study did not fully evaluate the effects of winter developments. These limited data demonstrate the 

drawdown on macrophytes; other studies demon- need for more intensive monitoring of water clarity, 
strated a negative impact on some species and a posi- dissolved color, total suspended solids (TSS), organic 
tive impact on others when drawdowns exposed suspended solids (OSS), chlorophylls, and nutrients 

| mudflats. Thus, magnitude of winter drawdown by all tributaries to the UWPL in conjunction with in- 
should be re-assessed and possibly moderated. lake sampling. Magnitude and timing of major pre- 
Normally, winter drawdown occurs after formation cipitation events and spring runoff probably dictate 
of a thick ice cover, which may insulate propagules nonpoint pollution levels in the watersheds of the 
from harmful freezing temperatures. When ice cover Winnebago Pool; thus water quality sampling must 
is inadequate, propagules on exposed mud flats may encompass several years and include runoff-event 
succumb to frost damage, especially if warm weather sampling. 

o4



9. Although this study provided little evidence that Breakwaters placed in front of unstable shoreline 
waves and undesirable fish physically injured macro- and marsh-edge zones would not only protect these 
phytes in a moderately protected site with firm sedi- areas, but also create additional area for marsh 
ments, wave action probably influences macrophyte expansion. In contrast, rip-rapping along shorelines 
distribution and abundance through a variety of sub- and marsh edges restricts future expansion of marsh 
tle synergistic processes. Wave action continues to habitat. Rock rip-rap breakwaters are the most 
erode lakeward edges of riparian marshes. Waves promising technique, but others include temporary | 
and carp probably damage and uproot plants occa- breakwaters, constructed islands, and living break- 
sionally, especially young plants at exposed sites and’ waters (Sloey and Spangler 1977) comprised of resis- 
sites with soft sediments. However, wave action and tant emergent macrophytes such as common reed, 
carp likely exert the greatest influence on macrophytes round-stemmed bulrushes, and spike rush. However, 
by increasing turbidity and algae through resuspen- the last 3 alternatives, especially temporary breakwa- 
sion of bottom sediments, erosion of shorelines and ters, have greater drawbacks associated with high 
marsh edges, and recycling nutrients to algae. Waves maintenance costs, low impediment to interchange of 

then can deposit algae and detritus on plants, sub- turbid water, and ephemeral benefits than permanent, 

merging or severing them. Erosion and deposition of solid breakwaters. 
sediments by waves in part determines macrophyte Rip-rapped breakwaters have lower esthetics value, 
distribution by altering water depths and sediment but presumably provide the most effective alternative 

composition. Lastly, other detrimental factors such as for reducing turbidity through better wave attenua- 
insects, carp, muskrats and water level fluctuations tion and barrier characteristics that interfere with | 

can increase macrophyte vulnerability to wave action. mixing of turbid tributary and lake water. Barrier 
Circumstantial evidence from this study indicated stands of common reed partially protecting Sunset 
that carp, waves, and boats injured and severed Bay, Lake Butte des Morts, did not reduce turbidity 

young shoots and stems of emergents. Severest dam- shoreward of the stands. Instead, these stands may 
age likely occurred along the outer margins of stands have created carp spawning and feeding habitat, 
and edges of openings within stands. This damage which negated any water quality benefits of the liv- 
could curtail bud formation and rhizome elongation INS, breakwater. Rip-rapped breakwaters could also 
at the terminal portion of existing rhizomes, thus create carp habitat. Breakwaters should enclose most 

restricting expansion of these stands and possibly or all of large littoral zones or bays and should pro- 
reducing stand density. Uncertainty about the mag- vide sparsely located, small gaps for boat access. 

' nitude and effect of these factors requires further This reduces interchange of turbid lake water with 
investigation. In particular, the extent of indirect water inside the breakwater. Breakwaters and islands 
effects of wave action and undesirable fish on nutri- would also provide nesting habitat for waterbirds 
ent availability remain largely unknown. Population and fish habitat in adjacent shoals. These theorized 
status and ecological role of both carp and freshwater benefits of breakwaters must be confirmed through a 
drum must be delineated for the UWPL. Excessive thorough assessment which would also provide 
freshwater drum populations could affect water clar- _ greater insight into system-wide impacts of wave ee 
ity more than carp or waves through nutrient recy- action. Evaluations of breakwater projects should 
cling to phytoplankton. minimally include frequent monitoring of water clar- 

ity, nutrients, phytoplankton populations, macro- 
10. Due to the variety of potentially harmful impacts of phyte populations, carp populations, water depths, 

wave action, breakwaters should be an integral part and sediment composition prior to and after breakwa- 
of any management plan for the UWPL. These struc- ter construction. 

tures not only can reduce turbidity from resuspension 
and erosion of sediments and shorelines, but alsocan _‘[. Active management of macrophyte and carp popula- 
redirect turbid flows from tributaries past critical bay tions likely would enhance the success of breakwater 
and littoral zone areas. Turbid water from tributaries, projects. The introduction and spread of undesirable 
especially the Fox and Wolf rivers emptying into plant species Or the development of large carp 
Lake Butte des Morts, presently disperses over large, spawning and feeding populations may require con- 
shallow delta and bay areas and, in part, limits abun- trol strategies. Rapid reestablishment of desirable 

dance of macrophytes in these areas. Historically, bet- macrophytes likely will require a transplant program, 
ter defined river channels transported these turbid especially for emergents that depend on vegetative 
flows much farther out into the lakes and past these propagation in submerged situations. Even in areas 
large littoral zones. Shoaling behind breakwaters with existing scattered beds of desirable submerged 
could decrease water depths and accumulate nutrient- species, large-scale plantings of submerged macro- 
enriched sediments. Breakwaters would also intercept phytes could produce quicker and more dramatic 
algae and other debris, preventing submergence and improvements in water clarity by stabilizing bottom 
injury to plant stems. sediments, tying up nutrients, and inducing settling 

of suspended solids, phytoplankton, and nutrients. 
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| _ 12. Future research must evaluate transplanting tech- them 2-4 inches deep depending on sediment texture, 
niques for macrophytes. Species recommended for at water depths of 1-3 ft. A local commercial wildlife 
transplanting include common reed, round-stemmed plant nursery recommends transplanting these 

| bulrushes, spike rush and stiff arrowhead for their species by planting 1-4-inch rhizomes (depending on 
| apparent tolerance of moderate water depths (3.5-4.5 species) with several sprouts pushed into sediments 

ft) and moderate to severe wave action. Attempts to just far enough to leave sprouts exposed, at a density 
re-establish submerged macrophytes in uncolonized: of 1 rhizome per yd*. Plantings should be protected 
areas of the Winnebago Pool Lakes to improve water, by a breakwater until established. Wildcelery, sago 
fish, and wildlife resources should utilize sago pond- pondweed, and arrowhead tubers should also be har- 
weed and wildcelery due to their apparent tolerance vested in early spring and planted by enclosing them 

. of turbidity. Both of these species also provide in biodegradable mesh bags (3/bag) with gravel as a 
important waterfowl foods (Cottam 1939, Martin and weight, then simply dropping the bags from a boat 
Uhler 1939, Anderson and Low 1976, Korschgen et al. over the planting area in water depths of 1-4 ft at 
1988). Sago pondweed should be transplanted imme- densities of at least 1 bag/yd?. However, arrowhead 
diately after ice-out,.whereas wildcelery planting can tubers may also require being buried in sediments. 

be delayed several weeks. Propagules of all of the 13. Ecology, habitat requirements, and factors affecting 
above species should be harvested from nearby the distributi 

.; Le e distribution and abundance of macrophyte species 
health y habitats with water depths similar to the important in the UWPL require further investigation 
Planing site. ted information. rhizomes of com- to ensure selection of the most effective management 

mon reed, bulrushes (hardstem bulrush tolerates strategies. Management of macrophytes, especially 
dee ’ ter th ther Sci ; .; common reed, in the UWPL also requires a public- 

per water than other Scirpus species) and spike . . 
rushes should be harvested in early spring before oced be by te ahd on about te potential damage 
new growth, separated into 8-inch sections with 3-4 posea ey oats and snowmobues. 
buds on each (Haslam 19695), and planted by burying : 

APPENDIXES 

Appendix A. Ecological Goals 
for the Winnebago Pool, 1980! 

1. Begin Winter Draw-down. Begin at the time of lake heavy spring flows during the spring break-up 
freeze-up so that the marshes have time to develop a period and reduce flooding. High water levels at and 
6 inch ice cover (to be determined by the DNR) to before ice-out on the lakes can cause extensive ice 
protect muskrat populations in the adjacent marshes damage to shorelines and marshes. 
from draw-down. Marshes will freeze over before 3. Spring Water Levels. Contingent on runoff condi- 
the lakes do; therefore, an adequate ice cover (about 6 ne § k d 8 Id be deterring f 

inches) should be present by the time the water is ions (snow pack and rain would be deterring ac 
removed from them. Muskrats can continue to live tors), hold water levels at draw-down stage until 
beneath an ice cover even with the water removed. ice-out occurs on Lake Winnebago, at which time the 

The range of freeze-up dates spans November and pool can be refilled to a level of about 3.0 ft (16 inches _ 
December. Water levels should be down to spillway above the spillway crest). A water level of 3.0 ft pro- 

level as near to December 31st as physically possible vides a 0.45 foot leeway to reduce the chance that the 
to assure that water is being removed from the upper legal limit of 3.45 ft (21’4 inches above the spill- 
marshes at a desirable rate. way crest) is exceeded because of unexpected heavy 

inflows during prolonged periods of heavy precipita- 
2. Maximum Winter Draw-down. This should be tion. Ice-out occurs over a wide range of dates. 

accomplished by about March 1st to achieve adequate ee 
pool drainage. The pool should be drawn downto 4. Late Spring Water Levels. When precipitation per- 
12-18 inches below the Menasha spillway crest, con- mits, the targeted pool level of 3.0 feet (16 inches 
tingent on runoff conditions (snow pack and rain). If above spillway crest) should be achieved no later 
conditions for probable heavy spring flows exist, it than June Ist to prevent damage to wild rice by rising 
could be reduced to the lower legal limit of 18 inches water levels. During June, wild rice is in the critical 
below the spillway crest. An adequate draw-down will floating leaf stage and is easily uprooted by rising 
provide the needed storage required to accommodate water. 

‘Written in August 1980 by the Wisconsin Department of Natural Resources | 
Fox-Wolf Lakes Task Force, with Arlyn Linde as primary author. 

56



However, if the 3.0 foot level is not reached by June 1, These are summarized in a letter of August 27, 1980 from 

the pool should continue to be filled in an attempt to Andrew C. Damon, Deputy Secretary, Wisconsin 
attain the 3.0 foot level to assure adequate storage for | Department of Natural Resources to Lt. Colonel Howard 
the summer period. N. Nicholas, District Engineer, Corps of Engineers. In 

| setting forth these goals, it was recognized that extremes 

5. Summer Water Levels. Hold water levels atornear in weather variables in some years will preclude their 
3.0 feet through most of the summer which will allow precise attainment as described below. It was also recog- 
fora slight decline during the period of Maxum evap- nized that annual reviews of the effectiveness of the reg- 
otranspiration loss beginning in July. The rationale ujations and problems involved would greatly facilitate 
here is that this level would offset the frequency of the attainment of an optimum system of operations. 
sudden rises In water level during this period, decreas- During severe flood and drought events the Corps of 
ing the potential damage to marsh substrate and —_ Engineers is impeded in regulating the Lake Winnebago 
associated aquatic vegetation. Pool within the desired ranges of the ecological goals set 

Where desirable, water levels may be allowed to forth above. During these events the capability to follow 
fluctuate near the 3.0 foot level in late summer to exactly the proposed procedures of regulation cannot be 
achieve continued near-normal flow. fully implemented and some latitude of operation will be 

. required. For example, the low and high lake levels for 
Conclusion 1979 occurred on March 17th and 18th at 0.63 feet 
The most critical period for maintaining aquatic vegeta- | (Oshkosh gauge) and on April 13th, 15th and 16th at 3.88 
tion stands in the upper Fox-Wolf Lakes isinthe early feet (Oshkosh gauge) respectively, even though all of the 
spring when high water and ice action have destroyed § gates and needles at Neenah and Menasha were com- 
large tracts of marshland and extensively damaged __ pletely opened by March 5th. It should be noted that the 
shorelines and improvements in the past. This proposal maximum drawdown elevation of 0.63 feet is essentially 
aims at reducing the chance for similar damage to occur _—_ the drawdown proposed above. 
in the future. As shown by the 1979 spring flood event which is typ- 

The goals are based on studies, discussions, and meet- __ ical of the historical pattern of spring occurrences, it is 
ings (particularly one on March 11, 1980) by State almost impossible to prevent the lake level from rising _ 
(Wisconsin Department of Natural Resources and Fox _— once spring runoff begins. During the fall, the majority 
Valley Water Quality Planning Agency) and Federal of the water leaving the lake flows over the spillway; . 
(Corps of Engineers, Fish and Wildlife Service, and the — thus there is no control over the subsequent decreasing | 
Geological Survey) agencies over the past several years. _lake level. 

Appendix B. Scientific Names of Pertinent Species | 

Species Mentioned in Text Scientific Name 

Cattail Typha spp. Oo | | | Oo 
Stiff arrowhead Sagittaria rigida 
Wildrice Zizania aquatica 
Common reed | Phragmites communis 
Spike rush Eleocharis sp. 
Hard-stemmed bulrush Scirpus acutus 
Round-stemmed bulrushes Scirpus acutus and S. validus . 

River bulrush Scirpus fluviatilis 

Clasping-leaf pondweed Potamogeton richardsonii 
American pondweed Potamogeton nodosus 
Sago pondweed Potamogeton pectinatus 
Canadian waterweed Elodea canadensis 
Wildcelery Vallisneria americana 
Water stargrass Heteranthera dubia 
Coontail Ceratophyllum demersum 
Water milfoil Myriophyllum sp. 

Lepidoptera Schoenobius sp. and Occidentalis sp. 

Common carp Cyprinus carpio 
Freshwater drum Aplodinotus grunniens 

Canvasback Aythya valisineria 
Forster’s tern . Sterna forsteri 
Muskrat Ondatra zibethica 
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Approximate 
English-Metric Equivalents 

lacre = 0.405ha 
Tft = 0.305m 
linch = 2.540.cm 

Imile = 1.609km 
Lyd = 0.836 m2 
1qt = 0.946L 
loz =. 28.035 g 
lib = 453.592g 
1ton = 0.907 metric ton 
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