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Abstract 

In learning and making meaning in this digital age (Steinkuehler, Barab & Squire, 2012), 

computer-based microworlds can be immersive contexts for supporting self-regulated learning 

(Papert, 1980). Games represent an important subset of microworlds, able to enhance player 

agency and endogenous narrative in learner-adaptive play (Rieber, 1996). Games offer pleasantly 

frustrating, well-ordered problems with timely scaffolding – thus providing new opportunities for 

assessment of complex skills in an authentic context (Gee, 2012). However, game-based 

assessment can be a challenge; instead of a few isolated, independent assessment points, 

evidence of learning is often manifested in a rich, electronic data stream of continual player 

interactions (Shute, 2011).  

Game-based assessment thus needs to isolate specific, game-situated task performance – 

yet account for masses of context-rich, event-steam interaction data central to play narrative. 

Uniting these paradigms in an integrated assessment framework, the Games+Learning+Society 

(GLS) group has created ADAGE (Assessment Data Aggregator for Game Environments), a 

framework designed to transform click-stream data into evidence of learning. ADAGE integrates 

core game structures into a click-stream data schema, which is seeded with context vital to 

informing learning analyses (Owen & Halverson, 2013). Overall, it provides a rich, method-

agnostic data yield, with scalability and cross-genre flexibility. ADAGE development has been 

guided by recent learning assessment research in Evidence Centered Design (Mislevy, 2011) and 

Educational Data Mining (“EDM”; Baker & Yacef, 2009).  

This dissertation establishes ADAGE as an assessment data framework for learning 

games; empirically, it then investigates ADAGE-generated performance data to assess learner 

trajectories in a biology videogame. The overarching research question asks: what kinds of 
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organic player interactions (including play progression, in-game success, shades of failure, and 

experimentation) characterize learning? Three analyses (using statistics, machine learning, and 

EDM) investigate relationships between learning and 1) in-game success/failure; 2) core play 

progression; and 3) player experimentation. Ultimately, findings differentiate types of failure, 

reveal experimentation patterns, and demonstrate the positive relationship between strategic 

failure and learning. These ADAGE-based organic play trajectories have powerful implications 

for defining alternate learner pathways in new assessment paradigms, reconsidering the role of 

failure in formal learning evaluation, and informing iterative game design for the optimization of 

learner-adaptive play.   
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Chapter One: Introduction and Overview 

Seymour Papert maintained three decades ago that “computers can be carriers of 

powerful ideas…they can help people form new relationships with knowledge” through 

“exceptionally rich and sophisticated micro-world[s].” Specifically, one “design criterion for our 

microworlds is the possibility of…games…that make activity in the microworlds matter” 

(Papert, 1980, p.4, 12, 126). More than ever, in our current technological era, these computer-

based “video games have the potential to lead to active and critical learning” (Gee, 2003, p.46). 

However, Squire cautions, “games aren’t just open environments; they are carefully crafted 

learning experiences” (Squire, 2011, p.13). In other words, design matters. Indeed, good games 

encompass pleasantly frustrating, well-ordered problems (Gee, 2005) which reward higher-order 

thinking skills (c.f. Steinkuehler & Duncan, 2008; Halverson et al., 2011) – and provide just-in-

time information in formative feedback cycles (Gee, 2003; Shute, 2011). Ongoing assessment 

thus becomes a vital component of maintaining the agency and endogenous motivation 

(Costikyan, 2002) in the designed experience of good games (Squire, 2006). It is also vital in 

leveraging interaction-rich game data for understanding of learning in the process of play, rather 

than simply seeing the game as a black box between pre- and post- measurements. However, 

game-based assessment of any kind can be challenge, since instead of offering a few isolated, 

independent assessment points, evidence of learning is often manifested in a rich, electronic data 

stream of continual player interactions (Shute, 2011). 

Thus, game-based assessment needs to isolate specific, game-situated task performance – 

yet simultaneously account for masses of context-rich, event-stream interaction data central to 

play narrative. Uniting these paradigms in an integrated game-based assessment framework, the 

Games+Learning+Society group has created ADAGE (Assessment Data Aggregator for Game 
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Environments). ADAGE (Owen & Halverson, 2013) is an assessment data framework designed 

to turn click-stream data into evidence for learning. It integrates core game design structures into 

a click-stream data (telemetry) schema, which is then seeded with context vital to informing 

learning analyses. Overall, ADAGE provides a standardized game telemetry framework with a 

rich, method-agnostic data yield, efficient enough to have scalability, and flexible enough to use 

across games. In current development, ADAGE is both a game-based assessment data 

framework and an API with a data output engine. The ADAGE design and development effort 

has been especially guided by recent prominent research in measuring learning in digital 

environments: Evidence Centered Design (e.g. Mislevy & Haertel, 2006) and Educational Data 

Mining (e.g. Romero & Ventura, 2010; Baker & Yacef, 2009).  

An ADAGE-based empirical study, this dissertation endeavors to better understand 

learning in the midst of play – a natural conductor for interest-driven, self-regulated exploration 

of knowledge (Vygotsky, 1930-1934/1978; Rieber, 1996). Specifically, this research establishes 

ADAGE as an assessment data framework for learning games; empirically, it then investigates 

ADAGE-generated authentic performance data to assess organic learner trajectories in the GLS 

biology game Progenitor X. In this application of ADAGE, interaction data informs three 

interlinked, cross-method analyses exploring the relationship between in-game performance, 

experimentation, and learning. Each analysis examines interlocking lenses of learning games as 

designed experience, grounded in defining characteristics of game microworlds. The overarching 

research question asks: what kinds of naturalistic player interaction with the educational 

gamespace (including play progression, in-game success, shades of failure, and experimentation) 

characterize learning? This question is central to understanding play experience in relationship to 
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learning – and thus, to harness the power of play in optimizing core design and learner-adaptive 

mechanics in future designed experience of educational games (c.f. Squire, 2006).  

The remainder of Chapter One discusses this empirical research arc in detail, beginning 

with theoretical foundations of games as learning systems, and distinct microworld lenses of 

designed experience. Corresponding to each lens, the three analyses of this study (using 

statistical, machine learning, and educational data mining methods) are then described closely. 

Respectively, their research questions ask: 1) What is the relationship between learning and in-

game success/failure? 2) What play progression patterns characterize learning? 3) What is the 

impact of player experimentation on in-game performance and, ultimately, learning? 

Learning Games as Interactive Microworlds 

Kurt Squire asserts that videogames offer “designed experiences” in which participants 

learn through “being” and “acting” within the gameworld (2006, p.19, p.22), an in-situ learning 

context in which there is no separation between knowing and doing (Brown, Collins, & Duguid, 

1989). These designed learning realms support learner activity with built-in principles like just-

in-time information and cycles of expertise (Gee, 2005a), and thus carry the embedded 

scaffolding characteristic of microworlds (c.f. Papert, 1980; Rieber, 1992). Modeling a “system 

or domain for the user,” microworlds by definition support “self-regulated learning” (Rieber, 

1996, pp. 46-47; Zimmerman, 1989) through creating intrinsic motivation for learning in a 

relevant context – and in game form, provide a system of well-ordered problems which leverage 

player agency (Gee, 2003; Squire, 2011). Inherently, microworlds as games require behavioral 

action to progress (Rieber, 1996), manifesting gamespace “cognition as interaction” 

(Steinkuehler, 2004, p. 522) and interaction as an “authentic performance” measure in a situated 

context (Derry & Steinkuehler, 2003, p. 802; Boaler & Greeno, 2000). Game microworlds – thus 
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characterized by designed systems which scaffold self-regulated, intrinsically motivated learning 

– are important examples of “interactive learning environments where structure and motivation 

are optimized without subverting personal discovery” (Rieber, 1996, p. 44). 

Interaction as vehicle for agency and learning is therefore a central theme in the study of 

context-rich learning worlds (Rieber, 1992; Greeno, 2005), including videogames as designed 

experience (Squire, 2006;  Steinkuehler et al., 2012). As assessment, interaction data is a vital 

component of evaluating authentic performance in context from a situative perspective (Derry & 

Steinkuehler, 2003), reflected in the action-performance emphasis in games as learning context 

(Gee, 2012; Shute, 2011). This study’s learning theory is thus rooted in situated cognition in the 

authentic learning context of game microworlds. 

Game Microworlds as Designed Experience: Three Lenses  

ADAGE, the assessment framework of this research, is designed to structure and capture 

this critical in-game player interaction. These captured interactions enable study of the three 

defining elements of learning games as microworlds: games as systems of interaction (a play-

based medium), games as scaffolded instruction (for educational content delivery), and games as 

intrinsic motivators (an endogenously engaging, player-directed experience). Figure 1 illustrates 

these three overlapping components below. 
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Figure 1. Three lenses of game microworlds as designed experience. 

These three converging elements represent vital parts of the learning game experience. 

Figure 1 maps the intersection of each, visualizing three “lenses of designed experience” for 

educational games. Together, these lenses represent the tension between the game medium, 

educational content, and user-specific play goals that define a learning game experience – and 

which are so artfully balanced in good game design. 

 Play Purpose: Games as a Medium Designed for Play is Lens “A”, representing the 

nature of games, designed (whether explicitly for learning or not) to offer a playful, fun 

experience. Games provide roles, goals, and agency, often engaging the players in a 

narrative and challenging them to discover an underlying rule system through play 

(Norton, 2006; Squire, 2011). In contrast to cognitive tutors, this results in a medium 

where one “right” answer is not always the goal, and discovery through play is an implied 

norm. Play purpose is originally manifested on the design side, by the development team 

building the foundations of a designed play experience. 
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 Learning Purpose: Educational Content Delivery as Lens “B” represents the learning 

game as a vehicle for delivering instruction. Content can range from domain-specific 

procedural and declarative knowledge (e.g. biology lab processes) to soft skills (e.g. 

empathetic social interactions). This lens considers content knowledge translation into 

specific verbs of play.  

 Individual Purpose: User-specific Goals constitutes Lens “C”, representing gaming style 

and subjective play goals specific to each player. This lens focuses on player intent, 

manifested in the kinds of in-game behavior tendencies each user brings to the game. For 

example, one player may want to learn solely though experimentation, and engage with a 

game by immediately testing boundaries rather than strictly adhering to tutorial cues. 

Conversely, another player may wish to avoid failure and play “conservatively”. This 

might include following the game instructions to a tee, interacting exactly as the cues 

lead, and finishing the game with zero failure. (These patterns, of course, vary greatly by 

game and player, and can be characterized many different ways; play typologies for this 

particular study are detailed in Chapter Six).  

 

Three Lenses, Three Analyses: An Empirical Arc 

This research endeavors, through study of in-game interaction data, to capture learner 

trajectories of success, failure, and experimentation through each lens of designed experience 

(Figure 2). Each analysis, then, targets the investigation of one unique intersection of the three 

Lenses above. The first analysis, an evaluation of player performance on content-based verbs of 

play, focuses on the intersection between Lens B (content-centered) and Lens C (player-

centered). The second analysis, tracking play progression and player attrition throughout the 
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course of the game, connects Lens A (focused on an trajectory of play) and Lens C. The last 

analysis is a synthesis of all three lenses. Through EDM methods, it examines player 

experimentation (Lens C) throughout game progression (Lens A) in relationship to shades of in-

game failure and learning outcomes (Lens B). The analyses are described below, with the 

unifying Lens, research question, and corresponding method for each. 

 

Figure 2. Analyses I, II, and III as situated in lenses of designed experience. 

Analysis I: In-game Performance and Learning - Feature Engineering and Applied Statistics 

The first analysis section uses feature engineering and applied statistics to connect 

context-specific performance trends and learning outcomes. This analysis rests at the intersection 

of Lens B and Lens C, investigating player choices in content-based performance (Figure 2). The 

goal is to get a non-reductive sense of nuanced success and failure, as marked by learning gains, 

across the full interactive landscape of the game. An extension of an earlier study showing 

statistical significance of failure and success constructs with learning outcomes (Owen et al., 

2013), it uses informed, iterative feature engineering to more deeply examine these interactions. 
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Specifically, its research question asks how fine-grained, chronological performance data 

(including shades of failure and success) connect to learning outcomes.  

Feature engineering, descriptive statistics, and nonparametric statistics are used to 

investigate patterns in this research vein. Feature engineering provides new telemetry indices 

with which to better understand the landscape of game performance, while statistics help connect 

the shape of those features to learning outcomes. First, feature engineering takes four base types 

of success and failure, and systematically applies six computational lenses to each to produce 

new fine-grained, objective-specific telemetry indices central to the research question. Then, 

these features are visualized through descriptive and nonparametric statistics, chosen because of 

the non-normal distribution of the data. Specifically, representation of these data in descriptive 

time series line graphs launch deeper investigation of sequential trends, and inform the use of bar 

graphs, scatterplots, and two-sample Wilcoxon tests to contrast learner groups. To corroborate 

these contrasts, Spearman’s correlation is used on relevant features in relationship to learning 

outcomes. Figure 3 shows the flow of analysis for each new data feature. 

 

Figure 3. Analysis I flow of statistical visualization for feature-learning connection. 
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The visualized trends with the strongest relationship to learning, as corroborated by the 

nonparametric tests, shape final findings along three themes of performance and learning: 

frustrated failure, success in convergent-task game levels, and failure as learning strategy. 

Analysis I results provide a diverse range of features which feed analyses II and III, as well as 

highlight salient themes for further investigation in these subsequent analysis sections. 

Analysis II: Understanding Play Trajectories: Markov Modeling of Learner Groups 

Analysis two focuses on mapping learner navigation of the gamespace using machine 

learning methods. This analysis represents the overlay (Figure 2) between designed experience 

Lens A (game as a progressive play arc) and Lens C (player choice). Capturing basic player 

choices in the context of full game progression can give insight on interactions more 

characteristic of learning. To do so, this study traced play progression from level to level, 

visualizing whether players repeat a given cycle, move on to the next level, or quit. A sequential 

probability model was used, because it has the ability to illustrate the probability of players 

moving, in time order, from one level to another. Specifically, a first order Markov model was 

used as the probability model. Two Markov chain models were made, one for the upper quartile 

and one for the lower quartile of learners, as measured by learning gains on Progenitor’s pre-

post test of regenerative biology (see Chapter Three for pre-post detail). Contrasting the two 

models of play directly addressed the second research question: how does organic play 

progression differ between groups of learners?  

Contrasting probabilities (of repeating, moving forward, or quitting) for each learner 

group gave insights into patterns of play most characteristic of learning gains. Each progression 

was illustrated in a Markov model, with quit states and each objective shown (Figure 4). A 

transition matrix, detailing the probabilities for each group in moving from one state to the other, 
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was then generated. Through comparing these probabilities between groups, play progression 

patterns characteristic of learning emerged along themes consistent with Analysis I: early game 

failure, mid-game scaffold-and-fade performance, and endgame strategic navigation. 

 

Figure 4. Example Markov model created in NetLogo (Wilensky, 1999) using the Narkov 

algorithm (Berland, 2012). 

 

Analysis III: Experimentation and Learning: Predictive Modeling with Detectors 

This data mining analysis builds on the previous studies, using performance and 

progression features to make inferences about learner behavior in the gamespace. This analysis 

represents a synthesis of all three designed experience lenses: Lens A (game as play-based 

medium), Lens B (game as content delivery system), and Lens C (learner-specific specific play 

goals and experimentation). The core research question for analysis three is: What play data 

features characterize experimentation in Progenitor X, and how does this behavior predict 

learning outcomes? Experimentation can be indicative of transgressive play, a natural element of 
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the game medium (Salen & Zimmerman, 2004) in which players may interact with the 

gameworld in ways unanticipated by the designers. To explore this construct, this study draws on 

educational data mining to build a detector of experimentation, and then connects the related 

player behavior with learning outcomes.  

A detector is an automated model that can detect student behavior from log file data (e.g. 

Baker, Corbett & Koedinger, 2004). Here, it was built through holistic coding of “text replays” 

(Baker & de Carvalho, 2008), a series of player actions displayed in a snapshot, which was then 

evaluated for levels of player experimentation. Data features predictive of experimentation were 

then determined (using classifier algorithms J48, Naïve Bayes, and JRip) with RapidMiner1 or 

WEKA data mining software (Hall et al., 2009). These detectors of experimentation in play were 

next investigated in relationship to learning, used as input variables in a predictive modeling of 

pre-post learning outcomes (using RepTree and M5’ algorithms).  

Thus, detector building supports the leap from interaction data to behavioral inference 

about experimentation; next, the input of experimentation features into a model with predicted 

learning outcomes helps illuminate the relationship between play exploration and learning. These 

analyses yielded extremely interesting results along thematic findings of Analysis I and II, 

including the critical role of early failure in learning, shades of failure evolving in learning 

impact over time, and late-game strategic failure in relationship to learning gains (see Chapter 

Six for extensive results). 

Study Assumptions and Limitations  

 In establishing ADAGE and using its data yield as game-based assessment, three main 

assumptions are made. Each are described as follows: 1) the learning by doing of games (Squire, 

                                                           
1
 http://rapidminer.com/ 

http://rapidminer.com/
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2006) can improve skills and knowledge; 2) different kinds of learning and learner 

characteristics can be measured during gameplay (Shute, 2011); and 3) ongoing player learning 

can be supported with formative feedback (Gee, 2003). 

Because ADAGE is an API overlay of the core game programming, it is inherently 

limited to collecting in-game interaction data. However, its GLS creators consider it just one 

cornerstone of a much larger ecology of synchronous interaction data – e.g. sensor data, video 

logs, observation, and interviews (Owen et al., 2014; Halverson et al., in press). Triangulation of 

ADAGE log files with other forms of player interaction data can constitute powerful mixed-

methods research, and is already being pursued at the center (e.g. Halterman et al., in 

submission; Beall et al., 2013). In a related constraint, because this particular study analyzes in-

game data from the Progenitor X (a single-player game), it uses only player-game interaction 

data. Thus, this particular analysis does not analyze in-game social elements, because there are 

none built into Progenitor X core mechanics. In-game social interaction, however, is an area of 

great interest to GLS and is currently being built into ADAGE for the new multi-player game 

Trails Forward 2. In terms of studying out-of-game social discourse and artifacts, the center has 

plans to integrate ADAGE data and visualizations into a larger online interface which can serve 

as a community forum as well as a user portal for students, facilitators, and researchers. As these 

portals connected to ADAGE are developed, and multi-player telemetry capacity grows, it can 

better converge with study of the larger learning big “Game” context (Gee, 2012; Steinkuehler, 

2004), and contribute to comprehensive assessment methods in situating big data. 

For the example studies of ADAGE in Progenitor X, a main delimitation was locale-

based data collection. Since our target audience for Progenitor X was 8
th

 grade, IRB research 

guidelines necessitated parental/guardian consent forms signed by hand and presented in person. 

                                                           
2
 http://gameslearningsociety.org/blog/?p=105 
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This yielded a pool of subjects from the upper Midwest area (delimiting regional 

generalizability) and somewhat limited our sample size (n=110). However, the sheer volume of 

clickstream data offset this somewhat, yielding roughly 10,000 data points per player and over 1 

million data points total. Ultimately, this research is largely concerned with putting forward 

methods for structuring and analyzing game-based assessment, and this dissertation’s empirical 

study example represents just one framing of the enormous clickstream data yield possible with 

frameworks like ADAGE. However, in future studies, a much broader population sampling may 

be possible, since the GLS center just obtained IRB approval for remote data collection. This 

opens data collection for thousands of users – anyone who plays GLS games on the internet – 

across the globe, and could support very broad generalizability and large sample sizes of future 

analyses. 

Implications of Adage and Game-Based Assessment  

Maximizing learner engagement and support through good design is fundamental to fully 

leveraging games as a learning vehicle (Gee, 2003, Shute, 2011). One significant benefit of 

telemetry-based assessment is its ability to play a key role in optimizing learner-adaptive play 

experience in this iterative design process. Telemetry-based insights can support three 

development stages: core game creation, alpha usertesting, and final-stage adaptive play design. 

During early design phases, building distinct mechanics of play which will further the narrative, 

teach the content, and provide moments of assessment is vital to designing an engaging, effective 

learning game (Asbell-Clarke, 2013; Plass et al., 2012). For example, mapping ADAGE 

structures of formative assessment (detailed in Chapter Three) to early core design efforts can 

inform the creation of play mechanics specifically designed to provide evidence of learning. In 

user-testing alpha and early beta phases, ADAGE-based visualizations and descriptive analytics 
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can be particularly helpful in refining UI design, as well as identifying bugs and player attrition 

points (e.g. Beall et al., 2013). After extensive post-beta playtesting, learning analytics can be 

used to predict in-game actions and performance most characteristic of learning. This knowledge 

of ideal player behavior can then inform the final design phase: user-adaptive, fully scaffolded 

play for optimized in-game learning (Owen, 2014). To this end, optimal player actions, 

sequential pathways, and assessment growth trajectories can each be defined through learning 

analytics (including visualization, prediction, and pattern mining methods). A layer of game 

mechanics – either enhanced in-game visual cues, for example, or an agent-based hint system – 

can then be built to help guide players toward pathways optimized for learning and engagement 

(Owen & Ramirez, in submission). In this dissertation, for example, insights into failure and 

transgressive play can inform the in-game highlight of unanticipated learning pathways while 

supporting experimental play. Overall, in-game interaction data and assessment structures can 

enable analytic insight vital to an optimized learning game experience. 

Event-stream assessment frameworks like ADAGE can have impact both inside and 

outside the game experience. Game-based embedded assessment is a powerful tool able to 

capture authentic performance not decontextualized from an engaging learning environment (c.f. 

(Derry & Steinkuehler, 2003; Shank, 2011). Capturing in-game interaction can be a “quiet, yet 

powerful process by which learning performance data are gathered during the course of playing” 

(Shute, 2011, p. 505). Standardized, game-tailored assessment data frameworks like ADAGE – 

supporting cross-genre game application and multiple approaches to analysis – represent the 

possibility for large-scale implementation of authentic performance assessment embedded in 

engaging learning worlds. National testing giants like ACT and ETS have been increasingly 

involved in game-based assessment research (e.g. Institute of Play, 2013; Encarnacao, 2014). 



15 
 

 
 

Top research and learning game labs like MIT Learnlab, Pearson, TERC, Filament games, 

Vanderbilt, and the Columbia Teachers’ College Educational Data Mining lab are currently 

collaborating with GLS on future iterations and wide-scale implementations of the ADAGE 

framework (supported by NSF Award SMA-1338508). Even at a federal government level, there 

has been recent advocacy for national use of digital learning worlds in education, including 

serious games – and funded development of corresponding digital assessment methods. The 

President’s Council of Advisors on Science and Technology, linked with the government Office 

of Science and Technology Policy (OSTP), recently advised in an official presidential report: 

[The Department of Education]…should provide robust and diversified support 

for…R&D that will lay the foundation for educational technologies such as 

personalized electronic tutors, serious games and interactive environments for 

education. (President’s Council of Advisors on Science and Technology, 2013, 

p.28) 

  

As part of this recommendation, the Council also advised developing “assessment 

programs for those technologies that use advanced techniques from ‘big data’ R&D and from the 

learning sciences” (PCAST, 2013, p.13). Concurrently, the placement of game-specialized 

digital media advisors in the White House OSTP (including Dr. Constance Steinkuehler in 2011-

2012, and Mark DeLoura presently) supports this high-level trend towards understanding and 

leveraging digital games for learning and assessment. As implied by the direction of nationally-

impacting assessment companies, tier one academic consortiums, and government-level 

advocacy, this forward movement in the field could signal the beginning of a paradigm shift in 

digitally-based assessment practices on a national scale.  
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Summary and Content Structure  

In respecting educational games as a medium that sets roles and goals (Squire, 2011) in a 

narrative-based, endogenously motivating context (Costikyan, 2002) – and thus encourages 

exploration and transgressive play (Salen & Zimmerman, 2004) – it’s vital to understand 

naturalistic learner interaction with the gamespace that can represent authentic play experience.  

The three analyses of this research, grounded in each lens of game microworlds as designed 

experience (Figure 2), explore this intersection of play and learning through data furnished by 

the ADAGE assessment framework.  

The following pages of this dissertation will detail the literature base and conceptual 

framework of ADAGE, as well as describe in detail the empirical methods, results, and findings 

of all three interlinked ADAGE-based Progenitor analyses. Chapter Two provides a broad 

ADAGE literature base in games for assessment, Evidence Centered Design, and Educational 

Data Mining. Chapter Three describes the ADAGE framework itself, its application to 

Progenitor X, and the corresponding data collection for this analysis trio. Chapters 4, 5, and 6 are 

detailed accounts of analysis I, II, and III (respectively). Chapter Seven is the last chapter of the 

dissertation, providing summary of findings and conclusions about the work as a study of game-

based assessment in the digital age. 
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Chapter Two: Theoretical Framework 

Chapter Overview 

 In creating a framework for assessment of learning through play in educational games, 

work like ADAGE represents a movement advancing alternative forms of assessment – which 

may lead to paradigm shifts in the way the education system thinks about measurement of 

learning. ADAGE supports this innovation in providing a framework to collect mass clickstream 

data in games, affords a standardized way to organize these data that makes sense across games; 

and connects these context-rich assessment features with game-tailored methods designed to 

handle large, unsupervised log file data. One of the reasons this work is so important – and so 

messy – is that games can provide extremely rich, engaging learning environments in which both 

learning and assessment are seamlessly integrated into the fabric of the gameworld. This section 

will review current literature on the value of games for learning and assessment, and follow with 

a review of two prominent – and very different – approaches of assessing digital streams of 

learning data: Evidence Centered Design, and Educational Data Mining.  

Games: Rich Microworlds for Learning and Assessment 

 Videogames have distinctive characteristics that make them rich, complex vehicles for 

learning and assessment. Kurt Squire asserts that “games differ from simulations in that they 

give roles, goals, and agency”, and enable “transgressive play” (Squire, 2011), p. 29; (Salen & 

Zimmerman, 2004). Val Shute adds that games are comprised of “conflict or challenge,” “rules 

of engagement,” and “compelling story and representations” (2011, p. 507). These crucial design 

elements merge to create a dynamic of endogenous, engaging interaction (Costikyan, 2002).  
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Well-designed games are examples of situated learning environments in which learning is 

inseparable from environment or context (c.f. Brown et al., 1989; Greeno, 1997). Just-in-time 

information (scaffolding) in the well-ordered problems of the gameworld provide formative 

feedback within cycles of expertise (Gee, 2003). Indeed, good games effectively harness 

formative assessment to foster ongoing feedback cycles and customized player difficulty levels 

(Shute, 2011). In order to maintain this immersive context for learning, good games consist of 

ongoing assessment balanced with engaging mechanics and narrative (Squire, 2006). In 

multiplayer games, social interactions can provide their own definitive feedback cycles. They 

can provide a powerful environment for collaborative learning, supporting apprenticeship and 

collective higher-order thinking skills (Steinkuehler, 2004, 2008). Communities of practice 

(Lave & Wenger, 1991) often emerge around games (Steinkuehler, 2006a), fostering collective 

intelligence and an information-sharing participatory culture (Jenkins, 2006).  

From Learning to Assessment 

Many of these qualities are what makes good games rich learning context – and good 

assessment environments. Gee describes the systems thinking of digital games as ideal contexts 

for assessment, because they “allow us to track progress on multiple variable to gauge growth 

across time” and discover “different trajectories towards mastery and innovation” (Gee, 2012, p. 

1). But this assessment is not only for the researcher, it enables formative feedback for the 

players themselves. Civilization V3 infographics are an example of the way players can get 

“beautifully designed representations of how they are going across time” on “many connected 

variables” and in comparison to other players (Gee, 2012, p. 1). Computer game-based 

assessment offers the capability of instantly adaptive embedded assessment within immersive, 

                                                           
3
 http://www.civilization5.com/ 

http://www.civilization5.com/
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agency-filled learning worlds (Halverson et al., in press). Gameworlds as learning contexts can 

provide a seamless “match between instruction and assessment,” an essential quality of authentic 

assessment (Scalise & Wilson, 2012, p. 290; Wiggins, 1990). Multi-player games can also 

capture an important collaborative learning element (c.f. Steinkuehler, 2004; 2006), what Squire 

calls “Participatory Assessment” (2012), in which participatory culture (Jenkins, 2006) sets and 

reinforces important indigenous performance standards. Indeed, standards of knowledge have 

been considered as central to domain representation in “the Best and Future Uses of Assessment 

in Games” (Baker, Chung & Delacruz, 2012). The Games for Learning Institute maintains that 

games can be fundamentally good assessment within four game-based learning functions: 

measuring preparations for future learning (priming for history lessons, for example), assessing 

new knowledge or skills (e.g. STEM games on cutting-edge science topics), to capture mastery 

of existing knowledge and skills (like multiplication tables and second language practice), and to 

evaluate life skills, including 21
st
 century skills like critical thinking (Plass et al., 2012). 

If games are, then, promising vehicles for assessment, what kind of measurements are 

appropriate to the medium? As we have seen above, games are very different from multiple 

choice tests, cognitive tutors, or even simulations in the sense that they offer a rich interactive 

world of roles, goals, and endogenously motivating agency (Costikyan, 2002; Gee, 2005; Squire, 

2011). Statisticians and measurement specialists Kathleen Scalise and Mark Wilson tackle 

exactly this question in “Measurement Principles for Gaming” (2012). Core principles of good 

game-based assessment are that assessment should align with instructional goals, be able to 

measure student trajectories of growth over time (not just at a “final or supposedly significant 

time point”) and produce valid and reliable evidence of what learners know and can do (Scalise 

& Wilson, 2012, p. 290; National Research Council, 2001).  
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One way of implementing these principles is using Evidence Centered Design (ECD), 

which originally proposed to measure “knowledge and skills we want to develop in students, and 

the kinds of observations we need to evidence them” in contexts like “simulation-based 

assessment” (Mislevy et al., 2003, p.1). Explored in-depth in the next section, ECD is a multi-

step method for aligning teaching content with tasks and evidence, and has had a range of 

applications in the digital world – including educational videogames.  

 

Evidence Centered Design: Framework and Application to Virtual Learning Spaces 

Introduction and Framework 

In the world of simulation-based assessment, one approach to measurement of complex, 

process-oriented learning is Evidence Centered Design (ECD). ECD is a hypothesis-driven 

assessment method capable of measuring “behavior that bears evidence about key skills and 

knowledge” (Shute, 2011, p. 510; c.f. Mislevy et al., 2003). In other words, ECD aligns 

important learning content with tasks and resulting evidence for performance-based assessment. 

What is Evidence Centered Design? 

Evidence Centered Design is an assessment framework which “enables the estimation of 

students’ competency levels and further provides evidence supporting claims” about the 

knowledge and skills being assessed (Shute, 2011, p. 508; Mislevy et al., 2003). In other words, 

ECD aligns important learning content with tasks and resulting evidence for performance-based 

assessment. 

The whole process (Figure 5) consists of three main chunks: research on what to teach 

(domain analysis and modeling), the design of the tasks (Conceptual Assessment Framework: 
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CAF), and implementation (Assessment Implementation and Delivery). While the outer two 

(first and last) describe parts of a temporal process, the middle layer – the CAF – is more focused 

on design. This is the center of ECD’s integration of content, evidence, and designed tasks 

(Mislevy, 2011; Mislevy & Haertel, 2006). 

 

 

Figure 5. A full-scale ECD model (Mislevy, 2011). 

 

Focusing on the CAF, it’s three main pieces are (Shute, 2011; Mislevy, 2003):  

1) A competency model (CM) – alternately called the student model – defining key 

knowledge and skills to be assessed. Sometimes the CM is broken up into knowledge, 

skills, and attributes (KSAs). (What are we measuring?)  

2) An evidence model detailing what behaviors or performances should reveal the CM’s 

constructs. (How are we measuring it?) 
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3) A task model, creating specific tasks that should elicit the behaviors that comprise the 

evidence. (Where do we measure it?) 

It’s worth noting that ECD lays out the design order as: competency model, desired 

evidence, then tasks (or core mechanics). In a simulation, the environment for the tasks would 

then be constructed in the last steps (implementation) – after the assessment task model in the 

CAF. Literally, the simulated environment is put last priority, and serves only as an auxiliary 

context in which to embed the tasks. The design of videogames, with richer elements than just a 

task model, can look very different; we will explore the challenges of ECD and videogames in 

upcoming sections. 

 

Figure 6. ECD’s core – the Conceptual Assessment Framework (Zapata-Rivera, 2009) 

 Thus, ECD essentially amounts to a CAF sandwich, with this vital center layer capturing 

the core design and integration of content, tasks and evidence (Mislevy & Haertel, 2006). 

 Especially for pure simulations or digital performance assessments, ECD can serve 

beautifully as a streamlined framework articulating content, evidence, and tasks. Behrens says of 

this model: “It is flexible enough to accommodate the affordances of new technologies and the 

demand to measure new domains while providing a united framework to describe current 

practice across a wide range of assessment activities” (Behrens et al., 2012, p. 47). This broad 
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applicability gives ECD a universal appeal, while leaving open the opportunity to develop other 

ECD-inspired assessment models specifically tailored to individual learning technologies. 

Adaptable both in platform and in content, ECD is very useful in tackling abstract or very broad 

content like complex competencies and 21
st
 century skills – in part because of its first two steps 

of systematic domain analysis and modeling. It is, in fact, the central method in the recent book 

Technology Based Assessments for 21
st
 Century Skills (Mayrath et al., 2012), and the darling of 

several CRESST reports lauding ECD for assessment in the digital world (e.g. Behrens et al., 

2010; Mislevy, 2011). In the following sections, we will explore applications of ECD to various 

contexts of digital assessments. 

ECD in Digital Assessment 

 Recent ECD-based applications in the digital world include simulations and cognitive 

tutors. For example, Feng, Hansen, and Zapata-Rivera (2009) adapted ECD to an “Evidence 

Centered Design for Learning” framework to examine the ASSISTments intelligent tutoring 

system; one feature of this adaptation was the differentiation of assessment and instruction 

measures in ASSISTments by subdivision of tasks. ECD-related structures have been created for 

open-world digital learning environments, such as task-based performance metrics (Shelton & 

Parlin, 2012) auto-scoring in military simulations (Iseli et al., 2010), and engineering network 

simulation software (Frezzo, Behrens & Mislevy, 2009). Other work, such as the “Evidenced 

Centered Activity Model” (Annetta et al., 2010, p. 24), Activity Centered Design (Gifford & 

Enyedy, 1999), and Gordon commission technology-adapted assessment structures (Behrens & 

DiCerbo, 2013) blend ECD constructs with activity-based models (Nardi, 1996). Competency-

aligned task evaluation has also been considered central to digital scenario-based inquiry 

assessments, with particular attention on assessment characteristics (like time duration – pre, 
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post, or follow-up, proctored face-to-face or over distance, and response types of text or action) 

(e.g deJong, Wilhelm & Anjewierden, 2012; Songer, 2012). A fundamental ECD-based 

framework in this area is “PADI”, which provides “Principled Assessment Designs For Inquiry” 

for simulation-based science assessments (Mislevy & Riconscente, 2005). 

ECD in Videogames: A Primer 

Although related to applications in simulations, using ECD in gameworlds can be more 

complex. Val Shute also notes that “making valid inferences about what the student knows, 

believes, and can do without disrupting the flow of the game” is a “main challenge” of educators 

in using games to support learning (Shute, 2011, p. 508). Assessing in-game performance is a 

“complex process that needs to take into account not only the engaging or motivational aspects 

of the activity but also the quality criteria that are needed according to the type of assessment 

that is being developed” (Zapata-Rivera & Bauer, 2012, p. 149). To help meet these challenges, 

many videogames & learning researchers have recognized the importance of aligned content, 

task, and evidence models in game-based assessment.  

Mislevy, Behrens and team declare that key “Things Game Designers Need to Know 

About Assessment” are: 1) that “game design is compatible with assessment design,” because 2) 

assessment is “not really about numbers,” but the structure of reasoning, and 3) “Evidence-

Centered Assessment Design” is a key means to bridging the two (Mislevy et al., 2012, p.59, 61, 

66). Because ECD aligns content, tasks, and evidence, and can be structured to measure 

performance over a series of steps rather than in a single point of performance, the authors argue 

it is an optimal application to an educational gamespace (Mislevy et al., 2012).  

Certainly, their support for game-based use of ECD is not an anomaly; many researchers 

have proposed elements of ECD for use in educational games. For example, qualitative student 
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evaluation in Quest Atlantis has incorporated some ECD structures in its Designing for 

Participation assessment model (e.g. Hickey & Jameson, 2012; Shute & Ke, 2012). In 

application to game-based professional training, Gaydos & Bauman (2012) have recommended 

ECD to help build in assessment for potential nursing simulation games. ECD can also be useful 

in vocabulary-building “game-inspired” software; in one example, the virtual learning 

environment “BELLA,” designed to help teach math vocabulary, experimental assessment was 

guided by “ECD principles” and combined with Bayesian reasoning to test the game in beta-

level pilot studies (Zapata-Rivera, 2009, p.1; Zapata-Rivera & Hansen, 2009). In augmented 

reality games like the River City project, ECD has been used to help align locational data, tasks, 

and overall performance (e.g. Dede, 2012). The Games for Learning Institute references ECD as 

a core influence in their discussion of general assessment-informed design mechanics (Plass et 

al., 2012).  

ECD in Videogames: Deep Practice  

 Various digital game-based assessment methodologies, based firmly in ECD, have been 

developed and researched extensively in the last decade. Three leading examples of these are 

Virtual Performance Assessment, Epistemic Network Analysis, and Stealth Assessment. Each of 

these methods will be described in detail, and briefly evaluated, in the section to follow. 

Virtual Performance Assessment 

 The Virtual Performance Assessment project at Harvard is “developing and studying… 

immersive virtual performance assessment to assess scientific inquiry of middle school students” 

(Clarke-Midura et al., 2012, p. 134). The virtual world of VPA, built specifically for the 

assessment project, is a game-like simulated ecosystem in which the player picks an avatar and 
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goes on a mission. The missions are tasks in-game that are related to the “KSA”s (Knowledge, 

Skills, and Abilities) deemed directly related to science inquiry. These KSAs include making 

predictions, gathering data, reasoning about evidence-based claims, identifying causal 

relationships, and evaluating alternate explanations (p. 135). The KSA-based architecture is 

derived from PADI, an ECD-based structure for creating inquiry-based assessment (Mislevy & 

Riconscente, 2005). Essentially, the KSAs (or desired content for students to learn) align with 

the ECD task model in the game; avatars can choose their own path through those tasks, which 

include things like going to the lab, collecting samples around the land, talking to the lead 

scientist, or reading the latest research. According to the VPA framework, the progressive tasks 

all result in evidence which is evaluated in relationship to the KSAs. Ultimately, the player talks 

to the lead scientist and demonstrates his/her knowledge through using an argument constructor 

to exhibit causal reasoning about selected problems in the ecosystem (Clarke-Midura et al., 

2012).  

VPA is an interesting framework which puts refreshing emphasis on subtasks involved in 

the overall game goal; thus, formative assessment seems to play a large role, capturing the 

players’ process. The open-world component in player choice is an interesting feature, especially 

with a conceptual assessment framework attached to it. As the project moves forward, detail on 

specific scoring models and conclusive predictive analyses results (c.f. Clarke-Midura & 

Yudelson, 2013) can provide additional insight about VPA’s infrastructure. One potential 

limiting factor may be the requirement of the virtual environment to be designed around VPA, 

rather than be applicable to multiple game-based learning environments. Overall, VPA is an 

innovative example of how ECD-based assessment can inform design of game-like open worlds.  
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Figure 7. The world of Virtual Performance Assessment (Clarke-Midura et al., 2012) 

Epistemic Network Analysis 

 Another example of ECD-related structures dictating design of game-like simulations is 

Epistemic Network Analysis. Epistemic Network Analysis (ENA) is used by David Shaffer’s 

research group to analyze data from “Epistemic Games,” which are simulations of professional 

STEM environments. They are designed based on the epistemic frame hypothesis, a theory of 

learning that analyzes thinking in terms of connections among frame elements: skills, 

knowledge, values, and justification or decision-making (otherwise known as epistemology) of a 

STEM profession (Shaffer et al., 2009). ENA maps to ECD starting with these frame elements 

(Sweet & Rupp, 2012), each as pieces of a competency model (or things the simulation wants to 

teach). These profession-based simulations include Land Science (a fictional internship with an 

urban planning company), Journalism.net (a fictional internship with a newspaper), and 

Nephrotex (a fictional internship with an engineering company).4 ENA is “a form of network 

analysis for assessing epistemic frames” in each simulation (Shaffer et al., 2009, p. 38). Data is 

collected as students interact with the simulations via chat and fictitious email (part of the ECD 

task model); the dialogue input is then coded as a skill, knowledge, identity indicator, value, or 

                                                           
4
 http://edgaps.org/gaps/projects/ 

http://edgaps.org/gaps/projects/
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epistemology statement (part of the ECD evidence and scoring model). Each of these epistemic 

frame elements become nodes (or circles) on an SNA-like graph, and their co-frequency within 

certain excerpt chunks of chat become connectors. Over time, ENA maps player trajectories in 

each of the epistemic frame elements, and compares them to an “expert model” of participation 

in the game (Shaffer, 2009; Sweet & Rupp, 2012).  

 ENA is an interesting application of ECD to visualization of discourse over time. The 

element of quantifying qualitative input over the course of a simulation is methodologically very 

useful. However, it seems ENA would not have applicability to learning worlds not designed 

exactly under the constraints and scripted textual responses of an epistemic frame scenario. 

Working at an email-simulated job may, well, feel like work to some students, thus limiting the 

element of engagement and agency. It would be inspiring to see broader applicability and 

significance of this tool beyond that of a narrowly-defined epistemic simulation – however, the 

quantified visualization of a discourse-based ECD model is a novel method with potential in 

future game applications. 

 

 

Figure 8. Epistemic Network Analysis 

(http://www.wcer.wisc.edu/news/coverStories/2009/assessing_learning.php). 

http://www.wcer.wisc.edu/news/coverStories/2009/assessing_learning.php
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Stealth Assessment 

Val Shute and her team of researchers at FSU have been working on Stealth Assessment 

(SA), the mission of which is to “identify key competencies and use games as instructional 

learning vehicles” (Shute, 2011, p. 505). SA, in essence, is an ECD-based model that is focused 

on connecting 21
st
 century skill competency models to existing video games. Of the three 

methods talked about in detail in this section, SA sustains the most meticulous use of ECD. In 

line with ECD, SA maps out three pieces: 1) the competency model (CM) (skills and 

knowledge), 2) the evidence model (behaviors or performances evidencing the CM) and 3) the 

task model (also called an action model). The CM is usually broad 21
st
 century skill (like 

Creative Problem Solving), which can then be broken down with a Bayesian network (Shute, 

2011). An evidence model based on the CM is created, and then aligned with a task model 

(which defines player action within existing game mechanics). Thus, through gameplay, “learner 

performance data are continuously gathered during the course of playing/learning and inferences 

are made about the level of relevant competencies” (Shute, 2011, p. 504).  

Application to the game Oblivion is given as an example. SA begins with a CM of 

“Creative Problem Solving”, a content base clearly different from that of the original game 

design (Shute, 2011). Where Bethesda studios likely had core game content goals revolving 

around immersive gameplay (e.g. combat affordances, economic and social interaction with 

NPCs, professions and customization opportunities), SA’s core content is an academically-

defined “21
st
 century skill” (Mayrath et al., 2012, p.3). The two base content models are quite 

different, and only directly overlap where the task model utilizes selected areas of the game 

mechanics (see diagram above for visual representation). One specific SA example in Oblivion 

considers possible player action in response to the in-game challenge of crossing a river full of 
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dangerous fish (choices were ultimately scored for levels of “Creative Problem Solving” ex-post-

facto by two Oblivion experts) (Shute, 2011, p.517). Based on expert evaluation, certain 

gameplay paths were deemed more or less creative than others, then used to train a Bayesian 

network for ongoing evaluation of players. Herein lies the “stealth” component – SA uses 

existing core game mechanics to evaluate player actions connected to competency constructs.  

Stealth Assessment is a clearly structured and well-supported model for applying very 

broad competencies (like 21
st
 century skills) to existing video games. SA, admirably, respects 

player engagement and non-task-model game content, since it uses a “quiet but powerful 

process” which is “intended to support learning and maintain flow” (Shute, 2011, p. 504). SA in 

possible application to all kinds of engaging games (commercial games included) make it 

appealingly flexible (e.g. Shute & Kim, 2011). Currently, work is being done with SA and 

Newton’s Playground – a basic physics sandbox game – to demonstrate 21
st
 century skills and 

implicit physics understanding (Ventura, Shute & Kim, 2013). However, SA’s complexity may 

not be necessary for games created from scratch in which the content model (e.g., addition) is 

clearly aligned with game mechanics (e.g. doing addition) and assessment goals (e.g. doing 

addition right). Additionally, SA may not be as transparent as methods like VPA for clear impact 

of assessment mechanics on core game design.  
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Figure 9. A Bayesian network example of mapping game success to creative problem solving in 

SA (Shute, 2011, p. 516). 

 

Implications for Game-Based Assessment 

 As many researchers have recognized, ECD vitally informs our understanding of 

game-based assessment by emphasizing the importance of aligned content, tasks, and evidence. 

This has implications for educational game design, including clear articulation of content before 

the game design process, and integration of assessment-specific mechanics into the fabric of the 

game. As mentioned earlier, however, a good game is made up of more than just a task model – 

and in designing too much around specific performance assessment tasks one ends up with a 

simulation rather than a game. However, if joined with an assessment data framework more 

comprehensive than just a task model, ECD has the potential to tap into the power of total 
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integration: underlying game content, with evidence model, with total experience mechanics, 

with corresponding click-stream data stream and learning evidence.  

Very recent work with ECD and games has followed this ADAGE-themed line of hybrid 

research, moving beyond ECD to leverage data mining techniques for an exploratory-

confirmatory approach to identifying significant game events. One example is Jody Clarke-

Midura’s follow-up to her 2011 ECD work, teaming up with Ryan Baker to explore a hybrid 

ECD-data mining approach to VPA (Baker & Clarke-Midura, 2013). In another recent 

collaboration, GlassLab has formed as a recent partnership between the Institute of Play, EA 

Games and ETS to explore learning patterns in the simulation SimCity.EDU. Using techniques 

directly aligned with the ADAGE, the project has combined domain modeling of 21
st
 skills for 

Evidence Centered Design with data mining for an “exploratory-confirmatory” approach not 

commonly employed with ECD-based research (Institute of Play, 2013).  

ADAGE is informed by, and readily supports, multi-directional assessment of this nature. 

One key advantage in acknowledging all kinds of interactions, and connecting them fully with 

click-stream data structures, is the potential for maximizing player just-in-time feedback. 

Assessment shouldn’t be just for the researcher or the teacher – if joined with the right 

underlying click-stream data framework, ECD could help leverage assessment data in ongoing 

support of the most important stakeholder of all: the player and learner. 
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Big Data and Assessment: Educational Data Mining 

Introduction and Framework 

Educational Data Mining (EDM), “is concerned with developing methods for exploring” 

large educational data streams (Baker & Yacef, 2009, p. 324), and “using those methods to better 

understand students and the settings in which they learn” (Romero & Ventura, 2010, p. 601; 

“International Educational Data Mining Society,” n.d.). Representing a host of education-specific 

machine learning tools, EDM can provide excellent groundwork for defining data mining 

methods readily applicable to educational gameworlds. This chapter outlines a schema of 

machine learning methods applied across EDM that can enable exploration of the potentially rich 

telemetry streams of digital learning environments (including educational videogames).  

EDM data streams are typically massive, and sourced in continuously developing digital 

contexts; thus, it is an emergent, multi-disciplinary field in constant evolution (c.f. Romero & 

Ventura, 2010). Even EDM experts (Baker & Yacef, 2009; Romero & Ventura, 2010; U.S. 

Department of Education [DoE], 2012) survey the field from different perspectives. The state-of-

the-field reviews from Baker & Yacef (2009) as well as the U.S. Department of Education 

(2012) focus on data modeling goals and methods, while Romero & Ventura (2010) organize 

around the human subjects of study (students, teachers, etc.) and context (classrooms, e-learning 

spaces, etc.). However, upon deeper analysis, a common schema can be derived from the expert 

reviews by extracting four underlying mutual components: 1) base educational contexts, 2) data 

types, 3) broad analysis goals, and 4) specific methods. All four of these focus on methods 

(rather than context, subject, or broad modeling); the first two describe the nature of the data, and 

the last two focus on the analysis of the data (through the lens of machine learning methods).  
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EDM: A Machine Learning Approach 

The first two common pillars are base educational contexts and data types. First, EDM’s 

main educational contexts include “offline education” sites like schools or tutoring centers 

(Romero & Ventura, 2010, p. 601); Learning Management Systems like e-learning sites and 

digital libraries (DoE, 2012; Baker & Yacef, 2009); and computer adaptive software – e.g. 

Intelligent Tutoring Systems (DoE, 2012; Romero & Ventura, 2010) and computer adaptive 

testing (Baker & Yacef, 2009). (Although not specifically mentioned in these expert EDM 

reviews, educational gameworlds can be categorized as computer software responsive to the 

user.) Secondly, the kinds of data derived from any of these settings can be both quantitative and 

qualitative. They can range from remote click-stream and text-based log file data (Romero & 

Ventura, 2010) to psychometric testing data (Baker & Yacef, 2009) to observational student 

interaction data (e.g. Baker et al., 2004). 

The third and fourth EDM core components – broad analytic goals and specific methods 

– revolve around data analysis. Broad analysis goals (or “metagoals”) common to the expert 

EDM synopses are visualization, relationship mining, and prediction (c.f. Baker & Yacef, 2009; 

Romero & Ventura, 2010; DoE, 2012). Visualization involves graphic representations of data to 

elucidate patterns; relationship mining looks specifically at associative patterns in the data; and 

prediction can project outcomes via algorithms of sequence, probability, and regression. The last 

core EDM component, specific method types, are subunits of these metagoals. These method 

types are finer-grained analysis categories, which include: descriptive visualization, social 

networks, clustering, association, classification/regression, and pattern mining (Figure 11). A 

loose mapping of these specific methods to the broad metagoals is visualized in Figure 11, 

complemented by a chart connecting common categories to all three synopses (Figure 10). 
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Figure 10. Metagoals and Method Types Common To All Three Expert Synopses 



36 
 

 
 

 

Figure 11. EDM analytics – specific methods loosely mapped to three base metagoals 

Based on the core EDM content arc derived here, this literature review will move from 

visualization to relationship mining to prediction. In this trajectory, it will review the method 

types (across the metagoals above) in the following order: descriptive visualization, social 

networks, clustering, association/correlation & classification/regression, and pattern mining (see 

Figure 11). Under each method type, core analysis techniques will be discussed with examples 

from current EDM literature. It should be noted that the mapping in Figure 11 is intended to be 

“fuzzy”, in the sense that some analyses or method types belong to more than one category. 

Placement on the map above is in no way intended to be an absolute or mutually exclusive 

characterization. 

Visualization, Cluster Analysis, and Social Network Analysis 

Moving first into the broad category of Visualization (e.g. Tufte & Graves-Morris, 1983), 

we have what Romero and Ventura (2010, p. 4) call “analysis and visualization of data.” 

Descriptive statistics and visualization techniques are the two main vehicles for this met 
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category, which exists mainly to easily display global data characteristics like summaries of 

learner behavior (e.g. Wu & Leung, 2002). Indeed, this umbrella of techniques exists in the 

realm of what Baker and the DoE report as “distillation of data for human judgment” (Baker & 

Yacef, 2009, p. 5; DoE, 2012, p.11). As such, it entails graphic representations of statistics or 

information visualization techniques to give information applied to digital learning spaces. 

Visualization tools can range from graphs and charts in the Excel menu and SPSS data “explore” 

functions, to more elaborate tools like maps and integrated text graphics from software like 

visual.ly, to advanced code-based tools like Tableau, Google Chart API, Flot, D3, and Raphael5. 

In online course environments, for example, visualizations can include graphical displays of 

information about student entry/exit, popular pages used, and use over time (e.g. Ingram, 1999). 

From any LMS or student interface, it can show the most popular resources used by students 

(e.g. Sheard et al., 2003), time on site (e.g. Cohen & Beal, 2009), or small-scale performance 

measures like number of problems/assignments complete for a given time period (e.g. Feng & 

Heffernan, 2006). Baker, Corbett & Wagner’s (2006) text replay displays focus on the 

production of a textual pop-up summary of ITS student usage per problem for researchers, 

including click-stream interpretation categories like time, input, context/level in tutorial, and 

evaluation of performance. Hershkovitz and Nachmias (2008) represent student performance 

over time in “learnograms”, and visualizations showing learning curves are considered a very 

important tool in EDM (e.g. Baker, 2013; Ritter, Anderson, Koedinger & Corbett, 2007). 

Social networks, another category of visualization, map the connections between 

individuals (nodes) in a web-like network (c.f. Srivastava, 2008). Recently, machine learning 

experts Baker and Siemens (2014) have supported this category as common to both EDM and 

learning analytics. Social network analysis and related techniques have been used to make 

                                                           
5
 See this site for more aggregate information: http://www.netmagazine.com/features/top-20-data-visualisation-tools 

http://www.netmagazine.com/features/top-20-data-visualisation-tools


38 
 

 
 

teacher tools to visualize learner trajectories for optimized student grouping (Berland et al., 

2013) and convey hierarchical changes in social structures over time (Carley, 2003). In text-

based interactions, it’s been used for connecting users with sources of online phrases; Simmons, 

Adamic, and Adar (Simmons, Adamic, & Adar, 2011). recently studied the use of memes in 

social media and their mapping to certain online sources through SNA. Network analysis has 

been leveraged to study patterns in online social interaction, indeed, since the early days of 

public internet use (e.g. Garton, Haythorntwaite, & Wellman, 1997). 

Another visualization-related method is clustering. Very connected with descriptive 

graphic tools, it visualizes relationships by clustering similar data points together. Cluster 

analysis has been used in several forms (including k-means, k-nearest neighbor, and hierarchical) 

in EDM, especially to identify organically similar groups of students. At the UCLA Center for 

Research on Evaluation, Standards, and Student Testing (CRESST), Kerr and Chung (2013) use 

clustering in an analysis of student performance in an educational game. Primarily a methods 

piece, their research found that fuzzy cluster analysis is more suited to the gameplay data, and 

more effectively identified unexpected player strategies in gameplay which helped explain 

student performance errors. Martinez and team (Martinez et al., 2011) used clustering to study 

patterns of interactivity between students engaged in collaborative learning around an interactive 

tabletop. The movements along the tabletop, which entailed reading and organizing slips of text, 

were coded in sequence and mined for patterns. Results included successful characterization of 

reasoning patterns in high- and low- achieving groups. Clustering has also been useful in 

characterizing LMS users. For example, Xu and Recker (Xu & Recker, 2012) employ this 

technique in creating profiles of digital library users. Through cluster analysis, they were able to 
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characterize three main groups of teachers (at varying levels of usage frequency) based on their 

habits in visiting and interacting with the digital learning space. 

Association, Regression, and Classification 

Romero and Ventura group them together as well, naming “regression, …classification, 

and association rule mining” among “the most commonly applied” EDM tasks (2010, p. 603). 

Association rules – expressions that describe conditional relationships between variables (Zhang 

& Zhang, 2002; Sasikala et al., 2011) – are a simple and useful tool in educational data mining 

(c.f. Merceron & Yacef, 2011). Frequently used in the domain of providing feedback for 

supporting instructors (Romero & Ventura, 2010), association rules have been leveraged to 

provide automated information for appraise online course effectiveness (e.g. Retalis et al., 2006), 

and to help improve education quality in the academic community in conjunction with cluster 

analysis (e.g. Vranic et al., 2007). Similarly, association rules been employed to help improve 

virtual educational environments (Zaïane & Luo, 2001; Zheng et al., 2008). 

Correlation mining is in a similar family, since its essential function is to find patterns of 

association in the data (Baker, 2010; Romero & Ventura, 2010). This kind of mining is so “hot” 

that it is the engine of Google Analytics’ new brainchild: Google Correlate6. This tool is a classic 

example of applied data mining; it finds search patterns which correspond with real-world trends. 

Specific to EDM, correlation-based analyses have been used to predict e-learners’ performance 

in online courses (Wang & Newlin, 2002) and exam scores in online tutoring (Pritchard & 

Warnakulasooriya, 2005). It has also been used in conjunction with other analyses. For example, 

Nkambou and team use correlation and association rule discovery methods with sequential 

                                                           
6
 http://www.google.com/trends/correlate 
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pattern mining to help better guide learners in ITS problem-solving scenarios (e.g. Nkambou et 

al., 2007). Correlation mining procedures, combined with other EDM techniques, are mapped for 

use in creating auto-assessment of e-learning Moodle course structures by Romero, Ventura, and 

Garcia (2008). Merceron and Yacef combine correlation strategies with association rule mining 

to better understand co-occurrence of mistake types in a cognitive tutor environment (2011). 

Generally, classification and regression are predictive methods that can include classic 

linear models like logistic and step regression (e.g. Baker, Gowda, Corbett & Ocumpaugh, 

2012), as well as tree-based predictive models. In the fuzzy mapping in Figure 11, this category 

is considered mainly predictive, but also can provide visualization (in tree and linear forms) and 

explores relationships between variables; thus, it is placed in at the intersection of the three 

metagoals. Prominent techniques include Classification and Regression Trees (dubbed “CART” 

– e.g. Breiman et al., 1984), analysis techniques that use a tree-like branching schema. CART 

can be used to describe a broad category of analyses, and is also the name of a discrete predictive 

algorithm used in data mining software like WEKA (Hall et al., 2009). In this review, it is 

mainly referred to as the umbrella category of classification and regression trees (e.g. Breiman et 

al., 1984). Generally, CART is designed to explain a chosen outcome variable through the 

mapping of different associated conditions. For example, CART was employed to create profiles 

of students based on propensity to take online classes (Yu et al., 2008). In another example, 

classification trees enabled automatic detection of students’ learning style with LMS log data 

(Lee et al., 2009); additionally, one study used it as an illustration of learning behavior to better 

categorize learners into different cognitive style groups (Lee, Chen & Liu, 2007). CART can also 

be leveraged in conjunction with other analyses. In one analysis on a virtual educational game, 

CART was used in conjunction with a first-order Markov model to show characteristics of 
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gameplay which predicted completion of learning tasks (Owen, Ramirez, Salmon & Halverson, 

2014). In a more traditional EDM study, Anaya and Boticario (2011) triangulated cluster 

analysis with a REPTree classifier to help power a teacher-friendly collaborative learning tool. 

Kelly & Tangney (2005) use probability-based “naïve” Bayes classifier (also a classification 

algorithm) to characterize learning style according to digital content interaction and learning 

behavior in “First Aid for You,” a novel adaptive educational program. In a more recent study, a 

Bayes classifier was used in tandem with logistic regression and rule-based mining in finding 

predictors of student attrition at the university level (Dekker et al., 2009). 

Core to early EDM development was the use of classifiers used to develop detectors of 

student strategies or affect in cognitive tutor environments, an application called developing 

“student models” (Baker, 2010, p. 326). A blueprint for this method was defined in “Developing 

a Generalizable Detector of When Students Game the System” (Baker et al., 2008), with 

foundational work started several years before (Baker et al., 2004). Other similar classification 

work done with detectors includes Shih and team’s research on distinguishing helpful and 

unhelpful kinds of hint retrieval behaviors in ITS (Shih, Koedinger, & Scheines, 2011); 

identification of off-task behavior (Cetintas et al., 2009) that indicates gaming the system 

(Walonoski & Heffernan, 2006) and impact on learning (Cocea et al., 2009); using text-based 

interaction for detecting learning affect (D’Mello et al., 2008); and measuring affect around 

agent-based instruction for students with learning disabilities (Woolf et al., 2010). It’s heartening 

to note that for low-performing students, working with a virtual “pedagogical” character had a 

positive effect on self-reported frustration and anxiety in Woolf’s study. Other studies around 

positive affect and detectors include the work of Chaffar (Chaffar, Derbali & Frasson, 2009) and 
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McQuiggan (McQuiggan, Mott & Lester, 2008), who leveraged classification techniques to 

detect positive emotional state and self-efficacy in the context of cognitive tutor use. 

Continued research on student modeling has merged detector work (classification and 

correlation mining, (e.g. Baker et al., 2004) with the power of statistical regression techniques 

(e.g. Baker et al., 2010). Logistic, linear, and multivariate regression, like CART, generate 

predictive information about an outcome variable. Used in applications like providing feedback 

to teachers, traditional statistical regression has been instrumental in assessing the effect of 

different educational interventions on students (e.g. Feng, Beck & Heffernan, 2009), predicting 

end student performance from web-based log and test scores (e.g. Yu et al., 1999; Ibrahim & 

Rusli, 2007), and anticipating future time spent on an LMS web page (Arnold et al., 2005). 

Pattern Mining 

Another major EDM method type is sequential pattern mining. Sequential pattern mining 

entails techniques that “capture sequential events” (DoE, 2012, p. 11). “Sequential pattern 

mining,” as Romero and Ventura explain (2010, p.606), “aims to discover the relationships 

between occurrences of sequential events, to find if there exists any specific order in the 

occurrences.” This category can include text pattern mining techniques, models of temporal 

sequence, and Bayesian probability methods. 

 One kind of raw data highlighted by Romero and Ventura is text or written language 

based (Romero & Ventura, 2007). This is especially relevant in connecting with educational 

research, where student writing and reflection can be a large component of assessment (e.g. 

Hickey & Jameson, 2012). Computational linguistics and related machine learning studies have 

used Natural Language Processing (NLP – c.f. Manning & Schütze, 1999) to mine text-based 

data for linguistic patterns. NLP and related text mining techniques have contributed to many 
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EDM areas of application (Romero & Ventura, 2010). Providing instructor feedback and 

constructing concept maps to support curriculum are two such areas. For example, in providing 

instructor feedback, text mining algorithms have been key in valence-based auto-evaluation of 

user opinions (i.e. categorized as positive or negative) in e-learning forums (e.g. Song, Lin, & 

Yang, 2007). Other automated text-based analysis have measured various forms of student 

verbage, including evaluating spoken responses to tutors (Zhang et al., 2008) and mining 

students’ writing differences to explore divergent cognition styles (Huang et al., 2006). Auto-

creation of domain concept maps from academic articles are another pedagogical support 

outcome of NLP (e.g. Chen et al., 2008). 

Methods expressing sequential probabilities have been used with NLP. Markov modeling 

is an example of this, used in Rabiner’s 1989 article on “Hidden Markov Models and Selected 

Applications in Speech Recognition.” Other applications include methods research on language 

patterns in a collaborative writing process (Southavilay, Yacef & Calvo, 2010), contrasting two 

types of Markov models in mining for core trends. Markov modeling and related temporal-

sequence methods are also used in non-textual data for EDM purposes. In LMS research, for 

example, Markov models have been used to monitor system information in support of teachers, 

namely providing notification of student errors and technical issues (Heathcote & Prakash, 

2007). They’ve also been of use in student classification; one LMS study created user 

characterizations according to HMM output on navigation and content-access patterns  (Fok et 

al., 2005), while an educational game study used an MM for tracking navigation in high- and 

low- performing user groups (Owen et al., 2014). Doug Clark and team also detail an 

experimental design using HMM with Computer Adaptive Testing principles to uncover 
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students’ strategic moves and explanatory responses in scientific modeling games (Clark, 

Martinez-Garza, Biswas, Luecht & Sengupta, 2012). 

In related probability-based methods, Bayesian models have been used with EDM 

research. In another case, “outlier detection” of extreme data points (e.g. Vee et al., 2006; 

Romero & Ventura, 2007) was achieved in an e-learning context through Bayesian predictive 

distribution (Ueno & Nagaoka, 2002). In predicting the need for help in an e-learning 

environment, Mavrikis (2008) utilized Bayesian networks; he formalized his process in a follow-

up piece on “Modelling student interactions in intelligent learning environments: constructive 

Bayesian networks from data” (Mavrikis, 2010). Supporting collaborative learning, Bayes’ nets 

have been combined with clustering methods to create informed skill-based student groups in 

distance learning courses (e.g. Hämäläinen et al., 2004). In a Bayesian methods piece, Millan and 

team (2010) provide a framework for using Bayes’ nets to engineer student models in intelligent 

tutoring systems. Also focused on student models is Bayesian Knowledge Tracing (a kind of 

Bayes network), used to help increase accuracy with classification of learner behaviors into 

informed, guessing, or slipping performance behaviors (e.g. Corbett & Anderson, 1994; Baker, 

Corbett & Aleven, 2008). 

EDM: Conclusion 

In the applied machine learning schema, main EDM methods include the metagoals of 

visualization, relationship mining, and prediction. These metagoals can organically extend to the 

related click-stream data pools of educational gameworlds – and can greatly inform game 

telemetry assessment structures. For example, visualizing paths through the gameworld, 

exploring relationships between gameplay patterns and learning, and modeling predictive 

significance of player actions at specific points in gameplay can provide valuable insight into 
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play and learning. Through specific method types like descriptive visualization, clustering, and 

social network analysis, graphic representations can reveal important connections in large game 

data sets. Association rule mining & correlation can define clear connections between game data 

and learning. The predictive power of classification and regression can provide deep insight 

about the gameplay factors which impact learning outcomes. Sequential pattern mining and 

Bayesian networks can uncover vital likelihoods and sequential connections between gameplay 

and assessment elements, with temporal- and probability-based mappings Overall, this schema of 

data-mining methods for educational games – based in EDM-applied machine learning – can 

help inform our game-based assessment structures to better enable adaptive, engaging learning 

experiences in play. 
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Chapter Three: ADAGE and Progenitor X 

Introduction 

Evidence Centered Design (ECD) and Educational Data Mining (EDM) both hold 

important contributions to understanding assessment in digital learning environments. ECD 

promotes content-driven design choices, and aligns data collection with selected performance 

tasks hypothesized to constitute evidence of learning (c.f. Mislevy & Haertel, 2006). Application 

of ECD to computer-based learning realms (e.g. Mayrath et al., 2012) means that such evidence 

often resides in data-rich log-files. While rigorous research has been done on the conceptual 

frameworks of ECD in digital worlds (e.g. Mislevy, 2011) there is little mention of the specific 

alignment between user action and click-stream data structures from which evidence is obtained. 

EDM, on the other hand, focuses heavily on masses of educational log-file data (Baker & Yacef, 

2009; Romero & Ventura, 2010). In data mining, assigning semantic meaning to data “often 

need[s] to be determined by properties in the data itself, rather than in advance;” unfiltered data 

sets with contextual information like “time, sequence, and context” play “important roles in the 

study of educational data” (International Educational Data Mining Society, n.d.). 

In educational videogames, the idea that design should align with evidence of learning (a 

la ECD) need not be mutually exclusive from the idea that unfiltered, richly-structured data is 

vital to forming meaning (a la EDM). In merging these two perspectives, core game design 

frameworks can be synthesized with distinct pedagogical task models to capture a wide range of 

context-rich interactions. An optimized game-based assessment model, then, articulates a click-

stream data framework aligned with educational game mechanics for broad, context-rich 

assessment data output – that can be used with both hypothesis testing and machine learning 
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techniques. At the Games+Learning+Society group, this optimized model is ADAGE: 

Assessment Data Aggregator for Game Environments (Owen & Halverson, 2013). 

ADAGE (Assessment Data Aggregator for Game Environments) 

ADAGE was designed to transform game-based log file data into evidence of learning. 

Essentially, it integrates core game design structures into a click-stream data (telemetry) schema, 

which is then seeded with context vital to informing learning studies. These data can be used to 

identify patterns in play within and across players (using data mining and learning analytic 

techniques) as well as statistical methods for testing hypotheses that compare play to content 

models (cf. Loh, 2012; Halverson & Owen, 2014). Overall, ADAGE provides a standardized 

game telemetry framework with a rich, method-agnostic data yield, efficient enough to have 

scalability, and flexible enough to use across games.  

Currently, ADAGE is a both a conceptual frame for capturing assessment data for games, 

as well as an API and data output engine. The following paragraphs will overview the 

assessment mechanics and telemetry schema of ADAGE, using the game of Progenitor X as an 

example.  

Assessment Mechanics  

Assessment mechanics are ADAGE structures built into the game that allow for research 

on play and learning. Understanding game-based learning requires two levels of assessment 

mechanics: one to trace the paths players take through a game, and the other to access the player 

experience of game play (Schell, 2008). Squire asserts that games as designed experiences 

(2006) provide endogenous engagement (Costikyan, 2002) for the player through “roles, goals, 

and agency” (Squire, 2011, p. 29). Thus, in learning games, there can two core kinds of designed 
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mechanics: one set related to progression through the gameworld, as an engaging learning 

context (Gee, 2005; Salen & Zimmerman, 2004); another may be designed as more direct 

measures of the content the game is trying to teach (e.g. Clarke-Midura et al., 2012). Ideally, 

these also overlap; good educational games meld learning mechanisms with the core mechanics 

of the game, where gameplay itself is the only necessary assessment (Gee, 2012; Shute, 2011).  

The ADAGE framework identifies underlying game mechanics for which serve as core 

occasions for player interaction. There are three base types of Assessment Mechanics: Game 

Units (capturing basic play progression), Critical Achievements (formative assessment of 

content), and Boss Level (naturalistic summative assessment). As “Assessment Mechanics”, they 

serve as data-collection (or assessment) anchor points, which yield data informed by core 

educational game design structures. This terminology also parallels concepts of formative and 

summative assessment in formal learning environments (Harlen & James, 1997), and formalizes 

them as powerful elements of game design (c.f. Gee, 2012).  

Through Assessment Mechanics (AMs), ADAGE operationalizes player interaction 

(Salen and Zimmerman, 2004) as the vital link between experience and game design (Schell, 

2008). These three core AM types can easily overlap within a gameworld; they are not mutually 

exclusive, though they have distinct categories. Additionally, every game does not have to have 

all AMs in order to use ADAGE. In this section, we will describe each mechanic, and connect it 

to ADAGE’s underlying telemetry structure.  

Game Units. The game Units represent the core progress mechanic of the game. For example, in 

a game like World of Warcraft (WoW), the core unit is quests. By definition, game units have the 

property of being a repeating, consistent vehicle for making progress through the gameworld. 

Units can also be part of a hierarchy – for example, one set of quests may make up a particular 
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map area, and completing all the maps means finishing the game. Thus, from broadest to 

smallest, game Unit hierarchy might be: game-map-quest. The idea behind Units is that they are 

flexible enough to work across genres; Currently, ADAGE Unit structure is applied to five 

different GLS games (Progenitor X, Fair Play, Anatomy Pro Am, Tenacity, and Crystals of 

Kaydor)7 each with different genres and Unit types.  

Critical Achievements. Critical Achievements (CAs) in ADAGE are direct formative assessment 

slices of the content model. They are moments of direct content measurement within the context 

of normal gameplay. Seamlessly woven into the fabric of the game, CAs use naturalistic game 

mechanics to measure underlying educational content. For example, Fair Play is a GLS game 

which teaches about implicit bias in graduate education settings. In one Fair Play CA, the player 

needs to correctly identify a given bias to another character in order to progress. This is a direct 

demonstration of bias knowledge (as opposed to indirect movement through the learning context, 

like in game Units). The CA data structure aligns very well with ECD task analyses. CAs 

(analogous to the “task model” in ECD) are intended to be one kind of direct content assessment 

embedded in gameplay, looking at selected moments of performance as learning measures. 

Ultimately, CAs are a unique feature of educational games, and capture both learning AND play 

dynamics in the user experience. 

Boss Level. The Boss Level is a final stage of a game that is a culmination of skills learned in 

gameplay. It is a naturalistic summative assessment, and can include both learning and progress 

mechanics (like CAs and Units). Gee notes that powerful embedded assessment occurs in “boss 

battles, which require players to integrate many of the separate skills they have picked up” 

throughout the game (2008, p. 23). Games are an ideal medium for this summative assessment, 
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he asserts, since they can provide just-in-time performance feedback with low cost of failure 

(Gee, 2005). By formalizing the Boss Level as an Assessment Mechanic in ADAGE, we 

encourage deliberate inclusion of summative assessment in game design, and provide 

corresponding telemetry API structures for implementation.  

Telemetry Framework 

The Assessment Mechanics, informed by game design and assessment research, create a 

conceptual framework for identifying interaction data. The next ADAGE step moves us from 

concept (AMs) to implementation (telemetry). The telemetry framework hinges on the AMs to 

create a schema of context-rich data tags for implementation in the game code. Interpretation of 

student interaction often hinges on the context of the learning environment (in this case, the 

designed gameworld). The telemetry schema addresses this need by seeding the AM interaction 

data with vital contextual information.  

 

Figure 12. ADAGE Assessment Mechanics and telemetry schema. 
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The telemetry schema has two layers: an action-feedback layer, and a Virtual Context 

layer. First, for each Assessment Mechanic, it identifies two sources of direct interaction: user 

action, and system feedback. It articulates the vital action-feedback loop (c.f. Salen & 

Zimmerman, 2008) that comprises interaction between the player and the game. The second 

layer, called the Virtual Context, attaches important contextual information to each action-

feedback event. The Virtual Context can include things like timestamp, map level, and screen x,y 

coordinates. These two layers work in tandem to provide context-rich telemetry data on AM-

based gameplay trajectories (Figure 12). 

Feature Engineering & Analysis Lenses 

ADAGE’s context-rich data make ideal building blocks for feature engineering. Features 

are essentially variables of interest in the data, which can range from simple click locations to 

complex measures like accuracy over time. The features constructed, in turn, can be used across 

a broad range of analysis techniques. Data lenses can include descriptive statistics, hypothesis-

driven applied statistics, and machine learning techniques. Methodologies for hypothesis testing 

(like ECD) can use ADAGE data as dependent variables, independent variables, and covariates 

for use in associative or predictive modeling. Lastly, ADAGE data lends itself to learning 

analytic techniques often used with big data sets.  

ADAGE: Application to Progenitor X  

This dissertation’s empirical exploration of ADAGE begins with its application to the 

GLS game Progenitor X. Progenitor is a puzzle game set in an apocalyptic world overrun by 

ravenous zombies, providing the player with the agency and motivation to become the sole 

regenerative biologist who can save the planet, one zombie at a time. The regenerative biology 
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content model is manifested in the main mission of the player: to cultivate and differentiate stem 

cells, assemble tissues and replace organs that have been contaminated with a zombie virus. 

Despite its supernatural storyline, Progenitor is designed to teach cutting-edge knowledge and 

processes in stem-cell science, and is rooted in serious collaboration with top regenerative 

medicine scientists at the Wisconsin Institute for Discovery (WID). Collaborators include Dr. 

Jamie Thomson, Director of Regenerative Medicine at the Morgridge Institute for Research 

(MIR); Dr. Rupa Shevde, Director of Outreach Experiences at MIR; and Dr. Gary Lyons, an 

esteemed UW professor of regenerative biology.  

Completing game play requires players to solve 15 cell, tissue and organ puzzle cycles 

within a series of eight sequenced “Objectives”. In early objectives, players encounter a cell 

cycle that involves a sequence of treatment and collection tools that transform pluripotent stem 

cells into particular cell types (Figure 13). Next, tissue cycles require players to layer 

successfully transformed cells into segments of tissue; in later game play, the organ cycle 

requires the assembly of tissue segments into organ shapes (Figure 13, last two graphics). While 

players learn the cell cycle first, subsequent play requires players to repeat cell-tissue, then cell-

cell-tissue cycles in order to move through the game. In the final level of the game (Objective 8), 

the organ–building phase functioned as a boss-level that required players to use all the skills 

learned in the cell and tissue cycle (e.g. an organ-cell-cell-tissue cycle sequence) to complete the 

game. Table 1 lays out the basic sequence of play. An average play-through of all the cycles in 

the game has taken middle school players an average of 25 minutes (with 40 minutes defining an 

upper limit of +2 ).  
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Figure 13. Progenitor X Cell, Tissue, and Organ Cycles 

Table 1 

Structure of Progenitor X Puzzle Gameplay 

Cycle Type 
Objective 

Number 
Objective Name 

cell 0 (cell tutorial) 

cell 1 "collect 10 red mesoderm cells" 

cell 2 "collect 10 blue ectoderm cells" 

cell 2 "collect 10 blue ectoderm cells" 

tissue 3 "create a tissue" 

tissue 4 "create a second tissue" 

cell 5 "create green endoderm cells & build the final tissue" 

cell 5 "create green endoderm cells & build the final tissue" 

tissue 5 "create green endoderm cells & build the final tissue" 

organ 6 "locate necrotic zombie tissue" 

tissue 7 "create a replacement heart tissue" 

organ 8 "find and replicate remaining Necrotic Zombie Tissue" 

cell  8 "find and replicate remaining Necrotic Zombie Tissue" 

cell  8 "find and replicate remaining Necrotic Zombie Tissue" 

tissue 8 "find and replicate remaining Necrotic Zombie Tissue" 

 

Progenitor Data Collection and Telemetry  

 Data collection and early analysis of Progenitor telemetry revealed interesting data 

features and opened up new lines of research inquiry. Originally, GLS invited 110 middle school 

students to play the game as a part of a summer enrichment program at the Wisconsin Institute 

for Discovery in 2012. As part of the IRB-approved protocol, students completed a pre- and 
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post- content assessment, which included a series of questions about the stem-cell content model 

based on consultation with UW-Madison regenerative biologists. This pre-post protocol 

incorporated interview, multiple choice, and open-ended questions, and resulted from 

collaboration between WID content experts (including Dr. Gary Lyons and Daryl Nelson), 

secondary school science teachers, psychometricians, and game-based assessment researchers. 

(See Appendix for more detail.) As part of the process, we also collected demographic 

information on the 110 players who completed Progenitor X to enable connection of player 

background with in-game learning trajectories.  

 Players’ improvement on this biology assessment (from the pre- to the post- test) is used 

as a learning measure in this dissertation. Percent improvement (delta) from pre- to post- was 

used to sort players into highest and lowest learning groups. The pre- and post- test data were 

ideally distributed for this measurement (Figure 14), with pre- scores averaging 46% (with 97% 

of players scoring below the maximum). Post- scores averaged 67%, and had a graduated 

increase in score (right, Figure 14), with only 6% of players maxing out scale at 100%. The 

upper quartile of learners consisted of players with the highest percent improvement in score 

(n=33), while the lower quartile of learners consisted of players with the lowest improvement 

(n=41). 

 

Figure 14. Histograms of scores on Progenitor pre- and post- biology assessment. 
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In triangulation with this pre-post protocol, telemetry feature engineering started early on 

in the ADAGE process with Progenitor X, initially in investigation of possible player paths in 

the gamespace. Examination started with mapping performance outcomes for each cycle in 

Progenitor X. When overall failure (as one broad umbrella) demonstrated no relationship to 

learning in pilot research (Owen et al., 2012), nuances of failure became the next natural 

exploration. What resulted was a differentiation of ways to succeed and fail, and the derivation 

of a new data key feature: “far failure” (Owen et al., 2013). 

Far failure, essentially, was a kind of failure that occurred as a result of student 

performing actions directly contrary to game cues. An example of this would be loading the 

wrong cell onto the screen, or collecting the wrong cell at the end of a cycle. Near failure, on the 

other hand, occurred when players followed all instructional cues, but failed while operating 

within the suggested parameters of the task (i.e. running out of health while working to generate 

the right cells). The upcoming analysis, Chapter Four, delves into these nuances of Progenitor 

performance in detail. 

Success, far failure, and near failure became central performance data features for 

Progenitor X, along with learning outcomes from the pre-/post-, and cycle-based ADAGE virtual 

context data. Exploring these data in connection with one another can provide insights into in-

game performance as it relates to learning, as the analyses below examine. Each of the following 

analyses described uses the data from this section (n=110), collected with the methods detailed 

above, and based in ADAGE for the game Progenitor X. 
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Chapter Four: 

Success and Shades of Failure – Feature Engineering and Applied Statistics 

Introduction 

Exploring player performance within the game’s core biology laboratory mechanics, this 

chapter investigates the intersection between the microworld elements of game as content 

delivery (Lens B, Figure 1) and player choice (Lens C). In doing so, this analysis section focuses 

on ADAGE-based, iterative feature engineering and applied statistics around the concepts of far 

failure and success in Progenitor X. It explores the research question: How are in-game success 

and kinds of failure related to learning outcomes? A vital part of analysis for big data, feature 

selection processes (e.g. Guyon & Elisseeff, 2003; Romero et al., 2011) emphasize iteration for 

this reason – early research can inform more nuanced, ongoing feature engineering (e.g. Fogarty, 

2006; Arnold, Nallapati, & Cohen, 2008). Accordingly, this analysis builds on the existing 

research to systematically engineer more sequentially nuanced, refined indices of failure and 

success. These indices align with three analysis strategies, which use descriptive and 

nonparametric statistics to newly enrich understanding of success and failure in detailed 

gameplay progression and relationship to learning outcomes. Thus, the research question for this 

analysis is: how do fine-grained patterns in performance data connect to learning outcomes?  

Overall, the feature engineering and analysis sections are aligned with the research 

question in theme. Using six computational lenses for feature generation, these new telemetry 

indices provide greater sequential resolution, more sophisticated cross-group comparative 

features, and more nuanced performance differentiation (down to each cycle level). These align 

with the goals for analysis, which include mapping previously unexplored patterns over time, 
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differences in these patterns between learning groups, and relationships of in-game performance 

to learning outcomes. To explore these goals, three analysis strategies were employed to help 

visualize and quantify important trends in the newly enriched data. Based on these analyses, 

results yielded three trends of performance findings connected with learning: overall game 

progression and success, tissue failure in mid-game synthesis levels, and the changing meaning 

of cell failure (specifically in early vs. late gameplay levels).  

The study’s feature engineering process is outlined first, including the definition of 

Progenitor performance features, computational lenses, and final output categories. The second 

part of the chapter discusses analyses, starting with methods, then followed by results along the 

three main trends mentioned above. 

Feature Engineering 

 Overview 

 Iterative feature engineering with ADAGE starts with the basic telemetry schema (ADA 

Base Tags) for raw categories of game output. This comes first in individual student logs, then 

can be organized into more aggregate multi-student data. Third, new indices can then be made, 

informed by the research question. In this section, this three-step process will be described, and 

then applied to this study’s specific goals. 

After data collection, step one of the ADAGE-based feature engineering process is 

producing individual logs with all base data tags intact. Individual student data sheets have one 

user action per line, whose columns would give detail about the meaning of the action. (Student 

logs have had up to 15,000 event lines each.) For example, one line of one student’s data from a 

GLS game would contain the following kinds of information: 
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Table 2 

ADAGE Individual Log - Base Data Types Example  

Time Kind of Action 
Name of Tool 

Used 

Area on Screen 

Clicked 

Current 

Game Level 

6/2/11 3:42:01 

PM 
UI Tool Use Move Tool X,Y: (39.0, 43.5) Cell Cycle 

 

 

Figure 15. Snapshot of one ADAGE-exported individual player log (about 3% of full log 

shown). 

 

Individual logs (Figure 15) can be very informative when looking at one student’s 

gameflow, but it is also useful to have aggregated totals on specific features for meta-analysis. 

Thus, step two of ADAGE feature engineering is aggregating individual student information into 

one multiple-player data document. At GLS, at this point, one might harass the overworked lead 

data engineer with a list of proposed features for a telemetry totals sheet. In the totals sheet 

(Figure 16), there is a standardized series of column headings, and one student per line (instead 

of just one event). This format can accommodate many subjects’ data in a standardized, analysis-

friendly way. However, even dictating these totals headings require a first round of feature 

selection. This will always depend on the research lens. As these 2012 Progenitor headings show 

(Figure 16), early research focus was on basic success, failure, and game completion.  
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Figure 16. Example of telemetry totals csv. 

After basic multi-player data is aggregated, a third step is creating more sophisticated 

data indices, called feature engineering. (This often occurs after an intermediary round of 

exploratory analysis on the step two data.) Like step two, the data focus will depend on the 

research question. Any of the base data types (see Figure 15 and Table 2) can be combined to 

engineer a new data feature. As seen in a use-case functionality mockup of the ADAGE analytic 

interface (Figure 17), a range of mathematical operations can be applied to two base data types to 

create a new telemetry feature. For example, one can take total time and divide it by the number 

of objectives completed; this yields a new feature of time per objective completed.  

 

Figure 17. ADAGE analytic interface: functionality mockup. 
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Progenitor X: Feature Process and Computational Lenses 

Specifically for Progenitor X, a main study goal was to systematically engineer fine-grained, 

failure-specific features which take into account cycle type, specific objectives, sequential 

patterns, isomorphic play cycles and ratio-based performance. Using the steps outlined above, 

this round of feature engineering identified base data types of interest for an aggregation of 

multi-student base data (steps 1+2), and then engineered new indices based on these data with a 

finite series of mathematical operations (step 3). 

Steps one and two required identification of base data types of interest for both individual 

and aggregate logs. The core features of interest were several types of failure (far failure, near 

failure, and total failure) and success – all parsed by individual cycle, the core unit of the game. 

As an additional layer, each of these data were also identified by cycle type and objective 

number. A description of each kind of failure is given in detail in the “Definitions” section 

following Table 3. 

Third came combining these base data types, using mathematical operations, to create new 

Progenitor data features. Delving deeper into the significant constructs of far failure and success, 

the new telemetry indices explored greater context-based failure differentiation, more 

sophisticated (compound) indices for player comparison, and increased temporal resolution. 

These became “data themes” in alignment with analysis goals. To create new features along 

these themes, six computational lenses were used. The table below illustrates I) computational 

processes to be used in creating the new features (plugging in any one or two base data types), II) 

examples of resulting indices, and III) the corresponding data theme.  
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Table 3 

Feature Engineering Computational Lenses: Operation, Example, and Theme  

I) Computational Lenses II) Example Features III) Data Theme (A, B, C) 

 Totals 

(overall, for each objective,  

 and for each cycle type) 

- total objective 1 far failure 

- total tissue near failure 

- total objective 3 successes 

- total failures (whole game) 

A) Context-specific 

performance data 

 Ratios 

(proportions of 

 performance** features) 

- near failures : far failures 

- successes: failures 

- far failures: total failures 

B) Compound indices for 

comparison 

 Averages 

(per objective & per cycle 

 type) 

- average far failure per 

objective completed 

- average success per objective 

added 

B) Compound indices for 

comparison 

 Performance data for 

last objective played 

(customized per student) 

- successes in last played 

objective 

- near failures in last played 

objective 

B) Compound indices for 

comparison 

 Time series 

(taken as a sequence of data 

points, by objective & by 

cycle type) 

- list of near failures: 

objectives 1, 2, and 3 

- list of successes: objectives 

6, 7, & 8 

- list of far failure in tutorial 

levels only: objectives 1, 2, 

and 4 

C) Temporal sequence data 

 Isomorphic sequence 

(for identical cycles only) 

 

- identical cell cycle successes 

(from objectives 2, 5, and 8) 

- identical tissue cycle failures 

(from objectives 3, 4, and 7) 

C) Temporal sequence data 

Note. **“Performance” data refers to in-game success, near failure, far failure, and total failure 
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 The totals, ratios, averages, last objective played, time series, and isomorphic sequence 

(Table 3) are computational lenses applicable to each of the base performance data types 

(success, far failure, near failure, and total failure). These provided data along three themes: 

context-specific totals (theme A), compound indices that are standardized for comparison 

between groups (theme B), and temporal sequence data (theme C). To clarify these data, 

definitions of the base performance types of success and shades of failure follow. 

“Base Performance” Feature Definitions 

 For practical engineering of these features, “nuanced performance” was defined with one 

success type and three base failure categories: success, near failure, far failure, and total failure. 

Success was defined as the collection of the correct biological material at the end of a cycle. 

Near failure and far failure were definitions of failures which resulted from a detailed mapping 

of potential play actions and outcomes in a given cycle of play. These types of failure were 

distinguished after overall failure (as one broad umbrella) demonstrated no relationship to 

learning in pilot research (Owen et al., 2012); thus, nuances of failure became the next natural 

exploration. (The discussion and conclusion chapter dives more deeply into theories of play, 

failure, and learning in consideration of analysis results.) 

To begin this examination, all outcomes of the start-treat-collect cycles of the game were 

mapped. The Progenitor X cycle involves populating an initial grid with the right kinds of cells 

(start), transforming those cells into a target cell/tissue (treat), and collecting the correct cells for 

the next cycle of the game. The cycles can unfold in several ways. First, players are guided to 

populate the grid with the right kind of cell (green check, Figure 18). After this population, the 

cycle can end in three results: collecting the right cell (success), collecting the wrong cell 
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(failure), or over-manipulating the cells so they die (the Ph of the culture becomes toxic, and the 

cycle results in failure). 

 

 

Figure 18. Progenitor gamespace - correct initial grid population. 

 

Second, a player could have also initially populated the grid with the wrong cell (red X, 

Figure 19). In this case, there are two options for ending the cycle: collecting the wrong cell 

(fail), or overmanipulating the cells until the Ph levels (health) becomes toxic (fail). 

 

 

Figure 19. Progenitor gamespace - incorrect AND correct initial grid population. 
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With reflection on the possible outcomes of play cycles, distinction of the varying 

degrees of player compliance with instructional cues (e.g. flashing buttons & in-game narration) 

guided operational definitions of different kinds of failure. The concepts of “near” and “far 

failure” were then developed (Figure 20) to describe failed play in accordance with the suggested 

play path (near) and at odds with the suggested path (far). Three possible player outcomes for 

Progenitor X cycles were grouped as 1) correct collection (successful); 2) correct set-up but 

health runs out (“near failure”); and 3) incorrect setup and/or incorrect collection (“far failure”). 

 

Figure 20. “Far failure” in the Progenitor gamespace. 

 Thus, three nuanced performance features were defined: success, near failure, and far 

failure. For the purposes of this investigation, it should be noted that these “success” and 

“failure” labels are simply operational definitions of actions in the gamespace. All feature 

definitions here are made according to the original learning game design, which complied with 

content experts’ vision of an expert pathway through the game’s procedural laboratory 

mechanics. This was reflected in the model-scaffold-fade (Collins, Brown & Newman, 1990) 
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structure of cell and tissue play progression, which assumed success through this sequence to be 

an optimal pathway. This “expert pathway” definition is solely used in this study for clearly 

labeling data features of success and failure – this research, however, does not assume that this 

intended play pathway is the optimal one. It merely uses these embedded criteria of game 

performance to label data features.  

Progenitor X Data Feature Output 

In using the computational lenses (Table 3) of feature distillation, the first step was to 

determine the basic “totals” information. Each of these four base performance types (success, far 

failure, near failure, and total failure) were aggregated across whole game session. Then, each of 

these performance labels were also identified based on the base cycle type (leveraging ADAGE 

“virtual context”). Table 4 shows the resultant performance categories. In tissue cycles, the only 

way to fail is through a grid destroy (near failure), so far failure is not an option. Also, organ 

cycles were extremely simple in the game, and were more for narrative sake than for 

demonstrating a skill. Since they were essentially impossible to fail, and only one interaction 

(success) was required per cycle, organ cycles were not included here as relevant for nuanced 

failure information. Thus, the next kind of “totals” amassed were for cell success, cell near 

failure, cell far failure, tissue success, and tissue near failure (Table 4).  

Table 4 

Data Feature Labels – Performance Types Merged with Cycle Types 

 Success Near failure Far failure 

Cell Cell success Cell near failure Cell far failure 

Tissue Tissue success Tissue (near) failure  
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As a last step in gathering totals for each feature performance type, the Table 4 categories 

also could be aggregated by objective. This was important in giving context-specific 

performance information. Table 4 below shows cycle-type performance indices mapped to each 

objective. Objective 6 is omitted from the chart below, because it was the only organ-exclusive 

level, and existed for narrative cohesion rather than skill demonstration. Only cycle types present 

for each objective were identified; for example, Objective 1 only contained cell cycles, so tissue 

performance was not relevant. Therefore, this next “totals” category is represented in Table 5, 

listing each kind of cycle performance per objective (Objective 1 cell success, Objective 1 cell 

near failure, Objective 1 cell far failure, Objective 2 cell success, etc.). 

Table 5 

Data Feature Labels – Cycle-Based Performance for Each Objective 

 Cell success 
Cell near 

failure 

Cell far 

failure 

Tissue 

success 

Tissue 

(near) 

failure 

Objective 1      

Objective 2      

Objective 3    
  

Objective 4    
  

Objective 5      

Objective 7      

Objective 8      

 

For the final feature output, success, near failure, and far failure were assembled on each 

level discussed: aggregate game totals, aggregate game totals by cycle type (Table 4), objective-

specific totals, and objective-specific totals by cycle type (Table 5). This constituted the “totals” 

category of computational lens in Table 3. These totals then became a basis for application with 
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all other computational lenses in the chart: averages, ratios, last objective played, and time series 

(Table 3).  

Ultimately, based on the computational lenses presented (Table 3), 10 core categories of 

features were created (Figure 21). Each feature was taken for success and nuanced failure types 

for each Progenitor objective, as well as for core play information like time elapsed, number of 

cycles played, number of objectives completed, and game completion (see Table 3 for examples 

of each). An average of 19 features per color-coded category type (Figure 21) was generated, 

creating a feature count of 194. Taken per student (n=110), this came to an aggregate matrix of 

21,340 telemetry data cells (Figure 22). These final indices resulting from the feature 

engineering of this chapter served as a foundation for the entire dissertation arc of analyses.  

 

Figure 21. Progenitor feature distillation categories by color-coded label. 
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Figure 22. Progenitor full feature distillation per color-coded feature category (partial view) 

 

New Progenitor Feature Analysis: Methods and Results 

These new measures of performance were designed to help give more nuanced insight 

into play patterns connected with learning. By creating more points of sequential comparison 

between learners, these new indices of success, near failure, far failure, and total failure afforded 

insight more detailed divergence and convergence in learner play patterns. The three data themes 

in Table 3 – “A” (context-specific performance), “B” (compound indices), and “C” (temporal 

sequence) – connected directly with analysis goals of visualizing performance trajectories, 

measuring association and comparing features in learner groups, and understanding performance 

across identical play cycles. 

To achieve these analysis goals, three statistical analysis strategies were used. For the 

first analysis goal of visualizing performance trajectories, descriptive statistics were employed to 

visualize new feature trends (success and failure over time relative to learning) through basic 

scatterplots, comparative graphs, and time-series charts. Features from data theme “A” and “C”, 
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were visually mapped to show success and shades of failure in different sequential objectives. 

These were partitioned by high- and low- achieving learner groups for contrast, and took into 

account information like game completion.  

The second and third analysis strategies were comparison and association of the new data 

features, though nonparametric correlation (Spearman’s Rho) and mean contrasts (ranked mean 

Wilcoxon tests). Multiple comparisons were accounted for through controlling of False 

Discovery Rates (Storey, 2002); the p-values shown here were evaluated for significance using 

the QVALUE statistical package in R (Dabney & Storey, 2004). All adjusted p-values are thus 

called q-values, or “q”, in the results below. These statistics worked largely with data themes 

“A” and “B”, connecting new compound indices and context-specific performance features with 

learning outcomes. Used in Wilcoxon contrasts, the basis for quartile learning groups (i.e. data 

collection methods and full player pool) are described in greater detail in Chapter Three. 

Essentially, based on a pre-post assessment on regenerative biology (developed with content 

experts), they are made up of two groups: Progenitor players with the greatest positive change in 

score, and players with the lowest change in score. The upper quartile consists of 33 players, and 

the lower quartile consists of 41 players. “UQ” is an abbreviation used throughout the 

dissertation for the upper quartile of learners, and “LQ” stands for lower quartile of learners. 

These only refer to learner groups (as determined by pre-post gains) – no other kinds of quartile 

groups are discussed in this dissertation. For all correlation and non-quartile analyses in this 

chapter, N=110. 

The implementation of these analyses had several possibilities for sequence; one order 

flow of analyses is represented in Figure 23, connected with the corresponding data themes. This 

flow started with time series graphs along data theme C (upper left, Figure 23). The 
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representation of these data in descriptive sequential line graphs launched deeper investigation of 

sequential trends, and inform the use of bar graphs, scatterplots, and two-sample Wilcoxon tests 

to contrast learner groups (data themes A & B). To corroborate these quartile-based inferences, 

Spearman’s correlation was conducted on relevant features in relationship to learning outcomes 

(also A & B). With any data applicable for comparing identical, repeated cycles (e.g. cell success 

in objectives 3, 5, and 8), deviation between the cycles was visually mapped (Figure 23). 

 

Figure 23. A sample flow sequence of analyses, beginning with time series graphs. 

 

Discussion of Analysis Results 

 When analyzed with this methods schema, results yielded findings along three main 

trends of play. Trend One described overall play progress metrics and success in relationship to 

learning, while Trends Two and Three broke open the construct of “monolithic” failure into 

meaningful subtypes whose relationship to learning evolved with the game context. 
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Trend One: Game Progress Connected with Learning 

The first trend of findings characterized forward movement in the game, including 

overall success, time, and progress patterns. Broadly, objectives completed and success in the 

game were connected with learning gains. A correlation between objectives completed and 

learning gains (Table 6) revealed a positive relationship (r=.272; q=.018), with a significant 

difference (q=.044) between the quartiles in number of objectives completed (Figure 20). 

Because it is possible to quit and restart the game, number of “objectives added” was considered 

in addition to objectives completed, as was the objective number of the “last played objective”. 

Both of these progress measures also demonstrated positive correlation with learning gains 

(Table 6), as well as significant differences between the quartiles (Table 7). Time elapsed, 

notably, was not correlated with learning gains nor showed any significant difference between 

the quartiles (Table 7). It seems the upper quartile was making comparatively efficient progress 

in the same time frame as the lower. Success as well as game progression mattered; the number 

of successful cycles in gameplay was positively correlated with learning outcomes (r=.216). 

Boss level success was also measured (since it is a clear summative assessment level in the 

ADAGE infrastructure), and also found to be positively correlated with learning (r=.223; 

q=.033). Thus, game success (overall and in the boss level) and overall progress (e.g. number of 

objectives completed) were positively associated with learning. 
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Table 6 

Game Progress and Success in Progenitor X: Correlation 

Trend Feature Correlation (vs. learning outcomes) 

Progression Objectives added r=.272; q=.018 

Objectives completed r=.269; q=.018 

Last played objective r=.257; q=.018 

Success Total success r=.221; q=.033 

Boss level success r=.223; q=.033 

 

Table 7 

Game Progress and Success in Progenitor X: Contrast Between Quartiles 

Feature Upper Learner 

Quartile Average 

(n=33) 

Lower Learner 

Quartile Average 

(n=41) 

Significance 

Objectives Added 7.0 6.0 q=.044 

Objectives Completed 6.4 5.3 q=.044 

Total Seconds Played 1453 1428 none (q=.379) 
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Figure 24. Progenitor average objective progress for each quartile. 

 

Final Trends: Breaking the Monolith of Failure 

 The next results trends, branching into two currents of findings, supports two inferences 

about failure in gameplay: first, that differentiating kinds failure is important; and second, the 

relationship of each kind to learning changes with gameplay context. In short, kinds of failure – 

and, in turn, the changing context of failure types – matter for learning impact. A primary finding 

opened deep insight into this idea: failure, taken as a overall game total, had no statistical 

significance (q=.359) in connection with learning gains (either in correlation or in upper/lower 

quartile contrast). Thus, “monolithic” failure had no relationship with learning in Progenitor X 

play. This opened deeper investigation into kinds of failure and learning in the gamespace. 

Far failure and near failure were two kinds of failure that could occur in the Progenitor 

cell cycles. In tissue stages of the game, it was also possible to fail through running out of health 

(also termed a “grid destroy”, because the grid of the in-game petri dish implodes when the cells 

run out of health and die). Tissue failure was thus another kind of failure that was distinguished 
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in these features, along with cell far failure and near failure. Looking at each kind of failure 

during each chunk of gameplay uncovered two main failure trends. 

Trend Two: Tissue and Mid-level Failure 

 Breaking failure down into tissue failure provided insight into play patterns. The tissue 

mechanic, a Tetris-like shape manipulation, was different from the cell skill and represented an 

important step in the game’s regenerative medicine procedures. This was an important mechanic 

both for keeping the player engaged in play well through mid-game, as well as for exposure to 

biology content (in illustrating more of an organ regeneration process). Therefore, understanding 

student performance in tissue cycles gives insight into sustaining play progression and 

optimizing experience with the academic content.  

In particular, tissue cycles in mid-game levels (like Objective 5 and 7) turned out to be 

critical points for both learning and game completion. Objective 5 was the first level presenting 

advanced cell and tissue cycles together (instructional cues having been faded out in earlier 

levels). Tissue failure was connected with the lower learning group; in Objective 5, it was twice 

as high for the lower quartile of learners than it was for the upper quartile (Figure 26). Tissue 

mastery in Objective 5 was correlated positively with game completion (r=.247; q=.030), and 

positively associated with learning in Objective 7 ( r=.241; q=.028). (Interestingly, tissue failure 

in Objective 7 had no relationship to learning.) Tissue performance in this mid-level especially 

influenced game quit points, as the histogram below shows (Figure 25). Displaying last objective 

played, the chart shows that most students either finished the game (Objective 8), or dropped out 

in Objective 5 – the compound cell-cell-tissue level. Interestingly, just taking chunked data by 

category in each objective, it’s clear that tissue failure in Objective 5 sets the two learning 

quartiles apart (Figure 26). Identified with this baseline failure data, this phenomena of tissue 
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attrition opens up more nuanced questions about types of failure in this critical middle level, 

explored further in the detailed sequential investigation of Chapter Five’s Markov modeling.  

 

Figure 25. Histogram of transition from cell to tissue in mid was critical drop-off point. 

 

Figure 26. Tissue failures over time with the upper and lower quartile. 
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Trend Three: Far Failure, Learning, and Evolution Throughout Play 

In addition to tissue failure, far failure (specific to cell cycles) mattered for learning as 

well. In overall play patterns, far failure proved to be a construct that showed significance for 

learning and game progress. Generally speaking, far failure had negative connection with 

learning and play progression, with finished players only experiencing 37% far failure (out of 

total failure) versus non-finished players with 63% (Figure 27). Another representation of far 

failure’s relationship with play and learning can be seen in Figure 28, which shows a similar 

trend for both non-finished and lower learning quartile players. 

 

Figure 27. Far failure and game progress. 

 

Figure 28. Far failure per objective, averaged for low learning quartile and nonfinished players. 
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Looking at a more nuanced narrative, however, far failure had critical variations in 

relationship to learning depending on the specific game level. Early game far failures appeared to 

negatively impact learning and game progress; astoundingly, this relationship reversed 

completely by late game levels, where far failure actually showed a positive relationship to 

learning. 

Table 8 

Far Failure Trends in Progenitor X: Contrast Between Quartiles 

Trend Feature Upper Learner 

Quartile Average 

(n=33) 

Lower Learner 

Quartile Average 

(n=41) 

Significance 

Early Game Early far  

failure (Obj 1,2,5) 

0.1 0.9 q=.044 

Late Game Objective 8 far 

failure 

0.3 0.0 q=.044 

 

Table 9 

Late Game Far Failure in Progenitor X: Correlation 

Trend Feature Correlation (vs. learning outcomes) 

Late Game Objective 8 far failure r=.217; q=.035 
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Evidence of this trend emerged with visualization, correlation, and quartile contrast. In 

early levels of the game, far failure was negatively connected with learning (Table 8). This trend 

throughout objectives show that the upper and lower quartile differed significantly (q=.044) in 

early game far failure averages. The lower group of learners had nearly ten times the far failure 

(on average) than the UQ in early game (Figure 8). The descriptive trend in Figure 29 also shows 

that far failure was higher for the lower quartile, particularly in Objective 1. 

 

Figure 29. Far failure per objective, averaged for upper and lower quartile learners. 

Looking at far failure’s role beyond this point, however, paints a very different picture. 

Interestingly, the lower quartile far failure steadily decreases as play moves forward, but upper 

quartile far failure actually increases in frequency from mid to late game (Figure 30). Thus, far 

failure in later game objectives actually becomes characteristic of higher learning gains. 

Correlation supports this pattern (Table 9), showing that far failure in Objective 8 actually shows 

a positive relationship to learning (r=.217; q=.035), as opposed to the negative relationship in 

early game (Table 8). This movement implies that the meaning of far failure shifts from early 

training levels to later levels of mastery – and possible experimentation or strategy.  
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 Figure 30. The ratio of (far failure / total failure) in each objective, calculated for lower 

and upper quartile players. 

Summary and Conclusions 

 The findings of this chapter – based in differentiated failure in specific contexts – shows 

evolving trends of early, mid, and late game performance in relationship to learning. These 

trends shed light on this study’s driving research question on the relationship between in-game 

success and kinds of failure with learning outcomes. While overall success and game progression 

were positively related to learning, failure trends were much more nuanced. First, tissue failure 

in critical levels of scaffold-and-fade during mid-game proved critical in sustaining learning. 

Secondly, cell-based far failure showed interesting significance in early gameplay (negative 

relationship to learning), yet a positive relationship with learning later on during the boss level. 

Thus, in addition to providing a solid base of systematically engineered features for the entire 

dissertation analysis arc, this chapter sets the groundwork for the upcoming nuanced inquiry into 

fine-grained sequential patterns and far failure transgressive play behaviors of the following two 

analyses. These analyses build on these base findings to explore further the evolving role of 

kinds of failure in transgressive play and learning throughout the game. 
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Chapter Five:  

Markov Modeling Of Learner Progression Through the Progenitor Gamespace 

Introduction and Framework 

In the overarching exploration of player learning through the lenses of game experience, 

this dissertation’s second analysis studies learner choices (Lens C, Figure 1) in navigation 

through the game as a narrative progression (Lens A). Game design experts Jesse Schell and 

Matt LeBlanc identify game narrative as a fundamental dynamic of engaging game experience 

(Schell, 2008; Hunicke, LeBlanc, & Zubek, 2004). The term “narrative” here is not defined as 

”the telling of a prescribed, linear story”, but more generally a “dramatic unfolding of a series of 

events” that is meant to support player roles, goals and agency (Schell, 2008, p. 109; Norton, 

2008; Squire, 2011). In investigating sequential learner decisions around the designed milestones 

of play progression, this study seeks to understand patterns of forward movement, stagnation, 

and attrition within pivotal segments of the game as a cohesive arc of play. Specifically, its 

research question asks: how does organic play progression differ between groups of learners?  

 While Chapter Four’s analysis looked at player actions chunked by types of cycles, and 

counted in terms of totals within each chunk, this study structures the interaction data differently. 

In order to effectively study real-time play progression, player actions needed to be itemized in 

real-time sequence at the cycle level. For example, if a player named Troy was to finish the 

game, we would look at every core cycle Troy completed from beginning to end -- with the 

specific lens of sequence from first cycle to last cycle (not aggregate grouping by cycle type or 

objective) to order the data. Troy’s data for this analysis would, instead of a list of totals, look 

like an ordered sequence of events: 1) cell cycle, 2) cell cycle, 3) tissue cycle, 4) cell cycle, 5) 
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organ cycle, 6) cell cycle…and so on. This is wonderful on an individual student level – we 

could visualize a single player’s game progress with this information – but one challenge of this 

research lens was to find a method that was able to simply and clearly describe movement 

through the space for multiple players simultaneously. One such method, Markov chain 

modeling, can create visualizations of user movements from one cycle to the next for multiple 

players at once (c.f. Rabiner, 1989; Clark et al., 2012). For this reason, Markov modeling was the 

method of choice for investigating this research question in the Progenitor X gamespace. To 

understand play progression in relationship to learning outcomes, the research design builds and 

compares two Markov models: one for the students with the highest biology learning gains8 

(upper quartile), and one for students with the least improvement (lower quartile).  

 Made possible by ADAGE data, Markov modeling works in this study by taking different 

points of gameplay progression and identifying them as states. In this case, the Markov states are 

anchoring points of progress that help identify where the player was in the context of game 

completion. Example states in Progenitor are Objective 1 cell cycle, Objective 2 cell cycle, 

Objective 3 tissue cycle, etc. A Markov model then shows the probability that players will move 

from one state to the next. For example, a model might show a 75% probability that students 

would start in Objective 1 cell cycle, and move directly to an Objective 2 cell cycle. It might also 

say there is a 20% probability that students starting from that same Objective 1 cycle would end 

up repeating it for their next move. Through this temporal probability modeling, Markov chains 

produce a whole matrix of probabilities of moving from one given state to the other (a transition 

matrix). Using first-order Markov modeling in this study provided detailed probabilities of each 

movement in the gamespace from one state to another. Thus, this analysis deemed to understand 

play progression by examining probabilities of movement from one state to the next, and 

                                                           
8
 As measured by pre-post biology survey data – see Chapter 3 for details. 
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contrasting these transition matrix probabilities between the two learner groups. Examining these 

differences carefully enabled the identification of nuanced sequential play trajectories most 

characteristic of learning.  

Overall, this Markov analysis creates new, nuanced telemetry indices for consideration in 

relationship to learning, reveals organic findings consistent with the themes of Chapter Four, and 

enriches understanding of these trends for final investigation in the third and last analysis. To be 

clear, the Markov model is a descriptive analysis which allows indices from Analysis I to be 

visualized in higher temporal resolution. The following pages of this chapter will discuss Markov 

findings along three main trends, deepening insight into three dissertation-wide play themes: 

early game tutorial attention, mid-game scaffold-and-fade performance, and endgame strategic 

navigation. 

Methods and Output 

To most effectively mine the ADAGE data for contrasts between the learner groups, three 

sets of models were built with three different levels of resolution. Each first-order Markov model 

was built using the “Narkov” algorithm (Berland, 2012) in NetLogo, a multi-agent modeling 

environment (Wilensky, 1999).  

Each set of models was built based on the data from two groups: an upper quartile and a 

lower quartile of learners. This designation is based on a pre-post assessment on regenerative 

biology (developed with content experts, and described in greater detail in the 

ADAGE/Progenitor methods Chapter Three). Relative to this performance, the quartiles are 

made up of two groups: Progenitor players with the greatest positive change in score, and 

players with the lowest change in score. The upper quartile consists of 33 players, and the lower 
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quartile consists of 41 players. “UQ” is an abbreviation used throughout the dissertation for the 

upper quartile of learners, and “LQ” stands for lower quartile of learners. These only refer to 

learner groups (as determined by pre-post gains) – no other kinds of quartile groups are 

discussed in this dissertation. For all correlation and non-quartile analyses in this chapter, 

N=110.  

Markov Model Set One: Base Resolution 

The first set of Markov models were built with base progression data, creating a simple 

set of game states which designated progress through each objective. The cycle was chosen to 

represent this progress, because it is the smallest consistent unit of Progenitor gameplay. To 

create these states, each cycle type (cell, tissue, or organ) was listed in order of occurrence and 

corresponding objective (Figure 31). This information was then synthesized into simplified 

Markov labels for each cycle (right column, Figure 31). These simple features become the 

“states” for the Markov model (i.e. possible positions in the gamespace). From a given state (e.g. 

obj1_cell), a player could make one of three moves: repeat the cycle, move on to the next level 

cycle, or quit the game. The Markov model, then, maps the probability of each group in 

repeating, moving forward, or quitting immediately after a given cycle.  
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 Figure 31. Detailed cycle sequence & simplified conversion to Markov state labels.  

 

In this first model set, two Markov chains were built in NetLogo. The first took all 

sequential cycle activity of the upper quartile of students and built a probabilistic model of play 

progression. (The upper quartile and lower quartile groups are often referred to here as “UQ” and 

“LQ,” respectively. It should also be noted that all players were given generous time to finish at 

60 minutes per session; 25 minutes was the average playthough duration, with 40 minutes 

defining an upper limit of +2 .)  

When the data for each quartile were put into the Narkov algorithm in NetLogo, two 

visual maps of transitions to and from each state were generated. Each shows a clear trajectory of 

play characterizing each group, shown side by side below. (Specific Markov results are 

visualized in greater detail in the findings section of this chapter.) 
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Figure 32. Base Markov model of the upper quartile (left) and the lower quartile (right) of 

learners. 

Markov Model Set Two: Moderate Resolution 

 The first pair of Markov models gave clear mapping of play trajectory, with simple 

demarcation of repetition, progression, or quitting. With cycle repetition in particular, however, 

there are several different reasons players may repeat. Only in certain cases does it mean failure 

and re-trying; in particular objectives, players can move freely between cell, tissue, and organ 

cycles and repeat successful cell cycles as many times as they wish before choosing to move on. 

In order to better understand player choices during cycle repetition, then, the data resolution was 

intensified to include success and failure at the individual cycle level.  

 The second set of Markov models reflects this increased resolution, intended to give 

deeper insight into the simple, powerful results of the first model. The data for this moderate-

level model takes state labels for each objective, just as the first models did, but this time 

incorporates success and kinds of failure for each cycle. For deep definitions of failure types, 
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please refer to Chapter Four, where the base features for analysis are described in detail. A 

cursory set of definitions include: 

 “far failure” as the kind of failure that happens when the player is acting in direct 

opposition to instructional cues,  

 “near failure” as a “softer” failure (see Figure 20) in which the player has started 

off a cycle correctly but has simply run out of health, and  

 “tissue failure” as failure during a tissue cycle (there is only one way to fail in 

this case).  

In this second, more detailed Markov, rather than just denoting objective number, the 

cycle labels include performance data. For example, if a player successfully completed a cycle in 

Objective 1, the label might be “objective 1 success”; if they experienced far failure, then the 

label would be “objective 1 far failure”; if near failure, then the cycle would be identified as 

“objective 1 near failure”. (Each of these is abbreviated in the actual model labels, shown 

below.) The states for this model start with an objective number, and combine it with every 

performance outcome possible for that objective9. Possible outcomes for cycles include: success, 

near failure, far failure, tissue failure, and failure via unfinished cycle (e.g. quit fail). The table 

below shows all combinations of information into state labels.  

 

 

  

                                                           
9
 As detailed in Chapter Three, some objectives only have one kind of cycle available, and thus only include labels for the 

appropriate failure type. “Far failure” and “near failure” are specific to cell cycles, and “tissue failure” is specific to tissue cycles; 

Objectives 0, 1, and 2 are exclusively cell levels, and Objectives 3, 4, and 7 are exclusively tissue levels. 

 



87 
 

 
 

Table 10 

Moderate-level Markov State Labels (Model Set Two) 

 

This new resolution of data was assembled and sequenced for the upper and lower 

quartile of learners, then put into two separate Markov models for contrast in NetLogo. The 

model output for each group is shown in Figure 33. Please note that findings from each model 

are visualized in greater detail in the results section below. 

 

Figure 33. Moderate-resolution Markov model, with the upper quartile of learners on the left, 

and the lower quartile on the right. 
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Markov Model Set Three: Highest Resolution 

 Overall, the moderate-level Markov (model set two) was an excellent balance of 

preserving n-size per cycle and getting a sense of broad-stroke trends, while gaining informative 

resolution into repetition cycles. This is especially true for the Progenitor objectives which 

contain only one kind of cycle (either cell, tissue, or organ). However, some objectives contain 

all three. These “compound” levels are Objectives 5 and 8, which carry a cell-cell-tissue-organ 

sequence, but allow non-linear play (free range to move between these cycle types and repeat as 

often as desired). While making for great synthesis of gameplay skill, these two objectives 

present a challenge in clearly parsing the data for analysis. For example, with the moderate-level 

Markov data, an “objective 5 success” could mean a cell, tissue, or organ success (and at any 

non-linear point of the player’s choosing); an “objective 5 quit fail” could have happened during 

any of these cycles as well, and does not give information about how much of the objective 

content the player has completed. Therefore, specifically for more nuanced examination of these 

compound objectives, one last model set of higher resolution was created. 

 In model set three, compound objectives were examined more closely, and failure types 

were even further differentiated for maximum resolution. The state labels for these models 

consisted of objective, plus the kind of success or failure experienced in that cycle. Cycle 

outcomes for this model set were expanded to include: success, far failure type 1 (wrong cycle 

start), far failure type 2 (wrong cell collect), near failure, and incomplete cycle (quit fail). 

(Please, again, refer to Chapter Four for deep explanations of failure types.) For example, an 

Objective 1 cycle ending in far failure because of a wrong start would take the label “objective 1 

far failure type 1”. (This is abbreviated in the final label notation, shown below.) To clarify 

different sections of compound objectives 5 and 8, the different cycle phases of each were 
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divided into subobjectives, and the data painstakingly labeled as such. A table of these 

subdivisions is shown in Table 11, with corresponding cycle type and new subobjective 

abbreviation.  

Table 11 

Compound Objectives Broken into Subobjectives 

Objective Cycle Type Subobjective 

5 Cell (Phase 1) 5A 

Cell (Phase 2) 5B 

Tissue 5C 

8 Organ 8A 

Cell (Phase 1) 8B 

Cell (Phase 2) 8C 

Tissue 8D 

 

State labels were then created using these new subobjectives and each cycle’s outcome. 

The final Markov state labels for each play cycle are shown in the table below.  

Table 12 

Detailed-level Markov State Labels (Model Set Three) 
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Using these state labels, sequenced play data for the upper and lower quartile groups 

were put into NetLogo, and a Markov model created for each. These are shown in Figure__, and 

discussed in further detail in the “Results and Findings” section below. Please note that findings 

from each model are visualized in greater detail in the results section of this chapter. 

 

Figure 34. Highest-resolution Markov model output from NetLogo, with upper quartile on the 

left and lower quartile on the right. 

Together, these three Markov sets support an informed understanding of play progression 

patterns characteristic of learning in Progenitor X. The base model shows simple, clear patterns 

of progress, stagnation, and attrition in the gamespace, while the two high-resolution models 

elucidate varieties of repetition and forward movement in nuanced phases of play. The second 

and third model sets convey essentially the same information, with the exception of compound 

Objectives 5 and 8, when the highest resolution Markov is used for nuanced insight. Thus, this 
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third model surfaces mainly in findings with Objectives 5 and 8, since it provided little new 

information for the other levels of play. 

Results and Findings 

This section will discuss the results and findings from the three Markov models, 

corroborated with descriptive and nonparametric statistical analyses of the models’ state data. 

Results will be presented in themed groups, constituted by visualization and discussion of that 

section’s findings. Together, the probability visualizations (Figures 34 through 40) report all 

results from the Markov models which meet the n-size threshold and cross-validation criteria 

detailed below. (Full model output can be seen in the transition matrices given for each set in the 

Appendix.) Reinforcing statistical analyses will be also discussed with each trend of findings in 

the upcoming section. 

In interpreting the models, state transition matrices of each Markov pair (see Appendix) 

were contrasted to understand both broad and nuanced trajectory differences between the 

learning groups. It should be noted that this analysis focuses on the areas of contrast between the 

upper and lower learning quartile groups in order to differentiate play trajectories characteristic 

of the highest-achieving learners. To help distinguish a meaningful contrast between the upper 

and lower learner groups, a 95% confidence interval was performed on the probability 

differences between the two quartiles. Any difference in probabilities (UQ minus LQ) over 5% 

was considered in results, since this was the lower limit of the confidence interval. 

A few heuristics were developed in the consideration of results, including a minimum n-

size threshold per state and the existence of cross-validating evidence per trend. The need for 

interpretation thresholds has been recognized in similar mathematics, econometrics, and NLP 

Markov-based research (e.g. Zhao, 2010; Hansen, 2000; Lee & Kim, 1999). For results 
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consideration in this study, a player n-size minimum per state was necessary, because not all 

states of the models were required to play the game all the way through. For example, a player 

could move through the entirety of the game and never have a failure. That player’s track might 

look like: obj 1-success, obj 2-success, obj 3-success…obj 8-success. This means that his/her 

play would not contribute to the count of students which had failures, and therefore would not 

contribute to the data used to calculate the model probability of actions starting from a failure 

state. Thus, in interpreting the Markov models, number of students represented in each state 

transition probability had to be considered (especially in a study of this modest n-size). 

Therefore, standards for minimum player n per state and cross validation were developed. All 

Markov results reported as findings have a minimum user n size (10 players) per source action, a 

cutoff point determined using the lower limit of a 95% confidence interval for the number of 

players contributing to each Markov state. Additionally, cross-validating evidence was essential 

to supporting each results trend, performed with statistical analysis (descriptive, correlation, or 

mean comparison) on the newly created nuanced Markov indices. Mean comparison of these 

new telemetry features was performed using a two-sample Wilcoxon ranked test, and ranked 

correlation was calculated with Spearman’s Rho (both in SPSS). The resultant p-values have 

been evaluated for significance with the R Studio QVALUE package (Dabney & Storey, 2004), 

controlling for multiple comparison based on False Discovery Rates (Benjamini & Hochberg, 

1995; Storey, 2002). All adjusted p-values are thus called q-values, or “q”, in the results below. 

 These criteria were established to substantiate trends in that represent the broadest set of 

players, to help identify patterns most applicable to a larger Progenitor X audience. While not
 
the 

emphasis of this study, examining of the individuals in the lower outliers could be valuable in 

other research; in conjunction with qualitative interviews and study, for example, it could 
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support an experimental design focused on singular students and more individual ethnographic 

patterns. Near failure could be an germane construct to investigate in specific case studies, since 

individual patterns in this kind of failure vary greatly and have been difficult to clearly capture 

on a collective level. The current study, however, has placed an emphasis on mining broader 

patterns in telemetry, and has been able to reveal strong aggregate far failure, success, and 

learning themes. In the results of this group Markov analysis, this chapter uncovers clear findings 

(corroborated by nonparametric analyses) in relationship to learning in three trends: early-phase 

failure ruts, mid-level tissue performance, and learning-supportive far failure in late game. 

Results Trend I: Stuck in a Tutorial Rut 

Trend I is comprised of results in early tutorial levels of the game, specifically Objective 

1, that reveal contrasting patterns of repetition, failure, and success between the two quartiles. 

Together, these results support thematic findings that the lower quartile of learners were stuck in 

tutorial cycles, and experienced more frequent far failure at the tutorial game level. To show this, 

first the Markov findings relevant to the trend will be visualized and explained, and then 

corroborating statistics discussed.  
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Figure 35. Visualized Trend I Markov findings for early-game failure rut; base model on top, 

and detailed model on bottom. 

 

Trend I: Detailed Results and Visualization Key 

 Figure 35 above shows the core Markov findings in this trend. (For clarity, only Markov 

findings relevant to the trend and corresponding game objective are visualized in this section. 

Full model output is shown in the early sections of this chapter, and complete transition matrices 

can be referenced in the Appendix.) States are represented in the circle nodes, showing objective 

number and performance type. Probabilities of transition between nodes are represented by 

arrows with corresponding percents. Finally, each row of visuals shows results from a different 

set of Markov models. For example, the top level in Figure 35 shows results from the simplest 

Markov model. These display a 77% likelihood of repetition of Objective 1 cell cycles for the 

upper quartile, and a 85% likelihood in the lower. The probability that a given player will move 

from an Objective 1 cell cycle to an Objective 2 cell cycle is 23% for the upper quartile, and 15% 

for the lower quartile. The bottom row of results in the figure shows the more detailed Markov 
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results, starting with a 67% probability of repeating Objective 1 far failure for the upper quartile, 

with 75% for the lower. Moving right, the upper quartile (“UQ”) players have a 33% likelihood 

of transitioning to an Objective 1 success, which is 23% in the lower quartile (“LQ”). From this 

Objective 1 success state, players tended to go three ways: they either fell back into far failure 

(left-pointing arrow), repeated the success (orange arrow), or transitioned to an Objective 2 

success. Thus, from a starting point of Objective 1 success, any given player in the UQ had a 

10% likelihood of falling back to an Objective 1 far failure, a 22% chance of repeating the 

Objective 1 success, and a 45% chance of moving to an Objective 2 success. Lower quartile 

likelihood of these were 40%, 9%, and 37%, respectively. The following paragraphs discuss 

what these contrasting numbers imply for failure and success patterns most characteristic of 

learning. 

Discussion of Trend I Results 

The broadest patterns of the Markov models showed that lower quartile players had a 

higher chance of repeating and failing at Objective 1 cycles. The base Markov model, for 

example, showed that LQ (lower quartile) players repeated Objective 1 cycles more frequently 

than UQ players. The upper quartile had a 77% probability to repeat cycles in this level, while 

the lower had an 85% probability of repetition (8% higher). The more detailed Markov model 

revealed this repetition was mainly due to failure, showing that LQ players were more likely to 

have repeated far failure at this level (75% versus 67% in the upper group). Conversely, with 

repeated successes, the upper quartile was more than twice as likely to have one success 

followed by another in Objective 1 (22%), while the lower quartile only had a 9% probability of 

this success-success transition. The upper learning group also had a greater chance of recovery 

from far failure, having a 33% likelihood of moving from a far failure to a success (compared 
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with only 23% in the LQ). In contrast, the lower quartile was four times more likely to slide back 

into failure after a success, with a “Success  Far Failure” transition likelihood of 40% (versus 

only 10% in the upper group). Not surprisingly, the UQ also had a greater chance of succeeding 

at an Objective 1 cycle and moving on to Objective 2 (a 23% likelihood, versus only 15% in the 

lower quartile). Specifically, the upper group had a higher chance of moving from a success in 

Objective 1 to a consecutive success in Objective 2 (46%, contrasted by 37% in the LQ).  

 Strong evidence on early failure from Chapter Four supports these trends. First, far 

failure (wrong cell collects, specifically) in Objective 1,2, and 5 had were significantly different 

between the upper and lower quartiles (Table 8). The lower quartile had an average of 1, while 

the upper quartile had an average of 0. Descriptive trends in Figure 29 also show that high far 

failure early on is more characteristic of the lower quartile of learning, and is also a trend which 

forecasts poor game completion rates (Figure 28). 

In summary, this trend of findings shows greater tutorial level stagnation and failure for 

the lower quartile. The lower group of learners here is characterized by repeated failure, and 

falling back into failure even after a success. By contrast, the group of greater learning gains had 

more frequent consecutive success, recovery from far failure with an immediately following 

success, and carryover of success from Objective 1 straight to Objective 2. Corroborated with 

statistical results, these patterns imply that far failure in the first objective had negative impact on 

game completion and learning. 

Results Trend II: Synthesis Levels and Tissue Cycle Performance 

 Results Trend II highlights pivotal tissue performance differences in the learner groups 

throughout the game – particularly during their scaffold-and-fade, mid-game synthesis, and 

endgame boss level objectives. During the tissue cycle introduction in Objective 3, Markov data 
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showed learning curve trends emphasizing recovery from initial failure as a feature 

differentiating the two quartiles. By Objective 5, when all tissue “help” scaffolding had been 

faded out, and the tissue skill layered in sequence with the cell cycle skill in a synthesis of play 

mechanics, mastery of the tissue cycle characterized the higher learning group. In Objective 8 

(the boss level), when a more difficult synthesized tissue cycle was embedded, learning curve 

behavior paralleled early objectives with better recovery from failure (not repetition of failure) 

characterizing the upper quartile group. Throughout play, quitting of the game immediately 

following a tissue cycle was a chronic pattern in the lower quartile, recurring in Objectives 5, 7, 

and 8. In the following paragraphs, these Markov findings will be visualized and discussed, and 

connected with cross-validating statistical analysis.  

Detailed Sequence of Trend II Results 

Detailed learner group performance on tissue-building phases of Progenitor differs 

consistently throughout the sequence of gameplay. The tissue cycle, which employs a Tetris-like 

puzzle mechanic using the building blocks of cells harvested in earlier objectives, first appears in 

Objective 3 of Progenitor X. In this heavily scaffolded objective, it is impossible to fail, as all 

parts of the UI are locked except for those enabling the correct action. Objective 4 is the first 

tissue objective in which it’s possible to fail, but an easy puzzle and ongoing text instructions 

serve as player support.  
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Figure 36. Trend II Markov results visualized for early-game tissue cycles (Objectives 3 and 4). 

 Figure 36 above shows the core Markov findings early in this trend, specifically 

introductory Objectives 3 and 4. Similar to the previous diagram, the objectives and performance 

are the nodes, and the transition probabilities are shown as numbers corresponding to the arrows. 

(Note once again that – for the purposes of clarity – only findings relevant to this trend and 

corresponding objectives are visualized; full model output is shown in the beginning of this 

chapter, and can also be seen in the full transition matrices supplied in the Appendix).  

As illustrated in Figure 36, the first independent tissue cycle (Objective 4) reveals 

interesting learning curve patterns that differed between the quartiles. The upper quartile of pre-

post learners actually tended to fail their first Objective 4 tissue cycle (61% likelihood of initial 

failure, versus only 47% in the LQ), but bounced back from it quickly with a consecutive tissue 

success (15% higher transition rate from tissue failure to tissue success than the LQ). The lower 

quartile, on the other hand, tended to have consecutive Objective 4 tissue failures (70% 

probability of repeating failure, versus only 56% in the UQ). Once again, the lower quartile of 
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learners seem to be stuck in an early failure rut, while their upper quartile counterparts recover 

more immediately from failure. 

 

Figure 37. Mid-game tissue cycles visualized from Markov models for Trend II. 

Moving to the next phase of tissue play, mid- level findings are shown above in Figure 

37. This diagram again shows the objectives and performance as nodes, and transition 

probabilities as arrows. The first level of the diagram shows the simplest Markov information, 

the middle tier shows the second Markov set results, and the bottom row shows the most detailed 

model findings.  

This upper quartile pattern of strong recovery from failure continues in Objective 5, 

where transition to success was again a hallmark of the group. Objective 5 contains wholly 

unscaffolded tissue puzzles alongside cell cycles which are equally unguided, thus fully 
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synthesizing the two main mechanics of the game into a pivotal mid-game level. Upper quartile 

players had the same resilience as in earlier tissue performance, showing a 17% higher rate than 

the LQ of going from tissue failure to consecutive success. Conversely, the lower quartile players 

once again tended to be stuck in a repetitive rut of tissue failure (51% chance of repeated failure, 

versus only 30% in the UQ). Descriptive statistics supports the trend of the lower quartile’s 

tissue failure rut, showing that the lower quartile had twice as many Objective 5 tissue failures as 

the upper quartile (Figure 26). Significantly, tissue failure in this pivotal mid-game objective also 

had a negative correlation with game progression (r=-.512; q=.015). Success rates in Objective 

5, however, were positively correlated with learning gains (r=.205; q=.03). 

 

Figure 38. Late-game tissue progression, visualized via Markov for Trend II. 

The last Markov diagram in Trend II, Figure 38 shows late-game tissue progression 

patterns (the top row is a simple, base-model version; the bottom diagram is from the more 
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detailed Markov). In demonstrating synthesis of cell and tissue skills, and advancing to new 

gameplay objectives, tissue mastery in Objectives 5-7 connects positively with learning gains. 

Upper quartile players who succeeded at Objective 5 cell cycles were also likely to move on to 

tissue success (31% UQ transition rate from cell to tissue success, contrasted with only 20% in 

the LQ). In turn, upper quartile players who did well with tissue cycles in Objective 5 tended to 

move smoothly to the next objective (a transition from Objective 5 tissue  Objective 6 success 

being 44% likely; versus only 24% in the lower quartile). Lower quartile players, on the other 

hand, had high quitting rates during Objective 5 tissue cycles: 31% of the lower quartile dropped 

out of the game during the Objective 5 tissue cycle, while only 18% of the UQ quit the game at 

this point (Figure 39). Similarly, dropout rates after Objective 7 tissue cycles were 8% more 

likely in the lower quartile group, with zero likelihood in the upper quartile. It follows that the 

upper quartile were more likely to go on to smashing success after their Objective 7 completion, 

with a whopping 94% chance of going on to an Objective 8 cell success immediately following a 

successful Objective 7 tissue cycle. (This contrasts with only 75% probability in the lower 

quartile group.) 

 

Figure 39. Charts of final play levels for each quartile of learners. 
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During the boss level, learner groups demonstrated clear differences in tissue cycle 

performance. Indeed, Markov data reveals that the higher learning group continued the trend of 

resilience, bouncing from success to failure and back, but not getting stuck in a consecutive 

tissue failure rut – nor quitting. Broadly, the upper quartile had higher repetition of Objective 8 

tissue cycles (49% probability, versus 32% for the LQ); in this base Markov data, Objective 8 

repetition included both consecutive successes and failures, not specifying performance but 

implying tenacity on the part of the upper learning group. The performance-detailed Markov 

provided deeper insight; in it, the probability of moving from success to tissue failure was higher 

in the upper quartile (transition probability of 20% versus 12% in the LQ), but unlike their 

counterparts, the upper quartile did not get stuck in this failure. The UQ had a zero percent 

probability of repeating tissue failure or quitting the game after failing in Objective 8, while the 

lower quartile were 34% and 11% likely get stuck in a tissue fail rut and quit (respectively). 

Chapter Four insights show that Objective 8 is an important level, since its completion is 

positively associated with learning gains (Table 6). In regards to tissue, however, the data also 

show that the tissue cycle in Objective 8 is a large quitting point (Figure 39), with zero “rage 

quitting” from Objective 8 tissue cycles happening in the upper quartile of learners. Thus, 

extended tissue failure in Objective 8 (also compounded with resultant cell failure) seems to be 

unfavorable for learning outcomes. 

Discussion of Trend II Results 

In tissue levels, a recurring pattern characteristic of the higher learning group was not 

aversion to failure, but increased recovery from failure. The upper quartile had plenty of 

instances of failure in tissue cycles, but from that failure point had notably higher transition rates 

to a consecutive tissue success, and from there tended to move forward in game progression – 
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especially in scaffold-and-fade tissue objectives and synthesis levels combining unguided cell 

and tissue cycles. Conversely, getting stuck in a tissue rut with repeated failure was characteristic 

of the lower learner group. In a related pattern, quitting the game immediately after a tissue 

failure occurred in the lower quartile throughout the last half of the game. The upper quartile, 

interestingly, had zero occurrence of this tissue-fail-to-quit behavior. This insight into the pivotal 

role of tissue performance on game completion and learning can help inform iterative design of 

Progenitor. Building in player-adaptive layers of instructional cues and help resources in critical 

scaffold-and-fade tissue levels, for example, can help optimize the game experience for both 

learning and play progression. 

Results Trend III: Turning the Tables on Failure  

Trend III is comprised specifically of results around far failure, which demonstrate 

fascinating changes in relationship to learning throughout the game. Similar to Chapter Four, far 

failure seems to evolve from having a negative to a positive relationship with learning over the 

course of play. Specifically, patterns of far failure emergent in Objective 5 and continuing to 

Objective 8 contrast sharply with the negative impact of early-game far failure in Trend I. 

Certain far failure patterns in these later game phases shows a positive connection with learning, 

implying its possibly deliberate use as part of engaged experimentation or strategic play. Just as 

in Trend I and II, a visualization and discussion of the relevant Markov findings will follow, in 

connection with corroborating statistical analyses.  

Detailed Sequence of Trend III Results 

 Analysis of Objective 5, the first cell objective since tutorial levels 1 and 2, revealed 

patterns in upper quartile far failure that continued through the Objective 8 boss level. In this 
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context, three main action sequences characterized the greatest learning group: repeated far 

failure, multiple failures before a success, and an immediate success-success sequence 

progressing to the next game level.  

 

Figure 40. Objective 5 far failure patterns, visualized from Markov findings for Trend III. 

This (far failure)-(far failure)-(success)-(advance) pattern recurred throughout Objective 

5 and Objective 8 in the upper quartile, with cross-validating evidence – and exists in clear, stark 

contrast to the negative role far failure played for learning in Trend I. Figure 40 above shows 

basic findings relevant to this pattern in Objective 5, with a moderately-detailed Markov diagram 
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at the top, and the highest-res Markov diagram on the bottom. These results showed that the UQ 

was more likely to have consecutive far failures in both cell phases of Objective 5, with a 12% 

and 15% higher repetition rate (respectively). It follows that in repeating far failure, the LQ was 

less likely to go directly from a far failure to a success (57% in the UQ versus 77% in the LQ). 

However, once the higher gains group reached a success, they were more likely to have a 

consecutive success in the next game level (in transitioning from cell phase 1 to cell phase 2 in 

Objective 5, the UQ had a 31% probability to go directly from success to success, as opposed to 

only 20% in the LQ). Near failure did not appear to be a part of this progression, as the upper 

quartile had zero Objective 5 near failure to far failure transitions – while the lower quartile had 

a 16% probability of this movement. This implies that the recurrence of far failure for the higher 

learners may be deliberate, and not a result of haphazard oscillation between failure types in 

careless play. Overall, for the upper quartile, this sequence shows a series of repeated far 

failures, and then a success, which tended to lead directly to another success in the next game 

level.  

 

Figure 41. Markov findings of Objective 8 far failure, visualized for Trend III. 
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 Figure 41 visualizes late-game evidence of this far failure-success-progression pattern, 

which even more strongly characterized learners in Objective 8. In this boss level, the lower 

quartile of learners had a zero percent likelihood of repeating cell far failure; the upper learning 

group, however, had a 47% probability of far failure repetition. Just as in Objective 5, it then 

follows that UQ far failure repetition was also more likely than an immediate transition to 

success (the upper quartile had a 54% smaller probability of a single far failure to success 

transition). Once a success was achieved, however, the upper learners tended to start the far 

failure cycle over, or progress onward to the next level. (UQ probability of an Objective 8 

success to far failure was 9%, and a cell phase 1 success to cell phase 2 success was 84% – while 

the LQ had 0% and 77% chance, respectively.) Starting in a given cell phase, the upper quartile 

transitioned most frequently to far failure or progression in the next phase; thus, same-phase 

consecutive successes were less likely (12% lower in the UQ as compared with the LQ). As the 

chart of last objective played shows (Figure 39), a key characteristic of the upper quartile was 

transitioning to success and game completion after far failures throughout Objective 8. Cross-

validating results from Chapter Four also include the positive relationship between these boss 

level success and learning gains, as well as the significant positive relationship between game 

progression and pre-post performance (Table 6). Another corroborating pattern from Chapter 

Four is the interesting increase in far failure of the upper quartile between Objectives 2 and 8, 

while the lower quartile had steadily decreasing far failure throughout (Figure 27). Objective 8 

far failure was also shown to be positively correlated with learning gains (Table 9). 

Discussion of Trend III Results 

 In the last two cell objectives of the game (5 & 8), far failure positively characterized 

learners in a recurring pattern of play: repeated far failure, multiple failures before a success, and 
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an immediate success-success sequence progressing to the next game level. This trend seemed to 

strengthen from Objectives 5 through 8, and is supported by cross-validating evidence from 

statistical and descriptive analyses. The clarity of the pattern, recurring throughout four cell 

phases within Objectives 5 & 8, suggests there may be something deliberate about this behavior 

specific to learners with the highest gains. This kind of creative exploration of failure, or 

deliberately “transgressive” game behavior, may very well be a part of engaged experimentation 

or strategic play.  

In summary, these three trends show interesting patterns of failure in relationship to 

learning. Trend I reveals a negative relationship between Objective 1 far failure and learning 

gains, showing greater tutorial-level stagnation via far failure in the lower quartile. The upper 

quartile also experienced far failure, but tended to recover quickly from a given instance of 

failure and transitioned more frequently into subsequent success. Trend II centers on tissue 

levels, where a similar recurring pattern characteristic of the higher learning group was not 

aversion to failure, but increased recovery from failure. Trend III focuses on the last two cell 

objectives of the game (5 & 8), where far failure had a clear, marked shift in relationship to 

learning. In these cell mastery levels, it positively characterized learners in a recurring pattern of 

play: repeated far failure, multiple failures before a success, and an immediate success-success 

sequence progressing to the next game level. Cross-validating analyses corroborate these trends, 

which enrich our understanding of failure as a non-monolithic, sequence-sensitive contextual 

construct in play and learning. 

Discussion and Conclusion 

This analysis goes beyond binned, frequency-based counts of failure, instead studying 

high resolution, context-specific play sequence for new insights into the evolving relationship of 
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nuanced failure and learning. These findings reveal that it is not blanket existence of failure - 

rather, its context-specific relationship to actions before and after – that matters for learning. If 

Chapter Four’s analysis showed that failure cannot be monolithically defined in relationship to 

learning, this sister study shows that the contextual positioning of those failure types within a 

play sequence can unlock deeper patterns of learning. 

In early objectives and tissue levels, the role of recovery from far failure and tissue 

failure was key for learning. In these specific levels, repeated failure showed negative correlation 

with learning and often resulted in game quitting. In later cell levels, the role of far failure 

evolved, as it became clearly connected to a series of consistent play actions characteristic of the 

upper learning group – an integral segment of a series of play actions positively correlated with 

learning and game completion. Thus, specific kinds of failure actually start to play a positive role 

in learning gains as play progresses. The increasingly positive impact of failure in more 

elaborate, successful play sequences could signal the evolution of reactive play (emphasizing 

recovery from failure as a learning characteristic) into more proactive strategic thinking (with a 

sense of mastery and agency, deliberately leveraging the game’s failure mechanisms for forward 

movement). As analysis I opened up inquiry into kinds of failure, this analysis reveals an 

evolving meaning of failure types in relationship to learning throughout gameplay, and leads 

naturally into the next chapter’s investigation of possible transgressive play patterns emergent in 

these findings.  
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Chapter Six: 

 Experimentation and Learning – Predictive Modeling with Detectors 

Introduction and Framework 

This analysis chapter builds on the investigation of performance and play trajectories 

with educational data mining of player exploration trends related to learning. The data features 

from previous analyses – specifically, in-game performance measures and base play progression 

– are be leveraged in this study to make inferences about player experimentation in the 

gameworld of Progenitor X. The investigation of experimentation in play and learning represents 

a merging of all three lenses of game microworlds as designed experiences (Figure 1), melding 

player-specific goals (Lens C), game as educational content (Lens A) and the game as a play-

driven medium (Lens B). This intersection is explored with the method of detector building – a 

data mining technique used to mine log data for indicators of behavior (e.g. Baker & De 

Carvalho, 2008; Cheng & Vassileva, 2006; San Pedro, Baker & Rodrigo, 2011). Selected 

features of event-stream gameplay are used as input variables in a predictive modeling of 

thoughtful exploration in the gamespace, and the exploration codes are then descriptively and 

statistically investigated in relationship to learning. The core research question is: What play data 

features characterize experimentation in Progenitor X, and how does this behavior connect with 

learning outcomes? 

The study of play experimentation and learning in Progenitor X is based in past data 

mining work and educational games research. Previous data mining research has used detectors 

to categorize student behavior within digital learning spaces, such as learners “gaming the 

system” in cognitive tutors (e.g.  Baker, Corbett & Koedinger, 2004) and measuring user “goal 

seriousness” (e.g. DiCerbo & Kidwai, 2013) in completing tasks. Along the same lines of 
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characterizing student objectives, this Progenitor X study seeks to mine patterns of user 

interaction that indicate experimentation. In games, mining this designed “system of interaction” 

is vital to understanding “player experience” (Salen & Zimmerman, 2004, p. 61; Schell, 2008), 

especially around experimental behavior. In contrast to task-driven tutoring systems and 

simulations, gameworlds are set up to provide roles and goals (Squire, 2011) in an narrative-

based, endogenously motivating context (Costikyan, 2002). As such, they invite a kind of 

transgressive play (Salen & Zimmerman, 2004), in which players navigate the game in 

unanticipated ways, guided by their own goals and interest. Indeed, educational games are a 

complex medium which involves the intersection of at least three very different sets of goals – 

discussed in the unifying games as microworld lenses of Chapter One. Game genres generally 

invite exploration and testing of game constraints (one kind of goal), content designers often 

impose another (e.g. a goal of learning biology), and users come in with their own individual 

motivations and curiosities for play (suggesting a whole range of player-specific goals). This 

makes more traditional binary constructs like “on task” or “off task” very one-dimensional for 

game study (especially when used relative to a single assumed goal). In interpreting player 

behavior in gameworlds, the construct of experimentation may better represent the intersection 

of explorable worlds, academic content models, and interest-driven player paths. In interpreting 

user action data through the lens of experimentation, the goal is to better understand the 

complex, evolving roles of interaction data like far failure in exploratory play experience. For 

example, is far failure a sole characteristic of blind-clicking, or does it also occur with 

transgressive play? If so, how does it evolve in its relationship to experimentation and learning 

from objective to objective? This analysis explores these kinds of inquiries, first building a 
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detector for thoughtful exploration in play, then connecting specific kinds of strategic 

exploration with learning outcomes. 

The following chapter will review methods for detector building, then explain the 

thoughtful exploration construct as well as a detailed coding schema and process. It will then 

discuss three main analyses arising from the fully coded exploration data: 1) a predictive model 

of thoughtful exploration during Progenitor X play; 2) descriptive analyses of the relationship 

between exploration and learning outcomes; and 3) a detector of learning-supportive strategic 

failure in Progenitor X. 

Methods: Building a Detector for Experimentation in Progenitor X 

Frequently used in educational data mining, a detector is an automated model that can infer 

from log files whether a student is behaving in a certain way. To create, or train, that automated 

model, it relies on something computers do not have: human judgment. Several steps are 

summarized below: 

 Decide on a behavior construct.  

Researchers building a detector need to first decide what kind of student behavior they’re 

looking for – for example, “gaming the system” (e.g. Baker et al., 2004). This behavior 

construct is deliberately general, and qualitative in nature; it does not require a 

hypothesis about specific data features which will predict it, since its purpose is 

organically mine data patterns connected with the interpreted behavior.  

 Aggregate student interaction data. 

The researchers then gather student interaction data which they believe will give insight 

into the behavior construct. These data must be synchronous to log-file activity of 
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interest. Student interaction data varies based on the study, and can include observational 

data (e.g. or text replays (Baker & de Carvalho, 2008) 

 Code for behavior construct. 

The coding for behavior happens next. For each “stanza” of data, a researcher will 

qualitatively code it with the behavior construct (for example, “gaming” or “not gaming” 

the system.)  

 Predictive modeling with coding and log file data. 

Once all the coding is finished, the coded data is synchronized with the log files so that 

behavior can be connected with click-stream action. Then, this synchronized data is put 

into a predictive model. The behavior (e.g. “gaming” or “not gaming”) becomes the 

outcome variable, and the data features connected with the behavior are the predictors. 

Data features most common to the behavior can be clearly identified. Thus, a model is 

created that can automatically predict the behavior if given future log-file data. It can 

then be used to drive interventions or in discovery with models analyses. 

 

Each step for this study (as generally outlined above) will be described in the following 

section. 

Progenitor Behavior Construct: Experimentation 

 This detector aims to better understand player experience in the multifaceted realm of 

learning gameworlds through the behavior construct of experimentation. Defined here as 

“thoughtful exploration,” it centers on attentive exploration of the gamespace, deliberately 

testing constraints and consequences of in-game action. (Blind clicking in impatience, without 
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curiosity or attentiveness, would not constitute experimentation in this definition.) The general 

schema for experimentation can be seen in matrix form (Table 13). Conceptually, the main 

categories were “thoughtful exploration” or “not thoughtful exploration”. Any behavior which 

went outside the bounds of strict game instructions, exploring the game UI or mechanics 

boundaries in a seemingly thoughtful or systematic way, was considered thoughtful exploration. 

Player actions which seemed to characterized blind, hasty, or redundant clicking around the 

space were not considered thoughtful exploration. Also in the “not thoughtful exploration” 

category was behavior which stuck narrowly and strictly to game cues, never deviating from 

prompted actions.  

Table 13 

Basic Exploration Code Categories 

Core Category Thoughtful Exploration Not Thoughtful Exploration 

Description Basic (feature 

exploring)  

Strategic use of 

explored 

mechanics 

Careless 

clicking 

Straight and 

Narrow (no 

exploration) 

Abbreviation  “TE”  “TES” “C” “S&N” 

 

 As Table 13 describes, thoughtful exploration can be seen as a basic exploring of UI 

features or game mechanics, which is code “TE” above. Another related variant is strategic use 

of explored mechanics, which involves using knowledge of game boundaries for clear play 

strategy. This is abbreviated “TES” for “thoughtful exploration – strategic”. The two basic 

categories not considered thoughtful exploration are careless clicking (“C”), as well as the 

behavior of no deviation at all from prompted game instruction, called “S&N” for straight and 
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narrow. These four basic categories were based on the original thoughtful exploration construct, 

and then refined based on emergent trends in the data. More detailed explanation and examples 

of each follow in the “coding” section. 

Aggregating Data for Evaluation 

 The data was presented for the coding of experimentation using a kind of text replay, a 

data-mining form of “distillation of data for human judgment” (Baker & Yacef, 2009). Text 

replays are a visual summary of student interaction data, grouped together as a series of actions 

for evaluation by the researcher. For example, Figure 42 shows a text replay from a series of five 

problems in a cognitive tutor data set (Baker & de Carvalho, 2008). For each problem, the 

researcher can see the corresponding tutoring unit, the student’s answer to the problem, and the 

time it took to answer. For this “clip” of five problems, the researcher would overview the data 

and then decide if the evidence pointed to “gaming” or “not gaming” the system. 

 

Figure 42. Example of a Text Replay (Baker & de Carvalho, 2008) 

Similarly, snapshots of log-file play data were used for the Progenitor coding of 

experimentation. Existing text replay software (e.g. EDM Workbench – Rodrigo et al., 2012) 
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could handle display of a fixed number of cycles, but in Progenitor this did not correspond with 

the subobjective context (since cycle number varies wildly from objective to objective). This, 

Progenitor-specific data snapshots were created in excel to fit the needs of the experimental 

design. Each clip was created to display features deemed relevant to the construct of thoughtful 

exploration (Figure 43). These included metadata about student restarts and game completion, as 

well as cycle specific data detailing cycle start and end, cell types, cycle duration, outcome, 

failure/success evaluation, UI buttons used, and tool use inside the grid. Each of these features 

were chosen because they were considered good indicators of UI affordances and game action 

parameters (relevant to the construct of exploration). This concise layout worked well, being a 

pleasantly sparse but efficient way to convey a dense amount of player information.  

 

Figure 43. Adapted text replay clip for Progenitor TE coding. 

Coding the Data 

Initially, the base coding schema was binary (Table 13) – coded for Thoughtful 

Exploration (TE) or Not Thoughtful Exploration (Non-TE). It was soon evident, however, that 

more subtle behaviors were occurring in the gamespace, and soon emergent subcodes evolved 

from categorizing more nuanced player action. The final coding scheme (Table 14) shows the 

main categories of subcodes that were created both for TE and Non-TE base behavior. The four 
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subcodes of “TE” (base thoughtful exploration), “TES” (strategic use of explored mechanics), 

“C” (careless clicking – not TE), and “S&N” (straight and narrow – no exploration) remain from 

Table 13. During coding, more specificity was added for variations in these codes, particularly 

based on the outcome of the level (Table 14). The syntax for codes came to be made up of two 

parts: 1) the base exploration code and 2) outcome of the objective. 

Take the example of a text replay clip that had a basic exploration code of TE. If the 

objective was completed with instant success (and no failure), the code would have a suffix of 

“success” (abbreviated to “Succ”). Thus, the final syntax would be TE-Succ. If the objective 

eventually ended in success, but only after much failure, its code suffix would be “tenacious” 

(“Ten” for short, with a final code of “TE-Ten”). If the objective’s clip ended in a quit fail, the 

code would say “TE-Quit”. This pattern continues across all four TE/Non-TE code types in the 

table. 

Table 14 

Detailed Exploration Code Categories 

 Thoughtful Exploration Not Thoughtful Exploration 

 “TE” “TES” “C” “S&N” 

Instant success TE-Succ TES-Succ C-Succ S&N-Succ 

Failure, then success 

(tenacious) 
TE-Ten TES-Ten C-Ten S&N-Ten 

Quitting the game TE-Quit TES-Quit C-Quit S&N-Quit 

Data was coded across all objectives, which were broken into subobjectives of parallel 

size. For example, Objective 0 is a training objective with only one cell cycle as a goal, so this 

was kept as Objective 0. Objective 5, on the other hand, is a compound objective which contains 
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three separate goals: cell phase 1, cell phase 2, and a tissue phase. Thus, Objective 5 was broken 

up into 5A, 5B, and 5C. The same was done for Objective 8 (see Table 15). Twelve final 

subobjectives per player were coded for thoughtful exploration, visualized simply in Figure 44, 

and broken down into more detail in Table 15. One snapshot per subobjective for each individual 

player (like Figure 43) was coded at a time. This meant that a player who finished the game 

would have 12 discrete exploration codes total. The clip level of subobjectives was chosen 

because it framed player action in a very clear, consistent, and specific context, thus making 

judgment of exploration behavior more likely to be accurate. 
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Table 15 

Subobjective Labels for Progenitor 

Objective Cycle Type 
Subobjective


 

0 Cell (type 1) 0 

1 Cell (type 2) 1 

2 Cell (type 1) 2A 

 Cell (type 2) 2B 

3 training level – min. player action -- 

4 Tissue 4 

5 Cell (type 1) 5A 

Cell (type 2) 5B 

Tissue 5C 

6 organ level – min. player action -- 

7 Tissue 7 

8 organ level – min. player action -- 

Cell (type 1) 8B 

Cell (type 2) 8C 

Tissue 8D 


Objectives 3, 6, and 8A had very little player action involved and thus were not coded for thoughtful exploration. 

Obj 0 Obj 1 Obj 2 Obj 4 Obj 5 Obj 7 Obj 8 

            

Figure 44. Color-coded visualization of the 12 Progenitor subobjectives. 
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Total subobjectives coded across all 110 players numbered 1,084 (since not all players 

finished the game). For construct consistency, multiple coders were used and were measured for 

interrater reliability using Cohen’s Kappa, for a final value of K = .908.  

Examples of Coding Schema 

 In order to illustrate the meaning of thoughtful exploration in Progenitor play, and thus 

deepen understanding of analysis findings, this section will give examples of codes most 

commonly used during the evaluation process. It also serves as a more ethnographic set of 

example findings – individual manifestations of game-wide exploration patterns.  

Exploration Without Failure (“TE-Succ”) 

 Figure 45 is a coding snapshot of a player’s game interaction during Objective 0. This 

example is given first because it is one of the simplest kinds of codes. The player has 

experienced no failure, yet has taken the time to explore the UI with almanac vocabulary entries 

and the back button to review instructions (neither of which are prompted or required 

interactions). This entry was thus scored “TE-Succ”, because it had no failure (only success), but 

had elements of thoughtful exploration. For most follow-up analyses, this was simplifed to TE”.  
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Figure 45. An example clip of exploration without failure (code: “TE-Succ”). 

Exploration With Failure (“TE-Ten”) 

 Figure 46 shows an example of thoughtful exploration in the gamespace (in early levels) 

with failure. This instance would have been coded “TE-Ten”, meaning thoughtful exploration 

with tenacity (several failures before success). This student shows methodical exploration of the 

UI, going from one almanac word, to finding a different one, to then discovering the instruction 

perusal button (the “back” button, which reviews the last instruction given). None of these are 

prompted or required buttons of interaction. The pace of finding these UI elements is unrushed. 

In addition, the player has two different kinds of failure without seeming to get stuck on either 

one, or repeating mistakes. Because it is still very early in the game (Objective 0 tutorial), the 

player seems to be discovering different ways to fail and learning from each one. The third cycle 

is a success. (Interestingly, this same player went on to earn a “TES” code – or strategic use of 
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explored parameters – later in the game.) This was simplified to “TE” for most subsequent 

analyses. 

 

Figure 46. An example clip of exploration with failure (code: “TE-Ten”). 

Strategic Use of Thoughtfully Explored Mechanics (“TES”) 

 Next is an example of the TES code – strategic use of thoughtfully explored mechanics – 

in which players combine mastery of the core skills with strategic failure to improve their 

efficiency. Thus, TES is often referred to as the strategic failure code. This is the last example of 

an exploration code in this set – and arguably the most complex and interesting.  

 Strategic failure and the TES code often was characterized by a behavior now dubbed 

“harvesting”. This phenomena was unknown to the researchers before the coding started, and 



122 
 

 
 

emerged as a clear recurring behavior during certain cell cycles of the game. To understand 

harvesting, we must delve a bit deeper into expected game cycle behavior.   

Normally, Progenitor expects a player to start with one kind of cell, treat it so that it 

transforms, and then collect the new kind of cell (for a successful cycle). However, “harvesting” 

is a way around this. Instead of having to perform this start(old)-treat-collect(new) cycle, some 

players figured out the game would allow them to start with the cell they needed to collect, move 

it around on the grid so that it replicated, and then simply collect the expanded number of 

original cells. This avoids the “treat” phase all together and helps keep health up longer, thus 

looking like a start-move-collect sequence (all using only one kind of cell).  

For example, a common “legit” cell cycle starts with fibroblasts (pink cells), then directs 

the player to treat them with electricity, thus making stem cells (purple cells) for successful 

collection (Figure 47). By contrast, a harvesting cycle would populate the grid with purple stem 

cells, move them around a bit, and then collect the expanded batch of purple cells to reach target 

numbers (Figure 48). Thus, the player had all the purple iPS cells they would need, all without 

going through the intended shocking-pink-cell process. 

 

Figure 47. “Legitimate” cell cycle of start-treat-collect, which ends with a new kind of cell. 
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Figure 48. A “harvesting” cell cycle in strategic failure, which starts and ends with the same cell 

(in a start-move-collect sequence, skipping the treat stage). 

 

A fascinating harvesting fact, however, is that a player needs at least one legitimate cycle 

before they start harvesting, so that they can have enough of the unique new cells to start a 

harvest cycle. This means that harvesting requires mastery of the base mechanics to use 

successfully. Hence, this is not like “gaming the system” (which by definition avoids the 

intended skill acquisition); instead, this strategic failure requires mastery of game mechanics, 

thorough and thoughtful understanding of the game’s boundaries, and the metacognition to put 

them together in a hybrid strategy to maximize health and cycle efficiency. As Salen and 

Zimmerman (2004) say in Rules of Play: “To skillfully break rules requires an intimate 

knowledge of the rules themselves” (p. 282).  
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Figure 49. An example clip of strategic failure (code: “TES”). 

 One example of this strategic failure (or TES) is in Figure 49. Here we see a clip from 

Objective 5, in which the player begins with a “legitimate” cycle, completed efficiently and 

successfully. Next, he/she engages in what we’ve called a “harvesting” behavior. This is the 

strategic failure element. In the second cycle, the player populates the grid with stem cells (called 

“iPS” cells in the coding snapshot), moves them around on the grid to replicate them, then 

collects the expanded batch of stem cells a few seconds later. The game registers this as far 

failure, because it flags the stem cells picked up as not correct (recognizing that they have not 

been treated with electricity as intended). Still, for better or for worse, the game allows these to 

be used for subsequent cycles. And so the show goes on, with the third cycle in our example 

being a perfectly executed legitimate cycle, beginning with the harvested iPS cells, treated with a 

growth factor, and then collected as newly minted Ectoderm cells (“Ecto” for short in the clip). 

Figure 49 highlights this with arrows on the right in the diagram, showing a top “legit” cycle, a 

middle “harvesting” cycle, and on the bottom another “legit” cycle. There are no messy, 

seemingly unnecessary failures, no apparently hasty clicking or ruts, no building towards a cycle 
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quit – just a clean sequence of Objective 5 efficiency. This is the “TES” code: far failure in 

harvesting as part of a layered strategy. (The designation of “Ten” or “Succ” did not often apply 

to this code, as both success and failure were an innate part of the strategic failure practice.) 

Not Thoughtful Exploration: Careless Clicking (“C”) 

The snapshot captured in Figure 50 is an example of an Objective 5 clip coded as “C” 

(standing for Careless, not thoughtful). A red flag here is immediately the repeated far failure of 

fibroblast collection, which is a behavior not associated with harvesting because there simply is 

no strategic advantage to doing it. It is literally impossible to run out of fibroblast cells this early 

in the game, and repeated collection of these useless cells in far failure was a behavior often 

exhibited by players during periods of frustration (as observed in numerous playsquads by the 

author), and a harbinger of mid-game “rage quits” and Objective 1 failure ruts (as can be seen in 

the log files). Another sign of haphazard clicking is the bouncing around between views 

(multiple times, beyond that of initial discovery) without cycle completion (c.f. Wixon et al., 

2012). This view switching can be seen with the “TISSUE” “CELL” “TISSUE” “CELL” record 

(which signals moving to a different laboratory template, of either the tissue or the cell) in the 

buttons used column. These view changes, along with the unproductive failure of the cycles, was 

occuring somewhat quickly (e.g. 23, 13, and 10 seconds for a cell cycle was comparatively quick 

– the game average was 35.3 seconds per cycle.) All this lead to an impression of hastiness and 

unproductive, redundant failure – hence the “C” rating. 
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Figure 50. An example clip of careless clicking (code: “C”). 

No Exploration and No Failure: Straight and Narrow (“S&N-Succ”) 

 Figure 51 is an example of another Objective 0 clip, during which the player has ONLY 

success, and only performs actions directly prompted by the system. Since there seems to be no 

exploration, we called this behavior straight and narrow (or “S&N”) as a code. The player has 

also only experienced success, so we also attach a “Succ” to it. The final code was “S&N-Succ”. 

Like most of the coding data, this was simplified to the base exploration code (just “S&N”) for 

analysis purposes. 
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Figure 51. An example clip of no exploration, without failure (code: “S&N-Succ”). 

No Exploration, This Time With Failure (“S&N-Ten”) 

The next illustration (Figure 52) shows an Objective 0 clip of no exploration, with failure. 

The person does not seem to be exploring the interface, or systematically investigating different 

kinds of failure, so the activity is labeled with no exploration, which in our scheme was called 

“S&N” (straight and narrow). Because there is repeated failure with eventual success, the clip is 

also labeled tenacious, or “Ten” for short. Thus, our code looked like “S&N-Ten”. For most 

analyses, this was simplified to just “S&N”.  
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Figure 52. An example clip of no exploration, with failure (code: “S&N-Ten”). 

 Overall, these examples represent the most frequent codes in the gamespace across all 

1,084 coded clips. The outcome designations (-Succ, -Ten, and -Quit) were useful for fine-

grained coding purposes, and will likely be very informative for future study and modeling of the 

data. The analyses to follow, however, focus mainly on the construct of thoughtful exploration 

and its four designations (“TE”, “TES”, “C”, and “S&N”) in the coding scheme.  

Results and Findings I: Building a Detector of Thoughtful Experimentation 

The following sections of findings detail the results which emerged from the coding of 

the log file data. First reviewed will be an M5’ predictive model of thoughtful exploration (TE), 

then an exploration of TE code relationships to learning with descriptive analytics and 

nonparametric statistics, and lastly a J48 detector of the learning-salient TES code (thoughtful 

exploration with a strategic angle).  
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The first behavior that was modeled across gameplay was thoughtful exploration (TE), 

considered broadly as an aggregate number of occurrences across all 12 coded subobjectives. 

The goal of this analysis is to predict, based on gameplay activity, whether or not a student in 

engaged in thoughtful exploration. Consistent with the broad data collection methods detailed in 

Chapter Three, the total N for this analysis was 110 middle school students, the game’s target 

audience. For this analysis, the TES code was considered a part of the TE umbrella, and the 

others were not (see Table 13). As this outcome variable was numerical, a regression tree model 

was chosen to build the predictive model of experimentation. Linear regression was performed in 

WEKA (Hall et al., 2009) using the M5’ variable selection procedure (Y.-C. Wang & Witten, 

1997). Linear regression was chosen as a relatively conservative algorithm, with a relatively low 

probability of over-fitting. Independent variables were not unitized, thus emphasizing practical 

significance in the model, and the regression output was cross-validated using Leave One Out 

Cross Validation (LOOCV) at the student level (the overall level of analysis). The final goodness 

metric was the post-validation coefficient of correlation. 

 Ultimately, the final M5’ model achieved a cross-validation correlation of .627 to the 

behavior of thoughtful exploration, comparable to levels in similar game-based learning detector 

models (e.g. Baker & Clarke-Midura, 2013). Predictors included several of the fundamental 

features created in Chapter One, including cycle starts, time elapsed, and number of cells 

collected. One of the recurring metrics below is “Ph level”, which represents the number of turns 

used before a cell collect. A higher Ph percent used indicates that more turns were used up before 

the cycle ended; a low Ph level used indicates that very few turns were taken before the cycle 

was ended. The model also featured several aspects of UI button use not core to cycle operations, 

such as review of instructional text with “forward” and “back” buttons, use of in-game almanac 
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links, and switching between cell and tissue lab screens. The model was split into three trees, 

divided at the top level by the criteria of number of total collects. Interestingly, this split falls 

roughly along the number of collects it takes to complete the game (implying possible insight 

into finished/nonfinished playstyle differences). If players had less than 14.5 collects (14 were 

required to complete the game), then linear model 1 applies. If players had more than 14.5 

collects, they could fall into one of two groups based on the collection of stem cells (iPS cells) in 

the game – also interesting, because the collection of this kind of cell is an indication of the 

“strategic failure” behavior. With zero iPS cell collects in Objective 5, behavior falls along linear 

model 2; with 1 or more iPS cell collects in Objective 5, player group with linear model 3. Each 

linear model, with detailed features, is as follows: 

 

 

Figure 53. M5’ regression tree WEKA output – predictive model of Thoughtful Exploration  
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Total collects <= 14.5 : Linear Model 1 (63/55.337%) 

Total collects > 14.5 :  

| Number of times iPS cells collected in Objective 5 <= 0.5 : LM2 (32/51.697%) 

| Number of times iPS cells collected in Objective 5 > 0.5 : LM3 (15/48.256%) 

 

Linear Model 1: 

number of total Thoughtful Exploration instances =  

 0.0011 * number of seconds spent on Objective 0 (training)  

 + 0.0282 * total number of cells collected during Objective 0  

 + 0.7095 * average Ph (%) used during Objective 0  

 + 0.0256 * number of times elective UI buttons were used during Objective 0  

 + 0.0026 * number of seconds spent on Objective 1  

 - 0.0178 * number of fibroblast cell cycle starts during Objective 1  

 - 0.2307 * average Ph (%) used during Objective 2-A 

 + 0.0007 * number of seconds spent on Objective 2-B  

 - 0.196 * average Ph (%) used during Objective 2-B 

 + 0.104 * number of times iPS cells collected in Objective 5  

 + 0.0022 * total number of cells collected during Objective 5 

 + 0.0957 * number of iPS cell cycle starts during Objective 8 

 - 0.0033 * number of seconds spent on Objective 8C  

 + 0.1094 * number of successful cycles in Objective 8-C 

 - 0.0076 * total number of times a cell or tissue collection was performed  

 - 0.1585 

 

Linear Model 2: 

number of total Thoughtful Exploration instances =  

 0.8926 * average Ph (%) used during Objective 0 

 + 0.0322 * number of times elective UI buttons were used during Objective 0 

 + 0.0008 * number of seconds spent on Objective 1 

 - 0.1119 * number of fibroblast cell cycle starts during Objective 1 

 + 0.0033 * number of seconds spent on Objective 2-B 

 - 0.2903 * average Ph (%) used during Objective 2-A 

 + 0.0009 * number of seconds spent on Objective 2-B 

 - 1.4842 * average Ph (%) used during Objective 2-B 

 + 0.321 * number of times an iPS cell collection was performed in Objective 5 

 - 0.0143 * number of times a cell collection was performed in Objective 5  

 + 0.0027 * total number of cells collected during Objective 5  

 + 0.2328 * number of iPS cell cycle starts during Objective 8 

 - 0.0041 * number of seconds spent on Objective 8-C 

 + 0.1377 * number of successful cycles in Objective 8-C 

 - 0.0095 * total number of times a cell or tissue collection was performed  

 + 2.3512 

 

Linear Model 3: 

number of total Thoughtful Exploration instances =  

 -0.196 * number of fibroblast cell starts during Objective 1 

 + 0.8926 * average Ph (%) used during Objective 0 

 + 0.0322 * number of times elective UI buttons were used during Objective 0 

 + 0.0008 * number of seconds spent on Objective 1 

 - 0.0687 * number of fibroblast cell cycle starts during Objective 1 

 - 0.0547 * number of iPS cell cycle starts during Objective 2 

 - 0.2903 * average Ph (%) used during Objective 2-A 

 + 0.0009 * number of seconds spent on Objective 2-B 

 - 0.7426 * average Ph (%) used during Objective 2-B 

 + 0.4288 * number of times an iPS cell collection was performed in Objective 5 

 - 0.0224 * number of times a cell collection was performed in Objective 5 

 + 0.0027 * total number of cells collected during Objective 5  

 + 0.5849 * number of iPS cell cycle starts during Objective 8 

 - 0.0041 * number of seconds spent on Objective 8-C 

 + 0.1377 * number of successful cycles in Objective 8-C 

 - 0.0095 * total number of times a cell or tissue collection was performed  

 + 2.7171 
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Independent variables were based on the features embedded in the text replay clips, 

chosen carefully as potential indictors of student exploration (see coding section for more detail). 

Overall, this model shows fascinating splits along the number of collects required for game 

completion – implying a potential finished/nonfinished play grouping – and, in the second tier, 

along iPS “harvesting” cycles strongly connected with strategic failure (see J48 model below). 

Not only does this regression tree solidify a consistent construct of thoughtful exploration in the 

Progenitor gamespace, it reveals the role of nuanced in-cycle efficiency (in Ph levels used and 

number of cells collected), and reinforces themes of previous chapters (e.g. negative early game 

repetition, and boss level success). The behavior patterns evident here, predictive of 

experimentation in the gamespace, also open the next section’s inquiry into the relationship 

between exploration and learning. 

Results and Findings II: Exploration Codes and Relationship to Learning 

 Next, to explore the relatnioship between thoughtful exploration – now solidly modeled 

as a construct in the game – and learning outcomes in Progenitor X, two perspectives were taken. 

The first looked at aggregate code totals by full-game span. Descriptive heat mapping and base 

correlation were used during this first pass. Investigation quickly revealed need for greater 

resolution, however, and the codes were then examined in greater detail. The second perspective, 

then, examined the codes as sequential strings of behavior (not unlike like DNA strands) specific 

to objective context. For this second investigation, feature engineering, seqential probability 

modeling, and statistical comparison methods were employed.  

For methods that involve contrasts between learning groups, this was based on the data 

from two sets of students: an upper quartile and a lower quartile of learners. This designation is 
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based on a pre-post assessment on regenerative biology (developed with content experts, and 

described in greater detail in the ADAGE/Progenitor methods Chapter Three). Relative to this 

performance, the quartiles are made up of two groups: Progenitor players with the greatest 

positive change in score, and players with the lowest change in score. The upper quartile consists 

of 33 players, and the lower quartile consists of 41 players. “UQ” is an abbreviation used 

throughout the dissertation for the upper quartile of learners, and “LQ” stands for lower quartile 

of learners. These only refer to learner groups (as determined by pre-post gains) – no other kinds 

of quartile groups are discussed in this dissertation. For all correlation and non-quartile analyses 

in this chapter, N=110. In all applicable analyses, p-values have been evaluated for significance 

with the R Studio QVALUE package (Dabney & Storey, 2004), controlling for multiple 

comparison based on False Discovery Rates (Benjamini & Hochberg, 1995; Storey, 2002). All 

adjusted p-values are thus called q-values, or “q”, in the results below. 

Overview: TES – A Construct Significant to Learning  

 To get a visual mapping of code frequency across all objectives, a heat map was 

constructed (green is most frequent, red is least). The four codes put into the map (Figure 54) 

were no experimentation (abbreviated as “S” for “straight and and narrow”), thoughtful 

exploration (TE), strategic failure (TES), and seemingly random or careless repeated actions (C), 

including dead-end failure ruts and clicking haphardly around the UI. These codes (S, TE, TES, 

and C) are referred to thoughout the findings section. 
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Figure 54. Aggregate heat map of exploration code frequency. 

 

Figure 55. Map of exploration codes during cell cycles of the game (opportune for TE/TES). 
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 Code frequencies were mapped across all coded objectives (Figure 54) as well as only 

phase 2 cell objectives (Figure 55), since these were inherently most affordant of TE and TES. 

Both show clear variation in the codes throughout the game, with a significant portion of “no 

experimentation” codes. The latter map specifically highlights potentially different playstyle 

groups, showing a clear increasing split between “no experimentation” (S) and “strategic failure” 

(TES) codes as the game moves forward.  

 Because the combinations of exploration behaviors could vary greatly, as evidenced in 

Figure 54, deeper investigation of codes in sequence were necessary to explore relationships with 

learning. Of interest especially was strategic failure (TES) in connection with other codes, since 

it required exploration of game mechanics deep enough to master and leverage them for 

metacognitive strategic ends. Because of the nature of its use in tandem with “legit” cycles 

(Figure 49), TES often occurred with a Straight and Narrow successful objective either just 

before or after it. This deliberate TES-S sequence was one that ultimately showed a positive 

relationship to learning, as seen in the findings below. 

Sequential Codes: Nuanced Relationships with Learning 

The overall findings quickly made it clear that there are great variations in patterns 

throughout the game, as well as great variation in the sequences of codes. Insight into the order 

of codes throughout play, and identification of pattern groups, were next explored to unearth 

deeper connections with failure and learning.  

 To help understand some of these variations, and unlock context of TES for greater 

learning insight, the codes were investigated in specific sequences for study throughout the 

game. To do this, several methods of feature engineering, descriptive analytics, and 

nonparametric statistics. These three analyses are described in detail below. 
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First, sequences of codes were distilled as data features for each student, and then used in 

the building of Markov models to show learners’ likelihood of moving between codes. For 

example, a student who finished the game would have had 12 TE/Non-TE codes assigned to 

them (one for each subobjective, as shown in Figure 44). The same four base types detailed in 

Table 13 were used: TE, TES, C, and S&N (“S” for short). Jane’s10 gameplay, for instance, may 

have started with no experimentation, changed to experimentation mid-game, and then focused 

on strategic failure for the duration. In this case, her string of 12 play codes might look like: S-S-

S-S-TE-TE-TE-TE-TE-TES-TES-TES. In this manner, each students’ sequence of codes was 

defined, and separated into upper and lower quartile learning groups to help understand codes’ 

relationship to learning gains. Two Markov models were then built (one of each quartile) in 

NetLogo (Wilensky, 1999) using the Narkov algorithm (Berland, 2012) to better understand the 

connection between learning and transitions between codes (Figure 56). The models showed the 

probability of a student moving from experimentation (TE) in one objective to careless clicking 

(C) in the next, and from careless clicking to strategic failure (TES) in the next objective, and so 

on (bi-directionally for all four code variants). The probabilities for each learning quartile were 

then contrasted, with the differences highlighting moves characteristic of the greater learning 

group. The learning quartiles are defined consistently throughout this dissertation (see Chapter 

Three, or the intro of Results and Findings II in this chapter for detail).  

                                                           
10

 Fictional player with a fictional name in a fictional string of play. 
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Figure 56. Markov modeling of code transitions in lower and upper quartiles (respectively). 

In the second analysis of exploration and learning, features were distilled from the TE 

code data (Table 13), detailing first and second-order sequences of exploration codes. Taking 

Jane’s code sequence from the previous paragraph, a first-order sequence for her (starting from 

objective 0) would look like: S-S. To capture sequences of codes at different points of play, these 

two-code combinations were taken from every possible objective point (starting with Objective 

0, then Objective 1, Objective 2A….etc). Jane’s hypothetical example of this first-order 

sequence (starting from each possible objective) is shown in Table 16. In Objective 0, her S-S 

sequence means that she started with “S” (no experimentation) in this level and went on to “S” 

again in the next level (Objective 1). Her next S-S sequence, starting in Objective 1, means that 

she had an “S” code in this level, and went on to Objective 2 with another “S” (and so on, 

throughout all possible starting points). These segments are merely a breakdown of her total 

experimentation code sequence of 12 (S-S-S-S-TE-TE-TE-TE-TE-TES-TES-TES).  
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Table 16 

First-Order Code Sequences, Starting from Each Objective: An Example with Jane 

 Obj 0 Obj 1 Obj 

2A 

Obj 

2B 

Obj 4 Obj 

5A 

Obj 

5B 

Obj 

5C 

Obj 

8B 

Obj 

8C 

Jane’s  

codes 

S-S S-S S-S S-TE TE-

TE 

TE-

TE 

TE-

TE 

TE-

TES 

TES-

TES 

TES-

TES 

 

These code sequences were created for all students, not only for a first order chain (code-

code) but for a second order chain with three codes (code-code-code). A snapshot of these 

second-order code chains from each possible starting point for each player is shown in Figure 57. 

For analysis of these new data features, the frequency of each sequence of codes (from each 

possible starting point) was calculated for each quartile of learners. This was to get an aggregate 

sense of exploration sequences, from specific starting objective points, that characterized each 

learning group. The frequencies (both first-order and second-order) of each learner group were 

then subtracted from one another, resulting in a matrix which showed the main differences in 

exploration sequence (specific to starting point) between the learner quartiles. This new matrix of 

differences was converted to a heat map (Figure 58) to more clearly show UQ tendencies (green) 

and LQ tendencies (red). (Heat maps were done for both the first-order and second-order 

features; for illustration purposes, the first-order heat map is shown here.) This way, learner 

exploration patterns could be seen in context of specific game objectives (information not 

conveyed in the context-free Markov model). 
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Figure 57. A snapshot of the second-order code sequences of each player (about 10% of total log 

shown). 

 

Figure 58. Contrast of sequenced-code frequency between upper and lower quartile learner 

groups. 



140 
 

 
 

Lastly, these new first- and second-order telemetry features were then compared with 

learning outcomes in nonparametric correlation, and the upper and lower quartile learner groups 

were contrasted through ranked mean comparison (via two-sample Wilcoxon). These statistics 

helped to support descriptive patterns found in the first two analyses. 

 Results from these three combined methods emerged in findings involving each 

exploration code. The following paragraphs will discuss different TE codes’ relationship to 

learning throughout the progression of play.  

Findings: Exploration Code Sequence and Learning 

 Exploration code sequences were visualized in the heat map and Markov models (Figures 

57 and 55). These visualizations were used to graphically identify trends for exploration with 

correlation and mean comparison. One interesting result included the non-exploration codes 

(carelessness and straight-and-narrow) as negatively connected with learning. Specifically, when 

paired with a general TE behavior in a C-S-TE string, this sequence was negatively correlated 

with learning gains (r=-.212; q=.047). Reinforcing the trend, 71% of players who had ONLY 

“C” and “S” codes (no TE or TES) were lower quartile learners. Thus, it seems that carelessness 

without long-term strategic thinking was negatively connected with learning. 

 The second main finding was that TES was positively connected with learning in a 

number of combinations. Essentially, TES paired with non-experimentation (either before or 

after) was positively correlated with learning gains. This makes sense with the use of TES in a 

strategic arc involving a clear sequence of cycle mastery (see Figure 49). For example, an S-

TES-S sequence was 12% higher in frequency on average for the upper quartile of learners than 

for the lower. This implies that TES was a vital strategy during these cell-cell-tissue sequences 
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characteristic of the greater learning group. The upper quartile had significantly higher (q=.047) 

frequency of the S-TES transition. Correlation supports this trend, showing that transitioning 

from “no experimentation” to “TES” (S – TES) in consecutive subobjectives was also positively 

correlated with learning (r=.244; q=.047). Similarly, a transition from TES to “no 

experimentation” was also positively associated with content gains (r=.188; q=.046). The 

Markov model also shows a positive connection between strategic experimentation and learning, 

marking the same TES to “no experimentation” as 20% higher in the upper quartile. Thus, it 

seems that S-TES and TES-S sequences are states of exploration more characteristic of learning, 

especially in cell-to-tissue levels. 

Overall, understanding the connections of thoughtful exploration to learning give us 

insight on the roles of no experimentation, carelessness, strategic failure, and thoughtful 

exploring relative to sequence and game context. These findings help highlight some organic, 

descriptive trends in the data for informing future studies, and support overall inferences about 

strategic failure and learning. A model of strategic failure is next, deepening the investigation of 

strategic use of explored mechanics during play. 

Results and Findings III: Predicting Learning-Supportive Strategic Failure 

Given its recurring connection with learning, TES was chosen as the outcome variable in 

a detector of strategic failure. The clear use of TES by players was particularly of interest 

because it requires multiple layers of understanding: first, it indicates an intricate knowledge of 

the game’s failure mechanisms, and secondly, it implies a level of metacognition in employing 

those mechanisms in a deliberate success strategy. It may be this complexity of strategic thinking 

that supports connections with learning. In tracking gameplay actions characteristic of strategic 
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failure, it is possible to pinpoint a very specific combination of in-game moves which define this 

emergent, alternative learning trajectory. It’s possible to predictively model this strategy using 

the EDM detector method, described in detail at the beginning of the chapter. 

In order to predict this strategic thinking based on event-stream player action, a J48 

classification algorithm was employed in WEKA (Hall et al., 2009) with a binary “TES / no 

TES” code as the dependent variable. Independent variables were based on the features 

embedded in the text replay clips, chosen carefully as potential indictors of student exploration 

(see coding section for more detail). These included several of the fundamental features distilled 

in Chapter Five with the intricate grain size of Chapter Six study, including cycle starts, kinds of 

cell collected, and start-collect combinations on the cycle-by-cycle subobjective level. Results of 

the analysis were evaluated using Cohen’s Kappa, with cross-validation using the LOOCV 

(Leave One Out Cross Validation) at the student level (the overall TES level of analysis).  

Overall, the model achieved a Kappa of .71 after student-level cross-validation, 

comparable to similar learning game detector studies (e.g. DiCerbo & Kidwai, 2013; Asbell-

Clarke, Rowe & Sylvan, 2013). This value indicated the accuracy of the detector was 71% better 

than chance. The A’ value was .87, signifying that the detector could correctly classify whether a 

clip contained strategic failure 87% of the time.  
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Figure 59. J48 Prediction Model – Detector of Strategic Failure 

 The results of this model are discussed below, starting with the top tier of the model, 

Objective 5 collects of iPS cells.  

 The highest level predictor of strategic failure was the collection of iPS cells in Objective 

5. As discussed in previous chapters, Objective 5 is the first synthesis of non-scaffolded 

tissue and cell cycles (presented in a cell-cell-tissue sequence). IPS cells are the core stem 

cells needed to build new tissue for the ailing zombies, and thus represent a core biology 

concept of the game. If students collected any of these cells (indicative of the 

“harvesting” strategy) in Objective 5, but avoided collecting the wrong kind of cell 

(“Ectoderm”), it was an indication of strategic exploration. However, if they did collect 

these wrong ectoderm cells, it decidedly put them in the “non_TES” category.  
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 Another branch of the tree on the second-to-highest tier has correct cells collected – 

“Endoderm” cells. Specifically, if the students populated the grid with endoderm cells, 

and simply moved them around to multiply them before collecting them again (a 

behavior now dubbed “harvesting”), then they are engaging in strategic exploration 

behavior. (This behavior is represented above in the abbreviation “Endo_Endo”.) If not, 

we move to the third tier of the tree. This tier is reached if players 1) have not collected 

Objective 5 iPS cells, and then 2) not engaged in endoderm harvesting. This tier directly 

addresses the failure element of the strategy, showing that an efficient fail-success 

schema in Objective 8 (the final level) signals purposeful failure.  

 The right branch of tier three shows that if there is any far failure in Objective 8, and it is 

paired with only ONE (successful) cycle in the middle of the level (8B), then students are 

using this failure as part of TES. However, if there is more than one collect in the middle 

boss level (8-B), students are classified as NOT using TES; in this case, far failure more 

likely signals…well, just failure. The left branch of the third tier displays a path of 

students with NO Objective 8 far failure. If they did not collect any iPS cells in Objective 

8, then they fall into the Non_TES category. If they DID collect these cells, and had very 

few near failures (1 or less), it was again a sign of purposeful, strategic use of failure. 

Conversely, if players at this point had more than 1 near failure, they were likely not 

practicing strategic exploration (Non_TES).  

In short, players were classified as practicing TES if they met one of the following four 

conditions: 

1) They collected iPS cells with NO wrong “Ectoderm” cell collects in Objective 5. 
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2) They did NOT collect Objective 5 iPS cells, but did have one or more endoderm-

endoderm (start-end) cycles in Objective 5 (a “harvesting” behavior).  

3) They had NO iPS collects and no endoderm-endoderm cycles in Objective 5, but had one 

or more Objective 8 far failure cycles, with only 0-1 collects in the middle of Objective 8. 

4) They had NO Objective 5 iPS collects or endoderm-endoderm cycles, and no Objective 8 

far failure. Beyond these thresholds, if they collected any iPS cells in Objective 2 (a 

“harvesting” behavior) with low near failure in that same objective (one or less), they 

were classified as TES.  

Thus, this predictive model implies that specific use of far failure (via iPS and endoderm 

harvesting behavior), accompanied with low amounts of incidental failure (e.g. near failure) 

generally characterize the use of strategic failure in the Progenitor gamespace. This emphasizes 

earlier analyses’ findings that failure is not monolithic, and each failure type has an evolving 

relationship to learning throughout play. Essentially, this model of strategic failure 

operationalizes transgressive play in the Progenitor gamespace and captures it in positive 

characterization of learning. 

Conclusion 

These findings define predictive models of experimentation in the Progenitor gamespace, 

identifying one kind of strategic failure in particular significantly associated with learning gains. 

TES operationalizes a form of transgressive play in the gamespace, and connects this sort of 

play-based testing of limits positively with learning. Detectors such as these are powerful tools in 

informing future game design, able to provide real-time differentiation between productive 

failure (c.f. Kapur, 2006) and unfocused floundering in the gamespace. Distinctions like these 

can inform design of game cues to support learner trajectory along these organic critical 
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pathways to learning. Findings of this chapter also build on, and reinforce, the previous chapters’ 

themes of early game failure ruts, the importance of the mid-game tissue levels, and the 

fascinating evolving role of far failure throughout play.  

Tying into the previous two studies, this analysis clarifies the role of far failure, near 

failure, and success in patterns of experimentation, and ultimately learning. Building on the 

feature engineering and performance trends over time mapped in analysis one, and the play 

progression states visualized in analysis two, this section can supplement our understanding of 

performance and learner behavior relative to the immersive, exploration-friendly context of 

educational gamespaces. 
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Chapter Seven: Conclusions and Future Work 

 In understanding learner trajectories within game microworlds as designed experiences 

(c.f. Rieber, 1996; Squire, 2006), this dissertation looked through the lenses of play purpose 

(games as playful medium), instructional purpose (learning games as content delivery systems), 

and individual purpose (the play style and subjective goals each player brings to the game). The 

empirical arc of analysis was based in the game Progenitor X, and used mixed methods to 

examine three distinct intersections of the lenses above (Figure 1). Together, the three analyses 

broadly explored an overarching research question: what kinds of naturalistic player interaction 

with the educational gamespace (including play progression, in-game success, shades of failure, 

and experimentation) characterize learning?  

Each of the analyses explored its own research question and intersection of lenses. 

Specifically, the first analysis used descriptive and nonparametric statistics (with specially 

engineered features) to explore the intersection between the learning game as content delivery 

and individual player choices. To do this, it identified procedural biology content, translated to 

specific verbs of play, and engineered data which showed student performance on these key 

tasks. Statistical analysis of these success and nuanced failure patterns then explored the research 

question: how does fine-grained, context-specific game performance (including shades of failure 

and success) connect with learning outcomes? The second analysis focused on the intersection of 

the game as a designed arc of play, and student choices in navigating this gamespace. Machine 

learning analysis was used to study player progress through each sequential cycle of the game, 

exploring learner pathways in play progression. Markov models were used, because they can 

illustrate the probability of players moving, in time order, from one level to another. For each set 

of progress data, two Markov chain models were made: one for the upper quartile, and one for 
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the lower quartile of learners. Contrasting the two quartile models of play directly addressed the 

second research question: how does organic play progression differ between groups of learners? 

The last analysis followed with a question of natural corollary: what play data features (both of 

performance and progression) characterize experimentation in Progenitor X, and how does this 

behavior connect with learning outcomes? Resting at the intersection of all three lenses, this third 

analysis focused on player agency in employing strategic performance (on academic content 

mechanics), while optimizing their pathways through the experimentation-encouraging medium 

of the game. To study this, it drew on educational data mining to build a predictive detector of 

player experimentation in Progenitor X, and then examined kinds of experimentation in 

relationship with learning outcomes.  

These analyses gave respective insights that built three overall trends of findings in 

relationship to learning: harmful far failure in early levels, critical mid-game skill synthesis, and 

strategic failure in later-game levels (positive to learning). Broadly, these findings showed that 

overall play success and progress is positively connected to learning, while aggregate time on 

task and total failures ( as a general category) were not related to learning. Some kinds of failure 

were, however, connected with learning patterns: specifically, tissue failure and “far” failure. 

Generally, tissue failure (possibly signaling extended frustration with this core mechanic) in mid-

game levels had negative impact on both play completion and learning gains. Far failure in 

tutorial game levels were negatively related to learning, but became positively correlated with 

learning gains in the boss level. Identifying emergent forms of strategic failure (analysis 3), 

which was positively associated with learning, helped to explain the changing relationship of far 

failure to learning throughout the game. 
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The first analysis built data features that supported all three analyses, and showed that 

failure was not a monolithic construct in Progenitor gameplay and learning. In other words, 

kinds of failure matter, and context of that failure matter, particularly in relationship to learning. 

Far failure, a definition of failure as a result of acting directly contrary to game cues (e.g. wrong 

start or wrong collect), emerged as an important construct. Specifically, far failure’s early game 

negative relationship to learning shifted to a positive relationship in later levels. Next, the 

Markov analysis created a new set of data features based on cycle-by-cycle game progression, 

allowing for new sequential refinement. Fundamentally, it showed differences between the 

learner groups consistent with the first analysis: avoiding repetition of early-level cycles (and far 

failure), strong tissue performance in skill synthesis levels mid-game, and consistent use of far 

failure in the boss level of the game were characteristic of the higher learning group. The last 

analysis, exploring experimentation in play and learning, built upon the performance and 

sequentially-detailed features of the first analyses. Aligned with the previous findings, it 

thematically revealed that far failure was a defining construct for learner experimentation in play. 

Essentially, the study was able to identify a behavior of strategic failure – deliberate use of 

gameplay failure for efficient objective completion – through the holistic coding of play 

sequence. This strategic failure, a type of experimentation in play, was positively associated with 

learning gains. Consistent with earlier chapters’ findings, far failure in later levels of the game 

were positively connected with strategic failure and learning, while tissue failure and far failure 

in early levels were negatively related. 
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Implications 

New Paradigms of Assessment 

 One major implication of ADAGE for game-based assessment is affording multiple 

approaches to understanding learner trajectories. ECD task models, for example, can be easily 

used in conjunction with ADAGE Critical Achievement structures to gather salient evidence for 

analysis. This approach represents a pre-formed hypothesis about an optimal learning pathway 

through the virtual space. Conversely, ADAGE also provides data very compatible with a purely 

exploratory data mining approach (as this dissertation demonstrates). Assessment data provided 

by ADAGE can also provide a combined confirmatory-exploratory approach, one increasingly 

popular in learning game analysis (e.g. Institute of Play, 2013; Baker & Clarke-Midura, 2013). 

Beyond basic research approach and experimental design, there are a myriad of analysis methods 

which can be fueled by ADAGE data. For example, ADAGE is being built out to capture textual, 

multi-player data, and already collects context-rich event-stream data. This myriad of interaction 

data can be used with classic statistics (e.g. multiple regression) and learning analytic techniques 

(e.g. pattern matching algorithms, predictive student modeling, association mining, or 

visualization). A common framework for salient assessment data aggregation across genres 

solves the “critical problem” of recording relevant clickstream data in the “deluge of 

information” that is game data (c.f. Shute, 2011). It enables more time spent on intelligent 

iterative game design, and facilitated connection of play patterns across games (not on 

reinventing the data structure “wheel” for each consecutive project).  

 As reviewed in Chapter Two, the ADAGE framework – as shaped by these paradigms of 

Evidence Centered Design and Educational Data Mining – represents new possibilities for 

authentic assessment in virtual learning spaces.  
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Today, games and other digital media allow us to track progress on multiple 

variables to gauge growth across time and to discover different trajectories 

towards mastery and innovation compared and contrasted across thousands of 

learners…. A single score on a standardized test taken on one day—a “drop out of 

the sky test”—will come to look not just thin, but unethical. (Gee, 2012, p.2) 

 

Indeed, current “drop out of the sky”, high-stakes, annual multiple choice tests currently 

reinforce several arguably narrow views of learning. First, current “testing teaches there are right 

answers” – specifically, only one right answer (and presumably thinking process) per problem 

(Shank, 2011, p. 80). It also fixates on factual memorization (recalling Dewey’s century-old 

warning (1938) about the school system’s fact fetish), decontextualizes assessment from an 

authentic learning context, and teaches us that some subjects are compartmentalized, with some 

more important than others (Shank, 2011). Conversely, interaction-based assessment in digital 

worlds can afford learner agency in exploring multiple solutions through an interactive thinking 

process. This virtual, learner-centric mining of the interactive event stream can help provide 

formative assessment as feedback in the learning process, emphasizing cross-subject problem-

solving in worlds where learning context and assessment are seamlessly integrated. Thus, 

assessment based on interaction mining in virtual learning spaces can help move us to a process-

based assessment system rather than a knowledge-based one (c.f. Shank, 2011; Behrens et al., 

2012). New paradigms like this help answer an increasing call for alternative, digitally based 

performance assessment from as high up as the White House (President’s Council of Advisors on 

Science and Technology, 2013). This movement is also supported by digital assessment data 

consortiums in top tier research institutions (e.g. GLS reference) and in recent efforts by 

assessment giants like ETS and ACT to expand research in virtual-world event-stream data 

analytics (e.g. Institute of Play, 2013; Encarnacao, 2014).  
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 As this assessment movement gains momentum, it could change the face of education. 

The reason for this is that “assessment, especially when coupled with accountability, drives how 

we teach and learn” (Gee, 2012, p.1). If we can develop robust yet authentic assessment 

(embedded with formative feedback), with learner agency and creativity in problem solving with 

multiple solutions – all in virtual worlds where subjects can overlap and even share solution 

strategies – then this is exactly the kind of teaching and learning that will be incentivized in our 

schools. 

Failure and Learning 

Within these future paradigms of assessment , this research supports changing empirical 

understandings of the nature of failure and its role in learning. Technology-supported inquiry 

learning (Edelson, Gordin & Pea, 1999), for example, specifically highlights the role of the 

discovery and refinement of knowledge based on student exploration of content via hypothesis 

testing; necessarily, this involves failure as feedback in defining knowledge boundaries and 

problem constraints. In this sense, the consideration of failure in a positive role is vital to 

authentic assessment within broad instructional schemas like discovery-based learning. Ranging 

from these constructivist methods to more direct instruction, the “assistance dilemma” 

(Koedinger et al., 2008) questions whether failure minimization via greater assistance and heavy 

scaffolding is always better for learning. Kapur (2006) directly builds on this research, 

empirically establishing the construct of “productive failure” in minimally-scaffolded learning 

contexts. Jim Gee and Jesper Juul both assert, respectively, that failure in video games is 

designed to be pleasantly frustrating and often serves to fuel self-regulated learning (Gee, 2005a; 

Juul, 2013). 
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By design, games as a medium support productive failure. Boundary testing, and 

response to failure as formative feedback, is in an essential part of the game experience (Schell, 

2008; Squire, 2006). Salen & Zimmerman (2004) identify limit testing as part of the profile of 

the “dedicated player,” who fails frequently because they intentionally do not follow the rules, 

but is engaged in play and interested in strategically understanding the underlying rule 

constraints of the game (p. 268). (This dedicated player stands in contrast to the “spoilsport” or 

the “cheat,” both of whom would be likely to engage in “WTF” behavior or gaming the system 

(e.g. Wixon et al., 2012; Baker, Corbett & Koedinger, 2004).) In the domain of transgressive 

play, or purposeful rule-breaking, Salen & Zimmerman assert that “rule-breaking can enhance 

meaningful play,” because “to strategically break rules requires an intimate knowledge of the 

rules themselves” (Salen & Zimmerman, 2004, p.281-282). This dissertation, for example, 

empirically demonstrates the existence of strategic failure, and in positive relationship to 

learning – which implies the sort of agency and cognitive engagement characteristic of 

“dedicated” transgressive play. Failure is, indeed, an incentive for pushing forward in play (Juul, 

2013) and serves to fuel the core learning principle of “pleasant frustration” in video games 

(James Paul Gee, 2003). Failure as productive play is a vital consideration in our assessment of 

learning in games, particularly in considering multiple “optimal pathways” through the learning 

space (Ramirez et al., 2012; Owen & Ramirez, in submission). 

 This dissertation’s insights into failure afford vital insight for such authentic assessment 

of learning in virtual learning spaces. The first pivotal understanding is that failure is not 

monolithic; it does not always simply exist in one form throughout the entirety of a learning arc. 

In this study, different types of failure were worth distinguishing, both in terms of learning and 

play progress. A second key insight is that context of failure matters. Each kind of failure was 



154 
 

 
 

examined at multiple points of gameplay, and the relationship of each to learning varied based on 

the context. Far failure, for example, went from having a negative association with learning in 

the beginning of the game to a positive relationship towards the end. This evolution towards 

strategic failure implies the agency and engagement of “dedicated” transgressive play (Salen & 

Zimmerman, 2004). Thirdly, failure can be beneficial to learning. Strategic failure in Progenitor 

X, for example, was positively connected with learning outcomes. Failure, in this case, became 

vital for assessment purposes because it signaled significant learning gains. Nuanced failure in 

context-specific performance, thus, can be key in understanding (and assessing) transgressive 

pathways optimized for both play and learning. 

Data-Driven Learning Design 

The ADAGE framework and its analytic affordances have major implications for 

iterative game design optimized for play and learning. In the design of learning game 

environments, experts assert that players rarely interact with the game in exactly the way the 

designers envision, and thus heavily emphasize early, repeated usertesting (Schell, 2008; Salen 

& Zimmerman, 2004). With the added element of content-specific learning goals, or concrete 

growth over time in a domain-specific skill, attending and adjusting to organic play patterns 

becomes even more vital (c.f. Shute, 2011; Norton, 2008; Institute of Play, 2013). Specifically, 

through designed assessment structures, and through application of data output to various data 

mining methods, assessment frameworks like ADAGE can powerfully fuel a data-driven game 

design process that optimizes learner experience from the earliest development stages. They can 

use telemetry-based assessment structures and applied learning analytics to inform three stages 

of development: initial core design, alpha and early beta usertesting, and final design overlay of 

learner-adaptive gameplay. 
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In the early design process, using a learning game data framework can not only help 

pinpoint existing data features for usertesting insight and later analysis – it can inspire the 

creation of helpful learning measures in-game (like ADAGE “Critical Achievements”, or CAs). 

Moments considered important for measuring learning can be built into the design process, 

crafted with the goal of informative yet seamless feature of gameplay. One example of the 

Critical Achievement data structure supporting early design is in Crystals of Kaydor, a game in 

the Tenacity collaboration with GLS and the Center for Investigating Healthy Minds. Crystals of 

Kaydor is an RPG designed to cultivate the development of pro-social behavior through 

collaborative social interactions. The player controls a robot who has crash-landed on an alien 

planet. For the first kind of CA, in order to win the aliens’ trust, the player must pay close 

attention to non-verbal cues, tracking aliens’ facial expressions and intensity through a slider 

interface. Secondly, the player must then correctly select the emotion of the alien, and for the last 

CA, choose an emotional response to the aliens’ affect. These two CAs correspond directly with 

the game’s content model of teaching awareness of non-verbal cues and emotion in others. In 

tandem with these CAs, ADAGE play progression data has also provided a context-rich 

backdrop to evaluate play progression in relationship to learning (Beall et al., 2013). Building in 

formative assessment (like CAs) in initial phases of game design (rather than clunky late-game 

additions or identified post-hoc by desperate researchers) has several advantages. First, it helps 

beautifully integrate play progression and learning measurement mechanics for a seamless player 

experience. Second, these designer-specified mechanics directly inform data structures and early-

phase analytics, making usertesting results even more relevant to developers. Thirdly, these key 

learning mechanics provide anchoring measurement points for educational researchers, who can 
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then provide insight into growth patterns that inform final in-game scaffolding design (see 

adaptive design below).  

Strong data structures also enable telemetry analysis for data-driven design in the alpha 

and early beta phases. Visualizations and descriptive analytics can be particularly helpful in 

refining UI design, as well as identifying bugs and player attrition points. All of these analytics, 

based in click-stream data, can greatly complement qualitative usertesting methods like 

interviews, surveys, and think-alouds. Specifically, visualization of well-structured telemetry 

data can be a powerful tool in identifying bugs and player attrition points. A similar example 

exists for early design and testing of Fair Play11, a game about implicit bias in graduate-level 

academic institutions. In this game, positional telemetry data was recorded to create a heatmap of 

player activity. One map level (aerial view) in the game (Figure 60) was programmed to show 

areas of frequent player travel in red, and areas least traveled by students in blue (Owen & 

Ramirez, in submission). This helped inform placement of in-game assets critical to content 

exposure and game advancement. 

 

 

Figure 60. Fair Play heat map of click-stream player activity 

                                                           
11

 http://www.gameslearningsociety.org/fairplay/ 
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In final stages of game development, after extensive data collection with late-beta builds, 

ADAGE-enabled learning analytics can be used to predict in-game actions and performance 

most characteristic of learning. This knowledge of ideal player behavior can then inform the final 

design phase: user-adaptive, fully scaffolded play for optimized in-game learning. To this end, 

optimal player actions, sequential pathways, and assessment growth trajectories can each be 

explored through learning analytics (including visualization, prediction, and pattern mining 

methods). These categories are based on the extensive literature review in Chapter Two (Figure 

11), and examples of each (relevant to adaptive play design) are given below: 

 This dissertation’s early correlation of in-game success and failure with pre-post learning 

outcomes helps define red flags of far failure (negative to learning) in tutorial levels.  

 Predictive modeling of experimentation supportive of learning is also modeled in this 

study’s arc, using a detector methodology with classification and regression trees 

(CART) to predict in-game performance and learning (e.g. DiCerbo & Kidwai, 2013; 

Baker & Clarke-Midura, 2013).  

 In similar research, Bayesian networks have also been used with this data theme, 

probabilistically connecting chunked performance data to creative problem solving in 

games (e.g. Shute, 2011). Through not yet widely used in games, Bayesian Knowledge 

Tracing (BKT) is an applicable algorithm that can predict learning moment-by-moment 

based on multiple performances on a chosen task (e.g. Baker, Corbett, & Aleven, 2008). 

If gameplay models show certain actions at certain points to be more predictive of 

learning, then player-triggered scaffolding (e.g. help resources) can be implemented in-

game to help keep players on track at these crucial points.  
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 Sequential learner pathways, using salient event-stream data, can also be modeled using 

machine learning methods. Specifically, visualization and predictive modeling (including 

cluster analysis and pattern-mining techniques) have been used with success in learning 

games research to capture learner trajectories. In this study, the Markov models of play 

trajectory are a prime example (Chapter Five). In other relationship mining through 

visualization, SimCity.EDU researchers are currently building player profiles by 

identifying groups using hierarchical cluster analysis (Institute of Play, 2013). In another 

visualization example, ADAGE-based heatmaps can visualize learners’ critical pathways 

though the game (e.g. Owen, 2014).  

 

A concrete example of final-stage adaptive play design can be given based on this study’s 

findings. The predictive models of experimentation and strategic failure in Chapter Six can 

identify real-time transgressive play patterns supportive of learning – and those NOT helpful to 

students. With an automated detector of strategic failure supportive of learning, an additional 

layer of game code could be added which encourages players along this path (and differentiates 

it from the kind of failure characteristic of attrition or lower learning, helping those players 

recover as well.) Overall, in application to games, these ADAGE-fueled assessment analytics can 

help designers anticipate and support in-game performance indicative of learning.  

Future Work 

ADAGE provides a flexible, cross-genre assessment data framework that supports 

multiple evaluation approaches and analysis methods. Schemas like ADAGE, defining salient 

information in the event-stream digital deluge of data, are vital for new paradigms of assessment 

made possible in this digital age of education (c.f. Behrens et al., 2012; Shute, 2011; 
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Steinkuehler, Barab & Squire, 2012). In future work, the growth and development of ADAGE 

and in-game assessment can improve with larger-scale research around multiple contexts and 

audiences for application.  

 Progenitor X began at GLS in 2011 as an idea brainstorm, led by Kurt Squire, for the 

National STEM Video Game Challenge. Lead game designer on the game was Mike Beall, 

working closely with programmers Ted Lauterbach and Greg Vaughan. Progenitor soon became 

a part of CyberSTEM, a GLS game assessment project (led at the time by Rich Halverson and 

Ben Shapiro). Since the game was being developed in-house concurrent with CyberSTEM, it 

became an ideal genesis point for the first clickstream embedded assessment study. Hence, the 

zombie-ridden biology game and GLS in-game assessment rose up together from mutual fertile 

ground. Out of playful undead tissue regeneration, thus, sprung the first version of ADAGE in 

2012. Allison Salmon was the programmer who made possible the translation of the conceptual 

assessment frame of ADAGE to an actual implementable API. Hence, Progenitor X was the 

original click-stream assessment game of study, which worked well for pioneering the 

assessment framework and methods applications central to this research. However, in future 

work, research with expanded sample size and game genres promises to yield further insight. 

ADAGE has now been implemented in eight different GLS games, and has its own open-source, 

user-friendly website (www.adageapi.org). IRB permissions have just expanded to permit all 

anonymized clickstream interaction with any GLS game to be used for study (including any 

remote use by anyone on the internet). The foundational assessment framework and methods 

blueprint presented in this dissertation thus help support expansive, larger-scale future studies 

imminent with ADAGE. 
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 Looking beyond n-size, the future of ADAGE is perhaps most exciting in the potential 

for integration across multiple interaction data sources, contexts, and audiences. Event-stream 

game data is a rich source of information which can be leveraged for even deeper insights with 

other forms of player interaction data (including observational/video, interview, survey, in-game 

discourse, and physiological sensor data). Powerful insights about learning in play can be made 

with the synchronization of these multiple sources, each one a part of a larger ecology of 

interaction data. To broaden in-game event stream information, ADAGE is moving from player-

game records to player-player interaction structures, being built out for the multi-player GLS 

game Trails Forward. Indeed, the boxed game itself is just a small part of a larger “big G” Game 

ecology that involves community discourse and collective intelligence around the game (Gee, 

2003; Jenkins, 2006; Steinkuehler, 2006). Similarly, a way to capture player-player interactions 

outside of the game is to study asynchronous player data – like forum posts, modding, 

machinima, and other game-centered community artifacts. Integration of these affinity space data 

(James Paul Gee, 2005b) with in-game interaction data can support even greater insight on play 

and learning on the “big G” Game community level.  

In addition to future integration of interaction data sources and larger community context, 

the use of assessment data for multiple audiences is critical. In ideal future work, game-based 

assessment data should be collected, processed, and then exported for the benefit of several 

parties: researchers, students (in understanding their own play), developers, and facilitators 

(including parents and teachers). For researchers, future work might leverage deeper analytic 

methods in the machine learning categories of visualization, relationship mining, and prediction 

(Figure 11). For example, heat maps of critical paths and automated correlations of performance 

with learning outcomes can provide powerful tools for understanding student behavior (and are 
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planned as ADAGE-automated features). Connecting research methods and players, in-game 

formative feedback cycles can be fueled by intelligent learning models built into game code. One 

example is Bayesian Knowledge Tracing, a probability algorithm modeling learning moment-by-

moment (e.g. Baker et al., 2011) that is ideal for informing adaptive “help” resource scaffolding 

during play. Students, especially with the development of an ADAGE student portal, should be 

able to see visualizations of their own progress, earn badges and achievements, and benefit from 

data-informed adaptive gameplay. Game development can be informed by base ADAGE 

assessment mechanics, as well as many machine learning analyses – including heat map 

visualizations, network diagrams of player navigation, context-specific features most highly 

correlated to learning, and moment-by-moment detectors of desired behavior – in early and 

iterative design stages. Facilitators, with a future ADAGE portal, should be able to see their 

pupils’ progress and more easily support and group students according to data-driven 

recommendations. Customizing assessment output for each member of the audience ecosystem 

can help create a sense of agency in all stakeholders – and inform new paradigms for integrated 

assessment design, collection, analysis, and iterative application optimizing play-based learning. 

Final Summary and Conclusion 

 This dissertation supports ADAGE as an assessment data framework that advances new 

paradigms in the way we understand student learning in play. Empirically, this research 

demonstrates cross-method application of ADAGE assessment through the lenses of game 

microworlds as designed experience. ADAGE-based findings differentiate types and context of 

failure, reveal experimentation patterns, and demonstrate the positive relationship between 

strategic failure and learning. The ADAGE-based mining of these unexpected player pathways 

through the learning space have powerful implications for defining alternate learner pathways in 
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new assessment paradigms, reconsidering the role of (non-monolithic) failure in formal learning 

evaluation, and informing iterative educational game design for the optimization of learner-

adaptive play. Ultimately, these insights can fuel new empowerment of researchers, designers, 

and facilitators in providing engaging, interactive, learner-adaptive play environments for those 

to whom the future of education belongs: our students. 
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Appendix A. 

(Chapter Five) Detailed Markov: transition matrix – lower quartile model 
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Appendix B. 

 (Chapter Five) Detailed Markov: transition matrix – upper quartile model  
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Appendix C. 

 (Chapter Five) Basic Markov: transition matrix – lower quartile model  
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Appendix D. 

(Chapter Five) Basic Markov: transition matrix – upper quartile model 

 

Note: transition matrices from Chapter Five’s most detailed set of models were too big to fit 

legibly here; I’m happy to supply them as excel docs via email upon request. 
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Appendix F. Progenitor Protocol: Post- Survey 
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