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Abstract

In learning and making meaning in this digital age (Steinkuehler, Barab & Squire, 2012),
computer-based microworlds can be immersive contexts for supporting self-regulated learning
(Papert, 1980). Games represent an important subset of microworlds, able to enhance player
agency and endogenous narrative in learner-adaptive play (Rieber, 1996). Games offer pleasantly
frustrating, well-ordered problems with timely scaffolding — thus providing new opportunities for
assessment of complex skills in an authentic context (Gee, 2012). However, game-based
assessment can be a challenge; instead of a few isolated, independent assessment points,
evidence of learning is often manifested in a rich, electronic data stream of continual player
interactions (Shute, 2011).

Game-based assessment thus needs to isolate specific, game-situated task performance —
yet account for masses of context-rich, event-steam interaction data central to play narrative.
Uniting these paradigms in an integrated assessment framework, the Games+Learning+Society
(GLS) group has created ADAGE (Assessment Data Aggregator for Game Environments), a
framework designed to transform click-stream data into evidence of learning. ADAGE integrates
core game structures into a click-stream data schema, which is seeded with context vital to
informing learning analyses (Owen & Halverson, 2013). Overall, it provides a rich, method-
agnostic data yield, with scalability and cross-genre flexibility. ADAGE development has been
guided by recent learning assessment research in Evidence Centered Design (Mislevy, 2011) and
Educational Data Mining (“EDM?”; Baker & Yacef, 2009).

This dissertation establishes ADAGE as an assessment data framework for learning
games; empirically, it then investigates ADAGE-generated performance data to assess learner

trajectories in a biology videogame. The overarching research question asks: what kinds of



organic player interactions (including play progression, in-game success, shades of failure, and
experimentation) characterize learning? Three analyses (using statistics, machine learning, and
EDM) investigate relationships between learning and 1) in-game success/failure; 2) core play
progression; and 3) player experimentation. Ultimately, findings differentiate types of failure,
reveal experimentation patterns, and demonstrate the positive relationship between strategic
failure and learning. These ADAGE-based organic play trajectories have powerful implications
for defining alternate learner pathways in new assessment paradigms, reconsidering the role of
failure in formal learning evaluation, and informing iterative game design for the optimization of

learner-adaptive play.



Chapter One: Introduction and Overview

Seymour Papert maintained three decades ago that “computers can be carriers of
powerful ideas...they can help people form new relationships with knowledge” through
“exceptionally rich and sophisticated micro-world[s].” Specifically, one “design criterion for our
microworlds is the possibility of...games...that make activity in the microworlds matter”
(Papert, 1980, p.4, 12, 126). More than ever, in our current technological era, these computer-
based “video games have the potential to lead to active and critical learning” (Gee, 2003, p.46).
However, Squire cautions, “games aren’t just open environments; they are carefully crafted
learning experiences” (Squire, 2011, p.13). In other words, design matters. Indeed, good games
encompass pleasantly frustrating, well-ordered problems (Gee, 2005) which reward higher-order
thinking skills (c.f. Steinkuehler & Duncan, 2008; Halverson et al., 2011) — and provide just-in-
time information in formative feedback cycles (Gee, 2003; Shute, 2011). Ongoing assessment
thus becomes a vital component of maintaining the agency and endogenous motivation
(Costikyan, 2002) in the designed experience of good games (Squire, 2006). It is also vital in
leveraging interaction-rich game data for understanding of learning in the process of play, rather
than simply seeing the game as a black box between pre- and post- measurements. However,
game-based assessment of any kind can be challenge, since instead of offering a few isolated,
independent assessment points, evidence of learning is often manifested in a rich, electronic data
stream of continual player interactions (Shute, 2011).

Thus, game-based assessment needs to isolate specific, game-situated task performance —
yet simultaneously account for masses of context-rich, event-stream interaction data central to
play narrative. Uniting these paradigms in an integrated game-based assessment framework, the

Games+Learning+Society group has created ADAGE (Assessment Data Aggregator for Game



Environments). ADAGE (Owen & Halverson, 2013) is an assessment data framework designed
to turn click-stream data into evidence for learning. It integrates core game design structures into
a click-stream data (telemetry) schema, which is then seeded with context vital to informing
learning analyses. Overall, ADAGE provides a standardized game telemetry framework with a
rich, method-agnostic data yield, efficient enough to have scalability, and flexible enough to use
across games. In current development, ADAGE is both a game-based assessment data
framework and an API with a data output engine. The ADAGE design and development effort
has been especially guided by recent prominent research in measuring learning in digital
environments: Evidence Centered Design (e.g. Mislevy & Haertel, 2006) and Educational Data
Mining (e.g. Romero & Ventura, 2010; Baker & Yacef, 2009).

An ADAGE-based empirical study, this dissertation endeavors to better understand
learning in the midst of play — a natural conductor for interest-driven, self-regulated exploration
of knowledge (Vygotsky, 1930-1934/1978; Rieber, 1996). Specifically, this research establishes
ADAGE as an assessment data framework for learning games; empirically, it then investigates
ADAGE-generated authentic performance data to assess organic learner trajectories in the GLS
biology game Progenitor X. In this application of ADAGE, interaction data informs three
interlinked, cross-method analyses exploring the relationship between in-game performance,
experimentation, and learning. Each analysis examines interlocking lenses of learning games as
designed experience, grounded in defining characteristics of game microworlds. The overarching
research question asks: what kinds of naturalistic player interaction with the educational
gamespace (including play progression, in-game success, shades of failure, and experimentation)

characterize learning? This question is central to understanding play experience in relationship to



learning — and thus, to harness the power of play in optimizing core design and learner-adaptive
mechanics in future designed experience of educational games (c.f. Squire, 2006).

The remainder of Chapter One discusses this empirical research arc in detail, beginning
with theoretical foundations of games as learning systems, and distinct microworld lenses of
designed experience. Corresponding to each lens, the three analyses of this study (using
statistical, machine learning, and educational data mining methods) are then described closely.
Respectively, their research questions ask: 1) What is the relationship between learning and in-
game success/failure? 2) What play progression patterns characterize learning? 3) What is the

impact of player experimentation on in-game performance and, ultimately, learning?

Learning Games as Interactive Microworlds

Kurt Squire asserts that videogames offer “designed experiences” in which participants
learn through “being” and “acting” within the gameworld (2006, p.19, p.22), an in-situ learning
context in which there is no separation between knowing and doing (Brown, Collins, & Duguid,
1989). These designed learning realms support learner activity with built-in principles like just-
in-time information and cycles of expertise (Gee, 2005a), and thus carry the embedded
scaffolding characteristic of microworlds (c.f. Papert, 1980; Rieber, 1992). Modeling a “system
or domain for the user,” microworlds by definition support “self-regulated learning” (Rieber,
1996, pp. 46-47; Zimmerman, 1989) through creating intrinsic motivation for learning in a
relevant context — and in game form, provide a system of well-ordered problems which leverage
player agency (Gee, 2003; Squire, 2011). Inherently, microworlds as games require behavioral
action to progress (Rieber, 1996), manifesting gamespace ‘“‘cognition as interaction”
(Steinkuehler, 2004, p. 522) and interaction as an “authentic performance” measure in a situated

context (Derry & Steinkuehler, 2003, p. 802; Boaler & Greeno, 2000). Game microworlds — thus



characterized by designed systems which scaffold self-regulated, intrinsically motivated learning
— are important examples of “interactive learning environments where structure and motivation
are optimized without subverting personal discovery” (Rieber, 1996, p. 44).

Interaction as vehicle for agency and learning is therefore a central theme in the study of
context-rich learning worlds (Rieber, 1992; Greeno, 2005), including videogames as designed
experience (Squire, 2006; Steinkuehler et al., 2012). As assessment, interaction data is a vital
component of evaluating authentic performance in context from a situative perspective (Derry &
Steinkuehler, 2003), reflected in the action-performance emphasis in games as learning context
(Gee, 2012; Shute, 2011). This study’s learning theory is thus rooted in situated cognition in the

authentic learning context of game microworlds.

Game Microworlds as Designed Experience: Three Lenses

ADAGE, the assessment framework of this research, is designed to structure and capture
this critical in-game player interaction. These captured interactions enable study of the three
defining elements of learning games as microworlds: games as systems of interaction (a play-
based medium), games as scaffolded instruction (for educational content delivery), and games as
intrinsic motivators (an endogenously engaging, player-directed experience). Figure 1 illustrates

these three overlapping components below.



Lens B Lens A
Learning Purpose: Play Purpose:
Educational Content Delivery Design Games as a Medium Designed for Play

Lens C
Individual Purpose:
User-specific Goals and Actionable Style of Play

Figure 1. Three lenses of game microworlds as designed experience.

These three converging elements represent vital parts of the learning game experience.
Figure 1 maps the intersection of each, visualizing three “lenses of designed experience” for
educational games. Together, these lenses represent the tension between the game medium,
educational content, and user-specific play goals that define a learning game experience — and

which are so artfully balanced in good game design.

e Play Purpose: Games as a Medium Designed for Play is Lens “A”, representing the
nature of games, designed (whether explicitly for learning or not) to offer a playful, fun
experience. Games provide roles, goals, and agency, often engaging the players in a
narrative and challenging them to discover an underlying rule system through play
(Norton, 2006; Squire, 2011). In contrast to cognitive tutors, this results in a medium
where one “right” answer 1s not always the goal, and discovery through play is an implied
norm. Play purpose is originally manifested on the design side, by the development team

building the foundations of a designed play experience.



e Learning Purpose: Educational Content Delivery as Lens “B” represents the learning
game as a vehicle for delivering instruction. Content can range from domain-specific
procedural and declarative knowledge (e.g. biology lab processes) to soft skills (e.g.
empathetic social interactions). This lens considers content knowledge translation into
specific verbs of play.

e Individual Purpose: User-specific Goals constitutes Lens “C”, representing gaming style
and subjective play goals specific to each player. This lens focuses on player intent,
manifested in the kinds of in-game behavior tendencies each user brings to the game. For
example, one player may want to learn solely though experimentation, and engage with a
game by immediately testing boundaries rather than strictly adhering to tutorial cues.
Conversely, another player may wish to avoid failure and play “conservatively”. This
might include following the game instructions to a tee, interacting exactly as the cues
lead, and finishing the game with zero failure. (These patterns, of course, vary greatly by
game and player, and can be characterized many different ways; play typologies for this

particular study are detailed in Chapter Six).

Three Lenses, Three Analyses: An Empirical Arc

This research endeavors, through study of in-game interaction data, to capture learner
trajectories of success, failure, and experimentation through each lens of designed experience
(Figure 2). Each analysis, then, targets the investigation of one unique intersection of the three
Lenses above. The first analysis, an evaluation of player performance on content-based verbs of
play, focuses on the intersection between Lens B (content-centered) and Lens C (player-

centered). The second analysis, tracking play progression and player attrition throughout the



course of the game, connects Lens A (focused on an trajectory of play) and Lens C. The last
analysis is a synthesis of all three lenses. Through EDM methods, it examines player
experimentation (Lens C) throughout game progression (Lens A) in relationship to shades of in-
game failure and learning outcomes (Lens B). The analyses are described below, with the

unifying Lens, research question, and corresponding method for each.

| Anaiysism |
| Analysis | | | Analysis Il |
Figure 2. Analyses I, 11, and 111 as situated in lenses of designed experience.

Analysis I: In-game Performance and Learning - Feature Engineering and Applied Statistics

The first analysis section uses feature engineering and applied statistics to connect
context-specific performance trends and learning outcomes. This analysis rests at the intersection
of Lens B and Lens C, investigating player choices in content-based performance (Figure 2). The
goal is to get a non-reductive sense of nuanced success and failure, as marked by learning gains,
across the full interactive landscape of the game. An extension of an earlier study showing
statistical significance of failure and success constructs with learning outcomes (Owen et al.,

2013), it uses informed, iterative feature engineering to more deeply examine these interactions.



Specifically, its research question asks how fine-grained, chronological performance data
(including shades of failure and success) connect to learning outcomes.

Feature engineering, descriptive statistics, and nonparametric statistics are used to
investigate patterns in this research vein. Feature engineering provides new telemetry indices
with which to better understand the landscape of game performance, while statistics help connect
the shape of those features to learning outcomes. First, feature engineering takes four base types
of success and failure, and systematically applies six computational lenses to each to produce
new fine-grained, objective-specific telemetry indices central to the research question. Then,
these features are visualized through descriptive and nonparametric statistics, chosen because of
the non-normal distribution of the data. Specifically, representation of these data in descriptive
time series line graphs launch deeper investigation of sequential trends, and inform the use of bar
graphs, scatterplots, and two-sample Wilcoxon tests to contrast learner groups. To corroborate
these contrasts, Spearman’s correlation is used on relevant features in relationship to learning

outcomes. Figure 3 shows the flow of analysis for each new data feature.

DESCRIPTIVE STATISTICS NONPARAMETRIC STATISTICS

A

Time Series Graphs

0
_ [:
Deviation Measure —

repeated levels
-~ @

Figure 3. Analysis I flow of statistical visualization for feature-learning connection.



The visualized trends with the strongest relationship to learning, as corroborated by the
nonparametric tests, shape final findings along three themes of performance and learning:
frustrated failure, success in convergent-task game levels, and failure as learning strategy.
Analysis | results provide a diverse range of features which feed analyses Il and Il1, as well as

highlight salient themes for further investigation in these subsequent analysis sections.

Analysis I1: Understanding Play Trajectories: Markov Modeling of Learner Groups

Analysis two focuses on mapping learner navigation of the gamespace using machine
learning methods. This analysis represents the overlay (Figure 2) between designed experience
Lens A (game as a progressive play arc) and Lens C (player choice). Capturing basic player
choices in the context of full game progression can give insight on interactions more
characteristic of learning. To do so, this study traced play progression from level to level,
visualizing whether players repeat a given cycle, move on to the next level, or quit. A sequential
probability model was used, because it has the ability to illustrate the probability of players
moving, in time order, from one level to another. Specifically, a first order Markov model was
used as the probability model. Two Markov chain models were made, one for the upper quartile
and one for the lower quartile of learners, as measured by learning gains on Progenitor’s pre-
post test of regenerative biology (see Chapter Three for pre-post detail). Contrasting the two
models of play directly addressed the second research question: how does organic play
progression differ between groups of learners?

Contrasting probabilities (of repeating, moving forward, or quitting) for each learner
group gave insights into patterns of play most characteristic of learning gains. Each progression
was illustrated in a Markov model, with quit states and each objective shown (Figure 4). A

transition matrix, detailing the probabilities for each group in moving from one state to the other,
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was then generated. Through comparing these probabilities between groups, play progression
patterns characteristic of learning emerged along themes consistent with Analysis I: early game

failure, mid-game scaffold-and-fade performance, and endgame strategic navigation.

boss level

l Late-game

Mid-game
challenge
_

Tutorial

levels
—

Figure 4. Example Markov model created in NetLogo (Wilensky, 1999) using the Narkov

algorithm (Berland, 2012).

Analysis I11: Experimentation and Learning: Predictive Modeling with Detectors

This data mining analysis builds on the previous studies, using performance and
progression features to make inferences about learner behavior in the gamespace. This analysis
represents a synthesis of all three designed experience lenses: Lens A (game as play-based
medium), Lens B (game as content delivery system), and Lens C (learner-specific specific play
goals and experimentation). The core research question for analysis three is: What play data
features characterize experimentation in Progenitor X, and how does this behavior predict

learning outcomes? Experimentation can be indicative of transgressive play, a natural element of



11

the game medium (Salen & Zimmerman, 2004) in which players may interact with the
gameworld in ways unanticipated by the designers. To explore this construct, this study draws on
educational data mining to build a detector of experimentation, and then connects the related
player behavior with learning outcomes.

A detector is an automated model that can detect student behavior from log file data (e.g.
Baker, Corbett & Koedinger, 2004). Here, it was built through holistic coding of “text replays”
(Baker & de Carvalho, 2008), a series of player actions displayed in a snapshot, which was then
evaluated for levels of player experimentation. Data features predictive of experimentation were
then determined (using classifier algorithms J48, Naive Bayes, and JRip) with RapidMiner* or
WEKA data mining software (Hall et al., 2009). These detectors of experimentation in play were
next investigated in relationship to learning, used as input variables in a predictive modeling of
pre-post learning outcomes (using RepTree and M5’ algorithms).

Thus, detector building supports the leap from interaction data to behavioral inference
about experimentation; next, the input of experimentation features into a model with predicted
learning outcomes helps illuminate the relationship between play exploration and learning. These
analyses yielded extremely interesting results along thematic findings of Analysis | and II,
including the critical role of early failure in learning, shades of failure evolving in learning
impact over time, and late-game strategic failure in relationship to learning gains (see Chapter

Six for extensive results).

Study Assumptions and Limitations

In establishing ADAGE and using its data yield as game-based assessment, three main

assumptions are made. Each are described as follows: 1) the learning by doing of games (Squire,

! http://rapidminer.com/
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2006) can improve skills and knowledge; 2) different kinds of learning and learner
characteristics can be measured during gameplay (Shute, 2011); and 3) ongoing player learning
can be supported with formative feedback (Gee, 2003).

Because ADAGE is an API overlay of the core game programming, it is inherently
limited to collecting in-game interaction data. However, its GLS creators consider it just one
cornerstone of a much larger ecology of synchronous interaction data — e.g. sensor data, video
logs, observation, and interviews (Owen et al., 2014; Halverson et al., in press). Triangulation of
ADAGE log files with other forms of player interaction data can constitute powerful mixed-
methods research, and is already being pursued at the center (e.g. Halterman et al., in
submission; Beall et al., 2013). In a related constraint, because this particular study analyzes in-
game data from the Progenitor X (a single-player game), it uses only player-game interaction
data. Thus, this particular analysis does not analyze in-game social elements, because there are
none built into Progenitor X core mechanics. In-game social interaction, however, is an area of
great interest to GLS and is currently being built into ADAGE for the new multi-player game
Trails Forward °. In terms of studying out-of-game social discourse and artifacts, the center has
plans to integrate ADAGE data and visualizations into a larger online interface which can serve
as a community forum as well as a user portal for students, facilitators, and researchers. As these
portals connected to ADAGE are developed, and multi-player telemetry capacity grows, it can
better converge with study of the larger learning big “Game” context (Gee, 2012; Steinkuehler,
2004), and contribute to comprehensive assessment methods in situating big data.

For the example studies of ADAGE in Progenitor X, a main delimitation was locale-
based data collection. Since our target audience for Progenitor X was 8" grade, IRB research

guidelines necessitated parental/guardian consent forms signed by hand and presented in person.

? http://gameslearningsociety.org/blog/?p=105
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This vyielded a pool of subjects from the upper Midwest area (delimiting regional
generalizability) and somewhat limited our sample size (n=110). However, the sheer volume of
clickstream data offset this somewhat, yielding roughly 10,000 data points per player and over 1
million data points total. Ultimately, this research is largely concerned with putting forward
methods for structuring and analyzing game-based assessment, and this dissertation’s empirical
study example represents just one framing of the enormous clickstream data yield possible with
frameworks like ADAGE. However, in future studies, a much broader population sampling may
be possible, since the GLS center just obtained IRB approval for remote data collection. This
opens data collection for thousands of users — anyone who plays GLS games on the internet —
across the globe, and could support very broad generalizability and large sample sizes of future

analyses.

Implications of Adage and Game-Based Assessment

Maximizing learner engagement and support through good design is fundamental to fully
leveraging games as a learning vehicle (Gee, 2003, Shute, 2011). One significant benefit of
telemetry-based assessment is its ability to play a key role in optimizing learner-adaptive play
experience in this iterative design process. Telemetry-based insights can support three
development stages: core game creation, alpha usertesting, and final-stage adaptive play design.
During early design phases, building distinct mechanics of play which will further the narrative,
teach the content, and provide moments of assessment is vital to designing an engaging, effective
learning game (Asbell-Clarke, 2013; Plass et al., 2012). For example, mapping ADAGE
structures of formative assessment (detailed in Chapter Three) to early core design efforts can
inform the creation of play mechanics specifically designed to provide evidence of learning. In

user-testing alpha and early beta phases, ADAGE-based visualizations and descriptive analytics
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can be particularly helpful in refining Ul design, as well as identifying bugs and player attrition
points (e.g. Beall et al., 2013). After extensive post-beta playtesting, learning analytics can be
used to predict in-game actions and performance most characteristic of learning. This knowledge
of ideal player behavior can then inform the final design phase: user-adaptive, fully scaffolded
play for optimized in-game learning (Owen, 2014). To this end, optimal player actions,
sequential pathways, and assessment growth trajectories can each be defined through learning
analytics (including visualization, prediction, and pattern mining methods). A layer of game
mechanics — either enhanced in-game visual cues, for example, or an agent-based hint system —
can then be built to help guide players toward pathways optimized for learning and engagement
(Owen & Ramirez, in submission). In this dissertation, for example, insights into failure and
transgressive play can inform the in-game highlight of unanticipated learning pathways while
supporting experimental play. Overall, in-game interaction data and assessment structures can
enable analytic insight vital to an optimized learning game experience.

Event-stream assessment frameworks like ADAGE can have impact both inside and
outside the game experience. Game-based embedded assessment is a powerful tool able to
capture authentic performance not decontextualized from an engaging learning environment (c.f.
(Derry & Steinkuehler, 2003; Shank, 2011). Capturing in-game interaction can be a “quiet, yet
powerful process by which learning performance data are gathered during the course of playing”
(Shute, 2011, p. 505). Standardized, game-tailored assessment data frameworks like ADAGE —
supporting cross-genre game application and multiple approaches to analysis — represent the
possibility for large-scale implementation of authentic performance assessment embedded in
engaging learning worlds. National testing giants like ACT and ETS have been increasingly

involved in game-based assessment research (e.g. Institute of Play, 2013; Encarnacao, 2014).
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Top research and learning game labs like MIT Learnlab, Pearson, TERC, Filament games,
Vanderbilt, and the Columbia Teachers’ College Educational Data Mining lab are currently
collaborating with GLS on future iterations and wide-scale implementations of the ADAGE
framework (supported by NSF Award SMA-1338508). Even at a federal government level, there
has been recent advocacy for national use of digital learning worlds in education, including
serious games — and funded development of corresponding digital assessment methods. The
President’s Council of Advisors on Science and Technology, linked with the government Office

of Science and Technology Policy (OSTP), recently advised in an official presidential report:

[The Department of Education]...should provide robust and diversified support

for...R&D that will lay the foundation for educational technologies such as

personalized electronic tutors, serious games and interactive environments for

education. (President’s Council of Advisors on Science and Technology, 2013,

p.28)

As part of this recommendation, the Council also advised developing ‘“assessment
programs for those technologies that use advanced techniques from ‘big data’ R&D and from the
learning sciences” (PCAST, 2013, p.13). Concurrently, the placement of game-specialized
digital media advisors in the White House OSTP (including Dr. Constance Steinkuehler in 2011-
2012, and Mark DeLoura presently) supports this high-level trend towards understanding and
leveraging digital games for learning and assessment. As implied by the direction of nationally-
impacting assessment companies, tier one academic consortiums, and government-level

advocacy, this forward movement in the field could signal the beginning of a paradigm shift in

digitally-based assessment practices on a national scale.
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Summary and Content Structure

In respecting educational games as a medium that sets roles and goals (Squire, 2011) in a
narrative-based, endogenously motivating context (Costikyan, 2002) — and thus encourages
exploration and transgressive play (Salen & Zimmerman, 2004) — it’s vital to understand
naturalistic learner interaction with the gamespace that can represent authentic play experience.
The three analyses of this research, grounded in each lens of game microworlds as designed
experience (Figure 2), explore this intersection of play and learning through data furnished by
the ADAGE assessment framework.

The following pages of this dissertation will detail the literature base and conceptual
framework of ADAGE, as well as describe in detail the empirical methods, results, and findings
of all three interlinked ADAGE-based Progenitor analyses. Chapter Two provides a broad
ADAGE literature base in games for assessment, Evidence Centered Design, and Educational
Data Mining. Chapter Three describes the ADAGE framework itself, its application to
Progenitor X, and the corresponding data collection for this analysis trio. Chapters 4, 5, and 6 are
detailed accounts of analysis I, Il, and 111 (respectively). Chapter Seven is the last chapter of the
dissertation, providing summary of findings and conclusions about the work as a study of game-

based assessment in the digital age.
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Chapter Two: Theoretical Framework

Chapter Overview

In creating a framework for assessment of learning through play in educational games,
work like ADAGE represents a movement advancing alternative forms of assessment — which
may lead to paradigm shifts in the way the education system thinks about measurement of
learning. ADAGE supports this innovation in providing a framework to collect mass clickstream
data in games, affords a standardized way to organize these data that makes sense across games;
and connects these context-rich assessment features with game-tailored methods designed to
handle large, unsupervised log file data. One of the reasons this work is so important — and so
messy — is that games can provide extremely rich, engaging learning environments in which both
learning and assessment are seamlessly integrated into the fabric of the gameworld. This section
will review current literature on the value of games for learning and assessment, and follow with
a review of two prominent — and very different — approaches of assessing digital streams of

learning data: Evidence Centered Design, and Educational Data Mining.

Games: Rich Microworlds for Learning and Assessment

Videogames have distinctive characteristics that make them rich, complex vehicles for
learning and assessment. Kurt Squire asserts that “games differ from simulations in that they
give roles, goals, and agency”, and enable “transgressive play” (Squire, 2011), p. 29; (Salen &
Zimmerman, 2004). Val Shute adds that games are comprised of “conflict or challenge,” “rules
of engagement,” and “compelling story and representations” (2011, p. 507). These crucial design

elements merge to create a dynamic of endogenous, engaging interaction (Costikyan, 2002).



18

Well-designed games are examples of situated learning environments in which learning is
inseparable from environment or context (c.f. Brown et al., 1989; Greeno, 1997). Just-in-time
information (scaffolding) in the well-ordered problems of the gameworld provide formative
feedback within cycles of expertise (Gee, 2003). Indeed, good games effectively harness
formative assessment to foster ongoing feedback cycles and customized player difficulty levels
(Shute, 2011). In order to maintain this immersive context for learning, good games consist of
ongoing assessment balanced with engaging mechanics and narrative (Squire, 2006). In
multiplayer games, social interactions can provide their own definitive feedback cycles. They
can provide a powerful environment for collaborative learning, supporting apprenticeship and
collective higher-order thinking skills (Steinkuehler, 2004, 2008). Communities of practice
(Lave & Wenger, 1991) often emerge around games (Steinkuehler, 2006a), fostering collective

intelligence and an information-sharing participatory culture (Jenkins, 2006).

From Learning to Assessment

Many of these qualities are what makes good games rich learning context — and good
assessment environments. Gee describes the systems thinking of digital games as ideal contexts
for assessment, because they “allow us to track progress on multiple variable to gauge growth
across time” and discover “different trajectories towards mastery and innovation” (Gee, 2012, p.
1). But this assessment is not only for the researcher, it enables formative feedback for the
players themselves. Civilization V* infographics are an example of the way players can get
“beautifully designed representations of how they are going across time” on “many connected
variables” and in comparison to other players (Gee, 2012, p. 1). Computer game-based

assessment offers the capability of instantly adaptive embedded assessment within immersive,

* http://www.civilizations.com/
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agency-filled learning worlds (Halverson et al., in press). Gameworlds as learning contexts can
provide a seamless “match between instruction and assessment,” an essential quality of authentic
assessment (Scalise & Wilson, 2012, p. 290; Wiggins, 1990). Multi-player games can also
capture an important collaborative learning element (c.f. Steinkuehler, 2004; 2006), what Squire
calls “Participatory Assessment” (2012), in which participatory culture (Jenkins, 2006) sets and
reinforces important indigenous performance standards. Indeed, standards of knowledge have
been considered as central to domain representation in “the Best and Future Uses of Assessment
in Games” (Baker, Chung & Delacruz, 2012). The Games for Learning Institute maintains that
games can be fundamentally good assessment within four game-based learning functions:
measuring preparations for future learning (priming for history lessons, for example), assessing
new knowledge or skills (e.g. STEM games on cutting-edge science topics), to capture mastery
of existing knowledge and skills (like multiplication tables and second language practice), and to
evaluate life skills, including 21 century skills like critical thinking (Plass et al., 2012).

If games are, then, promising vehicles for assessment, what kind of measurements are
appropriate to the medium? As we have seen above, games are very different from multiple
choice tests, cognitive tutors, or even simulations in the sense that they offer a rich interactive
world of roles, goals, and endogenously motivating agency (Costikyan, 2002; Gee, 2005; Squire,
2011). Statisticians and measurement specialists Kathleen Scalise and Mark Wilson tackle
exactly this question in “Measurement Principles for Gaming” (2012). Core principles of good
game-based assessment are that assessment should align with instructional goals, be able to
measure student trajectories of growth over time (not just at a “final or supposedly significant
time point”) and produce valid and reliable evidence of what learners know and can do (Scalise

& Wilson, 2012, p. 290; National Research Council, 2001).
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One way of implementing these principles is using Evidence Centered Design (ECD),
which originally proposed to measure “knowledge and skills we want to develop in students, and
the kinds of observations we need to evidence them” in contexts like “simulation-based
assessment” (Mislevy et al., 2003, p.1). Explored in-depth in the next section, ECD is a multi-
step method for aligning teaching content with tasks and evidence, and has had a range of

applications in the digital world — including educational videogames.

Evidence Centered Design: Framework and Application to Virtual Learning Spaces

Introduction and Framework

In the world of simulation-based assessment, one approach to measurement of complex,
process-oriented learning is Evidence Centered Design (ECD). ECD is a hypothesis-driven
assessment method capable of measuring “behavior that bears evidence about key skills and
knowledge” (Shute, 2011, p. 510; c.f. Mislevy et al., 2003). In other words, ECD aligns

important learning content with tasks and resulting evidence for performance-based assessment.

What is Evidence Centered Design?

Evidence Centered Design is an assessment framework which “enables the estimation of
students’ competency levels and further provides evidence supporting claims” about the
knowledge and skills being assessed (Shute, 2011, p. 508; Mislevy et al., 2003). In other words,
ECD aligns important learning content with tasks and resulting evidence for performance-based
assessment.

The whole process (Figure 5) consists of three main chunks: research on what to teach

(domain analysis and modeling), the design of the tasks (Conceptual Assessment Framework:
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CAF), and implementation (Assessment Implementation and Delivery). While the outer two
(first and last) describe parts of a temporal process, the middle layer — the CAF — is more focused
on design. This is the center of ECD’s integration of content, evidence, and designed tasks

(Mislevy, 2011; Mislevy & Haertel, 2006).

What is important about this domain?
Domain Analysis What work and situations are central in this domain?
What knowledge representations are central?

Domain Modeling How do we representkey aspectsofthe domainin terms
of assessment argument. Conceptualization.

Conceptual Assessment Design structures: Student, evidence, and task
Framework models. Generativity.
Assessment Manufacturing “nuts & bolts™: authoring

= tasks, automated scoring details, statistical

S models. Reusability.

S

Assessment Delivery L Students interact with tasks.

performances evaluated, feedback
created. Four-process delivery
architecture.

Figure 5. A full-scale ECD model (Mislevy, 2011).

Focusing on the CAF, it’s three main pieces are (Shute, 2011; Mislevy, 2003):
1) A competency model (CM) — alternately called the student model — defining key
knowledge and skills to be assessed. Sometimes the CM is broken up into knowledge,
skills, and attributes (KSAs). (What are we measuring?)
2) An evidence model detailing what behaviors or performances should reveal the CM’s

constructs. (How are we measuring it?)
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3) A task model, creating specific tasks that should elicit the behaviors that comprise the

evidence. (Where do we measure it?)

It’s worth noting that ECD lays out the design order as: competency model, desired
evidence, then tasks (or core mechanics). In a simulation, the environment for the tasks would
then be constructed in the last steps (implementation) — after the assessment task model in the
CAF. Literally, the simulated environment is put last priority, and serves only as an auxiliary
context in which to embed the tasks. The design of videogames, with richer elements than just a
task model, can look very different; we will explore the challenges of ECD and videogames in

upcoming sections.

Competency Evidence
Stat Evidence
Model Rules
> —a D_ _D_ >
&hg
1

Figure 6. ECD’s core — the Conceptual Assessment Framework (Zapata-Rivera, 2009)

Thus, ECD essentially amounts to a CAF sandwich, with this vital center layer capturing
the core design and integration of content, tasks and evidence (Mislevy & Haertel, 2006).

Especially for pure simulations or digital performance assessments, ECD can serve
beautifully as a streamlined framework articulating content, evidence, and tasks. Behrens says of
this model: “It is flexible enough to accommodate the affordances of new technologies and the
demand to measure new domains while providing a united framework to describe current

practice across a wide range of assessment activities” (Behrens et al., 2012, p. 47). This broad
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applicability gives ECD a universal appeal, while leaving open the opportunity to develop other
ECD-inspired assessment models specifically tailored to individual learning technologies.
Adaptable both in platform and in content, ECD is very useful in tackling abstract or very broad
content like complex competencies and 21% century skills — in part because of its first two steps
of systematic domain analysis and modeling. It is, in fact, the central method in the recent book

Technology Based Assessments for 21% Century Skills (Mayrath et al., 2012), and the darling of

several CRESST reports lauding ECD for assessment in the digital world (e.g. Behrens et al.,
2010; Mislevy, 2011). In the following sections, we will explore applications of ECD to various

contexts of digital assessments.

ECD in Digital Assessment

Recent ECD-based applications in the digital world include simulations and cognitive
tutors. For example, Feng, Hansen, and Zapata-Rivera (2009) adapted ECD to an “Evidence
Centered Design for Learning” framework to examine the ASSISTments intelligent tutoring
system; one feature of this adaptation was the differentiation of assessment and instruction
measures in ASSISTments by subdivision of tasks. ECD-related structures have been created for
open-world digital learning environments, such as task-based performance metrics (Shelton &
Parlin, 2012) auto-scoring in military simulations (lIseli et al., 2010), and engineering network
simulation software (Frezzo, Behrens & Mislevy, 2009). Other work, such as the “Evidenced
Centered Activity Model” (Annetta et al., 2010, p. 24), Activity Centered Design (Gifford &
Enyedy, 1999), and Gordon commission technology-adapted assessment structures (Behrens &
DiCerbo, 2013) blend ECD constructs with activity-based models (Nardi, 1996). Competency-
aligned task evaluation has also been considered central to digital scenario-based inquiry

assessments, with particular attention on assessment characteristics (like time duration — pre,
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post, or follow-up, proctored face-to-face or over distance, and response types of text or action)
(e.g deJong, Wilhelm & Anjewierden, 2012; Songer, 2012). A fundamental ECD-based
framework in this area is “PADI”, which provides “Principled Assessment Designs For Inquiry”

for simulation-based science assessments (Mislevy & Riconscente, 2005).

ECD in Videogames: A Primer

Although related to applications in simulations, using ECD in gameworlds can be more
complex. Val Shute also notes that “making valid inferences about what the student knows,
believes, and can do without disrupting the flow of the game” is a “main challenge” of educators
in using games to support learning (Shute, 2011, p. 508). Assessing in-game performance is a
“complex process that needs to take into account not only the engaging or motivational aspects
of the activity but also the quality criteria that are needed according to the type of assessment
that is being developed” (Zapata-Rivera & Bauer, 2012, p. 149). To help meet these challenges,
many videogames & learning researchers have recognized the importance of aligned content,
task, and evidence models in game-based assessment.

Mislevy, Behrens and team declare that key “Things Game Designers Need to Know
About Assessment” are: 1) that “game design is compatible with assessment design,” because 2)
assessment is “not really about numbers,” but the structure of reasoning, and 3) “Evidence-
Centered Assessment Design” is a key means to bridging the two (Mislevy et al., 2012, p.59, 61,
66). Because ECD aligns content, tasks, and evidence, and can be structured to measure
performance over a series of steps rather than in a single point of performance, the authors argue
it is an optimal application to an educational gamespace (Mislevy et al., 2012).

Certainly, their support for game-based use of ECD is not an anomaly; many researchers

have proposed elements of ECD for use in educational games. For example, qualitative student
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evaluation in Quest Atlantis has incorporated some ECD structures in its Designing for
Participation assessment model (e.g. Hickey & Jameson, 2012; Shute & Ke, 2012). In
application to game-based professional training, Gaydos & Bauman (2012) have recommended
ECD to help build in assessment for potential nursing simulation games. ECD can also be useful
in vocabulary-building “game-inspired” software; in one example, the virtual learning
environment “BELLA,” designed to help teach math vocabulary, experimental assessment was
guided by “ECD principles” and combined with Bayesian reasoning to test the game in beta-
level pilot studies (Zapata-Rivera, 2009, p.1; Zapata-Rivera & Hansen, 2009). In augmented
reality games like the River City project, ECD has been used to help align locational data, tasks,
and overall performance (e.g. Dede, 2012). The Games for Learning Institute references ECD as
a core influence in their discussion of general assessment-informed design mechanics (Plass et

al., 2012).

ECD in Videogames: Deep Practice

Various digital game-based assessment methodologies, based firmly in ECD, have been
developed and researched extensively in the last decade. Three leading examples of these are
Virtual Performance Assessment, Epistemic Network Analysis, and Stealth Assessment. Each of

these methods will be described in detail, and briefly evaluated, in the section to follow.

Virtual Performance Assessment

The Virtual Performance Assessment project at Harvard is “developing and studying...
immersive virtual performance assessment to assess scientific inquiry of middle school students”
(Clarke-Midura et al., 2012, p. 134). The virtual world of VPA, built specifically for the

assessment project, is a game-like simulated ecosystem in which the player picks an avatar and
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goes on a mission. The missions are tasks in-game that are related to the “KSA”s (Knowledge,
Skills, and Abilities) deemed directly related to science inquiry. These KSAs include making
predictions, gathering data, reasoning about evidence-based claims, identifying causal
relationships, and evaluating alternate explanations (p. 135). The KSA-based architecture is
derived from PADI, an ECD-based structure for creating inquiry-based assessment (Mislevy &
Riconscente, 2005). Essentially, the KSAs (or desired content for students to learn) align with
the ECD task model in the game; avatars can choose their own path through those tasks, which
include things like going to the lab, collecting samples around the land, talking to the lead
scientist, or reading the latest research. According to the VPA framework, the progressive tasks
all result in evidence which is evaluated in relationship to the KSAs. Ultimately, the player talks
to the lead scientist and demonstrates his/her knowledge through using an argument constructor
to exhibit causal reasoning about selected problems in the ecosystem (Clarke-Midura et al.,
2012).

VPA is an interesting framework which puts refreshing emphasis on subtasks involved in
the overall game goal; thus, formative assessment seems to play a large role, capturing the
players’ process. The open-world component in player choice is an interesting feature, especially
with a conceptual assessment framework attached to it. As the project moves forward, detail on
specific scoring models and conclusive predictive analyses results (c.f. Clarke-Midura &
Yudelson, 2013) can provide additional insight about VPA’s infrastructure. One potential
limiting factor may be the requirement of the virtual environment to be designed around VPA,
rather than be applicable to multiple game-based learning environments. Overall, VPA is an

innovative example of how ECD-based assessment can inform design of game-like open worlds.
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Figure 7. The world of Virtual Performance Assessment (Clarke-Midura et al., 2012)

Epistemic Network Analysis

Another example of ECD-related structures dictating design of game-like simulations is
Epistemic Network Analysis. Epistemic Network Analysis (ENA) is used by David Shaffer’s
research group to analyze data from “Epistemic Games,” which are simulations of professional
STEM environments. They are designed based on the epistemic frame hypothesis, a theory of
learning that analyzes thinking in terms of connections among frame elements: skills,
knowledge, values, and justification or decision-making (otherwise known as epistemology) of a
STEM profession (Shaffer et al., 2009). ENA maps to ECD starting with these frame elements
(Sweet & Rupp, 2012), each as pieces of a competency model (or things the simulation wants to
teach). These profession-based simulations include Land Science (a fictional internship with an
urban planning company), Journalism.net (a fictional internship with a newspaper), and
Nephrotex (a fictional internship with an engineering company).* ENA is “a form of network
analysis for assessing epistemic frames” in each simulation (Shaffer et al., 2009, p. 38). Data is
collected as students interact with the simulations via chat and fictitious email (part of the ECD

task model); the dialogue input is then coded as a skill, knowledge, identity indicator, value, or

* http://edgaps.org/gaps/projects/
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epistemology statement (part of the ECD evidence and scoring model). Each of these epistemic
frame elements become nodes (or circles) on an SNA-like graph, and their co-frequency within
certain excerpt chunks of chat become connectors. Over time, ENA maps player trajectories in
each of the epistemic frame elements, and compares them to an “expert model” of participation
in the game (Shaffer, 2009; Sweet & Rupp, 2012).

ENA is an interesting application of ECD to visualization of discourse over time. The
element of quantifying qualitative input over the course of a simulation is methodologically very
useful. However, it seems ENA would not have applicability to learning worlds not designed
exactly under the constraints and scripted textual responses of an epistemic frame scenario.
Working at an email-simulated job may, well, feel like work to some students, thus limiting the
element of engagement and agency. It would be inspiring to see broader applicability and
significance of this tool beyond that of a narrowly-defined epistemic simulation — however, the
quantified visualization of a discourse-based ECD model is a novel method with potential in

future game applications.
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Figure 8. Epistemic Network Analysis

(http://www.wcer.wisc.edu/news/coverStories/2009/assessing learning.php).
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Stealth Assessment

Val Shute and her team of researchers at FSU have been working on Stealth Assessment
(SA), the mission of which is to “identify key competencies and use games as instructional
learning vehicles” (Shute, 2011, p. 505). SA, in essence, is an ECD-based model that is focused
on connecting 21* century skill competency models to existing video games. Of the three
methods talked about in detail in this section, SA sustains the most meticulous use of ECD. In
line with ECD, SA maps out three pieces: 1) the competency model (CM) (skills and
knowledge), 2) the evidence model (behaviors or performances evidencing the CM) and 3) the
task model (also called an action model). The CM is usually broad 21% century skill (like
Creative Problem Solving), which can then be broken down with a Bayesian network (Shute,
2011). An evidence model based on the CM is created, and then aligned with a task model
(which defines player action within existing game mechanics). Thus, through gameplay, “learner
performance data are continuously gathered during the course of playing/learning and inferences
are made about the level of relevant competencies” (Shute, 2011, p. 504).

Application to the game Oblivion is given as an example. SA begins with a CM of
“Creative Problem Solving”, a content base clearly different from that of the original game
design (Shute, 2011). Where Bethesda studios likely had core game content goals revolving
around immersive gameplay (e.g. combat affordances, economic and social interaction with
NPCs, professions and customization opportunities), SA’s core content is an academically-
defined “21% century skill” (Mayrath et al., 2012, p.3). The two base content models are quite
different, and only directly overlap where the task model utilizes selected areas of the game
mechanics (see diagram above for visual representation). One specific SA example in Oblivion

considers possible player action in response to the in-game challenge of crossing a river full of
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dangerous fish (choices were ultimately scored for levels of “Creative Problem Solving” ex-post-
facto by two Oblivion experts) (Shute, 2011, p.517). Based on expert evaluation, certain
gameplay paths were deemed more or less creative than others, then used to train a Bayesian
network for ongoing evaluation of players. Herein lies the “stealth” component — SA uses
existing core game mechanics to evaluate player actions connected to competency constructs.
Stealth Assessment is a clearly structured and well-supported model for applying very
broad competencies (like 21* century skills) to existing video games. SA, admirably, respects
player engagement and non-task-model game content, since it uses a “quiet but powerful
process” which is “intended to support learning and maintain flow” (Shute, 2011, p. 504). SA in
possible application to all kinds of engaging games (commercial games included) make it
appealingly flexible (e.g. Shute & Kim, 2011). Currently, work is being done with SA and
Newton’s Playground — a basic physics sandbox game — to demonstrate 21* century skills and
implicit physics understanding (Ventura, Shute & Kim, 2013). However, SA’s complexity may
not be necessary for games created from scratch in which the content model (e.g., addition) is
clearly aligned with game mechanics (e.g. doing addition) and assessment goals (e.g. doing
addition right). Additionally, SA may not be as transparent as methods like VPA for clear impact

of assessment mechanics on core game design.
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Figure 9. A Bayesian network example of mapping game success to creative problem solving in

SA (Shute, 2011, p. 516).

Implications for Game-Based Assessment

As many researchers have recognized, ECD vitally informs our understanding of
game-based assessment by emphasizing the importance of aligned content, tasks, and evidence.
This has implications for educational game design, including clear articulation of content before
the game design process, and integration of assessment-specific mechanics into the fabric of the
game. As mentioned earlier, however, a good game is made up of more than just a task model —
and in designing too much around specific performance assessment tasks one ends up with a
simulation rather than a game. However, if joined with an assessment data framework more

comprehensive than just a task model, ECD has the potential to tap into the power of total
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integration: underlying game content, with evidence model, with total experience mechanics,
with corresponding click-stream data stream and learning evidence.

Very recent work with ECD and games has followed this ADAGE-themed line of hybrid
research, moving beyond ECD to leverage data mining techniques for an exploratory-
confirmatory approach to identifying significant game events. One example is Jody Clarke-
Midura’s follow-up to her 2011 ECD work, teaming up with Ryan Baker to explore a hybrid
ECD-data mining approach to VPA (Baker & Clarke-Midura, 2013). In another recent
collaboration, GlassLab has formed as a recent partnership between the Institute of Play, EA
Games and ETS to explore learning patterns in the simulation SimCity.EDU. Using techniques
directly aligned with the ADAGE, the project has combined domain modeling of 21 skills for
Evidence Centered Design with data mining for an “exploratory-confirmatory” approach not
commonly employed with ECD-based research (Institute of Play, 2013).

ADAGE is informed by, and readily supports, multi-directional assessment of this nature.
One key advantage in acknowledging all kinds of interactions, and connecting them fully with
click-stream data structures, is the potential for maximizing player just-in-time feedback.
Assessment shouldn’t be just for the researcher or the teacher — if joined with the right
underlying click-stream data framework, ECD could help leverage assessment data in ongoing

support of the most important stakeholder of all: the player and learner.
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Big Data and Assessment: Educational Data Mining

Introduction and Framework

Educational Data Mining (EDM), “is concerned with developing methods for exploring”
large educational data streams (Baker & Yacef, 2009, p. 324), and “using those methods to better
understand students and the settings in which they learn” (Romero & Ventura, 2010, p. 601;
“International Educational Data Mining Society,” n.d.). Representing a host of education-specific
machine learning tools, EDM can provide excellent groundwork for defining data mining
methods readily applicable to educational gameworlds. This chapter outlines a schema of
machine learning methods applied across EDM that can enable exploration of the potentially rich
telemetry streams of digital learning environments (including educational videogames).

EDM data streams are typically massive, and sourced in continuously developing digital
contexts; thus, it is an emergent, multi-disciplinary field in constant evolution (c.f. Romero &
Ventura, 2010). Even EDM experts (Baker & Yacef, 2009; Romero & Ventura, 2010; U.S.
Department of Education [DoE], 2012) survey the field from different perspectives. The state-of-
the-field reviews from Baker & Yacef (2009) as well as the U.S. Department of Education
(2012) focus on data modeling goals and methods, while Romero & Ventura (2010) organize
around the human subjects of study (students, teachers, etc.) and context (classrooms, e-learning
spaces, etc.). However, upon deeper analysis, a common schema can be derived from the expert
reviews by extracting four underlying mutual components: 1) base educational contexts, 2) data
types, 3) broad analysis goals, and 4) specific methods. All four of these focus on methods
(rather than context, subject, or broad modeling); the first two describe the nature of the data, and

the last two focus on the analysis of the data (through the lens of machine learning methods).
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EDM: A Machine Learning Approach

The first two common pillars are base educational contexts and data types. First, EDM’s
main educational contexts include “offline education” sites like schools or tutoring centers
(Romero & Ventura, 2010, p. 601); Learning Management Systems like e-learning sites and
digital libraries (DoE, 2012; Baker & Yacef, 2009); and computer adaptive software — e.g.
Intelligent Tutoring Systems (DoE, 2012; Romero & Ventura, 2010) and computer adaptive
testing (Baker & Yacef, 2009). (Although not specifically mentioned in these expert EDM
reviews, educational gameworlds can be categorized as computer software responsive to the
user.) Secondly, the kinds of data derived from any of these settings can be both quantitative and
qualitative. They can range from remote click-stream and text-based log file data (Romero &
Ventura, 2010) to psychometric testing data (Baker & Yacef, 2009) to observational student
interaction data (e.g. Baker et al., 2004).

The third and fourth EDM core components — broad analytic goals and specific methods
— revolve around data analysis. Broad analysis goals (or “metagoals”) common to the expert
EDM synopses are visualization, relationship mining, and prediction (c.f. Baker & Yacef, 2009;
Romero & Ventura, 2010; DoE, 2012). Visualization involves graphic representations of data to
elucidate patterns; relationship mining looks specifically at associative patterns in the data; and
prediction can project outcomes via algorithms of sequence, probability, and regression. The last
core EDM component, specific method types, are subunits of these metagoals. These method
types are finer-grained analysis categories, which include: descriptive visualization, social
networks, clustering, association, classification/regression, and pattern mining (Figure 11). A
loose mapping of these specific methods to the broad metagoals is visualized in Figure 11,

complemented by a chart connecting common categories to all three synopses (Figure 10).
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Figure 10. Metagoals and Method Types Common To All Three Expert Synopses
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Figure 11. EDM analytics — specific methods loosely mapped to three base metagoals

Visualization

Based on the core EDM content arc derived here, this literature review will move from
visualization to relationship mining to prediction. In this trajectory, it will review the method
types (across the metagoals above) in the following order: descriptive visualization, social
networks, clustering, association/correlation & classification/regression, and pattern mining (see
Figure 11). Under each method type, core analysis techniques will be discussed with examples
from current EDM literature. It should be noted that the mapping in Figure 11 is intended to be
“fuzzy”, in the sense that some analyses or method types belong to more than one category.
Placement on the map above is in no way intended to be an absolute or mutually exclusive

characterization.

Visualization, Cluster Analysis, and Social Network Analysis

Moving first into the broad category of Visualization (e.g. Tufte & Graves-Morris, 1983),
we have what Romero and Ventura (2010, p. 4) call “analysis and visualization of data.”

Descriptive statistics and visualization techniques are the two main vehicles for this met
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category, which exists mainly to easily display global data characteristics like summaries of
learner behavior (e.g. Wu & Leung, 2002). Indeed, this umbrella of techniques exists in the
realm of what Baker and the DoE report as “distillation of data for human judgment” (Baker &
Yacef, 2009, p. 5; DoE, 2012, p.11). As such, it entails graphic representations of statistics or
information visualization techniques to give information applied to digital learning spaces.
Visualization tools can range from graphs and charts in the Excel menu and SPSS data “explore”
functions, to more elaborate tools like maps and integrated text graphics from software like
visual.ly, to advanced code-based tools like Tableau, Google Chart API, Flot, D3, and Raphael’.
In online course environments, for example, visualizations can include graphical displays of
information about student entry/exit, popular pages used, and use over time (e.g. Ingram, 1999).
From any LMS or student interface, it can show the most popular resources used by students
(e.g. Sheard et al., 2003), time on site (e.g. Cohen & Beal, 2009), or small-scale performance
measures like number of problems/assignments complete for a given time period (e.g. Feng &
Heffernan, 2006). Baker, Corbett & Wagner’s (2006) text replay displays focus on the
production of a textual pop-up summary of ITS student usage per problem for researchers,
including click-stream interpretation categories like time, input, context/level in tutorial, and
evaluation of performance. Hershkovitz and Nachmias (2008) represent student performance
over time in “learnograms”, and visualizations showing learning curves are considered a very
important tool in EDM (e.g. Baker, 2013; Ritter, Anderson, Koedinger & Corbett, 2007).

Social networks, another category of visualization, map the connections between
individuals (nodes) in a web-like network (c.f. Srivastava, 2008). Recently, machine learning
experts Baker and Siemens (2014) have supported this category as common to both EDM and

learning analytics. Social network analysis and related techniques have been used to make

> See this site for more aggregate information: http://www.netmagazine.com/features/top-20-data-visualisation-tools
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teacher tools to visualize learner trajectories for optimized student grouping (Berland et al.,
2013) and convey hierarchical changes in social structures over time (Carley, 2003). In text-
based interactions, it’s been used for connecting users with sources of online phrases; Simmons,
Adamic, and Adar (Simmons, Adamic, & Adar, 2011). recently studied the use of memes in
social media and their mapping to certain online sources through SNA. Network analysis has
been leveraged to study patterns in online social interaction, indeed, since the early days of
public internet use (e.g. Garton, Haythorntwaite, & Wellman, 1997).

Another visualization-related method is clustering. Very connected with descriptive
graphic tools, it visualizes relationships by clustering similar data points together. Cluster
analysis has been used in several forms (including k-means, k-nearest neighbor, and hierarchical)
in EDM, especially to identify organically similar groups of students. At the UCLA Center for
Research on Evaluation, Standards, and Student Testing (CRESST), Kerr and Chung (2013) use
clustering in an analysis of student performance in an educational game. Primarily a methods
piece, their research found that fuzzy cluster analysis is more suited to the gameplay data, and
more effectively identified unexpected player strategies in gameplay which helped explain
student performance errors. Martinez and team (Martinez et al., 2011) used clustering to study
patterns of interactivity between students engaged in collaborative learning around an interactive
tabletop. The movements along the tabletop, which entailed reading and organizing slips of text,
were coded in sequence and mined for patterns. Results included successful characterization of
reasoning patterns in high- and low- achieving groups. Clustering has also been useful in
characterizing LMS users. For example, Xu and Recker (Xu & Recker, 2012) employ this

technique in creating profiles of digital library users. Through cluster analysis, they were able to
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characterize three main groups of teachers (at varying levels of usage frequency) based on their

habits in visiting and interacting with the digital learning space.

Association, Regression, and Classification

Romero and Ventura group them together as well, naming “regression, ...classification,
and association rule mining” among “the most commonly applied” EDM tasks (2010, p. 603).
Association rules — expressions that describe conditional relationships between variables (Zhang
& Zhang, 2002; Sasikala et al., 2011) — are a simple and useful tool in educational data mining
(c.f. Merceron & Yacef, 2011). Frequently used in the domain of providing feedback for
supporting instructors (Romero & Ventura, 2010), association rules have been leveraged to
provide automated information for appraise online course effectiveness (e.g. Retalis et al., 2006),
and to help improve education quality in the academic community in conjunction with cluster
analysis (e.g. Vranic et al., 2007). Similarly, association rules been employed to help improve

virtual educational environments (Zarane & Luo, 2001; Zheng et al., 2008).

Correlation mining is in a similar family, since its essential function is to find patterns of
association in the data (Baker, 2010; Romero & Ventura, 2010). This kind of mining is so “hot”
that it is the engine of Google Analytics’ new brainchild: Google Correlate®. This tool is a classic
example of applied data mining; it finds search patterns which correspond with real-world trends.
Specific to EDM, correlation-based analyses have been used to predict e-learners’ performance
in online courses (Wang & Newlin, 2002) and exam scores in online tutoring (Pritchard &
Warnakulasooriya, 2005). It has also been used in conjunction with other analyses. For example,

Nkambou and team use correlation and association rule discovery methods with sequential

® http://www.google.com/trends/correlate



http://www.google.com/trends/correlate

40

pattern mining to help better guide learners in ITS problem-solving scenarios (e.g. Nkambou et
al., 2007). Correlation mining procedures, combined with other EDM techniques, are mapped for
use in creating auto-assessment of e-learning Moodle course structures by Romero, Ventura, and
Garcia (2008). Merceron and Yacef combine correlation strategies with association rule mining
to better understand co-occurrence of mistake types in a cognitive tutor environment (2011).
Generally, classification and regression are predictive methods that can include classic
linear models like logistic and step regression (e.g. Baker, Gowda, Corbett & Ocumpaugh,
2012), as well as tree-based predictive models. In the fuzzy mapping in Figure 11, this category
is considered mainly predictive, but also can provide visualization (in tree and linear forms) and
explores relationships between variables; thus, it is placed in at the intersection of the three
metagoals. Prominent techniques include Classification and Regression Trees (dubbed “CART”
— e.g. Breiman et al., 1984), analysis techniques that use a tree-like branching schema. CART
can be used to describe a broad category of analyses, and is also the name of a discrete predictive
algorithm used in data mining software like WEKA (Hall et al., 2009). In this review, it is
mainly referred to as the umbrella category of classification and regression trees (e.g. Breiman et
al., 1984). Generally, CART is designed to explain a chosen outcome variable through the
mapping of different associated conditions. For example, CART was employed to create profiles
of students based on propensity to take online classes (Yu et al., 2008). In another example,
classification trees enabled automatic detection of students’ learning style with LMS log data
(Lee et al., 2009); additionally, one study used it as an illustration of learning behavior to better
categorize learners into different cognitive style groups (Lee, Chen & Liu, 2007). CART can also
be leveraged in conjunction with other analyses. In one analysis on a virtual educational game,

CART was used in conjunction with a first-order Markov model to show characteristics of
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gameplay which predicted completion of learning tasks (Owen, Ramirez, Salmon & Halverson,
2014). In a more traditional EDM study, Anaya and Boticario (2011) triangulated cluster
analysis with a REPTree classifier to help power a teacher-friendly collaborative learning tool.
Kelly & Tangney (2005) use probability-based “naive” Bayes classifier (also a classification
algorithm) to characterize learning style according to digital content interaction and learning
behavior in “First Aid for You,” a novel adaptive educational program. In a more recent study, a
Bayes classifier was used in tandem with logistic regression and rule-based mining in finding
predictors of student attrition at the university level (Dekker et al., 2009).

Core to early EDM development was the use of classifiers used to develop detectors of
student strategies or affect in cognitive tutor environments, an application called developing
“student models” (Baker, 2010, p. 326). A blueprint for this method was defined in “Developing
a Generalizable Detector of When Students Game the System” (Baker et al., 2008), with
foundational work started several years before (Baker et al., 2004). Other similar classification
work done with detectors includes Shih and team’s research on distinguishing helpful and
unhelpful kinds of hint retrieval behaviors in ITS (Shih, Koedinger, & Scheines, 2011);
identification of off-task behavior (Cetintas et al., 2009) that indicates gaming the system
(Walonoski & Heffernan, 2006) and impact on learning (Cocea et al., 2009); using text-based
interaction for detecting learning affect (D’Mello et al., 2008); and measuring affect around
agent-based instruction for students with learning disabilities (Woolf et al., 2010). It’s heartening
to note that for low-performing students, working with a virtual “pedagogical” character had a
positive effect on self-reported frustration and anxiety in Woolf’s study. Other studies around

positive affect and detectors include the work of Chaffar (Chaffar, Derbali & Frasson, 2009) and
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McQuiggan (McQuiggan, Mott & Lester, 2008), who leveraged classification techniques to
detect positive emotional state and self-efficacy in the context of cognitive tutor use.

Continued research on student modeling has merged detector work (classification and
correlation mining, (e.g. Baker et al., 2004) with the power of statistical regression techniques
(e.g. Baker et al., 2010). Logistic, linear, and multivariate regression, like CART, generate
predictive information about an outcome variable. Used in applications like providing feedback
to teachers, traditional statistical regression has been instrumental in assessing the effect of
different educational interventions on students (e.g. Feng, Beck & Heffernan, 2009), predicting
end student performance from web-based log and test scores (e.g. Yu et al., 1999; Ibrahim &

Rusli, 2007), and anticipating future time spent on an LMS web page (Arnold et al., 2005).

Pattern Mining

Another major EDM method type is sequential pattern mining. Sequential pattern mining
entails techniques that “capture sequential events” (DoE, 2012, p. 11). “Sequential pattern
mining,” as Romero and Ventura explain (2010, p.606), “aims to discover the relationships
between occurrences of sequential events, to find if there exists any specific order in the
occurrences.” This category can include text pattern mining techniques, models of temporal
sequence, and Bayesian probability methods.

One kind of raw data highlighted by Romero and Ventura is text or written language
based (Romero & Ventura, 2007). This is especially relevant in connecting with educational
research, where student writing and reflection can be a large component of assessment (e.g.
Hickey & Jameson, 2012). Computational linguistics and related machine learning studies have
used Natural Language Processing (NLP — c.f. Manning & Schiitze, 1999) to mine text-based

data for linguistic patterns. NLP and related text mining techniques have contributed to many
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EDM areas of application (Romero & Ventura, 2010). Providing instructor feedback and
constructing concept maps to support curriculum are two such areas. For example, in providing
instructor feedback, text mining algorithms have been key in valence-based auto-evaluation of
user opinions (i.e. categorized as positive or negative) in e-learning forums (e.g. Song, Lin, &
Yang, 2007). Other automated text-based analysis have measured various forms of student
verbage, including evaluating spoken responses to tutors (Zhang et al., 2008) and mining
students’” writing differences to explore divergent cognition styles (Huang et al., 2006). Auto-
creation of domain concept maps from academic articles are another pedagogical support
outcome of NLP (e.g. Chen et al., 2008).

Methods expressing sequential probabilities have been used with NLP. Markov modeling
is an example of this, used in Rabiner’s 1989 article on “Hidden Markov Models and Selected
Applications in Speech Recognition.” Other applications include methods research on language
patterns in a collaborative writing process (Southavilay, Yacef & Calvo, 2010), contrasting two
types of Markov models in mining for core trends. Markov modeling and related temporal-
sequence methods are also used in non-textual data for EDM purposes. In LMS research, for
example, Markov models have been used to monitor system information in support of teachers,
namely providing notification of student errors and technical issues (Heathcote & Prakash,
2007). They’ve also been of use in student classification; one LMS study created user
characterizations according to HMM output on navigation and content-access patterns (Fok et
al., 2005), while an educational game study used an MM for tracking navigation in high- and
low- performing user groups (Owen et al., 2014). Doug Clark and team also detail an

experimental design using HMM with Computer Adaptive Testing principles to uncover
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students’ strategic moves and explanatory responses in scientific modeling games (Clark,
Martinez-Garza, Biswas, Luecht & Sengupta, 2012).

In related probability-based methods, Bayesian models have been used with EDM
research. In another case, “outlier detection” of extreme data points (e.g. Vee et al., 2006;
Romero & Ventura, 2007) was achieved in an e-learning context through Bayesian predictive
distribution (Ueno & Nagaoka, 2002). In predicting the need for help in an e-learning
environment, Mavrikis (2008) utilized Bayesian networks; he formalized his process in a follow-
up piece on “Modelling student interactions in intelligent learning environments: constructive
Bayesian networks from data” (Mavrikis, 2010). Supporting collaborative learning, Bayes’ nets
have been combined with clustering methods to create informed skill-based student groups in
distance learning courses (e.g. Hamal&inen et al., 2004). In a Bayesian methods piece, Millan and
team (2010) provide a framework for using Bayes’ nets to engineer student models in intelligent
tutoring systems. Also focused on student models is Bayesian Knowledge Tracing (a kind of
Bayes network), used to help increase accuracy with classification of learner behaviors into
informed, guessing, or slipping performance behaviors (e.g. Corbett & Anderson, 1994; Baker,

Corbett & Aleven, 2008).

EDM: Conclusion

In the applied machine learning schema, main EDM methods include the metagoals of
visualization, relationship mining, and prediction. These metagoals can organically extend to the
related click-stream data pools of educational gameworlds — and can greatly inform game
telemetry assessment structures. For example, visualizing paths through the gameworld,
exploring relationships between gameplay patterns and learning, and modeling predictive

significance of player actions at specific points in gameplay can provide valuable insight into
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play and learning. Through specific method types like descriptive visualization, clustering, and
social network analysis, graphic representations can reveal important connections in large game
data sets. Association rule mining & correlation can define clear connections between game data
and learning. The predictive power of classification and regression can provide deep insight
about the gameplay factors which impact learning outcomes. Sequential pattern mining and
Bayesian networks can uncover vital likelihoods and sequential connections between gameplay
and assessment elements, with temporal- and probability-based mappings Overall, this schema of
data-mining methods for educational games — based in EDM-applied machine learning — can
help inform our game-based assessment structures to better enable adaptive, engaging learning

experiences in play.
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Chapter Three: ADAGE and Progenitor X

Introduction

Evidence Centered Design (ECD) and Educational Data Mining (EDM) both hold
important contributions to understanding assessment in digital learning environments. ECD
promotes content-driven design choices, and aligns data collection with selected performance
tasks hypothesized to constitute evidence of learning (c.f. Mislevy & Haertel, 2006). Application
of ECD to computer-based learning realms (e.g. Mayrath et al., 2012) means that such evidence
often resides in data-rich log-files. While rigorous research has been done on the conceptual
frameworks of ECD in digital worlds (e.g. Mislevy, 2011) there is little mention of the specific
alignment between user action and click-stream data structures from which evidence is obtained.
EDM, on the other hand, focuses heavily on masses of educational log-file data (Baker & Yacef,
2009; Romero & Ventura, 2010). In data mining, assigning semantic meaning to data “often
need[s] to be determined by properties in the data itself, rather than in advance;” unfiltered data
sets with contextual information like “time, sequence, and context” play “important roles in the
study of educational data” (International Educational Data Mining Society, n.d.).

In educational videogames, the idea that design should align with evidence of learning (a
la ECD) need not be mutually exclusive from the idea that unfiltered, richly-structured data is
vital to forming meaning (a la EDM). In merging these two perspectives, core game design
frameworks can be synthesized with distinct pedagogical task models to capture a wide range of
context-rich interactions. An optimized game-based assessment model, then, articulates a click-
stream data framework aligned with educational game mechanics for broad, context-rich

assessment data output — that can be used with both hypothesis testing and machine learning
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techniques. At the Games+Learning+Society group, this optimized model is ADAGE:

Assessment Data Aggregator for Game Environments (Owen & Halverson, 2013).

ADAGE (Assessment Data Aggregator for Game Environments)

ADAGE was designed to transform game-based log file data into evidence of learning.
Essentially, it integrates core game design structures into a click-stream data (telemetry) schema,
which is then seeded with context vital to informing learning studies. These data can be used to
identify patterns in play within and across players (using data mining and learning analytic
techniques) as well as statistical methods for testing hypotheses that compare play to content
models (cf. Loh, 2012; Halverson & Owen, 2014). Overall, ADAGE provides a standardized
game telemetry framework with a rich, method-agnostic data yield, efficient enough to have
scalability, and flexible enough to use across games.

Currently, ADAGE is a both a conceptual frame for capturing assessment data for games,
as well as an API and data output engine. The following paragraphs will overview the
assessment mechanics and telemetry schema of ADAGE, using the game of Progenitor X as an

example.

Assessment Mechanics

Assessment mechanics are ADAGE structures built into the game that allow for research
on play and learning. Understanding game-based learning requires two levels of assessment
mechanics: one to trace the paths players take through a game, and the other to access the player
experience of game play (Schell, 2008). Squire asserts that games as designed experiences
(2006) provide endogenous engagement (Costikyan, 2002) for the player through “roles, goals,

and agency” (Squire, 2011, p. 29). Thus, in learning games, there can two core kinds of designed
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mechanics: one set related to progression through the gameworld, as an engaging learning
context (Gee, 2005; Salen & Zimmerman, 2004); another may be designed as more direct
measures of the content the game is trying to teach (e.g. Clarke-Midura et al., 2012). Ideally,
these also overlap; good educational games meld learning mechanisms with the core mechanics
of the game, where gameplay itself is the only necessary assessment (Gee, 2012; Shute, 2011).

The ADAGE framework identifies underlying game mechanics for which serve as core
occasions for player interaction. There are three base types of Assessment Mechanics: Game
Units (capturing basic play progression), Critical Achievements (formative assessment of
content), and Boss Level (naturalistic summative assessment). As “Assessment Mechanics”, they
serve as data-collection (or assessment) anchor points, which yield data informed by core
educational game design structures. This terminology also parallels concepts of formative and
summative assessment in formal learning environments (Harlen & James, 1997), and formalizes
them as powerful elements of game design (c.f. Gee, 2012).

Through Assessment Mechanics (AMs), ADAGE operationalizes player interaction
(Salen and Zimmerman, 2004) as the vital link between experience and game design (Schell,
2008). These three core AM types can easily overlap within a gameworld; they are not mutually
exclusive, though they have distinct categories. Additionally, every game does not have to have
all AMs in order to use ADAGE. In this section, we will describe each mechanic, and connect it

to ADAGE’s underlying telemetry structure.

Game Units. The game Units represent the core progress mechanic of the game. For example, in
a game like World of Warcraft (WoW), the core unit is quests. By definition, game units have the
property of being a repeating, consistent vehicle for making progress through the gameworld.

Units can also be part of a hierarchy — for example, one set of quests may make up a particular
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map area, and completing all the maps means finishing the game. Thus, from broadest to
smallest, game Unit hierarchy might be: game-map-quest. The idea behind Units is that they are
flexible enough to work across genres; Currently, ADAGE Unit structure is applied to five
different GLS games (Progenitor X, Fair Play, Anatomy Pro Am, Tenacity, and Crystals of

Kaydor)’ each with different genres and Unit types.

Critical Achievements. Critical Achievements (CAs) in ADAGE are direct formative assessment

slices of the content model. They are moments of direct content measurement within the context
of normal gameplay. Seamlessly woven into the fabric of the game, CAs use naturalistic game
mechanics to measure underlying educational content. For example, Fair Play is a GLS game
which teaches about implicit bias in graduate education settings. In one Fair Play CA, the player
needs to correctly identify a given bias to another character in order to progress. This is a direct
demonstration of bias knowledge (as opposed to indirect movement through the learning context,
like in game Units). The CA data structure aligns very well with ECD task analyses. CAs
(analogous to the “task model” in ECD) are intended to be one kind of direct content assessment
embedded in gameplay, looking at selected moments of performance as learning measures.
Ultimately, CAs are a unique feature of educational games, and capture both learning AND play

dynamics in the user experience.

Boss Level. The Boss Level is a final stage of a game that is a culmination of skills learned in
gameplay. It is a naturalistic summative assessment, and can include both learning and progress
mechanics (like CAs and Units). Gee notes that powerful embedded assessment occurs in “boss
battles, which require players to integrate many of the separate skills they have picked up”

throughout the game (2008, p. 23). Games are an ideal medium for this summative assessment,

7 http://www.gameslearningsociety.org/projects/
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he asserts, since they can provide just-in-time performance feedback with low cost of failure
(Gee, 2005). By formalizing the Boss Level as an Assessment Mechanic in ADAGE, we
encourage deliberate inclusion of summative assessment in game design, and provide

corresponding telemetry API structures for implementation.

Telemetry Framework

The Assessment Mechanics, informed by game design and assessment research, create a
conceptual framework for identifying interaction data. The next ADAGE step moves us from
concept (AMs) to implementation (telemetry). The telemetry framework hinges on the AMs to
create a schema of context-rich data tags for implementation in the game code. Interpretation of
student interaction often hinges on the context of the learning environment (in this case, the
designed gameworld). The telemetry schema addresses this need by seeding the AM interaction

data with vital contextual information.

Temporal
(e.g. time, markers
of game progress)

Player Action

Critical Virtual
Achievements System Context

Feedback

Boss Level "
Positional

(e.8. map level, xy
coordinates)

\ J\ )
I I

conceptual frame telemetry schema

Figure 12. ADAGE Assessment Mechanics and telemetry schema.
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The telemetry schema has two layers: an action-feedback layer, and a Virtual Context
layer. First, for each Assessment Mechanic, it identifies two sources of direct interaction: user
action, and system feedback. It articulates the vital action-feedback loop (c.f. Salen &
Zimmerman, 2008) that comprises interaction between the player and the game. The second
layer, called the Virtual Context, attaches important contextual information to each action-
feedback event. The Virtual Context can include things like timestamp, map level, and screen x,y
coordinates. These two layers work in tandem to provide context-rich telemetry data on AM-

based gameplay trajectories (Figure 12).

Feature Engineering & Analysis Lenses

ADAGE’s context-rich data make ideal building blocks for feature engineering. Features
are essentially variables of interest in the data, which can range from simple click locations to
complex measures like accuracy over time. The features constructed, in turn, can be used across
a broad range of analysis techniques. Data lenses can include descriptive statistics, hypothesis-
driven applied statistics, and machine learning techniques. Methodologies for hypothesis testing
(like ECD) can use ADAGE data as dependent variables, independent variables, and covariates
for use in associative or predictive modeling. Lastly, ADAGE data lends itself to learning

analytic techniques often used with big data sets.

ADAGE: Application to Progenitor X

This dissertation’s empirical exploration of ADAGE begins with its application to the
GLS game Progenitor X. Progenitor is a puzzle game set in an apocalyptic world overrun by
ravenous zombies, providing the player with the agency and motivation to become the sole

regenerative biologist who can save the planet, one zombie at a time. The regenerative biology
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content model is manifested in the main mission of the player: to cultivate and differentiate stem
cells, assemble tissues and replace organs that have been contaminated with a zombie virus.
Despite its supernatural storyline, Progenitor is designed to teach cutting-edge knowledge and
processes in stem-cell science, and is rooted in serious collaboration with top regenerative
medicine scientists at the Wisconsin Institute for Discovery (WID). Collaborators include Dr.
Jamie Thomson, Director of Regenerative Medicine at the Morgridge Institute for Research
(MIR); Dr. Rupa Shevde, Director of Outreach Experiences at MIR; and Dr. Gary Lyons, an
esteemed UW professor of regenerative biology.

Completing game play requires players to solve 15 cell, tissue and organ puzzle cycles
within a series of eight sequenced “Objectives”. In early objectives, players encounter a cell
cycle that involves a sequence of treatment and collection tools that transform pluripotent stem
cells into particular cell types (Figure 13). Next, tissue cycles require players to layer
successfully transformed cells into segments of tissue; in later game play, the organ cycle
requires the assembly of tissue segments into organ shapes (Figure 13, last two graphics). While
players learn the cell cycle first, subsequent play requires players to repeat cell-tissue, then cell-
cell-tissue cycles in order to move through the game. In the final level of the game (Objective 8),
the organ-building phase functioned as a boss-level that required players to use all the skills
learned in the cell and tissue cycle (e.g. an organ-cell-cell-tissue cycle sequence) to complete the
game. Table 1 lays out the basic sequence of play. An average play-through of all the cycles in
the game has taken middle school players an average of 25 minutes (with 40 minutes defining an

upper limit of +2c).
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Figure 13. Progenitor X Cell, Tissue, and Organ Cycles

Table 1

Structure of Progenitor X Puzzle Gameplay

Cycle Type (I)\Itl)jr(::;:evre Objective Name
cell 0 (cell tutorial)
cell 1 "collect 10 red mesoderm cells"
cell 2 "collect 10 blue ectoderm cells"
cell 2 "collect 10 blue ectoderm cells"
tissue 3 "create a tissue"
tissue 4 "create a second tissue"
cell 5 "create green endoderm cells & build the final tissue"
cell 5 "create green endoderm cells & build the final tissue™
tissue 5 "create green endoderm cells & build the final tissue™
organ 6 "locate necrotic zombie tissue™
tissue 7 "create a replacement heart tissue"
organ 8 "find and replicate remaining Necrotic Zombie Tissue"
cell 8 "find and replicate remaining Necrotic Zombie Tissue™
cell 8 "find and replicate remaining Necrotic Zombie Tissue™
tissue 8 "find and replicate remaining Necrotic Zombie Tissue"

Progenitor Data Collection and Telemetry

Data collection and early analysis of Progenitor telemetry revealed interesting data
features and opened up new lines of research inquiry. Originally, GLS invited 110 middle school
students to play the game as a part of a summer enrichment program at the Wisconsin Institute

for Discovery in 2012. As part of the IRB-approved protocol, students completed a pre- and
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post- content assessment, which included a series of questions about the stem-cell content model
based on consultation with UW-Madison regenerative biologists. This pre-post protocol
incorporated interview, multiple choice, and open-ended questions, and resulted from
collaboration between WID content experts (including Dr. Gary Lyons and Daryl Nelson),
secondary school science teachers, psychometricians, and game-based assessment researchers.
(See Appendix for more detail.) As part of the process, we also collected demographic
information on the 110 players who completed Progenitor X to enable connection of player
background with in-game learning trajectories.

Players’ improvement on this biology assessment (from the pre- to the post- test) is used
as a learning measure in this dissertation. Percent improvement (delta) from pre- to post- was
used to sort players into highest and lowest learning groups. The pre- and post- test data were
ideally distributed for this measurement (Figure 14), with pre- scores averaging 46% (with 97%
of players scoring below the maximum). Post- scores averaged 67%, and had a graduated
increase in score (right, Figure 14), with only 6% of players maxing out scale at 100%. The
upper quartile of learners consisted of players with the highest percent improvement in score
(n=33), while the lower quartile of learners consisted of players with the lowest improvement

(n=41).
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Figure 14. Histograms of scores on Progenitor pre- and post- biology assessment.
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In triangulation with this pre-post protocol, telemetry feature engineering started early on
in the ADAGE process with Progenitor X, initially in investigation of possible player paths in
the gamespace. Examination started with mapping performance outcomes for each cycle in
Progenitor X. When overall failure (as one broad umbrella) demonstrated no relationship to
learning in pilot research (Owen et al., 2012), nuances of failure became the next natural
exploration. What resulted was a differentiation of ways to succeed and fail, and the derivation
of a new data key feature: “far failure” (Owen et al., 2013).

Far failure, essentially, was a kind of failure that occurred as a result of student
performing actions directly contrary to game cues. An example of this would be loading the
wrong cell onto the screen, or collecting the wrong cell at the end of a cycle. Near failure, on the
other hand, occurred when players followed all instructional cues, but failed while operating
within the suggested parameters of the task (i.e. running out of health while working to generate
the right cells). The upcoming analysis, Chapter Four, delves into these nuances of Progenitor
performance in detail.

Success, far failure, and near failure became central performance data features for
Progenitor X, along with learning outcomes from the pre-/post-, and cycle-based ADAGE virtual
context data. Exploring these data in connection with one another can provide insights into in-
game performance as it relates to learning, as the analyses below examine. Each of the following
analyses described uses the data from this section (n=110), collected with the methods detailed

above, and based in ADAGE for the game Progenitor X.
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Chapter Four:

Success and Shades of Failure — Feature Engineering and Applied Statistics

Introduction

Exploring player performance within the game’s core biology laboratory mechanics, this
chapter investigates the intersection between the microworld elements of game as content
delivery (Lens B, Figure 1) and player choice (Lens C). In doing so, this analysis section focuses
on ADAGE-based, iterative feature engineering and applied statistics around the concepts of far
failure and success in Progenitor X. It explores the research question: How are in-game success
and kinds of failure related to learning outcomes? A vital part of analysis for big data, feature
selection processes (e.g. Guyon & Elisseeff, 2003; Romero et al., 2011) emphasize iteration for
this reason — early research can inform more nuanced, ongoing feature engineering (e.g. Fogarty,
2006; Arnold, Nallapati, & Cohen, 2008). Accordingly, this analysis builds on the existing
research to systematically engineer more sequentially nuanced, refined indices of failure and
success. These indices align with three analysis strategies, which use descriptive and
nonparametric statistics to newly enrich understanding of success and failure in detailed
gameplay progression and relationship to learning outcomes. Thus, the research question for this
analysis is: how do fine-grained patterns in performance data connect to learning outcomes?

Overall, the feature engineering and analysis sections are aligned with the research
question in theme. Using six computational lenses for feature generation, these new telemetry
indices provide greater sequential resolution, more sophisticated cross-group comparative
features, and more nuanced performance differentiation (down to each cycle level). These align

with the goals for analysis, which include mapping previously unexplored patterns over time,
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differences in these patterns between learning groups, and relationships of in-game performance
to learning outcomes. To explore these goals, three analysis strategies were employed to help
visualize and quantify important trends in the newly enriched data. Based on these analyses,
results yielded three trends of performance findings connected with learning: overall game
progression and success, tissue failure in mid-game synthesis levels, and the changing meaning
of cell failure (specifically in early vs. late gameplay levels).

The study’s feature engineering process is outlined first, including the definition of
Progenitor performance features, computational lenses, and final output categories. The second
part of the chapter discusses analyses, starting with methods, then followed by results along the

three main trends mentioned above.

Feature Engineering

Overview

Iterative feature engineering with ADAGE starts with the basic telemetry schema (ADA
Base Tags) for raw categories of game output. This comes first in individual student logs, then
can be organized into more aggregate multi-student data. Third, new indices can then be made,
informed by the research question. In this section, this three-step process will be described, and
then applied to this study’s specific goals.

After data collection, step one of the ADAGE-based feature engineering process is
producing individual logs with all base data tags intact. Individual student data sheets have one
user action per line, whose columns would give detail about the meaning of the action. (Student
logs have had up to 15,000 event lines each.) For example, one line of one student’s data from a

GLS game would contain the following kinds of information:
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ADAGE Individual Log - Base Data Types Example
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Figure 15. Snapshot of one ADAGE-exported individual player log (about 3% of full log

shown).

Individual logs (Figure 15) can be very informative when looking at one student’s

gameflow, but it is also useful to have aggregated totals on specific features for meta-analysis

Thus, step two of ADAGE feature engineering is aggregating individual student information into

one multiple-player data document. At GLS, at this point, one might harass the overworked lead

data engineer with a list of proposed features for a telemetry totals sheet. In the totals sheet

(Figure 16), there is a standardized series of column headings, and one student per line (instead

of just one event). This format can accommodate many subjects’ data in a standardized, analysis-

friendly way. However, even dictating these totals headings require a first round of feature

selection. This will always depend on the research lens. As these 2012 Progenitor headings show

(Figure 16), early research focus was on basic success, failure, and game completion.
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iNlplayer timestamp objective added count objective completed count total failure total successes total populates
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4[] 1433 7 6 7 19 25
5 IS 977 15 13 6 25 29
[(We 1 1357 6 5 6 8 14
Sle 3 1492 5 4 8 25 33
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11 s 1144 5 5 6 8 14

Figure 16. Example of telemetry totals csv.

After basic multi-player data is aggregated, a third step is creating more sophisticated
data indices, called feature engineering. (This often occurs after an intermediary round of
exploratory analysis on the step two data.) Like step two, the data focus will depend on the
research question. Any of the base data types (see Figure 15 and Table 2) can be combined to
engineer a new data feature. As seen in a use-case functionality mockup of the ADAGE analytic
interface (Figure 17), a range of mathematical operations can be applied to two base data types to
create a new telemetry feature. For example, one can take total time and divide it by the number

of objectives completed,; this yields a new feature of time per objective completed.

ADAGE FEATURE ENGINEERING OPTIONS

Totals

Average

Which computational lens would you like to use?

Ratio

First/Last Unit Played

Time series

Isomorphic series

Figure 17. ADAGE analytic interface: functionality mockup.
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Progenitor X: Feature Process and Computational Lenses

Specifically for Progenitor X, a main study goal was to systematically engineer fine-grained,
failure-specific features which take into account cycle type, specific objectives, sequential
patterns, isomorphic play cycles and ratio-based performance. Using the steps outlined above,
this round of feature engineering identified base data types of interest for an aggregation of
multi-student base data (steps 1+2), and then engineered new indices based on these data with a
finite series of mathematical operations (step 3).

Steps one and two required identification of base data types of interest for both individual
and aggregate logs. The core features of interest were several types of failure (far failure, near
failure, and total failure) and success — all parsed by individual cycle, the core unit of the game.
As an additional layer, each of these data were also identified by cycle type and objective
number. A description of each kind of failure is given in detail in the “Definitions” section
following Table 3.

Third came combining these base data types, using mathematical operations, to create new
Progenitor data features. Delving deeper into the significant constructs of far failure and success,
the new telemetry indices explored greater context-based failure differentiation, more
sophisticated (compound) indices for player comparison, and increased temporal resolution.
These became “data themes” in alignment with analysis goals. To create new features along
these themes, six computational lenses were used. The table below illustrates I) computational
processes to be used in creating the new features (plugging in any one or two base data types), 1)

examples of resulting indices, and I11) the corresponding data theme.



Table 3

Feature Engineering Computational Lenses: Operation, Example, and Theme
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1) Computational Lenses

I1) Example Features

I11) Data Theme (A, B, C)

e Totals
(overall, for each objective,

and for each cycle type)

- total objective 1 far failure
- total tissue near failure
- total objective 3 successes

- total failures (whole game)

A) Context-specific
performance data

e Ratios
(proportions of

performance** features)

- near failures : far failures
- successes: failures

- far failures: total failures

B) Compound indices for

comparison

e  Averages

(per objective & per cycle

type)

- average far failure per
objective completed

- average success per objective
added

B) Compound indices for

comparison

e Performance data for
last objective played

(customized per student)

- successes in last played
objective
- near failures in last played

objective

B) Compound indices for

comparison

e Time series

(taken as a sequence of data
points, by objective & by
cycle type)

- list of near failures:
objectives 1, 2, and 3

- list of successes: objectives
6,7, &8

- list of far failure in tutorial
levels only: objectives 1, 2,
and 4

C) Temporal sequence data

e Isomorphic sequence

(for identical cycles only)

- identical cell cycle successes
(from objectives 2, 5, and 8)
- identical tissue cycle failures

(from objectives 3, 4, and 7)

C) Temporal sequence data

Note. **“Performance” data refers to in-game success, near failure, far failure, and total failure
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The totals, ratios, averages, last objective played, time series, and isomorphic sequence
(Table 3) are computational lenses applicable to each of the base performance data types
(success, far failure, near failure, and total failure). These provided data along three themes:
context-specific totals (theme A), compound indices that are standardized for comparison
between groups (theme B), and temporal sequence data (theme C). To clarify these data,

definitions of the base performance types of success and shades of failure follow.

“Base Performance” Feature Definitions

For practical engineering of these features, “nuanced performance” was defined with one
success type and three base failure categories: success, near failure, far failure, and total failure.
Success was defined as the collection of the correct biological material at the end of a cycle.
Near failure and far failure were definitions of failures which resulted from a detailed mapping
of potential play actions and outcomes in a given cycle of play. These types of failure were
distinguished after overall failure (as one broad umbrella) demonstrated no relationship to
learning in pilot research (Owen et al., 2012); thus, nuances of failure became the next natural
exploration. (The discussion and conclusion chapter dives more deeply into theories of play,

failure, and learning in consideration of analysis results.)

To begin this examination, all outcomes of the start-treat-collect cycles of the game were
mapped. The Progenitor X cycle involves populating an initial grid with the right kinds of cells
(start), transforming those cells into a target cell/tissue (treat), and collecting the correct cells for
the next cycle of the game. The cycles can unfold in several ways. First, players are guided to
populate the grid with the right kind of cell (green check, Figure 18). After this population, the

cycle can end in three results: collecting the right cell (success), collecting the wrong cell
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(failure), or over-manipulating the cells so they die (the Ph of the culture becomes toxic, and the

cycle results in failure).

Right Collect (Success)

Health Runs Out (Failure)

Wrong Collect (Failure)

Figure 18. Progenitor gamespace - correct initial grid population.

Second, a player could have also initially populated the grid with the wrong cell (red X,
Figure 19). In this case, there are two options for ending the cycle: collecting the wrong cell

(fail), or overmanipulating the cells until the Ph levels (health) becomes toxic (fail).

Right Collect (Success)

Health Runs Out (Failure)

Wrong Collect (Failure)

Health Runs Out — Wrong Grid
(Failure)

Figure 19. Progenitor gamespace - incorrect AND correct initial grid population.
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With reflection on the possible outcomes of play cycles, distinction of the varying
degrees of player compliance with instructional cues (e.g. flashing buttons & in-game narration)
guided operational definitions of different kinds of failure. The concepts of “near” and “far
failure” were then developed (Figure 20) to describe failed play in accordance with the suggested
play path (near) and at odds with the suggested path (far). Three possible player outcomes for
Progenitor X cycles were grouped as 1) correct collection (successful); 2) correct set-up but

health runs out (“near failure”); and 3) incorrect setup and/or incorrect collection (“far failure”).

Health Runs Out (Failure)

Figure 20. “Far failure” in the Progenitor gamespace.

Thus, three nuanced performance features were defined: success, near failure, and far
failure. For the purposes of this investigation, it should be noted that these “success” and
“failure” labels are simply operational definitions of actions in the gamespace. All feature
definitions here are made according to the original learning game design, which complied with
content experts’ vision of an expert pathway through the game’s procedural laboratory

mechanics. This was reflected in the model-scaffold-fade (Collins, Brown & Newman, 1990)
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structure of cell and tissue play progression, which assumed success through this sequence to be
an optimal pathway. This “expert pathway” definition is solely used in this study for clearly
labeling data features of success and failure — this research, however, does not assume that this
intended play pathway is the optimal one. It merely uses these embedded criteria of game

performance to label data features.

Progenitor X Data Feature Output

In using the computational lenses (Table 3) of feature distillation, the first step was to
determine the basic “totals” information. Each of these four base performance types (success, far
failure, near failure, and total failure) were aggregated across whole game session. Then, each of
these performance labels were also identified based on the base cycle type (leveraging ADAGE
“virtual context”). Table 4 shows the resultant performance categories. In tissue cycles, the only
way to fail is through a grid destroy (near failure), so far failure is not an option. Also, organ
cycles were extremely simple in the game, and were more for narrative sake than for
demonstrating a skill. Since they were essentially impossible to fail, and only one interaction
(success) was required per cycle, organ cycles were not included here as relevant for nuanced
failure information. Thus, the next kind of “totals” amassed were for cell success, cell near

failure, cell far failure, tissue success, and tissue near failure (Table 4).

Table 4

Data Feature Labels — Performance Types Merged with Cycle Types

Success Near failure Far failure

Cell Cell success Cell near failure Cell far failure

Tissue Tissue success Tissue (near) failure
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As a last step in gathering totals for each feature performance type, the Table 4 categories
also could be aggregated by objective. This was important in giving context-specific
performance information. Table 4 below shows cycle-type performance indices mapped to each
objective. Objective 6 is omitted from the chart below, because it was the only organ-exclusive
level, and existed for narrative cohesion rather than skill demonstration. Only cycle types present
for each objective were identified; for example, Objective 1 only contained cell cycles, so tissue
performance was not relevant. Therefore, this next “totals” category is represented in Table 5,
listing each kind of cycle performance per objective (Objective 1 cell success, Objective 1 cell

near failure, Objective 1 cell far failure, Objective 2 cell success, etc.).

Table 5

Data Feature Labels — Cycle-Based Performance for Each Objective

. Ti
Cell near Cell far Tissue 19Sue
Cell success . . (near)
failure failure success .
failure
Objective 1 v v v
Objective 2 v v v
Objective 3 v v
Obijective 4 v v
Obijective 5 v v v v v
Objective 7 v v
Objective 8 v 4 v v v

For the final feature output, success, near failure, and far failure were assembled on each
level discussed: aggregate game totals, aggregate game totals by cycle type (Table 4), objective-
specific totals, and objective-specific totals by cycle type (Table 5). This constituted the “totals”

category of computational lens in Table 3. These totals then became a basis for application with
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all other computational lenses in the chart: averages, ratios, last objective played, and time series

(Table 3).

Ultimately, based on the computational lenses presented (Table 3), 10 core categories of
features were created (Figure 21). Each feature was taken for success and nuanced failure types
for each Progenitor objective, as well as for core play information like time elapsed, number of
cycles played, number of objectives completed, and game completion (see Table 3 for examples
of each). An average of 19 features per color-coded category type (Figure 21) was generated,
creating a feature count of 194. Taken per student (n=110), this came to an aggregate matrix of
21,340 telemetry data cells (Figure 22). These final indices resulting from the feature

engineering of this chapter served as a foundation for the entire dissertation arc of analyses.

TOTALS: Overall

TOTALS: Per Cycle Type

TOTALS: Per Objective + Cycle Type

RATIOS: Per Objective

Figure 21. Progenitor feature distillation categories by color-coded label.
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Figure 22. Progenitor full feature distillation per color-coded feature category (partial view)

New Progenitor Feature Analysis: Methods and Results

These new measures of performance were designed to help give more nuanced insight
into play patterns connected with learning. By creating more points of sequential comparison
between learners, these new indices of success, near failure, far failure, and total failure afforded
insight more detailed divergence and convergence in learner play patterns. The three data themes
in Table 3 — “A” (context-specific performance), “B” (compound indices), and “C” (temporal
sequence) — connected directly with analysis goals of visualizing performance trajectories,
measuring association and comparing features in learner groups, and understanding performance
across identical play cycles.

To achieve these analysis goals, three statistical analysis strategies were used. For the
first analysis goal of visualizing performance trajectories, descriptive statistics were employed to
visualize new feature trends (success and failure over time relative to learning) through basic

scatterplots, comparative graphs, and time-series charts. Features from data theme “A” and “C”,
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were visually mapped to show success and shades of failure in different sequential objectives.
These were partitioned by high- and low- achieving learner groups for contrast, and took into
account information like game completion.

The second and third analysis strategies were comparison and association of the new data
features, though nonparametric correlation (Spearman’s Rho) and mean contrasts (ranked mean
Wilcoxon tests). Multiple comparisons were accounted for through controlling of False
Discovery Rates (Storey, 2002); the p-values shown here were evaluated for significance using
the QVALUE statistical package in R (Dabney & Storey, 2004). All adjusted p-values are thus
called g-values, or “q”, in the results below. These statistics worked largely with data themes
“A” and “B”, connecting new compound indices and context-specific performance features with
learning outcomes. Used in Wilcoxon contrasts, the basis for quartile learning groups (i.e. data
collection methods and full player pool) are described in greater detail in Chapter Three.
Essentially, based on a pre-post assessment on regenerative biology (developed with content
experts), they are made up of two groups: Progenitor players with the greatest positive change in
score, and players with the lowest change in score. The upper quartile consists of 33 players, and
the lower quartile consists of 41 players. “UQ” is an abbreviation used throughout the
dissertation for the upper quartile of learners, and “LQ” stands for lower quartile of learners.
These only refer to learner groups (as determined by pre-post gains) — no other kinds of quartile
groups are discussed in this dissertation. For all correlation and non-quartile analyses in this
chapter, N=110.

The implementation of these analyses had several possibilities for sequence; one order
flow of analyses is represented in Figure 23, connected with the corresponding data themes. This

flow started with time series graphs along data theme C (upper left, Figure 23). The
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representation of these data in descriptive sequential line graphs launched deeper investigation of
sequential trends, and inform the use of bar graphs, scatterplots, and two-sample Wilcoxon tests
to contrast learner groups (data themes A & B). To corroborate these quartile-based inferences,
Spearman’s correlation was conducted on relevant features in relationship to learning outcomes
(also A & B). With any data applicable for comparing identical, repeated cycles (e.g. cell success

in objectives 3, 5, and 8), deviation between the cycles was visually mapped (Figure 23).

DESCRIPTIVE STATISTICS NONPARAMETRIC STATISTICS

4 N

Time Series Graphs

s DHE—> [ ]
o _/
e ) [ ]
N J
~ ™
—> | Deviation Measure —
KEY
repeated levels Data Theme C red)
- J

Figure 23. A sample flow sequence of analyses, beginning with time series graphs.

Discussion of Analysis Results

When analyzed with this methods schema, results yielded findings along three main
trends of play. Trend One described overall play progress metrics and success in relationship to
learning, while Trends Two and Three broke open the construct of “monolithic” failure into

meaningful subtypes whose relationship to learning evolved with the game context.
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Trend One: Game Progress Connected with Learning

The first trend of findings characterized forward movement in the game, including
overall success, time, and progress patterns. Broadly, objectives completed and success in the
game were connected with learning gains. A correlation between objectives completed and
learning gains (Table 6) revealed a positive relationship (r=.272; g=.018), with a significant
difference (q=.044) between the quartiles in number of objectives completed (Figure 20).
Because it is possible to quit and restart the game, number of “objectives added” was considered
in addition to objectives completed, as was the objective number of the “last played objective”.
Both of these progress measures also demonstrated positive correlation with learning gains
(Table 6), as well as significant differences between the quartiles (Table 7). Time elapsed,
notably, was not correlated with learning gains nor showed any significant difference between
the quartiles (Table 7). It seems the upper quartile was making comparatively efficient progress
in the same time frame as the lower. Success as well as game progression mattered; the number
of successful cycles in gameplay was positively correlated with learning outcomes (r=.216).
Boss level success was also measured (since it is a clear summative assessment level in the
ADAGE infrastructure), and also found to be positively correlated with learning (r=.223;
g=.033). Thus, game success (overall and in the boss level) and overall progress (e.g. number of

objectives completed) were positively associated with learning.



Table 6

Game Progress and Success in Progenitor X: Correlation

Trend Feature Correlation (vs. learning outcomes)

Progression  Objectives added
Obijectives completed
Last played objective
Success Total success

Boss level success

r=.272; g=.018
r=.269; g=.018
r=.257; g=.018
r=.221; g=.033

r=.223; g=.033

Table 7

Game Progress and Success in Progenitor X: Contrast Between Quartiles

Feature Upper Learner

Quartile Average

Lower Learner Significance

Quartile Average

(n=33) (n=41)
Obijectives Added 7.0 6.0 q=.044
Obijectives Completed 6.4 5.3 q=.044
Total Seconds Played 1453 1428 none (q=.379)
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Progenitor Objectives Totals

B Lower Quartile
Learning Group

B Upper Quartile
Learning Group

Objectives added Objectives completed

Figure 24. Progenitor average objective progress for each quartile.

Final Trends: Breaking the Monolith of Failure

The next results trends, branching into two currents of findings, supports two inferences
about failure in gameplay: first, that differentiating kinds failure is important; and second, the
relationship of each kind to learning changes with gameplay context. In short, kinds of failure —
and, in turn, the changing context of failure types — matter for learning impact. A primary finding
opened deep insight into this idea: failure, taken as a overall game total, had no statistical
significance (g=.359) in connection with learning gains (either in correlation or in upper/lower
quartile contrast). Thus, “monolithic” failure had no relationship with learning in Progenitor X

play. This opened deeper investigation into kinds of failure and learning in the gamespace.

Far failure and near failure were two kinds of failure that could occur in the Progenitor
cell cycles. In tissue stages of the game, it was also possible to fail through running out of health
(also termed a “grid destroy”, because the grid of the in-game petri dish implodes when the cells

run out of health and die). Tissue failure was thus another kind of failure that was distinguished
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in these features, along with cell far failure and near failure. Looking at each kind of failure

during each chunk of gameplay uncovered two main failure trends.

Trend Two: Tissue and Mid-level Failure

Breaking failure down into tissue failure provided insight into play patterns. The tissue
mechanic, a Tetris-like shape manipulation, was different from the cell skill and represented an
important step in the game’s regenerative medicine procedures. This was an important mechanic
both for keeping the player engaged in play well through mid-game, as well as for exposure to
biology content (in illustrating more of an organ regeneration process). Therefore, understanding
student performance in tissue cycles gives insight into sustaining play progression and
optimizing experience with the academic content.

In particular, tissue cycles in mid-game levels (like Objective 5 and 7) turned out to be
critical points for both learning and game completion. Objective 5 was the first level presenting
advanced cell and tissue cycles together (instructional cues having been faded out in earlier
levels). Tissue failure was connected with the lower learning group; in Objective 5, it was twice
as high for the lower quartile of learners than it was for the upper quartile (Figure 26). Tissue
mastery in Objective 5 was correlated positively with game completion (r=.247; g=.030), and
positively associated with learning in Objective 7 ( r=.241; q=.028). (Interestingly, tissue failure
in Objective 7 had no relationship to learning.) Tissue performance in this mid-level especially
influenced game quit points, as the histogram below shows (Figure 25). Displaying last objective
played, the chart shows that most students either finished the game (Objective 8), or dropped out
in Objective 5 — the compound cell-cell-tissue level. Interestingly, just taking chunked data by
category in each objective, it’s clear that tissue failure in Objective 5 sets the two learning

quartiles apart (Figure 26). Identified with this baseline failure data, this phenomena of tissue
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attrition opens up more nuanced questions about types of failure in this critical middle level,

explored further in the detailed sequential investigation of Chapter Five’s Markov modeling.
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Figure 25. Histogram of transition from cell to tissue in mid was critical drop-off point.
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Figure 26. Tissue failures over time with the upper and lower quartile.
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Trend Three: Far Failure, Learning, and Evolution Throughout Play

In addition to tissue failure, far failure (specific to cell cycles) mattered for learning as
well. In overall play patterns, far failure proved to be a construct that showed significance for
learning and game progress. Generally speaking, far failure had negative connection with
learning and play progression, with finished players only experiencing 37% far failure (out of
total failure) versus non-finished players with 63% (Figure 27). Another representation of far
failure’s relationship with play and learning can be seen in Figure 28, which shows a similar

trend for both non-finished and lower learning quartile players.

Far Failure and Game Progress

Far Other
Failure Failure
37% 37%

Far
Failure
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Figure 27. Far failure and game progress.

Far Failures Per Objective
5
4.5
g 4
335
£ 3
% 25 ~&—nonfin
5 2 —LQ
£ 15
-
z 1
0.5
0
Obj 1 Obj 2 Obj 5 Obj 8

Figure 28. Far failure per objective, averaged for low learning quartile and nonfinished players.
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Looking at a more nuanced narrative, however, far failure had critical variations in
relationship to learning depending on the specific game level. Early game far failures appeared to
negatively impact learning and game progress; astoundingly, this relationship reversed
completely by late game levels, where far failure actually showed a positive relationship to

learning.

Table 8

Far Failure Trends in Progenitor X: Contrast Between Quartiles

Trend Feature Upper Learner Lower Learner Significance
Quartile Average Quartile Average
(n=33) (n=41)
Early Game Eérly far . 0.1 0.9 q=.044
failure (Obj 1,2,5)
Late Game Objective 8 far 0.3 0.0 q=.044
failure
Table 9

Late Game Far Failure in Progenitor X: Correlation

Trend Feature Correlation (vs. learning outcomes)

Late Game Obijective 8 far failure r=.217; q=.035
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Evidence of this trend emerged with visualization, correlation, and quartile contrast. In
early levels of the game, far failure was negatively connected with learning (Table 8). This trend
throughout objectives show that the upper and lower quartile differed significantly (q=.044) in
early game far failure averages. The lower group of learners had nearly ten times the far failure
(on average) than the UQ in early game (Figure 8). The descriptive trend in Figure 29 also shows

that far failure was higher for the lower quartile, particularly in Objective 1.

Far Failures Per Objective

4 X\
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1 X\ —=¢L1Q
i \

Obj 1 Obj 2 Obj 5 Obj 8

Number of Far Failures

Figure 29. Far failure per objective, averaged for upper and lower quartile learners.

Looking at far failure’s role beyond this point, however, paints a very different picture.
Interestingly, the lower quartile far failure steadily decreases as play moves forward, but upper
quartile far failure actually increases in frequency from mid to late game (Figure 30). Thus, far
failure in later game objectives actually becomes characteristic of higher learning gains.
Correlation supports this pattern (Table 9), showing that far failure in Objective 8 actually shows
a positive relationship to learning (r=.217; q=.035), as opposed to the negative relationship in
early game (Table 8). This movement implies that the meaning of far failure shifts from early

training levels to later levels of mastery — and possible experimentation or strategy.
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Far Failure as % of Total Failure
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Figure 30. The ratio of (far failure / total failure) in each objective, calculated for lower

and upper quartile players.

Summary and Conclusions

The findings of this chapter — based in differentiated failure in specific contexts — shows
evolving trends of early, mid, and late game performance in relationship to learning. These
trends shed light on this study’s driving research question on the relationship between in-game
success and kinds of failure with learning outcomes. While overall success and game progression
were positively related to learning, failure trends were much more nuanced. First, tissue failure
in critical levels of scaffold-and-fade during mid-game proved critical in sustaining learning.
Secondly, cell-based far failure showed interesting significance in early gameplay (negative
relationship to learning), yet a positive relationship with learning later on during the boss level.
Thus, in addition to providing a solid base of systematically engineered features for the entire
dissertation analysis arc, this chapter sets the groundwork for the upcoming nuanced inquiry into
fine-grained sequential patterns and far failure transgressive play behaviors of the following two
analyses. These analyses build on these base findings to explore further the evolving role of

kinds of failure in transgressive play and learning throughout the game.
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Chapter Five:

Markov Modeling Of Learner Progression Through the Progenitor Gamespace

Introduction and Framework

In the overarching exploration of player learning through the lenses of game experience,
this dissertation’s second analysis studies learner choices (Lens C, Figure 1) in navigation
through the game as a narrative progression (Lens A). Game design experts Jesse Schell and
Matt LeBlanc identify game narrative as a fundamental dynamic of engaging game experience
(Schell, 2008; Hunicke, LeBlanc, & Zubek, 2004). The term “narrative” here is not defined as
’the telling of a prescribed, linear story”, but more generally a “dramatic unfolding of a series of
events” that is meant to support player roles, goals and agency (Schell, 2008, p. 109; Norton,
2008; Squire, 2011). In investigating sequential learner decisions around the designed milestones
of play progression, this study seeks to understand patterns of forward movement, stagnation,
and attrition within pivotal segments of the game as a cohesive arc of play. Specifically, its
research question asks: how does organic play progression differ between groups of learners?

While Chapter Four’s analysis looked at player actions chunked by types of cycles, and
counted in terms of totals within each chunk, this study structures the interaction data differently.
In order to effectively study real-time play progression, player actions needed to be itemized in
real-time sequence at the cycle level. For example, if a player named Troy was to finish the
game, we would look at every core cycle Troy completed from beginning to end -- with the
specific lens of sequence from first cycle to last cycle (not aggregate grouping by cycle type or
objective) to order the data. Troy’s data for this analysis would, instead of a list of totals, look

like an ordered sequence of events: 1) cell cycle, 2) cell cycle, 3) tissue cycle, 4) cell cycle, 5)
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organ cycle, 6) cell cycle...and so on. This is wonderful on an individual student level — we
could visualize a single player’s game progress with this information — but one challenge of this
research lens was to find a method that was able to simply and clearly describe movement
through the space for multiple players simultaneously. One such method, Markov chain
modeling, can create visualizations of user movements from one cycle to the next for multiple
players at once (c.f. Rabiner, 1989; Clark et al., 2012). For this reason, Markov modeling was the
method of choice for investigating this research question in the Progenitor X gamespace. To
understand play progression in relationship to learning outcomes, the research design builds and
compares two Markov models: one for the students with the highest biology learning gains®
(upper quartile), and one for students with the least improvement (lower quartile).

Made possible by ADAGE data, Markov modeling works in this study by taking different
points of gameplay progression and identifying them as states. In this case, the Markov states are
anchoring points of progress that help identify where the player was in the context of game
completion. Example states in Progenitor are Objective 1 cell cycle, Objective 2 cell cycle,
Obijective 3 tissue cycle, etc. A Markov model then shows the probability that players will move
from one state to the next. For example, a model might show a 75% probability that students
would start in Objective 1 cell cycle, and move directly to an Objective 2 cell cycle. It might also
say there is a 20% probability that students starting from that same Objective 1 cycle would end
up repeating it for their next move. Through this temporal probability modeling, Markov chains
produce a whole matrix of probabilities of moving from one given state to the other (a transition
matrix). Using first-order Markov modeling in this study provided detailed probabilities of each
movement in the gamespace from one state to another. Thus, this analysis deemed to understand

play progression by examining probabilities of movement from one state to the next, and

® As measured by pre-post biology survey data — see Chapter 3 for details.
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contrasting these transition matrix probabilities between the two learner groups. Examining these
differences carefully enabled the identification of nuanced sequential play trajectories most
characteristic of learning.

Overall, this Markov analysis creates new, nuanced telemetry indices for consideration in
relationship to learning, reveals organic findings consistent with the themes of Chapter Four, and
enriches understanding of these trends for final investigation in the third and last analysis. To be
clear, the Markov model is a descriptive analysis which allows indices from Analysis | to be
visualized in higher temporal resolution. The following pages of this chapter will discuss Markov
findings along three main trends, deepening insight into three dissertation-wide play themes:
early game tutorial attention, mid-game scaffold-and-fade performance, and endgame strategic

navigation.

Methods and Output

To most effectively mine the ADAGE data for contrasts between the learner groups, three
sets of models were built with three different levels of resolution. Each first-order Markov model
was built using the “Narkov” algorithm (Berland, 2012) in NetLogo, a multi-agent modeling

environment (Wilensky, 1999).

Each set of models was built based on the data from two groups: an upper quartile and a
lower quartile of learners. This designation is based on a pre-post assessment on regenerative
biology (developed with content experts, and described in greater detail in the
ADAGE/Progenitor methods Chapter Three). Relative to this performance, the quartiles are
made up of two groups: Progenitor players with the greatest positive change in score, and

players with the lowest change in score. The upper quartile consists of 33 players, and the lower



83

quartile consists of 41 players. “UQ” is an abbreviation used throughout the dissertation for the
upper quartile of learners, and “LQ” stands for lower quartile of learners. These only refer to
learner groups (as determined by pre-post gains) — no other kinds of quartile groups are
discussed in this dissertation. For all correlation and non-quartile analyses in this chapter,

N=110.

Markov Model Set One: Base Resolution

The first set of Markov models were built with base progression data, creating a simple
set of game states which designated progress through each objective. The cycle was chosen to
represent this progress, because it is the smallest consistent unit of Progenitor gameplay. To
create these states, each cycle type (cell, tissue, or organ) was listed in order of occurrence and
corresponding objective (Figure 31). This information was then synthesized into simplified
Markov labels for each cycle (right column, Figure 31). These simple features become the
“states” for the Markov model (i.e. possible positions in the gamespace). From a given state (e.g.
obj1 cell), a player could make one of three moves: repeat the cycle, move on to the next level
cycle, or quit the game. The Markov model, then, maps the probability of each group in

repeating, moving forward, or quitting immediately after a given cycle.
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In-Game  Mission Cycle** Cell population Treatment tool  Collection cell type O‘bi ective C‘TCIE T}])E Markov State Label
Sequence type [Stage 1) type [Stage 2] (Stage 3) 1 1 b] 1 i
cel objl_cel
! 2 cell obj2_cell
2 I -
3 3 tissue obj3_tissue
! 4 tissue obj4_tissue
6 5 cell obj3_cell
i sleciroporate 5 tissue obj5_tissue
8 2 D. endoiii ips growth factor —
9 2 . tissue i endo NfA 6 organ obj6_organ
N Scan 7 tissue obj7_tissue
11 N/A | -
12 scan 8 organ obj8_organ
13 ibroblasts elect 8 cell | obj8_cell
14 growth factor - —
15 NiA 8 tissue obj8_tissue
=

Figure 31. Detailed cycle sequence & simplified conversion to Markov state labels.

In this first model set, two Markov chains were built in NetLogo. The first took all
sequential cycle activity of the upper quartile of students and built a probabilistic model of play
progression. (The upper quartile and lower quartile groups are often referred to here as “UQ” and
“LQ,” respectively. It should also be noted that all players were given generous time to finish at
60 minutes per session; 25 minutes was the average playthough duration, with 40 minutes
defining an upper limit of +2c.)

When the data for each quartile were put into the Narkov algorithm in NetLogo, two
visual maps of transitions to and from each state were generated. Each shows a clear trajectory of
play characterizing each group, shown side by side below. (Specific Markov results are

visualized in greater detail in the findings section of this chapter.)
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Figure 32. Base Markov model of the upper quartile (left) and the lower quartile (right) of

learners.

Markov Model Set Two: Moderate Resolution

The first pair of Markov models gave clear mapping of play trajectory, with simple
demarcation of repetition, progression, or quitting. With cycle repetition in particular, however,
there are several different reasons players may repeat. Only in certain cases does it mean failure
and re-trying; in particular objectives, players can move freely between cell, tissue, and organ
cycles and repeat successful cell cycles as many times as they wish before choosing to move on.
In order to better understand player choices during cycle repetition, then, the data resolution was
intensified to include success and failure at the individual cycle level.

The second set of Markov models reflects this increased resolution, intended to give
deeper insight into the simple, powerful results of the first model. The data for this moderate-
level model takes state labels for each objective, just as the first models did, but this time

incorporates success and kinds of failure for each cycle. For deep definitions of failure types,
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please refer to Chapter Four, where the base features for analysis are described in detail. A

cursory set of definitions include:

e “far failure” as the kind of failure that happens when the player is acting in direct
opposition to instructional cues,

e “near failure” as a “softer” failure (see Figure 20) in which the player has started
off a cycle correctly but has simply run out of health, and

e “tissue failure” as failure during a tissue cycle (there is only one way to fail in
this case).

In this second, more detailed Markov, rather than just denoting objective number, the
cycle labels include performance data. For example, if a player successfully completed a cycle in
Objective 1, the label might be “objective 1 success”; if they experienced far failure, then the
label would be “objective 1 far failure”; if near failure, then the cycle would be identified as
“objective 1 near failure”. (Each of these is abbreviated in the actual model labels, shown
below.) The states for this model start with an objective number, and combine it with every
performance outcome possible for that objective’. Possible outcomes for cycles include: success,
near failure, far failure, tissue failure, and failure via unfinished cycle (e.g. quit fail). The table

below shows all combinations of information into state labels.

% As detailed in Chapter Three, some objectives only have one kind of cycle available, and thus only include labels for the
appropriate failure type. “Far failure” and “near failure” are specific to cell cycles, and “tissue failure” is specific to tissue cycles;
Objectives 0, 1, and 2 are exclusively cell levels, and Objectives 3, 4, and 7 are exclusively tissue levels.



Table 10

Moderate-level Markov State Labels (Model Set Two)

success farfailure near failure tissue failure quit failure
Objective1| 1S 1 _FF 1 NF 1_QF
Objective2| 2_S 2_FF 2_NF 2_QF
Objective3| 3 S 3_TF 3_QF
Objectived4| 4 S 4 TF 4_QF
Objective 5| 5_S 5_FF 5 _NF 5 TF 5_QF
Objective 6| 6 S 6 QF
Objective7| 7_S 7_TF 7_QF
Objective 8| 8 S 8 _FF 8 NF 8 TF 8 _QF

This new resolution of data was assembled and sequenced for the upper and lower
quartile of learners, then put into two separate Markov models for contrast in NetLogo. The

model output for each group is shown in Figure 33. Please note that findings from each model

are visualized in greater detail in the results section below.

Figure 33. Moderate-resolution Markov model, with the upper quartile of learners on the left,

and the lower quartile on the right.
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Markov Model Set Three: Highest Resolution

Overall, the moderate-level Markov (model set two) was an excellent balance of
preserving n-size per cycle and getting a sense of broad-stroke trends, while gaining informative
resolution into repetition cycles. This is especially true for the Progenitor objectives which
contain only one kind of cycle (either cell, tissue, or organ). However, some objectives contain
all three. These “compound” levels are Objectives 5 and 8, which carry a cell-cell-tissue-organ
sequence, but allow non-linear play (free range to move between these cycle types and repeat as
often as desired). While making for great synthesis of gameplay skill, these two objectives
present a challenge in clearly parsing the data for analysis. For example, with the moderate-level
Markov data, an “objective 5 success” could mean a cell, tissue, or organ success (and at any
non-linear point of the player’s choosing); an “objective 5 quit fail” could have happened during
any of these cycles as well, and does not give information about how much of the objective
content the player has completed. Therefore, specifically for more nuanced examination of these
compound objectives, one last model set of higher resolution was created.

In model set three, compound objectives were examined more closely, and failure types
were even further differentiated for maximum resolution. The state labels for these models
consisted of objective, plus the kind of success or failure experienced in that cycle. Cycle
outcomes for this model set were expanded to include: success, far failure type 1 (wrong cycle
start), far failure type 2 (wrong cell collect), near failure, and incomplete cycle (quit fail).
(Please, again, refer to Chapter Four for deep explanations of failure types.) For example, an
Objective 1 cycle ending in far failure because of a wrong start would take the label “objective 1
far failure type 1. (This is abbreviated in the final label notation, shown below.) To clarify

different sections of compound objectives 5 and 8, the different cycle phases of each were
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divided into subobjectives, and the data painstakingly labeled as such. A table of these
subdivisions is shown in Table 11, with corresponding cycle type and new subobjective

abbreviation.

Table 11

Compound Objectives Broken into Subobjectives

Obijective Cycle Type Subobjective

5 Cell (Phase 1) 5A
Cell (Phase 2) 5B

Tissue 5C

8 Organ 8A
Cell (Phase 1) 8B

Cell (Phase 2) 8C

Tissue 8D

State labels were then created using these new subobjectives and each cycle’s outcome.

The final Markov state labels for each play cycle are shown in the table below.

Table 12

Detailed-level Markov State Labels (Model Set Three)

success farfailurel farfailure2 nearfailure tissue failure quit failure
Objective 1 1.8 1_FF1 1_FF2 1_NF 1_QF
Objective 2 2.S 2_FF1 2_FF2 2_NF 2_QF
Objective 3 3_S 3_TF 3_QF
Objective 4 4 S 4 TF 4_QF
Objective 5-A | 5A_S 5A_FF1 S5A_FF2 SA_NF 5A_QF
Objective 5-B | 5B_S 5B_FF1 5B_FF2 5B_NF 5B_QF
Objective5-C | 5C_S 5C_FF1 5C_FF2 5C_NF 5C_TF 5C_QF
Objective 6 6_S 6_QF
Objective 7 7_S 7_TF 7_QF
Objective 8 - A 8A_S 8A_QF
Objective 8-B | 8B_S 8B_FF1 8B_FF2 8B_NF 8B_QF
Objective 8-C | 8C_S 8C_FF1 8C_FF2 8C_NF 8C_QF
Objective8-D | 8D_S 8D_FF1 8D_FF2 8D_NF 8D_TF 8D_QF
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Using these state labels, sequenced play data for the upper and lower quartile groups
were put into NetLogo, and a Markov model created for each. These are shown in Figure__, and
discussed in further detail in the “Results and Findings” section below. Please note that findings

from each model are visualized in greater detail in the results section of this chapter.

Figure 34. Highest-resolution Markov model output from NetLogo, with upper quartile on the

left and lower quartile on the right.

Together, these three Markov sets support an informed understanding of play progression
patterns characteristic of learning in Progenitor X. The base model shows simple, clear patterns
of progress, stagnation, and attrition in the gamespace, while the two high-resolution models
elucidate varieties of repetition and forward movement in nuanced phases of play. The second
and third model sets convey essentially the same information, with the exception of compound

Objectives 5 and 8, when the highest resolution Markov is used for nuanced insight. Thus, this
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third model surfaces mainly in findings with Objectives 5 and 8, since it provided little new

information for the other levels of play.

Results and Findings

This section will discuss the results and findings from the three Markov models,
corroborated with descriptive and nonparametric statistical analyses of the models’ state data.
Results will be presented in themed groups, constituted by visualization and discussion of that
section’s findings. Together, the probability visualizations (Figures 34 through 40) report all
results from the Markov models which meet the n-size threshold and cross-validation criteria
detailed below. (Full model output can be seen in the transition matrices given for each set in the
Appendix.) Reinforcing statistical analyses will be also discussed with each trend of findings in
the upcoming section.

In interpreting the models, state transition matrices of each Markov pair (see Appendix)
were contrasted to understand both broad and nuanced trajectory differences between the
learning groups. It should be noted that this analysis focuses on the areas of contrast between the
upper and lower learning quartile groups in order to differentiate play trajectories characteristic
of the highest-achieving learners. To help distinguish a meaningful contrast between the upper
and lower learner groups, a 95% confidence interval was performed on the probability
differences between the two quartiles. Any difference in probabilities (UQ minus LQ) over 5%
was considered in results, since this was the lower limit of the confidence interval.

A few heuristics were developed in the consideration of results, including a minimum n-
size threshold per state and the existence of cross-validating evidence per trend. The need for
interpretation thresholds has been recognized in similar mathematics, econometrics, and NLP

Markov-based research (e.g. Zhao, 2010; Hansen, 2000; Lee & Kim, 1999). For results
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consideration in this study, a player n-size minimum per state was necessary, because not all
states of the models were required to play the game all the way through. For example, a player
could move through the entirety of the game and never have a failure. That player’s track might
look like: obj 1-success, obj 2-success, obj 3-success...obj 8-success. This means that his/her
play would not contribute to the count of students which had failures, and therefore would not
contribute to the data used to calculate the model probability of actions starting from a failure
state. Thus, in interpreting the Markov models, number of students represented in each state
transition probability had to be considered (especially in a study of this modest n-size).
Therefore, standards for minimum player n per state and cross validation were developed. All
Markov results reported as findings have a minimum user n size (10 players) per source action, a
cutoff point determined using the lower limit of a 95% confidence interval for the number of
players contributing to each Markov state. Additionally, cross-validating evidence was essential
to supporting each results trend, performed with statistical analysis (descriptive, correlation, or
mean comparison) on the newly created nuanced Markov indices. Mean comparison of these
new telemetry features was performed using a two-sample Wilcoxon ranked test, and ranked
correlation was calculated with Spearman’s Rho (both in SPSS). The resultant p-values have
been evaluated for significance with the R Studio QVALUE package (Dabney & Storey, 2004),
controlling for multiple comparison based on False Discovery Rates (Benjamini & Hochberg,
1995; Storey, 2002). All adjusted p-values are thus called g-values, or “q”, in the results below.
These criteria were established to substantiate trends in that represent the broadest set of
players, to help identify patterns most applicable to a larger Progenitor X audience. While not the
emphasis of this study, examining of the individuals in the lower outliers could be valuable in

other research; in conjunction with qualitative interviews and study, for example, it could
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support an experimental design focused on singular students and more individual ethnographic
patterns. Near failure could be an germane construct to investigate in specific case studies, since
individual patterns in this kind of failure vary greatly and have been difficult to clearly capture
on a collective level. The current study, however, has placed an emphasis on mining broader
patterns in telemetry, and has been able to reveal strong aggregate far failure, success, and
learning themes. In the results of this group Markov analysis, this chapter uncovers clear findings
(corroborated by nonparametric analyses) in relationship to learning in three trends: early-phase

failure ruts, mid-level tissue performance, and learning-supportive far failure in late game.

Results Trend I: Stuck in a Tutorial Rut

Trend | is comprised of results in early tutorial levels of the game, specifically Objective
1, that reveal contrasting patterns of repetition, failure, and success between the two quartiles.
Together, these results support thematic findings that the lower quartile of learners were stuck in
tutorial cycles, and experienced more frequent far failure at the tutorial game level. To show this,
first the Markov findings relevant to the trend will be visualized and explained, and then

corroborating statistics discussed.
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UPPER QUARTILE LOWER QUARTILE

Objective Objective Objective Objective
1 Cell Cycle 2 Cell Cycle 1 Cell Cycle 2 Cell Cycle

Objective Objective Objective Objective Objective
1 1 2 1 1
Far Failure Success Success Far Failure Success

Objective

2
Success

Figure 35. Visualized Trend | Markov findings for early-game failure rut; base model on top,

and detailed model on bottom.

Trend I: Detailed Results and Visualization Key

Figure 35 above shows the core Markov findings in this trend. (For clarity, only Markov
findings relevant to the trend and corresponding game objective are visualized in this section.
Full model output is shown in the early sections of this chapter, and complete transition matrices
can be referenced in the Appendix.) States are represented in the circle nodes, showing objective
number and performance type. Probabilities of transition between nodes are represented by
arrows with corresponding percents. Finally, each row of visuals shows results from a different
set of Markov models. For example, the top level in Figure 35 shows results from the simplest
Markov model. These display a 77% likelihood of repetition of Objective 1 cell cycles for the
upper quartile, and a 85% likelihood in the lower. The probability that a given player will move
from an Objective 1 cell cycle to an Objective 2 cell cycle is 23% for the upper quartile, and 15%

for the lower quartile. The bottom row of results in the figure shows the more detailed Markov
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results, starting with a 67% probability of repeating Objective 1 far failure for the upper quartile,
with 75% for the lower. Moving right, the upper quartile (“UQ”) players have a 33% likelihood
of transitioning to an Objective 1 success, which is 23% in the lower quartile (“LQ”). From this
Objective 1 success state, players tended to go three ways: they either fell back into far failure
(left-pointing arrow), repeated the success (orange arrow), or transitioned to an Objective 2
success. Thus, from a starting point of Objective 1 success, any given player in the UQ had a
10% likelihood of falling back to an Objective 1 far failure, a 22% chance of repeating the
Objective 1 success, and a 45% chance of moving to an Objective 2 success. Lower quartile
likelihood of these were 40%, 9%, and 37%, respectively. The following paragraphs discuss
what these contrasting numbers imply for failure and success patterns most characteristic of

learning.

Discussion of Trend | Results

The broadest patterns of the Markov models showed that lower quartile players had a
higher chance of repeating and failing at Objective 1 cycles. The base Markov model, for
example, showed that LQ (lower quartile) players repeated Objective 1 cycles more frequently
than UQ players. The upper quartile had a 77% probability to repeat cycles in this level, while
the lower had an 85% probability of repetition (8% higher). The more detailed Markov model
revealed this repetition was mainly due to failure, showing that LQ players were more likely to
have repeated far failure at this level (75% versus 67% in the upper group). Conversely, with
repeated successes, the upper quartile was more than twice as likely to have one success
followed by another in Objective 1 (22%), while the lower quartile only had a 9% probability of
this success-success transition. The upper learning group also had a greater chance of recovery

from far failure, having a 33% likelihood of moving from a far failure to a success (compared
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with only 23% in the LQ). In contrast, the lower quartile was four times more likely to slide back
into failure after a success, with a “Success = Far Failure” transition likelihood of 40% (versus
only 10% in the upper group). Not surprisingly, the UQ also had a greater chance of succeeding
at an Objective 1 cycle and moving on to Objective 2 (a 23% likelihood, versus only 15% in the
lower quartile). Specifically, the upper group had a higher chance of moving from a success in
Objective 1 to a consecutive success in Objective 2 (46%, contrasted by 37% in the LQ).

Strong evidence on early failure from Chapter Four supports these trends. First, far
failure (wrong cell collects, specifically) in Objective 1,2, and 5 had were significantly different
between the upper and lower quartiles (Table 8). The lower quartile had an average of 1, while
the upper quartile had an average of 0. Descriptive trends in Figure 29 also show that high far
failure early on is more characteristic of the lower quartile of learning, and is also a trend which
forecasts poor game completion rates (Figure 28).

In summary, this trend of findings shows greater tutorial level stagnation and failure for
the lower quartile. The lower group of learners here is characterized by repeated failure, and
falling back into failure even after a success. By contrast, the group of greater learning gains had
more frequent consecutive success, recovery from far failure with an immediately following
success, and carryover of success from Objective 1 straight to Objective 2. Corroborated with
statistical results, these patterns imply that far failure in the first objective had negative impact on

game completion and learning.

Results Trend I1: Synthesis Levels and Tissue Cycle Performance

Results Trend Il highlights pivotal tissue performance differences in the learner groups
throughout the game — particularly during their scaffold-and-fade, mid-game synthesis, and

endgame boss level objectives. During the tissue cycle introduction in Objective 3, Markov data
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showed learning curve trends emphasizing recovery from initial failure as a feature
differentiating the two quartiles. By Objective 5, when all tissue “help” scaffolding had been
faded out, and the tissue skill layered in sequence with the cell cycle skill in a synthesis of play
mechanics, mastery of the tissue cycle characterized the higher learning group. In Objective 8
(the boss level), when a more difficult synthesized tissue cycle was embedded, learning curve
behavior paralleled early objectives with better recovery from failure (not repetition of failure)
characterizing the upper quartile group. Throughout play, quitting of the game immediately
following a tissue cycle was a chronic pattern in the lower quartile, recurring in Objectives 5, 7,
and 8. In the following paragraphs, these Markov findings will be visualized and discussed, and

connected with cross-validating statistical analysis.

Detailed Sequence of Trend Il Results

Detailed learner group performance on tissue-building phases of Progenitor differs
consistently throughout the sequence of gameplay. The tissue cycle, which employs a Tetris-like
puzzle mechanic using the building blocks of cells harvested in earlier objectives, first appears in
Obijective 3 of Progenitor X. In this heavily scaffolded objective, it is impossible to fail, as all
parts of the Ul are locked except for those enabling the correct action. Objective 4 is the first
tissue objective in which it’s possible to fail, but an easy puzzle and ongoing text instructions

serve as player support.
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Figure 36. Trend Il Markov results visualized for early-game tissue cycles (Objectives 3 and 4).

Figure 36 above shows the core Markov findings early in this trend, specifically
introductory Objectives 3 and 4. Similar to the previous diagram, the objectives and performance
are the nodes, and the transition probabilities are shown as numbers corresponding to the arrows.
(Note once again that — for the purposes of clarity — only findings relevant to this trend and
corresponding objectives are visualized; full model output is shown in the beginning of this
chapter, and can also be seen in the full transition matrices supplied in the Appendix).

As illustrated in Figure 36, the first independent tissue cycle (Objective 4) reveals
interesting learning curve patterns that differed between the quartiles. The upper quartile of pre-
post learners actually tended to fail their first Objective 4 tissue cycle (61% likelihood of initial
failure, versus only 47% in the LQ), but bounced back from it quickly with a consecutive tissue
success (15% higher transition rate from tissue failure to tissue success than the LQ). The lower
quartile, on the other hand, tended to have consecutive Objective 4 tissue failures (70%

probability of repeating failure, versus only 56% in the UQ). Once again, the lower quartile of
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learners seem to be stuck in an early failure rut, while their upper quartile counterparts recover

more immediately from failure.
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Figure 37. Mid-game tissue cycles visualized from Markov models for Trend 1.

Moving to the next phase of tissue play, mid- level findings are shown above in Figure
37. This diagram again shows the objectives and performance as nodes, and transition
probabilities as arrows. The first level of the diagram shows the simplest Markov information,
the middle tier shows the second Markov set results, and the bottom row shows the most detailed
model findings.

This upper quartile pattern of strong recovery from failure continues in Objective 5,
where transition to success was again a hallmark of the group. Objective 5 contains wholly

unscaffolded tissue puzzles alongside cell cycles which are equally unguided, thus fully
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synthesizing the two main mechanics of the game into a pivotal mid-game level. Upper quartile
players had the same resilience as in earlier tissue performance, showing a 17% higher rate than
the LQ of going from tissue failure to consecutive success. Conversely, the lower quartile players
once again tended to be stuck in a repetitive rut of tissue failure (51% chance of repeated failure,
versus only 30% in the UQ). Descriptive statistics supports the trend of the lower quartile’s
tissue failure rut, showing that the lower quartile had twice as many Objective 5 tissue failures as
the upper quartile (Figure 26). Significantly, tissue failure in this pivotal mid-game objective also
had a negative correlation with game progression (r=-.512; q=.015). Success rates in Objective

5, however, were positively correlated with learning gains (r=.205; g=.03).
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Figure 38. Late-game tissue progression, visualized via Markov for Trend II.

The last Markov diagram in Trend Il, Figure 38 shows late-game tissue progression

patterns (the top row is a simple, base-model version; the bottom diagram is from the more



101

detailed Markov). In demonstrating synthesis of cell and tissue skills, and advancing to new
gameplay objectives, tissue mastery in Objectives 5-7 connects positively with learning gains.
Upper quartile players who succeeded at Objective 5 cell cycles were also likely to move on to
tissue success (31% UQ transition rate from cell to tissue success, contrasted with only 20% in
the LQ). In turn, upper quartile players who did well with tissue cycles in Objective 5 tended to
move smoothly to the next objective (a transition from Objective 5 tissue = Objective 6 success
being 44% likely; versus only 24% in the lower quartile). Lower quartile players, on the other
hand, had high quitting rates during Objective 5 tissue cycles: 31% of the lower quartile dropped
out of the game during the Objective 5 tissue cycle, while only 18% of the UQ quit the game at
this point (Figure 39). Similarly, dropout rates after Objective 7 tissue cycles were 8% more
likely in the lower quartile group, with zero likelihood in the upper quartile. It follows that the
upper quartile were more likely to go on to smashing success after their Objective 7 completion,
with a whopping 94% chance of going on to an Objective 8 cell success immediately following a
successful Objective 7 tissue cycle. (This contrasts with only 75% probability in the lower

quartile group.)
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Figure 39. Charts of final play levels for each quartile of learners.
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During the boss level, learner groups demonstrated clear differences in tissue cycle
performance. Indeed, Markov data reveals that the higher learning group continued the trend of
resilience, bouncing from success to failure and back, but not getting stuck in a consecutive
tissue failure rut — nor quitting. Broadly, the upper quartile had higher repetition of Objective 8
tissue cycles (49% probability, versus 32% for the LQ); in this base Markov data, Objective 8
repetition included both consecutive successes and failures, not specifying performance but
implying tenacity on the part of the upper learning group. The performance-detailed Markov
provided deeper insight; in it, the probability of moving from success to tissue failure was higher
in the upper quartile (transition probability of 20% versus 12% in the LQ), but unlike their
counterparts, the upper quartile did not get stuck in this failure. The UQ had a zero percent
probability of repeating tissue failure or quitting the game after failing in Objective 8, while the
lower quartile were 34% and 11% likely get stuck in a tissue fail rut and quit (respectively).
Chapter Four insights show that Objective 8 is an important level, since its completion is
positively associated with learning gains (Table 6). In regards to tissue, however, the data also
show that the tissue cycle in Objective 8 is a large quitting point (Figure 39), with zero “rage
quitting” from Objective 8 tissue cycles happening in the upper quartile of learners. Thus,
extended tissue failure in Objective 8 (also compounded with resultant cell failure) seems to be

unfavorable for learning outcomes.

Discussion of Trend Il Results

In tissue levels, a recurring pattern characteristic of the higher learning group was not
aversion to failure, but increased recovery from failure. The upper quartile had plenty of
instances of failure in tissue cycles, but from that failure point had notably higher transition rates

to a consecutive tissue success, and from there tended to move forward in game progression —
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especially in scaffold-and-fade tissue objectives and synthesis levels combining unguided cell
and tissue cycles. Conversely, getting stuck in a tissue rut with repeated failure was characteristic
of the lower learner group. In a related pattern, quitting the game immediately after a tissue
failure occurred in the lower quartile throughout the last half of the game. The upper quartile,
interestingly, had zero occurrence of this tissue-fail-to-quit behavior. This insight into the pivotal
role of tissue performance on game completion and learning can help inform iterative design of
Progenitor. Building in player-adaptive layers of instructional cues and help resources in critical
scaffold-and-fade tissue levels, for example, can help optimize the game experience for both

learning and play progression.

Results Trend I11: Turning the Tables on Failure

Trend 111 is comprised specifically of results around far failure, which demonstrate
fascinating changes in relationship to learning throughout the game. Similar to Chapter Four, far
failure seems to evolve from having a negative to a positive relationship with learning over the
course of play. Specifically, patterns of far failure emergent in Objective 5 and continuing to
Objective 8 contrast sharply with the negative impact of early-game far failure in Trend I.
Certain far failure patterns in these later game phases shows a positive connection with learning,
implying its possibly deliberate use as part of engaged experimentation or strategic play. Just as
in Trend | and I, a visualization and discussion of the relevant Markov findings will follow, in

connection with corroborating statistical analyses.

Detailed Sequence of Trend 111 Results

Analysis of Objective 5, the first cell objective since tutorial levels 1 and 2, revealed

patterns in upper quartile far failure that continued through the Objective 8 boss level. In this
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context, three main action sequences characterized the greatest learning group: repeated far

failure, multiple failures before a success, and an immediate success-success sequence

progressing to the next game level.
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Figure 40. Objective 5 far failure patterns, visualized from Markov findings for Trend III.

This (far failure)-(far failure)-(success)-(advance) pattern recurred throughout Objective

5 and Obijective 8 in the upper quartile, with cross-validating evidence — and exists in clear, stark

contrast to the negative role far failure played for learning in Trend I. Figure 40 above shows

basic findings relevant to this pattern in Objective 5, with a moderately-detailed Markov diagram
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at the top, and the highest-res Markov diagram on the bottom. These results showed that the UQ
was more likely to have consecutive far failures in both cell phases of Objective 5, with a 12%
and 15% higher repetition rate (respectively). It follows that in repeating far failure, the LQ was
less likely to go directly from a far failure to a success (57% in the UQ versus 77% in the LQ).
However, once the higher gains group reached a success, they were more likely to have a
consecutive success in the next game level (in transitioning from cell phase 1 to cell phase 2 in
Objective 5, the UQ had a 31% probability to go directly from success to success, as opposed to
only 20% in the LQ). Near failure did not appear to be a part of this progression, as the upper
quartile had zero Objective 5 near failure to far failure transitions — while the lower quartile had
a 16% probability of this movement. This implies that the recurrence of far failure for the higher
learners may be deliberate, and not a result of haphazard oscillation between failure types in
careless play. Overall, for the upper quartile, this sequence shows a series of repeated far
failures, and then a success, which tended to lead directly to another success in the next game

level.
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Figure 41. Markov findings of Objective 8 far failure, visualized for Trend IlI.
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Figure 41 visualizes late-game evidence of this far failure-success-progression pattern,
which even more strongly characterized learners in Objective 8. In this boss level, the lower
quartile of learners had a zero percent likelihood of repeating cell far failure; the upper learning
group, however, had a 47% probability of far failure repetition. Just as in Objective 5, it then
follows that UQ far failure repetition was also more likely than an immediate transition to
success (the upper quartile had a 54% smaller probability of a single far failure to success
transition). Once a success was achieved, however, the upper learners tended to start the far
failure cycle over, or progress onward to the next level. (UQ probability of an Objective 8
success to far failure was 9%, and a cell phase 1 success to cell phase 2 success was 84% — while
the LQ had 0% and 77% chance, respectively.) Starting in a given cell phase, the upper quartile
transitioned most frequently to far failure or progression in the next phase; thus, same-phase
consecutive successes were less likely (12% lower in the UQ as compared with the LQ). As the
chart of last objective played shows (Figure 39), a key characteristic of the upper quartile was
transitioning to success and game completion after far failures throughout Objective 8. Cross-
validating results from Chapter Four also include the positive relationship between these boss
level success and learning gains, as well as the significant positive relationship between game
progression and pre-post performance (Table 6). Another corroborating pattern from Chapter
Four is the interesting increase in far failure of the upper quartile between Objectives 2 and 8,
while the lower quartile had steadily decreasing far failure throughout (Figure 27). Objective 8

far failure was also shown to be positively correlated with learning gains (Table 9).

Discussion of Trend |1l Results

In the last two cell objectives of the game (5 & 8), far failure positively characterized

learners in a recurring pattern of play: repeated far failure, multiple failures before a success, and
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an immediate success-success sequence progressing to the next game level. This trend seemed to
strengthen from Objectives 5 through 8, and is supported by cross-validating evidence from
statistical and descriptive analyses. The clarity of the pattern, recurring throughout four cell
phases within Objectives 5 & 8, suggests there may be something deliberate about this behavior
specific to learners with the highest gains. This kind of creative exploration of failure, or
deliberately “transgressive” game behavior, may very well be a part of engaged experimentation
or strategic play.

In summary, these three trends show interesting patterns of failure in relationship to
learning. Trend | reveals a negative relationship between Objective 1 far failure and learning
gains, showing greater tutorial-level stagnation via far failure in the lower quartile. The upper
quartile also experienced far failure, but tended to recover quickly from a given instance of
failure and transitioned more frequently into subsequent success. Trend Il centers on tissue
levels, where a similar recurring pattern characteristic of the higher learning group was not
aversion to failure, but increased recovery from failure. Trend 11l focuses on the last two cell
objectives of the game (5 & 8), where far failure had a clear, marked shift in relationship to
learning. In these cell mastery levels, it positively characterized learners in a recurring pattern of
play: repeated far failure, multiple failures before a success, and an immediate success-success
sequence progressing to the next game level. Cross-validating analyses corroborate these trends,
which enrich our understanding of failure as a non-monolithic, sequence-sensitive contextual

construct in play and learning.

Discussion and Conclusion

This analysis goes beyond binned, frequency-based counts of failure, instead studying

high resolution, context-specific play sequence for new insights into the evolving relationship of
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nuanced failure and learning. These findings reveal that it is not blanket existence of failure -
rather, its context-specific relationship to actions before and after — that matters for learning. If
Chapter Four’s analysis showed that failure cannot be monolithically defined in relationship to
learning, this sister study shows that the contextual positioning of those failure types within a
play sequence can unlock deeper patterns of learning.

In early objectives and tissue levels, the role of recovery from far failure and tissue
failure was key for learning. In these specific levels, repeated failure showed negative correlation
with learning and often resulted in game quitting. In later cell levels, the role of far failure
evolved, as it became clearly connected to a series of consistent play actions characteristic of the
upper learning group — an integral segment of a series of play actions positively correlated with
learning and game completion. Thus, specific kinds of failure actually start to play a positive role
in learning gains as play progresses. The increasingly positive impact of failure in more
elaborate, successful play sequences could signal the evolution of reactive play (emphasizing
recovery from failure as a learning characteristic) into more proactive strategic thinking (with a
sense of mastery and agency, deliberately leveraging the game’s failure mechanisms for forward
movement). As analysis | opened up inquiry into kinds of failure, this analysis reveals an
evolving meaning of failure types in relationship to learning throughout gameplay, and leads
naturally into the next chapter’s investigation of possible transgressive play patterns emergent in

these findings.
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Chapter Six:

Experimentation and Learning — Predictive Modeling with Detectors

Introduction and Framework

This analysis chapter builds on the investigation of performance and play trajectories
with educational data mining of player exploration trends related to learning. The data features
from previous analyses — specifically, in-game performance measures and base play progression
— are be leveraged in this study to make inferences about player experimentation in the
gameworld of Progenitor X. The investigation of experimentation in play and learning represents
a merging of all three lenses of game microworlds as designed experiences (Figure 1), melding
player-specific goals (Lens C), game as educational content (Lens A) and the game as a play-
driven medium (Lens B). This intersection is explored with the method of detector building — a
data mining technique used to mine log data for indicators of behavior (e.g. Baker & De
Carvalho, 2008; Cheng & Vassileva, 2006; San Pedro, Baker & Rodrigo, 2011). Selected
features of event-stream gameplay are used as input variables in a predictive modeling of
thoughtful exploration in the gamespace, and the exploration codes are then descriptively and
statistically investigated in relationship to learning. The core research question is: What play data
features characterize experimentation in Progenitor X, and how does this behavior connect with
learning outcomes?

The study of play experimentation and learning in Progenitor X is based in past data
mining work and educational games research. Previous data mining research has used detectors
to categorize student behavior within digital learning spaces, such as learners “gaming the
system” in cognitive tutors (e.g. Baker, Corbett & Koedinger, 2004) and measuring user “goal

seriousness” (e.g. DiCerbo & Kidwai, 2013) in completing tasks. Along the same lines of
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characterizing student objectives, this Progenitor X study seeks to mine patterns of user
interaction that indicate experimentation. In games, mining this designed “system of interaction”
is vital to understanding “player experience” (Salen & Zimmerman, 2004, p. 61; Schell, 2008),
especially around experimental behavior. In contrast to task-driven tutoring systems and
simulations, gameworlds are set up to provide roles and goals (Squire, 2011) in an narrative-
based, endogenously motivating context (Costikyan, 2002). As such, they invite a kind of
transgressive play (Salen & Zimmerman, 2004), in which players navigate the game in
unanticipated ways, guided by their own goals and interest. Indeed, educational games are a
complex medium which involves the intersection of at least three very different sets of goals —
discussed in the unifying games as microworld lenses of Chapter One. Game genres generally
invite exploration and testing of game constraints (one kind of goal), content designers often
impose another (e.g. a goal of learning biology), and users come in with their own individual
motivations and curiosities for play (suggesting a whole range of player-specific goals). This
makes more traditional binary constructs like “on task™ or “off task” very one-dimensional for
game study (especially when used relative to a single assumed goal). In interpreting player
behavior in gameworlds, the construct of experimentation may better represent the intersection
of explorable worlds, academic content models, and interest-driven player paths. In interpreting
user action data through the lens of experimentation, the goal is to better understand the
complex, evolving roles of interaction data like far failure in exploratory play experience. For
example, is far failure a sole characteristic of blind-clicking, or does it also occur with
transgressive play? If so, how does it evolve in its relationship to experimentation and learning

from objective to objective? This analysis explores these kinds of inquiries, first building a
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detector for thoughtful exploration in play, then connecting specific kinds of strategic
exploration with learning outcomes.

The following chapter will review methods for detector building, then explain the
thoughtful exploration construct as well as a detailed coding schema and process. It will then
discuss three main analyses arising from the fully coded exploration data: 1) a predictive model
of thoughtful exploration during Progenitor X play; 2) descriptive analyses of the relationship
between exploration and learning outcomes; and 3) a detector of learning-supportive strategic

failure in Progenitor X.

Methods: Building a Detector for Experimentation in Progenitor X

Frequently used in educational data mining, a detector is an automated model that can infer
from log files whether a student is behaving in a certain way. To create, or train, that automated
model, it relies on something computers do not have: human judgment. Several steps are

summarized below:

e Decide on a behavior construct.
Researchers building a detector need to first decide what kind of student behavior they’re
looking for — for example, “gaming the system” (e.g. Baker et al., 2004). This behavior
construct is deliberately general, and qualitative in nature; it does not require a
hypothesis about specific data features which will predict it, since its purpose is
organically mine data patterns connected with the interpreted behavior.

e Aggregate student interaction data.
The researchers then gather student interaction data which they believe will give insight

into the behavior construct. These data must be synchronous to log-file activity of
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interest. Student interaction data varies based on the study, and can include observational

data (e.g. or text replays (Baker & de Carvalho, 2008)

e Code for behavior construct.
The coding for behavior happens next. For each “stanza” of data, a researcher will
qualitatively code it with the behavior construct (for example, “gaming” or “not gaming”

the system.)

e Predictive modeling with coding and log file data.
Once all the coding is finished, the coded data is synchronized with the log files so that
behavior can be connected with click-stream action. Then, this synchronized data is put
into a predictive model. The behavior (e.g. “gaming” or “not gaming”) becomes the
outcome variable, and the data features connected with the behavior are the predictors.
Data features most common to the behavior can be clearly identified. Thus, a model is
created that can automatically predict the behavior if given future log-file data. It can

then be used to drive interventions or in discovery with models analyses.

Each step for this study (as generally outlined above) will be described in the following

section.

Progenitor Behavior Construct: Experimentation

This detector aims to better understand player experience in the multifaceted realm of
learning gameworlds through the behavior construct of experimentation. Defined here as
“thoughtful exploration,” it centers on attentive exploration of the gamespace, deliberately

testing constraints and consequences of in-game action. (Blind clicking in impatience, without
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curiosity or attentiveness, would not constitute experimentation in this definition.) The general
schema for experimentation can be seen in matrix form (Table 13). Conceptually, the main
categories were “thoughtful exploration” or “not thoughtful exploration”. Any behavior which
went outside the bounds of strict game instructions, exploring the game Ul or mechanics
boundaries in a seemingly thoughtful or systematic way, was considered thoughtful exploration.
Player actions which seemed to characterized blind, hasty, or redundant clicking around the
space were not considered thoughtful exploration. Also in the “not thoughtful exploration”
category was behavior which stuck narrowly and strictly to game cues, never deviating from

prompted actions.

Table 13

Basic Exploration Code Categories

Core Category Thoughtful Exploration Not Thoughtful Exploration
Description Basic (feature Strategic use of | Careless Straight and
exploring) explored clicking Narrow (no
mechanics exploration)
Abbreviation “TE” “TES” “C” “S&N”

As Table 13 describes, thoughtful exploration can be seen as a basic exploring of Ul
features or game mechanics, which is code “TE” above. Another related variant is strategic use
of explored mechanics, which involves using knowledge of game boundaries for clear play
strategy. This is abbreviated “TES” for “thoughtful exploration — strategic”. The two basic
categories not considered thoughtful exploration are careless clicking (“C”), as well as the

behavior of no deviation at all from prompted game instruction, called “S&N” for straight and
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narrow. These four basic categories were based on the original thoughtful exploration construct,
and then refined based on emergent trends in the data. More detailed explanation and examples

of each follow in the “coding” section.

Aggregating Data for Evaluation

The data was presented for the coding of experimentation using a kind of text replay, a
data-mining form of “distillation of data for human judgment” (Baker & Yacef, 2009). Text
replays are a visual summary of student interaction data, grouped together as a series of actions
for evaluation by the researcher. For example, Figure 42 shows a text replay from a series of five
problems in a cognitive tutor data set (Baker & de Carvalho, 2008). For each problem, the
researcher can see the corresponding tutoring unit, the student’s answer to the problem, and the
time it took to answer. For this “clip” of five problems, the researcher would overview the data

and then decide if the evidence pointed to “gaming” or “not gaming” the system.

fj  Tmeoo:
S Input: total number of costomers onhis route
Cell or Context: R1C2

Figure 42. Example of a Text Replay (Baker & de Carvalho, 2008)

Similarly, snapshots of log-file play data were used for the Progenitor coding of

experimentation. Existing text replay software (e.g. EDM Workbench — Rodrigo et al., 2012)
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could handle display of a fixed number of cycles, but in Progenitor this did not correspond with
the subobjective context (since cycle number varies wildly from objective to objective). This,
Progenitor-specific data snapshots were created in excel to fit the needs of the experimental
design. Each clip was created to display features deemed relevant to the construct of thoughtful
exploration (Figure 43). These included metadata about student restarts and game completion, as
well as cycle specific data detailing cycle start and end, cell types, cycle duration, outcome,
failure/success evaluation, Ul buttons used, and tool use inside the grid. Each of these features
were chosen because they were considered good indicators of Ul affordances and game action
parameters (relevant to the construct of exploration). This concise layout worked well, being a

pleasantly sparse but efficient way to convey a dense amount of player information.

METADATA CYCLE-SPECIFIC DATA

MY CODE  Student ID C t Obj Final Obj # of Restarts Timestamp Action Type  Starting cell Cycle duration Outcome Collected Cell EVALUATION % of turns Buttons us # of FALSE Tool use
student_666 5C 0 o] HEADING
3307 CYCLE START Fibro --> next 5 ShockFALS|
3338 *
3419 * *iPS Cells*
3462 * -->next
3762 CYCLE END 40 Collect P51 Success 100%

1 1 11

CODE INPUT CYCLE START AND END EVENTS SUCCESS OR FAILURE OF CYCLE Ul BUTTONS USED during cycle
(outside of in-grid tool use)

<-- back

Figure 43. Adapted text replay clip for Progenitor TE coding.

Coding the Data

Initially, the base coding schema was binary (Table 13) — coded for Thoughtful
Exploration (TE) or Not Thoughtful Exploration (Non-TE). It was soon evident, however, that
more subtle behaviors were occurring in the gamespace, and soon emergent subcodes evolved
from categorizing more nuanced player action. The final coding scheme (Table 14) shows the

main categories of subcodes that were created both for TE and Non-TE base behavior. The four
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subcodes of “TE” (base thoughtful exploration), “TES” (strategic use of explored mechanics),
“C” (careless clicking — not TE), and “S&N” (straight and narrow — no exploration) remain from
Table 13. During coding, more specificity was added for variations in these codes, particularly
based on the outcome of the level (Table 14). The syntax for codes came to be made up of two
parts: 1) the base exploration code and 2) outcome of the objective.

Take the example of a text replay clip that had a basic exploration code of TE. If the
objective was completed with instant success (and no failure), the code would have a suffix of
“success” (abbreviated to “Succ”). Thus, the final syntax would be TE-Succ. If the objective
eventually ended in success, but only after much failure, its code suffix would be “tenacious”
(“Ten” for short, with a final code of “TE-Ten”). If the objective’s clip ended in a quit fail, the
code would say “TE-Quit”. This pattern continues across all four TE/Non-TE code types in the

table.

Table 14

Detailed Exploration Code Categories

Thoughtful Exploration Not Thoughtful Exploration
Instant success TE-Succ TES-Succ C-Succ S&N-Succ
Failure, then success | g gqp TES-Ten C-Ten S&N-Ten
(tenacious)
Quitting the game TE-Quit TES-Quit C-Quit S&N-Quit

Data was coded across all objectives, which were broken into subobjectives of parallel
size. For example, Objective O is a training objective with only one cell cycle as a goal, so this

was kept as Objective 0. Objective 5, on the other hand, is a compound objective which contains
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three separate goals: cell phase 1, cell phase 2, and a tissue phase. Thus, Objective 5 was broken
up into 5A, 5B, and 5C. The same was done for Objective 8 (see Table 15). Twelve final
subobjectives per player were coded for thoughtful exploration, visualized simply in Figure 44,
and broken down into more detail in Table 15. One snapshot per subobjective for each individual
player (like Figure 43) was coded at a time. This meant that a player who finished the game
would have 12 discrete exploration codes total. The clip level of subobjectives was chosen
because it framed player action in a very clear, consistent, and specific context, thus making

judgment of exploration behavior more likely to be accurate.
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Table 15

Subobjective Labels for Progenitor

Objective Cycle Type Subobjective%
0 0
1 1
2 2A

Cell (type 2) 2B
3 training level — min. player action --
4 4
5) 5A
°B
5C
6 organ level — min. player action --
7 7
8 organ level — min. player action --
8B
8C
Tissue 8D

%Objectives 3, 6, and 8A had very little player action involved and thus were not coded for thoughtful exploration.

Obj 0 | Obj1 | Obj2 Obj 4 | Obj 5 Obj 7 | Obj 8

Figure 44. Color-coded visualization of the 12 Progenitor subobjectives.
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Total subobjectives coded across all 110 players numbered 1,084 (since not all players
finished the game). For construct consistency, multiple coders were used and were measured for

interrater reliability using Cohen’s Kappa, for a final value of K =.908.

Examples of Coding Schema

In order to illustrate the meaning of thoughtful exploration in Progenitor play, and thus
deepen understanding of analysis findings, this section will give examples of codes most
commonly used during the evaluation process. It also serves as a more ethnographic set of

example findings — individual manifestations of game-wide exploration patterns.

Exploration Without Failure (“TE-Succ”)

Figure 45 is a coding snapshot of a player’s game interaction during Objective 0. This
example is given first because it is one of the simplest kinds of codes. The player has
experienced no failure, yet has taken the time to explore the Ul with almanac vocabulary entries
and the back button to review instructions (neither of which are prompted or required
interactions). This entry was thus scored “TE-Succ”, because it had no failure (only success), but

had elements of thoughtful exploration. For most follow-up analyses, this was simplifed to TE”.
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Time Action Start Duration OQutcome Cell EVALUATION % of turns Buttons used
0 HEADING

199 CYCLE STA Fibro

215 * *Electroporate®

216 * --> next

243 * -->» next

257 * <-- back

263 * --> next

288 * -->» next

310 CYCLE END 111 Collect IPS1 Success 0.866667
Objective success *almanac™* or "back” use
No failure

Figure 45. An example clip of exploration without failure (code: “TE-Succ”).

Exploration With Failure (“TE-Ten”)

Figure 46 shows an example of thoughtful exploration in the gamespace (in early levels)
with failure. This instance would have been coded “TE-Ten”, meaning thoughtful exploration
with tenacity (several failures before success). This student shows methodical exploration of the
Ul, going from one almanac word, to finding a different one, to then discovering the instruction
perusal button (the “back” button, which reviews the last instruction given). None of these are
prompted or required buttons of interaction. The pace of finding these Ul elements is unrushed.
In addition, the player has two different kinds of failure without seeming to get stuck on either
one, or repeating mistakes. Because it is still very early in the game (Objective 0 tutorial), the
player seems to be discovering different ways to fail and learning from each one. The third cycle

is a success. (Interestingly, this same player went on to earn a “TES” code — or strategic use of
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explored parameters — later in the game.) This was simplified to “TE” for most subsequent

analyses.
Time Action Start Duration Outcome Cell Eval % of turns Buttons used
0 HEADING
3307 CYCLE STA Fibro
3338 * --> next
3404 * <-- back
3419 * *iPS Cells*
3457 * *Fibroblasts*
3462 * --> next
3591 CYCLE END 69 Collect Fibro FF - collect 0.866667
3599 CYCLE STA Fibro
3611 * <-- back
3612 * --> next
3704 CYCLE END 37 Grid Destroy NF
3722 CYCLE STA Fibro
3762 CYCLE END 40 Collect IPS1 Success 1
Eventual success *almanac™® or "back" use
More than 1 failure

Figure 46. An example clip of exploration with failure (code: “TE-Ten”).

Strategic Use of Thoughtfully Explored Mechanics (“TES™)

Next is an example of the TES code — strategic use of thoughtfully explored mechanics —

in which players combine mastery of the core skills with strategic failure to improve their

efficiency. Thus, TES is often referred to as the strategic failure code. This is the last example of

an exploration code in this set — and arguably the most complex and interesting.

Strategic failure and the TES code often was characterized by a behavior now dubbed

“harvesting”. This phenomena was unknown to the researchers before the coding started, and
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emerged as a clear recurring behavior during certain cell cycles of the game. To understand
harvesting, we must delve a bit deeper into expected game cycle behavior.

Normally, Progenitor expects a player to start with one kind of cell, treat it so that it
transforms, and then collect the new kind of cell (for a successful cycle). However, “harvesting”
is a way around this. Instead of having to perform this start(old)-treat-collect(new) cycle, some
players figured out the game would allow them to start with the cell they needed to collect, move
it around on the grid so that it replicated, and then simply collect the expanded number of
original cells. This avoids the “treat” phase all together and helps keep health up longer, thus
looking like a start-move-collect sequence (all using only one kind of cell).

For example, a common “legit” cell cycle starts with fibroblasts (pink cells), then directs
the player to treat them with electricity, thus making stem cells (purple cells) for successful
collection (Figure 47). By contrast, a harvesting cycle would populate the grid with purple stem
cells, move them around a bit, and then collect the expanded batch of purple cells to reach target
numbers (Figure 48). Thus, the player had all the purple iPS cells they would need, all without

going through the intended shocking-pink-cell process.

Figure 47. “Legitimate” cell cycle of start-treat-collect, which ends with a new kind of cell.
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Figure 48. A “harvesting” cell cycle in strategic failure, which starts and ends with the same cell

(in a start-move-collect sequence, skipping the treat stage).

A fascinating harvesting fact, however, is that a player needs at least one legitimate cycle
before they start harvesting, so that they can have enough of the unique new cells to start a
harvest cycle. This means that harvesting requires mastery of the base mechanics to use
successfully. Hence, this is not like “gaming the system” (which by definition avoids the
intended skill acquisition); instead, this strategic failure requires mastery of game mechanics,
thorough and thoughtful understanding of the game’s boundaries, and the metacognition to put
them together in a hybrid strategy to maximize health and cycle efficiency. As Salen and
Zimmerman (2004) say in Rules of Play: “To skillfully break rules requires an intimate

knowledge of the rules themselves” (p. 282).
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Time  Action Start Duration Outcome Cell EVALUATION % of turns Buttons used
0 HEADING
298 CYCLE START Fibro
322 CYCLE END 24 Collect  1PS1 Success 20% - "Legit" cycle 1
327 CYCLE START IPS2
341 CYCLE END 14 Collect P52 FF - collect 67% - Harvesting cycle 1
345 CYCLE START IPS2
365 CYCLE END 20 Collect  Ecto Success 93% - "Legit" cycle 2 - shows mastery of skill
413 CYCLE START Tissuel
428 CYCLE END 15 Collect Success 30%

1

Clean execution - no static with frenetic clicking behaviors or haphazard cycle failures.
lust the clear legit cycle + harvest cycle pattern.

Figure 49. An example clip of strategic failure (code: “TES”).

One example of this strategic failure (or TES) is in Figure 49. Here we see a clip from
Objective 5, in which the player begins with a “legitimate” cycle, completed efficiently and
successfully. Next, he/she engages in what we’ve called a “harvesting” behavior. This is the
strategic failure element. In the second cycle, the player populates the grid with stem cells (called
“iPS” cells in the coding snapshot), moves them around on the grid to replicate them, then
collects the expanded batch of stem cells a few seconds later. The game registers this as far
failure, because it flags the stem cells picked up as not correct (recognizing that they have not
been treated with electricity as intended). Still, for better or for worse, the game allows these to
be used for subsequent cycles. And so the show goes on, with the third cycle in our example
being a perfectly executed legitimate cycle, beginning with the harvested iPS cells, treated with a
growth factor, and then collected as newly minted Ectoderm cells (“Ecto” for short in the clip).
Figure 49 highlights this with arrows on the right in the diagram, showing a top “legit” cycle, a
middle “harvesting” cycle, and on the bottom another “legit” cycle. There are no messy,

seemingly unnecessary failures, no apparently hasty clicking or ruts, no building towards a cycle
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quit — just a clean sequence of Objective 5 efficiency. This is the “TES” code: far failure in
harvesting as part of a layered strategy. (The designation of “Ten” or “Succ” did not often apply

to this code, as both success and failure were an innate part of the strategic failure practice.)

Not Thoughtful Exploration: Careless Clicking (“C”)

The snapshot captured in Figure 50 is an example of an Objective 5 clip coded as “C”
(standing for Careless, not thoughtful). A red flag here is immediately the repeated far failure of
fibroblast collection, which is a behavior not associated with harvesting because there simply is
no strategic advantage to doing it. It is literally impossible to run out of fibroblast cells this early
in the game, and repeated collection of these useless cells in far failure was a behavior often
exhibited by players during periods of frustration (as observed in numerous playsquads by the
author), and a harbinger of mid-game “rage quits” and Objective 1 failure ruts (as can be seen in
the log files). Another sign of haphazard clicking is the bouncing around between views
(multiple times, beyond that of initial discovery) without cycle completion (c.f. Wixon et al.,
2012). This view switching can be seen with the “TISSUE” “CELL” “TISSUE” “CELL” record
(which signals moving to a different laboratory template, of either the tissue or the cell) in the
buttons used column. These view changes, along with the unproductive failure of the cycles, was
occuring somewhat quickly (e.g. 23, 13, and 10 seconds for a cell cycle was comparatively quick
— the game average was 35.3 seconds per cycle.) All this lead to an impression of hastiness and

unproductive, redundant failure — hence the “C” rating.
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Time Action Start Duration Outcome  Cell EVALUATION % of turns Buttons used
HEADING
CYCLE™ START Fibro
CYCLE* PAUSE TISSUE
CYCLE START Tissue3
1070 CYCLE END Tissue3 32 Grid Destroy TF
CYCLE START Tissue3
1099  CYCLE END Tissue3 23 Grid Destroy TF
CYCLE START Tissue3
1157 CYCLEEND Tissue3 49 Grid Destroy TF
CYCLE* RESUME CELL
1204  CYCLE* END 66 Collect Fibro FF - collect 0%
CYCLE START Fibro
1247  CYCLEEND 37 Collect IPS1 Success 87%
CYCLE START IPS2
1257  CYCLEEND 10 Collect Fibro FF - collect 0%
1270 * TISSUE
CYCLE START Tissue3
1295 CYCLEEND Tissue3 24 Grid Destroy TF
1299 * CELL
CYCLE START IPS2
1315  CYCLE ABANDONED 13 Cycle Quit QF
* Obj: View
Increasingly rapid, 1-click cycles  Repeated failure with no particular pattern or improvement Bouncing around quickly between
Finally culminating in a quit fail views without cycle completion

Figure 50. An example clip of careless clicking (code: “C”).

No Exploration and No Failure: Straight and Narrow (‘“S&N-Succ”)

Figure 51 is an example of another Objective O clip, during which the player has ONLY
success, and only performs actions directly prompted by the system. Since there seems to be no
exploration, we called this behavior straight and narrow (or “S&N”) as a code. The player has
also only experienced success, so we also attach a “Succ” to it. The final code was “S&N-Succ”.
Like most of the coding data, this was simplified to the base exploration code (just “S&N”’) for

analysis purposes.
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Time  Action Start Duration Outcome Cell EVALUATION % of turns Buttons used
0 HEADING

204 CYCLE STAF Fibro

218 * --> next
253 * -->» next
270 CYCLE END 66 Collect IPS1 Success 0.866667

one success only "next" use only
(no *almanac* or "back")

Figure 51. An example clip of no exploration, without failure (code: “S&N-Succ”).

No Exploration, This Time With Failure (“S&N-Ten”)

The next illustration (Figure 52) shows an Objective 0 clip of no exploration, with failure.
The person does not seem to be exploring the interface, or systematically investigating different
kinds of failure, so the activity is labeled with no exploration, which in our scheme was called
“S&N” (straight and narrow). Because there is repeated failure with eventual success, the clip is
also labeled tenacious, or “Ten” for short. Thus, our code looked like “S&N-Ten”. For most

analyses, this was simplified to just “S&N”.
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Time  Action Start Duration Outcome Cell EVALUATION % of turns Buttons used
0 HEADING
216 CYCLE STA Fibro
233 * --> next
239 * --> next
242 * --> next
272 CYCLE ENI Fibro 56 Grid Destroy NF
284 CYCLE STA Fibro
317 CYCLE ENI Fibro 33 Grid Destroy NF
322 CYCLE STA Fibro
324 * --> next
357 CYCLE ENI Fibro 35 Grid Destroy NF
363 CYCLE STA Fibro
404 CYCLE ENI Fibro 41 Grid Destroy NF
410 CYCLE STA Fibro
455 CYCLE END 45 collect IPS1 Success 1
SAME failure (no *almanac™® or "back”)

Figure 52. An example clip of no exploration, with failure (code: “S&N-Ten”).

Overall, these examples represent the most frequent codes in the gamespace across all
1,084 coded clips. The outcome designations (-Succ, -Ten, and -Quit) were useful for fine-
grained coding purposes, and will likely be very informative for future study and modeling of the
data. The analyses to follow, however, focus mainly on the construct of thoughtful exploration

and its four designations (“TE”, “TES”, “C”, and “S&N”) in the coding scheme.

Results and Findings I: Building a Detector of Thoughtful Experimentation

The following sections of findings detail the results which emerged from the coding of
the log file data. First reviewed will be an M5’ predictive model of thoughtful exploration (TE),
then an exploration of TE code relationships to learning with descriptive analytics and
nonparametric statistics, and lastly a J48 detector of the learning-salient TES code (thoughtful

exploration with a strategic angle).
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The first behavior that was modeled across gameplay was thoughtful exploration (TE),
considered broadly as an aggregate number of occurrences across all 12 coded subobjectives.
The goal of this analysis is to predict, based on gameplay activity, whether or not a student in
engaged in thoughtful exploration. Consistent with the broad data collection methods detailed in
Chapter Three, the total N for this analysis was 110 middle school students, the game’s target
audience. For this analysis, the TES code was considered a part of the TE umbrella, and the
others were not (see Table 13). As this outcome variable was numerical, a regression tree model
was chosen to build the predictive model of experimentation. Linear regression was performed in
WEKA (Hall et al., 2009) using the M5’ variable selection procedure (Y.-C. Wang & Witten,
1997). Linear regression was chosen as a relatively conservative algorithm, with a relatively low
probability of over-fitting. Independent variables were not unitized, thus emphasizing practical
significance in the model, and the regression output was cross-validated using Leave One Out
Cross Validation (LOOCYV) at the student level (the overall level of analysis). The final goodness
metric was the post-validation coefficient of correlation.

Ultimately, the final M5> model achieved a cross-validation correlation of .627 to the
behavior of thoughtful exploration, comparable to levels in similar game-based learning detector
models (e.g. Baker & Clarke-Midura, 2013). Predictors included several of the fundamental
features created in Chapter One, including cycle starts, time elapsed, and number of cells
collected. One of the recurring metrics below is “Ph level”, which represents the number of turns
used before a cell collect. A higher Ph percent used indicates that more turns were used up before
the cycle ended; a low Ph level used indicates that very few turns were taken before the cycle
was ended. The model also featured several aspects of Ul button use not core to cycle operations,

such as review of instructional text with “forward” and “back” buttons, use of in-game almanac
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links, and switching between cell and tissue lab screens. The model was split into three trees,
divided at the top level by the criteria of number of total collects. Interestingly, this split falls
roughly along the number of collects it takes to complete the game (implying possible insight
into finished/nonfinished playstyle differences). If players had less than 14.5 collects (14 were
required to complete the game), then linear model 1 applies. If players had more than 14.5
collects, they could fall into one of two groups based on the collection of stem cells (iPS cells) in
the game — also interesting, because the collection of this kind of cell is an indication of the
“strategic failure” behavior. With zero iPS cell collects in Objective 5, behavior falls along linear
model 2; with 1 or more iPS cell collects in Objective 5, player group with linear model 3. Each

linear model, with detailed features, is as follows:

S

==1475 =145

e

Figure 53. M5’ regression tree WEKA output — predictive model of Thoughtful Exploration



Total collects <= 14.5 : Linear Model 1 (63/55.337%)
Total collects > 14.5
| Number of times iPS cells collected in Objective 5 <= 0.5 : LM2 (32/51.697%)
| Number of times iPS cells collected in Objective 5 > 0.5 : LM3 (15/48.256%)

Linear
number

Linear
number

Linear
number

Model 1:
of total
0.0011 ~*
+ 0.0282
+ 0.7095
+ 0.0256
+ 0.0026
- 0.0178
- 0.2307
+ 0.0007
-0

+ 0

+ 0.0022
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- 0.1585
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- 0.0687
- 0.0547
- 0.2903
+ 0.0009
- 0.7426
+ 0.4288
- 0.0224
+ 0.0027
+ 0.5849
- 0.0041
+ 0.1377
- 0.0095
+ 2.7171
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total number of cells collected during Objective 0
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total number of cells collected during Objective 5
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number of successful cycles in Objective 8-C
total number of times a cell or tissue collection was performed
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number of fibroblast cell starts during Objective 1
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number of times an iPS cell collection was performed in Objective 5
number of times a cell collection was performed in Objective 5
total number of cells collected during Objective 5
number of iPS cell cycle starts during Objective 8

number of seconds spent on

Objective 8-C

number of successful cycles in Objective 8-C
total number of times a cell or tissue collection was performed
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Independent variables were based on the features embedded in the text replay clips,
chosen carefully as potential indictors of student exploration (see coding section for more detail).
Overall, this model shows fascinating splits along the number of collects required for game
completion — implying a potential finished/nonfinished play grouping — and, in the second tier,
along iPS “harvesting” cycles strongly connected with strategic failure (see J48 model below).
Not only does this regression tree solidify a consistent construct of thoughtful exploration in the
Progenitor gamespace, it reveals the role of nuanced in-cycle efficiency (in Ph levels used and
number of cells collected), and reinforces themes of previous chapters (e.g. negative early game
repetition, and boss level success). The behavior patterns evident here, predictive of
experimentation in the gamespace, also open the next section’s inquiry into the relationship

between exploration and learning.

Results and Findings I1: Exploration Codes and Relationship to Learning

Next, to explore the relatnioship between thoughtful exploration — now solidly modeled
as a construct in the game — and learning outcomes in Progenitor X, two perspectives were taken.
The first looked at aggregate code totals by full-game span. Descriptive heat mapping and base
correlation were used during this first pass. Investigation quickly revealed need for greater
resolution, however, and the codes were then examined in greater detail. The second perspective,
then, examined the codes as sequential strings of behavior (not unlike like DNA strands) specific
to objective context. For this second investigation, feature engineering, seqgential probability

modeling, and statistical comparison methods were employed.

For methods that involve contrasts between learning groups, this was based on the data

from two sets of students: an upper quartile and a lower quartile of learners. This designation is



133

based on a pre-post assessment on regenerative biology (developed with content experts, and
described in greater detail in the ADAGE/Progenitor methods Chapter Three). Relative to this
performance, the quartiles are made up of two groups: Progenitor players with the greatest
positive change in score, and players with the lowest change in score. The upper quartile consists
of 33 players, and the lower quartile consists of 41 players. “UQ” is an abbreviation used
throughout the dissertation for the upper quartile of learners, and “LQ” stands for lower quartile
of learners. These only refer to learner groups (as determined by pre-post gains) — no other kinds
of quartile groups are discussed in this dissertation. For all correlation and non-quartile analyses
in this chapter, N=110. In all applicable analyses, p-values have been evaluated for significance
with the R Studio QVALUE package (Dabney & Storey, 2004), controlling for multiple
comparison based on False Discovery Rates (Benjamini & Hochberg, 1995; Storey, 2002). All

adjusted p-values are thus called g-values, or “q”, in the results below.

Overview: TES — A Construct Significant to Learning

To get a visual mapping of code frequency across all objectives, a heat map was
constructed (green is most frequent, red is least). The four codes put into the map (Figure 54)
were no experimentation (abbreviated as “S” for “straight and and narrow”), thoughtful
exploration (TE), strategic failure (TES), and seemingly random or careless repeated actions (C),
including dead-end failure ruts and clicking haphardly around the Ul. These codes (S, TE, TES,

and C) are referred to thoughout the findings section.
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No
Experimentation

Thoughtful
Exploration

Strategic Failure

Random /
Careless Clicking

5A 5B

OBJECTIVE

Figure 54. Aggregate heat map of exploration code frequency.

No
Experimentation

Thoughtful
Exploration

Strategic Failure

Random /
Careless Clicking

2B 5B

OBJECTIVES

Figure 55. Map of exploration codes during cell cycles of the game (opportune for TE/TES).
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Code frequencies were mapped across all coded objectives (Figure 54) as well as only
phase 2 cell objectives (Figure 55), since these were inherently most affordant of TE and TES.
Both show clear variation in the codes throughout the game, with a significant portion of “no
experimentation” codes. The latter map specifically highlights potentially different playstyle
groups, showing a clear increasing split between “no experimentation” (S) and “strategic failure”
(TES) codes as the game moves forward.

Because the combinations of exploration behaviors could vary greatly, as evidenced in
Figure 54, deeper investigation of codes in sequence were necessary to explore relationships with
learning. Of interest especially was strategic failure (TES) in connection with other codes, since
it required exploration of game mechanics deep enough to master and leverage them for
metacognitive strategic ends. Because of the nature of its use in tandem with “legit” cycles
(Figure 49), TES often occurred with a Straight and Narrow successful objective either just
before or after it. This deliberate TES-S sequence was one that ultimately showed a positive

relationship to learning, as seen in the findings below.

Sequential Codes: Nuanced Relationships with Learning

The overall findings quickly made it clear that there are great variations in patterns
throughout the game, as well as great variation in the sequences of codes. Insight into the order
of codes throughout play, and identification of pattern groups, were next explored to unearth
deeper connections with failure and learning.

To help understand some of these variations, and unlock context of TES for greater
learning insight, the codes were investigated in specific sequences for study throughout the
game. To do this, several methods of feature engineering, descriptive analytics, and

nonparametric statistics. These three analyses are described in detail below.
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First, sequences of codes were distilled as data features for each student, and then used in
the building of Markov models to show learners’ likelihood of moving between codes. For
example, a student who finished the game would have had 12 TE/Non-TE codes assigned to
them (one for each subobjective, as shown in Figure 44). The same four base types detailed in
Table 13 were used: TE, TES, C, and S&N (“S” for short). Jane’s™ gameplay, for instance, may
have started with no experimentation, changed to experimentation mid-game, and then focused
on strategic failure for the duration. In this case, her string of 12 play codes might look like: S-S-
S-S-TE-TE-TE-TE-TE-TES-TES-TES. In this manner, each students’ sequence of codes was
defined, and separated into upper and lower quartile learning groups to help understand codes’
relationship to learning gains. Two Markov models were then built (one of each quartile) in
NetLogo (Wilensky, 1999) using the Narkov algorithm (Berland, 2012) to better understand the
connection between learning and transitions between codes (Figure 56). The models showed the
probability of a student moving from experimentation (TE) in one objective to careless clicking
(C) in the next, and from careless clicking to strategic failure (TES) in the next objective, and so
on (bi-directionally for all four code variants). The probabilities for each learning quartile were
then contrasted, with the differences highlighting moves characteristic of the greater learning
group. The learning quartiles are defined consistently throughout this dissertation (see Chapter

Three, or the intro of Results and Findings Il in this chapter for detail).

‘% Fictional player with a fictional name in a fictional string of play.
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Figure 56. Markov modeling of code transitions in lower and upper quartiles (respectively).

In the second analysis of exploration and learning, features were distilled from the TE
code data (Table 13), detailing first and second-order sequences of exploration codes. Taking
Jane’s code sequence from the previous paragraph, a first-order sequence for her (starting from
objective 0) would look like: S-S. To capture sequences of codes at different points of play, these
two-code combinations were taken from every possible objective point (starting with Objective
0, then Objective 1, Objective 2A....etc). Jane’s hypothetical example of this first-order
sequence (starting from each possible objective) is shown in Table 16. In Objective 0, her S-S
sequence means that she started with “S” (no experimentation) in this level and went on to “S”
again in the next level (Objective 1). Her next S-S sequence, starting in Objective 1, means that
she had an “S” code in this level, and went on to Objective 2 with another “S” (and so on,
throughout all possible starting points). These segments are merely a breakdown of her total

experimentation code sequence of 12 (S-S-S-S-TE-TE-TE-TE-TE-TES-TES-TES).
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Table 16

First-Order Code Sequences, Starting from Each Objective: An Example with Jane

ObjO [ObjLl |Obj |Obj |Obj4 |[Obj |Obj |Obj |Obj |Obj
2A | 2B 5A |58 |5C [8B [8C

Jane’s | S-S S-S S-S S-TE | TE- TE- TE- TE- TES- | TES-

TE TE TE TES TES TES
codes

These code sequences were created for all students, not only for a first order chain (code-
code) but for a second order chain with three codes (code-code-code). A snapshot of these
second-order code chains from each possible starting point for each player is shown in Figure 57.
For analysis of these new data features, the frequency of each sequence of codes (from each
possible starting point) was calculated for each quartile of learners. This was to get an aggregate
sense of exploration sequences, from specific starting objective points, that characterized each
learning group. The frequencies (both first-order and second-order) of each learner group were
then subtracted from one another, resulting in a matrix which showed the main differences in
exploration sequence (specific to starting point) between the learner quartiles. This new matrix of
differences was converted to a heat map (Figure 58) to more clearly show UQ tendencies (green)
and LQ tendencies (red). (Heat maps were done for both the first-order and second-order
features; for illustration purposes, the first-order heat map is shown here.) This way, learner
exploration patterns could be seen in context of specific game objectives (information not

conveyed in the context-free Markov model).
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Lastly, these new first- and second-order telemetry features were then compared with
learning outcomes in nonparametric correlation, and the upper and lower quartile learner groups
were contrasted through ranked mean comparison (via two-sample Wilcoxon). These statistics
helped to support descriptive patterns found in the first two analyses.

Results from these three combined methods emerged in findings involving each
exploration code. The following paragraphs will discuss different TE codes’ relationship to

learning throughout the progression of play.

Findings: Exploration Code Sequence and Learning

Exploration code sequences were visualized in the heat map and Markov models (Figures
57 and 55). These visualizations were used to graphically identify trends for exploration with
correlation and mean comparison. One interesting result included the non-exploration codes
(carelessness and straight-and-narrow) as negatively connected with learning. Specifically, when
paired with a general TE behavior in a C-S-TE string, this sequence was negatively correlated
with learning gains (r=-.212; g=.047). Reinforcing the trend, 71% of players who had ONLY
“C” and “S” codes (no TE or TES) were lower quartile learners. Thus, it seems that carelessness

without long-term strategic thinking was negatively connected with learning.

The second main finding was that TES was positively connected with learning in a
number of combinations. Essentially, TES paired with non-experimentation (either before or
after) was positively correlated with learning gains. This makes sense with the use of TES in a
strategic arc involving a clear sequence of cycle mastery (see Figure 49). For example, an S-
TES-S sequence was 12% higher in frequency on average for the upper quartile of learners than

for the lower. This implies that TES was a vital strategy during these cell-cell-tissue sequences
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characteristic of the greater learning group. The upper quartile had significantly higher (q=.047)
frequency of the S-TES transition. Correlation supports this trend, showing that transitioning
from “no experimentation” to “TES” (S — TES) in consecutive subobjectives was also positively
correlated with learning (r=.244; g=.047). Similarly, a transition from TES to “no
experimentation” was also positively associated with content gains (r=.188; g=.046). The
Markov model also shows a positive connection between strategic experimentation and learning,
marking the same TES to “no experimentation” as 20% higher in the upper quartile. Thus, it
seems that S-TES and TES-S sequences are states of exploration more characteristic of learning,

especially in cell-to-tissue levels.

Overall, understanding the connections of thoughtful exploration to learning give us
insight on the roles of no experimentation, carelessness, strategic failure, and thoughtful
exploring relative to sequence and game context. These findings help highlight some organic,
descriptive trends in the data for informing future studies, and support overall inferences about
strategic failure and learning. A model of strategic failure is next, deepening the investigation of

strategic use of explored mechanics during play.

Results and Findings I11: Predicting Learning-Supportive Strategic Failure

Given its recurring connection with learning, TES was chosen as the outcome variable in
a detector of strategic failure. The clear use of TES by players was particularly of interest
because it requires multiple layers of understanding: first, it indicates an intricate knowledge of
the game’s failure mechanisms, and secondly, it implies a level of metacognition in employing
those mechanisms in a deliberate success strategy. It may be this complexity of strategic thinking

that supports connections with learning. In tracking gameplay actions characteristic of strategic
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failure, it is possible to pinpoint a very specific combination of in-game moves which define this
emergent, alternative learning trajectory. It’s possible to predictively model this strategy using
the EDM detector method, described in detail at the beginning of the chapter.

In order to predict this strategic thinking based on event-stream player action, a J48
classification algorithm was employed in WEKA (Hall et al., 2009) with a binary “TES / no
TES” code as the dependent variable. Independent variables were based on the features
embedded in the text replay clips, chosen carefully as potential indictors of student exploration
(see coding section for more detail). These included several of the fundamental features distilled
in Chapter Five with the intricate grain size of Chapter Six study, including cycle starts, kinds of
cell collected, and start-collect combinations on the cycle-by-cycle subobjective level. Results of
the analysis were evaluated using Cohen’s Kappa, with cross-validation using the LOOCV
(Leave One Out Cross Validation) at the student level (the overall TES level of analysis).

Overall, the model achieved a Kappa of .71 after student-level cross-validation,
comparable to similar learning game detector studies (e.g. DiCerbo & Kidwai, 2013; Asbell-
Clarke, Rowe & Sylvan, 2013). This value indicated the accuracy of the detector was 71% better
than chance. The A’ value was .87, signifying that the detector could correctly classify whether a

clip contained strategic failure 87% of the time.
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Figure 59. J48 Prediction Model — Detector of Strategic Failure

The results of this model are discussed below, starting with the top tier of the model,

Objective 5 collects of iPS cells.

The highest level predictor of strategic failure was the collection of iPS cells in Objective
5. As discussed in previous chapters, Objective 5 is the first synthesis of non-scaffolded
tissue and cell cycles (presented in a cell-cell-tissue sequence). IPS cells are the core stem
cells needed to build new tissue for the ailing zombies, and thus represent a core biology
concept of the game. If students collected any of these cells (indicative of the
“harvesting” strategy) in Objective 5, but avoided collecting the wrong kind of cell
(“Ectoderm”), it was an indication of strategic exploration. However, if they did collect

these wrong ectoderm cells, it decidedly put them in the “non_TES” category.
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e Another branch of the tree on the second-to-highest tier has correct cells collected —
“Endoderm” cells. Specifically, if the students populated the grid with endoderm cells,
and simply moved them around to multiply them before collecting them again (a
behavior now dubbed “harvesting”), then they are engaging in strategic exploration
behavior. (This behavior is represented above in the abbreviation “Endo Endo”.) If not,
we move to the third tier of the tree. This tier is reached if players 1) have not collected
Obijective 5 iPS cells, and then 2) not engaged in endoderm harvesting. This tier directly
addresses the failure element of the strategy, showing that an efficient fail-success

schema in Objective 8 (the final level) signals purposeful failure.

e The right branch of tier three shows that if there is any far failure in Objective 8, and it is
paired with only ONE (successful) cycle in the middle of the level (8B), then students are
using this failure as part of TES. However, if there is more than one collect in the middle
boss level (8-B), students are classified as NOT using TES; in this case, far failure more
likely signals...well, just failure. The left branch of the third tier displays a path of
students with NO Objective 8 far failure. If they did not collect any iPS cells in Objective
8, then they fall into the Non_TES category. If they DID collect these cells, and had very
few near failures (1 or less), it was again a sign of purposeful, strategic use of failure.
Conversely, if players at this point had more than 1 near failure, they were likely not

practicing strategic exploration (Non_TES).

In short, players were classified as practicing TES if they met one of the following four

conditions:

1) They collected iPS cells with NO wrong “Ectoderm” cell collects in Objective 5.
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2) They did NOT collect Objective 5 iPS cells, but did have one or more endoderm-
endoderm (start-end) cycles in Objective 5 (a “harvesting” behavior).

3) They had NO iPS collects and no endoderm-endoderm cycles in Objective 5, but had one
or more Objective 8 far failure cycles, with only 0-1 collects in the middle of Objective 8.

4) They had NO Objective 5 iPS collects or endoderm-endoderm cycles, and no Objective 8
far failure. Beyond these thresholds, if they collected any iPS cells in Objective 2 (a
“harvesting” behavior) with low near failure in that same objective (one or less), they

were classified as TES.

Thus, this predictive model implies that specific use of far failure (via iPS and endoderm
harvesting behavior), accompanied with low amounts of incidental failure (e.g. near failure)
generally characterize the use of strategic failure in the Progenitor gamespace. This emphasizes
earlier analyses’ findings that failure is not monolithic, and each failure type has an evolving
relationship to learning throughout play. Essentially, this model of strategic failure
operationalizes transgressive play in the Progenitor gamespace and captures it in positive

characterization of learning.

Conclusion

These findings define predictive models of experimentation in the Progenitor gamespace,
identifying one kind of strategic failure in particular significantly associated with learning gains.
TES operationalizes a form of transgressive play in the gamespace, and connects this sort of
play-based testing of limits positively with learning. Detectors such as these are powerful tools in
informing future game design, able to provide real-time differentiation between productive
failure (c.f. Kapur, 2006) and unfocused floundering in the gamespace. Distinctions like these

can inform design of game cues to support learner trajectory along these organic critical
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pathways to learning. Findings of this chapter also build on, and reinforce, the previous chapters’
themes of early game failure ruts, the importance of the mid-game tissue levels, and the
fascinating evolving role of far failure throughout play.

Tying into the previous two studies, this analysis clarifies the role of far failure, near
failure, and success in patterns of experimentation, and ultimately learning. Building on the
feature engineering and performance trends over time mapped in analysis one, and the play
progression states visualized in analysis two, this section can supplement our understanding of
performance and learner behavior relative to the immersive, exploration-friendly context of

educational gamespaces.
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Chapter Seven: Conclusions and Future Work

In understanding learner trajectories within game microworlds as designed experiences
(c.f. Rieber, 1996; Squire, 2006), this dissertation looked through the lenses of play purpose
(games as playful medium), instructional purpose (learning games as content delivery systems),
and individual purpose (the play style and subjective goals each player brings to the game). The
empirical arc of analysis was based in the game Progenitor X, and used mixed methods to
examine three distinct intersections of the lenses above (Figure 1). Together, the three analyses
broadly explored an overarching research question: what kinds of naturalistic player interaction
with the educational gamespace (including play progression, in-game success, shades of failure,
and experimentation) characterize learning?

Each of the analyses explored its own research question and intersection of lenses.
Specifically, the first analysis used descriptive and nonparametric statistics (with specially
engineered features) to explore the intersection between the learning game as content delivery
and individual player choices. To do this, it identified procedural biology content, translated to
specific verbs of play, and engineered data which showed student performance on these key
tasks. Statistical analysis of these success and nuanced failure patterns then explored the research
question: how does fine-grained, context-specific game performance (including shades of failure
and success) connect with learning outcomes? The second analysis focused on the intersection of
the game as a designed arc of play, and student choices in navigating this gamespace. Machine
learning analysis was used to study player progress through each sequential cycle of the game,
exploring learner pathways in play progression. Markov models were used, because they can
illustrate the probability of players moving, in time order, from one level to another. For each set

of progress data, two Markov chain models were made: one for the upper quartile, and one for
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the lower quartile of learners. Contrasting the two quartile models of play directly addressed the
second research question: how does organic play progression differ between groups of learners?
The last analysis followed with a question of natural corollary: what play data features (both of
performance and progression) characterize experimentation in Progenitor X, and how does this
behavior connect with learning outcomes? Resting at the intersection of all three lenses, this third
analysis focused on player agency in employing strategic performance (on academic content
mechanics), while optimizing their pathways through the experimentation-encouraging medium
of the game. To study this, it drew on educational data mining to build a predictive detector of
player experimentation in Progenitor X, and then examined kinds of experimentation in
relationship with learning outcomes.

These analyses gave respective insights that built three overall trends of findings in
relationship to learning: harmful far failure in early levels, critical mid-game skill synthesis, and
strategic failure in later-game levels (positive to learning). Broadly, these findings showed that
overall play success and progress is positively connected to learning, while aggregate time on
task and total failures ( as a general category) were not related to learning. Some kinds of failure
were, however, connected with learning patterns: specifically, tissue failure and “far” failure.
Generally, tissue failure (possibly signaling extended frustration with this core mechanic) in mid-
game levels had negative impact on both play completion and learning gains. Far failure in
tutorial game levels were negatively related to learning, but became positively correlated with
learning gains in the boss level. Identifying emergent forms of strategic failure (analysis 3),
which was positively associated with learning, helped to explain the changing relationship of far

failure to learning throughout the game.
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The first analysis built data features that supported all three analyses, and showed that
failure was not a monolithic construct in Progenitor gameplay and learning. In other words,
kinds of failure matter, and context of that failure matter, particularly in relationship to learning.
Far failure, a definition of failure as a result of acting directly contrary to game cues (e.g. wrong
start or wrong collect), emerged as an important construct. Specifically, far failure’s early game
negative relationship to learning shifted to a positive relationship in later levels. Next, the
Markov analysis created a new set of data features based on cycle-by-cycle game progression,
allowing for new sequential refinement. Fundamentally, it showed differences between the
learner groups consistent with the first analysis: avoiding repetition of early-level cycles (and far
failure), strong tissue performance in skill synthesis levels mid-game, and consistent use of far
failure in the boss level of the game were characteristic of the higher learning group. The last
analysis, exploring experimentation in play and learning, built upon the performance and
sequentially-detailed features of the first analyses. Aligned with the previous findings, it
thematically revealed that far failure was a defining construct for learner experimentation in play.
Essentially, the study was able to identify a behavior of strategic failure — deliberate use of
gameplay failure for efficient objective completion — through the holistic coding of play
sequence. This strategic failure, a type of experimentation in play, was positively associated with
learning gains. Consistent with earlier chapters’ findings, far failure in later levels of the game
were positively connected with strategic failure and learning, while tissue failure and far failure

in early levels were negatively related.
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Implications

New Paradigms of Assessment

One major implication of ADAGE for game-based assessment is affording multiple
approaches to understanding learner trajectories. ECD task models, for example, can be easily
used in conjunction with ADAGE Critical Achievement structures to gather salient evidence for
analysis. This approach represents a pre-formed hypothesis about an optimal learning pathway
through the virtual space. Conversely, ADAGE also provides data very compatible with a purely
exploratory data mining approach (as this dissertation demonstrates). Assessment data provided
by ADAGE can also provide a combined confirmatory-exploratory approach, one increasingly
popular in learning game analysis (e.g. Institute of Play, 2013; Baker & Clarke-Midura, 2013).
Beyond basic research approach and experimental design, there are a myriad of analysis methods
which can be fueled by ADAGE data. For example, ADAGE is being built out to capture textual,
multi-player data, and already collects context-rich event-stream data. This myriad of interaction
data can be used with classic statistics (e.g. multiple regression) and learning analytic techniques
(e.g. pattern matching algorithms, predictive student modeling, association mining, or
visualization). A common framework for salient assessment data aggregation across genres
solves the ‘“critical problem” of recording relevant clickstream data in the “deluge of
information” that is game data (c.f. Shute, 2011). It enables more time spent on intelligent
iterative game design, and facilitated connection of play patterns across games (not on
reinventing the data structure “wheel” for each consecutive project).

As reviewed in Chapter Two, the ADAGE framework — as shaped by these paradigms of
Evidence Centered Design and Educational Data Mining — represents new possibilities for

authentic assessment in virtual learning spaces.
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Today, games and other digital media allow us to track progress on multiple

variables to gauge growth across time and to discover different trajectories

towards mastery and innovation compared and contrasted across thousands of

learners.... A single score on a standardized test taken on one day—a “drop out of

the sky test”—will come to look not just thin, but unethical. (Gee, 2012, p.2)
Indeed, current “drop out of the sky”, high-stakes, annual multiple choice tests currently
reinforce several arguably narrow views of learning. First, current “testing teaches there are right
answers” — specifically, only one right answer (and presumably thinking process) per problem
(Shank, 2011, p. 80). It also fixates on factual memorization (recalling Dewey’s century-old
warning (1938) about the school system’s fact fetish), decontextualizes assessment from an
authentic learning context, and teaches us that some subjects are compartmentalized, with some
more important than others (Shank, 2011). Conversely, interaction-based assessment in digital
worlds can afford learner agency in exploring multiple solutions through an interactive thinking
process. This virtual, learner-centric mining of the interactive event stream can help provide
formative assessment as feedback in the learning process, emphasizing cross-subject problem-
solving in worlds where learning context and assessment are seamlessly integrated. Thus,
assessment based on interaction mining in virtual learning spaces can help move us to a process-
based assessment system rather than a knowledge-based one (c.f. Shank, 2011; Behrens et al.,
2012). New paradigms like this help answer an increasing call for alternative, digitally based
performance assessment from as high up as the White House (President’s Council of Advisors on
Science and Technology, 2013). This movement is also supported by digital assessment data
consortiums in top tier research institutions (e.g. GLS reference) and in recent efforts by

assessment giants like ETS and ACT to expand research in virtual-world event-stream data

analytics (e.g. Institute of Play, 2013; Encarnacao, 2014).
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As this assessment movement gains momentum, it could change the face of education.
The reason for this is that “assessment, especially when coupled with accountability, drives how
we teach and learn” (Gee, 2012, p.1). If we can develop robust yet authentic assessment
(embedded with formative feedback), with learner agency and creativity in problem solving with
multiple solutions — all in virtual worlds where subjects can overlap and even share solution
strategies — then this is exactly the kind of teaching and learning that will be incentivized in our

schools.

Failure and Learning

Within these future paradigms of assessment , this research supports changing empirical
understandings of the nature of failure and its role in learning. Technology-supported inquiry
learning (Edelson, Gordin & Pea, 1999), for example, specifically highlights the role of the
discovery and refinement of knowledge based on student exploration of content via hypothesis
testing; necessarily, this involves failure as feedback in defining knowledge boundaries and
problem constraints. In this sense, the consideration of failure in a positive role is vital to
authentic assessment within broad instructional schemas like discovery-based learning. Ranging
from these constructivist methods to more direct instruction, the “assistance dilemma”
(Koedinger et al., 2008) questions whether failure minimization via greater assistance and heavy
scaffolding is always better for learning. Kapur (2006) directly builds on this research,
empirically establishing the construct of “productive failure” in minimally-scaffolded learning
contexts. Jim Gee and Jesper Juul both assert, respectively, that failure in video games is
designed to be pleasantly frustrating and often serves to fuel self-regulated learning (Gee, 2005a;

Juul, 2013).
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By design, games as a medium support productive failure. Boundary testing, and
response to failure as formative feedback, is in an essential part of the game experience (Schell,
2008; Squire, 2006). Salen & Zimmerman (2004) identify limit testing as part of the profile of
the “dedicated player,” who fails frequently because they intentionally do not follow the rules,
but is engaged in play and interested in strategically understanding the underlying rule
constraints of the game (p. 268). (This dedicated player stands in contrast to the “spoilsport” or
the “cheat,” both of whom would be likely to engage in “WTF” behavior or gaming the system
(e.g. Wixon et al., 2012; Baker, Corbett & Koedinger, 2004).) In the domain of transgressive
play, or purposeful rule-breaking, Salen & Zimmerman assert that “rule-breaking can enhance
meaningful play,” because “to strategically break rules requires an intimate knowledge of the
rules themselves” (Salen & Zimmerman, 2004, p.281-282). This dissertation, for example,
empirically demonstrates the existence of strategic failure, and in positive relationship to
learning — which implies the sort of agency and cognitive engagement characteristic of
“dedicated” transgressive play. Failure is, indeed, an incentive for pushing forward in play (Juul,
2013) and serves to fuel the core learning principle of “pleasant frustration” in video games
(James Paul Gee, 2003). Failure as productive play is a vital consideration in our assessment of
learning in games, particularly in considering multiple “optimal pathways” through the learning
space (Ramirez et al., 2012; Owen & Ramirez, in submission).

This dissertation’s insights into failure afford vital insight for such authentic assessment
of learning in virtual learning spaces. The first pivotal understanding is that failure is not
monolithic; it does not always simply exist in one form throughout the entirety of a learning arc.
In this study, different types of failure were worth distinguishing, both in terms of learning and

play progress. A second key insight is that context of failure matters. Each kind of failure was
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examined at multiple points of gameplay, and the relationship of each to learning varied based on
the context. Far failure, for example, went from having a negative association with learning in
the beginning of the game to a positive relationship towards the end. This evolution towards
strategic failure implies the agency and engagement of “dedicated” transgressive play (Salen &
Zimmerman, 2004). Thirdly, failure can be beneficial to learning. Strategic failure in Progenitor
X, for example, was positively connected with learning outcomes. Failure, in this case, became
vital for assessment purposes because it signaled significant learning gains. Nuanced failure in
context-specific performance, thus, can be key in understanding (and assessing) transgressive

pathways optimized for both play and learning.

Data-Driven Learning Design

The ADAGE framework and its analytic affordances have major implications for
iterative game design optimized for play and learning. In the design of learning game
environments, experts assert that players rarely interact with the game in exactly the way the
designers envision, and thus heavily emphasize early, repeated usertesting (Schell, 2008; Salen
& Zimmerman, 2004). With the added element of content-specific learning goals, or concrete
growth over time in a domain-specific skill, attending and adjusting to organic play patterns
becomes even more vital (c.f. Shute, 2011; Norton, 2008; Institute of Play, 2013). Specifically,
through designed assessment structures, and through application of data output to various data
mining methods, assessment frameworks like ADAGE can powerfully fuel a data-driven game
design process that optimizes learner experience from the earliest development stages. They can
use telemetry-based assessment structures and applied learning analytics to inform three stages
of development: initial core design, alpha and early beta usertesting, and final design overlay of

learner-adaptive gameplay.
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In the early design process, using a learning game data framework can not only help
pinpoint existing data features for usertesting insight and later analysis — it can inspire the
creation of helpful learning measures in-game (like ADAGE “Critical Achievements”, or CAs).
Moments considered important for measuring learning can be built into the design process,
crafted with the goal of informative yet seamless feature of gameplay. One example of the
Critical Achievement data structure supporting early design is in Crystals of Kaydor, a game in
the Tenacity collaboration with GLS and the Center for Investigating Healthy Minds. Crystals of
Kaydor is an RPG designed to cultivate the development of pro-social behavior through
collaborative social interactions. The player controls a robot who has crash-landed on an alien
planet. For the first kind of CA, in order to win the aliens’ trust, the player must pay close
attention to non-verbal cues, tracking aliens’ facial expressions and intensity through a slider
interface. Secondly, the player must then correctly select the emotion of the alien, and for the last
CA, choose an emotional response to the aliens’ affect. These two CAs correspond directly with
the game’s content model of teaching awareness of non-verbal cues and emotion in others. In
tandem with these CAs, ADAGE play progression data has also provided a context-rich
backdrop to evaluate play progression in relationship to learning (Beall et al., 2013). Building in
formative assessment (like CAs) in initial phases of game design (rather than clunky late-game
additions or identified post-hoc by desperate researchers) has several advantages. First, it helps
beautifully integrate play progression and learning measurement mechanics for a seamless player
experience. Second, these designer-specified mechanics directly inform data structures and early-
phase analytics, making usertesting results even more relevant to developers. Thirdly, these key

learning mechanics provide anchoring measurement points for educational researchers, who can



156

then provide insight into growth patterns that inform final in-game scaffolding design (see
adaptive design below).

Strong data structures also enable telemetry analysis for data-driven design in the alpha
and early beta phases. Visualizations and descriptive analytics can be particularly helpful in
refining Ul design, as well as identifying bugs and player attrition points. All of these analytics,
based in click-stream data, can greatly complement qualitative usertesting methods like
interviews, surveys, and think-alouds. Specifically, visualization of well-structured telemetry
data can be a powerful tool in identifying bugs and player attrition points. A similar example
exists for early design and testing of Fair Play*', a game about implicit bias in graduate-level
academic institutions. In this game, positional telemetry data was recorded to create a heatmap of
player activity. One map level (aerial view) in the game (Figure 60) was programmed to show
areas of frequent player travel in red, and areas least traveled by students in blue (Owen &
Ramirez, in submission). This helped inform placement of in-game assets critical to content

exposure and game advancement.

Figure 60. Fair Play heat map of click-stream player activity

* http://www.gameslearningsociety.org/fairplay/
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In final stages of game development, after extensive data collection with late-beta builds,

ADAGE-enabled learning analytics can be used to predict in-game actions and performance

most characteristic of learning. This knowledge of ideal player behavior can then inform the final

design phase: user-adaptive, fully scaffolded play for optimized in-game learning. To this end,

optimal player actions, sequential pathways, and assessment growth trajectories can each be

explored through learning analytics (including visualization, prediction, and pattern mining

methods). These categories are based on the extensive literature review in Chapter Two (Figure

11), and examples of each (relevant to adaptive play design) are given below:

This dissertation’s early correlation of in-game success and failure with pre-post learning
outcomes helps define red flags of far failure (negative to learning) in tutorial levels.
Predictive modeling of experimentation supportive of learning is also modeled in this
study’s arc, using a detector methodology with classification and regression trees
(CART) to predict in-game performance and learning (e.g. DiCerbo & Kidwai, 2013;
Baker & Clarke-Midura, 2013).

In similar research, Bayesian networks have also been used with this data theme,
probabilistically connecting chunked performance data to creative problem solving in
games (e.g. Shute, 2011). Through not yet widely used in games, Bayesian Knowledge
Tracing (BKT) is an applicable algorithm that can predict learning moment-by-moment
based on multiple performances on a chosen task (e.g. Baker, Corbett, & Aleven, 2008).
If gameplay models show certain actions at certain points to be more predictive of
learning, then player-triggered scaffolding (e.g. help resources) can be implemented in-

game to help keep players on track at these crucial points.
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e Sequential learner pathways, using salient event-stream data, can also be modeled using
machine learning methods. Specifically, visualization and predictive modeling (including
cluster analysis and pattern-mining techniques) have been used with success in learning
games research to capture learner trajectories. In this study, the Markov models of play
trajectory are a prime example (Chapter Five). In other relationship mining through
visualization, SimCity.EDU researchers are currently building player profiles by
identifying groups using hierarchical cluster analysis (Institute of Play, 2013). In another
visualization example, ADAGE-based heatmaps can visualize learners’ critical pathways

though the game (e.g. Owen, 2014).

A concrete example of final-stage adaptive play design can be given based on this study’s
findings. The predictive models of experimentation and strategic failure in Chapter Six can
identify real-time transgressive play patterns supportive of learning — and those NOT helpful to
students. With an automated detector of strategic failure supportive of learning, an additional
layer of game code could be added which encourages players along this path (and differentiates
it from the kind of failure characteristic of attrition or lower learning, helping those players
recover as well.) Overall, in application to games, these ADAGE-fueled assessment analytics can

help designers anticipate and support in-game performance indicative of learning.

Future Work

ADAGE provides a flexible, cross-genre assessment data framework that supports
multiple evaluation approaches and analysis methods. Schemas like ADAGE, defining salient
information in the event-stream digital deluge of data, are vital for new paradigms of assessment

made possible in this digital age of education (c.f. Behrens et al.,, 2012; Shute, 2011;
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Steinkuehler, Barab & Squire, 2012). In future work, the growth and development of ADAGE
and in-game assessment can improve with larger-scale research around multiple contexts and
audiences for application.

Progenitor X began at GLS in 2011 as an idea brainstorm, led by Kurt Squire, for the
National STEM Video Game Challenge. Lead game designer on the game was Mike Beall,
working closely with programmers Ted Lauterbach and Greg Vaughan. Progenitor soon became
a part of CyberSTEM, a GLS game assessment project (led at the time by Rich Halverson and
Ben Shapiro). Since the game was being developed in-house concurrent with CyberSTEM, it
became an ideal genesis point for the first clickstream embedded assessment study. Hence, the
zombie-ridden biology game and GLS in-game assessment rose up together from mutual fertile
ground. Out of playful undead tissue regeneration, thus, sprung the first version of ADAGE in
2012. Allison Salmon was the programmer who made possible the translation of the conceptual
assessment frame of ADAGE to an actual implementable API. Hence, Progenitor X was the
original click-stream assessment game of study, which worked well for pioneering the
assessment framework and methods applications central to this research. However, in future
work, research with expanded sample size and game genres promises to yield further insight.
ADAGE has now been implemented in eight different GLS games, and has its own open-source,
user-friendly website (www.adageapi.org). IRB permissions have just expanded to permit all
anonymized clickstream interaction with any GLS game to be used for study (including any
remote use by anyone on the internet). The foundational assessment framework and methods
blueprint presented in this dissertation thus help support expansive, larger-scale future studies

imminent with ADAGE.
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Looking beyond n-size, the future of ADAGE is perhaps most exciting in the potential
for integration across multiple interaction data sources, contexts, and audiences. Event-stream
game data is a rich source of information which can be leveraged for even deeper insights with
other forms of player interaction data (including observational/video, interview, survey, in-game
discourse, and physiological sensor data). Powerful insights about learning in play can be made
with the synchronization of these multiple sources, each one a part of a larger ecology of
interaction data. To broaden in-game event stream information, ADAGE is moving from player-
game records to player-player interaction structures, being built out for the multi-player GLS
game Trails Forward. Indeed, the boxed game itself is just a small part of a larger “big G” Game
ecology that involves community discourse and collective intelligence around the game (Gee,
2003; Jenkins, 2006; Steinkuehler, 2006). Similarly, a way to capture player-player interactions
outside of the game is to study asynchronous player data — like forum posts, modding,
machinima, and other game-centered community artifacts. Integration of these affinity space data
(James Paul Gee, 2005b) with in-game interaction data can support even greater insight on play
and learning on the “big G” Game community level.

In addition to future integration of interaction data sources and larger community context,
the use of assessment data for multiple audiences is critical. In ideal future work, game-based
assessment data should be collected, processed, and then exported for the benefit of several
parties: researchers, students (in understanding their own play), developers, and facilitators
(including parents and teachers). For researchers, future work might leverage deeper analytic
methods in the machine learning categories of visualization, relationship mining, and prediction
(Figure 11). For example, heat maps of critical paths and automated correlations of performance

with learning outcomes can provide powerful tools for understanding student behavior (and are
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planned as ADAGE-automated features). Connecting research methods and players, in-game
formative feedback cycles can be fueled by intelligent learning models built into game code. One
example is Bayesian Knowledge Tracing, a probability algorithm modeling learning moment-by-
moment (e.g. Baker et al., 2011) that is ideal for informing adaptive “help” resource scaffolding
during play. Students, especially with the development of an ADAGE student portal, should be
able to see visualizations of their own progress, earn badges and achievements, and benefit from
data-informed adaptive gameplay. Game development can be informed by base ADAGE
assessment mechanics, as well as many machine learning analyses — including heat map
visualizations, network diagrams of player navigation, context-specific features most highly
correlated to learning, and moment-by-moment detectors of desired behavior — in early and
iterative design stages. Facilitators, with a future ADAGE portal, should be able to see their
pupils’ progress and more easily support and group students according to data-driven
recommendations. Customizing assessment output for each member of the audience ecosystem
can help create a sense of agency in all stakeholders — and inform new paradigms for integrated

assessment design, collection, analysis, and iterative application optimizing play-based learning.

Final Summary and Conclusion

This dissertation supports ADAGE as an assessment data framework that advances new
paradigms in the way we understand student learning in play. Empirically, this research
demonstrates cross-method application of ADAGE assessment through the lenses of game
microworlds as designed experience. ADAGE-based findings differentiate types and context of
failure, reveal experimentation patterns, and demonstrate the positive relationship between
strategic failure and learning. The ADAGE-based mining of these unexpected player pathways

through the learning space have powerful implications for defining alternate learner pathways in
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new assessment paradigms, reconsidering the role of (non-monolithic) failure in formal learning
evaluation, and informing iterative educational game design for the optimization of learner-
adaptive play. Ultimately, these insights can fuel new empowerment of researchers, designers,
and facilitators in providing engaging, interactive, learner-adaptive play environments for those

to whom the future of education belongs: our students.
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Appendix A.

(Chapter Five) Detailed Markov: transition matrix — lower quartile model
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Appendix B.

(Chapter Five) Detailed Markov: transition matrix — upper quartile model
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Appendix C.

(Chapter Five) Basic Markov: transition matrix — lower quartile model

Row Labels vlend fail objl_cell ohj2_cell ohj3_tissue objd tissue ohj5_cell ohjS_tissue ohj6_organ ohj7_tissue ohj8_cell ohj8 organ ohj8_tissue success
fail 1

obj1_cell 0 0.15

ohj2_cell 0.01 0.12
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ohj5_cell 0.01 0.17
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obj7_tissue 0.05 041

ohj8_cell 0.02 0.34
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obj8_tissue 0.09 0.59
start 1
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Appendix D.

(Chapter Five) Basic Markov: transition matrix — upper quartile model

Row Labels vlend  fail objl_cell obj2_cell obj3_tissue ohjd_tissue ohj5_cell ohj5_tissue ohj6_organ ohj7_tissue ohj8_cell ohj8_organ ohj8_tissue success (
fail 1

objl_cell 0.23

obj2_cell 0.01 0.16

obj3_tissue 0.96

objd_tissue 0.01 0.38

obj5_cell 0.02 0.18

obj5_tissue 01 0.44
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obj8_organ 1

obj8_tissue 0.51
start 1

success 1

Note: transition matrices from Chapter Five’s most detailed set of models were too big to fit

legibly here; I'm happy to supply them as excel docs via email upon request.
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Appendix E. Progenitor Protocol: Pre- Survey
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Post- Survey

Appendix F. Progenitor Protocol
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