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ABSTRACT 

The work in this dissertation is motivated by the need to increase power system model ac-

curacy, stability and security.  Practical issues associated with these topics are addressed, along 

with improvements in advanced methods and tools from optimization.  Results include a robust 

method for estimating dynamic oscillatory features from data and also a method supporting se-

cure exchange of power system models.  These advancements will help create more reliable and 

secure power system operations.  Improvements in model accuracy, stability and security will 

benefit electricity operators, customers and researchers alike. 

First a modal analysis problem involving power system stability is presented.  Sudden dis-

turbances in the electric grid tend to cause oscillatory ringing of power, voltage and other units 

of measure.  When the differential equations describing the model’s dynamics are available, the 

natural modes of the system can be calculated.  These modes characterize the stability properties 

of the system.  However, often times the differential equations describing the model’s dynamics 

are unavailable.  Instead, modal information must be extracted from oscillatory data collected 

during a disturbance event.  The industry standard modal analysis technique Prony analysis is 

discussed along with its shortcomings.  A nonlinear least-squares optimization problem that is 

superior to Prony analysis and other traditional modal analysis methods, is presented.  The ap-

proach is extended to include nonlinear behavior motivated by the theory of normal form analy-

sis.  The methods and theories are fully brought to fruition with the creation of a user friendly 

tool and graphic user interface, which has been distributed with success to power industry engi-

neers. 

The second half of work involves a model security problem that is motivated by the highly 

confidential nature of power system models and the desire to share actual models in power sys-

tem communities.  As a starting point, the frequently encountered optimal power flow optimiza-

tion problem is initially addressed.  The optimal power flow problem is ever increasing in size 
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and complexity, and with that comes an increased need for computational resources.  The possi-

bility of solving the optimal power flow problem with powerful remote computers is thus intri-

guing; however, the highly confidential nature of power system models requires that any optimal 

power flow problem sent to the cloud must first undergo some form of masking.  A method for 

preserving confidentiality in an optimal power flow problem is presented in the model security 

chapters of this report.  The method was primarily developed for use in cloud computing, but it is 

also of value for any scenario requiring data-secure optimal power flow computation.  The con-

fidentiality preserving optimal power flow method is finally examined for a separate model secu-

rity problem, where an existing power system model is transformed into an entirely new and le-

gitimate power system model.  The transformation allows for the secure exchange of power sys-

tem models, that are based off confidential counterparts, which can by freely shared within pow-

er system communities and amongst researchers. 

This dissertation sheds insight and solutions into two fundamental power system engineer-

ing problems: oscillation analysis for system stability and model confidentiality for system secu-

rity.  Both unique problems share in common current inadequate approaches to system reliability 

and security in need of improvement, while having an underlying theme on optimization. 
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Chapter 1 

Introduction 

The work in this dissertation is motivated by the need to increase power system model ac-

curacy, stability and security.  Advancements resulting from this work will better ensure the reli-

able and secure operation of the electric power system.  The connecting theme throughout this 

report is the development of tools that address key power system problems in need of improve-

ment; with a core emphasis on optimization methods.  The topics are further related by the need 

for accurate power system models for reliable grid operation, and also by the desire to share real-

istic models within power system communities.  Introductions to power system problems of 

modal analysis and model security are presented here in Chapter 1.  Research work associated 

with modal analysis is presented in Chapters 2–5, while the research work associated confiden-

tial optimal power flow problems is presented in Chapters 6–7.  Conclusions and proposed con-

tinuations of this research work are presented in Chapter 8. 

1.1 Motivation 

The North American power system may be the world’s single largest technological mecha-

nism, spanning all of the United States, Canada and a portion of Baja California in Mexico.  The 

entire system is divided into four major synchronous Interconnections, Eastern, Western, ER-

COT and Quebec, where the Interconnections are linked by DC transmission facilities [1].  Each 

Interconnection acts a single large machine, with every generator in the island pulling in tandem 

to supply the electrical demand of its customers.  This wide spread connectivity and interopera-

bility creates an abundance of unique issues concerning stability and security in the system.  To 

today’s society, electric power has become as essential as water and heating services.  In order to 

support reliable electric power services, robust analysis tools must be developed to address the 

issues of grid stability and security.  This need for analysis tools, concerning stability and securi-

ty, motivates the work in this dissertation report. 
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A byproduct of inadequate analysis tools is unplanned electricity outages.  Outages have 

damaging wide-spreading effects, directly affecting electricity consumers.  A major electric out-

age can leave millions of commercial, residential and industrial customers without power.  The 

consequence of electric outages varies in type, though some studies estimate the economic cost 

of interruptions to U.S. electricity consumers is about $79-80 billion annually [2,3].  It is clear 

that electric reliability is important, and has serious social and economic consequences when 

failures occur.  The work in this report seeks to better ensure reliability by improving methods of 

stability assessment and by examining the security of power system models for confidential op-

erations. 

1.2 Power System Oscillations and Modal Analysis 

The dominant oscillating modes of a power system characterize its stability properties.  

Severe faults, such as the loss of major transmission lines or generators, will cause oscillations in 

the system.  Once started, the oscillations either damp-out, sustain or continuously grow towards 

system collapse.  In these cases, real-time modal analysis techniques allow for situational aware-

ness of the power system’s stability [4].  The oscillations can be categorized differently depend-

ing on generator locations and the frequency of oscillations.  Intra-area oscillations occur in lo-

calized regions and have typical oscillation frequencies of 1 𝐻𝑧 or higher.  In contrast, inter-area 

oscillations are observed over large parts of the network.  They are associated with coherent 

groups of generators swinging against each other at 1 𝐻𝑧 frequency or less.  Inter-area oscilla-

tions are of primary interest here due to their wide-spreading effects.  The damping characteris-

tics of the inter-area oscillations are dictated by tie-line strength, the nature of loads and the dy-

namics of generators with their associated controls [5]. 

An example of unstable power oscillations causing widespread outages was the August 10, 

1996 event in the Western Interconnection.  A 500-kV transmission-line carrying 1300 MW 

sagged close to a tree and flashed over causing the line to trip.  Power was rerouted through par-

allel lines loaded up to 115% of their thermal ratings, and more lines tripped due to relay failures 
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and sagging into trees.  Depressed voltage levels caused sequential tripping of generator units, 

which started the power and voltage oscillations [6,7].  A 0.25 𝐻𝑧 growing mode was sustained 

on the California–Oregon Intertie, resulting in the intertie tripping and the system separating.  

The long, intricate cascading event shed 30 GW of load and ultimately disconnected 7.5 million 

customers, or 24 million people, for up to 9 hours [8].  Since then, preventative measures have 

been taken to stabilize poorly damped modes. 

Power System Stabilizers (PSS) were developed in the mid 1960’s in response to lightly 

damped inter-area oscillations having low frequencies of less than 1 𝐻𝑧.  The PSS control system 

works in conjunction with the excitation system of a synchronous machine to increase system 

damping and extend power transfer limits [9].  PSS are installed to damp out local intra-area os-

cillations, and multiple PSS in coordination may be installed at remote power stations to jointly 

damp out widespread inter-area oscillations [10,11,12].  Flexible AC Transmission System stabi-

lizers (FACTS) can alternatively be installed at locations close to tie-lines and long-distance 

transmission corridors for damping inter-area modes [13].  Stabilizing oscillations with PSS and 

FACTS involves two main issues of design: properly tuning parameters for feedback and select-

ing key installation locations.  Accurate information of mode observability and controllability are 

thus required.  PSS and FACTS feedback parameters can be tuned to stabilize poorly damped 

modes identified by modal analysis methods, and the modal analysis participation factors reveal 

key installation locations for the devices. 

When fully represented dynamic models of a power system are available, the modes of the 

system can be calculated using small-signal analysis or linearization.  The differential equations 

of the state-space model can be linearized about an operating point, and eigenanalysis of the lin-

earized state matrix gives the eigenvalues and eigenvectors of the system.  The eigenvalues cor-

respond to the system’s natural damping factors and frequencies, and the eigenvectors construct 

to the participation factors of each mode [14].  Linearization is a simple yet powerful tool for de-

termining system modes and stability properties; however power systems are inherently nonline-

ar.  At the most fundamental level, the power flow equations are trigonometric.  Installation of 
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FACTS devices, high-voltage direct current (HVDC) transmission and power electronics only 

increase the system’s nonlinearity [15-17].  Furthermore, to increase economic benefit, the mod-

ern power system is operated close to its stability limit.  Highly nonlinear dynamic behavior is 

exhibited under these stressed conditions.  A linearized solution acquired by small-signal analy-

sis may poorly capture the dynamics of a highly nonlinear power system.  More accurately, nor-

mal form analysis can be used to represent a system’s nonlinear dynamics.   

Normal form analysis captures nonlinear characteristics with high order interaction be-

tween the system’s natural modes.  Similar to linearization, a stable equilibrium point is expand-

ed about; but comparatively, the normal form solution has increased accuracy at deviations fur-

ther away from the equilibrium.  In the normal form method, near identity coordinate transfor-

mations eliminate higher order terms, thus yielding a closed form approximate solution [15-21].  

Normal form analysis is commonly used for identifying system bifurcation types [22]; which is 

done by expanding the differential equations about a bifurcation point.  At the bifurcation point, 

some higher order terms will fail to eliminate, and the left over irreducible equation reveals the 

bifurcation type, i.e. saddle-node, pitchfork, Hopf, etc. 

Alternative to model-based modal analysis methods, such as linearization, are model-free 

(or measurement-based) modal analysis methods which can be used to analyze data signals from 

recorded events.  These methods decompose an oscillating data signal into a finite sum of oscil-

lating components.  Standard methods such as Prony analysis [23,24] and the Matrix Pencil 

method [25,26], determine modal content by estimating a linear system to match the data.  The 

techniques, however, have shortcomings and can struggle to fit highly nonlinear or noisy dis-

turbance data, leaving room for improvement.  A nonlinear least-squares optimization approach 

yields better results in comparison [27-30].  The optimization can be built upon by using the the-

ory of normal form analysis [31].  This work is presented in the next three chapters of the report. 

1.3 Model Validation 

As suggested, measurement-based modal analysis methods are valuable for many reasons.  

One additional purpose for these methods is for performing model validation.  For example, an 
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actual power system model can be digitally constructed using simulation software.  The simula-

tion models are then used for making decisions on how to operate the actual power system.  It is 

expected that the simulations will accurately reflect the behavior of the system in reality.  A dis-

parity between simulated and actual events, will thus infer an inaccuracy in the simulated model.  

In the case of ring-down disturbance events, the modes from actual data can be compared against 

modes from the simulation. 

The power system simulation tools often appear as black-boxes to the user.  In these cases, 

small-signal analysis cannot be performed on the state-space model to calculate system modes.  

Measurement-based modal analysis methods can be used instead for estimating the dominant os-

cillatory modes from both the actual and simulated data.  Important features of interest, such as 

dominant mode damping, frequency, amplitude and phase can be compared between the actual 

and simulated data, thus validating the simulation model.  Improvements in modal analysis tech-

niques will in turn improve model accuracy, further motivating the modal analysis work in this 

report. 

Model validation studies are used to ensure simulation models are accurate and up-to-date.  

Power system engineers use the models to make a wide variety of decisions, including: transmis-

sion planning, stability assessment and generation dispatch.  An overly pessimistic model can 

result in overly conservative grid operation, under-utilization of network capacity, unnecessary 

capital investment and increased cost of electric power [32].  On the other hand, overly optimis-

tic models result in grid under-investment, unsafe operating conditions and potentially wide-

spread power outages.  Take for example the August 10, 1996 blackout in the Western Intercon-

nection.  After the event, power engineers attempted to reproduce simulations of the widespread 

power outage.  The dissimilarity in simulation results and actual disturbance data was alarming.  

Beforehand, the power transfer limits for critical paths had been determined by inaccurate simu-

lation models.  Afterward, the operating transfer capabilities of critical paths were significantly 

de-rated based on results of model validation studies [32].   

Figure 1.1 depicts the California–Oregon Intertie (COI) power flow on August 10, 1996 

before the intertie tripped [6].  The actual data shows the 0.25 𝐻𝑧 growing oscillation, where the 
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simulated response entirely omits it.  This is an example of an overly optimistic simulation mod-

el. 

 

Figure 1.1:  Actual vs. Simulated COI power flow, Aug. 10, 1996 

In the modal analysis work of this report, an optimization procedure is presented for com-

puting the modal solutions.  As mentioned, the solutions can be used to assess the accuracy of 

power system models.  The remaining second half of work in this report addresses another opti-

mization and model based problem, that being the optimal power flow problem.  The optimal 

power flow problem is one of the most prevalent and extensively studied optimization problem 

encountered in power system engineering.  This report seeks to study it from a new angle which 

involves privacy, security and especially the sharing of confidential models. 

1.4 Optimal Power Flow Levels of Complexity 

The electric power industry has experienced many changes and new challenges over recent 

decades.  The change to deregulated electricity markets has introduced competition and reduced 

costs, but it has also created uncertainty in generation forecasting.  Non-dispatchable renewable 

energy resources have only further exaggerated this uncertainty.  The increase in consumer de-

mand has outpaced the development of electrical infrastructure, which has placed stress on aging 
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equipment.  All the while, system stability must be assured for a multitude of contingency sce-

narios.  For these reasons, it is evident that the optimal power flow problem has been represented 

in a variety of forms, with its complexity evolving over time [33,34].  It is one of the most wide-

ly studied optimization problems of the past half-century.   

In general the optimal power flow problem seeks to minimize a given cost, subject to the 

engineering limits and physical constraints of the system.  The cost to be minimized is typically 

the monetary cost of generation dispatch, but could also include objectives for planning, reliabil-

ity and more.  The full AC optimal power flow problem is a nonlinear, non-convex, large-scale 

optimization problem.  It may contain both continuous and integer optimization variables.  It 

may also be independent of time or be a dynamic program considering current operation points 

and generation ramping constraints [33]. 

Advancements in optimization techniques have offered real measurable monetary savings.  

For example, mixed-integer programming for unit commitment problems saved United States 

electric system operators over $500 million annually in 2011, with forecasted savings of $1 bil-

lion annually by 2015 [35].  Just ten years ago the unit commitment problem stretched the capa-

bilities of computer hardware and optimization algorithms.  Before then, unit commitment appli-

cations relied on human judgment and dynamic programming heuristics [36]. 

1.5 Model Security and Confidentiality Preserving OPF 

It is clear optimization problems in the electric power industry are becoming more compli-

cated for many reasons.  Therefore any advancements in optimization techniques can help coun-

teract growing complexity, helping save time, money and resources.  Computational needs con-

tinue to increase for solving the optimal power flow (OPF) problem; therefore, powerful compu-

ting infrastructure and advanced optimization tools have become a necessity for the electric 

power industry.  This computational need intrigues the possibility of using powerful remote 

computing resources available through cloud computing.   

The concept of cloud computing was introduced in the 1960’s by John McCarthy, whose 

opinion was that “computation may someday be organized as a public utility”.  Cloud computing 
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can be defined as a computing environment where computing needs by one party can be out-

sourced to another.  With cloud computing, powerful computing resources and database storage 

are made available via internet access.  For cloud computing customers, computing processes 

and data handling is moved away from their desktops and into large data centers.  It is appealing 

that they no longer have to pay for personal computing infrastructure, installation, manpower and 

maintenance.  Access to cloud resources are available to the customer, regardless of their device 

used, their location or time of use [37].   

A similar idea was demonstrated with the Network Enabled Optimization System (NEOS) 

server and the Condor pool at the University of Wisconsin.  NEOS provides access to solvers for 

optimization problems via the internet; coming complete with automatic differentiation tools and 

sparsity pattern identification for nonlinear problems.  A user provides minimum problem speci-

fications, and all other necessary information is determined by the NEOS solver.  Condor, a dis-

tributed resource management system, provides the computational resource of large workstation 

clusters that would otherwise be running idle [38].  A sample of applications the NEOS server 

has been used for include: chemistry, physics, circuit design and power system engineering prob-

lems [39]. 

For the electric power industry, cloud computing resembles an intriguing possibility for 

outsourcing complex problems.  As noted in [41], different applications in power system plan-

ning and operations have varied computational requirements.  Some applications may be com-

puted only on occasion, where others may be computed nearly continuously.  For example, re-

newable energy integration planning may be performed up to ten years in advance, requiring 

computations on a low frequency basis.  These studies are extensive however, and are simultane-

ously contingent on various load, generation and weather conditions.  Studying the feasibility of 

renewable energy integration into constrained transmission networks requires sophisticated 

simulations of various load, generation and weather conditions.  These analysis are highly paral-

lelizable and are thus prime candidates to benefit from the elasticity provided by cloud compu-

ting.  In contrast, locational marginal pricing (LMP) is computed in real-time spot markets.  The 

LMP is contingent on the OPF problem, which itself may be a simple quadratic optimization or 
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could be as complex as a security constrained, stochastic dynamic program over a receding hori-

zon.  Cloud services may also be of interest for reliable data storage for power system applica-

tions.  Traditional SCADA historians may require utilities to generate and store 100TB of data 

annually.  Now with the advent of Phasor Measurement Units, which sample the system 30 times 

a second compared to every few minutes with SCADA systems, the requirement for data storage 

will increase significantly [41]. 

A major obstacle to the adoption of cloud computing in the electric power industry, is the 

confidentiality of their data and models.  Cloud computing security may already be good, as the 

provider devotes resources to solving security issues that many customers cannot afford individ-

ually [37,40,42].  Nonetheless, data security is of primary importance to the electric power indus-

try.  Without a secure computing environment, the possibility of utilizing the cloud for their 

computational needs may not be considered.  With appropriate risk mitigation approaches, the 

risk versus reward may warrant the use of cloud services for certain applications. 

The model security work in this report addresses several security issues, inspired by the 

potential of cloud computing or for uses in any application where secure computation is required.  

Initially, linear programming masking techniques detailed in [43] and [44] are built upon but tai-

lored specifically to the linear DC optimal power flow problem [45].  The work is extended to 

the full nonlinear AC optimal power flow, with a discussion on the limitations encountered in the 

nonlinear case.  Other applications of the masking procedure are discussed, including the possi-

bility of multi-party optimization.   

Lastly a related problem of transforming the characteristics of an existing power system 

model to a legitimate and entirely different power system is presented.  The transformation may 

open doors for sharing models provably relatable to other confidential models, which may fun-

damentally transform the process of power system research developments and data sharing.  Cur-

rently, models of confidential power systems must be obtained through nondisclosure agree-

ments.  In this way, results cannot be independently checked, which largely prevents against the 

standard scientific protocol of verifying and replicating results.   
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1.6 Outline and Contributions 

In Chapter 2, an introduction to modal analysis is provided with discussion of both model-

based and measurement-based methods.  Traditional measurement-based modal analysis meth-

ods of Prony Analysis, the Matrix Pencil method and the Eigensystem Realization Algorithm are 

presented.  Contribution are made by extending the Matrix Pencil method and Eigensystem Real-

ization Algorithm for use in multi-signal modal analysis problems, where numerous oscillatory 

data-signals are simultaneously analyzed for shared modal content.   

In Chapter 3, a nonlinear least-squares optimization method called the variable projection 

method is discussed for use in measurement-based modal analysis problems.  Data fitting using 

nonlinear least-squares approaches is not a new concept, but it has gone overlooked for modal 

identification power system problems.  The method outperforms Prony analysis and other tradi-

tional methods in estimating modal content of data.  The traditional modal analysis methods 

from Chapter 2 are used as initial conditions for the optimization for improved solution speed 

and likelihood of locating global minimizers.  Contributions to the method include extensions for 

multi-signal analysis and computational speed improvements.  Extensions for polynomial data-

detrending and constrained optimization are detailed as well. 

In Chapter 4, the theory of normal form analysis is presented for analyzing nonlinear state-

space models.  By example, it is shown that normal form analysis provides a closed form solu-

tion to the model which is superior to the solution obtained by linearization and small-signal 

analysis.  The observation is made that high order combinations of natural modes are observed in 

the normal form solution structure for nonlinear systems.  This observation motivates an exten-

sion to the variable projection method for modal analysis problems, which seeks to better esti-

mate the natural modes or eigenvalues of nonlinear ring-down disturbance data.  A similar exten-

sion is also presented for systems with repeated eigenvalues. 

In Chapter 5, the culmination of the modal analysis techniques from the prior chapters are 

consolidated into a user friendly tool and graphic interface developed for industry use.  The tool 

has been met with positive reception by industry members, and it has served to advance the goals 
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of this dissertation of improving stability and reliability in real electric power systems.  Discus-

sion is provided on the types of optimization algorithms best suited for this problem.  An exam-

ple is provided for analyzing real power system disturbance data.  The example provides a plat-

form for demonstrating the effective approaches to modal analysis problems, such as the issue of 

determining appropriate model order selection (number of modes).  The example demonstrates 

the need for flexible tools, which allow user guidance and interactivity for optimizing perfor-

mance.   

In Chapter 6, model security work is addressed for confidential optimal power flow prob-

lems.  Recently developed masking approaches for securely solving linear programs in cloud 

computing are specifically applied to the linear DC OPF problem.  Contributions are made by 

detailing procedures for extracting dual variables and locational marginal prices from fully 

masked OPF problems, procedures for masking quadratic cost functions, and approaches for pre-

serving problem sparsity.  The nonlinear AC OPF problem is discussed for similar masking pro-

cedures, along with its security limitations imposed by its nonlinear nature.   

In Chapter 7, a unique power system transformation problem is presented for transforming 

a legitimate power system OPF model to a totally new and different OPF model.  The transfor-

mation preserves a mapping between optimal cost and variables between the two problems.  The 

transformation is detailed for linear programs, quadratic programs, and piece-wise linear cost 

functions.  The work is motivated by current nondisclosure policies for handling confidential 

power system models, with an end goal of facilitating free exchange of credible models within 

power system communities and research groups.  

Chapter 8 concludes the dissertation with reflections on the contributions and ideas pre-

sented in this report.  Future work directions for areas of research involving modal analysis, 

model security, and optimization are proposed. 
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Chapter 2 

Modal Analysis 

Electromechanical disturbances in the electric power system tend to cause power oscilla-

tions that either damp out, sustain or grow.  The disturbances are sources of undesired oscillatory 

ring-down behavior, and the dominant oscillating modes characterize the system’s stability prop-

erties and reveal important information about the system.  Phasor Measurement Unit (PMU) data 

of these ring-down events can be analyzed to extract important modal information of the power 

system.  It is the purpose of this chapter to investigate the importance of accurately estimating 

modes from data.  Accurate mode estimation will assist system stability analysis, improve model 

validation, and guide control mechanisms for stabilizing poorly damped modes.  This chapter 

provides an introduction to modal analysis problems, along with an examination of traditional 

analysis methods. 

2.1 Small-Signal Analysis 

Power systems are modeled using coupled differential and algebraic equations which char-

acterize the system’s interconnections and dynamic variables.  Algebraic power balance equa-

tions describe the power flow, the load demand and the system’s topological interconnections.  

Differential swing equations are used to model generator dynamics describing the turbine inertia 

and damping constants and control mechanisms.  Combining the power balance and swing equa-

tions yields a set of nonlinear ordinary differential equations (ODE’s) which describes the total 

system representation [46].  Small-signal analysis and linearization about an operating point can 

be performed on the nonlinear ODE’s to obtain a linearized state-space model in (2.1), where 𝑥 

is the state vector, 𝑦 is the output vector, 𝑢 is the input vector, 𝐴 is the state matrix, 𝐵 is the input 

matrix, 𝐶 is the output matrix and 𝐷 is the feedthrough matrix.   

 𝑥̇(𝑡)  𝐴𝑥(𝑡)  𝐵𝑢(𝑡) (2.1) 

 𝑦(𝑡)  𝐶𝑥(𝑡)  𝐷𝑢(𝑡)  
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Generally, the input vector 𝑢 can be dropped if the system in unforced, which simplifies 

(2.1).  Eigenanalysis can be performed to determine the eigenvalues of (2.1).  Consider a system 

with 𝑝 states.  Denote 𝑉 as the matrix with the eigenvectors of matrix 𝐴 as its columns, and de-

note the eigenvalues of 𝐴 as        .  The solution for 𝑥(𝑡) in (2.1) is shown in (2.2), where 

𝑥( ) is the state vector at time 𝑡   , and 𝑑𝑖  (𝑉  𝑥( )) creates a diagonal matrix from the 

vector 𝑉  𝑥( ). 

 𝑥(𝑡)  𝑉  𝑑𝑖  (𝑉  𝑥( ))  [

𝑒   

𝑒   

 
𝑒   

] (2.2) 

The solution for 𝑥(𝑡) in (2.2), and correspondingly the output vector 𝑦(𝑡), is therefore a 

summation of damped or undamped sinusoids and exponentials.  In power system problems, 

measurements of state variables 𝑥(𝑡) are less accessible than measurements of power flow, volt-

age, etc., which are considered output measurements in 𝑦(𝑡). 

For large scale power systems, it may be less practical to perform eigenanalysis due to the 

inaccuracies of modeling the entire state-space system.  Therefore measurement-based modal 

analysis methods can be used to estimate the system’s eigenvalues and mode shapes.  The system 

model can be validated using disturbance data analyzed by the methods.  Traditional modal anal-

ysis methods are detailed in the next section. 

2.2 Traditional Modal Analysis Methods 

As detailed in the prior section, power systems are modeled by sets of differential and al-

gebraic equations.  The system dynamics are characterized by modes having amplitude, frequen-

cy, damping and phase.  Therefore one may advocate the explicit use of these distinct features 

for validating system models, with data represented as a sum of damped or undamped sinusoids.  

Efficient mathematical techniques have been developed to perform the task of estimating modal 

content of data.  This section examines three traditional linear modal analysis techniques: Prony 

analysis, the Matrix Pencil method and the Eigensystem Realization Algorithm (ERA). 
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Consider an oscillatory data waveform denoted as 𝑦 having 𝑚 discrete data points, evenly 

spaced over the time interval 𝑡 and starting at time 0 seconds. 

 

Figure 2.2:  Example data-set 𝑦 with 𝑚 data points 

The modal analysis methods seek to fit a function 𝑦̂(𝑡), shown in (2.3), consisting of 

damped or undamped exponentials, to the oscillatory data-signal 𝑦.   

𝑦̂(𝑡)  ∑𝐴  𝑒
       (𝜔 𝑡    )

 

   

 

 ∑𝐴 𝑒
   [   (  )    (𝜔 𝑡)     (  )    (𝜔 𝑡)]

 

   

 

(2.3) 

Computationally, the data is analyzed as if it were generated by an impulse response of a 

linear system whose coefficients are calculated using temporal correlations in the data [23,24].  

The natural modes of the linear system correspond to     𝜔  in (2.3).  The frequency 𝜔  has 

units 𝑟 𝑑/𝑠, and the damping   , sometimes referred to as the neper frequency, has units 1/𝑠 

[47].  The mode shape amplitude and phase correspond to the complex coefficients 𝐴    .  In 

practice, the data comprises equally-spaced discrete-time sample points, where  𝑡 is the time-

sample period.  The discrete-time representation of (2.3) may be represented as shown in (2.4). 

𝑦̂[ ]  𝑦̂(  𝑡)  ∑𝑏 𝑧 
 

 

   

 (2.4) 

The signal 𝑦̂[ ] is a finite summation of 𝑝 mode pairs (𝑏  𝑧 ), where 𝑏    is the output 

residue coefficient for the discrete-time pole 𝑧    [23].  The discrete-time poles 𝑧  are related 

t
 

 

y

0
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to continuous-time eigenvalues    by 𝑧  𝑒     𝑒(      )  .  Note the series summation to 𝑞 

in (2.3), as opposed to the series summation to 𝑝 in (2.4).  It follows that 𝑞  𝑝 due to the cancel-

lation from complex conjugate mode pairs (𝑏  𝑧 ) and (𝑏 
  𝑧 

 ) as shown below.   

𝑏  𝑧 
    

 𝑏 
  𝑧 

     
 𝐴  𝑒

       (𝜔 𝑡    ) 

If there are    number of pairs of complex conjugate modes and  ℝ number of real modes, 

then 𝑞 =    +  ℝ and 𝑝 = 2   +  ℝ.  Therefore if 𝑝 is an odd number, then at minimum there 

must be one real-valued mode. 

The conversion between continuous-time parameters in (2.3) and discrete-time parameters 

in (2.4) depends on the time-sampling period  𝑡.  For complex-conjugate mode pairs, the residue 

coefficient 𝑏  
  

 
𝑒    and discrete-time pole 𝑧  𝑒(      )  .  Real-valued mode pairs simply 

relate by 𝑏  𝐴 , 𝑧  𝑒    , 𝜔    and     . 

2.3 Multi-Signal Analysis 

Prony analysis, matrix pencil and ERA can all be extended for simultaneously analyzing 

multiple data-signals of a particular disturbance event.  As detailed in [24], multi-signal Prony 

analysis tends to improve modal estimate accuracy, and similar observations can be made for 

matrix pencil and ERA. 

 

Figure 2.3:  Multi-signal example data-set 
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Consider a data-set where multiple signals are collected, such that 𝑦 = [ 𝑦1 ‚   ‚ 𝑦 𝑠𝑖 
 ], 

where 𝑦 is an 𝑚 ×  𝑠𝑖  matrix.  The multiple signals belong to the same system, so it is assumed 

each signal exhibits the same 𝑝 natural modes/discrete-time poles 𝑧𝑖.  If the data-set had just one 

signal, then the residue coefficient 𝑏𝑖 would be a complex scalar in the mode pair (𝑏 𝑧 ).  How-

ever, when the data-set has multiple signals, the residue coefficient 𝑏𝑖 becomes a vector of length 

 𝑠𝑖 .   

In this chapter, the traditional methods of Prony analysis, matrix-pencil and ERA are de-

tailed for multi-signal modal analysis.  Each method is performed as a two-step procedure:  

first, modal damping and frequency is estimated, then second, modal amplitude and phase is 

computed.  The next section details the first step of these two-step procedures. 

2.4 Solving for a Linear Model and Discrete-time Poles 𝑧𝑖 

Before using Prony analysis, matrix pencil or ERA for estimating discrete-time poles 𝑧𝑖, 

the data-signal 𝑦 may require some preconditioning.  The data-signal can be preconditioned so 

that its dc-offset is subtracted; which by doing so, the methods are alleviated from approximating 

a zero eigenvalue mode, i.e. a dc-offset mode.  A reasonable choice for dc-offset subtraction is 

the signal’s final value as time goes to infinity, as steady-state is presumed to be approached; 

however, this conjecture may worsen for unstable or lightly damped data.  Additional precondi-

tioning is required if the data-signal is not uniformly spaced by 𝛥𝑡.  For unequally spaced data, 

interpolation must be performed to enforce uniformly spaced time-samples; which is required 

because analysis will be done in the discrete-time domain.  Finally, if necessary, a noise reduc-

tion filter may be applied for overly noisy data. 

Prony analysis, matrix pencil and ERA are all performed as two-step procedures.  In the 

first-step, the discrete-time poles 𝑧𝑖 of the system are estimated, thereby solving for a linear 

model to match the data.  Each of the three methods performs this first-step differently, as shown 

in the following subsections. 



17 

A. Prony Analysis 

Prony analysis has proven to be a valuable tool in estimating the modal content of power 

oscillations from measured ring-downs.  The method was developed by Gaspard Riche de Prony 

in 1795 but did not see its best use until the arrival of modern computing.  Early adoption of 

Prony’s method in power system problems can be seen in [48], where it is applied to several 

Western Interconnection ring-down events.  Since that time, Prony’s method has been incorpo-

rated into many commercial power system analysis software’s [49,50]. 

The user of Prony’s method must predetermine the number of modes 𝑝.  The 𝑝 discrete-

time poles 𝑧𝑖 are calculated using the linear prediction property of linear systems [23,24].  The 

linear prediction property of linear systems is presented here.  Consider a linear system with ex-

actly 𝑝 modes, i.e. 𝑝 discrete-time poles 𝑧    𝑧 .  Construct the characteristic polynomial with 

the 𝑝 discrete-time poles 𝑧    𝑧  as its roots as in (2.5).  Denote the coefficients of the charac-

teristic polynomial as        . 

∑  𝑧
  

 

   

 ∏(  𝑧 𝑧
  )

 

   

 (2.5) 

If the discrete-time poles 𝑧    𝑧  are known, then the characteristic polynomial coeffi-

cients         can be computed by matching like terms in (2.5).  Consider a linear system with 

exactly 𝑝 modes and 𝑝 data points evenly spaced in time by  𝑡, 𝑦(𝑖 𝑡)  𝑦[𝑖] for 𝑖      𝑝- .  

The next data point in time, 𝑦[𝑝], can then be exactly computed by using the linear prediction 

property of linear systems, as shown in (2.6). 

 𝑦[𝑝]       [ 1    2        𝑝−1    𝑝]

[
 
 
 
 
 

 
 
 
 
 
 
 

𝑦[𝑝 1]

𝑦[𝑝 2]

 
𝑦[1]

𝑦[0]

 
 
 
 
 
 
 ]
 
 
 
 
 

 (2.6) 
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This linear prediction property is exploited in Prony’s method to help estimate the discrete-

time poles 𝑧 .  Generally, linear prediction uses knowledge of the discrete-time poles 𝑧    𝑧  to 

calculate the unknown characteristic polynomial coefficients        , but in Prony analysis the 

opposite is done.  In Prony analysis, an approximation of the characteristic polynomial coeffi-

cients         is used to calculate the discrete-time poles 𝑧    𝑧 , as shown next. 

Assume  𝑠𝑖  number of oscillatory data-signals 𝑦1 ‚   ‚ 𝑦 𝑠𝑖 
 are collected, each having 𝑚 

data points evenly spaced in time, 𝑦𝑖  =  [ 𝑦𝑖[0]       𝑦𝑖[𝑚 1] ]𝑇
.  The user of Prony’s method 

must specify the number of modes 𝑝 assumed to be present.  An (𝑚 𝑝) × 𝑝 Toeplitz matrix 𝑇𝑖 is 

formed, and an (𝑚 𝑝) × 1 column vector 𝑦𝑖‚𝑡 is also formed from the tail-end of data points in 

𝑦𝑖 for 𝑖     ‚   ‚  𝑠𝑖 . 

 𝑇𝑖  =  

[
 
 
 
 
 

 
 
 
 
 
 
 

𝑦𝑖[𝑝 1] 𝑦𝑖[𝑝 2] ⋯ 𝑦𝑖[1] 𝑦𝑖[0]

𝑦𝑖[𝑝] 𝑦𝑖[𝑝 1] ⋱ 𝑦𝑖[2] 𝑦𝑖[1]

𝑦𝑖[𝑝+1] 𝑦𝑖[𝑝] ⋱ 𝑦𝑖[3] 𝑦𝑖[2]

  ⋱   
𝑦𝑖[  2] 𝑦𝑖[  3] ⋯ 𝑦𝑖[  𝑝] 𝑦𝑖[  𝑝 1]

 
 
 
 
 
 
 ]
 
 
 
 
 

      𝑓𝑜𝑟 𝑖     ‚   ‚  𝑠𝑖  (2.7) 

 𝑦𝑖‚𝑡  =  

[
 
 
 
 
 

 
 
 
 
 
 
 

𝑦𝑖[𝑝]

𝑦𝑖[𝑝+1]

𝑦𝑖[𝑝+2]

 
𝑦𝑖[  1]

 

 
 
 
 
 
 
 ]
 
 
 
 
 

      𝑓𝑜𝑟 𝑖     ‚   ‚  𝑠𝑖   

The  𝑠𝑖  Toeplitz matrices 𝑇𝑖 and vectors 𝑦𝑖‚𝑡 are stacked into one large matrix 𝑇 and vector 𝑦𝑡.   

 𝑇  =  

[
 
 
 
 

 
 
 
 
 
 

𝑇1

𝑇2

 
𝑇 𝑠𝑖 

 
 
 
 
 
 ]
 
 
 
 

 𝑦𝑡  =  

[
 
 
 
 

 
 
 
 
 
 

𝑦 ‚𝑡

𝑦2‚𝑡

 
𝑦 𝑠𝑖 ‚𝑡

 
 
 
 
 
 ]
 
 
 
 

 (2.8) 
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A pseudoinverse operation is performed to estimate the characteristic polynomial coefficients 

       . 

    𝑇 𝑦  (2.9) 

With the coefficients         approximated from (2.9), the discrete-time poles 𝑧    𝑧  can be 

solved by matching like terms in (2.5).  An observation is made here that Prony analysis fits its 

solution to the coefficients         and not the data itself.  This approach can result in inade-

quate solutions when compared to other methods. 

B. Matrix Pencil Method 

Like Prony analysis, the Matrix Pencil method matches data to coefficients of a linear sys-

tem, and the method has recently found use in power system analysis [25,26].  The Matrix Pencil 

algorithm for multi-signal modal analysis is performed as follows.   

As before,  𝑠𝑖  number of oscillatory data-signals 𝑦 = [ 𝑦1 ‚   ‚ 𝑦 𝑠𝑖 
 ] are collected, each 

having 𝑚 data points evenly spaced in time, 𝑦𝑖  =  [ 𝑦𝑖[0]       𝑦𝑖[𝑚 1] ]𝑇
.  To begin, the pencil 

parameter 𝐿 is introduced.  The pencil parameter is chosen such that 𝐿 = 𝑓𝑙𝑜𝑜𝑟(𝑚/2), which is 

chosen because the performance of the method becomes close to the optimal Cramer-Rao bound 

at this value [26].  Next, a Hankel matrix 𝐻𝑖 is formed for each of the data signals 𝑦𝑖. 

 𝐻𝑖  =  

[
 
 
 
 

 
 
 
 
 
 

𝑦𝑖[0] 𝑦𝑖[1] ⋯ 𝑦𝑖[𝐿]

𝑦𝑖[1] 𝑦𝑖[2] ⋯ 𝑦𝑖[𝐿+1]

  ⋱  

𝑦𝑖[𝑚 𝐿 1] 𝑦𝑖[𝑚 𝐿] ⋯ 𝑦𝑖[𝑚 1]

 
 
 
 
 
 ]
 
 
 
 

      𝑓𝑜𝑟 𝑖     ‚   ‚  𝑠𝑖  (2.10) 

The Hankel matrices are stacked into one large matrix 𝐻. 

 𝐻  [

𝐻 

 
𝐻    

] (2.11) 
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The SVD of 𝐻 is computed, where an economy size SVD suffices. 

 𝐻 = 𝑈 𝛴 𝑉𝑇 (2.12) 

The ratio of each singular value   to the largest singular value  𝑚 𝑥 is compared to a 

threshold value 𝜃.  Any singular value having ratio   /  𝑚 𝑥 ≥ 𝜃 will be kept, while all singular 

values having ratios less than 𝜃 are discarded.  The authors in [26] suggest a threshold value 

𝜃 ≈    3, though a threshold value of 𝜃 = 0.16 appeared more adequate when tested on power 

system data.  The number of singular values kept thus determines the model order 𝑝.  If desired 

the user could specify 𝑝, which would eliminate the need for the threshold determination. 

The right singular vector matrix has 𝑚−𝐿 columns, 𝑉 = [ 𝑣•‚1 ‚   ‚ 𝑣•‚𝑚 𝐿 ].  Define matrix 

𝑉′ as the first 𝑝 right singular vectors, 𝑉′   [ 𝑣•‚1 ‚   ‚ 𝑣•‚𝑝 ].  Matrices 𝑉1 and 𝑉2 are formed from 

offset rows of 𝑉′. 

 𝑉1  =  [

 
 
 
 
 

𝑣′ ‚•

 
𝑣′𝑝  ‚•

 
 
 
 
 

] 𝑉2  =  [

 
 
 
 
 

𝑣′2‚•

 
𝑣′𝑝‚•

 
 
 
 
 

] (2.13) 

The discrete-time poles 𝑧𝑖 may be found as the generalized eigenvalues of the matrix pair 

{ 𝑉𝑇
2  𝑉1 , 𝑉𝑇

1  𝑉1 }, i.e. the eigenvalues of matrix (𝑉𝑇
1  𝑉1) 1

 𝑉𝑇
2  𝑉1.  

C. Eigensystem Realization Algorithm 

Literature on the Eigensystem Realization Algorithm (ERA) can be reviewed in [51] and 

[52].  The procedure for computing discrete-time poles 𝑧𝑖 using ERA for multi-signal modal 

analysis is presented here.  For each signal in 𝑦 = [ 𝑦1 ‚   ‚ 𝑦 𝑠𝑖 
 ], a Hankel matrix 𝐻𝑖‚0 is created 

from data-points 𝑦𝑖[0],   , 𝑦𝑖[𝑚 2], and also a shifted Hankel matrix 𝐻𝑖‚1 is created from 

𝑦𝑖[1],   , 𝑦𝑖[𝑚 1].  Define the parameter 𝑁, which is analogous to the pencil parameter in the 

Matrix Pencil method, as 𝑁 = 𝑓𝑙𝑜𝑜𝑟(𝑚/2). 
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 𝐻𝑖‚   =  

[
 
 
 
 

 
 
 
 
 
 

𝑦𝑖[0] 𝑦𝑖[1] ⋯ 𝑦𝑖[𝑁 1]

𝑦𝑖[1] 𝑦𝑖[2] ⋯ 𝑦𝑖[𝑁]

  ⋱  
𝑦𝑖[𝑚 𝑁 1] 𝑦𝑖[𝑚 𝑁] ⋯ 𝑦𝑖[𝑚 2]

 
 
 
 
 
 ]
 
 
 
 

      𝑓𝑜𝑟 𝑖     ‚   ‚  𝑠𝑖  (2.14) 

 𝐻𝑖‚   =  

[
 
 
 
 

 
 
 
 
 
 

𝑦𝑖[1] 𝑦𝑖[2] ⋯ 𝑦𝑖[𝑁]

𝑦𝑖[2] 𝑦𝑖[3] ⋯ 𝑦𝑖[𝑁+1]

  ⋱  
𝑦𝑖[𝑚 𝑁] 𝑦𝑖[𝑚 𝑁+1] ⋯ 𝑦𝑖[𝑚 1]

 
 
 
 
 
 ]
 
 
 
 

      𝑓𝑜𝑟 𝑖     ‚   ‚  𝑠𝑖   

The Hankel matrices are stacked as follows. 

 𝐻  [

𝐻   

 
𝐻      

] 𝐻  [

𝐻   

 
𝐻      

] (2.15) 

The SVD of 𝐻0 is computed, where an economy size SVD will suffice. 

 𝐻  𝑈𝛴𝑉  [𝑈  𝑈 ] [
𝛴     

    𝛴 
] [

𝑉 
 

𝑉 
 
] (2.16) 

The 𝑝 largest singular values in 𝐻0 are kept.  Either the user can predetermine the model 

order 𝑝, or it can be determined by a threshold value as done in the Matrix Pencil method.  The 

state matrix is computed by 𝐴  𝛴 
    

 𝑈 
  𝐻  𝑉  𝛴 

    
.  The eigenvalues of 𝐴 are the discrete-

time poles 𝑧𝑖. 

2.5 Solving for Continuous-time Function 𝑦(𝑡) 

As mentioned, the traditional modal analysis methods are two-step processes.  First the 

discrete-time poles are estimated, as outlined in the prior section.  Once the discrete-time poles 

are estimated, the residue coefficients 𝑏𝑖 are computed.  Typically, the residue coefficients are 

computed in the discrete-time domain by forming a Vandermonde matrix from the discrete-time 
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poles.  However, the computation for residue coefficients can be performed in the continuous-

time domain as well, where evenly spaced time-samples are no longer necessary.  With the dis-

crete-time poles 𝑧𝑖 estimated from one of the traditional modal analysis methods, the continuous-

time eigenvalues  𝑖 can be found by (2.17), for 𝑖     ‚   ‚ 𝑝. 

        𝜔  
 

  
  (𝑧 ) (2.17) 

The remaining computations will be performed in the continuous-time domain.  A set of 𝑝 

basis functions consisting of (un)damped cosines, sines and exponentials will be used.  Construct 

the matrix Φ( ‚ 𝜔) which contains the 𝑝 basis functions, evaluated at all 𝑚 points in time.  Pref-

erably, the matrix Φ( ‚ 𝜔) also has an additional vector of ones to be used as a dc-offset basis 

function.  Recall    denotes the number of pairs of complex conjugate modes,  ℝ denotes the 

number of real modes, and that 𝑞 =    +  ℝ and 𝑝 = 2   +  ℝ.   

 Φ( ‚ 𝜔) = [ 𝑒 1𝑡 cos(𝜔1 𝑡)  ‚  𝑒 1𝑡 sin(𝜔1 𝑡)  ‚     ‚ (2.18) 

 𝑒   
𝑡

 cos(𝜔  
 𝑡)  ‚  𝑒   

𝑡
 sin(𝜔  

 𝑡)  ,  𝑒 (  +1)𝑡  ,     ,  𝑒 𝑞𝑡  ‚  1𝑚×1 ]  

The (𝑝+1) 𝗑 1 vector of residue coefficients 𝑏 = [ 𝑏1 ‚   ‚ 𝑏𝑝+1 ]𝑇 can now be solved for.  

Consider the continuous-time approximating signal 𝑦̂   Φ( ‚ 𝜔) 𝑏.  To minimize the least-

squares error in ‖𝑦  𝑦̂‖ 
 , a pseudo-inverse operation is performed in (2.19). 

 𝑏 = Φ( ‚ 𝜔)† 𝑦 (2.19) 

Mode shape amplitudes 𝐴𝑖 and phases  𝑖 can be extracted from 𝑏, specifically by using the 

relationship in (2.3), and the approximating function 𝑦̂ is completed. 



23 

2.6 Method Comparison and Example 

In this section, an example is used for comparison of the traditional modal analysis meth-

ods discussed in this chapter.  Power System Analysis Toolbox is used for simulating a fault in 

the IEEE 14-bus system [53].  A detailed Simulink model of the 14-bus that is used for the dy-

namic simulation is shown in Figure 2.4.  The model has 56 state-variables with six state varia-

bles for each of the five synchronous machines, four state variables for each of the five exciters, 

and three state variables for each of the two turbine governors.   

 

Figure 2.4:  IEEE 14-bus Simulink Model 

A fault is applied at bus 7 at 1 second and cleared at 1.083 seconds.  The dynamic simula-

tion for all 56 state variables is recorded as data to be analyzed using multi-signal Prony analysis 

and ERA with 9 modes specified along with a dc-offset.  The time window for the analysis is 

from 1.8 to 9 seconds with uniformly spaced data by step-size  𝑡       seconds.  Each signal is 

weighted by one over its standard deviation to unbias signals of different units and varied magni-
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tudes, which is discussed in more detail in Section 3.2-B.  Additionally, the weighting helps to 

visualize signals of comparable magnitudes on the same axes for plotting purposes.  In the fol-

lowing figures, the state variables are plotted with the dc-offset of each signal subtracted out, 

which allows for better viewing of the oscillatory components in the data.  The summed error 

from Prony analysis and ERA to the actual data is also plotted; which is calculated as the sum-

mation of errors for similar state variables against time.  As seen in the figures, multi-signal ERA 

provided an obvious closer fit to the actual data compared to Prony analysis.  The Matrix Pencil 

method solutions are not plotted because their solution is nearly exact to that from ERA.   

The modes estimated by each method are shown in Table 2.1.  The system has 56 actual 

eigenvalues, and some of the closer matching eigenvalues to the estimated modes are shown in 

the table.  Judging from the following figures and by Table 2.1, it is clear that Prony analysis re-

sulted in poorly estimated modes.  Generally, Prony analysis requires a large number of modes to 

be specified in order to achieve a good fit to the data.  Results from Prony analysis are also high-

ly sensitive to the time step-size  𝑡. 

ERA Matrix Pencil Actual  Prony 

 0.690 ±  0.840  0.687 ±  0.840  0.614 ±  0.690   51.7 ±  69.19 

 1.036 ±  1.346  1.035 ±  1.347  1.074 ±  1.388   36.9 ±  141.93 

 1.865 ±  7.796  1.865 ±  7.797  2.221 ±  8.293   0.888 ±  8.631 

   844 ±  9.201  0.844 ±  9.201  0.921 ±  9.244   28.2 ±  222.79 

 0.698    693  0.857   

      00   0.973 

Table 2.1:  Comparison of estimated modes and actual system eigenvalues 

The computation time for the three methods is shown in Table 2.2, with the evaluations 

performed in MATLAB R2011a on a computer with 64-bit Intel i5-560M Dual Core CPU at 

2.67 GHz with 4 GB of RAM.  Prony analysis is the fastest computation of the methods dis-

cussed in this chapter.  The computation speed comes as a tradeoff against solution accuracy 

compared to matrix pencil and ERA. 
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 ERA Matrix Pencil Prony 

Time [sec] 6.324 4.646 0.0782 

Table 2.2:  Method evaluation times for example 

 

Figure 2.5:  Simulated and estimated state variables 𝛿, 𝜔 and 𝑒′𝑞 

 

Figure 2.6:  Estimation error for state variables 𝛿, 𝜔 and 𝑒′𝑞 
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Figure 2.7:  Simulated and estimated state variables 𝑒′′𝑞, 𝑒′𝑑 and 𝑒′′𝑑 

 

Figure 2.8:  Estimation error for state variables 𝑒′′𝑞, 𝑒′𝑑 and 𝑒′′𝑑 
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Figure 2.9:  Simulated and estimated state variables 𝑣𝑚, 𝑣𝑟1 and 𝑣𝑟2 

 

Figure 2.10:  Estimation error for state variables 𝑣𝑚, 𝑣𝑟1 and 𝑣𝑟2 
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Figure 2.11:  Simulated and estimated state variable 𝑣𝑓 and turbine governor state variables 

 

Figure 2.12:  Estimation error for state variable 𝑣𝑓 and turbine governor state variables 
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𝑦̂ (𝑡)  ∑𝐴    𝑒
       (𝜔 𝑡      )

 

   

     𝑓𝑜𝑟             (2.20) 

The mode energy is the integral of each modes contribution to the  th
 signal squared, 

𝑦̂ (𝑡)
 , from the start time 𝑡[0] = 0 to stop time 𝑡[𝑚 1] in the data, summed across all  𝑠𝑖  sig-

nals.  Therefore the mode energy of the 𝑖th
 complex conjugate mode is that shown in (2.21a) and 

the mode energy of the 𝑖th
 real valued mode is that shown in (2.21b). 

𝑖    𝑜𝑚𝑝𝑙𝑒𝑥 𝑚𝑜𝑑𝑒 𝑒 𝑒𝑟 𝑦    ∑ ∫ [𝐴    𝑒
       (𝜔 𝑡      )]

 
 𝑑𝑡

 [   ]

 

    

   

 (2.21a) 

   ∑  

    

   

 
 

 

    
 

  
      

  





 

 

 

 

 
𝑒    [   ] [

𝜔 
    

     (𝜔 𝑡[𝑚   ]      )  

2  𝜔    (𝜔 𝑡[𝑚   ]      )    (𝜔 𝑡[𝑚   ]      )
] 

 2  
          2  𝜔                𝜔 

  



 

 

 

 

 

𝑖   𝑟𝑒 𝑙 𝑚𝑜𝑑𝑒 𝑒 𝑒𝑟 𝑦   ∑ ∫ [𝐴    𝑒
    ]

 
 𝑑𝑡

 [   ]

 

    

   

    ∑
 

2

𝐴   

  
(𝑒    [   ]   )

    

   

  (2.21b) 

The metric of mode energy can be used for ranking the dominance of estimated modes, 

with high energy implying dominance.  It is suggested the mode energies are calculated for the 

signals weighted by one over their standard deviations.  This is logical because many of the sig-

nals are of different units.  Calculating mode energies for unweighted signals would tend to favor 

the modes most prevalent in signals with large numerical units.  The energies of the modes esti-

mated by ERA, from the example in Section 2.6, can be calculated using (2.21a) and (2.21b).  

They are ranked in Table 2.3. 

Frequency [𝐻𝑧] 
Damping [1/𝑠] &  

Frequency [𝑟 𝑑/𝑠] 
Mode Energy 

0.134  0.690 ±  0.840 338.33 

0.214  1.036 ±  1.346 278.60 

   0.698 244.41 

1.464  0.844 ±  9.201 133.54 

1.241  1.865 ±  7.796 60.89 

Table 2.3:  Energy of modes estimated by ERA 
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From Table 2.3, it can be seen that the two low frequency modes and the single real valued 

mode have the highest energies.  These modes create the slow shaping of the waveforms in Fig-

ures 2.5-2.12.  These slower modes provide more of a trending fit to the data, and often don’t 

complete a single cycle before damping out.  In general, the fast oscillating modes are of more 

interest to power system grid operators.  From that perspective, the high frequency mode at 1.464 

𝐻𝑧 is seen oscillating most predominantly in the figures; therefore this mode would be of most 

concern.   

2.8 Conclusion 

In testing the three linear methods, it was observed that ERA and matrix pencil performed 

most reliably, with ERA typically achieving the minimum least-square error most of the time.  

Prony analysis especially was shown to have shortcomings when analyzing highly nonlinear da-

ta.  Comparatively, the Matrix Pencil method and Eigensystem Realization Algorithm provide a 

much better fit to the data, but at the expense of longer computational speeds.  Prony analysis 

requires a large number of modes to be specified to obtain a proper fit to the data.  To its benefit, 

Prony analysis is a relatively instantaneous computation and may therefore be better suited for 

real-time applications where computation speed is important. 

It is observed that the measurement-based modal analysis methods discussed in this chap-

ter do not directly minimize the least-square error to the data.  It is reasonable to argue that least-

square error is a valid metric for assessing the accuracy of the modal analysis methods.  Assum-

ing that least-squares error to data positively correlates to accurate mode estimations, then anoth-

er approach exists that is superior for estimating modal content.  A nonlinear least-squares ap-

proach, called the variable projection method, can be used for obtaining an optimal fit to the da-

ta.  The nonlinear least-squares approach is presented next in Chapter 3.   
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Chapter 3 

Nonlinear Least-Squares 

This chapter details a nonlinear least-squares approach to modal analysis problems.  It can 

be shown that the two-step modal analysis procedures in Chapter 2 are not optimal in the least-

squares sense, and the methods have shortcomings when approximating highly-nonlinear dynam-

ic disturbance data.  In contrast, the nonlinear least-squares approach directly matches a model to 

data without directly imposing an underlying linear system assumption and optimally captures 

the dynamics present in the data.   

The nonlinear least-squares variable projection method was originated in 1973 by Golub 

and Pereyra [27,28].  They observed that in many nonlinear least-squares problems there are op-

timization variables that appear nonlinearly and optimization variables that appear linearly.  It 

was observed that the linear variables have a dependent relationship corresponding to the optimal 

solution for the nonlinear variables.  Golub and Pereyra identified the separability between the 

two variable types and called these problems separable least-squares problems.  They obtained 

the variable projection functional by eliminating the linear variables from the optimization prob-

lem.  In addition, they outlined the gradient equation of the variable projection functional; allow-

ing for the use of gradient based line-search and trust region optimization methods. 

In 1977, Bolstad released a FORTRAN implementation of the variable projection method 

with the varpro.f code.  Since then, the code and method have been improved, with a thorough 

examination of contributions presented in [54] and [56].  A third-party MATLAB implementa-

tion is available in the varpro.m code [55], which has found its use among a wide area of disci-

plines.   

This chapter motivates the use of the variable projection method for use in power system 

problems that have traditionally relied on Prony analysis or other methods for estimating modal 

content of data.  An example disturbance event is analyzed with results suggesting the nonlinear 

least-squares approach is superior.   
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3.1 Variable Projection Method 

There is existing literature detailing the variable projection method and least-squares 

methods [27–30].  An overview of the method is given in this section.  Consider a data wave-

form denoted as 𝑦 having 𝑚 data points over the time interval 𝑡, with starting time at 0 sec-

onds.  Referring to the methods in Chapter 2, observe that the solution for residue coefficients, 

𝑏 = Φ( ‚ 𝜔)† 𝑦, is entirely dependent on the discrete-time poles 𝑧𝑖 and damping   and frequency 

𝜔.  Therefore the residual error ‖𝑦  𝑦̂‖ 
  is not optimally minimized in the two-step process, as 

it is biased by the previous solution for damping and frequencies.  The optimal solution can be 

obtained by simultaneously solving for  , 𝜔 and 𝑏 with a nonlinear optimization method.  In re-

lation to the variable projection method, the damping and frequencies,   and 𝜔, are the inde-

pendent nonlinear parameters and the coefficients 𝑏 are the dependent linear parameters.  These 

variables types are separable, which will be shown next. 

To begin the method, define the set of parameters 𝛼 = [ 𝛼1 ‚   ‚ 𝛼𝑝 ].  Define the set of   

basis function vectors  1(𝛼) ,   ,   (𝛼), which are nonlinear functions of 𝛼 evaluated at all 𝑚 

points in time.  An approximating function 𝑦̂(𝛼) can be constructed that is composed of a sum-

mation of the   basis functions  𝑖(𝛼). 

 𝑦̂(𝛼) = ∑
𝑖=1

 

𝑏𝑖  𝑖(𝛼) (3.1) 

In (3.1), 𝛼1 ‚   ‚ 𝛼𝑝 denote the nonlinear optimization variables and 𝑏𝑖 denotes the linear 

optimization variables which are to be eliminated from the problem.  For modal analysis prob-

lems, complex-valued modes are enforced with basis functions as pairs of damped cosines and 

sines,  𝑖(𝛼) = 𝑒𝛼𝑖 𝑡 cos(𝛼𝑖+1 𝑡) and  𝑖+1(𝛼) = 𝑒𝛼𝑖 𝑡 sin(𝛼𝑖+1 𝑡).  Real-valued modes are enforced 

with exponentials  𝑖(𝛼) = 𝑒𝛼𝑖 𝑡.  With the basis functions  1(𝛼),   ,   (𝛼) defined, construct the 

𝑚 𝗑   matrix Φ(𝛼) = [  1(𝛼) ‚   ‚   (𝛼) ], such that 𝑦̂(𝛼) = Φ(𝛼) 𝑏.   
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The residual vector 𝑟(𝛼, 𝑏) = 𝑦   𝑦̂(𝛼), for a given 𝛼, can be expressed as a linear least-

squares optimization problem solving for 𝑏, as in (3.2). 

 min
𝑏|𝛼

  1
2
 ‖ ‖ 𝑟(𝛼, 𝑏) 

2
2   =   min

𝑏|𝛼
  1

2
 ‖ ‖ 𝑦   Φ(𝛼) 𝑏 2

2  (3.2) 

For a given 𝛼, the least-squares error in the residual vector is minimized by 𝑏 = Φ(𝛼)† 𝑦, 

where † denotes the pseudoinverse.  Substituting 𝑏 = Φ(𝛼)† 𝑦 recasts the linear least-squares 

problem in (3.2) as a nonlinear least-squares optimization problem, solving for parameters 𝛼, as 

in (3.3). 

 min
𝛼

  1
2
 ‖ ‖ 𝑟(𝛼) 

2
2   =   min

𝛼
  1

2
 ‖ ‖( 𝐼   Φ(𝛼)Φ(𝛼)† ) 𝑦 

2

2
 (3.3) 

In (3.3), 1
2
 ‖ ‖ 𝑟(𝛼) 

2

2
 was termed  the variable projection functional by Golub and Pereyra 

[27,28].  For modal analysis problems, the solution to (3.3) gives the optimal fit to the data-set 𝑦 

for a predetermined number of modes 𝑝.  The method is not limited to uniformly spaced time-

samples, as analysis is done completely in the continuous-time domain.  The variable projection 

functional’s gradient equation can also be determined as shown in (3.4), where the 𝑖th
 element 

equals 𝜕
𝜕𝛼𝑖

( 
1

2
‖ ‖𝑟(𝛼)

2
2 ) for 𝑖     ‚   ‚ 𝑝. 

 ∇ 1
2
 ‖ ‖ 𝑟(𝛼) 

2

2
   =   𝐽𝑇 𝑟(𝛼) (3.4) 

The gradient can thus be determined once the 𝑚 𝗑 𝑝 Jacobian matrix 𝐽 is calculated, where 

𝐽  [ 
  (𝛼)

   
     

  (𝛼)

   
 ] and its  th

 column 𝐽•‚  = 𝜕𝑟(𝛼)

𝜕𝛼 
.   

 𝜕𝑟(𝛼)

𝜕𝛼 
     







 𝜕Φ

(𝛼)

𝜕𝛼 
 Φ(𝛼)†  +  Φ(𝛼) 

𝜕Φ(𝛼)†

𝜕𝛼 
   𝑦 (3.5) 

Golub and Pereyra showed 𝜕𝑟(𝛼)

𝜕𝛼 

 can be rewritten as in (3.6) [27,28], where 𝑃⊥ = 𝐼 − Φ(𝛼) Φ(𝛼)†. 
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 𝜕𝑟(𝛼)

𝜕𝛼 
     







 







𝑃⊥ 

𝜕Φ(𝛼)

𝜕𝛼 
 Φ(𝛼)†   +  







 𝑃⊥ 

𝜕Φ(𝛼)

𝜕𝛼 
 Φ(𝛼)†  

𝑇
   𝑦 (3.6) 

For ease of notation the parameter 𝛼 will be dropped from Φ(𝛼).  The full Moore-Penrose 

pseudoinverse Φ† is not necessary for the calculation; instead the symmetric generalized inverse 

Φ  satisfying Φ Φ 
 Φ = Φ and 𝑃 = ( Φ Φ 

 )𝑇 = Φ Φ  suffices.  Denote the projector on the 

orthogonal complement of the column space as 𝑃⊥ = 𝐼   𝑃.  The conversion between (3.5) and 

(3.6) is proven using the following three observations [27,28]. 

 1) 𝑃 Φ = Φ   by   Φ Φ 
 Φ = Φ  

 𝜕𝑃Φ
𝜕𝛼 

  =  𝜕𝑃
𝜕𝛼 

 Φ + 𝑃 
𝜕Φ
𝜕𝛼 

  =  𝜕Φ
𝜕𝛼 

  

 ⟹   𝜕𝑃
𝜕𝛼 

 Φ  =  𝜕Φ
𝜕𝛼 

   𝑃 
𝜕Φ
𝜕𝛼 

  =  (𝐼   𝑃) 
𝜕Φ
𝜕𝛼 

  =  𝑃⊥
 
𝜕Φ
𝜕𝛼 

  

 ∴    𝜕𝑃
𝜕𝛼 

 𝑃  =  𝜕𝑃
𝜕𝛼 

 Φ Φ   =  𝑃⊥
 
𝜕Φ
𝜕𝛼 

 Φ   

 2) 






𝜕𝑃

𝜕𝛼 
 𝑃

𝑇
  =  𝑃𝑇 𝜕𝑃𝑇

𝜕𝛼 
  =  𝑃 

𝜕𝑃
𝜕𝛼 

   

 by   𝑃 = (Φ Φ )𝑇 = Φ Φ   

 3) 𝑃 = 𝑃 
2  

 Φ Φ  = (Φ Φ )(Φ Φ )  

 by   Φ Φ 
 Φ = Φ  

 Therefore, 𝜕𝑃
𝜕𝛼 

  =  𝜕𝑃2

𝜕𝛼 
  =  𝜕𝑃

𝜕𝛼 
 𝑃 + 𝑃 

𝜕𝑃
𝜕𝛼 

  

=  𝜕𝑃
𝜕𝛼 

 𝑃 + 






𝜕𝑃

𝜕𝛼 
 𝑃

𝑇
 

=  






𝑃⊥

 
𝜕Φ
𝜕𝛼 

 Φ  + 






𝑃⊥

 
𝜕Φ
𝜕𝛼 

 Φ 𝑇
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 𝐽•‚   =  𝜕𝑟(𝛼)

𝜕𝛼 
  =  𝜕

𝜕𝛼 
( 𝐼   𝑃 )𝑦       𝜕𝑃

𝜕𝛼 
 𝑦   

     














𝑃⊥

 
𝜕Φ
𝜕𝛼 

 Φ  + 






𝑃⊥

 
𝜕Φ
𝜕𝛼 

 Φ 𝑇
  𝑦 

With the Jacobian matrix 𝐽 calculated the gradient of the variable projection functional can 

be determined by (3.4) [27,28].  By having a closed-form expression for the gradient 

∇ 1
2
 ‖ ‖ 𝑟(𝛼) 

2

2
, a line-search or trust region method can be employed to determine the optimal 𝛼 

values in the solution to (3.3).  A singular value decomposition (SVD) is required to compute the 

pseudoinverse Φ†.  True computational savings are achieved because Φ† shows up in both the 

cost function (3.3) and the gradient equation (3.5).  Therefore, after the SVD computation, Φ† 

can be stored and reused for calculating both the cost and gradient. 

A well-known singular value decomposition trick can be used to ensure faster solve-time 

during the optimization.  An economy size SVD can be used to determine the pseudoinverse 

Φ(𝛼)†, where Φ(𝛼) is an 𝑚 𝗑   matrix.  Typically 𝑚 >  , with 𝑚 being the number of time sam-

ples and   being the number of basis functions.  The left singular vectors comprise the 𝑚 𝗑   ma-

trix 𝑈.  With an economy size SVD only the first   columns of the orthogonal right singular vec-

tor matrix 𝑉 are calculated, where 𝛴 is an   𝗑   matrix. 

 Φ(𝛼) = 𝑈 𝛴 𝑉𝑇  

 Φ(𝛼)† = 𝑉 𝛴  1 𝑈𝑇  

 Φ(𝛼) Φ(𝛼)† = 𝑈 𝑈𝑇  

Therefore 𝑃⊥  =  𝐼   Φ(𝛼) Φ(𝛼)†  =  𝐼   𝑈 𝑈𝑇 can be used for faster calculation speed in (3.6). 

3.2 Additional Features 

The variable projection method is robust, though the quality of solution depends on several 

conditions supplied by the user.  The method also give the user valuable degrees of flexibility, as 
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will be described in the following subsections.  Specific details on solver and computation details 

are provided in Chapter 5. 

A. Initial Conditions and Model Order Selection 

Many nonlinear optimization solvers require initial conditions to be specified in order to 

begin a line-search or trust region method [57].  Properly selected initial conditions are critical 

for fast solve-times and for improved likelihood of finding a global minimizer rather than a local 

minimizer.  Potential initial conditions can be obtained by multi-signal Prony analysis, matrix 

pencil or ERA as outlined in Chapter 2.   

The variable projection method allows for some flexibility that is not offered by traditional 

modal analysis methods.  The user not only determines the number of modes to be estimated, but 

he or she may also determine the exact number of complex-conjugate and real-valued modes es-

timated.  The set of basis functions in Φ(𝛼) is altered depending on the number of complex and 

real valued modes, which can be seen in (2.18) from Section 2.5.  With traditional modal analy-

sis methods, the user is stuck with however many number of complex and real-valued modes that 

the method predicts.  In many cases, a better approximation to the data can be obtained by ad-

justing the number of complex and real-valued modes. 

B. Multi-Signal Analysis 

Often times it is necessary to analyze multiple signals simultaneously [24].  For multi-

signal analysis the objective function in (3.3) is modified.  The summed least-squares error over 

the number of signals becomes the objective function as shown in (3.7).  To avoid biasing signals 

of varying magnitude, each signal is multiplied by a scaling multiplier 𝛽𝑖.  One possible multipli-

er is 𝛽𝑖 = 1/ 𝑖, where  𝑖 is the standard deviation of each signal.  By weighting each signal by 

one over its standard deviation, each of the weighted signals will have standard deviation equal 

to 1.  Alternatively, the signals could be grouped in classes according to their units, where each 

signal in a class is scaled equivalently.  This approach would ensure signals of different units are 
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comparable in numerical magnitude, while preserving numerical deviations of signals in the 

same classes comparatively.  Selecting appropriate scaling multipliers 𝛽𝑖 is an important issue, as 

changes to the cost function in (3.7) have significant impacts on optimization results. 

 min
𝛼

  1
2∑

𝑖=1

 𝑠𝑖 

‖ ‖ 𝛽𝑖 ( 𝐼   Φ(𝛼)Φ(𝛼)† ) 𝑦𝑖 
2

2
 (3.7) 

If desired, the scaling multiplier could be a function of time, 𝛽𝑖(𝑡), if there are temporal re-

gions of the signal of more concern then others.  The multiple signals belong to the same system, 

so it is assumed they share the same natural modes in 𝛼.  Consequently, no additional optimiza-

tion variables are introduced for multi-signal analysis. 

C. Data-Detrending 

In power system problems there is often a need to detrend the data [58].  For example, 

there is an obvious need for first-order detrending when considering instantaneous bus angle data 

like that seen in Figure 3.1, as opposed to comparative angles to a reference bus.  Figure 3.1 is 

actual bus angle data from a real disturbance event. 

 

Figure 3.1:  Bus angle disturbance data 
(a) without trending removed (b) with trending removed 
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In Figure 3.1, a disturbance occurs around 10 seconds.  Before the disturbance, the grid 

frequency remains steady, and the bus angles remain constant relative to 60 Hz synchronous 

speed.  After the disturbance, the grid frequency decreases, and the bus angles monotonically 

decrease relative to 60 Hz synchronous speed.  At first glance, Figure 3.1 (a) appears to show no 

oscillatory components; however, the oscillations are far more evident after subtracting out a lin-

ear curve and trending from real-valued modes, shown in Figure 3.1 (b). 

Fortunately, the variable projection method allows for the inclusion of any possible basis 

function, including polynomial basis functions for data-detrending.  Example polynomial trend-

ing basis functions could be linear  𝑖(𝛼) = 𝑡, quadratic  𝑖(𝛼) = 𝑡2, or a constant dc-offset 

 𝑖(𝛼) = 1.  The linear coefficients 𝑏𝑖 that multiply the trending basis functions are dynamically 

optimized as the nonlinear program iterates toward a local or global minimizer. 

D. Constrained Optimization 

The variable projection method as presented thus far, is an unconstrained nonlinear optimi-

zation problem.  The optimization will never be unbounded due to the least-squares objective 

function, and it will always be feasible due to the absence of constraints.  If desired however, 

constraints can be imposed on the optimization problem.  The most basic constraints would be 

lower and upper bounds imposed on the damping   and frequency 𝜔 variables, which are in units 

of 1/𝑠 and 𝑟 𝑑/𝑠 respectively.  However, power system communities interested in oscillation 

analysis studies, prefer to express frequency (𝑓) in Hertz and damping as the unit-less percent 

damping ratio.   

 𝑓  𝜔
2 ⁄  [𝐻𝑧] (3.8a) 

  𝑑 𝑚𝑝𝑖        
 

√   𝜔 
 (3.8b) 

Therefore, if lower and upper bounds are placed on frequency and percent damping, then 

an additional step is needed to convert these constraints to 1/𝑠 and 𝑟 𝑑/𝑠.  Bounds on frequency 

𝑓 [𝐻𝑧] are easily converted to bounds on 𝜔 [𝑟 𝑑/𝑠] via (3.8a).  However, converting bounds on 
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percent damping to constraints on   and 𝜔 is more complicated.  Consider placing lower and up-

per bounds,  𝑑   and  𝑑   on percent damping as shown below. 

 𝑑        
 

√   𝜔 
  𝑑   

If the frequency is greater than or equals to zero, then the bounds on percent damping can 

equivalently be expressed as the following linear inequality constraints. 

  
 𝑑  

√     ( 𝑑  ) 
𝜔    

   
 𝑑  

√     ( 𝑑  ) 
𝜔    

The practical implementation of the constrained optimization is discussed in more detail in 

Section 5.1. 

3.3 Example 

In this section, the nonlinear least-squares variable projection method is compared against 

results from ERA in a modal analysis example.  A 16-machine 68-bus test system is used which 

is shown in Figure 3.2 [59], which is a simplified New England/ New York interconnected sys-

tem [60].  The system has 235 state variables.  The 16 synchronous machines are represented by 

sixth-order dynamical models, and a first-order exciter model for each machine.  There are 29 

induction motor loads represented by third-order dynamical models.  Lastly, there are 12 power 

system stabilizers represented by third-order dynamical models.  The dynamic response of all 

235 state variables is simulated using Power System Toolbox [61].   

At time 𝑡=0.1 seconds, a three-phase fault is applied at bus-1, with bus-30 at the far end of 

the line.  The fault is cleared at bus-2 at 𝑡=0.15 seconds, and is cleared at bus-38 at 𝑡=0.16 sec-

onds.  The simulated response of all 235 state variables is collected and is shown in Figure 3.3.  

In Figure 3.3, the top subplot is the unaltered state variable data from the disturbance simulation.  

The middle subplot is the data with dc-offsets subtracted for each signal.  The time-frame used in 
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the analysis is from 𝑡=0.8 to 𝑡=8 seconds shown in the bottom subplot, with a time-step 

𝛥𝑡=0.01 seconds.  The bottom subplot shows the data with dc-offsets subtracted and also 

weighted by the inverse of their standard deviations 𝛽𝑖.  The preconditioned data in the bottom 

subplot is input to ERA for analysis.  

 

Figure 3.2:  New England/ New York 16-machine 68-bus test system 

 

Figure 3.3:  16-machine 68-bus test system disturbance 

(a) Unaltered disturbance data 

(b) Data with dc-offsets subtracted 

(c) Data weighted by inverse standard deviation and with dc-offsets subtracted 
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The weighted signals are input to multi-signal ERA with the number of modes specified as 

𝑝=11, where one of the modes will approximate a zero eigenvalue used as a dc-offset.  The solu-

tion from ERA is then used as initial conditions for multi-signal variable projection.  The total 

least-squares error obtained by ERA was 6246.02, and the error obtained by variable projection 

was 1886.11.  Table 3.4 breaks down the contributing errors by state variable type, where each 

signal is weighted by its inverse standard deviation 𝛽𝑖, and where 𝑟𝑖(𝛼) is the residual error for 

the 𝑖th
 signal. 

 Signals Var. Proj. ERA 

Synchronous Generator 
(16) 

𝛿 60.49 563.97 

𝜔 285.37 407.07 

𝐸𝑑' 172.17 359.11 

𝐸𝑞' 184.63 338.89 

𝜓𝑘   192.03 369.76 

𝜓𝑘𝑞 207.51 293.60 

Exciter (16) 𝐸𝑓𝑑 393.53 419.78 

Induction Motor 
(29) 

𝑉𝑑' 105.67 740.68 

𝑉𝑞' 20.69 1257.91 

𝑠𝑙𝑖𝑝 123.36 804.06 

Power System Stabilizer 
(12) 

𝑝𝑠𝑠1 8.55 183.24 

𝑝𝑠𝑠2 67.86 257.98 

𝑝𝑠𝑠3 64.26 249.97 

∑
𝑖=1

235

 
1

2
 ‖ ‖ 𝛽𝑖 𝑟𝑖(𝛼) 2

2
 1886.11 6246.02 

Table 3.4:  Weighted error per signal type 

In Table 3.4, the error per signal type was calculated by summing each signals’ contribu-

tions to total error ∑     
   

1

2
 ‖ ‖ 𝛽𝑖 𝑟𝑖(𝛼) 2

2
, for signals of the same state variable type.  For example, 

variable projection gave lesser least-squares error compared to ERA for the synchronous ma-

chine angles 𝛿.  There are 16 of the angles 𝛿.  Each angle is weighted by 𝛽𝑖 and the summation of 



42 

the 16 signal contributions to ∑     
   

1

2
 ‖ ‖ 𝛽𝑖 𝑟𝑖(𝛼) 2

2
 equals 60.49 for variable projection and 

563.97 for ERA.  With this analysis, variable projection provided a lower least-squares error 

compared to ERA for all state variable types. 

The following figures display the weighted estimated solutions from variable projection 

and ERA compared to the actual data.  For ease of display, each signal has its dc-offset subtract-

ed to view oscillatory content better.  The differences between the estimated solutions and actual 

data are subtle, therefore plots of the (absolute value) error between actual and estimated signals 

versus time are also shown to emphasize the differences.  

 

Figure 3.4:  Simulated and estimated state variables 𝛿 

 

Figure 3.5:  Estimation error for state variables 𝛿 
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Figure 3.6:  Simulated and estimated state variables 𝜔, 𝐸′𝑑 and 𝐸′𝑞 

 

Figure 3.7:  Estimation error for state variables 𝜔, 𝐸′𝑑 and 𝐸′𝑞 

-5

0

5



ERA Actual Var. Proj.

-5

0

5

E
d

'

2 4 6 8

-4

-2

0

2

4

6

8

t [sec]

E
q

'

2 4 6 8

t [sec]
2 4 6 8

t [sec]

2 4 6 8
0

5

10

15

t [sec]

E
rr

o
r



 

 

2 4 6 8
0

5

10

15

t [sec]

E
d

'

 

 

2 4 6 8
0

5

10

15

t [sec]

E
q

'

 

 

ERA

Var. Proj.

Overlap

ERA

Var. Proj.

Overlap

ERA

Var. Proj.

Overlap



44 

 

Figure 3.8:  Simulated and estimated state variables 𝛹𝑘𝑑, 𝛹𝑘𝑞  and 𝐸𝑓𝑑 

 

Figure 3.9:  Estimation error for state variables 𝛹𝑘𝑑, 𝛹𝑘𝑞  and 𝐸𝑓𝑑 
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Figure 3.10:  Simulated and estimated state variables 𝑉′𝑑, 𝑉′𝑞 and 𝑠𝑙𝑖𝑝 

 

Figure 3.11:  Estimation error for state variables 𝑉′𝑑, 𝑉′𝑞 and 𝑠𝑙𝑖𝑝 
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Figure 3.12:  Simulated and estimated state variables 𝑝𝑠𝑠1, 𝑝𝑠𝑠2 and 𝑝𝑠𝑠3 

 

Figure 3.13:  Estimation error for state variables 𝑝𝑠𝑠1, 𝑝𝑠𝑠2 and 𝑝𝑠𝑠3 
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From the figures, it can be seen that ERA provided a good fit to the data for 11 modes.  

However, it can clearly be seen that variable projection improved on the solution from ERA by 

providing an even lower least-squares error to the data.   

The modes estimated by variable projection and ERA are shown in Table 3.5.  The state 

space model of the system is known, and therefore the actual eigenvalues of the system can be 

compared against the modes predicted by the modal analysis methods.  Some of the 235 eigen-

values that roughly match the modes predicted by variable projection and ERA are additionally 

shown in Table 3.5.  As a cautionary point, all of the estimated modal damping and frequencies 

should not be expected to exactly match all of the system’s actual eigenvalues.  In the 16-

machine 68-bus system, not only does the system have 235 states, but the dynamic response of 

the system is nonlinear.  The modal analysis methods approximate this high-order nonlinear re-

sponse using a subset of just 11 modes (with one mode being a zero eigenvalue).   

Var. Proj. Actual ERA 
   

24.71%  @  1.564 28.78%  @  1.608  
   

 24.12%  @  1.394 16.57%  @  1.440 
   

16.78%  @  1.165 14.77%  @  1.190  
   

 14.50%  @  1.106 14.42%  @  1.106 
   

 8.599%  @  0.793 11.43%  @  0.699 
   

16.85%  @  0.569 11.95%  @  0.570  
   

16.68%  @  0.355 14.47%  @  0.354 14.15%  @  0.407 
   

  43.63%  @  0.174 
   

99.99%  @  1.25×10 10 99.99%  @  5.83×10 7  

Table 3.5:  Estimated % damping and frequency [𝐻𝑧] vs. Actual Eigenvalues 

As detailed in in Section 2.7, the estimated  modes can be ranked by their dominance by 

computing the mode energies from the weighted signals, shown in Table 3.6.  The mode at 
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99.99% @ 1.25×10 10 estimated by variable projection is a slow trending mode, and it essential-

ly provides a near dc-offset to the data (despite there being a zero eigenvalue mode as well).  

Naturally this mode has very large energy by the calculation from Section 2.7.  In Table 3.6, this 

mode is shown to have the largest energy, however it is not the primary interest for this analysis.  

Therefore the modes are ordered by their mode energy, excluding the slow trending mode which 

is listed last.  

Var. Proj. Mode Energy  ERA Mode Energy 

16.68%  @  0.355 619.83  14.15%  @  0.407 607.34 

16.78%  @  1.165 514.69  43.63%  @  0.174 383.52 

16.85%  @  0.569 255.74  14.42%  @  1.106 348.58 

24.71%  @  1.564 241.09  16.57%  @  1.440 237.96 

99.99%  @  1.25×10 10 5614.88  11.43%  @  0.699 123.00 

Table 3.6:  Energy of modes estimated by variable projection and ERA 

From Tables 3.5 and 3.6, it can be seen that variable projection located different modes 

than ERA.  Most of the modes estimated by ERA and variable projection resemble one of the 

system’s actual 235 eigenvalues, with perhaps the exception of the 43.63% @ 0.174 mode pre-

dicted by ERA and the 99.99% @ 1.25×10 10 predicted by variable projection.  According to the 

mode energies in Table 3.6, there is a slow dominant mode somewhere around 0.35–0.4 𝐻𝑧.  The 

next dominant mode is perhaps the fast oscillatory mode at 1.1 𝐻𝑧. 

Some specifications can be given on the details of the optimization, with the estimations 

from ERA used as initial conditions for variable projection.  Table 3.7 displays some of the eval-

uation times from the analysis, evaluated in MATLAB R2011a on a computer with 64-bit Intel 

i5-560M Dual Core CPU at 2.67 GHz with 4 GB of RAM.  In the table, it can be seen that the 

ERA computation was the most time consuming at 61.42 seconds.  The evaluation time for the 

Matrix Pencil Method was also determined, having a comparatively lower time of 40.53 seconds.  

Matrix Pencil provided a slightly worse error to the data at 6281.45 compared to ERA which 
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gave an error of 6246.02; however, the variable projection method converged to the same solu-

tion when using either of the estimations from matrix pencil or ERA as initial conditions.   

Operation Time [sec] 

ERA 61.42 

Matrix Pencil 40.53 
  

Variable Projection 12.36 

SVD 0.02 

Cost function evaluations 1.12 

Jacobian evaluations 1.45 

Table 3.7:  Evaluation times from example 

From the initial conditions, the optimization iterated 13 times before stopping due to con-

vergence.  As will be discussed in Section 5.1, a trust region method is used in the optimization.  

Therefore the cost function, the gradient and the SVD (needed for calculating the cost and gradi-

ent), are all computed just 14 times each in the optimization.  Table 3.7 shows that the variable 

projection method took 12.36 seconds to converge.  The table shows the cumulative computation 

time taken for the 14 evaluations of the SVD, cost function and Jacobian matrix.  These compu-

tations are not significantly time consuming.  The SVD in particular is a very fast computation 

because it is evaluating the Φ(𝛼) matrix with dimensions as the number of time points by the 

number of modes (721×11 in this example).  The remaining 9.77 seconds in the variable projec-

tion evaluation come from the nonlinear least squares solver used on the problem.  Specifically 

the lsqnonlin MATLAB function employed here, solves a 2D subspace trust region method at 

each iteration of the optimization [62].  A solve-time hierarchy analysis reveals preconditioning 

of the trust region method accounts for most of the 9.77 seconds.  In the preconditioning, a QR 

factorization and a column approximate minimum degree permutation are the bottleneck compu-

tations.  The matrix the preconditioning is applied to, has a very large number of rows because of 

the multi-signal analysis on 235 signals.  The matrix has row dimension as the number of time 

points multiplied by the number of signals and column dimension as the number of modes 
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([721×235]×11 in this example).  If computation time is important for implementing this method, 

then the optimization solver and its options could be changed for the likeliest improvements.  

This example has demonstrated how multi-signal variable projection reduces least-squares 

error when compared to ERA for an equivalent number of modes.  This result should always be 

expected as long as variable projection is initialized with good initial conditions.  If the modal 

damping and frequency results estimated by ERA (or any linear method) are input to variable 

projection as initial conditions, then variable projection will never do worse in terms of least-

squares error to the data.  If a linear modal analysis method predicts the perfect solution for some 

number of modes, then variable projection will show the gradient at that solution is zero, i.e. a 

local minimum was found.  If the gradient at that solution is nonzero, then the variable projection 

method will iterate towards a better solution.  The optimization is nonconvex; therefore its ability 

to find a global rather than local minimizer is dependent on initial conditions provided to the 

method.   

3.4 Conclusion 

This chapter has outlined a nonlinear least-squares optimization method, called the variable 

projection method, for estimating modal content of oscillatory data.  This chapter seeks to en-

courage the use of the variable projection method in power system problems where linear modal 

analysis methods have traditionally been used for modal identification.  

An example data-set was presented with a simulated disturbance in a 16-machine 68-bus 

test system.  Estimated damping and frequencies from ERA and the variable projection method 

were compared to the actual eigenvalues of the system, and the modes were ranked by their 

mode energies.  It was shown the variable projection method located modes that minimized error 

better than the modes estimated by ERA.  This result should be expected as long as the variable 

projection method is provided with quality initial conditions, such as a solution obtained from 

ERA or the Matrix Pencil method.  
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The variable projection method offers several advantages over other methods.  The method 

does not require data for analysis to be evenly spaced in time; and it appears to be relatively in-

sensitive to time-sampling rate.  The method allows for the inclusion of any possible basis func-

tion, such as polynomial basis function for data detrending.  Further investigation could examine 

including nonlinear basis functions having modulated amplitudes and frequencies.  The user of 

the method also has tight control on the type of solution obtained.  For example, the user must 

not only specify the number of modes, but furthermore must specify what number of the modes 

are complex and real.  Additional control can be achieved by constrained optimization if desired.  

This type of control allows for specific targeting of modal solutions by experienced users. 

An extension to the variable projection method will be discussed in the next chapter, which 

enforces high order interaction between the system’s natural modes.  As discussed in Section 2.1, 

linearization is the standard analysis method for approximating solutions to systems of nonlinear 

differential equations.  However the theory of normal form analysis can be used to better approx-

imate solutions.  Chapter 4 examines enforcing a normal form solution structure in modal analy-

sis optimization problems.  The theory of normal form analysis lends itself well to working with 

the variable projection method, and this approach could potentially estimate modes of nonlinear 

disturbance data more accurately. 

In Chapter 5, a modal analysis tool developed for industry use is presented, which uses the 

variable projection method outlined in this chapter.  Specific details are provided concerning the 

optimization algorithms used for solving the nonlinear least-squares problem and effective strat-

egies for performing modal analysis. 
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Chapter 4 

Normal Form Theory 

Power system models are inherently nonlinear.  The theory of normal form analysis can be 

used to help better understand nonlinear dynamic behavior evident in the models [15-21].  Nor-

mal form analysis can be used to map a model of nonlinear differential equations to a linear 

model through use of near-identity nonlinear coordinate transformations.  The solution structure 

to the nonlinear differential equations is a summation of fundamental damped or undamped si-

nusoids and their nonlinear combinations.  This chapter uses the theory of normal form analysis 

to motivate an extension to the variable projection method described in Chapter 3. 

In Section 4.1, the complete mathematical procedure of normal form analysis is reviewed.  

In Section 4.2, normal form analysis is demonstrated on a three-bus power system example.  In 

Section 4.3, the nonlinear variable projection method is extended using the theory of normal 

form analysis to further improve solution accuracy. An example demonstrating the normal form 

extension is presented in Section 4.4, and it is shown that the nonlinear program performs well as 

the least-squares error is minimized and the system’s eigenvalues are converged on.  Lastly in 

Section 4.5, a basic example is presented for analyzing system’s with repeated eigenvalues. 

4.1 Normal Form Analysis 

Normal form analysis was introduced by Henri Poincaré in the late 1800’s, as a tool to in-

tegrate nonlinear systems [19].  Poincaré showed with a systematic sequence of near-identity co-

ordinate changes, higher order terms could be eliminated.  In this section the mathematical pro-

cedure of normal form analysis is presented.   

For the normal form method, a nonlinear set of 𝑝 differential equations is given describing 

the dynamics of the system, as shown in (4.1). 

 𝑥̇  𝑓(𝑥) (4.1) 
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Equation (4.1) is preconditioned so that 𝑥    at the equilibrium point, i.e. 𝑥̇(𝑡   )    

and 𝑥(𝑡   )      If the final equilibrium point is nonzero, 𝑥( )  𝑥   , then the coordi-

nate system is shifted, 𝑥̃(𝑡)  𝑥(𝑡)  𝑥 , so that 𝑥̃( )  𝑥( )  𝑥   .  Normal form analysis 

exploits combinatorics of a system’  natural modes.  Notation is introduced here for taking a vec-

tor to an exponential power, for example 𝑦( ) where 𝑦 has 3 entries.   

𝑦( )  [

𝑦 

𝑦 

𝑦 

]

( )

 

[
 
 
 
 
 
 

𝑦 
 

𝑦 𝑦 

𝑦 𝑦 

𝑦 
 

𝑦 𝑦 

𝑦 
 ]

 
 
 
 
 
 

 

In the above example, taking 𝑦 to the 2
nd

 power, results in a vector having every second order 

combination of the elements in 𝑦.  The vector exponential notation is frequently reoccurring in 

the normal form analysis, outlined next. 

A. Taylor Expansion and Jordan Form Coordinates 

To begin the normal form analysis, the set of differential equations in (4.1) is represented 

by a Taylor expansion to a desired order 𝑁.   

𝑥̇(𝑡)  𝑥̇( ) ≈ [
𝜕𝑓

𝑑𝑥
]
   ( )

(𝑥(𝑡)  𝑥( )) 

     
 

2 
[
𝜕 𝑓

𝑑𝑥 
]
   ( )

(𝑥(𝑡)  𝑥( ))
( )

 

     

    
 

𝑁 
[
𝜕 𝑓

𝑑𝑥 
]
   ( )

(𝑥(𝑡)  𝑥( ))
( )

 

With 𝑥̇( )    and 𝑥( )   , the Taylor expansion reduces to the following. 
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𝑥̇(𝑡) ≈ [
𝜕𝑓

𝑑𝑥
]
   ( )

𝑥(𝑡)    
 

2 
[
𝜕 𝑓

𝑑𝑥 
]
   ( )

𝑥(𝑡)( )      
 

𝑁 
[
𝜕 𝑓

𝑑𝑥 
]
   ( )

𝑥(𝑡)( ) 

The notation of the Taylor expansion will be simplified to that in (4.2). 

 𝑥̇ ≈ 𝐴𝑥    𝑥
( )      𝑥( ) (4.2) 

The Taylor expansion is put into Jordan form by computing the eigenvalues         and 

right eigenvectors 𝑉 of the state matrix 𝐴.  By substituting 𝑥  𝑉𝑦 and multiplying (4.2) by 

𝑈  𝑉  , the coordinates 𝑥(𝑡) are converted to the Jordan form coordinate system 𝑦(𝑡). 

𝑦̇  𝑈𝐴𝑉𝑦  𝑈  (𝑉𝑦)( )    𝑈  (𝑉𝑦)( ) 

The above notation of the Jordan form expansion will be simplified to (4.3). 

 𝑦̇   𝐽𝑦    𝑦
( )      𝑦( ) (4.3) 

In (4.3), the eigenvalues of the state matrix 𝐴 are the diagonal entries of matrix 𝐽.   

𝐽  [

  

⋱
  

] 

B. Normal Form Coordinate Change 

The Jordan form coordinate system 𝑦(𝑡) is transformed to the normal form coordinate sys-

tem 𝑧(𝑡) via the relationship in (4.4). 

 𝑦  𝐻 𝑧  𝐻 𝑧
( )    𝐻 𝑧( ) (4.4) 

Relationship (4.4) will be used to obtain the end goal of a decoupled linear system 𝑧̇  𝐽𝑧.  

Take the time-derivative of (4.4) to obtain (4.5). 
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𝑦̇  (𝐻  𝐻 

𝜕𝑧( )

𝜕𝑧
     𝐻 

𝜕𝑧( )

𝜕𝑧
) 𝑧̇ (4.5) 

Substitute 𝑦̇ from (4.5) into (4.3) to obtain (4.6). 

𝐽𝑦    𝑦
( )        𝑦( )  (𝐻  𝐻 

𝜕𝑧( )

𝜕𝑧
     𝐻 

𝜕𝑧( )

𝜕𝑧
) 𝑧̇ (4.6) 

Substitute 𝑦 from (4.4) into (4.6) to obtain (4.7). 

𝐽 ( 𝐻 𝑧  𝐻 𝑧
( )    𝐻 𝑧( ) ) 

      ( 𝐻 𝑧  𝐻 𝑧
( )    𝐻 𝑧( ) )

( )
 

    

      ( 𝐻 𝑧  𝐻 𝑧
( )    𝐻 𝑧( ) )

( )
 

  ( 𝐻  𝐻 

𝜕𝑧( )

𝜕𝑧
     𝐻 

𝜕𝑧( )

𝜕𝑧
 ) 𝑧̇ 

 

(4.7) 

The relationship in (4.7), is fully in terms of normal form coordinates 𝑧(𝑡).  The 𝐻 matri-

ces can be determined to permit cancellation of terms or order 𝑧( ) through 𝑧( ).
1
  The right hand 

side matrix multiplying 𝑧̇ in (4.7) could be inverted and multiplied through in order to solve for 

𝑧̇, as shown below.   

𝑧̇  (𝐻  𝐻 

𝜕𝑧( )

𝜕𝑧
     𝐻 

𝜕𝑧( )

𝜕𝑧
)

  

(

 
 

𝐽(𝐻 𝑧  𝐻 𝑧
( )      𝐻 𝑧( ))

      (𝐻 𝑧  𝐻 𝑧
( )      𝐻 𝑧( ))

( )

                                                                       

      (𝐻 𝑧  𝐻 𝑧
( )      𝐻 𝑧( ))

( )
)

 
 

 

From there the 𝐻 matrices could be solved to permit proper cancellation and achieve the 

end goal of 𝑧̇  𝐽𝑧.  However, the inversion of the right hand side matrix is computationally ex-

pensive.  A more common approach is to substitute 𝑧̇  𝐽𝑧 into (4.7) as shown in (4.8). 

                                                 
1 For some nonlinear systems at certain operating points, the nonlinear terms cannot be eliminated.  In such cases normal forms 
are used to construct the simplest nonlinear system model for analysis.   
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𝐽 ( 𝐻 𝑧  𝐻 𝑧
( )    𝐻 𝑧( ) ) 

      ( 𝐻  𝐻 𝑧
( )    𝐻 𝑧( ) )

( )
 

    

      ( 𝐻 𝑧  𝐻 𝑧
( )    𝐻 𝑧( ) )

( )
 

  ( 𝐻  𝐻 

𝜕𝑧( )

𝜕𝑧
     𝐻 

𝜕𝑧( )

𝜕𝑧
 )  𝐽𝑧 

 

(4.8) 

Equating like terms of order 𝑧( ) through 𝑧( ) on the left and right hand side in (4.8), re-

veals the 𝐻 matrix solutions that allow proper cancellation.  For example, equating first order 

terms 𝑧( )  𝑧 in (4.8), reveals the solution for matrix 𝐻 . 

𝐽𝐻 𝑧  𝐻 𝐽𝑧 

 𝐻  𝐼 (               ) (4.9) 

Equating second order terms 𝑧( ) and substituting 𝐻  𝐼 in (4.8), reveals the element-by-

element solution for matrix 𝐻  in (4.10). 

(𝐽𝐻    )𝑧
( )  𝐻 

𝜕𝑧( )

𝜕𝑧
𝐽𝑧 

⟹   𝑧
( )  𝐻 

𝜕𝑧( )

𝜕𝑧
𝐽𝑧  𝐽𝐻 𝑧

( ) 

𝐻 (𝑖  [      ])    
  (𝑖  [      ])

          
 (4.10) 

The above notation of 𝐻 (𝑖  [      ]) refers to the element in the 𝑖th
 row of matrix 𝐻  and 

the column associated with the second order combination of    and   .  An indexing scheme is 

presented in Section 4.1-D which would determine the column index associated with the second 

order combination of    and   .  Resonance problems can occur if the denominator in (4.10) 

equals zeros.  Issues of resonance will be discussed in more detail in Section 4.3-B. 

Matching like terms of order 𝑧( ) through 𝑧( ) is more complicated.  The solutions for ma-

trices 𝐻  through 𝐻  cannot be written as formally as 𝐻  and 𝐻 , but they can be solved with a 

loop algorithm.  With the 𝐻 matrices determined, (4.7) reduces to (4.11). 
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 𝑧̇  𝐽𝑧   𝑧( )     𝑧( )   O (𝑁   ) (4.11) 

𝑧̇ ≈ 𝐽𝑧   

In (4.11), 𝑧̇ maintains a linear term 𝐽𝑧, while eliminating higher order terms up to order 𝑁.  

The higher order terms of O (𝑁   ) and above are assumed negligible and truncated.  Equation 

(4.11) is a decoupled linear differential equation, therefore 𝑧(𝑡) can be solved. 

 𝑧 (𝑡)  𝑧    𝑒
         𝑓𝑜𝑟 𝑖      𝑝 (4.12) 

In (4.12), 𝑧    is the 𝑖th
 initial condition for 𝑧(𝑡) at time 0 seconds.  To obtain the normal 

form initial condition 𝑧 , start with initial condition 𝑥 .  Next solve 𝑦  𝑈𝑥 .  Relationship 

(4.4) is used to convert between 𝑦  and 𝑧 .  A nonlinear program must be implemented to solve 

(4.4) for 𝑧 .  Finally, the normal form coordinates 𝑧(𝑡) are solved in (4.12).  With 𝑧(𝑡) solved, 

the Jordan form coordinates 𝑦(𝑡) are obtained using (4.4), and finally the original coordinates are 

solved using 𝑥(𝑡)  𝑉𝑦(𝑡). 

The solution obtained for 𝑥(𝑡) from normal form analysis contains terms for the 𝑝 natural 

modes,        , of the system, but it also contains higher order terms up to order 𝑁, exhibiting 

interaction between the natural modes.  The typical solution structure is shown in (4.13).   

𝑥(𝑡) ≈ ∑  𝑏   𝑒
   

 

 

    

  

 ∑ ∑ 𝑏      𝑒
(       

) 

 

     

 

    

  

     

 ∑ ∑   ∑ 𝑏          𝑒(                
) 

 

       

 

     

 

    

  

(4.13) 
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In (4.13), the 𝑏’s are complex coefficient vectors solved for in the normal form procedure.  

The subscripts 𝑖    𝑖  in 𝑏        distinguish the natural mode interactions the coefficient vector 

is associated with.  The solution 𝑥(𝑡) is a summation of damped or undamped sinusoids, and one 

can see exactly how the 𝑝 natural modes,        , combine and interact to give an approximate 

solution to (4.1).  Note that a first order normal form solution, 𝑁   , is equivalent to the solu-

tion obtained from eigenanalysis and linearization, discussed in Section 2.1. 

C. Normal Form Combinatorics 

It can be seen in (4.13) that there is higher order interaction between each of the 𝑝 natural 

modes,        , for order 𝑘  2   𝑁.  To clarify, for example if 𝑝    and 𝑘  2, there 

would be six unique second order combinations of   ,    and   . 

{2                  2           2  } 

In general, the number of unique order 𝑘 combinations for 𝑝 number of modes can be cal-

culated.  This is a unique combinations problem with repetition allowed, such as the number of 

unique ways to fill 𝑘 slots with 𝑝 choices with repetition of the 𝑝 choices allowed.  The number 

of unique combinations is 
(     ) 

  (   ) 
 or equivalently (

𝑝  𝑘   
𝑘

)  (
𝑝  𝑘   

𝑝   
), where (

 
𝑘
) is the 

binomial coefficient   choose 𝑘.   

D. Normal Form Indexing Scheme 

With the combinatorial nature of normal form analysis, indexing can become complicated.  

Consider needing to know the exact index of a particular combination in vector exponential 𝑦( ). 

𝑦( )  [

𝑦 

 
𝑦 

]

( )

 

For example, consider the combination 𝑦 𝑦 
 𝑦  in vector 𝑦( ) where 𝑦 has five entries, 𝑝   . 
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𝑦( )  

[
 
 
 
 
𝑦 

𝑦 

𝑦 

𝑦 

𝑦 ]
 
 
 
 
( )

 

So long as the combination entries are ordered numerically ascending, i.e. in the example 

2     4, then the index can be conveniently calculated.  The index of 𝑦 𝑦 
 𝑦  in 𝑦( ) is 47.   

For a general vector exponential 𝑦( ) where 𝑦 has 𝑝 entries, denote the index to be defined 

as 𝑖  [𝑖 𝑖 𝑖  𝑖 ].  In the example, 𝑖  [2   4]. 

𝑖 𝑑𝑒𝑥    
(𝑝  𝑘   ) 

(𝑘) (𝑝   )  
 

(𝑝  𝑘  𝑖 ) 

(𝑘) (𝑝  𝑖 )  

 ∑
(𝑝  𝑘  𝑖       ) 

(𝑘     ) (𝑝  𝑖   )  
 

(𝑝  𝑘  𝑖     ) 

(𝑘     ) (𝑝  𝑖 )  

 

   

 

4.2 Normal Form Example 

In this section, a three-bus power system disturbance is 

analyzed to demonstrate normal form analysis.  The electrome-

chanical dynamics at each generator are modeled by second-

order nonlinear differential swing equations.  There are thus six 

state variables/natural modes: three bus angles (𝜃 [𝑟 𝑑]) and 

three turbine speeds (𝜔 [
   

   
]).  The second-order swing equa-

tion are shown in (4.14). 

𝜃̇  𝜔  𝜔    

𝜔̇  𝑃  𝛿 (𝜔  𝜔 )  ∑
𝑉 𝑉 

   
   (𝜃  𝜃 )

    

   
   

   

𝑓𝑜𝑟 𝑖     ‚ 2 ‚   

(4.14) 

 

Figure 4.1:  Three-bus 

power system 
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In (4.14), 𝜔  is synchronous speed equal to 1, 𝑃  𝑃       𝑃       is constant where 

𝑃       is the mechanical input power and 𝑃       is the active power load, 𝛿  is the turbine damp-

ing constant and     is the line reactance.  The state-space model is constructed from the sys-

tem’s differential and algebraic equations.  To begin, the system is in steady-state.  A fault is ap-

plied at bus 1 by suppressing its voltage to zero.  After 0.1 seconds, bus 1 voltage its restored to 

its nominal value while simultaneously disconnecting the line connecting buses 1 and 2.  An or-

dinary differential equation (ODE) solver is used to simulate the disturbance.  The dynamic re-

sponse of all six state variables is simulated with the ODE solver, with Figure 4.2 displaying the 

dynamic response of all six state variables, after the line is disconnected, as the dashed black 

line.   

An approximate solution to the state variables can be obtained using small-signal analysis 

and linearization of the state-space model in (4.14), as discussed in Section 2.1.  In Figures 4.2 

and 4.3, the dashed black line is the simulated response obtained from the ODE solver.  The solid 

blue line in Figure 4.2 is the approximate solution obtained by using small-signal analysis and 

linearization.  It can be seen the linearized solution is a relatively poor approximation to the ac-

tual nonlinear response from the ODE solver.  Alternatively, a closed form approximate solution 

can be obtained using the normal form analysis outlined in the prior section.  Normal form anal-

ysis with order 𝑁  8 is performed on the state-space model in (4.14), and the closed form solu-

tion is plotted as the solid blue line in Figure 4.3 against the nonlinear ODE simulation. 

As can be seen, the 8
th

 order normal form solution in Figure 4.3 approximates the nonlinear 

ODE simulation much closer than the linearization solution in Figure 4.2.  The combinatorial 

interaction of natural modes obtained via normal form analysis effectively captures the nonlinear 

behavior of the system.  This modal interaction should therefore be expected when analyzing dis-

turbance data from a nonlinear system.  The theory of normal form analysis will be used for mo-

tivating an extension to the nonlinear least-squares variable projection method for estimating 

modes of ring-down data, which is presented in the next section. 
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Figure 4.2:  Linearization solution (solid blue) vs. Actual nonlinear response (dashed black) 

 

Figure 4.3:  8
th

 order normal form solution (solid blue) vs. Actual nonlinear response (dashed black) 
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4.3 Extension to the Variable Projection Method 

Normal form analysis improves upon a linearized solution to a set of nonlinear differential 

equations.  Section 4.1 detailed the normal form solution structure which motivates the work in 

this section. 

A. Normal Form Nonlinear Program 

As was shown in (4.13), the normal form solution 𝑥(𝑡) contains all possible modal interac-

tions between the system’s 𝑝 natural modes/eigenvalues up to a desired order 𝑁.  In this section, 

the normal form solution structure is enforced on the variable projection nonlinear optimization 

method of Chapter 3.  The normal form extension does not increase the number of optimization 

variables in the variable projection method.  For modal analysis problems, there will remain 𝑝 

number of optimization variables in the vector 𝛼 (where 𝛼 was introduced in Section 3.1).  The 

normal form solution structure is imposed by augmenting the matrix of basis functions Φ(𝛼) 

with additional basis functions that enforce the interaction between the 𝑝 natural 

modes/eigenvalues.  For example, consider there being 𝑝    number of natural modes/eigen-

values   ,    and   .  With a 2
nd

 order normal form solution structure, there would be six addi-

tional unique 2
nd

 order combinations of   ,    and   . 

{2                  2           2  } 

The example has three natural modes, 𝑝   , therefore there is one complex-conjugate 

mode-pair and one real-valued mode, such that        𝜔 ,        𝜔  and      .   

The vector 𝛼, is typically constructed using real-valued damping    and frequency 𝜔  compo-

nents, where in the example 𝛼  [  𝜔   ].  For simplicity, now consider 𝛼 to be construct-

ed from the complex-valued eigenvalues, such that 𝛼  [      ].  In the example, six basis 

functions of 2
nd

 order mode combinations are appended to the Φ(𝛼) matrix to emulate a normal 

form solution structure. 
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Φ( )  [𝑒   𝑒   𝑒   𝑒    𝑒(     ) 𝑒(     ) 𝑒    𝑒(     ) 𝑒    ] 

The normal form solution structure in (4.13) is thus enforced.  With this formulation, Φ(𝛼) 

is constrained so that the higher order modes are combinations of the 𝑝 natural modes        .  

The user of the normal form optimization method must specify the desired number of natural 

modes 𝑝 and also the normal form order 𝑁.  In general, the total number of basis functions 

equals the number of natural modes plus higher order modes, which equals 

𝑝  ∑
(𝑝  𝑘   ) 

𝑘 (𝑝   ) 

 

   

   

The computational speed of the normal form optimization method is relatively unaffected 

because the number of optimization variables is unchanged, with there being only a small subset 

of 𝑝 optimization variables.   

B. Resonance 

Due to the issue of resonance, it is not always possible to perform normal form analysis 

with some state-space models.  For system’s having this resonance issue, higher order nonlinear 

terms cannot be eliminated by following the method outlined in Section 4.1.  Specifically, the 

analysis breaks down when attempting to solve for the 𝐻 matrices.  Consider the element-by-

element solution for 𝐻  from (4.10). 

𝐻 (𝑖  [      ])  
  (𝑖  [      ])

          
 

It is possible this expression could equal infinity if the denominator             .  

This is called resonance.  It is entirely dependent on the operating point and eigenvalues of the 

system, and it can similarly occur with the higher order matrices 𝐻  and above.  Resonance is 

less common, and generally it can be used for identifying types of bifurcations when the equa-

tions become irreducible. 
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A related resonance issue can arise in measurement-based modal analysis methods.  Con-

sider the basis functions in (4.15) resulting from the existence of two nearly identical eigenval-

ues,   ≈   , with similar damping and frequency. 

 𝐴 𝑒
      (𝜔 𝑡    )  𝐴 𝑒

      (𝜔 𝑡    ) (4.15) 

  𝑒   [𝐴         (𝜔 𝑡)  𝐴         (𝜔 𝑡)]  

  𝑒   [𝐴         (𝜔 𝑡)  𝐴         (𝜔 𝑡)] 

Define and substitute the coefficients    𝐴      , 𝑏  𝐴      ,    𝐴       and 

𝑏  𝐴       to obtain (4.16).   

 𝑒   [     (𝜔 𝑡)  𝑏    (𝜔 𝑡)]  𝑒   [     (𝜔 𝑡)  𝑏    (𝜔 𝑡)] (4.16) 

The optimization problem is typically implemented in the above fashion, where   , 𝑏 ,    

and 𝑏  are the linear coefficients solved by the variable projection method.  With a solution for 

these coefficients, the mode shape amplitude and phase can be solved by 𝐴  √  
  𝑏 

   

and         (
  

  
), and 𝐴  and    are solved the same way.  However, with   ≈    and 

𝜔 ≈ 𝜔 , (4.16) can be rewritten as in (4.17). 

 𝑒   [(     )    (𝜔 𝑡)  (𝑏  𝑏 )    (𝜔 𝑡)] (4.17) 

Observe that    plus    can equal a constant value 𝐶       .  Define    𝐶     and 

observe that the scalar coefficients    and    can run off to plus and minus infinity without 

changing (4.17).  This can similarly occur with 𝑏  and 𝑏 .  This is a resonance issue resulting 

from two or more modes having similar damping and frequencies, which causes mode shape 

values to explode to unreasonably large magnitudes.  Enforcing a normal form solution structure 

on the problem may only increase this possibility, as the higher order modes could become reso-

nant with one another. 
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For measurement-based modal analysis methods, fixes to this resonance issue are possible.  

Having two or more resonant modes, with similar damping and frequencies values, could be an 

artifact of specifying too many modes in the analysis, i.e. 𝑝 is too large.  In fact, resonance and 

unreasonable mode shape values could occur using Prony analysis or any traditional modal anal-

ysis method.  A quick fix would be to decrease the number of specified modes 𝑝, in hopes that 

the method will consolidate these modes of similar damping and frequency into a single domi-

nant mode.  The variable projection method offers a different fix in the form of constrained op-

timization, that is not available with traditional modal analysis methods.  As discussed in Section 

3.2-D, constraints can be enforced on the variables of the optimization problem.  The constraints 

can be used to prevent against resonance by guiding modes away from one another using appro-

priate bounds on the damping and frequency variables in the optimization.   

4.4 Example 

In this section, the three-bus power system disturbance from Section 4.2 is analyzed to 

demonstrate the variable projection method and the normal form extension to it.  The state-space 

model of this system is known, (4.14); therefore, the natural modes of this model can actually be 

calculated using linearization and eigenanalysis.  The six state variables give rise to six natural 

modes in the system.  One of the six modes is a zero eigenvalue which contributes a dc-offset to 

each state.  In total there is a zero eigenvalue mode, two complex conjugate pairs of modes and 

one real mode. 

An ODE solver was used to simulate the disturbance as described in Section 4.2, and the 

simulated results are recorded as data.  The data is used to demonstrate the variable projection 

method and its normal form extension.  Each data signal is scaled by the inverse of its standard 

deviation, 𝛽𝑖, which is in accordance with conditioning data for multi-signal analysis.  A dc-

offset is included in the optimization to account for the zero eigenvalue.  The number of natural 

modes input to the variable projection method is specified as 𝑝   ; with two complex conjugate 

pairs of modes and one real mode.  The results from the variable projection optimization are 
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shown in Figure 4.4 for all six state variables.  The ODE simulated data is shown as the dashed 

black line, and the solution from the variable projection method is shown as the solid blue line. 

As seen in Figure 4.4, the solution obtained by the variable projection method is good; 

however, it is of interest to examine the data while including 2
nd

 and 3
rd

 order combinations of 

the five natural modes.  Therefore, a normal form solution structure with 𝑁  2, is imposed on 

the optimization problem by augmenting the Φ(𝛼) matrix with additional basis functions.   

Φ(𝛼)  [𝑒    𝑒   𝑒    𝑒(     )  𝑒        ] 

The Φ(𝛼) matrix has five 1
st
 order basis functions, fifteen 2

nd
 order basis functions and a 

column of ones used for a dc-offset.  The residual error for the 𝑖th
 signal 𝑦𝑖 is thus 

𝑟𝑖(𝛼) = ( 𝐼   Φ(𝛼)Φ(𝛼)† ) 𝑦𝑖.  The results from the optimization are shown in Figure 4.5. 

The solution obtained by including the 2
nd

 order basis functions provides an even better 

match to the disturbance data.  This is no surprise however, as increasing the number of basis 

functions will always further minimize the least-squares error.  This is even more so the case 

with the minimal cost obtained by including the 3
rd

 order combinations.  The least-squares error 

objective value for all three solutions is shown in Table 4.1. 

 
Var. Proj. 

𝑝    𝑁     

Var. Proj. 

𝑝    𝑁  2 

Var. Proj. 

𝑝    𝑁    

∑   
   

1

2
 ‖ ‖ 𝛽𝑖 𝑟𝑖(𝛼) 2

2
 306.61 16.34 0.027 

Table 4.1:  Objective function of least-squares error to data 
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Figure 4.4:  Optimal solution 𝑝 = 5, 𝑁 = 1 (solid blue) vs. Actual nonlinear response (dashed black) 

 

Figure 4.5:  Optimal solution 𝑝 = 5, 𝑁 = 2 (solid blue) vs. Actual nonlinear response (dashed black) 
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The improvement can be seen in the estimated natural modes that converge closely to the 

actual eigenvalues of the system.  If  the state-space model were linear, the estimated modes 

from the 1
st
 order solution would exactly match the actual eigenvalues of the system.  This is not 

the case, so the normal form solution structure is used to fit the nonlinearity in the disturbance 

data.  The estimated modes from the three solutions of the variable projection method (without 

the normal form solution structure, 𝑁   , and with 2
nd

 and 3
rd

 order combinations) are shown in 

Table 4.2. 

 Actual  
Eigenvalues 

Var. Proj. 

𝑝    𝑁    

Var. Proj. 

𝑝    𝑁  2 

Var. Proj. 

𝑝    𝑁    

     
    0.0396 ±  1.845   0.0373 ±  1.824   0.0396 ±  1.837   0.0408 ±  1.845 

     
    0.0448 ±  1.235   0.0485 ±  1.204   0.0497 ±  1.229   0.0452 ±  1.234 

     0.0688   0.0900   0.1164   0.108 

Table 4.2:  Actual eigenvalues vs. estimated continuous-time poles 

Excluding the real eigenvalue   , the variable projection method with 3
rd

 order modes had 

estimations closest to the actual eigenvalues.  The method had more difficulty accurately estimat-

ing damping, 𝑟𝑒 𝑙{  }, compared to estimating frequencies, 𝑖𝑚  {  }.  The damping variables 

are more sensitive because they are numerically lesser (absolute) valued, than frequency varia-

bles.  Therefore an equivalent numerical change in both damping and frequency, results in a 

greater percent change in damping. 

4.5 Repeated Eigenvalues 

Generally when a system has distinct eigenvalues, the solution structure obtained is a 

summation of damped cosines and exponentials.  This type of solution structure is enforced by 

the traditional modal analysis methods discussed in Chapter 2.  However, it is worthwhile exam-

ining the slightly modified solution structure obtained when a system possess repeated eigenval-

ues.  Consider a basic state-space system 𝑥̇(𝑡)  𝐴𝑥(𝑡), with two complex conjugate pairs of 
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eigenvalues.  When the complex conjugate pairs are repeated, the solution structure would be 

that shown in (4.18). 

 𝑥(𝑡)  𝐴 𝑒
      (𝜔 𝑡    )  𝑡𝐴 𝑒

      (𝜔 𝑡    ) (4.18) 

Observe the second term in (4.18) is multiplied by time 𝑡.  This type of solution structure is 

obtained from systems possessing repeated eigenvalues.  A basic example is now provided which 

demonstrates a system with two complex conjugate pairs of 

repeated eigenvalues (four modes in total).  A signal is con-

structed having the same formulation shown in (4.18).  The 

values of the damping, frequency, amplitude and phase param-

eters are shown in Table 4.3, and the signal is recorded as data 

as shown in Figure 4.6.  Initially, the data is analyzed using the 

variable projection method and with the standard solution 

structure of damped cosines.  First, the optimization is performed using just one complex conju-

gate pair of eigenvalues (two modes), and a large error of 473.54 is obtained as seen in Table 4.3.   

 Actual 
Prior Optimization 

(2 modes) 
Prior Optimization 

(4 modes) 
Optimization w/  

repeated eigenvalue 

    0.5  0.17  0.50  0.50 

𝜔  3 2.83 3.00 3.00 

𝐴  4 5.08 2102 4.00 

   90° 31.0° 153.2° 90° 

    0.5   0.50  0.50 

𝜔  3  3.00 3.00 

𝐴  7  2100 6.98 

    22  °   26 7°  22 7° 

Error  473.54 8.6 × 10 8 7.6 × 10 8 

Table 4.3:  Actual repeated eigenvalue parameters vs. estimated parameters 

Next, the optimization is performed again with a standard solution structure and two com-

plex conjugate pairs of eigenvalues (four modes).  The frequency variables 𝜔  and 𝜔  are not 

restricted to equal one another, but the optimization correctly identifies both frequencies to equal 

0 5 10 15

-4

-2

0

2

4

Figure 4.6:  Repeated  

eigenvalue signal 
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3.00 𝑟 𝑑/𝑠.  The same is true with the damping variables    and    which are not restricted to 

equal one another, but both are correctly identified as −0.5 1/𝑠.  The error in this formulation is 

8.6 × 10−8 which would seem to indicate an accurate solution to the data had been obtained.  

However, the estimated mode shape amplitudes 𝐴  and 𝐴  in this solution each have magnitudes 

around 2100, where the actual amplitudes should equal 4 and 7 respectively.  These unusually 

large amplitudes indicate something is wrong with this solution.  Therefore lastly, the data is 

analyzed using a repeated eigenvalue solution structure, where one of the basis functions is mul-

tiplied by time as in (4.18).  With this solution structure the optimization converges on the cor-

rect parameter values as is seen in Table 4.3. 

4.6 Conclusion 

This chapter first outlined the theory and method behind normal form analysis, which is 

first presented on a 3-bus power system.  This theory motivated an extension to the nonlinear 

least-squares variable projection method.  The extension adds no additional optimization varia-

bles to the nonlinear program, which allows for quick and accurate solutions.  The 3-bus exam-

ple was revisited to demonstrate the application of a normal form solution structure for estimat-

ing modes of data, and it was observed the estimated modes converged closely onto the actual 

eigenvalues of the system.  The flexibility allowed by the variable projection function allows for 

the inclusion of basis functions not permitted by traditional modal analysis methods.  This chap-

ter exploited this flexibility to enforce the normal form solution structure, and similarly a basic 

example was demonstrated that enforced a repeated eigenvalue solution structure. 

The normal form extension was partly inspired by analyzing results from Prony’s method.  

For nonlinear data, Prony analysis requires a large number of modes 𝑝 to be specified to get a 

decent fit.  In analyzing the many modes, it was observed that some of the higher order modes 

appeared to closely resemble combinations of the lower order modes, such as high frequency 

modes being double the value of lower frequency modes.  This observation coupled with the the-

ory of normal form analysis gave rise to the ideas presented in this chapter.  
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Chapter 5 

Modal Analysis Tool for Industry Use 

A call for standalone ring-down analysis tools was recently made by the Western Electrici-

ty Coordinating Council (WECC), arising from the needs of system planners who perform modal 

analysis to estimate critical inter-area modes [64].  Current Prony analysis-based applications 

were reported to suffer from a variety of issues such as: dealing with nonlinear system responses, 

the sensitivity of results to selected time intervals, and the varying quality of estimations [64].  

An application was requested to meet certain requirements, including: user ability to select time 

intervals by visual inspection of signals, data conditioning such as first-order detrending, and ac-

curate estimations of oscillation frequencies, damping and mode shape.  This request provided an 

opportunity to develop efficient modal analysis techniques into a working application for indus-

try use.   

A least-squares nonlinear optimization technique that has been overlooked by the electric 

power industry is the variable projection method [27,28].  This robust technique for estimating 

modal content of data was discussed in Chapter 3.  It is necessarily true that a properly initialized 

nonlinear least-squares optimization program, will provide as good or better modal estimation to 

a data-set when compared to quick linear analysis techniques such as Prony analysis or other tra-

ditional methods.  The variable projection method is the backbone of the modal analysis tool de-

veloped and discussed in this chapter.   

The request by WECC for a standalone ring-down analysis tool was an opportunity to ef-

fectively deploy the modal analysis methods discussed in Chapters 2–4.  The tool has been de-

veloped as a graphic user interface (GUI) in a MATLAB environment.  Section 5.1 discusses the 

optimization algorithms used in implementation of the tool.  Section 5.2 discusses various appli-

cation requirements for the modal analysis tool as requested by power industry users.  Section 

5.3 demonstrates the modal analysis tool on real power system disturbance data.   
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5.1 Optimization Algorithms 

This section seeks to provide insight into the methods and algorithms used in the modal 

analysis tool which were developed in the MATLAB environment.  A publicly accessible varia-

ble projection code for nonlinear least-squares problems is available in [54,55].  Modifications to 

the code were made for multi-signal analysis, constrained optimization and for optimal computa-

tional performance. 

The solver used in the optimization is dependent on the type of constraints imposed by the 

user.  Section 3.2-D discussed the type of constraints used in the modal analysis problem.  If the 

optimization is unconstrained or if bounds are placed on the damping and frequency optimization 

variables,   and 𝜔, then the MATLAB function lsqnonlin is called.  The nonlinear least-squares 

function accepts problems having the formulation in (5.1). 

 min
𝑥

  𝑓(𝑥) = 1
2
 ‖ ‖ 𝐹(𝑥) 

2

2
 (5.1)  

𝑠.𝑡.    𝑙𝑏   𝑥   𝑢𝑏 

The lsqnonlin function uses a trust region method and is based on the interior-reflective 

Newton method described in [66,67].  Consider the unconstrained trust region method at some 

point 𝑥 with a trial step 𝑠 in a trust region neighborhood 𝑁.  

 min
𝑠

  𝑓(𝑥+𝑠) (5.2) 

𝑠.𝑡.    𝑠   𝑁 

The current point is updated to be 𝑥+𝑠; unless if 𝑓(𝑥+𝑠) < 𝑓(𝑥), which then the region of 

trust is shrunk and the trial step computation is recomputed.  The nonlinear objective function in 

(5.2) is approximated by the first two terms of the Taylor expansion of 𝑓 at the current point 𝑥, as 

shown in (5.3). 

 min
𝑠

  1
2
 𝑠𝑇𝐻𝑠 + 𝑠𝑇  (5.3) 

𝑠.𝑡.    ‖𝐷𝑠‖   𝛥 
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In (5.3), 𝐻 is the symmetric Hessian matrix and   is the gradient vector of 𝑓(𝑥), 𝐷 is a di-

agonal scaling matrix and 𝛥 is a positive scalar.  The trust region method in lsqnonlin requires 

the gradient to be supplied by the user (see Section 3.1 for the variable projection gradient).  If 

the user does not supply the Hessian, then the algorithm computes a finite-difference approxima-

tion.  Good algorithms exist for solving (5.3) [68,69]; where lsqnonlin uses a preconditioned 

conjugate gradient method to solve 𝑠.  The process iterates with superlinear convergence towards 

a local minima.  The trust region method in lsqnonlin can allow bounds or box constraints on the 

variables, which is handled efficiently using projected searches [70]. 

The function lsqnonlin is effective, but its restrictions on linear inequality or nonlinear 

constraints make it not always applicable.  As detailed in Section 3.2-D, placing bounds on per-

cent damping in the modal analysis problem introduces linear inequality constraints to the opti-

mization.  Restated here, consider placing lower and upper bounds,  𝑑   and  𝑑   on percent 

damping as shown below. 

 𝑑        
 

√   𝜔 
  𝑑   

If the frequency is greater than or equals to zero, then the bounds on percent damping can 

equivalently be expressed as the following linear inequality constraints. 

  
 𝑑  

√     ( 𝑑  ) 
𝜔    

   
 𝑑  

√     ( 𝑑  ) 
𝜔    

With these linear inequality constraints, the optimization will have the formulation in (5.4). 

 min
𝑥

  𝑓(𝑥) = 1
2
 ‖ ‖ 𝐹(𝑥) 

2

2
 (5.4)  

𝑠.𝑡.    𝐴𝑥   0 

For problems with the formulation in (5.4), the tool calls the MATLAB function fmincon. 

The constrained nonlinear optimization is best solved using an interior-point method.  The interi-



74 

or-point method is solved by means of adding a logarithmic term to the cost, called a barrier 

function, with the method described in [71] and [72].  The interior-point approximation of (5.4) 

is shown in (5.5).   

 min
𝑥‚ 𝑠

  𝑓𝜇 (𝑥) = 𝑓(𝑥)   𝜇  Σ
𝑖

  ln(𝑠𝑖 ) (5.5)  

𝑠.𝑡.    𝐴𝑥 + 𝑠 = 0 

In (5.5), 𝜇 is a small positive scalar, sometimes called the barrier parameter.  Slack varia-

bles 𝑠 are introduced, and they are restricted to be positive.  The approximate problem (5.5) is a 

sequence of equality constrained problems that are easier to solve than the original inequality 

constrained problem in (5.4).  A step is determined at each iteration of the algorithm using either 

a Newton step or a conjugate gradient step using a trust region.  If the user does not supply the 

Hessian matrix, then by default it is updated using a BFGS approximation [73].  At each itera-

tion, the algorithm decreases a merit function (5.6). 

 𝑓𝜇 (𝑥) + 𝑣 ‖𝐴𝑥 + 𝑠 ‖ (5.6) 

The parameter 𝑣 may increase with each iteration in order to force the solution towards 

feasibility.  If an attempted step does not decrease the merit function, the algorithm rejects the 

attempted step and attempts a new step.  The method iterates until a local minima is found.  It is 

observed that convergence is slower for problems of the type in (5.4) compared to (5.1). 

5.2 Application Requirements 

This section provides discussion concerning application requirements and user requests for 

developing the modal analysis tool for industry use. 

A common data format was recently adopted by the WECC Joint Synchronized Infor-

mation Subcommittee [65].  Standalone ring-down analysis tools are required to support this data 

format in both CSV and XML file formats.  The data format follows a new standard for sig-

nal/channel headings and units, start date and time, etc.  The ring-down tool should accommo-
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date actual synchrophasor data and simulated data.  It should accommodate transient simulations 

with reported data entries not equally spaced in time.  Additionally, simulated data may contain 

two data entries at the same time during simulated switching events.  Actual synchrophasor data 

may contain bad data points, recorded as NaN or Inf.  In summary, the ring-down analysis tool 

must accept the newly adopted data format in CSV or XML file format, must handle time entry 

issues in simulated data and must intelligently patch data drop-outs from actual synchrophasor 

data.   

The modal analysis tool was requested to accommodate users of varying levels of experi-

ence.  The tool should be simple enough to run without much initialization, but should also allow 

advanced control and guidance by experienced users.  For example, the number of modes, or 

model order, in the analysis should be determined automatically, but it should also be adjustable 

for more advanced users.  Modal analysis methods like Prony analysis, require the number of 

modes to be predetermined by the user; however, many users would prefer for the model order to 

be determined automatically.  In response to this, the developed tool uses the Matrix Pencil 

method discussed in Section 2.4-B.  The Matrix Pencil method uses a fixed threshold value to 

determine an appropriate model order for the data.  The estimates from the Matrix Pencil method 

are then used as initial conditions for the variable projection method.  Prony analysis and the Ei-

gensystem Realization Algorithm can similarly be used for determining initial conditions if de-

sired. 

No initial condition generator is guaranteed to find the ideal initial conditions and model 

order 100% of the time, as data sets of vastly different sizes, types, and levels of noise will be 

encountered.  After computing initial conditions the variable projection optimization will start 

and will terminate when a local minimizer is found.  Inevitably, the user may wish to redo the 

analysis by: adding or subtracting modes, adjusting the number of complex and real-valued 

modes, adding or adjusting constraints, adding or removing polynomial trending, or adjusting the 

time interval for which the analysis takes place.  To hedge against this inevitability, some flexi-

bility has been incorporated into the tool for the user. 
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If the user is unsatisfied with results obtained from the first trial of the analysis, they can 

rerun the optimization under different circumstances.  It makes sense to rerun the application 

with the previously solved solution available as initial conditions.  This flexibility allows the user 

to guide the initial conditions and optimization using his or her intuition of the problem.  A Fast 

Fourier transform is incorporated into the tool, which allows users to visually inspect significant 

frequencies missing in the solution.  An example demonstrating these features is presented in 

Section 5.3. 

5.3 Example 

In this section, an example is presented which highlights many of the features of the devel-

oped modal analysis tool.  Synchrophasor data was collected during a large Western Interconnec-

tion disturbance.  Four different units of measure were observed, voltages [𝑘𝑉], angles [°], and 

frequencies [𝐻𝑧] were collected at 14 buses, and the power flow [𝑀𝑊] along 16 transmission 

lines was collected.  The frequencies and angles are shown as deviations from the reference bus 

angle and frequency.  All of these signals/channels are simultaneously shown in Figure 5.1. 

 

Figure 5.1:  Western Interconnect disturbance 

The disturbance happens around 12 seconds and settles out around 30 seconds.  This dis-

turbance data will be used for demonstrating the GUI’s developed for the modal analysis tool.  

Figure 5.2 displays the GUI developed for initializing the analysis.   
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Several features discussed throughout the preceding chapters are made available in the 

tool.  First note there are 58 channels of data, and 1801 time sample points.  Polynomial data 

detrending is made available with the ‘Polynomial trend’ vector.  By default ‘Polynomial trend’ 

is ‘[0]’, implying a dc-offset will be included in the analysis.  First order and higher polynomial 

trending terms can also be included in the ‘Polynomial trend’ vector.  For example, setting ‘Pol-

ynomial trend’ to ‘[0 1 3]’ includes a dc-offset, a linear term and a cubic polynomial trending 

term.  A similar approach is used with the ‘Normal form order’ vector (discussed in Chapter 4).  

By default this vector is ‘[1]’, implying only first order modes are considered and there is no 

normal form solution structure imposed. 

 

Figure 5.2:  GUI for initializing modal analysis 

The time window for analysis is changed to 12 to 30 seconds (541 time-sample points).  

The ‘Down sample’ integer is by default ‘1’, implying there will be no down-sampling of the 

data.  If ‘Down sample’ were set to ‘2’, for example, then the analysis would use every other da-

ta-point between 12 and 30 seconds.  The ‘# Modes’ is left blank as the Matrix Pencil algorithm 

will be left to decide the model order.  All 58 signals are weighted by the inverse of their stand-
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ard deviations and multi-signal analysis is performed.  The estimations from the Matrix Pencil 

method are used as initial conditions for the variable projection method, which uses the trust re-

gion method to solve the optimization.  The results are reported in the GUI shown in Figure 5.3.   

The primary role of the GUI in Figure 5.3 is for plotting and viewing results.  From the 

analysis, the Matrix Pencil method determined there to be three significant pairs of complex con-

jugate modes, i.e. six modes in total.  With six modes, the variable projection method located an 

optimal objective value of 1415.  In this example, the Matrix Pencil method provided good initial 

conditions as the objective value only decreased from 1445 to 1415 in the optimization.  The 

solved damping percentage and frequency [𝐻𝑧] are reported in Figure 5.3, with frequency  
 

  
 

and damping %      
 

√     
. 

 

Figure 5.3:  GUI displaying solution results 
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The bus voltages, angles and frequencies and transmission line-flows are plotted in Figure 

5.4 showing the comparison of the estimated signals versus the actual data.  The measurements 

are plotted with their dc-offsets subtracted, so as to better visualize the fast oscillations after the 

disturbance.  The complex mode with high percent damping of 48.77% and low frequency of 

0.03164 𝐻𝑧 (31.6 seconds per cycle) is contributing more of a trending fit to the data than cap-

turing fast oscillatory behavior.  This mode is responsible for the slow shaping that is most evi-

dent in the voltage plots in Figure 5.4, where the mode makes a half-cycle of 15.8 seconds before 

damping out. 

 

 

Figure 5.4:  Estimated solution with 6 modes vs. Actual data 
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Some specifications can be given on the details of the optimization.  Table 5.1 displays 

some of the computation times from the analysis, evaluated in MATLAB R2011a on a computer 

with 64-bit Intel i5-560M Dual Core CPU at 2.67 GHz with 4 GB of RAM.   

Operation Time [sec] 

Matrix Pencil 2.734 
  

Variable Projection 0.503 

SVD 0.00467 

Cost function evaluations 0.0128 

Gradient evaluations 0.0924 

Table 5.1:  Evaluation times from example (trust region) 

From the initial conditions, the optimization iterated 5 times before stopping due to con-

vergence.  Therefore the cost function, the gradient and the SVD (needed for calculating the cost 

and gradient), are all computed just 6 times each in the optimization.  The variable projection 

method took just 0.503 seconds to converge.  The table shows the cumulative time taken for the 

6 evaluations of the SVD, cost function, gradient.  These computations are not significantly time 

consuming.  This leads to believe most of the evaluation time occurs elsewhere, such as when 

approximating the Hessian matrix or when solving the approximate trust region problem shown 

in (5.3). 

A Fast Fourier Transform (FFT) can be taken of the weighted residual error between the 

actual data and estimated signal.  In Figure 5.3, the ‘FFT Error’ button computes and plots this.  

 

Figure 5.5:  FFT of weighted residual error with 6 modes 
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The FFT plot in Figure 5.3 shows some considerable missing mode activity around fre-

quency 0.72 𝐻𝑧.  The optimization can be computed once more using the ‘Run Again’ button in 

Figure 5.3 to reinitialize the analysis with the GUI shown in Figure 5.6.   

 

Figure 5.6:  GUI for initializing modal analysis with  

Now the mode solutions from the first trial are available as initial conditions.  The prior 

mode solutions are kept; however, an additional complex mode at 0.72 𝐻𝑧 with an arbitrary 

damping around 10% is manually added to the initial conditions.  Some power engineers may not 

like having an estimated mode with percent damping as high as 48.77%.  In this new trial of the 

analysis, a constraint is placed on the 2
nd

 mode to enforce percent damping less than or equal to 

30%, and an arbitrarily upper bound of 1 𝐻𝑧 is placed on the frequency.  This creates linear ine-

quality constraints in the optimization, thus an interior-point method must be used.  The initial 

conditions for the 2
nd

 mode are not in the problem’s feasible space, thus before calling the interi-

or-point method, the damping of the 2
nd

 mode is lowered so that the percent damping is 30% and 

the initial conditions are feasible.  This step is completely optional, but it may provide for faster 

convergence with a feasible starting point. 
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The variable projection optimization is ran once more, and the results are reported in Table 

5.2.  With the additional complex mode at 0.7206 𝐻𝑧, and with the imposed constraint on the 2
nd

 

mode, the objective value decreased from 1415 before to 668.3.  As a side point, it appears the 

mode at 0.72 𝐻𝑧 could resemble a harmonic double frequency of the 0.38 𝐻𝑧 mode, which moti-

vates the normal forms approaches in Chapter 4. 

 Objective Value = 668.3  

 Damping % and Frequency [𝐻𝑧] Mode Energy 

Mode 1 6.997%  @  0.3835 203.11 × 103 

Mode 2 30.00%  @  0.0316 169.70 × 103 

Mode 3 12.51%  @  0.2440 185.41 × 103 

Mode 4 12.71%  @  0.7206 16.57 × 103 

Table 5.2:  Mode estimations and Mode energy 

Some specifications can be given on the details of the optimization.  Table 5.3 displays 

some of the computation times from the analysis.   

Operation Time [sec] 

Variable Projection 5.049 

SVD 0.054 

Cost function evaluations 0.294 

Gradient evaluations 1.839 

Table 5.3:  Evaluation times from example (interior-point) 

From the initial conditions, the optimization iterated 24 times before stopping due to con-

vergence.  The cost function, gradient and SVD were evaluated 81 times each.  The remaining 

evaluation time occurs elsewhere in the interior-point overhead. 

The FFT of the weighted residual error using 8 modes to fit the data is shown in Figure 

5.7.  Comparing the FFT of Figure 5.7 to the FFT of  Figure 5.5 reveals a good portion of modal 

activity around 0.72 𝐻𝑧 has been suppressed.  There remains some modal content around 1 𝐻𝑧 

but it is not drastically larger in magnitude then other frequencies.  Therefore, as a judgment call, 

8 modes is likely a sufficient number for estimating the most dominant modes in the data. 
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Figure 5.7:  FFT of weighted residual error for 8 modes 

The new estimated signals are shown in Figure 5.9; and the weighted error between the so-

lution with 6 modes versus 8 modes is shown in Figure 5.8.  The weighted errors show that the 

solution with 8 modes has a lower least-squares error to the data.  The 8 mode solution would 

have had even less error if the 30% upper limit on the 2
nd

 mode percent damping  had not been 

enforced. 

 

 

Figure 5.8:  Weighted residual error comparison for 6 modes vs. 8 modes 
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In Figure 5.9, the measurements are again displayed with their dc-offsets subtracted.  The 8 

mode solution appears to be very accurate for just 4 mode pairs simultaneously estimating 58 

signals.   

 

 

Figure 5.9:  Estimated solution with 8 modes vs. Actual data 
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gles correspond to the phase   .  The modes are numbered as shown in Table 5.2.  Judging from 

the mode shape plots, it appears that the mode 1, with frequency 0.3835 𝐻𝑧, appears most domi-

nantly in the data.  This is confirmed by the mode energy calculations in Table 5.2.  The signal 

measurements have strong correlation with one another, which can be seen most obviously by 

how the mode shapes for modes 1 and 3 tend to align in phase. 

  

  

Figure 5.10:  Mode shapes of 8 mode solution 

This example offers a glimpse at effective modal analysis strategies and how the user-

friendly modal analysis tool proves valuable for use by power industry members.  
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5.4 Conclusion 

This chapter has detailed effective strategies for performing modal analysis as the culmina-

tion of methods presented in Chapters 2-4.  Firstly, the Matrix Pencil method is used to deter-

mine the model order in the data and is used to provide good initial conditions for the optimiza-

tion.  The variable projection method is then used to improve on estimations provided by the Ma-

trix Pencil method.  The type of optimization algorithm used is dependent on the constraints im-

posed by the user.  If the optimization is unconstrained or has direct bounds on the variables, 

then a trust region method is used.  If the problem has linear inequality constraints due to bounds 

on percent damping, then an interior-point method is used.   

This chapter has showcased a GUI developed for modal analysis, which has been distribut-

ed to power industry members with positive reception.  The tool includes features for data-

detrending, down-sampling, normal form solution structure, constrained optimization, and plot-

ting features for the signal waveforms, Fast Fourier Transforms, and mode shapes.  Importantly, 

the tool allows flexibility for user guidance and interaction, such as the ability to reuse solutions 

for initial conditions in a new trial. This guided approach greatly aids users of the tool, as this 

feature was lacking in prior methods used in industry.  This chapter  has demonstrated how a 

combination of optimization techniques and streamlined user guidance can create a superior ap-

proach for solving modal analysis problems.   

This concludes the research work addressing power system modal analysis problems in 

this dissertation.  The remaining chapters will examine security related issues in regards to solv-

ing the optimal power flow problem.   
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Chapter 6 

Model Security 

The work in this chapter is motivated by current nondisclosure policies for handling confi-

dential power system models.  Data for actual power system models are not easily accessible and 

typically require nondisclosure agreements.  The purpose of the work in this chapter is to inves-

tigate methods that ensure security of confidential model details.  A starting point for this work, 

borrows from recent publications on obscuring details of linear programs presumed to be solved 

in unsecure cloud computing environments.   

Initial investigations of the model security problem examine a method for masking optimi-

zation problems.  The masking method obscures model details and in this chapter is applied spe-

cifically to the optimal power flow (OPF) problem.  The OPF problem is used to determine an 

optimal operating point in electric power systems.  The OPF computes the optimal dispatch of 

resources needed to supply energy while accounting for a range of physical, engineering, and 

security constraints.  It is solved nearly continuously in some form by grid operators.  It takes a 

number of different forms depending on the particular objective and the scale of interest (plan-

ning vs. operations, economics, reliability, etc.).  The mathematical representation varies from a 

linear program (DC OPF [76]) to a nonlinear, nonconvex mixed-integer program (security con-

strained AC OPF).  Generally, all variants include an objective function (commonly quadratic or 

piece-wise linear), physical network constraints (the power flow equations) and imposed engi-

neering limits (voltage magnitude, active and reactive power generation, transmission line-flow, 

etc.).  The problem can be large with thousands of decision variables and tens of thousands of 

constraints.  In this context, advances in the field of computing are of considerable interest. 

An emerging paradigm in computer science and engineering is cloud computing [37].  

Cloud computing provides subscribers shared access to powerful remote computing platforms; 

therefore, the potential to solve OPF problems remotely with cloud computing is an appealing 

possibility.  Realistic OPF problems are nonlinear, nonconvex and very large, potentially having 

tens of thousands of buses and optimization variables; therefore, the OPF problem seems a prom-
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ising candidate for remotely solving in the cloud.  Security in cloud computing is a significant 

concern however [39-42].  With a shared computing platform comes the possible risk of attack-

ers obtaining data sent to the cloud.  In the case of power systems, this data is often confidential.  

Leaks of confidential data can be financially damaging and potentially threatening to national 

security.  For this reason, cloud computing is currently not well suited for power system applica-

tions without further security advances. 

This confidentiality motivates the need to improve OPF problem security.  A masking pro-

cess can be used to obscure the problem data such that an attacker with access to the masked 

problem cannot obtain confidential information.  The masking process preserves the ability to 

obtain the original optimal solution; however, knowledge of the masking process details are re-

quired in order to extract the original solution from the masked solution.  Existing research has 

investigated techniques for masking optimization problems [43,44].  In [43], the authors outline a 

systematic approach for masking a general linear program.  The approach in [43] seems well 

suited for the linear DC OPF problem; however, some additions are needed.  The approach in 

[43] only specifies a linear objective function whereas quadratic cost functions are necessary for 

many practical OPF problems.  Furthermore, existing literature does not discuss dual solutions to 

the original unmasked problem.  The dual variables in the OPF problem are important to power 

system operations, with a subset of them being the locational marginal prices in market contexts.  

The method in [43] does not obscure the number and type of facilities present in the problem.  

An additional computational concern is that the approach in [43] destroys problem sparsity, mak-

ing solutions of large OPF problems computationally intractable.  A masking approach that pre-

serves sparsity in integer programs is described in [44].  This approach serves as inspiration to a 

similar approach for preserving sparsity in the masked OPF problems in this chapter.   

This chapter presents a confidentiality preserving optimal power flow method.  Several is-

sues are addressed pertaining to the OPF, including dual variable calculations in Section 6.2, 

controlling the sparsity of a DC OPF in Section 6.3-B, imposing quadratic cost functions in Sec-

tion 6.3-C, obscuring the number of system facilities in Section 6.4, and masking nonlinear con-

straints in Section 6.5.  Initial focus is on the linear DC OPF and its relation to the existing litera-
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ture on cloud computing security, and afterward the nonlinear AC OPF is addressed.  An exam-

ple of both the DC and full AC OPF is shown in Section 6.6. 

6.1 DC Optimal Power Flow Problem Overview 

The DC OPF uses a power flow model that is a linear approximation of the nonlinear pow-

er flow equations.  There are four main approximations made in the DC OPF: the bus voltage 

magnitudes are all equal to one, the voltage angle differences are small so that     (𝛿 -𝛿 ) ≈   

and     (𝛿 -𝛿 ) ≈ 𝛿 -𝛿 , the resistance for each branch is negligible and set to zero and all 

shunt elements are neglected.  Reactive power at the loads and generators are not explicitly con-

sidered.  The DC OPF can be written with linear constraints and quadratic cost function having 

the following form in (6.1). 

 
,

min
gP

  
 

 
𝑃 

  𝑃   𝑑 𝑃  (6.1) 

 𝑠 𝑡          𝑃   𝛿   𝑃             

 𝛿       

 𝑃      𝑃  𝑃       

  𝑃         𝑑𝑖  (𝑏  )    𝛿  𝑃          

In the formulation for the DC OPF in (6.1), the optimization variables are 𝑃  as the vector 

of generator power injections and 𝛿 as the vector of bus voltage angles.  It has a quadratic cost 

function, where   is a diagonal matrix of generator quadratic cost coefficients and 𝑑 is a vector 

of generator linear cost coefficients.   

The first equality constraint enforces power balance at each bus.  Here the bus susceptance 

matrix   is the imaginary part of the bus admittance matrix with shunt elements neglected.  Re-

flecting common power system topology, the matrix   is typically sparse.  The vector 𝑃  con-

tains the bus active power loads.  It is important to note that in the formulation of (6.1), the pow-

er generated is in the delivering reference frame (i.e., 𝑃  is nonnegative), and the bus loads are in 
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the receiving reference frame (i.e., 𝑃  is also nonnegative).  The second equality constraint en-

forces the bus voltage angle at the reference bus to be zero. 

The first inequality constraint in (6.1), limits the power generation of each generator to be 

within a lower and upper bound.  In this report, all powers generated are assumed to be greater 

than or equal to zero ( 𝑃 ≥   ), i.e. the generators cannot act as loads.  The last constraint limits 

the power flow in both directions on each branch to be less than a maximum flow 𝑃        .  

Here the vector 𝑏   contains the branch susceptances and 𝑑𝑖  (𝑏  ) is the diagonal matrix with 

the vector 𝑏   on the diagonal.  The matrix      is the bus-to-branch incidence matrix; this ma-

trix has number of rows equal to the number of branches and number of columns equal to the 

number of buses.  Each row has +1 in the column corresponding to the branch’s “from” bus and 

-1 in the column corresponding to the branch’s “to” bus.   

6.2 Masking Primal and Dual Linear Programs 

Recent research details a method for masking a linear program [43].  In this section, the 

masking method is briefly summarized and a method for recovering the unmasked dual variables 

is further developed.  In Section 6.3, the masking method is applied to the DC OPF problem.  

The primal notation in this section is adopted from [43].  Start from the standard linear program 

primal (6.2a) and dual (6.2b) formulations [75]. 

x
min     𝑥 

𝑠 𝑡       𝑥  𝑏  

  𝑥  𝑏  

𝑥 ≥   

(6.2a)  
vu,

max   𝑏 
 𝑢  𝑏 

 𝑣 

𝑠 𝑡       
 𝑢    

 𝑣    

𝑣    

(6.2b) 

A random positive monomial matrix   (i.e., a matrix containing exactly one non-zero en-

try per row and column) and a random positive vector 𝑟 are used to hide the cost vector   and the 

optimization variable vector 𝑥, as shown in (6.3). 
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x

min      (   𝑥  𝑟) (6.3) 

 𝑠 𝑡        (   𝑥  𝑟)  𝑏      𝑟  

              (   𝑥  𝑟)  𝑏      𝑟  

       𝑥  𝑟 ≥ 𝑟   

Substituting the masked variable 𝑧     𝑥  𝑟 and introducing the random positive di-

agonal matrix   yields the primal and dual problems (6.4a) and (6.4b). 

z
min      𝑧 (6.4a)  

vu,
max   (𝑏     𝑟) 𝑢  (𝑏     𝑟) 𝑣 

𝑠 𝑡     (   ) 𝑢  (   ) 𝑣  (   )  

𝑣    

(6.4b) 

𝑠 𝑡        𝑧  𝑏      𝑟 

   𝑧  𝑏      𝑟 

 𝑧 ≥  𝑟 

 

The inequality constraints in (6.4a) are converted to equality constraints through the intro-

duction of slack variables 𝑧  .  Denote the vector 𝑧  as the vector 𝑧 augmented with the slack var-

iables, 𝑧   [𝑧  𝑧  
 ].  The cost function vector is augmented with zero entries corresponding to 

the slack variables,     [        ].  The dual variable vectors 𝑢 and 𝑣 are consolidated into 

a single vector 𝑢′  [𝑢  𝑣 ].   

The constraint notation is simplified by defining  ′ and 𝑏′. 

   (
    
   
  

 
)                    𝑏  (

𝑏     𝑟
𝑏     𝑟

  𝑟

) 

Here matrix   is a random positive monomial matrix.  The formulations in (6.4a) and 

(6.4b) can be rewritten as seen in (6.5a) and (6.5b). 

'
min

z
     𝑧′ 

𝑠 𝑡      ′𝑧′  𝑏′ 

𝑧 ≥   

(6.5a)  
'

max
u

  𝑏  𝑢′ 

𝑠 𝑡         𝑢     

(6.5b) 
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Lastly the matrix    and vector 𝑏′ are hidden using any nonsingular matrix   and a  

random positive monomial matrix   with       ′ , 𝑏    𝑏′ and          .  The   ma-

trix takes linear combinations of the rows in the constraint equations.  The   matrix scales and 

permutes the columns of the constraint matrix  ′ and cost function vector    .  The new primal 

optimization variable vector is 𝑧      𝑧  and new dual optimization variable vector is 

𝑢′′  (  )  𝑢′.  The linear program is in its final masked primal (6.6a) and dual (6.6b) forms. 

''
min

z
      𝑧′′ 

𝑠 𝑡      ′′𝑧′′  𝑏′′ 

𝑧  ≥   

(6.6a)  
''

max
u

  𝑏   𝑢′′ 

𝑠 𝑡          𝑢       

(6.6b) 

The original optimal primal variable vector 𝑥  can be recovered after solving masked prob-

lems (6.6a) and (6.6b) with  𝑧    𝑧   [𝑧   𝑧  
  

]
 
 and 𝑥   (𝑧  𝑟).  The original optimal 

dual variable vectors 𝑢  and 𝑣  can be solved by   𝑢    𝑢   [𝑢   𝑣  ]
 
. 

6.3 Masking A DC OPF Problem 

In this section, the masking techniques developed in Section 6.2 are specifically applied to 

the DC OPF problem outlined in Section 6.1.  First the composition of the matrices in (6.2a) and 

(6.2b) is specified.  In Section 6.3-B a method for constructing the   matrix used in (6.6a) and 

(6.6b) is detailed.  The linear program masking is then extended to include a quadratic cost func-

tion which is required for typical OPF problems. 

A. Problem Setup 

The DC OPF problem in (6.1) is formulated in terms of a standard linear program as in 

(6.2a).  Note that the bus angles 𝛿 in (6.1) are free variables; however, the standard linear pro-

gram formulation in (6.2a) requires nonnegative variables.  Therefore the bus angles 𝛿 are repre-

sented as the difference of two nonnegative variables, 𝛿  𝛿  𝛿   where 𝛿  𝛿 ≥  .  In 
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(6.2a), the optimization variable vector 𝑥  [𝑃 
 𝛿  

 𝛿  ].  There are    2   elements 

in 𝑥  where    is the number of generators and    is the number of buses.  The quadratic cost 

function terms in (6.1) are temporarily neglected, but they will be revisited in Section 6.3-C.  In 

(6.2a), the linear cost coefficient vector    [𝑑    ], where 𝑑 is the linear generator cost 

coefficients in (6.1), and there are 2   number of zeros.  Consider the equality constraints of 

(6.2a),   𝑥  𝑏 .  For DC OPF problems, the matrix    is constructed as follows. 

   [      ] 

Matrix    has    rows.  The       matrix    has a single +1 entry in each column for 

the rows corresponding to buses with generators and has zeros elsewhere.  The       matrix   

is the bus susceptance matrix with shunt elements neglected.  In the equality constraints of 

(6.2a), the column vector 𝑏   𝑃 
 , where 𝑃  is the vector of bus loads.  Therefore, the rows of 

   and 𝑏  enforce power balance at each bus.  Consider the inequality constraints of (6.2a), 

  𝑥  𝑏 .  The matrix    is constructed as follows. 

   

[
 
 
 
       

     

   𝑑𝑖  (𝑏  )     𝑑𝑖  (𝑏  )    

    𝑑𝑖  (𝑏  )    𝑑𝑖  (𝑏  )    ]
 
 
 

 

Matrix    has 2   2    rows where     is the number of branches.  Here 𝐼  is the 

      identity matrix.  As described in Section 6.1, the vector 𝑏   contains the branch suscep-

tances, and 𝑑𝑖  (𝑏  ) is the diagonal matrix with the vector 𝑏   on its diagonal.  The matrix 

     is the bus-to-branch incidence matrix, and 𝑑𝑖  (𝑏  )     is an        matrix.  In the in-

equality constraints of (6.2a), column vector  𝑏  [ 𝑃     
    𝑃     

   𝑃        
   𝑃        

  ]
 
.  

Vectors 𝑃      and 𝑃      are the upper and lower power generation limits, and 𝑃         is the 

branch power flow limits.   
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In (6.1), there is one equality constraint enforcing the reference/slack bus angle to equal ze-

ro, 𝛿    𝛿   
  𝛿   

   .  This constraint is best handled by simply removing the two col-

umns in    and    corresponding to variables 𝛿   
  and 𝛿   

 .   

As an example, consider defining  ,   and   as identity matrices and 𝑟 as the zero-valued 

vector in steps (6.2)–(6.5).   For this DC OPF example, matrix  ′ and vector 𝑏′ from (6.5a) is 

constructed for the IEEE 30-bus test system [77], and is shown in Figure 6.1.   

 

Figure 6.1:  𝑀′ matrix and 𝑏′ vector for IEEE 30-bus system 

Figure 6.1 indicates the typical problem structure of a DC OPF problem.  The topology of 

the system including bus connections and number of facilities is clearly evident, and these fea-

tures will be made private by the masking process.  In OPF problems, the dual optimization vari-

ables are important.  The dual optimization variable vector 𝑢 in (6.2b) corresponds to the equali-

ty constraints of the primal problem, and 𝑣 corresponds to the inequality constraints.  The loca-

tional marginal prices (LMPs) are the Lagrange multipliers of the power balance equality con-

straints; therefore the Lagrange multipliers 𝑢 are the LMPs.  In Section 6.2, the method for re-

covering the unmasked dual variables was shown. 

nz = 778

𝑃𝑔    𝛿
        𝛿                                𝑧𝑠𝑙  
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B. Constructing P and T Matrices for a DC OPF 

The masking steps of equations (6.2a) through (6.5a) are straightforward as the construc-

tion of matrices  ,   and   and vector 𝑟 only require generation of random positive numbers and 

permutations.  However, creation of the nonsingular   matrix used in (6.6a) is not as straight-

forward in the case of the DC OPF problem.  The   matrix is left multiplied by the constraint 

matrix  ′ in (6.5a) to permute, scale and take linear combinations of the rows.  A carelessly con-

structed   matrix can largely increase the solve-time of the fully masked DC OPF (6.6a).  A pos-

itive monomial   matrix is also right multiplied by  ′ to permute and scale the columns.  This 

section details some effective approaches for carefully constructing the   and   matrices for 

(6.6a), specifically  ′′    ′ . 

A good initial approach in constructing the   and   matrices involves calculating the 

symmetric reverse Cuthill-McKee ordering [78,79] of the Laplacian bus susceptance matrix   as 

seen in (6.1).  Doing so tends to place the nonzero elements in   closer to the diagonal thus de-

creasing its bandwidth.  This is demonstrated on the IEEE 30-bus test system [77] shown in Fig-

ures 6.2 and 6.3. 

 

Figure 6.2:  IEEE 30-bus system, 
Bus susceptance matrix B 

 

Figure 6.3:  IEEE 30-bus system, 
Symmetric Reverse Cuthill-McKee Ordering 

 

Consider the matrix  ′ in (6.5a) for DC OPF problems.  To clearly illustrate the typical 

sparse structure of  ′ in a DC OPF problem, let matrices  ,   and   be identity matrices and 𝑟 

be the zero-valued vector, instead of their respective random counterparts.  A color-coded spy-

nz = 112 nz = 112
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plot displaying the nonzero elements and values in matrix  ′ and vector  ′ from (6.5a) is shown 

in Figure 6.4, for the IEEE 30-bus test system [77]. 

 

Figure 6.4:  Nonzero elements of M' and b' in 30-bus system 

The typical structure of matrix  ′ for the DC OPF can be seen in Figure 6.4 with obvious 

distinguishable sections; grid lines and labels were inserted to emphasize these sections.  Gener-

ally, the numerical values of matrix  ′ in Figure 6.4 will be secure by properly constructing the 

random matrices  ,   and    and vector 𝑟 discussed in 6.2.  An attacker could, however, easily 

identify the topology of the system by viewing matrix  ′ in Figure 6.4. 

The final step of the masking process requires left multiplying a nonsingular matrix   and 

right multiplying a random positive monomial matrix  , specifically  ′′    ′  in (6.6a).  One 

of the purposes of the   matrix is to increase the number of nonzero elements in order to obscure 

the number of facility types and the topology of the power system.  Using Figure 6.4 as example, 

it can be seen that the columns in sections A-C are much more dense than the columns in D and 

E.  Naively taking random row combinations of  ′ would increase the density of the columns in 

A-C much more than columns in D and E.  By counting the number of denser columns, an at-

tacker could determine the number of generators and buses, as there would be   +2  -2 denser 

nnz = 778
 

 

-91

-1
+1

+91

 

 

-0.3

-0.022
+0.16

+1.3
A      B         C                      D                            E 



97 

columns.  Having the number of generators and buses, an attacker knowing the DC OPF formu-

lation could then calculate the number of system branches    .  The nonsingular matrix   must 

carefully be constructed to prevent against this.  The structure of  ′ in Figure 6.4 can be exploit-

ed to perform linear row operation tricks for the DC OPF that more evenly distribute nonzero 

column densities.  The row operation tricks will be shown illustratively. 

First a matrix    is multiplied by  ′ 

to get matrix    ′ in Figure 6.5.  The 

nonzero column density of    ′ in Figure 

6.5 has been more evenly distributed com-

pared to  ′ in Figure 6.4.  The number of 

nonzero elements has also been reduced 

from 778 to 523.  With some manipulation, 

matrix    ′ in Figure 6.5 can be permut-

ed into a type of nonsquare banded matrix 

as in Figure 6.6.  From Figure 6.6, a Dul-

mage-Mendelsohn decomposition [80,81] can be performed as in Figure 6.7.  These steps will be 

consolidated into matrices    and    to get      
    in Figure 6.7.  The matrices in Figures 

6.6 and 6.7 have nice fill-reducing structures for solving the partially masked OPF problem.   

 

Figure 6.6:  Nonsquare banded matrix 

 

Figure 6.7:  Dulmage-Mendelsohn decomposition 

nnz = 523
 

 

-50

-1
+1

+50

 

 

-2.2

-0.024
+0.01

+2.6

nnz = 523
 

 

-0.98

-0.32
+1.0e-2

+0.71

 

 

-0.84

-0.017
+3.2e-3

+0.88

Figure 6.5:  Nonzero elements of  

P1M' in 30-bus system 

nnz = 523
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Each row in Figure 6.7 has also been divided by its 2-norm to have more uniform values.  

In the 30-bus system, dividing by each row’s norm lowered the condition number of the con-

straint matrix  ′ from 550.4 to 79.5.  The masking process can be continued to obscure sensitive 

information like the number of generators, buses and branches.  The matrix in Figure 6.7 is well 

suited for performing linear row combinations that will increase the number of nonzeros.   

A nonmonomial matrix    is constructed and it is left multiplied by      
    from Fig-

ure 6.7.  In this example, matrix    was carefully constructed to take linear combinations of the 

rows so that each row in Figure 6.8 has a number of nonzeros greater than or equal to 7; chosen 

because 7 was the maximum row nonzero density in Figure 6.7.  Alternatively a random sparse 

  matrix can quickly and easily be created, though this matrix would likely not evenly distribute 

nonzero row and column densities.  The matrix    should be created in such a way to maintain 

balance between sparsity and security in the problem.  The linear row combinations increase the 

number of nonzeros from 523 in Figure 6.7 to 1530 in Figure 6.8.  The matrix    could also be 

constructed to enforce the percentage of nonzeros in the columns. 

 

Figure 6.8:  Nonzero elements of  

P3P2P1M'T1 in 30-bus system 

 

Figure 6.9:  Nonzero elements of  

M''=PM'T in 30-bus system 

The final step of permuting the rows and columns of the matrix in Figure 6.8 is performed 

to completely obscure the matrix structure.  Any monomial matrix    can be created for permut-

nnz = 1530
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ing rows, and a positive monomial matrix    is needed for permuting columns.  Altogether, the 

final obscured matrix is  ′′           
        ′ , as in Figure 6.9. 

The matrix       ′  in Figure 6.9 is the constraint matrix in (6.6a) and (6.6b).  The 

multi-stage process of creating the matrix   outlined above hides the original structure and val-

ues of  ′ while maintaining sparsity.  No columns or rows have too great or too low of a non-

zero density, which prevents against attacks of that nature.  According to [43] the numerical val-

ues of the masked problem are sufficiently secure.  The system structure in    should be mostly 

hidden in  ′′, though to what extent is uncertain.  

C. Quadratic Cost Function 

In this section, the method for masking a quadratic cost function is detailed, which is typi-

cally required in OPF problems.  In (6.1), a quadratic cost function was shown for OPF prob-

lems, 
 

 
𝑃 

  𝑃   𝑑 𝑃 .  Rewriting this cost function in terms of 𝑥  [𝑃 
 𝛿  

 𝛿  ], as was 

done in Section 6.3-A, changes the primal and dual problems to those in (6.7a) and (6.7b). 

 
x

min    
 

 
𝑥  𝑥     𝑥 (6.7a) 

 𝑠 𝑡       𝑥  𝑏             

   𝑥  𝑏   

    𝑥 ≥    

 
wvu ,,

max    
 

 
[
𝑢
𝑣
 

]

 

[

𝑀 𝐶
  𝑀 

 𝑀 𝐶
  𝑀 

 𝑀 𝐶
  

𝑀 𝐶
  𝑀 

 𝑀 𝐶
  𝑀 

 𝑀 𝐶
  

𝐶  𝑀 
 𝐶  𝑀 

 𝐶  

] [
𝑢
𝑣
 

]  [
𝑏     

   

𝑏     
   

    

]

 

[
𝑢
𝑣
 

]  
 

 
        

 𝑠 𝑡     𝑣              (6.7b) 

  ≥    

Like before, the linear cost vector    [𝑑       ], but there is now also the quadratic 

cost matrix   with dimensions (  +2  -2)  (  +2  -2). 
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  [
  
  

] 

Following the masking procedure outlined in Section 6.2, (6.3) through (6.6a) and (6.6b) 

gives the final masked primal (6.8a) and dual (6.8b) problem for a quadratic cost function. 

 
''

min
z

   
 

 
𝑧      𝑧       𝑧 (6.8a) 

 𝑠 𝑡       ′′𝑧′′  𝑏′′            

    𝑧′′ ≥    

 
'',''

max
vu

 
 

 
[𝑢′′
𝑣′′

]
 

[ ′′ ′′   ′′  ′′ ′′  

 ′′   ′′  ′′  ] [𝑢′′
𝑣′′

]  [𝑏′′   ′′     
 ′′

 ′′   ′′
]
 

[𝑢′′
𝑣′′

]  
 

 
         

 ′′  

 𝑠 𝑡      𝑣  ≥             (6.8b) 

Most of the variables above were already defined in Section 6.2 with a few important dis-

tinctions.  In the linear cost function of Section 6.2,     [         ] with appended zero en-

tries corresponding to the slack variables; however, now due to the quadratic cost function this 

changes to     [(    𝑟      )       ] and  ′′   ′  .  There is also the new quadratic 

cost matrix  ′.   

 ′  [ 
    
  

] 

Matrix  ′ has appended zero entries corresponding to the slack variables, and  ′′     ′ .   

The original optimal primal solution to (6.7a) can be obtained by  𝑧    𝑧   [𝑧   𝑧  
  

]
 
 and 

𝑥   (𝑧  𝑟).  The original optimal dual solution to (6.7b) can be obtained by  

  𝑢    𝑢   [𝑢     𝑣        ]
 
. 
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6.4 Further Obscuring 

In this section, additional methods for masking an OPF are discussed.  Further obscuring 

methods may be necessary in order to hide the number and type of facilities in the system.   

A. Adding Constraints to the Cost Function 

Even in the fully obscured problem, there remains sensitive information that could be ex-

tracted.  By counting the number of nonzero entries in the masked linear cost coefficient  ′′ (or 

the masked quadratic cost coefficient     ), an attacker could determine the number of generators 

present in the system.  If the zero entries in  ′′ and  ′′ were filled in with nonzero entries then 

that particular attack could be prevented.  This can be accomplished by adding the linear con-

straints to the cost function, or by adding the linear constraints squared in the case of a quadratic 

cost function.  Consider a problem with quadratic cost function and linear constraints as in (6.9).   

 
x

min    
 

 
𝑥  𝑥    𝑥 (6.9) 

 𝑠 𝑡       𝑥  𝑏            

   𝑥 ≥    

The equality constraints in (6.9) can be rearranged as  𝑥  𝑏   , and quadratic combina-

tions of the constraints can be created using a symmetric matrix 𝑾. 

 ( 𝑥  𝑏) 𝑾( 𝑥  𝑏)     

This can be added to the objective function in (6.9) without affecting the optimization.   

 x
max    

 

 
𝑥 (  2  𝑾 )𝑥  (   2𝑏 𝑾 )𝑥  𝑏 𝑾𝑏 (6.10) 

 𝑠 𝑡       𝑥  𝑏                      

 𝑥 ≥         
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The optimal solutions to problems (6.9) and (6.10) are equivalent.  However, the optimiza-

tion problem of (6.10) has quadratic combinations of the equality constraints added to the objec-

tive function, which produces more nonzero entries in the objective function.  This approach can 

be used to prevent against attacks that count the number of nonzero entries in the objective func-

tion.  In the case of the OPF problem, this obscures the number of generators present. 

Figure 6.10 shows the very sparse quadratic, positive semidefinite cost matrix associated 

with the IEEE 30-bus test system from Figure 6.1.  Figure 6.11 shows the same quadratic cost 

matrix but obscured by using the technique in this section; in the complete masking process this 

matrix would also be permuted.  From Figure 6.10, it can be inferred the system has 6 genera-

tors, with the first 6 optimization variables corresponding to the power generation variables.  

From Figure 6.11, it is not obvious how many generators the system has, or which of the optimi-

zation variables are the power generation variables.  

 

Figure 6.10:  IEEE 30-bus quadratic cost matrix 

 

Figure 6.11:  Obscured quadratic cost matrix  

B. Fictitious Buses, Generators and Loads 

The approach in Section 6.4-A masks the number of generators in the cost function, but the 

total number of rows and columns in  ′′ contains information about the number of system facili-

ties.  To be exact the number of rows in  ′′ equals    +   +2   -2 and the number of col-
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umns equals 4  +4  + 2   -4.  An attacker with knowledge of just one of the variables   ,    

or    , could then calculate the two other unknown variables. 

To obscure the number of rows and columns, fictitious buses, generators and loads can be 

created.  A fictitious bus can be created by splitting an existing line.  This way of adding ficti-

tious buses does not alter the solution of the OPF, but naively adding fictitious generators can 

alter the solution.  However, a fictitious generator with very large cost would not be dispatched; 

therefore, the addition of an expensive generator should not affect the solution of the OPF.  Al-

ternatively, an offsetting fictitious load and generator pair at the same bus with equivalent upper 

and lower generation limits will also not affect the solution of the OPF.   

Figure 6.12 displays the one-line diagram of the IEEE 14-bus system [77], and Figure 6.13 

displays the same system with a fictitious bus, generator and line added.   

 

Figure 6.12:  IEEE 14-bus system 

 

Figure 6.13:  IEEE 14-bus system with fictitious 
bus, generator and lines   

In this basic example, a fictitious bus was added between buses 4 and 5, and the new 

transmission line reactances are set equal to ½ the reactance of the original line connecting buses 

4 and 5.  At the fictitious bus-15, an expensive generator is placed.  In the DC OPF problem, this 

generator is never dispatched.  Lastly, the line connecting buses 13 and 14 is split into two paral-

lel lines, each having double the reactance of the original line.  For the DC OPF problem, these 

modifications to the system do not change the optimal operating point. 
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6.5 Masking Nonlinear Constraints 

The previous methods used for masking linear programs [43], can be extended to masking 

nonlinear constraints such as those in the AC OPF.  Start with a nonlinear optimization problem 

having quadratic cost function, shown in (6.11)  

    
 

 
𝑥  𝑥     𝑥 (6.11) 

 𝑠 𝑡      𝑓  (𝑥)               

 𝑓    (𝑥)     

 𝑥 ≥    

Substitute the masked variable 𝑧     𝑥  𝑟, and neglect the constant cost term created. 

 
z

min    
 

 
𝑧     𝑧  (    𝑟      )𝑧 (6.12) 

 𝑠 𝑡      𝑓  ( (𝑧  𝑟))               

 𝑓    ( (𝑧  𝑟))     

 𝑧 ≥ 𝑟   

The nonlinear inequality constraints in (6.12) are converted to equality constraints through 

the introduction of slack variables 𝑧  .  Denote the optimization variable vector 𝑧  as the prior 

vector 𝑧 augmented with the slack variables, 𝑧   [𝑧  𝑧  
 ]   Define the linear cost coefficient 

vector     [(    𝑟      )       ] with appended zero entries corresponding to the slack 

variables.  Define the matrix 

 ′  [ 
    
  

] 

with appended zero entries corresponding to the slack variables.  The nonlinear equality con-

straints are constructed as 𝑓  
 (𝑧 ). 

x
min
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𝑓  
 (𝑧 )  [

𝑓  ( (𝑧  𝑟))

[
𝑓    ( (𝑧  𝑟))

  𝑧   𝑟
]   𝑧  

]    

Here   is a random positive monomial matrix and   is a random positive diagonal matrix.  

The formulation in (6.12) can then be rewritten as (6.13). 

 
 

 
𝑧    𝑧     𝑧′ (6.13) 

 𝑠 𝑡      𝑓  
 (𝑧 )              

 𝑧 ≥     

A random positive monomial matrix   scales and permutes the optimization variables with 

𝑧      𝑧′.  The objective function is modified as  ′′   ′   and  ′′     ′ .   

There are some issues to consider when constructing the   matrix for nonlinear con-

straints.  Recall, in the linear case, the   matrix could be any nonsingular matrix.  For the non-

linear case, a nonmonomial   matrix would create linear row combinations of the nonlinear con-

straints in 𝑓  
 (𝑧 ).  It is true that the global solution of the optimization is unchanged when mul-

tiplying a nonsingular   matrix by the nonlinear constraints, however there can be issues of con-

vergence to global versus local minimum.  In testing several trials, it was observed that when a 

nonmonomial   matrix was used the optimization often converged to a local minimum, even 

when the unmasked nonlinear problem converged to a global minimum using the same initial 

conditions.  Conversely, when using a monomial   matrix the minimum that was found in the 

unmasked problem was equivalently found in the masked problem.  Using a nonsingular   ma-

trix and a positive monomial   matrix, the nonlinear constraints 𝑓  
 (𝑧 ) are transformed as fol-

lows. 

 𝑓  
 (    𝑧 )  𝑓  

 ( 𝑧  )  

 𝑓  
  (𝑧  )    𝑓  

 ( 𝑧  ) 

'
min

z
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The final masked problem with nonlinear constraints is (6.14).   

 
''

min
z

 

 
𝑧′′  ′′𝑧′′   ′′ 𝑧′′ (6.14) 

 𝑠 𝑡      𝑓  
  (𝑧′′)              

 𝑧′′ ≥      

As before the original optimal primal solution to (6.11) can be obtained by  

 𝑧    𝑧   [𝑧   𝑧  
  

]
 

 and 𝑥   (𝑧  𝑟).  The original optimal dual solution can be ob-

tained by   𝑢    𝑢   [𝑢     𝑣        ]
 
. 

6.6 Numeric Example 

The IEEE 30-bus network [77] is used for the example in the following section.  It is pre-

sented as both the DC OPF and the full nonlinear AC OPF to show the successful recovery of the 

original optimal solution from both masked problems.  The IEEE 30-bus network has partially 

been illustrated as an example in Section 6.3-B, Figures 6.3-6.9.  It will be examined more close-

ly here.  The 30-bus network has 6 generators and 41 branches.  Some of the branch-flow limits 

were tightened to enforce binding constraints in the OPF examples. 

A quadratic cost function is assumed in the DC OPF having the formulation shown in 

(6.1).  The masking process requires the generation of a random positive monomial matrix  ,  

a random positive diagonal matrix   and a random positive vector 𝑟.  The   matrix will be de-

termined using the symmetric reverse Cuthill-McKee ordering.  The original primal variable 𝑥 is 

substituted with 𝑥   (𝑧  𝑟).  All inequality constraints are converted to equality constraints 

via introduction of slack variables creating constraint matrix  ′ as in (6.5a) and in Figure 6.14.  

The    matrix in Figure 6.14 was constructed with random numbers and permutations where 

applicable.  A nonsingular matrix   is carefully constructed using the steps outlined in Section 

6.3-B, and a random positive monomial matrix   is generated.  The constraint matrix     

  ′  is in the form of (6.8a) and shown in Figure 6.15.   
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Figure 6.14:  Nonzero elements of M' and b'  
in 30-bus system 

 

Figure 6.15:  Nonzero elements of  

M''=PM'T in 30-bus system 

Further obscuring is performed by adding squared constraints to the cost function as out-

lined in Section 6.4-A.  The fully masked DC OPF is passed to a quadratic program solver such 

as quadprog in MATLAB or cplex in GAMS [82], and the masked primal and dual variables are 

calculated.  The original optimal primal variables can be solved with  𝑧    𝑧   [𝑧   𝑧  
  

]
 
 

and 𝑥   (𝑧  𝑟).  The original optimal objective value equals 𝑓  
 

 
𝑥   𝑥    𝑥 , as in 

(6.7a).  The primal variable vector 𝑥  [𝑃 
 𝛿  

 𝛿  ], so the final optimization variables 

are 𝑃  and 𝛿  𝛿  𝛿 .  The original optimal dual variables can be solved with   𝑢    𝑢   

[𝑢     𝑣        ]
 
, and the LMPs are the Lagrange multipliers 𝑢. 

The linear and quadratic cost coefficients of the IEEE 30-bus DC OPF are shown in Table 

6.1.   

Bus # c2 [$/MWh2] c1 [$/MWh] c0 [$] 

1 0.02 2 0 

2 0.0175 1.75 0 

13 0.025 3 0 

22 0.0625 1 0 

23 0.025 3 0 

27 0.00834 3.25 0 

Table 6.1:  IEEE 30-bus Generator Costs 

nnz = 778
 

 

-91

-0.015
+0.013

+91

 

 

-0.3

-0.022
+0.16

+1.3

nnz = 1524
 

 

-1.3

-4.7e-4
+5.8e-5

+1

 

 

-0.86

-0.011
+4.9e-5

+1.5
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The binding branch flow constraints from the DC OPF are shown in Table 6.2 and the op-

timal power generations, bus angles and locational marginal prices are shown in Table 6.3.  The 

recovered solution from the masked problem matches the solution from the unmasked problem 

as well as the optimal solution given by MATPOWER [83].   

Optimal Cost:     𝑓    67 2  

From Bus To Bus    [MW]        [MW]   [$/MWh] 

1 3 16.00 16.00 3.21 

22 21 20.00 20.00 2.37 

Table 6.2:  DC OPF Binding Branch Flow Constraints 

Bus # 
Power Gen. 

𝑃  [MW] 
Bus An-

gles 𝛿 

LMPs  

[$/MWh] 

 
Bus # 

Power Gen. 

𝑃  [MW] 
Bus An-

gles 𝛿 

LMPs  

[$/MWh] 

1 29.99 0° 3.20  16  -3.57° 4.39 

2 56.19 -0.48° 3.72  17  -3.99° 4.48 

3  -1.74° 4.77  18  -4.33° 4.32 

4  -2.05° 4.43  19  -4.72° 4.38 

5  -1.99° 3.99  20  -4.54° 4.41 

6  -2.46° 4.27  21  -3.66° 5.3 

7  -2.90° 4.16  22 17.23 -3.43° 3.15 

8  -2.99° 4.26  23 18.48 -2.04° 3.92 

9  -3.31° 4.43  24  -2.75° 3.54 

10  -3.76° 4.51  25  -0.71° 3.78 

11  -3.31° 4.43  26  -1.48° 3.78 

12  -2.73° 4.30  27 41.27 1.00° 3.94 

13 26.04 -0.64° 4.30  28  -2.21° 4.23 

14  -3.44° 4.25  29  -0.45° 3.94 

15  -3.27° 4.21  30  -1.39° 3.94 

Table 6.3:  DC OPF Optimal Pg, δ and LMPs 

The nonlinear AC OPF for the 30-bus network can also be masked and solved for by fol-

lowing the steps in Section 6.5.  The AC OPF formulation can be seen in [83].  A monomial   

matrix was used in this AC OPF example, to better ensure locating the global minimum.  The 
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results of the full AC OPF are listed below, and the solution from the masked problem matches 

the solution from the unmasked problem as well as the solution given by MATPOWER. 

Optimal Cost:     𝑓   6    2 

From Bus To Bus    [MW]        [MW]   [$/MWh] 

1 3 16.00 16.00 0.54 

6 8 32.00 32.00 47.32 

22 21 20.00 20.00 8.19 

23 15 16.00 16.00 0.81 

23 24 16.00 16.00 1.10 

27 25 16.00 16.00 12.16 

Table 6.4:  AC OPF Binding Branch Flow Constraints 

Bus 
# 

Power Gen. 

𝑃  [MW] 
Bus  

Voltage 

LMPs  

[$/MWh] 
 

Bus 
# 

Power Gen. 

𝑃  [MW] 
Bus  

Voltage 

LMPs  

[$/MWh] 

1 33.67 1.01 0° 3.35  16  1.01 -3.06° 5.14 

2 48.38 1.01 -0.55° 3.44  17  0.99 -3.44° 5.64 

3  1.00 -1.69° 3.73  18  1.01 -3.66° 5.35 

4  1.00 -1.99° 3.69  19  0.99 -4.02° 5.57 

5  0.99 -1.92° 3.50  20  0.99 -3.90° 5.63 

6  0.99 -2.30° 3.53  21  0.99 -3.22° 8.70 

7  0.98 -2.68° 3.55  22 8.71 0.99 -3.06° 2.09 

8  0.98 -2.71° 34.00  23 27.41 1.06 -1.68° 4.37 

9  0.99 -2.96° 5.00  24  1.02 -2.25° 5.66 

10  0.99 -3.30° 5.79  25  1.04 -0.37° 12.04 

11  0.99 -2.96° 5.00  26  1.03 -0.78° 12.30 

12  1.04 -2.41° 4.59  27 43.39 1.07   1.02° 3.97 

13 30.84 1.10 -0.26° 4.54  28  1.00 -2.16° 9.68 

14  1.03 -2.96° 4.81  29  1.05 -0.12° 3.89 

15  1.04 -2.77° 4.93  30  1.04 -0.91° 4.03 

Table 6.5:  AC OPF Optimal Pg, δ and LMPs 
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6.7 Conclusion 

The optimal power flow (OPF) problem is a central problem in power systems optimiza-

tion.  The need to regularly solve this problem for large scale models motivates the use of cloud 

computing resources.  However, concerns over the security of confidential power system models 

limits the potential use of cloud computing.  In this chapter, existing methods of masking optimi-

zation problems was extended to the OPF problem.  The masking process is appealing to system 

operators because it is a simple linear transformation that ensures a level of security without 

spending any dollars.  The contributions made to this work include the procedure for extracting 

the Lagrange multipliers/ locational marginal prices from the masked dual problem, a method for 

preserving problem sparsity while ensuring a level of security in the masked problem, and a 

method for masking a quadratic cost function.  The nonlinear AC OPF was examined as well, 

where its limitations were observed.  In the nonlinear case, the numerical values of the model can 

be masked but there is a limitation on completely masking the system topology.  The masking 

procedures in this work have additionally been extended by the authors in [84] to include contin-

gency analysis. 

The work in this chapter is valuable in any circumstance where the confidentiality of a 

power system model is important.  For example, the procedure of masking power system prob-

lems for cloud computing could be extended for use in multi-party computation.  Here each party 

contributes a piece of the entire problem to collaboratively solve the problem involving all par-

ties.  From a power systems perspective, each party uses the masking procedure to share their 

confidential part of the power system model to collectively solve problems such as generation 

dispatch and transmission planning, without revealing any sensitive details to one another. 

The steps involved in the obscuring procedure in this chapter hint at an intriguing possibil-

ity of transforming one confidential power system model, into an entirely new and legitimate 

model (or family of models).  This possibility would allow for increased sharing of confidential 

power system models for research purposes.  Furthermore, this would allow for the secure shar-

ing of equivalent models without divulging details of the actual system.  Such a transformation 
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between models would imply that the need to use “true system models” for purposes of algo-

rithmic development would become unnecessary.  The results would suggest studies of any sys-

tem of similar complexity are sufficient.  It will be shown that this transformation exists for the 

DC OPF problem, which is presented next in Chapter 7. 
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Chapter 7 

Structure Preserving Transformation 

The electric power grid delivers essential energy to support almost all non-transportation 

energy needs.  It is indisputably important to the functions of society and is considered part of 

the nation’s critical infrastructure. There is considerable concern that the power grid may be vul-

nerable to and targeted for malicious cyber and physical attacks.  These concerns raise conflict-

ing needs in the area of advanced power system analysis and research.  As critical energy infra-

structure information (CEII), access to true power system data is restricted.  At the same time, 

interest in advancing power system tools with a view toward security has increased.  For a re-

searcher working to advance this field, results must be shown on real models to prove credibility.  

Unfortunately, these needs and expectations have resulted in the current state in which 

some researchers with access to CEII data can conduct relevant research using credible models; 

however, these models and results cannot be independently verified by peers in the field.  This 

goes against traditional scientific principles that call for public verification of results.  Corre-

spondingly, there is a fundamental need for new standard publicly-available models that are 

provably related to credible but secure models.  The purpose of this chapter is to show that such 

models can be developed through transformations that yield a new power system model that 

maintains the privacy of the original data.  The transformation maps the solution of the new 

model to the original, establishing a strong and relevant connection between them.  

In this chapter, the transformation techniques are applied to optimal power flow (OPF) 

models, as the OPF problem is the most important problem routinely solved in this industry.  The 

OPF problem is known to be a non-convex problem and much of the current advanced research 

is directed towards developing efficient methods to find global optima.  The analysis in this 

chapter begins with a linearized version of the OPF problem and show that it is possible to trans-

form a given OPF model into a different OPF model that relates the optimal solutions through a 

transformation.  It is not possible to infer the original model solely from the data of the new 

transformed model. 
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7.1 DC Optimal Power Flow Problem Overview 

The standard DC OPF problem is shown below in (7.1).  In Chapter 6, DC OPF problems 

were obscured for preserving confidentiality in cloud computing.  However, the transformations 

in Chapter 6 do not preserve a typical power system structure, which precludes application of 

OPF specific solution techniques.  The optimization variables in (7.1) are the powers generated 

𝑃  and bus angles 𝛿. 

 min
𝑃 ‚ 𝛿

   
 

 
𝑃 

   𝑃     
 𝑃  (7.1) 

 𝑠 𝑡           𝑃   𝛿   𝑃             

 𝛿       

 𝑃      𝑃  𝑃       

  𝑃         𝑑𝑖  (𝑏  )    𝛿  𝑃          

The constraints in (7.1) are power balance at each bus, the reference bus angle equal to 0°, 

power generation upper and lower limits, and power flow limits in both directions on transmis-

sion lines.  Primarily, the analysis in this chapter will be on DC OPF problems with linear cost 

functions.  Therefore the quadratic cost terms in (7.1) will be removed, and the problem will be 

rewritten in general form (7.2).  

 min
𝑥

     𝑥 (7.2) 

 𝑠 𝑡         𝑥  𝑏            

    𝑥 ≥    

In (7.2), 𝑃  and 𝛿 are free variables.  Slack variables 𝑥   are included to convert inequality 

constraints to equality constraints.  The slack variables are nonnegative, 𝑥  ≥  , and are en-

forced by    𝑥 ≥  , where     [    ] and   is the identity matrix.  The optimization variables 

are 𝑥  [𝑃 
    𝛿    𝑥  

 ]
 
.   

The constraint matrix   and vector 𝑏 have typical topologies as seen in Figure 7.1 which 

displays the IEEE 14-bus test system [77].  Matrix   has 𝑚 =  𝑏𝑢𝑠 + 2  𝑒  + 2 𝑙𝑖 𝑒 + 1 rows 
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and   =  𝑏𝑢𝑠 + 3  𝑒  + 2 𝑙𝑖 𝑒 columns.  Therefore there are   − 𝑚 =   𝑒  − 1 more columns 

than rows in  .  It should be emphasized that the number of rows 𝑚 is less than number of col-

umns  , as it is critical for the transformation analysis.  Note that the   matrix has full-rank in 

typical DC OPF problems and is therefore assumed to be full-rank. 

 

Figure 7.1:  𝑀 matrix and 𝑏 vector for IEEE 14-bus system 

7.2 Transformation Problem 

In this section, the procedure is detailed for transforming one DC OPF problem to a com-

pletely new problem.  To begin with, two different DC OPF problems are constructed, with the 

first in (7.2) and the second in (7.3). 

 min
𝑥'

     𝑥′ (7.3) 

 𝑠 𝑡         ′𝑥′  𝑏′            

    𝑥′ ≥    

nz = 200

𝑃           𝛿                                     𝑥   
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For simplicity, it is assumed the two DC OPF problems possess the same number of gener-

ators, buses and lines.  The two models differ by having different bus and line topologies as well 

as having numerically different component values such as line susceptances, generator cost coef-

ficients, etc.   

Next, a bidirectional linear transformation between (7.2) and (7.3) is constructed using 

similar linear transformations as those discussed in Chapter 6 for masking linear programs.  The 

goal is to construct the transformation matrices   and   and vectors   and 𝑟 such that the fol-

lowing relationships hold.  

  ′       (7.4a) 

  ′    𝑇  +  ′𝑇  (7.4b) 

 𝑏′    𝑏 +  ′𝑟 (7.4c) 

 𝑥* =  (𝑥′*   𝑟) (7.4d) 

This structure preserving transformation was inspired by the confidentiality preserving 

OPF from Chapter 6.  If the masking process from Chapter 6 were able to create an OPF struc-

ture rather than a random structure, it would allow several possibilities.  It would allow secure 

exchanging of relatable power system models without divulging details of the original model.  If 

the masking process could create an OPF structure, then an important statement can also be made 

about the security of the masked problem.  If an adversary intercepted a masked OPF problem 

and attempted to reverse engineer an OPF structure out of the problem, then the structure pre-

serving transformation would prove that many OPF structures could be backed out of the masked 

problem, thereby ensuring a high level of security.   

Up to this point in time however, the transformation between OPF problems has not been 

identified within the restrictions of the masking process from Chapter 6.  In particular, there are 

two sufficient conditions for the masking process of Chapter 6 that made identifying a transfor-

mation between OPF problems challenging, if not possible at all.  In Chapter 6, the matrix   was 

required to be positive monomial (i.e. a matrix containing exactly one positive entry per row and 
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column, with the remainder of the entries being zero), and vector 𝑟 was required to be nonnega-

tive.  These sufficient conditions were necessary for guaranteeing the optimal solutions 𝑥* and 

𝑥′* mapped to one another by 𝑥* =  (𝑥′*   𝑟).  The formulation of the DC OPF in this chapter is 

slightly different than in Chapter 6: free variables are no longer required to be split into positive 

and negative components and the constraints are dropped that enforce the powers generated and 

bus voltage angle components to be greater than or equal to zero.  This simplified formulation 

can be observed in Figure 7.1 and in (7.3).  With the simplified formulation, the two sufficient 

conditions are slightly less stringent.  Define 𝑥 = [𝑥0
𝑇  𝑥𝑠𝑙

𝑇]𝑇 where 𝑥0 = [𝑃 
 𝑇  𝛿 𝑇]𝑇, and define 

𝑟 = [𝑟0
𝑇  0𝑇]𝑇 and  

   [
      

    
].  

Observe the relationship between 𝑥* and 𝑥′*. 

 𝑥   (𝑥  𝑟)  

 [
𝑥 

𝑥  
]  [

      

    
] ([

𝑥 
 

𝑥  
 ]  [

𝑟 
 
])  

With the simplified formulation of the DC OPF, the sufficient conditions that guarantee the 

optimal solutions relate by 𝑥* =  (𝑥′*   𝑟) are that 𝑇22 must be positive monomial and 𝑟0 is free 

to be any value.  Even under these less stringent sufficient conditions, determining appropriate 

matrices   and   and vectors   and 𝑟 such that relationships (7.4a)−(7.4c) hold has been chal-

lenging.  There may be no reason to expect the transformation to exist at all under these suffi-

cient conditions on   and 𝑟. 

For the purpose of identifying whether the structure preserving transformation exists at all, 

these two sufficient conditions are relaxed so that   can be any nonsingular matrix and 𝑟 can be 

any vector.  This relaxation comes at a cost however, as now the two OPF problems are not 

guaranteed to map to each other by (7.4d), unless 𝑥* and 𝑥′* are solved apriori and (7.4d) is ex-
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plicitly enforced.  Therefore the optimal solutions 𝑥* and 𝑥′* to DC OPF problems (7.2) and (7.3) 

respectively, are determined apriori before proceeding with the transformation.   

Relationships (7.4a)−(7.4d) all have specific purposes.  Relationship (7.4a) enforces a line-

ar transformation between the constraint matrix   in (7.2) and the constraint matrix  ′ in (7.3).  

This is done by multiplying   on the left and right by some transformation matrices   and  .    

Relationship (7.4b) enforces a linear transformation between the cost coefficient vector  

  in (7.2) and the cost coefficient vector  ′ in (7.3).  A linear combination of the rows in  

constraint matrix  ′ is added to  𝑇  in order to satisfy (7.4b).  This is justified because adding 

 ′𝑇  to the cost function does nothing more than add a constant 𝑏′𝑇 , 

 ′𝑇𝑥′   ( 𝑇  +  𝑇 ′)𝑥′    𝑇 𝑥′    𝑇𝑏′. Relationship (7.4c) enforces a linear transformation 

between the constraint vector 𝑏 in (7.2) and the constraint vector 𝑏′ in (7.3).   

Relationship (7.4d) enforces a linear transformation between the optimal solution 𝑥* in 

(7.2) and the optimal solution 𝑥′* in (7.3).  In [43] and [45], the matrix   was required to be a 

positive monomial matrix, and vector 𝑟 was required to be nonnegative.  By defining   and 𝑟 this 

way, it can be shown that if  𝑠𝑙 𝑥 ≥   then it is guaranteed that  𝑠𝑙 𝑥′ ≥   as well.  These require-

ments on   and 𝑟 will be removed now, as they restrict the ability to transform to a new system 

with an OPF structure.   

The transformation between the DC OPF problems (7.2) and (7.3) is developed by deter-

mining appropriate matrices   and   and vectors   and 𝑟 such that the relationships 

(7.4a)−(7.4d) hold.  Next, the relationships in (7.4a)−(7.4d) and the degrees of freedom inherent 

in the transformation (i.e. the null-spaces of the DC OPF problems' matrices) are exploited to 

describe an appropriate choice for these matrices and vectors.   

The specifics of each transformation are detailed here.  To begin, the relationship (7.4a) 

can be enforced by defining   as the sum of two terms,   =  0 + 𝑵 , where the  ×(  𝑚) ma-

trix 𝑵 is the null-space of  , i.e.  𝑵 = 0𝑚×(  𝑚).  Given any nonsingular  , one can solve 

 0 =  † ‒1 ′, where † denotes the Moore-Penrose pseudo-inverse [74].  This solution structure 
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on   satisfies (7.4a).  It is necessary for   to be full-rank, therefore matrices   and   must be 

full-rank. 

Next, relationship (7.4b) is expanded by substituting   =  0 + 𝑵  as shown in (7.5), 

where matrix   and vector   are unknown.   

  ′    0
𝑇

   +  𝑇𝑵𝑇  +  ′𝑇  (7.5) 

The procedure goes as follows,   is solved as a function of   in (7.6) by taking the 

pseudoinverse of  ′𝑇. 

   =  ′𝑇
†
( ′    0

𝑇     𝑇𝑵𝑇 ) (7.6) 

Next   is substituted back into (7.5) which can be rewritten as in (7.7). 

 (𝐼    ′𝑇 ′𝑇
†)( ′    0

𝑇
  ) = (𝐼    ′𝑇 ′𝑇

†) 𝑇𝑵𝑇  (7.7) 

Note that  ′𝑇 ′𝑇
†

   𝐼 ×  and  ′𝑇
†
 ′𝑇 = 𝐼𝑚×𝑚, therefore it follows that 

(𝐼    ′𝑇 ′𝑇
†) ′𝑇 = 0 ×𝑚.  The  ×  matrix 𝐼    ′𝑇 ′𝑇

†
 has rank of order   𝑚, and can be 

rewritten as 𝐼    ′𝑇 ′𝑇
†
 = 𝑵′𝑵′𝑇, where the  ×(  𝑚) matrix 𝑵′ is the null-space of  ′, i.e. 

 ′𝑵′ = 0𝑚×(  𝑚).  Note that 𝑵′† = 𝑵′𝑇, 𝑵′𝑵′𝑇   𝐼 ×  and 𝑵′𝑇𝑵′ = 𝐼(  𝑚)×(  𝑚).   

Before solving for   by using (7.7) and the above observations, it should be emphasized 

that   =  0 + 𝑵  must have full-rank of  .   0 will have rank 𝑚 as long as   is full-rank 𝑚; 

therefore, 𝑵  must have rank   𝑚.  It becomes necessary to split   into the sum of two 

(  𝑚)×  terms   =  1 +  2.  The first of these two terms  1 will be solved by using (7.7) and 

the prior observations. 

  1 = ( 𝑇𝑵)
† ′𝑇𝑵′𝑵′𝑇 (7.8) 

Setting   =  1 now satisfies (7.7).  With   solved as a function of   using (7.6), relation-

ship (7.4b) will be satisfied.  As it turns out however, 𝑵 1 is rank 1, and therefore   is still lack-
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ing   𝑚 1 in its rank.  Fortunately the remaining   𝑚 1 rank can be acquired by the second 

term  2.  Observe in (7.5) that  𝑇 multiplies an (  𝑚)×1 vector 𝑵𝑇 .  Define 𝑵
 ~

 as the 

(  𝑚)×(  𝑚 1) null-space of  𝑇𝑵, such that  𝑇𝑵𝑵
 ~

 = 0 1×(  𝑚 1).  Define an (  𝑚 1)×  

matrix 𝑽 which can be any full-rank matrix.  Finally define  2 = 𝑵
 ~
𝑽, which yields 

  =  0 + 𝑵( 1 +  2) to be a full-rank matrix. 

The two vector relationships (7.4c) and (7.4d) have yet to be satisfied, but can be satisfied 

by appropriately determining the  ×1 vector 𝑟.  Define 𝑟 as the sum of two terms, 𝑟 = 𝑟0 + 𝑵′𝑞.  

Rearrange (7.4c) to solve for 𝑟0 as shown in (7.9). 

 𝑟0 =  ′†(𝑏′    𝑏) (7.9) 

Setting 𝑟 = 𝑟0 will now satisfy (7.4c), but not (7.4d).  The last remaining variable to be 

solved for is 𝑞, which can be obtained by substituting 𝑟 = 𝑟0 + 𝑵′𝑞 and rearranging (7.4d).   

 𝑞 = 𝑵′†( 𝑥′*    ‒1𝑥*   𝑟0 ) (7.10) 

Substitute 𝑞 from (7.10) into 𝑟 = 𝑟0 + 𝑵′𝑞.  This solution for 𝑟 satisfies both (7.4c) and 

(7.4d).  At this point, all four relationships (7.4a)−(7.4d) have been satisfied by appropriately de-

termining the transformation matrix   and vectors   and 𝑟.  The transformation solution is not 

unique, as there is some flexibility in choosing any full-rank matrix   and also any full-rank ma-

trix 𝑽 as described earlier. 

7.3 Example 

In this section, a numeric example of the transformation method described in Section 7.2 is 

presented.  Two OPF problems derived from the IEEE 14-bus system are considered [77].  The 

first OPF problem has the same network topology and line susceptances (calculated as the recip-

rocal of the line reactance and neglecting line resistance) as the standard IEEE 14-bus system 

and has a 100 MVA base power.  The one-line diagram for this system is shown in Figure 7.2 
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and a spy plot of matrix   and vector   is shown in Figure 7.3.  To enable two-dimensional plot-

ting of the feasible space of generator power injections (detailed in the Appendix Section 7.6), 

this example considers an OPF problem with only three generators, as opposed to five generators 

in the standard IEEE 14-bus system.   

 

Figure 7.2:  One-line diagram for OPF problem 1 

 

Figure 7.3:  𝑀 matrix and 𝑏 vector for 
OPF problem 1 

The coefficients for the linear generator cost functions are given in Table 7.1.  All genera-

tors have lower generation limits of zero and upper generation limits specified in Table 7.1.  

Line-flow limits of 100 MW are enforced on all lines. Load demands are the same as those speci-

fied for the standard IEEE 14-bus system. 

Generator Cost Coefficient [$/𝑀𝑊ℎ] Upper Generation Limit [𝑀𝑊] 

1 20 330 

2 30 140 

8 25 50 

Table 7.1:  Generator data for OPF problem 1 

The second OPF problem has the same number of buses, lines and generators as the first 

OPF problem, but has different network topology, line susceptances, generator and line-flow 

nz = 190
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limits, load demands and generator costs.  The one-line diagram for the second system is shown 

in Figure 7.4 and a spy plot of matrix  ′ and vector  ′ is shown in Figure 7.5. 

 

Figure 7.4:  One-line diagram for OPF Problem 2 
 

Figure 7.5:  𝑀′ matrix and 𝑏′ vector for  
OPF problem 2 

The coefficients for the linear generator cost functions in the second OPF are given in Ta-

ble 7.2, load demands are given in  Table 7.3 and line susceptances are given in Table 7.4.  All 

line-flows are limited to 90 MW.   

Generator Cost Coefficient [$/𝑀𝑊ℎ] Upper Generation Limit [𝑀𝑊] 

4 19.11 302 

5 40.42 50 

9 10.00 393 

Table 7.2:  Generator data for OPF problem 2 

Bus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Demand 

[𝑀𝑊] 
31.5 47.6 64.5 5.9 25.4 37.4 12.5 35.2 58.9 16.1 17.3 35.7 94.5 21.7 

 Table 7.3:  Load demands for OPF problem 2 

nz = 190
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From Bus 1 1 2 2 3 4 4 4 4 5 

To Bus 5 12 4 5 8 5 7 8 10 11 

Susceptance [𝑝.𝑢.] 18.00 5.41 4.21 4.87 5.82 6.85 19.81 4.74 1.70 4.14 

           
From Bus 6 6 6 6 7 7 9 9 10 12 

To Bus 11 12 13 14 8 14 11 14 11 13 

Susceptance [𝑝.𝑢.] 6.04 3.30 9.45 5.49 8.12 10.82 3.80 6.10 4.75 2.57 

Table 7.4:  Line susceptances for OPF problem 2 

The feasible spaces for generator power injections in the first and second OPF problems 

are shown in Figures (7.6) and (7.7), respectively.  The feasible space in Figure 7.6 corresponds 

to the first OPF problem having the formulation in (7.2), and the feasible space in Figure 7.7 cor-

responds to the second OPF problem having the formulation in (7.3).  The details for reducing 

these OPF problems to two optimization variables (generator power injections 𝑃 1 and 𝑃 2) and 

plotting the optimization feasible space are outlined in the Appendix Section 7.6.  The contour 

lines illustrate the linear cost function, with color blue representing lower cost.  Using the proce-

dure detailed in Section 7.2, a transformation (i.e. a set of matrices   and   and vectors   and 𝑟) 

is generated that satisfies relationships (7.4a)−(7.4d). 

In Figure 7.8, the transformation is applied to the first OPF problem (7.2) and is plotted in 

the coordinate system consistent of the second OPF problem (7.3).  That is to say, the purple col-

ored polytope in Figure 7.8 corresponds to the feasible space of the problem formulation shown 

in (7.11b).  The formulation in (7.11a) displays the transformation taking place on (7.2) to con-

vert to (7.3).  The formulations in (7.11a) and (7.11b) are equivalent, and the optimal solution 𝑥* 

of (7.2) can be recovered from either (7.11a) or (7.11b).  Notice the formulation in (7.11b) is 

nearly identical to the formulation in (7.3), excluding the inequality constraints  𝑠𝑙  𝑥′ ≥  𝑠𝑙  𝑟.  

Relaxing these inequality constraints and replacing them with  𝑠𝑙 𝑥′ ≥   completely transforms 

(7.2) to (7.3), which does not change the optimal solution 𝑥′*.  The feasible space of (7.3) is 

shown as the green colored polytope in Figure 7.8.   
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min
𝑥

   (         )(   𝑥  𝑟) 

𝑠 𝑡        (   𝑥  𝑟)   𝑏      𝑟 

   𝑥 ≥   

(7.11a)   min
𝑥'

      𝑥′ 

𝑠 𝑡         ′𝑥′   ′          

   ( (𝑥  𝑟)) ≥   

(7.11b) 

 

Figure 7.6:  Feasible space of power generation for OPF problem 1 (Linear cost) 

 

Figure 7.7:  Feasible space of power generation for OPF problem 2 (Linear cost) 
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Figure 7.8:  Feasible space of power generation for both OPF problems  
in coordinates of OPF problem 2 (Linear cost) 

Both feasible spaces in Figure 7.8 return the same optimal solution, indicated by the red 

star in the figure.  It is therefore true that the optimal solution 𝑥′* to (7.3) can be used to recover 

the optimal solution to (7.2) by 𝑥* =  (𝑥′*   𝑟).  The small-scale OPF in this example was cho-

sen so that plotting the feasible space in two-dimensions was possible; however, the transfor-

mation procedure outlined in Section 7.2 is applicable to any larger DC OPF having linear cost 

function.  This example has demonstrated the method for transforming one DC OPF problem to 

another while preserving the optimal solution.  In the next section, DC OPF problems with quad-

ratic and piecewise linear cost functions are analyzed. 

7.4 Quadratic Cost and Piecewise-Linear Cost Functions 

The DC OPF model used to develop the transformation in Section 7.2 requires linear cost 

functions on active power generation.  Exploratory work has investigated extension of this trans-

formation to quadratic and piecewise-linear cost functions.  The details of the quadratic and 

piecewise-linear cost function transformations are shown next.  The prior example of the two 14-

bus systems is revisited as well, but with the cost function changed accordingly. 
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A. Quadratic Cost Function 

Section 7.2 detailed the method for creating a transformation between two DC OPF prob-

lems with linear cost functions.  In this section, a transformation between two DC OPF problems 

having quadratic cost functions in investigated.  The requirements for the transformation are 

more strict than the linear cost function case, and it will be shown only systems meeting a certain 

required property can be transformed to one another.  If two systems do not meet this require-

ment, they can only be transformed to one another by introducing an additional variable/degree 

of freedom that was not needed in the case of the linear cost function.  Two DC OPF problems 

with quadratic cost functions are shown in (7.12) and (7.13). 

min
𝑥

  
 

 
𝑥  𝑥    𝑥 

𝑠 𝑡         𝑥  𝑏 

   𝑥 ≥   

(7.12)  min
𝑥'

  
 

 
𝑥    𝑥     𝑥′ 

𝑠 𝑡         ′𝑥′  𝑏′ 

   𝑥′ ≥   

(7.13) 

The goal is to determine a set of transformation matrices and vectors that establish a bidi-

rectional transformation between (7.12) and (7.13).  Relationships (7.14a)-(7.14e) must hold in 

order for the transformation to be complete.  Transformation matrices   and   and vectors 𝑟 and 

  are analogous to those defined in Section 7.2.  The matrix 𝑾 in (7.14b) and (7.14c) results 

from the additional degrees of freedom in OPF problems with quadratic cost functions. 

  ′       (7.14a) 

  ′    𝑇   + 2 ′𝑇𝑾 ′ (7.14b) 

  ′    𝑇     𝑇  𝑟   2 ′𝑇𝑾𝑏′ +  ′𝑇  (7.14c) 

 𝑏′    𝑏 +  ′𝑟 (7.14d) 

 𝑥* =  (𝑥′*   𝑟) (7.14e) 

Relationships (7.14a), (7.14d) and (7.14e) are exactly the same as relationships (7.4a), 

(7.4c) and (7.4d) in the linear cost function case.  There is now, however, an additional relation-
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ship, (7.14b), which enforces a transformation between the quadratic cost matrix   in (7.12) and 

the quadratic cost matrix  ′ in (7.13).  In (7.14b), a quadratic combination of the rows in con-

straint matrix  ′ is added to  𝑇  .  Adding 2 ′𝑇𝑾 ′ to the quadratic cost matrix in (7.14b) 

and subtracting 2 ′𝑇𝑾𝑏′ from the linear cost vector in (7.14c), effectively just adds a constant 

to the cost function.  

 0 = (𝑥′𝑇 ′𝑇   𝑏′𝑇)𝑾( ′𝑥′   𝑏′) (7.15) 

= 𝑥′𝑇 ′𝑇𝑾 ′𝑥′   2𝑏′𝑇𝑾 ′𝑥′   𝑏′𝑇𝑾𝑏′ 

The cost function in (7.13) effectively has a constant 𝑥′𝑇 ′𝑇𝑾 ′𝑥′   2𝑏′𝑇𝑾 ′𝑥′

   𝑏′𝑇𝑾𝑏′ added to it, as evident in (7.15).  

The relationship between the linear cost vector   in (7.12) and linear cost vector  ′ in 

(7.13), is shown in (7.14c).  Similar to relationship (7.4b), a linear combination of the rows in 

constraint matrix  ′ is added as  ′𝑇 , which effectively adds a constant to the cost function.  

There is one additional term in (7.14c) that has yet to be explained, that being   𝑇  𝑟.  Consid-

er substituting 𝑥 =  (𝑥′   𝑟) into the quadratic cost term 1
2
𝑥𝑇 𝑥 in (7.12). 

 1
2
𝑥𝑇 𝑥 = 1

2
(𝑥′𝑇   𝑟𝑇

 ) 𝑇  (𝑥′   𝑟) (7.16) 

=  1
2
𝑥′𝑇 𝑇  𝑥′   𝑟𝑇 𝑇   𝑥′   1

2
𝑟𝑇 𝑇  𝑟 

As shown in (7.16), quadratic, linear and constant terms are created after making the sub-

stitution.  Therefore   𝑇  𝑟 in (7.14c) originates from the cross coupling terms of the quadratic 

cost function transformation.  The constant term 1
2
𝑟𝑇 𝑇  𝑟 is dropped altogether, as it has no 

impact on results of the optimization in (7.13). 

The transformation procedure between two DC OPF problems having quadratic cost func-

tions is detailed next.  The procedure is started the same as the linear cost function case, where 

relationship (7.14a) is enforced by defining   as the sum of two terms,   =  0 + 𝑵 , where 

 0 =  † ‒1 ′ and the  ×(  𝑚) matrix 𝑵 is the null-space of  , i.e.  𝑵 = 0𝑚×(  𝑚).  With 
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relationship (7.14a) satisfied, next move on to relationship (7.14b).  Rearrange (7.14b) by taking 

the pseudoinverse of  ′𝑇 and  ′ to solve for 𝑾 as a function of   as shown in (7.17). 

 𝑾 = 1
2
 ′𝑇

†
( ′    𝑇  ) ′† (7.17) 

Next, 𝑾 from (7.17) and   =  † ‒1 ′   𝑵  are substituted back into (7.14b), which can 

be rewritten as in (7.18).  Recall that  ′𝑇 ′𝑇
†

   𝐼 ×  and  ′𝑇
†
 ′𝑇 = 𝐼𝑚×𝑚. 

  ′    𝑇𝑵𝑇 𝑵     ′𝑇 ′𝑇†
( ′    𝑇𝑵𝑇 𝑵 ) ′† ′  

 =     ′𝑇 𝑇‒1
 𝑇†

 𝑵 (𝐼    ′† ′) (7.18) 

 + (𝐼    ′𝑇 ′𝑇
†) 𝑇𝑵𝑇  † ‒1 ′  

Note that 𝐼    ′† ′   𝐼    ′𝑇 ′𝑇
†
= 𝑵′𝑵′𝑇, where the  ×(  𝑚) matrix 𝑵′ is the null-

space of  ′, i.e.  ′𝑵′ = 0𝑚×(  𝑚).  Recall that 𝑵′† = 𝑵′𝑇, 𝑵′𝑵′𝑇   𝐼 ×  and 

𝑵′𝑇𝑵′ = 𝐼(  𝑚)×(  𝑚).  Matrices   and  ‒1 are unknown in (7.18).  However, (7.18) has a special 

structure that allows solving for  ‒1 as a function of  .  Define 𝑵
 ~

 as the 𝑚×(2𝑚  ) null-space 

of 𝑵𝑇  †, such that 𝑵𝑇  †𝑵
 ~

 = 0(  𝑚)×(2𝑚  ).  Define a (2𝑚  )×𝑚 matrix 𝑽 which can be 

any full-rank matrix.  A full-rank solution for  ‒1 as a function of   is deduced from (7.18) and 

is shown in (7.19). 

  ‒1 = 𝑵
 ~
𝑽 + (𝑵  †)

†
 𝑇†

𝑵′𝑵′𝑇( ′    𝑇𝑵𝑇 𝑵 ) ′† (7.19) 

Substituting the solution for  ‒1 in (7.19) into (7.18), reduces (7.18) to (7.20). 

 𝑵′𝑵′𝑇( ′    𝑇𝑵𝑇 𝑵 )𝑵′𝑵′𝑇 = 0 ×  (7.20) 

In (7.20), the only unknown variable is matrix  .  The solution for   in (7.20) is not 

unique, but is rather adjustable by any (  𝑚)×(  𝑚) orthogonal matrix 𝑹, as shown in (7.21). 

   = (𝑵𝑇 𝑵)
‒1/2

 𝑹 (𝑵′𝑇 ′𝑵′)
1/2

 𝑵′𝑇 (7.21) 
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In (7.21), the exponent 1/2 denotes a matrix square root, such that 𝒀 = 𝑿1/2 and 𝒀𝒀= 𝑿, 

and the exponent  1/2 denotes the inverse of the matrix square root.  With   from (7.21) and 

  =  † ‒1 ′   𝑵 , matrix 𝑾 can be solved using (7.17), and relationship (7.14b) is satisfied. 

Relationships (7.14d) and (7.14e) are exactly the same as (7.4c) and (7.4d) in the case of a 

linear cost function.  As described in Section 7.2, the relationships are satisfied by defining 𝑟 as 

the sum of two terms, 𝑟 = 𝑟0 + 𝑵′𝑞.  It is necessary for 𝑟0 =  ′†(𝑏′    𝑏) and 

𝑞 = 𝑵′†( 𝑥′*    ‒1𝑥*   𝑟0 ) in order to satisfy (7.14d) and (7.14e).  With proper cancelation, 𝑟 can 

be rewritten in (7.22). 

 𝑟 =  ′†𝑏′    ‒1𝑥* + 𝑵′𝑵′𝑇𝑥′* (7.22) 

The last remaining relationship to be satisfied is (7.14c), which equates the linear cost co-

efficients of DC OPF problems (7.12) and (7.13).  Relationship (7.14c) will next be examined to 

determine what property is required for two systems, with quadratic cost functions, to be able to 

transform to one another.  Rearrange (7.14c) to solve for   as a function of   in (7.23) by taking 

the pseudoinverse of  ′𝑇. 

   =  ′𝑇
†
( ′    𝑇  +  𝑇   + 2 ′𝑇𝑾𝑏) (7.23) 

By substituting 𝑟 from (7.22), substituting  𝑇   =  ′   2 ′𝑇𝑾 ′ and substituting 

  =  † ‒1 ′   𝑵 , (7.14c) can be reduced to reveal a necessary property in order for two sys-

tems, having quadratic cost functions, to be able to transform to one another.  This necessary 

property is shown in (7.24). 

 (𝑵𝑇 𝑵)
‒1/2

𝑵𝑇(  +  𝑥*)  =  𝑹 (𝑵′𝑇 ′𝑵′)
‒1/2

𝑵′𝑇( ′ +  ′𝑥′*) (7.24) 

The two DC OPF problems in (7.12) and (7.13) must satisfy the given vector relationship 

(7.24) in order for (7.14c) to be satisfied.  The only degree of freedom in (7.24) is the 

(  𝑚)×(  𝑚) orthogonal matrix 𝑹.  All other variables are predetermined by the DC OPF 

models in (7.12) and (7.13).  It is acceptable to use a complex valued orthogonal matrix 𝑹 if 
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needed.  If no 𝑹 matrix can be found, then an additional degree of freedom must be introduced.  

Quite simply, the last degree of freedom needed would be an  ×1 vector  ~, such that (7.25) is 

satisfied. 

  ′    𝑇     𝑇  𝑟   2 ′𝑇𝑾𝑏′ +  ~ (7.25) 

At this point, the four relationships (7.14a), (7.14b), (7.14d) and (7.14e) have been satis-

fied by appropriately determining the transformation matrices   and 𝑾 and vector 𝑟.  If relation-

ship (7.14c) cannot be solved by determining the orthogonal matrix 𝑹, then an additional degree 

of freedom  ~ is introduced such that (7.25) is satisfied instead of (7.14c).  With this approach, 

two DC OPF models with quadratic cost functions can be transformed to one another. 

With the transformation defined for quadratic cost functions, the example from Section 7.3 

is revisited.  All parameters, excluding the quadratic cost coefficients, remain the same for both 

of the 14-bus systems.  The generator data for both OPF problems are shown in Tables 7.5 and 

7.6.  The OPF problems are analogous to (7.12) and (7.13) which have quadratic cost functions.  

Generator 
Quadratic Cost  

Coefficient [$/𝑀𝑊ℎ2] 

Linear Cost  

Coefficient [$/𝑀𝑊ℎ] 

Upper Generation  

Limit [𝑀𝑊] 

1 0.043 20 330 

2 0.250 30 140 

8 0.010 25 50 

Table 7.5:  Generator data for OPF problem 1 

Generator 
Quadratic Cost  

Coefficient [$/𝑀𝑊ℎ2] 

Linear Cost  

Coefficient [$/𝑀𝑊ℎ] 

Upper Generation  

Limit [𝑀𝑊] 

4 0.144 19.11 302 

5 0.964 40.42 50 

9 0.480 10.00 393 

Table 7.6:  Generator data for OPF problem 2 
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Figure 7.9:  Feasible space of power generation for OPF problem 1 (Quadratic cost) 

  

Figure 7.10:  Feasible space of power generation for OPF problem 2 (Quadratic cost) 

In Figures 7.9 and 7.10, the feasible space of power generation is shown for both OPF 

problems.  The feasible space is the same as that shown for the linear cost cases in Figures 6.6 

and 6.7, however the contours showing the cost are now quadratic.  The change from linear to 

quadratic cost moved the optimal solution from a vertex in Figure 7.7 to an edge in Figure 7.10.  

The transformation procedure outlined in this section is applied.   
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Figure 7.11:  Feasible space of power generation for both OPF problems  
in coordinates of OPF problem 2 (Linear cost) 

As was done in the linear cost example, Figure 7.11 displays the feasible space of OPF 

problem 1 as the purple polytope in the coordinate system of OPF problem 2.  In the previous 

linear example, it was described that the feasible space of OPF problem 1 is created by inequali-

ties  𝑠𝑙  𝑥′ ≥  𝑠𝑙  𝑟.  With these inequalities relaxed and replaced by  𝑠𝑙 𝑥′ ≥  , the purple poly-

tope in Figure 7.11 is completely transformed to the green polytope, which is the feasible space 

for OPF problem 2.  As shown by Figure 7.11, the optimal solution is the same for both feasible 

spaces, indicated by the red star. 

B. Piecewise-Linear Cost Function 

Convex piecewise-linear cost functions are often used in DC OPF problems, particularly in 

electricity market contexts [83].  The piecewise-linear DC OPF is constructed as follows.  Con-

sider a piecewise-linear cost function for generator 𝑖 with 𝑟𝑖 linear segments specified by slopes 

𝑚𝑖‚  , , 𝑚𝑖‚𝑟𝑖
 and breakpoints ( 𝑖 , 𝑏𝑖 ),   = 1 , , 𝑟𝑖 , where  𝑖  is the power generation coordinate 

and 𝑏𝑖  is the cost coordinate for the  𝑡ℎ breakpoint of generator 𝑖.  With these specifications, the 

cost of power generation at the 𝑖𝑡ℎ generator becomes 𝐶 (𝑃 ‚𝑖) as shown in (7.26). 
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 𝐶 (𝑃 ‚𝑖) = 





𝑚𝑖‚ (𝑃 ‚𝑖    𝑖‚ ) + 𝑏𝑖‚  ‚ 𝑃 ‚𝑖    𝑖‚ 

𝑚𝑖‚2(𝑃 ‚𝑖    𝑖‚2) + 𝑏𝑖‚2 ‚  𝑖‚  < 𝑃 ‚𝑖    𝑖‚2

  

𝑚𝑖‚𝑟𝑖
(𝑃 ‚𝑖    𝑖‚𝑟𝑖

 ) + 𝑏𝑖‚𝑟𝑖
 ‚  𝑖‚𝑟𝑖

   𝑃 ‚𝑖

 (7.26) 

Convex piecewise-linear cost functions can be implemented as a linear program using a set 

of linear inequality constraints.  Specifically, define a scalar variable 𝛽𝑖 for each generator.  Then 

the piecewise-linear cost curves are implemented using the linear program in (7.27), which is the 

piecewise-linear modification of the formulation in (7.1). 

Incorporation of this formulation for convex piecewise-linear cost functions does not 

change the fundamental characteristics of the DC OPF problem since inequality constraints are 

already allowed in the DC OPF formulation (7.1).  The formulation for piecewise-linear cost 

functions has a linear objective, and therefore the transformation method described in Section 7.2 

can be directly applied to this modified problem. 

 min
𝑃 ‚ 𝛿‚ 𝛽

   Σ
𝑖 = 1

  𝑒 

 𝛽𝑖 (7.27) 

 𝑠.𝑡.      {𝛽𝑖 ≥ 𝑚 ‚𝑡 (𝑃 ‚𝑖 −  𝑖‚𝑡) + 𝑏𝑖‚𝑡   ∀ 𝑡 = 1,…,𝑟𝑖}   ∀ 𝑖 = 1,…,  𝑒   

  𝑃   𝛿   𝑃             

 𝛿       

 𝑃      𝑃  𝑃       

  𝑃         𝑑𝑖  (𝑏  )    𝛿  𝑃          

The 14-bus systems used in the linear and quadratic cost examples will be revisited.  For 

the piecewise-linear formulation of these problems, matrices   and  ′ displayed in Figures 7.3 

and 7.5 must be modified to include the piecewise-linear constraints, i.e. the first set of con-

straints in (7.27).  These inequality constraints are converted to equality constraints by introduc-
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ing additional slack variables.  Matrices   and  ′ are shown in Figures 7.12 and 7.13 with the 

piecewise-linear constraints enforced by the top sections in the matrices.   

 

Figure 7.12:  𝑀 matrix and 𝑏 vector for  
OPF problem 1 (Piecewise-linear) 

 

Figure 7.13:  𝑀′ matrix and 𝑏′ vector for  
OPF problem 2 (Piecewise-linear) 

 

The piecewise-linear cost function was constructed in a way to approximate the quadratic 

cost function from the example in the prior section.  The feasible spaces for the two OPF prob-

lems are shown in Figures 7.14 and 7.15. 

The transformation method described in Section 7.2 can be directly applied to this linear 

problem.  The piecewise-linear constraints add additional optimization variables 𝛽𝑖 to the prob-

lem, and therefore plotting these 3 generator examples on a two-dimensional plot is not as 

straight-forward.  The method determines matrices   and   and vectors 𝑟 and   that allow a bi-

directional transformation between the two piecewise-linear problems while mapping the optimal 

solutions from both OPF problems to one another.  However, due to the complications from the 

additional optimization variables 𝛽𝑖, it is not possible to create a figure outright displaying the 

feasible space of power generation for both OPF problems in the coordinates of OPF problem 2 

as was done for the linear and quadratic cost function examples. 

nz = 271 nz = 271
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Figure 7.14:  Feasible space of power generation for OPF problem 1 (Piecewise-linear) 

 

Figure 7.15:  Feasible space of power generation for OPF problem 2 (Piecewise-linear) 

7.5 Conclusion 

This chapter has outlined a transformation method between two DC optimal power flow 

(OPF) problems, and by extension to a family of problems, which preserves a mapping between 

optimal solutions.  The transformation method was first developed for DC OPF problems having 

linear cost functions, and the method was demonstrated on an example using a modified version 

of the IEEE 14-bus system.  Next, the transformation method was developed for DC OPF prob-
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lems having quadratic cost functions, and lastly was developed for DC OPF problems having 

piecewise-linear cost functions.  The same IEEE 14-bus system was used as an example demon-

strating the transformation for quadratic and piecewise-linear cost functions. 

Chapter 6 examined transforming/masking OPF problems for purposes of preserving sys-

tem confidentiality in cloud computing [45].  However, in that work the transformed/masked 

problem did not resemble a typical power system structure.  For the purpose of cloud computing, 

it is not required for the model to have a power system structure.   

The methods detailed in this chapter require the relaxation of two sufficient conditions on 

matrix   and vector 𝑟, in order to prove the existence of a constructively calculated transfor-

mation that preserves power system structure for two such solved systems.  Ideally, the relaxa-

tion on sufficient conditions would be proven unnecessary and the transformation between OPF 

problems would exist within the restrictions of the sufficient conditions.  If this were the case, 

then requiring the solutions 𝑥* and 𝑥′* to be solved apriori would no longer be necessary and the 

relationship 𝑥* =  (𝑥′*   𝑟) would inherently be true.  Determining whether the transformation 

can be developed without solving both problems apriori remains a topic of future work. 

The study of sensitive data, typically shared under non-disclosure agreements, is necessary 

for maintaining the reliable and secure operation of the electric power grid.  However, the devel-

opment of algorithms and the presentation of results using these models cannot be independently 

investigated and directly confirmed by others, as is the accepted practice in the scientific com-

munity.  Therefore there is a need for commonly accepted power system models that can be 

shared broadly, that are accepted as equivalent to actual models that are not shared, and that are 

suitable for research purposes.  This work in this chapter has shown that a method for transform-

ing DC OPF models exists that preserves the confidentiality of the original model and the struc-

ture of a DC OPF.  This work may serve to motivate the acceptance of synthetic models and to 

more freely allow sharing of realistic models among researchers, and thereby aid the process of 

algorithmic development for solving OPF problems.  
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7.6 Appendix – Plotting Feasible Space 

In this Appendix, the procedure for reducing a quadratic or linear program by eliminating 

equality constraints is detailed.  Additionally, the cost function is reconstructed for the reduced 

system, which can allow plotting of feasible spaces for small-scale problems. 

Consider a quadratic program such as (7.12) with equality constraints  𝑥 = 𝑏, where   

has 𝑚 rows and   columns and 𝑚    .  All 𝑚 equality constraints and 𝑚 of the optimization 

variables in 𝑥 can be eliminated from the problem.  Denote   [      ], where M1 is 

𝑚×(  𝑚) and  2 is 𝑚×𝑚; also denote 𝑥  [𝑥 
    𝑥 

 ]  where 𝑥1 is (  𝑚)×1 and 𝑥2 is 𝑚×1.  

The optimization variables 𝑥2 can be eliminated from the problem, shown in (7.28). 

 𝑥2(𝑥1) =  2
‒1

(𝑏 −  1𝑥1) (7.28) 

In (7.28), 𝑥2 becomes a function of the remaining variables 𝑥1.  In a DC OPF problem, 𝑥1 

contains   𝑒      optimization variables.  One choice of variables in 𝑥1 and 𝑥2 is shown below.  

 𝑥1 = [
 
 𝑃 ‚   𝑃 ‚2     𝑃 ‚  𝑒  1

 
 ]

 
  

 𝑥2(𝑥1) = [
 
 𝑃 ‚𝑠𝑙  𝑘(𝑥1)  𝛿(𝑥1)

𝑇  𝑥𝑠𝑙(𝑥1)
𝑇 ]   

In other words, the power output by all generators, excluding the slack generator, deter-

mines the bus angles 𝛿 and operating point of the system.  The quadratic cost matrix   and linear 

cost vector   in (7.12) can be similarly split into parts.  In the case of linear programs, assume 

  = 0 in the following derivation. 

  [
      

      
]  and    [  

      
 ]  

With optimization variables 𝑥2 eliminated, consider the reduced sized quadratic cost matrix  ̂ 

and linear cost vector  ̂. 



137 

 ̂    
   

   
     

       
   

   
         

         

 ̂    
    

   
      

2
𝑏   

   
(       

 )  
       

2
𝑏   

   
   

   
2
𝑏   

   
   

  

The quadratic program in (7.12) can be rewritten once more as shown in (7.29). 

 min
𝑥1

  
 

 
𝑥 

  ̂𝑥    ̂ 𝑥  (7.29) 

 𝑠.𝑡.      𝑥2(𝑥1) ≥ 0  

The problem’s feasible space in (7.29) is now clearly determined by 𝑥2(𝑥1) ≥  .  If there 

are only two or three variables in 𝑥1, then the feasible space can be plotted and visualized in two 

or three dimensions respectively.  
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Chapter 8  

Conclusions, Contributions and Directions for Future Work 

8.1 Conclusions 

The work in this dissertation sheds insight and solutions onto fundamental power system 

problems involving modal analysis and model security.  Advancements resulting from this work 

will better ensure the reliable and secure operation of the electric power system.  Power system 

modeling and optimization form the underlying theme throughout this work.   

Chapters 2-5 of this report analyzed a modal analysis problem involving oscillatory dis-

turbance data.  Disturbances in the electric grid tend to cause power oscillations that damp-out, 

sustain or continuously grow towards system collapse.  Analysis of the oscillatory disturbance 

data provides power engineers information about the stability properties of the power system.  

Accurate estimation of modes can also be used for validating system models, used to make im-

portant planning and operating decisions.  In addition, knowledge of the system’s modes can be 

used for stabilizing technologies in the electric grid.  For these reasons, better algorithms for de-

termining modal content will help improve electric reliability and performance. 

Chapter 2 introduced the modal analysis problem with discussion on model-based and 

measurement-based modal analysis methods such as Prony analysis.  As a contribution, the 

measurement-based Matrix Pencil method and Eigensystem Realization Algorithm (ERA) were 

extended for multi-signal modal analysis.  An example disturbance in the IEEE 14-bus system 

was used to compare the methods and to demonstrate the trade-offs between the methods’ accu-

racy and computation time.  Lastly, the metric of mode energy was introduced which is used for 

ranking the dominance of modes. 

In Chapter 3, the modal analysis problem was recast as a nonlinear least-squares optimiza-

tion problem which was solved using the variable projection method.  The identification of the 

modal analysis problem as a nonlinear least-squares optimization was a key contribution in the 

dissertation and to the power system field.  The method improves on solutions from traditional 

methods such as Prony analysis, matrix pencil and ERA, where these methods are used as initial 
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conditions in the optimization.  The calculation of the gradient equation is detailed, which allows 

for the use of line-search or trust region methods for solving the optimization.  Beyond achieving 

lower least-squares error to the data, the variable projection method offers several advantages 

over past used traditional methods.  The method does not require uniformly-spaced data, it is in-

sensitive to noise, it allows inclusion of polynomial detrending basis functions, allows con-

strained optimization and so on.  Additionally, the method gives the user several degrees of flex-

ibility, such as control over the number of real and complex modes and also using initial condi-

tions and constraints to guide a solution for experienced users. 

The theory of normal form analysis was presented in Chapter 4.  Normal form analysis im-

proves on small-signal analysis and linearization solutions, typically used for analyzing nonlinear 

state-space models.  As the theory shows, high order combinations of the system’s natural modes 

are observed in dynamic disturbances of nonlinear systems.  This high order interaction between 

a system’s natural modes, can be used as motivation for an extension to the variable projection 

method for modal analysis problems.  A normal form solution structure is imposed on the opti-

mization in order to mimic behavior known to be present in nonlinear disturbances.  The recast-

ing of modal analysis problems as optimizations, allows for enforcing the normal form solution 

structure, where this type of control is not possible with standard methods.  A three-bus power 

system example was presented, that shows the variable projection method with normal form so-

lution structure most accurately estimating the system’s true eigenvalues.  Lastly, in Chapter 4 

some discussion and a basic example is provided for analyzing systems with repeated eigenval-

ues. 

The culmination of research work in Chapters 2-4 is brought together with a modal analy-

sis tool developed for industry use in Chapter 5.  The chapter discusses using trust region meth-

ods for unconstrained optimization versus using  interior-point methods for linear inequality con-

strained optimization, for solving the variable projection modal analysis problem.  Various appli-

cation requirements and user requests are discussed, as well as complete effective strategies for 

modal analysis.  An example using real power system data is presented which showcases the 
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graphic user interface and the flexibility and user interactivity available by the tool and method, 

which concludes the research work related to modal analysis. 

In Chapter 6, a power system model security problem is examined, regarding confidential 

optimal power flow problems.  Recent methods developed for securely solving linear programs 

in unsecure cloud computing environments motivate the approach.  These methods obscure or 

mask the problem with the intention of using powerful yet unsecure computing environments.  

This work is specifically tailored for masking a linear optimal power flow (OPF) problem, i.e. 

the DC OPF.  The masking procedure allows solution of OPF problems through use of powerful 

remote cloud computers without the worry of leaking confidential system information if the data 

is compromised.  Some of the contributions to this problem included a procedure for extracting 

the Lagrange multipliers and locational marginal prices from the masked dual problem, a method 

for preserving problem sparsity, a method for masking a quadratic cost function and masking 

nonlinear constraints for the full nonlinear AC OPF. 

In Chapter 7, the model security research is examined from another angle in keeping with 

the theme of confidential systems.  A method is presented which takes an existing power system 

model and transforms it into a completely new and valid power system model, which preserves a 

mapping between optimal solutions.  One system’s solution maps to another system’s solution 

via a simple linear transformation for DC OPF problems with linear, quadratic and piecewise-

linear cost functions.  In contrast to the industry motivated methods in Chapter 6, this research 

has more of an academic motivation.  As a starting point for this research, to prove the actual ex-

istence of such transformations, the optimal solution from both problems are determined a priori.  

Future work will investigate the limits of this transformation without the need to solve the prob-

lems ahead of time.  The findings from this work are of interest to those doing academic re-

search.  For example, a real optimal power flow problem could be solved initially; then the origi-

nal system could be transformed into a new power system with the optimal solution known.  The 

newly transformed system could be passed along to researchers for the purpose of testing and 

demonstrating optimization methods.  In this way, their optimization methods would assuredly 

be tested on power systems possessing realistic characteristics.  More importantly, it shows that 
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an OPF system model can be transformed into a family of equivalent OPF models, and the need 

to use “true system models” for purposes of algorithmic development becomes unnecessary.  The 

results would suggest studies of any system with similar complexity are sufficient 

Valuable contributions were made in all chapters; however, several topics of research in 

this dissertation will be ongoing for future work.  

8.2 Future Work 

The modal analysis work in Chapters 2-5 is mostly complete, yet there remains some areas 

of interest.  The variable projection Hessian matrix could be computed to allow quadratic con-

vergence.  Computational time was not too concerning in this work, but if the method were to be 

employed in real-time in large-scale power systems, then computation savings would become 

increasingly more necessary.  Other metrics for ranking mode dominance other than the mode 

energy would be of value.  For example, statistical analysis on the optimization variables could 

provide confidence intervals on the solutions.  In industry practice, the data is often repeatedly 

analyzed by manually varying the time-window of the analysis.  This provides the engineer a 

primitive method for sensitivity analysis.  A more sophisticated automation and theoretically-

backed means of sensitivity analysis would benefit the confidence in solutions obtained from the 

optimization. 

The model security work in Chapter 6 used a process of linear transformations to mask op-

timal power flow problems for use in cloud computing.  As was shown in the chapter, the num-

ber of nonzero elements in the problem was purposefully increased and the confidential structure 

was randomly distributed.  The masking approach yielded quick computational solve times for 

the smaller IEEE test systems.  However, for larger systems with thousands of buses, a dense   

matrix would sufficiently mask the problem but would also detriment the computational solve 

time.  In practice, it would be up to the engineer as to how obscured they would like the model to 

be, with a trade-off between security and solve time.  Certainly any means of improving compu-

tation performance in a completely obscured problem would help to get the best of both worlds 

in regards to security and solve time. 
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In the model security work, it is assumed that the numerical values of the original OPF 

model are completely hidden in the fully masked problem.  Though it is difficult to prove a nega-

tive, it would be valuable to assess what level of security the method has.  According to the [43], 

the numerical values of the masked problem are secure.  Beyond that, it is worth knowing if any 

sophisticated data cracking schemes exist that can extract little or some aspect of the problem, 

such as the number of system facilities and topological connections.  Further investigation into 

the level of security in the fully masked OPF problem is thus warranted. 

Future work on the model security problem should be extended to more scenarios where 

optimization and confidential models are needed.  For example, the masking method could be 

formalized for use in multi-party power system problems.  This would involve formally identify-

ing the types of power engineering problems that involve multiple parties sharing confidential 

data.  The work could also be examined from an angle on confidential optimal power flow auc-

tions without the need for trusted third parties facilitating the electricity market.   

The structure preserving transformation research in Chapter 7 is a relatively new concept.  

This work would largely benefit from developing the transformation for the full nonlinear AC 

OPF problem.  The fully masked problem in Chapter 6 used a transformation to obscure the 

model, but the masked problem does not have a power system structure.  The transformation in 

Chapter 7, does create a power system structure, but the two systems are solved apriori in order 

to identify the transformation.  This approach was purely used as a starting point to prove the ex-

istence of the transformation.  Two important sufficient conditions were relaxed in order to prove 

the existence of a transformation between OPF problems.  If the transformation can be shown to 

exist within the restrictions of these sufficient conditions, then the need to solve both problems 

apriori becomes no longer necessary.  Any connections drawn between the transformations in 

Chapters 6 and 7 would help provide more insight.  Additional future work for the structure pre-

serving transformation would seek to create a function that when given a confidential OPF mod-

el, will generate a comparable synthetic model that possesses similar physical features and com-

putational complexity as the original confidential model.  Up to this point, a transformation has 

been developed that relates two given models.  In this future work, knowledge of the transfor-
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mation will be used to generate synthetic models from a given confidential model.  Any ad-

vancements in this research could potentially improve the prospects of sharing confidential mod-

els and efficiently solving secure confidential OPF models. 
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8.3 Publications 

Several publications have resulted from the research detailed in this report. 

[85] B.C. Lesieutre, D.K. Molzahn, A.R. Borden, C.L. DeMarco, "Examining the Limits  
of the Application of Semidefinite Programming to Power Flow Problems," in  
49th Annual Allerton Conference on Communication, Control, and Computing 2011,  
Sept. 28-30, 2011 

Work from Chapter 2, 3 and 5 is discussed in the following publications, with a 2
nd

 place Best 
Student Paper Award at the NAPS 2013 conference. 

[63] A.R. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Devel-
oped for Industry Use," in North American Power Symposium (NAPS) 2013, Sept. 22-24, 
2013 

[87] A.R. Borden, B.C. Lesieutre, "Variable Projection Method for Power System Modal 
Identification," Power Systems, IEEE Transactions on, [under review] 

Work from Chapter 4 was presented at the NAPS 2012 conference and won Best Student Paper 
Award.  

[31] A.R. Borden, B.C. Lesieutre, "Determining Power System Modal Content of Data Moti-
vated by Normal Forms," in North American Power Symposium (NAPS) 2012, Sept. 9-11, 
2012 

Work from Chapter 6 was presented at the Allerton 2012 conference. 

[45] A.R. Borden, D.K. Molzahn, P. Ramanathan, B.C. Lesieutre, "Confidentiality-Preserving 
Optimal Power Flow for Cloud Computing," in 50th Annual Allerton Conference on 
Communication, Control, and Computing, 2012, Oct. 1-5, 2012 

Work from Chapter 7 was presented at the Allerton 2013 conference. 

[86] A.R. Borden, D.K. Molzahn, P. Ramanathan, B.C. Lesieutre, "Power System Structure and 
Confidentiality Preserving Transformation of Optimal Power Flow Problem," in 51st An-
nual Allerton Conference on Communication, Control, and Computing, 2013, Oct. 2-4, 
2013 
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