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abstract

This thesis examines a class of problems in which the spatial layout (shape) of
data points enables inductive inference. We (1) introduce novel mathematical
and computational tools that are inherently sensitive to shape and (2) formulate
spatially sensitive transformations that simplify application of pre-existing
methodologies, such as support vector machines. Our choice of representation,
point sets, enable fuller yet lower-dimensional descriptions of data. This rep-
resentation closely models many real-world knowledge representation needs
that benefit from its flexibility. We solve problems in classification, clustering,
and regression for many of which spatial knowledge is crucial for obtaining a
solution. Furthermore, we demonstrate that previous approaches sometimes
ignore the basic most informative aspects of data and in retrospect provide
counter-intuitive solutions.

We explore novel and existing measures of similarity between point sets
based on exploiting the geometric spatial relationships in the underlying do-
main between data points. Many of these techniques are built upon innovative
ways of extending an intuitive notion of “spatial overlap” between solids to
rigorous definitions for sets of points that by definition are zero-dimensional
and thus have no overlap. In addition to a study of theoretical aspects of the
point set representation we also show extensive demonstrations of its diverse
applicability.

In the neuroscience domain we introduce a new framework using these tech-
niques that allows us to reason about individuals, as opposed to populations.
We study the problem of detecting minute, short-term changes in white matter
structure in the brain and relating them to changes in cognitive test scores and
genetic biomarkers. Our results present the first evidence demonstrating that
very small changes in white matter structure over a two year period can predict
change in cognitive function in healthy adults.

In other domains we present new results and techniques in clustering com-
parison, natural language processing, object recognition in images, goodness-
of-fit testing, and multivariate point set classification.
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1 introduction

In this dissertation we address machine learning over thoroughly unstructured

data, naturally leading one to ask exactly what "thoroughly unstructured"

means. It is perhaps easier to say what it isn’t. In machine learning, problems

are often posed via input-output pairs (x, y) to enable training, where the goal

is to learn a function that properly assigns an unencountered input x to an

appropriate value of y according to some inductive bias. This is, of course, an

entirely reasonable and ubiquitous paradigm.

However, what exactly do we assume about these x’s? It is extraordinarily

common to use fixed-length, ordered vectors to represent data. For example, we

might make weather predictions based on a set of predetermined and serialized

features describing climatic conditions. Here, there is an explicit assumption

that each individual x is internally consistent, meaning the features are not inde-

pendent of one another. Surely, we’d be surprised to find it was simultaneously

95◦F and snowing.

Alternatively, the x inputs may be more complex. For example, they could

be drawn from structured (database) records, where each x contains labels and

associated values. It needn’t be the case that every record has an identical set of

labels. If each x corresponds to climate, the humidity information (label) might

be missing for particular days. Nonetheless, we assume a fair degree of label

overlap, enabling inferences to be made.

It may also be the case that each x is composed of largely independent

components. This is common when each x itself is a set of inputs, of which only

a few are thought to be significant to the outcome y. For example, the xmight be

individual stock prices for the goal of predicting the Dow Jones Industrial Index

or groups of medications given to an individual patient, where y represents
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that patient’s clinical outcome. In this case, we make no commitment regarding

the independence among the components of each input data x.
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Figure 1.1: Panel (a) shows plots of two probability distributions, one in red
and the other in blue. The distributions have identical means and almost
identical variance. Panel (b) shows finite point samples — of different sizes
— drawn from each distribution. The top two samples are colored according
to their originating distribution. Our goal is to classify the grey samples by
determining which source distribution they are most likely drawn from. This
is very challenging to do for distributions that are very similar to each other
and differ in only minute and subtle ways, such as those shown in (a).

Now, let us consider an alternative type of input x not easily covered by the

above cases and which poses specific challenges for many approaches in the

machine learning toolbox. Consider a scenario where data consist of bags of

varying numbers of points — i.e. point sets — with all the points in each bag

being drawn from one of two distinct distributions. An example is shown in

Figure 1.1. The task is to learn a classifier for these two kinds of bags. This can be

a challenging task for many real world domains; consider a domain in this thesis

— neuroscience — where a data set may consist of selected voxels from brain

scans. The voxels may be selected by setting a threshold on their intensities, such
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that the scans for older people in the study consist of fewer voxels than those

of younger subjects. The differences in the underlying distributions of voxels

for healthy and pathological subjects may be extremely subtle and difficult to

detect. What kind of representation and learning algorithm may be used in this

case to build a classifier? This type of question has received sparing attention in

the literature. As we will show in the remainder of this thesis, conventional ML

methods in many cases are unable to satisfactorily tackle this type of problem.

Similar scenarios can arise in the cases of webpages, proteins, photos, sam-

ples from probability distributions, and data clusters. Data in these domains

may be naturally seen as being composed of sets of elements; in the examples

above, these elements are words, atoms, edges, and points. In all these cases,

classification tasks at their core involve differentiating between sets of points

originating from different distributions.

In this dissertation I propose new techniques and discuss existing ones for

solving these types of tasks based on exploiting the geometric spatial relation-

ships in the underlying domain between data points. Many of these techniques

are built upon innovative ways of extending an intuitive notion of “spatial over-

lap” between solids to rigorous definitions for sets of points that by definition

are zero-dimensional and thus have no overlap. The word “spatial” refers to the

fact that these techniques make direct use of the locations of the points them-

selves and the geometric relationships between them (as opposed to discrete

binning or statistical reductions such as mean, variance, kurtosis, moments,

and skewness). Moreover, these techniques make no additional assumptions

on the form of the probability distributions the point sets are drawn from. I

then demonstrate the value of this type of spatial analysis in formulating and

solving new problems as well as increasing prediction accuracies on tasks in

neuroimaging and other diverse scientific domains.
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1.1 Applications and Results

Chapters 3, 4, 5, 7, and 8 elaborate on how ideas from point set representations

can be adapted to a number of machine learning applications, both new and

existing. For existing applications, we were able to obtain higher accuracies

and for new applications these methods paved the way for new tasks to be

formulated and solved using spatial analysis. A brief summary of each follows,

with more details in following chapters.

Neuroimaging: Our goal with this application was to use spatially sensitive

analysis techniques to understand the different pathways of neural evolution

inside the brain corresponding to natural aging as well as the development of

pathological conditions such as Alzheimer’s disease. The experiments were

therefore framed with the intent of producing interpretable results: (1) Pre-

diction of the direction of change in two scans from the same subject taken

approximately 2 years apart. This experiment was designed to detect patterns

of subtle changes in the brains of the subject population (shown in Figure 1.2)

that enabled the following two experiments. (2) Prediction of the presence

(a) (b)

Figure 1.2: (a) An image indicating the position of the largest white matter
body in the brain — the corpus callosum. (b) Regions of the splenium (rear) of
the corpus callosum that showed an overall consistent decrease or increase in
fractional anisotropy (white matter integrity) over the whole population. Red
regions indicate a consistent increase and blue regions a decrease. Identification
of these regions enabled prediction of cognitive scores.
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of a gene form solely based on brain scans. We were able to identify regions

that change differently based on the presence or absence of the ε4 allele of

the APOE gene. (3) Prediction of the direction of change in performance on

neuropsychological cognitive tests based on scans. We were able to predict an

increase or decrease in performance on certain neuropsychological tests with

75% accuracy solely based on the change in a subject’s scans over a two year

period. The goal of these experiments is to advance current understanding of

the progress of neural decay and regeneration in the brain and to find imaging

markers for early diagnosis of Alzheimer’s disease (Ansari et al., 2014; Coen

et al., 2013).

Clustering Comparison and Ensemble Clustering: We introduced spatial

awareness into the process of comparing clusterings and constructing a consen-

sus clustering from an ensemble. The measure we formulated is able to detect

differences in clusterings that extant methods cannot. It combines both parti-

tional and geometric information contained in the clusterings and is unique

in enabling comparisons between clusterings that differ in their underlying

data sets, number of points, and number of clusters. An example is shown in

Figure 1.3.

This idea was then extended to formulate an end-to-end ensemble clustering

algorithm that was evaluated on six different data sets (with varying numbers of

features and instances) with ground truth. Our algorithm arrived at a consensus

clustering with the least error (as measured against given labels) on all data

sets when compared with competing algorithms. In the case of one large data

set, our consensus method was able to achieve an error not only significantly

lower than the most accurate clustering in the ensemble, but also significantly

lower than two state-of-the-art ensemble clustering algorithms (Coen et al.,

2010; Ansari et al., 2010).
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Reference clustering

1

2
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Figure 1.3: Comparing Clusterings. This figure displays three clusterings.
Each one contains two clusters, whose members are indicated by green circles
and red triangles. In the two changed clusterings, the circled points have been
reassigned from the red to the green cluster. We might expect that the Reference
Clustering is more similar to Change 1 than Change 2 because the modified
points are closer to it. The vast majority of extant techniques are incapable of
distinguishing between the two changes. This figure is taken from Coen, Ansari,
and Fillmore (2010).

Characteristic Numbers: Drawing upon ideas from point set comparison we

landed upon theoretically interesting and surprising results related to clas-

sical probability distributions. We defined a new non-trivial quantity called

a “characteristic number” over probability distributions that is constant for

certain families of distributions irrespective of their parameters. This leads to

being able to characterize and differentiate between families of distributions

without knowing them a priori. Characteristic numbers for normal, uniform,

and exponential distributions are shown in Figure 1.4.

Goodness-of-fit testing: The quantity described above can be adapted to dis-

crete point sets and used in powerful new goodness-of-fit tests, i.e., tests that

determine how likely it is that a sample originated from a particular probability

distribution. Our test is unique in that it uses the coordinates of each point
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Figure 1.4: This plot shows empirically computed (discrete equivalents of)
characteristic numbers for samples from three families of distributions: normal,
uniform, and exponential. For each parameter setting, the average value of
this quantity over 500 samples is shown. As the planes show, characteristic
numbers are constant for distributions from a particular family regardless of
their parameters.

directly, rather than relying on summary statistics such as mean, variance, kur-

tosis, moments, or skewness. Our method performs exceptionally well in the

comparison of its statistical power (being able to differentiate between samples

from distinct probability distributions) with other state-of-the-art techniques

(Coen et al., 2012).

Text classification: We constructed point sets for documents by treating each

word as a member of a semantic space we defined and conducted classification

experiments with this representation. For a 2-class binary classification task

on the popular 20 Newsgroups data set (Lang, 1995), our method was able

to achieve a higher accuracy (92.75%) than standard bag-of-word techniques

(83.33%) (Coen et al., 2011).

Image classification: We applied a spatially sensitive similarity kernel to an im-

age classification task on a subset of the publicly available ETH-80 dataset (Leibe
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and Schiele, 2003), using the data and experimental setup of Grauman and

Darrell (2007). We trained a classifier using a variety of kernels on the problem

of predicting the category of an object in an image, and were able to achieve a

higher accuracy (94%) than a state of the art algorithm (90%) (Coen et al., 2011).

1.2 The Point Set Representation

The typical representation of data in machine learning algorithms is a vector

of features that each describe an aspect of an instance (Liu and Motoda, 1998).

To borrow an example from Mitchell (1997), features that describe the climatic

attributes of a day may include the condition of the skies, air temperature, hu-

midity level, and wind. Measurements of these attributes in a vector constitute

one instance of a day, which may then be input to a learning algorithm. In this

scheme, every data point (consisting of weather information for one day) is

reduced to a single fixed-length feature vector without regard to the complexity

of climatic variation during the day. This method of representing data has been

wildly successful in a wide variety of domains from text classification to image

retrieval to protein classification (Joachims, 1998; Liu et al., 2003; Ambroise and

McLachlan, 2002; Camastra and Verri, 2005; Cai et al., 2003).

To take another example, let us consider some different ways in which image

data may be represented. A common, if primitive, method in computer vision

is to construct feature vectors for images from color values of pixels (Roobaert

and Van Hulle, 1999; Pontil and Verri, 1998; Ishii et al., 2005). This method

treats each pixel as an independent dimension (in fact, it treats each descriptor

at every pixel as an independent dimension). This of course leads to a very

high-dimensional representation even for modest-sized images. When two

images in this representation are compared, the pixel-to-pixel correspondences

remain but any information about spatial locality of neighboring pixels and
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Figure 1.5: In the plots above, documents are represented as point sets in a
semantic space. In each plot, one document is display in a blue italic font and
another is displayed in a red non-italic font. On the left, the two documents are
from the same class, and on the right they are from different classes. As can
be seen, the similar documents’ point sets overlap with one another, while the
dissimilar documents’ don’t.

further away pixels is not incorporated into the similarity metric because their

location information is not part of the representation. There is no neat way of

detecting patterns of similar but diffused behavior across spatially local pixels.

I will show in Chapter 5 that this type of information is valuable in detecting

minute differences in brain scans.

More advanced representations use (lossy) summary data over the entire

image to construct feature vectors out of images, such as information from

color histograms over the entire image (Dalal and Triggs, 2005; Odone et al.,

2005) or regions (Magnin et al., 2009). This ameliorates the dimensionality

problem to some extent, and also introduces robustness with respect to different

camera angles, lighting, etc. Even with histograms, attempts at retaining spatial

information are clumsy and improvised, e.g. concatenating histogram data from

different spatial regions of an image (Juneja et al., 2013), leading to extremely

high-dimensional and sparse feature vectors (42, 000 to 204, 800 dimensions).
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Consider a third representation consisting of unordered and variable-sized fea-

ture sets: an image as a set of low-dimensional local descriptors corresponding

to image elements (whether pixels or regions of interest). In this case, instead of

one very long vector corresponding to each image, it now corresponds to a set

of short vectors 1 (see Figure 1.5 for a visual demonstration of two documents

represented as point sets instead of vectors). Instead of guessing which global

aspects of an instance best describe it we let the elements within an instance

each have an independent contribution in the final representation.

Notice that this makes available an additional design choice: the ability to

represent individual pixels or regions in a space of their own via features that

capture meaningful aspects of each one, such as location and color profile. For

a text document represented as a set of words, this space may be constructed

of features that measure the syntactic and semantic content of each word. We

will call this a “point set” or a “spatial” representation — alluding to the fact

that data elements are kept in their own space (as opposed to a constructed

space consisting of more global summary features) during the machine learning

process.

It follows directly that another benefit of this representation is that it is

“lossless”: all components forming a data instance can be represented in full,

no matter how many there are, or even if their number differs from instance

to instance. Yet another benefit is that we are able to perform inference in

lower-dimensional spaces, avoiding the problems that come with sparse high-

dimensional representations.

This dissertation is devoted to examining the benefits and costs of this rep-

resentation at a theoretical level and a demonstrating its application to diverse

scientific domains. Chapter 2 consists of a discussion of point sets, methods of
1For a discussion of how this relates to multiple instance learning the reader is referred to

Section 2.1.4
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defining similarity between them, and how to compute them. The focus will be

on methods that incorporate learning biases — through the similarity function

— that take into account the spatial relationships between constituent elements

of data instances. In doing so we wish to make the most use of the inherent

structure already in the data. The methods discussed draw on ideas from

optimization theory, nonparametric density estimation, and random Fourier

features.

1.3 The Value of Spatial Information

Many machine learning algorithms such as nearest neighbors (Cover and Hart,

1967), support vector machines (Shawe-Taylor and Cristianini, 2000), and k-

means clustering (MacQueen et al., 1967) require the computation of a similarity

(or distance 2) between data instances. With the fixed-length vector represen-

tation this similarity is typically computed as a function of the differences in

the values of the features (descriptors) of each instance. When calculating

similarity between two instances, it is often useful to consider not only the

changes in the values of each feature, but also the relative locations of those

features, wherever those features are embeddable in a metric space. The choice

of representation plays a big role in enabling this, as does the choice of the

comparison function. The following example brings out the value of encoding

and using spatial information in the distance function, whether one uses the

fixed-length vector representation or the point set representation or another

representation altogether.

Figure 1.6 shows a simple example where a naïve choice of representation

and comparison function can omit potentially valuable information. A fixed-

length 9-tuple representation is chosen to represent the configuration of a 3×3
2See Section 2.1.3 for a discussion on the duality between similarity and distance functions
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(a) Initial position
(1, 0, 0, 0, 0, 0, 0, 0, 0)

(b) Time 1
(0, 1, 0, 0, 0, 0, 0, 0, 0)

(c) Time 2
(0, 0, 0, 0, 0, 0, 0, 1, 0)

Figure 1.6: Consider the setup shown in the panels above: a robot occupies one
square on a 3×3 grid. We want to compute how different two positions are.
Each possible position is one configuration; three such configurations are shown
in the panels above. One possible representation for configurations is shown
below each panel, wherein the squares of the grid are serialized as numbers
in a feature vector. The presence of the robot in a square is encoded as 1 and
its absence as 0. A typical way of computing distance between feature vectors
is using Euclidean distance. However, this combination of representation
and distance function omits all spatial information. If the configuration in
panel (a) is considered to be the initial position, and panels (b) and (c) the
positions at two subsequent times, the “distance” between panels (a) and (b) is
the same as the distance between (a) and (c) when it is clear that the robot is
further away in (c) from the origin than in (b). This representation and distance
function combination is thus not useful for an application that is sensitive to
the actual distance the robot has moved. It is straightforward to modify either
the representation or distance function to accommodate this requirement for
this example but may not be as simple in other cases.

board on which one square is occupied by a robot capable of moving between

squares. As the robot moves, the distance between configurations is computed

using Euclidean distance between the 9-tuples. The end effect of this distance is

simply to measure whether two board configurations are identical or different;

it does not convey how different they are, or how far the robot is in them.

In this particular case, either the representation or comparison function

or both can be easily modified so that the distance between two boards more

accurately reflects the distance moved by the robot. However this is not as

simple or straightforward to do in many other situations such as in a medical

imaging domain where continuous quantities are associated with locations and
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we are interested in not just the differences between two images but also where

those differences are. This is because organs like brains and lungs come in

different shapes and sizes and the process of aligning them to a single template

can be imperfect. We may wish to have similar imaging markers in nearby

regions of two brain scans correspond to higher similarity between them. The

choice of representation and distance function should be able to encode the

relevant spatial information and deliver such a result.

1.4 Thesis Roadmap

In the rest of this dissertation I will demonstrate that it is often beneficial to

keep data in their original space rather than abstracting it away. In other words,

by using information pertaining to geometric relations between the data that is

faithful to their native topology we can improve machine learning outcomes.

The following chapters elaborate on concepts and results mentioned above.

All work was done in close collaboration with my advisor Prof. Michael Coen.

Chapter 2 consists of a discussion of point sets and methods of defining similar-

ity between them. These methods will be used throughout the rest of the thesis.

Parts of this chapter build upon tools and ideas developed in Prof. Coen’s

PhD thesis (Coen, 2006). This chapter also includes joint work with Nathanael

Fillmore. Chapters 3 and 4 detail a new clustering comparison measure and a

novel spatially aware ensemble clustering algorithm respectively. Chapter 5

presents an adaptation and application of our framework to the problem of

identifying subtle changes in the brain using longitudinal neuroimaging data

and was done with extensive guidance from Prof. Barbara Bendlin. Chapters 6

and 7 present a new result on the characterization of classical probability dis-

tributions based on measures from optimization theory and an application to

goodness-of-fit testing. This work also was done in collaboration with Marissa
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Phillips. Chapter 8 contains details on the applications of point set represen-

tation to the domains of text classification, image classification, and protein

structure similarity, and is the result of joint work with Nathanael Fillmore and

Layla Oesper. Finally, I conclude in Chapter 9.
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2 point sets

The point set representation — as introduced in the previous chapter — is a loss-

less way of representing variable-sized, unstructured data. Each data instance

is represented as a set of points corresponding to its components, rather than a

single point. In this chapter we will formally define this representation, discuss

its costs and benefits, present new and existing ways of defining a similarity

function between point sets, and discuss their strengths and shortcomings.

The term “spatially sensitive” as used in this chapter and the rest of this

dissertation will refer to the ability of an algorithm to work directly with the

coordinates of all points in a point set in order to leverage information about

the (pairwise) spatial relationships between those points. We elaborate on this

idea in Section 2.2 and discuss three such algorithms in detail:

• Similarity (Sim) (Section 2.4) uses optimization theory to define a mea-

sure of spatial overlap between point sets.

• Density Overlap Kernel (Section 2.5) is the dot product of two functions

constructed from density profiles corresponding to each point set.

• Lift Kernel (Section 2.6) uses random Fourier features (Rahimi and Recht,

2007) to construct a high-dimensional vector representation of a point set

that encapsulates pairwise spatial relationships between its points.

At the end of this chapter we show results from classification experiments

using spatially sensitive and insensitive methods on synthetic samples gen-

erated from 1-dimensional and 2-dimensional distributions. The following

chapters detail how these techniques are applied to machine learning tasks in

various domains.
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2.1 Representation and Definitions

Recall that in the previous chapter we identified domains where instances

of data could be seen as being composed of a variable number of unordered

elements of the same type. Fixed-length vector representations for each of

these elements in an instance can be put together in a set; the result is called

the point set representation for that instance. Because these vectors each only

need to describe one element of an instance fully, they are typically lower-

dimensional than a fixed-length representation describing an entire instance.

Moreover, the contribution of each element of the instance is preserved in the

final representation. In contrast, fixed-length representations are either unable

to deal with instances consisting of varying numbers of elements or will require

the computation of summary statistics through lossy aggregation over multiple

elements. A weighted point set is defined as follows:

Definition 2.1. Weighted Point Set: A finite collection of pairs P = {(p1, ω1), . . . ,

(pn, ωn)} where n ∈ N and each pi ∈ X for some associated metric space X endowed

with a distance dX , called the “ground” distance. Each point pi has an associated

weight ωi ∈ [0, 1], such that
n∑
i=0

ωi = 1.

In the definition above, ω corresponds to a discrete probability distribution

over the domain X , for example, Rd. In the case where the ωi’s are all equal (to
1
|P | ) we will omit them altogether and consider a point set as simply being the

set {p1, . . . , pn}.

2.1.1 Benefits

The design decision of representing data in the form of point sets rather than

single fixed-length vectors has a number of immediate benefits, some of which

are outlined below:
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• We are able to keep vectors in low-dimensional non-sparse spaces, thus

avoiding sparsity issues and the curse of dimensionality (Duda et al., 2012;

Beyer et al., 1999). This neatly sidesteps the entire problem of working

in extremely high dimensions and obviates the need to mitigate its effect

during the learning process. For example, it is common to represent data

in spaces with tens of thousands of dimensions in text and image analysis.

With the point set representation, one only needs as many dimensions as

necessary to describe one element of the entire instance.

• In many domains, due to the constraint that each instance must have the

same number of features, the conventional representation is often lossy

in the sense that it is constructed from the extraction of summary features

over an entire instance (e.g. histograms over image pixels). Instead, the

point set representation allows for a richer representation without needing

to settle for summary statistics.

• Following from above, the point set representation allows for variable

cardinality sets that describe each instance. Rather than each instance

being constrained to have a fixed number of features, this representation

allows for the number of vectors in its set to vary according to its specifics.

For example, if every word is mapped to a vector encoding its semantic

meaning, a 100-word document will be represented as a point set with

100 points, and a 1000-word document as one with 1000 points, each

containing just the amount of information necessary to describe it without

needing to resort to lossy representations. This has the added benefit of

allowing for the flexibility of different dimensions of inputs. For example,

many computer vision algorithms require all input images to have a

certain fixed input size (or be preprocessed to that size). This no longer

need be the case.
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• This representation makes the construction of domain-specific custom

kernels for machine learning easier. The scientist can focus on designing

similarity measures for low-dimensional vectors that directly represent

elements of an instance. In fact, if there is already a natural way of

computing similarity between the elements of an instance, this can be used

as is without the need for any other kernel function. This stands in contrast

to either working with general nonspecific kernels like polynomial or

Gaussian kernels, or designing kernels for extremely high-dimensional

representations.

While there are a number of clear benefits of the point set representation, it

is not a panacea for all problems in machine learning. It is suited for problems

where data instances are composed of multiple independent (but possibly

related) entities, e.g. words in a document or pixels/regions in an image.

Sometimes the spatial angle for the representation is obvious (e.g. if the data

already come from a domain where its elements are embedded in a metric

space), while at other times it has to be artificially constructed (such as with

words in text documents). Regardless, the benefit of remaining in a lower-

dimensional space as opposed to a very high-dimensional one is applicable in

both situations.

2.1.2 The Similarity Question

Having defined the representation, we will now discuss ways of using it in a

learning setting. A core problem for any representation, if it is to be used in a

comparison-based learning algorithm such as nearest-neighbors (Cover and

Hart, 1967), support vector machines (Shawe-Taylor and Cristianini, 2000), or

k-means clustering (MacQueen et al., 1967), is to define a meaningful similarity

(or distance1) function between data instances. In the case of point sets, this
1See Section 2.1.3 for a discussion on the duality between similarity and distance functions.
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(a) (b)

Figure 2.1: These two panels demonstrate the unsuitability of Euclidean dis-
tance as a way to measure distance between sets of points. In the panel to the
left, one point set consists of the two blue circles, and another point set the
single red triangle. These two point sets are distinct, and yet they would be
indistinguishable if each one was reduced to its mean. Similarly in the right
panel the blue point set and red point sets have different geometric shapes and
have almost no overlap, and yet the Euclidean distance between their means is
zero.

translates to the question of how point sets are to be compared to one another.

This problem is not as straightforward as defining ways to compare two points.

The following sections present a thorough investigation of this problem and

approaches to solving it.

Note that a set-to-set similarity function by itself doesn’t necessarily impose

a restriction on how similarity is defined between single points. Put another

way, set-to-set similarity functions can be parameterized by the point-to-point

similarity function. The point-to-point function (also called a “ground distance”

function) can be complex and domain specific, and it will fit in just as easily as

Gaussian similarity into the set-to-set function. In domains that are amenable

to a point set representation it is frequently the case that there are natural and

simple similarity functions between elements of an instance. For example, given

a word-to-word similarity function the methods in this chapter may be used to

compute similarity between text documents.

Euclidean Distance

A natural question at this juncture is “Why not just use Euclidean distance?”

This question however is ill-posed; Euclidean distance is defined from a single
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point to another point, not between unordered variable-sized point sets. A

simple tweak of Euclidean distance such as reducing point sets to a summary

statistic (e.g. their means) and setting the distance between point sets to the

distance between these statistics does not lead to the desired result. The two

panels in Figure 2.1 demonstrate the unsuitability of Euclidean distance as a way

to measure distance between sets of points, if in fact one wishes such a distance

to reflect information pertaining to the geometric similarity or dissimilarity

of the point sets. In the panel to the left, consider one point set consisting of

the two blue circles, and another point set consisting of the single red triangle.

These two point sets are distinct, and yet they would be indistinguishable if we

reduced each one to its mean and found the Euclidean distance between them.

Similarly in the right panel the blue point set and red point sets have different

geometric shapes and have almost no overlap, and yet the Euclidean distance

between their means is zero. Euclidean distance between means is therefore

not an appropriate distance function if we wish to measure meaningful spatial

distance between point sets. Doing this in fact voids the entire point of using a

richer representation that is able to encode more aspects of each instance.

2.1.3 Distance and Similarity

A numerical measure of comparison between two items yields a value that

either describes how similar they are or how different they are. In other words,

comparison measures are either similarity measures or distance measures. We

note that these two are duals of each other; given a similarity measure s(·, ·)

it induces a distance δ(A,B) = s(A,A) + s(B,B) − 2s(A,B). In the other

direction, a distance measure δ(·, ·) may be converted to a similarity function

via any order inverting function f . Examples of such functions include:
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• s = f(δ) = δmax − δ

where δmax is the maximum possible value of the distance (this transfor-

mation only applies to bounded distance measures).

• s = f(δ) = e−γδ
2 , γ ∈ R+

• s = f(δ) = 1
1+δ

• s = f(δ) = −δ

For a deeper discussion of substituting distance metrics in kernel functions,

see Haasdonk and Bahlmann (2004). In the discussion of point set comparison

frameworks below we will present each one as a similarity measure.

2.1.4 Point Set Representations and Multiple Instance Learning

Multiple instance (MI) learning is a form of supervised learning where training

examples are received in groups rather than individually (Dietterich et al., 1997).

Target labels are only available for each group as a whole and not necesarily for

each individual training example. A group is labeled positive if it contains at

least one positive training example and negative otherwise. An example of a

MI learning setup is shown in Figure 2.2.

There is a superficial similarity between the point set representation and

the organization of input data for the multiple instance learning setup. In both

cases each input to the learning algorithm consists of an unordered variable-

sized set of vectors. This, however, is where the similarities end. Some major

differences are as follows:

1. In multiple instance learning a “bag” consists of one or more separate

instances of data; each one is a complete instance by itself and the only

thing they have in common is that they are grouped together in one bag.

With the point set representation of data, a point set (counterpart to a
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Negative Negative NegativePositive Positive

Figure 2.2: Multiple Instance Learning. An example of instances in a multiple
instance (MI) learning setup. A training example consists of “bags” of instances.
If any instance in a bag is labeled positive, the entire bag is labeled positive,
otherwise it is labeled negative. The learning algorithm is only able to access
labels at the level of bags, not individual instances.

bag in MI learning) consists of vectors that are different components of a

single instance of data. In other words, all points in a set contribute to the

specification of an instance.

2. Point set representations may be used for supervised or unsupervised

learning. In the supervised case, the target label is a property of the

instance as a whole and not of a single point within the set. With MI

learning however, the label of the bag is positive if any of the (independent)

instances within it are positive and negative otherwise.

3. In the case of point set representations, it is not just the presence of one

vector that may be the cause of a particular label for the entire point set,

but could instead be a function of a combination of constituent vectors.

With MI learning on the other hand, one positively labeled example is

enough to label the entire bag positive.

It is therefore a category error to treat the two as competing methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Overlap in solids. Consider the design decisions involved in defin-
ing similarity between solid shapes (at fixed locations) by quantifying the degree
of their overlap in space. In both panels (a) and (b) the blue and yellow squares
have zero overlap area, and yet in (b) the squares are further apart. One choice
involved in the design of a similarity measure is whether to simply consider the
overlap area alone or also include the distance between the shapes. In panel (c)
the squares’ overlap area is a quarter of the area of each respective square. In
panel (d) however, the absolute area of overlap is the same as in panel (c) but the
overlapping shapes have different areas. Another design decision is whether
to simply measure the shared area or consider the shared area in relation to
the areas of both shapes, and if so, how. A third design decision concerns
the areas of non-overlap: should it matter where the area of non-overlap is in
relation to the area of overlap? The similarity measures in Sections 2.3-2.6
adapt these questions to point sets and each answer them differently. Overlap
in point sets. In the bottom row of panels, we examine examples of spatial
overlap in point sets: (e) 3-dimensional “distributed” point sets that strongly
overlap; (f) “Localized” non-overlapping point sets; (g) Point sets drawn from
2-dimensional Gaussian distributions that occupy a large area of space, and yet
have significant overlap; (h) Moderately overlapping sets on the surface of a
manifold – here, a sphere. A design decision for a point set similarity measure
is how to trade off scale and amount of overlap (or whether there should be a
tradeoff at all). This figure is adapted from Coen (2010).
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2.2 Spatial Overlap as Similarity

Putting aside point sets for the moment and thinking in terms of solid shapes the

abstract question of similarity between two objects becomes simpler to reason

about: solid shapes have area (non-zero Lebesgue measure) and a measure

of similarity for two shapes can be derived from the unambiguous amount of

shared area between them. For the purposes of the following discussion we

will consider shapes to have locations in space that are fixed. Consider the

series of shapes in the top row of Figure 2.3 shown in various degrees of overlap.

The caption contains a discussion of how similarity may be measured between

different solid shapes.

If we accept that similarity is to be measured by the degree to which two

shapes occupy the same region of space, and this notion then is to be extended

to defining similarity between point sets, we are posing the question: “To

what degree do two point sets occupy the same region in a metric space?” In

beginning to formulate an answer to this question however, we confront an

immediate problem: point sets have zero measure, and therefore by definition

any two point sets – even if their points overlap exactly – have zero overlap

if the amount of shared space is measured. Moreover, the individual points

constituting each point set are unlikely to coincide with one another in real data

sets. For example, if points are sampled from a continuous distribution such as

the normal distribution, the probability that two points coincide is vanishingly

small:

P (x = y|x, y ∼ Normal(µ, σ)) = 0

A strict definition of overlap will not be useful in answering this question.

We therefore adopt a broader notion of spatial overlap and frame the question

not in terms of the points themselves but rather in terms of the shapes of the
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point clouds formed by each point set. In other words, one way of quantifying

similarity between point sets is by developing a measure for the similarity in

the shapes of the point clouds they form. The bottom row in Figure 2.3 presents

examples of overlap in point sets, along with a discussion of desirable behaviors

of any method of overlap quantification. We examine three different approaches

for defining and measuring this notion of overlap in Sections 2.4-2.6.

2.3 Related Work

The earliest work in comparing point sets was in the context of comparing clus-

terings (the subject of Chapter 3) and relied purely on set-theoretic operations to

define distance between point sets. Subsequent methods are more sophisticated,

yet none of them were developed specifically with a view to quantifying spatial

overlap. Most of these measures are also very sensitive to their parameters,

which often requires extensive search for a given problem. This makes their

use problematic in unsupervised learning problems. In the subsections below

we give brief descriptions of the different families of solutions this problem has

inspired in the literature.

2.3.1 Set Reduction Methods

The first set of approaches are inspired from point set and Hausdorff dis-

tances (Munkres, 2000) wherein a point set is reduced to a well-chosen member

point. Point set distance dPS is defined between a single point x and a point set

A in terms of the ground distance d(·, ·) as

dPS(x,A) = inf
y∈A

d(x, y).

Hausdorff distance is an extension of this concept; the directed Hausdorff dis-

tance DHaus(A,B) between two sets of points A and B is



26

−1 0 1 2 3

0

1

2

3

4

5

6

7

1 2

−1 0 1 2 3

0

1

2

3

4

5

6

7

1
2

Figure 2.4: The two pairs of point sets shown here are clearly different. There is
no overlap in the second case, and yet the Hausdorff distance and Procrustes
distance between the two are almost identical.

DHaus(A,B) = sup
x∈A

inf
y∈B

d(x, y).

The Hausdorff distance between A and B defined as the larger of DHaus(A,B)

and DHaus(B,A). Other metrics inspired from point-set distance are the modi-

fied Hausdorff metric and Busemann metric (Deza and Deza, 2009). We discuss

this class of distances further in section 2.3.5.

In Figure 2.4 we compute Hausdorff distance between example point sets.

Note that the point sets on the left overlap more with each other than the ones

on the right and are more alike in their shape. However Hausdorff distance is

unable to differentiate between them, reporting a distance of 1.75 in both cases.

2.3.2 Procrustes Distance and Variations

Another method of computing distances between point sets is to assume an

order between the points in them, align them using an algorithm such as

Kabsch (1976) or Procrustes (Goodall, 1991). Once an alignment is found, a

distortion measure (such as least root mean square distance) can be calculated

by summing up distances between corresponding pairs of points. Clearly this

method can only work for point sets of the same cardinality and is susceptible
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to disproportionate influence by outlying points. While modifications exist to

mitigate these problems, these general methods of summing distances between

pairs of points yield little information about similarity or shape congruence.

For the point sets in Figure 2.4 Procrustes returns almost equal distances of

1.87 and 1.91, unable to tell the two pairs of point sets apart.

2.3.3 Modified statistical distance measures

Metrics for comparing probability distributions – such as Mallows distance (Lev-

ina and Bickel, 2001) – can sometimes be modified to measure distance between

point sets. Because Mallows distance computes the infimum of the expected

value of functions on random variables, we can transform this into a discrete

minimization problem (Levina and Bickel, 2001) suitable for discrete point sets.

Other metrics compute differences between probability mass or density

functions, which have no immediate applicability in the discrete point set case

without an intermediate step. It is possible to view coordinates of points as

being values taken by discrete random variables but it is rarely the case that

multiple points have precisely the same coordinates, making probabilities for

each location degenerate into zeros or multiples of 1
n , where n is the number of

points.

For sets with large numbers of points we can bin them into regions, treat

each region as having a probability value proportionate to the number of points

lying within it, and apply any of a number of probability divergence measures

such as Bhattacharya distance, KL-divergence, Hellinger distance or any of

the family of such measures (Deza and Deza, 2009). We note that this is an

approximation that degrades with point sets of low density.

The final comparisons are with probability divergence measures. Each data

set is processed into a set of Voronoi regions using k-means clustering, and

each region is treated as a value of a random variable, whose probability is
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Figure 2.5: The two pairs of point sets shown here are clearly different. There
is no overlap in the first case, and yet the distance according to probability
divergence measures is 0.37 and 0.34 respectively.

equal to the fraction of points of that point set lying within that region. In this

way we make sure to operate over the same domain, which allows the use of

these measures. We chose Hellinger distance as a representative of the family of

measures since it is most representative of this family of distances in terms of its

form. In Figure 2.5(a) with the number of Voronoi regions k = 5, the Hellinger

distance is 0.37 and in Figure 2.5(b) it is 0.34. To put these values in perspective,

note that the Hellinger distances between the point sets in Figure 2.4 are 0.64

and 1.47 respectively.

A conceptual drawback of using this technique is that it is approximate –

the points may lie anywhere within their Voronoi region and the divergence

measure would return the same value. There is also no clear way of choosing the

regions or even their number. Other divergence measures such as Bhattacharya

distance, chi-squared distance, and Jeffrey divergence result in similar values

and behavior. None are suited to the measure of similarity between point sets.

2.3.4 Kernel Methods

There are a number of methods in the literature that define kernels between

point sets. A common approach is to map each point set to a single fixed-
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length “supervector” and apply a standard kernel to them. This can be done by

simply concatenating (also known as stacking), sampling, or averaging points

together to form a new higher-dimensional point (Szummer and Picard, 1998;

Campbell et al., 2006; Roobaert and Van Hulle, 1999; Kinnunen and Li, 2010).

A more sophisticated approach is to construct a “vocabulary” by clustering all

points in all point sets, picking a representative from each cluster, and then

representing each instance as a linear combination of contributions from each

cluster by computing similarities of each point in the instance’s point set to the

cluster representatives. This is exemplified by quantization approaches in image

retrieval tasks (Nister and Stewenius, 2006; Philbin et al., 2007). A disadvantage

of these approaches is that a new mapping needs to be constructed separately

for each new problem.

The Bhattacharyya point set kernel (Kondor and Jebara, 2003) is a kernel

between point sets that takes into account the density of point sets in its compu-

tation. It requires a parametric model to be fit to each point set (for example a

single Gaussian distribution) and defines a kernel based on the probabilistic di-

vergence measure Bhattacharyya distance. This approach is further kernelized

by mapping the elements of each point set to a new Hilbert space before fitting

the parametric model. The two main issues with this approach are that it as-

sumes a fixed distribution for the points and is quite computationally expensive

due to extensive matrix multiplications, inverses and determinants.

Pyramid match (Grauman and Darrell, 2007) and other match kernels have

been developed as efficient ways to determine similarity between point sets es-

pecially with vision applications in mind. Pyramid match computes histograms

at different resolutions based on the input points and computes a kernel from

the weighted histogram intersections. The focus in match kernels however is

to find similarity while not penalizing non-similarity. These kernels find closest

pairs among between individual points and only take into account these pairs
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for the kernel computation. Thus such methods do not fully capture a notion

of the “shape” of the point sets, but only their intersection, regardless of the

importance of their non-overlap. This can have practical negative consequences

if the “shape” or “density” of the point sets really is the important characteristic

of the point sets.

2.3.5 Other Techniques

Many of the approaches above are lossy in the sense that they reduce two point

sets to pairs of points or a single pair of points. The final distance measure thus

only relies on some of the pairwise relationships between constituent points.

In many domains this appears to work suitably, especially image matching.

However, ignoring all points except for one pair (or a restricted set of pairs)

yields no information about how similar the overall shapes of the entire point

sets are. It collapses all information down to a single distance (or the sum of a

few distances), stripping away all information about the internal layout and

structure of each point set, as well as the relationship of points within each

point set. They are also neither bounded nor scale-invariant, making absolute

judgements of similarity difficult.

Finding similarity between multi-dimensional point sets is a core problem

in image matching. The driving concern in that domain however is to locate

objects similar to each other but transformed in some simple way, such as being

rotated, reflected or translated in one of the two images (Hubo et al., 2008).

The focus is on preserving distance across transformations and so the distance

measures used are very primitive, e.g. minimal symmetric set difference across

all translations (Cho and Mount, 2008).

A related popular approach in image retrieval and shape matching applica-

tions (Hubo et al., 2008; Osada et al., 2001) is to apply functions that sample
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Figure 2.6: Sim behavior. The point set similarity measure Sim considers the
two point sets in Example A to be far more similar to one another than those in
Example B. This is the case even though they occupy far more area in absolute
terms and would be deemed less similar by many other similarity measures.
This figure is taken from Coen (2006).

points and compute histograms over point sets. Probability divergence mea-

sures are applied to the binned histograms to compute final distances.

2.4 Transportation Distance-Based Methods

We begin discussion of spatially sensitive methods of comparing point sets in

this section and continue in Sections 2.5 and 2.6. Three methods are discussed in

depth, each of which takes a different approach to measuring and quantifying

spatial overlap. The first method is discussed in this section and employs a

distance from optimization theory to directly measure the extent of overlap of

two point sets.

Originally introduced as a distance by Coen (2006), we present this method

here as a similarity instead and call it Sim (for Similarity). Sim is designed to

explicitly measure spatial overlap between point sets, without regard to their

“scale.” An image is useful for illustrating this idea; consider the two pairs of

point sets shown in Figure 2.6. Sim is designed so that the point sets in Example

A are judged to be much more similar than those in Example B, based on their
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degree of spatial overlap, even though the points in Example A cover orders of

magnitude more area than those in Example B.

In the following subsections we present the components that will be used

to construct Sim, describe how the measure works, define it formally, discuss

how to compute it, and examine why this problem defies a number of standard

normalization techniques.

2.4.1 Transportation Distances

Similarity (Sim) is derived from the Kantorovich-Wasserstein distance metric

(dKW) (Kantorovich, 2006; Deza and Deza, 2009), which proposed a solution

to the Transportation Problem posed by Monge (1781). This problem may be

stated as follows:

What is the optimal way to move a set of masses from suppliers to receivers, who are

some distance away?

Optimal in this definition means minimizing the amount of total work

performed, where work is defined as mass× distance. For example, we might

imagine a set of factories that stock a set of warehouses, and we would like to

situate them to minimize the amount of driving necessary between the two.

This problem has been rediscovered in many guises, most recently in modified

form as the Earth Mover’s Distance (Rubner et al., 2000), which has become

popular in computer vision.

We can visualize the problem solved in the computation of dKW in Figure 2.7.

Imagine the red squares are factories located around the world delivering

identical goods to the blue triangles, which represent warehouses, also located

around the world. We assume the amount of goods to be shipped is equal to the

amount of goods being received, reflecting the fact that these objects represent

probability distributions; they therefore have equal masses of one. dKW is the
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Figure 2.7: The Transportation Problem on a sphere. In this figure, the red
squares represent factories (sources) with differing degrees of production and
the blue triangles represent warehouse (sinks) with different storage capacities,
on the surface of a sphere. The Kantorovich-Wasserstein distance measures
the most efficient amount of work necessary to transport from the red squares
to the blue triangles. We note the amount of mass being “produced” must be
equivalent to the amount of mass being “consumed.” This figure is taken from
Coen (2010).

least amount of work that is required to move the masses contained in the red

squares onto the blue triangles.

It is useful to view the Kantorovich-Wasserstein distance as the maximally co-

operative way to transport masses between sources and sinks. Here, cooperative

means that the sources “agree” to transport their masses with a globally mini-

mal cost2. In other words, they communicate to determine how to minimize

the amount of shipping required by exchanging delivery obligations.

Let us contrast this optimal view with the notion that each source delivers

its mass to all sinks independently of any other sources, in proportion to its
2We will use “cost” interchangeably with “work” in this context.
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Figure 2.8: A view of the Transportation Problem. The goal is to transport the
mass in the sources to the sinks, minimizing the amount of work performed,
where work is

∑
mass× distance. This figure is taken from Coen (2010).
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production. We will call this naive transportation distance (dNT). In other words,

the sources do not communicate. Each simply makes its own deliveries to

every sink proportionally. Note this is not the worst (i.e., most inefficient)

transportation schema. It is simply what occurs if the sources are oblivious

to one another — when they do not take advantage of the potential savings

that could be gained by cooperation. Figure 2.8 shows the contrast between

the optimal, maximally cooperative way of transferring mass and the naive,

uncooperative way for a set of three sources and three sinks.

The similarity Sim(A,B) between two point sets A and B defined below

uses the ratio between the two quantities dKW(A,B) and dNT(A,B) to quantify

spatial overlap. The intuition behind this is that point sets with little overlap

will have little difference between dKW and dNT since there is little to be gained

by cooperation. On the other hand, with higher spatial overlap between A

and B, the benefit of cooperation will make dKW smaller than dNT. The ratio

therefore measures the benefit gained through cooperation, and by proxy, their

spatial overlap.

2.4.2 Formal Definitions

Kantorovich-Wasserstein Distance

The Kantorovich-Wasserstein distance (dKW) is a solution to the transportation

problem defined above. Although Kantorovich was the first to solve this prob-

lem, the solution has since been rediscovered numerous times, most recently

in Rubner et al. (2000). It is commonly presented in a form due to Vasershtein

(Wasserstein, 1969) and in this instantiation known as the Wasserstein distance3.

Since dKW computes the solution to the transportation problem with minimum

distance, we will also call it the “optimal transportation distance.” dKW is a
3The change in name spelling is due to historical reasons.
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metric over expected distance between two probability distributions. We fol-

low the presentation in Gibbs and Su (2002). Let µ and ν be two probability

distributions on a metric space Ω with associated distance metric dΩ. Define

dKW:

dKW(µ, ν; dΩ) = inf
J
{E(dΩ(x, y)) : L(x) = µ,L(y) = ν} (2.1)

where the marginals L are µ and ν respectively, and the infimum is taken

over all joint distributions J on µ and ν (which are in Ω× Ω). Here, dΩ is the

distance metric for Ω and dΩ(x, y) represents work required to move a unit

amount of mass from x to y. By taking the infimum, dKW seeks to minimize

the expected amount of work in transferring mass from one distribution to the

other. This corresponds to Monge’s Transportation Problem, where a mass of

one is being moved between two probability distributions, one corresponding

to the suppliers and the other corresponding to the receivers.

Let us now consider two discrete distributions A and B, described by

weighted point sets as follows:

A = {(a1, p1), . . . , (am, pm)}

B = {(b1, q1), . . . , (bn, qn)}.

The discrete formulation of dKW is obtained by reduction from Equation 2.1 (Lev-

ina and Bickel, 2001), and transforms into a minimization problem as follows.

Treating A and B as random variables taking values {ai} and {bj} with proba-

bilities {pi} and {qj} respectively, dKW is obtained by minimizing the expected

distance between A and B over all joint distributions F = (fij) of A and B:

EF ‖A−B‖ =
m∑
i=1

n∑
j=1

fijdΩ(ai, bj) (2.2)
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where F is subject to:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (2.3)
n∑
j=1

fij = pi, 1 ≤ i ≤ m (2.4)

m∑
i=1

fij = qj , 1 ≤ j ≤ n (2.5)

m∑
i=1

n∑
j=1

fij =
m∑
i=1

pi =
n∑
j=1

qj = 1 (2.6)

Once so formulated this optimization problem may be solved using the

transportation simplex algorithm. Although this algorithm is known to have

exponential worst case runtime (Klee and Minty, 1972), it is remarkably efficient

on most inputs and therefore widely used. We discuss runtime complexity and

an approximation technique for enormous point sets in sections 2.4.4 and 2.4.5.

Naive Transportation Distance

We now define a “naive” solution to the transportation problem. Here, each

“supply” point is responsible for delivering its mass proportionally to each

“receiving” point. In this instance, none of the shippers or receivers communi-

cate to exchange transport obligations, leading to inefficiency in shipping the

mass from one probability distribution to the other. Note however that this

does not correspond to the least efficient shipping. (We could obtain this by

switching the infimum in equation 2.1 to a supremum. This quantity has a

number of interesting properties that are explored in Chapter 6.) Rather, the

naive transportation distance corresponds to each supplier acting individually,

without concern for anything other than shipping its own mass.
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Let f and g be the density functions of our distributions µ and ν. We define

the naive transportation distance:

dNT(µ, ν; dΩ) =
∫
µ

f(x) dKW(x, ν; dΩ) dx (2.7)

=
∫
µ

∫
ν

f(x) g(y)E[dΩ(x, y)] dxdy (2.8)

=
∫
ν

g(y) dKW(µ, y; dΩ) dy = dNT(ν, µ; dΩ) (2.9)

Note that this definition employs a degenerate case of dKW, namely where

one of the distributions is a single point (x or y). In this case, dKW = dNT, as no

optimization is possible and the naive distance is the best one can obtain.

The discrete form of naive transportation distance dNT over weighted point

sets corresponding to discrete distributions is defined as:

dNT(A,B; dΩ) =
m∑
i=1

n∑
j=1

piqj dΩ(ai, bj) = dNT(B,A; dΩ) (2.10)

The naive distance is the weighted sum of the ground distances between

each individual point and the entirety of the other sample. It is straightforward

to directly calculate this quantity, requiring O(k2) time, where k = max(m,n).

Point Set Similarity Sim

The Similarity Sim between two distributions µ and ν is defined simply as the

ratio of two metrics above subtracted from 1:

Sim (µ, ν; dΩ) = 1− dKW(µ, ν; dΩ)
dNT(µ, ν; dΩ) (2.11)

Over weighted point sets A and B, the discrete form follows as:

Sim (A,B; dΩ) = 1− dKW(A,B; dΩ)
dNT(A,B; dΩ) (2.12)
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For notational convenience we will omit dΩ when it is clear which distance

metric is being used as the ground distance. It should be kept in mind however

that dKW, dNT, and Sim all depend on dΩ.

We will call the ratio dKW(A,B)
dNT(A,B) itself similarity distance, or dsim. The subtrac-

tion from 1 for Sim is done so that the final measure is one of similarity, not

distance. The ratio dKW
dNT

is low for high overlap (due to high benefits gained

by cooperation), and high for low overlap. Similarity between the point sets

therefore is the inverse of the optimization gained through cooperation. We

discuss below some properties of Sim.

Is This Normalization?

Sim measures the amount of optimization provided by cooperative vs. indepen-

dent, naive transportation; intuitively, it measures the spatial overlap between

two weighted point sets. One might ask how else similarity might be computed

from dKW. A number of schemes have been devised to rescale data in order

to normalize it (see Stolcke et al. (2008) for overviews and empirical evalua-

tions). We compared 1 − Sim with linear scaling; sample mean and variance

normalization; sample mean normalization; sample variance normalization;

Gaussianization, and Distribution matching. It was straightforward to find

examples (see Figure 2.9) for all of these where they did not capture any notion

of spatial overlap.

2.4.3 Properties and Behavior

The ratio dKW(A,B)
dNT(A,B) measures the optimization gained by adding cooperation when

moving the source A onto the sink B. Thus, it is a dimensionless quantity that

ranges between zero and one. This is because dKW can never exceed dNT; even if

there is no benefit to cooperation, it will be equal to dNT at worst. For the upper

bound, note that dKW is a nonnegative distance, so that Sim can never exceed
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Mean-var norm. 0.914 1.698 1.176 1.991 1.599 0.801 -0.108
Rank norm. 0.205 0.501 0.320 0.500 0.339 0.182 -0.053
dsim(1− Sim) 0.656 0.834 0.619 0.056 0.873 0.443 1.000

Figure 2.9: Sim is not normalization. All six examples in this figure were
constructed to have the same dKW and Earth Mover’s Distance (= .337), between
the blue and red point sets, while having markedly different spatial properties
from each other. This is reflected in their similarities as measured by Sim, as
shown above each example. Here, since we are comparing normalizations of
distance, we turn Sim into a distance measure by subtracting it from one and
denoting it dsim (similarity distance). The table further illustrates that one cannot
simply normalize dKW to obtain the measure provided by Sim . The final column
shows Pearson correlation coefficients of each normalization with similarity
distance, demonstrating that none of them capture the notion of spatial overlap.
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Figure 2.10: Sim behavior. Panels (a) and (b) contain plots of two point sets in
varying degrees of separation. In panel (a), the point sets are separated in space
due to translation and in panel (b) due to rotation. The graph at the bottom
plots Sim as a function of separation distance (a) and rotation angle (b) between
the two point sets shown at the top. As can be seen, Sim shrinks non-linearly as
the distance between the point sets or the angle between them increases and
then quickly approaches its asymptotic limit of 0. This figure is adapted from
Coen (2006).
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1. For clarity, let us examine Sim at its two extremes. If Sim(A,B) = 1, then

dKW(A,B) = 0, implying the maximally cooperative distance between A and B

is zero. This can occur only when A = B; i.e. when they perfectly overlap. This

means each source is co-located with a sink expecting precisely as much mass

as it produces.

In contrast, suppose Sim(A,B) → 0. This tells us that cooperation does

not help during transportation. This occurs when A and B are so far apart

that the points in A are much closer to other points in A than those in B and

vice-versa. Thus, cooperation does not yield any significant benefit. In this case,

dKW(A,B) → dNT(A,B), implying Sim(A,B) → 0. As dNT(A,B) ≥ dKW(A,B)

by definition, this provides the lower bound for Sim(A,B) of 0. We see this in

Figure 2.10, where Sim between the two illustrated point sets quickly approaches

0 as they are separated. Conversely, as the point sets increasingly overlap, the

similarity measure Sim approaches 1 rapidly.

Sim is also scale invariant: it only measures the optimization gained, not

the amount of work that must be performed. Thus, the actual size of the distri-

butions makes no difference, as illustrated in Figure 2.6. Finally, we note for

completeness that dNT 6= 0 except in the pathological case where both distribu-

tions are identical single points. In that case we will set Sim to be 1 by definition.

Note on using Sim as a kernel

Sim is not an inner product in any space; in fact, the space of point sets them-

selves is not even a vector space (for example, if set union is taken to be the ana-

log of the addition operation, then there can be no additive inverse). However,

this is not necessarily a problem for the use of Sim in downstream optimization

functions since as noted in Burges (1998) it may be the case that a positive

semidefinite Hessian matrix results for a given training set. This has indeed

been the case for all experiments run during the course of this research. The
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eigenvalues of every Gram matrix were checked for negative values before

proceeding to the learning step, with an error to be triggered if there were any.

This error was not triggered in any of the extensive experiments conducted

with Sim .

2.4.4 Computational complexity

The complexity of computing Sim is dominated by the Kantorovich-Wasserstein

distance dKW, which is a well-studied problem; using the Hungarian method

has worst case complexity O(n3) (Li, 2010) in unrestricted metric spaces. Re-

cently a number of linear or sublinear time approximation algorithms have

been developed for this problem and several variations, e.g., Li (2010); Do Ba

et al. (2011); Pele and Werman (2009); Andoni et al. (2009). We have tested

our implementation, which uses the transportation simplex algorithm, over

several hundred thousand pairs of point sets drawn from standard statistical

distributions and real world data sets. The runtime has expected time com-

plexity of (1.38× 10−7)n2.6 seconds, fit with an R2 value of 1, where n is the

size of the larger of the two point sets being compared. (We are particular to

provide the quadratic coefficient, rather than describe the runtime using order

notation, as its small value is what allows this approach to be used on larger

scale problems.)

2.4.5 Hyperclustering

Because Sim measures the relative density overlap between point sets, it is not

overly sensitive to their exact numbers or locations. We may use this intuition

to approximate Sim by grouping nearby points into a single weighted point.

We call these groups of nearby points “hyperclusters” and construct them by

recursively splitting the original point sets via k-means clustering (MacQueen

et al., 1967) until the maximum interpoint distance within each hypercluster is
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Figure 2.11: Hyperclustering. Error in Sim when approximated by hyperclus-
tering, averaged over 30 runs. In (A), we sample two sets of size 1000 from the
same distribution. The exact Sim value between them is 0.892, which takes 14.3
seconds to compute precisely. We vary the number of hyperclusters, correspond-
ing to a reduction in problem size, and plot the error and overall computation
time. In (B), we sample two sets of size 100 from poorly-overlapping distribu-
tions. The actual Sim is 0.121, which takes 16.12 seconds to compute precisely.
Note in both cases there is negligible loss in accuracy even when the point
set size is reduced by up to 80%. This figure is taken from Coen, Ansari, and
Fillmore (2011).

less than a specified threshold. This approximation method was first proposed

by Coen (2006). In Figure 2.11, we show how the error and runtime change

for a pair of point sets as the number of hyperclusters change. Empirically,

this technique allows Sim to be approximated closely for sets of millions of

points. For example, precisely computing Sim for point sets of size 100,000

would take almost 16 days, but an approximate answer can be computed in 46.9

seconds to within 0.01 of the true value. In extensive experimentation with this

approximate form of Sim, errors of up to 0.05 have little effect and correspond

to natural variation in samples drawn from the same distribution.4

4We are able to determine this by having solved for the value of Sim analytically for sam-
ples drawn from several common statistical distributions, thereby providing a way to evaluate
approximations.
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2.5 Density Overlap Kernel

The density overlap kernel is a novel kernel I developed to quantify the spatial

overlap of two point sets. It is based on modelling the point densities of both

point sets as a continuous distribution and defining a value for their “overlap”

via an inner product. It is a provable Mercer kernel, so that this kernel may be

used in downstream optimization algorithms with a guarantee of a bounded

dual objective function. This kernel (1) has moderate computational cost, (2)

makes no distributional assumptions, and (3) is simple in both concept and

implementation. It also permits the user to trade simplicity for speed in a

controlled and principled way. Given two point sets, we first construct a non-

parametric density estimate from each point set. The kernel between the point

sets is then defined as the inner product in L2 between the density estimates.

The intuition behind this definition can be seen in Figure 2.12. Similar point

sets, like those in panel (A), lead to similar density estimates, with a large inner

product, while dissimilar point sets like those in panel (B) lead to dissimilar

density estimates with a small inner product.

Some advantages that this method offers over other kernel methods dis-

cussed in Section 2.3 are as follows:

• Due to the fact that this method compares point sets using continuous

density estimates as surrogates, we avoid the need to explicitly compute

a matching (or a flow) between points from one set to points in the other

set in order to compute the kernel value between two point sets.

• Using Gaussian kernels as nonparametric density estimates the overall

kernel between point sets can be computed via a closed form which can be

evaluated as a simple sum of Gaussians, leading to moderate computation

cost.
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Figure 2.12: Density overlap kernel. (A) The top panel shows two point sets,
represented in blue and red respectively. The middle panel shows their indi-
vidual kernel density functions, while the bottom panel shows the value of the
dot product of their functions. The density overlap kernel is the area covered
by the dot product in the bottom kernel. (B) A similar set of panels as (A), this
time shown for two point sets that have much lesser overlap. Note that the
areas of the bottom panels capture the intuition that the two pairs of point sets
at the top are relatively similar and dissimilar respectively.

• There is no need to make strong distributional assumptions about the

data. This method is thus able to detect even subtle differences between

point sets.
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2.5.1 Formal Definition

The density overlap kernel defines an inner product K(A,B) on the space of

point sets (each containing points in Rd) as follows:

Step 1: Mapping point sets to continuous functions

We use kernel density estimation to construct a representation for a given

point set. In this way we move from a discrete representation of a point set

that has support only at the points it contains to a continuous representation

that captures its density and has support in the whole space, and therefore is

comparable to representations of other point sets.

Specifically, to each finite point setA = {ai}nAi=1 ⊂ Rd we associate the kernel

density estimate fA, defined as

fA(z) = 1
nA

nA∑
i=1

e
−‖z−ai‖

2
2

2σ2 .

Here we use the unnormalized Gaussian kernel e
−‖z−ai‖

2
2

2σ2 where σ is bandwidth,

and can be chosen either based on knowledge of the data set, cross-validation, or

by an automated method such as Botev et al. (2010) that chooses the bandwidth

minimizing mean integrated square error in a purely nonparametric and data-

driven way.

Step 2: Kernel Computation

A point set A is now represented in the form of a kernel density function fA

whose value at any point z in Rd is given by the sum of its kernels with respect

to all points inA. We define the density overlap kernelK between finite point sets

A,B ⊂ Rd to be the inner product in L2(Rd) of the associated density estimates:

K(A,B) =
∫
Rd
fA(z)fB(z)dz
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To compute K(A,B) for any point sets A and B of cardinalities n and m respec-

tively, let A = {ai}ni=1, B = {bj}mj=1. A basic algorithm for computing K(A,B)

is obtained by transforming the functional inner product
∫
fA(z)fB(z)dz into a

closed-form discrete summation as follows:

〈fA, fB〉 =
∫
Rd

(
1
n

n∑
i=1

e−
‖z−ai‖

2
2

2σ2

) 1
m

m∑
j=1

e−
‖z−bj‖

2
2

2σ2

 dz

=
∫
Rd

1
nm

n∑
i=1

m∑
j=1

e−
‖z−ai‖

2
2+‖z−bj‖

2
2

2σ2 dz

= 1
nm

n∑
i=1

m∑
j=1

∫
Rd
e−
‖z−ai‖

2
2+‖z−bj‖

2
2

2σ2 dz

= 1
nm

n∑
i=1

m∑
j=1

∫
Rd
e−

2‖z−
ai+bj

2 ‖2
2+
‖ai−bj‖

2
2

2
2σ2 dz (by rewriting)

= 1
nm

n∑
i=1

m∑
j=1

e
‖ai−bj‖

2
2

4σ2

∫
Rd
e−

2‖z−
ai+bj

2 ‖2
2

2σ2 dz

= (σ
√
π)d 1

nm

n∑
i=1

m∑
j=1

e−
‖ai−bj‖

2
2

4σ2 (by the identity
+∞∫
−∞

e−x
2

dx =
√
π)

(2.13)

This method has O(nmd) computational complexity. It is helpful to see the

final sum above as being the average entry in a n ×m matrix coincidentally

also consisting of kernels, albeit with a bandwidth that is scaled up by a factor

of
√

2.

2.5.2 Properties and Behavior

The variation of the density overlap kernel for two point sets with progressively

larger separations is shown in Figure 2.13. As the distance between the point

sets grows, the kernel value drops sharply to zero. As the distance shrinks, the

value approaches 1.
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Figure 2.13: Density overlap behavior. The graph on the right plots the value
of the density overlap kernel as a function of separation distance between the
two point sets shown on the left. As can be seen, the value shrinks non-linearly
as the distance between the point sets increases and then quickly approaches
its asymptotic limit of 0.

A probability density f in general need not necessarily be an L2-function,

i.e., it need not be the case that
∫
R
f2dx is finite. For example, if f is the Cauchy

density function
∫
R
f2dx =∞. However, our kernel density estimates based

on finite point sets are elements of L2, since maps of the form x 7→ e‖x−y‖
2
2/2σ

2

are in L2, and our kernel density estimates are finite sums of these. Our kernel

K defines an inner product on the density estimates and therefore on the

associated finite point sets. Finally, sinceK(A,B) is defined as an inner product

in L2, a Hilbert space, it follows that K is a valid kernel.

2.5.3 Approximation Schemes

In its exact form the dot product between kernel density estimates requires

computing Ω(n2) entries and taking their average. In this section we propose

one new method to approximating the value of the kernel by taking advan-

tage of structure in the data set when present and also describe other existing

approaches.
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Fast Gaussian Summation

The closed form obtained in Eq. 2.13 is a type of “Gaussian summation” of the

form
∑
i

∑
j

e−
‖xi−yj‖

2σ2 . During the past decade and earlier several algorithms

have been proposed to approximate sums of this form quickly. These ap-

proaches can be grouped into three main categories:

• One set of methods (e.g. Gray (2003)) takes advantage of sparsity in the

data by constructing k-d trees (Bentley, 1975) that partition the space Rd

in order to avoid having to compare all pairs of points. The tree is then

walked over using a priority queue with priority based on upper and

lower bounds on the Gaussian sums. When the upper and lower bounds

are within a pre-specified error tolerance the walk terminates. These

methods are effective when sparsity is actually present in the data and

the point sets are large, but they have high overheads and in fact take

longer than exact methods for relatively small point sets (< 1000 points).

• Another set of methods, e.g. Lee and Gray (2006), expands sums of expo-

nentials into a series of simpler terms, applies various algebraic transfor-

mations, and then truncates the series to reduce the number of compu-

tations in a controlled way. These methods are practical only for data of

low dimensionality (< 3), but they often achieve substantial speedups for

any number of points when the dimensionality is small.

• More recently, Monte Carlo methods have found favor in the computation

of these sums (Holmes et al., 2008; Lee and Gray, 2009). Through careful

sampling these methods are able with high probability to approximate

the sum to arbitrarily high accuracy, in time that is constant with respect

to the number of points in the point sets. These methods also have high

overhead and only yield gains in running time at high point set sizes

(≥ 50000).



51

Direct Truncation

The approaches above are well-motivated theoretically and effective in practice

in settings they are designed for (one-off computations on very large point sets

in low dimensions). In the training phase of a kernelized learning algorithm

with N training instances, kernel evaluations need to be performed a large

number (Ω(N2)) of times. Moreover in the applications discussed in following

chapters the point sets have moderate to high dimensionality (10–256) and low

to moderate cardinalities (1–1000). Thus constant overhead can accumulate

and be a significant problem in practice. This motivates the following novel

approximation scheme which also takes advantage of sparsity in the data.

Similar to Gray (2003) we observe that when there is even mild sparsity

present, a number of terms in the sum (2.13) are very close to zero relative to

other terms. For example, consider three points a, b, and c lying in (0, 1) with

coordinates 0.1, 0.2 and 0.8 respectively. For σ = 0.1, the relative contribution

to the overall value from the pair (a,b) compared to the pair (a, c) is

e
− 0.12

4(0.1)2

e
− 0.72

4(0.1)2
= e12 ≈ 162755.

Therefore instead of computing the contribution from the pair (a, c) we can

assign it a value of zero with little cost to accuracy.

In fact this can be done for all pairs of points separated by more than tσ

for a suitable value of t given a kernel bandwidth σ: the ratio between the

contribution to the overall kernel value of a pair of points tσ away from each

other, and the contribution of a pair of points σ away, is e− t
2−1

4 . compared to a

point one σ away. The value of t can be chosen appropriately depending on the

value of σ and the level of accuracy desired (for example, t = 5 achieves similar

accuracy to the exact version in our experiments).
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In the multi-dimensional case we make the following observation: if two

points are separated by tσ in any one dimension, the relative contribution of that

pair can similarly never exceed e− t
2−1

4 , since multiple dimensions only further

reduce the value in the exponent. This suggests that dimensions can be dealt

with independently and inspires our approximation.

Our approximation is as follows: We would like to compute K(A,B) for

point sets A and B. First, one of the input point sets (say A) is sorted along

each dimension, keeping track of the original indices. Then for every point in

set B, a binary search can be performed for each coordinate to determine its

closest point (in that dimension) and a fan-out search to determine indices of

neighboring points lying within tσ. These sets of neighboring points in each

dimensions are then intersected to find those points within tσ distance of the

point in B in all dimensions.

This is summarized in the following algorithm:

INPUT: A, B, σ, t
val := 0
SortedA := sort(A)
forall the b ∈ B do
ClosestP ts := FindClosestPoints(b, SortedA, σ, t)
forall the ClosePoint ∈ ClosestP ts do

val := val + e
‖b−ClosePoint‖2

2
4σ2

end
end

return val

Complexity Analysis Let |B| = m and |A| = n, and let the dimensionality of

points in each set be d. The initial sorting step is Ω(nd log(n)). Let c be the

average number of neighbors in A lying in the tσ-neighborhood of a point in

B. Then the FindClosestPoints procedure takes O(d(log(n) + c)) amortized

time and is run m times. The total running time therefore is O(d(n log(n) +

m log(n)+mc)). Assuming d < m < n, the running time isO(d(n log(n)+mc)).
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If the sparsity assumption is stated as “the number of points lying in the tσ-

neighborhood of any point is at most O(log(n))” and t is chosen to satisfy this

constraint, the final runtime complexity is O(nd log(n)).

Error Bounds The final computation is the average of mn entries. The error

contribution of each entry is 0 if the point pair it corresponds to are less than tσ

apart in each dimension, since in that case the exact value is computed. If not,

we approximate that entry to be 0, and the error arising out of that term is its

value itself, at most e−t
2

4 . If c is defined as in the previous section, the absolute

error is then upper-bounded by mn−mc
mn e

−t2
4 .

Obtaining a tight bound for the relative error is a harder task since there

is no efficient way of calculating a reasonable lower bound estimate for the

value of the function to be computed, and most prior work in estimating kernel

computations has concentrated on developing absolute error bounds (see Lee

and Gray (2006) for example).

2.6 Lift Kernel

Lifting is a recently proposed spatially sensitive metric between clusterings (Ra-

man et al., 2011) that can be adapted for point set similarity. It applies a map Φ̃

to each data point, transforming it into an element of a ρ-dimensional approxi-

mation of a reproducing kernel Hilbert space (RKHS). The application of this

map to a point is called “lifting” by the authors. A point set is represented as

an element of this space by summing up the lifted representation of each data

point. The summed vector is normalized to unit length to eliminate differences

caused by differing set cardinalities. The similarity between two point sets X

and Y is defined as the dot product between the vectors representing them.

The key to the utility of this kernel is the choice of the map; it is chosen so

that the lifted points preserve information about spatial relationships between
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their source points. This procedure is illustrated for three sample point sets in

Figure 2.14.

Figure 2.14: Lift kernel. This figure provides an illustration of the “lift” opera-
tion described in Section 2.6. The three clusters of points in the original two-
dimensional space (colored blue, red, and green respectively) are transformed
into singular points in a much higher P -dimensional space. An approximation
of their relative positions in a two-dimensional projection is shown on the right
hand side of the figure. Notice that the “distance” relationships between the
clusters on the left are preserved in the new space, in that blue is closer to red
than green which is furthest from the others.

The map Φ is inspired from a similar map in random Fourier features (Rahimi

and Recht, 2007), which was introduced to transform data into a form where

linear operations can approximately simulate kernel evaluations for certain

choices of kernels. Φ̃ (the “lifting” function) is applied to each data point in Rd,

transforming it into an element of R2ρ, a 2ρ-dimensional approximation of a

reproducing kernel Hilbert space (RKHS). This mapping is randomized and

similarity-preserving; a shift-invariant kernel in the original space is approxi-

mately equal to the inner product in the new space:

K(x, y) ≈ 〈Φ(x),Φ(y)〉

where the approximation can be made as precise as possible by varying the

dimensionality (2ρ) of the lifted space. For the kernel K(x,y) = e−
‖x−y‖2

2 , the

approximate lifting map Φ̂d : Rd → R2ρ is defined as follows:
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Φ̂(x) = [cos(ω1x), . . . , cos(ωdx), sin(ω1x), . . . , sin(ωdx)]

for x ∈ Rd where elements of ωi’s are random and normally distributed, and

〈Φ̂(x), Φ̂(y)〉 ' K(x,y) = e−
‖x−y‖2

2

for any x,y ∈ Rd.

We extend this formulation of point set similarity to incorporate weights

for each point, so that the final expression for similarity between two weighted

point sets X = {xi, wi} and Y = {yi, vi} becomes 〈 Φ̂(X)
‖Φ̂(X)‖

,
Φ̂(Y )
‖Φ̂(Y )‖

〉, where

Φ̂(X) =
∑
xi,wi

wiΦ̂(xi).

The complexity of this technique is O(ndρ), dominated by the cost of matrix

multiplication. Empirically, we have observed that for best experimental results,

ρ = O(nd).
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Figure 2.15: Lift instability. This figure shows the values of Sim and the lift
kernel between two clusters as a function of their separating distance, ∆. Due
to the randomized nature of Φ̃, the value of the lift kernel between any two
clusters varies across multiple runs and can have a standard error of up to 5%.

Due to the randomized nature of Φ̃, the distance between any two clusters

varies across multiple runs and can have a standard error of up to 5%, as

shown in Figure 2.15. Additionally, because a cluster is represented as the

sum of Φ̃-maps of points contained within it, it is no longer one-to-one, and
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it is possible for multiple clusters to share representations despite being very

different from one another. If ρ < nd where n is the number of points in a data

set and d is its dimensionality, the mapped space is not rich enough to have

unique representations for every possible cluster. In fact, for certain choices of

ρ, one can construct two very different clusters with identical or nearly identical

representations. To a certain extent, this problem can be alleviated by choosing

high values for ρ, which in turn leads to higher run-times but still leaves the

problem of variation in returned values across multiple runs even for these

high values of ρ.

2.7 Examples and Comparisons

Having detailed a number of point set comparison measures we return to a

motivating problem at the beginning of this work: classification of samples

from probability distributions. One of the common assumptions in machine

learning is that data from different classes originate from different underlying

distributions. When data are represented in the form of point sets, the classifi-

cation problem becomes one of being able to differentiate between samples of

points from differing distributions. Below we conduct experiments wherein we

sample sets of points from two different multivariate probability distributions

and evaluate the utility of various spatial and non-spatial point set comparison

methods in classifying these point sets.

Experiment 1

Consider the pair of 1-dimensional distributions shown in Figure 2.16 where the

densities of both distributions are plotted along the y-axis; one in blue and the

other in red. The distribution shown in blue is a beta distribution (parameters

α = 0.8 and β = 1.4) and the one in red is a truncated gamma distribution

(shape k = 1.83 and rate θ = 0.19). The parameters for these distributions
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Figure 2.16: (A) Probability density function plots for Experiment 1 in Sec-
tion 2.7. The plot in blue is a beta distribution with parameters 0.8 and 1.4,
and the one in red is a truncated gamma distribution, with shape parameter
1.83 and rate parameter 0.19. (B) Two examples of point sets that are sampled
from distributions shown in (A). This figure is adapted from Coen, Ansari, and
Fillmore (2011).

were chosen so as to make both the means and variances of these distributions

identical to one another respectively.

We sampled 100 point sets from each distribution, each containing a vary-

ing numbers of points between 30 and 60. We then trained a support vector

machine (Shawe-Taylor and Cristianini, 2000) to separate between point sets

originating from these two distributions, using Sim, density overlap, lift kernel,

Bhattacharyya kernel (Kondor and Jebara, 2003), and pyramid match (Grauman

and Darrell, 2007) as similarity functions. Classification accuracy results on a

holdout set of another 100 point sets from each distribution are tabulated in

Table 2.1.

Experiment 2

We replicate the experiment above with the two-dimensional distributions

shown in Figure 2.17. The density functions in one dimension of both distribu-



58

Accuracy Time
Density overlap (σ = 0.05) 93.5% 9.51s

Sim 87% 33.4s
Pyramid match 85.8% 4.84s

Lift kernel (ρ = 400) 74% 45.25s
Bhattacharyya kernel 83% 120.9s

Table 2.1: Accuracy results for five point set similarity measures on classifying
synthetic data in 1 dimension sampled from the distributions shown in Fig-
ure 2.16. 100 point sets of varying cardinality between 30 and 60 were sampled
from each distribution and used to train a support vector machine classifier.
This classifier was then tested on another 100 samples; the classification accura-
cies are shown in the table above. The time shown for density overlap includes
a beam search for the σ parameter.

Accuracy Time
Density overlap (σ = 0.05) 77.5% 11.34s

Sim 76% 107.52s
Pyramid match 59.3% 5.3s

Bhattacharyya kernel 63% 116.79s
Lift kernel (ρ = 1000) 54.5% 79.48s

Table 2.2: Accuracy results for five point set similarity measures on classifying
synthetic data in 2 dimensions sampled from the distributions shown in Fig-
ure 2.17. 100 point sets of varying cardinality between 30 and 60 were sampled
from each distribution and used to train a support vector machine classifier.
This classifier was then tested on another 100 samples; the classification accura-
cies are shown in the table above. The time shown for density overlap includes
a beam search for the σ parameter.

tions are plotted along the x-axis, and along the other dimension on the y-axis.

One distribution (in blue) follows a beta distribution with parameters (1.3, 1.3)

in the x-coordinate and a normal distribution with mean 0.5 and variance 0.04

in the y-coordinate. The other distribution (in red) follows a uniform distri-

bution with parameters (0, 1) in the x-coordinate and a beta distribution with

parameters α = 2.4 and β = 2.4 in the y-coordinate.

Similar to Experiment 1 above, we sampled 100 point sets from each distri-

bution, each containing a varying numbers of points between 30 and 60. We
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Figure 2.17: (A) Probability density function plots for Experiment 2 in Sec-
tion 2.7. The plots in blue represent the density in each dimension of one
distribution; it follows a beta distribution with parameters 1.3 and 1.3 in the
x-dimension and a normal distribution with mean 0.5 and variance 0.04 in the
y-dimension. The plots in red represent the per-dimension densities of the
second distribution; along the x-dimension is a uniform distribution on [0, 1]
and along the y-dimension a beta distribution with parameters 2.4 and 2.4. (B)
Two examples of point sets that are sampled from distributions shown in (A).
This figure is adapted from Coen, Ansari, and Fillmore (2011).

then trained a support vector machine to separate between point sets orig-

inating from these two distributions, using Sim, density overlap, lift kernel,

Bhattacharyya kernel (Kondor and Jebara, 2003), and pyramid match (Grauman

and Darrell, 2007) as similarity functions. Classification accuracy results on a

holdout set of another 100 point sets from each distribution are tabulated in

Table 2.2.

2.7.1 Discussion

The distributions in the experiments above were designed so as to be extremely

difficult to distinguish between. The means and variances along each dimension

were calculated to be identical or almost identical. The differences between

samples of points from these distributions are therefore likely to be subtle and
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difficult to detect. As the results in Tables 2.1 and 2.2 show, it is the spatially

aware comparison algorithms that are able to detect a classifying boundary

with any reasonable degree of accuracy. It is the relative densities at different

points in space that are the separating characteristic of point sets from different

distributions; this is precisely what spatially sensitive measures aim to capture.

We will see a similar pattern in the relative efficacies of spatial and non-spatial

methods in the applications in following chapters.
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3 clustering comparison

Data clustering, the task of organizing data into groups or clusters based on

similarity (Jain et al., 1999), is a classic means of discovery in science. The idea is

that data within a cluster should be more similar to one another than to data in

a different cluster (Raghavan, 1982). Figure 3.1 shows an example of a data set

and an intuitive grouping of its points. These groupings — called “clusterings”

or “partitions” — are constructed by algorithms implicitly or explicitly relying

on measures of similarity or dissimilarity between data points. Surprisingly

however, most extant ways of comparing clusterings — the subject of this chapter

— entirely ignore the very measure that were instrumental in creating them,

many times leading to very counter-intuitive results.

Clustering does not require the use of class labels associated with each point.

Clustering algorithms therefore are a useful investigative tool when given large

amounts of data that are unlabeled and/or are very costly to label. Due to the

fact that data are unlabeled in this scenario, clustering is a form of unsupervised

learning. Clustering can provide insight into the nature of the data set itself by

identifying distinct structures and patterns in the data; this information can

then be used in the design of a future supervised learning phase (Duda et al.,

2012).

There are dozens of clustering algorithms (Jain et al., 1999) that employ

diverse methods to discover clusters in data. The fundamental question of

evaluating the output of clustering algorithms however is not quite as settled

as in the world of supervised learning, where there exists a veritable suite of

evaluation metrics such as accuracy, precision, recall,Fβ scores, and ROC curves.

It is difficult therefore to make absolute judgments about the value of a given

clustering. Is it informative? Does it capture some intrinsic property present in

a data set? And perhaps most vexing of all, how many clusters are appropriate?
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Figure 3.1: Clustering. This figure shows an example of a simple two-
dimensional data set consisting of four well-separated groups of points. There
are no labels associated with instances in this example; the figure on the left
therefore colors each point identically. On the right is one possible clustering
(among many) of these data. The points in different clusters are now differenti-
ated by their color.

In the absence of labels, the only way of inducing an order preference for

clusterings is by the inductive bias of the algorithm that produced them. There

is no notion of a “best” clustering algorithm; the appropriate algorithm for a

given problem depends upon some assumed inductive bias (Mitchell, 1980), in

the absence of which all clusterings are equally valid, as formally described by

Watanabe (1969) and Wolpert (1996).

Thus, without some a priori preference, we have no reason to prefer one

clustering over another. However, this point immediately raises a basic question:

how should one compare different clusterings? Rather than address the ill-

defined evaluation of a given clustering head on, we turn to the more tractable

question of how similar two clusterings are. Numerous approaches to this

problem have been proposed (detailed in Section 3.2). Most of them however

address the cluster assignments of the points alone without taking into account

their spatial locations. In other words, these clustering comparison methods

depend entirely on the partitional information in the clusterings and not on the

spatial information of the points they contain. These comparison measures

require that the clusterings are over identical data sets and sometimes even

that the number of clusters in each output is identical.
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As a corollary to the point above about there not being a “best” clustering

algorithm, it is similarly not meaningful to state that one framework for compar-

ing clusterings is objectively superior to another (Meila, 2005). Our goal then in

this chapter is to present a more sophisticated view of comparing clusterings

that incorporates information beyond partitional knowledge. Exploiting spatial

information can provide a deeper and more nuanced understanding of the

underlying structure in the data set.

In the remainder of this chapter I present a novel, principled, method called

CDistance for comparing clusterings both geometrically and partitionally, dis-

cuss related work, and provide comparisons with results on experiments that

demonstrate the value added by spatial information, followed by an application

of CDistance to evaluating the stability of a clustering algorithm with respect

Reference clustering

1

2

Change 1

1

2

Change 2

1

2

Figure 3.2: Comparing Clusterings. This figure displays three clusterings.
Each one contains two clusters, whose members are indicated by green circles
and red triangles. In the two changed clusterings, the circled points have been
reassigned from the red to the green cluster. We might expect that the Reference
Clustering is more similar to Change 1 than Change 2 because the modified
points are closer to it. However, all methods from Rand (1971); Hubert and
Arabie (1985); Dongen (2000); Fowlkes and Mallows (1983); Meila (2005) and
Zhou et al. (2005) are incapable of distinguishing between the two changes.
This figure is taken from Coen, Ansari, and Fillmore (2010).
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to a particular data set. Finally, I present a new ensemble clustering algorithm

enabled by a spatially aware analysis of clusters that significantly outperforms

existing algorithms as measured by accuracy on labeled data sets. The follow-

ing definition of a clustering1 will be used throughout the remainder of this

chapter:

Definition 3.1. Clustering: A (hard) clustering A is a partition of a data set X into

a finite collection of K (point) sets X1, X2, . . . , XK called clusters such that

Xi ∩Xj = ∅ for all i 6= j, and
K⋃
k=1

Xk = X,

where X , X1, . . . , XK , are finite subsets of a metric space Ω that has an associated

distance metric dΩ.

We note it is unusual for a clustering comparison algorithm to utilize dΩ.

While it is essential for clustering these points, the vast majority of algorithms

compare clusterings solely in the space of cluster assignments rather than in Ω

directly.

3.1 Spatial Information in Clustering

Popular clustering algorithms, e.g. k-means clustering (MacQueen et al., 1967),

spectral clustering (Ng et al., 2002), affinity propagation (Dueck and Frey, 2007),

etc., take as input not only a collection of points to be clustered, but also a

distance function on the space in which the points lie. This distance function

may be specified implicitly and it may be transformed by a kernel, but it must

be defined between all points in the data set and its properties are crucial to

the clustering algorithm’s result. The information provided by this function
1In situations where the verb and noun can be confused for each other, we will substitute the

word “partition” in place of “clustering.”
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enables the clustering algorithm to apply its inductive bias and arrive at its

preferred output.

In contrast, almost all existing clustering comparison techniques ignore the

distances between points, treating clusterings as partitions of disembodied

atoms. While this approach has merit under some circumstances, it seems sur-

prising to ignore the distance function that was used to construct the clusterings.

Doing so seems to discard what is in some sense the most basic information

we have about the clusterings. Indeed, in Section 3.2, we exhibit a number of

clusterings that have substantially different spatial properties but are indis-

tinguishable by almost all previous clustering comparison techniques. One

such example is presented in Figure 3.2. We have found only one other cluster-

ing comparison technique published prior to CDistance that can distinguish

between the leftmost reference clustering and its two modifications to the right.

3.1.1 Added Benefits

By incorporating spatial information into the clustering comparison measure,

CDistance provides several additional benefits. First, we are able to compare

clusterings that are considered incomparable by many other techniques; specif-

ically, we can compare clusterings:

1. over different sets of points

2. over different numbers of points, and

3. over different number of clusters

Only one other clustering comparison technique, published after CDistance

and borrowing its key idea, allows comparison under all such conditions, par-

ticularly conditions (1) and (2), which are largely unaddressed in the litera-

ture. In contrast to some other approaches, our approach also extends in a
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straightforward way to soft (non-partitional) clustering. We briefly review some

applications in which a distance between clusterings is useful:

• Because clustering is an unsupervised learning technique, comparing

the output of clustering algorithms is difficult. In some cases, there

may be a gold standard with which we would like our algorithm to

agree. Measuring the distance between the gold standard partition and an

algorithm’s output provides important insight into whether the algorithm

is suitable for a given domain.

• We can explore the stability of a clustering algorithm’s results on a data

set by repeatedly subsampling the data set and comparing the algorithm’s

results against each other. (Condition (1) in the previous paragraph is

particularly useful here.)

• If the outputs of two clustering algorithms tend to agree on certain kinds

of data, we may prefer to use the algorithm with lower computational

complexity; comparing the algorithms’ outputs helps us make this deter-

mination.

• Finally, for ensemble methods in clustering, we may employ a variety of

clustering algorithms that exploit different mathematical properties of

the data. Asking if their outputs are both partitionally and geometrically

compatible adds an extra dimension for comparison.

3.2 Related Work

The question of comparing quality of clusterings has inspired many solutions

over the past several decades, drawing from diverse mathematical tools from

set theory to information theory to statistics. Below we detail classes of methods

for comparing clusterings in the literature with representatives of each. In the



67

presentation of the similarity measures below, let X = {x1, x2, . . . , xN} ⊂ RD

be the data set being clustered, and A = {A1, . . . , An} and B = {B1, . . . , Bm}

two partitions of X .

Set-theoretic methods

The majority of clustering comparisons and the most popular in terms of usage

are methods that are based on constructing sets corresponding to cluster mem-

berships of points or pairs of points and calculating their cardinalities. We call

these methods “set-theoretic” in reference to their discrete natures and because

they are the result of union and intersection operations on sets derived from

membership information. Among the earliest of such methods is the Jaccard

index (1901) (Ben-Hur et al., 2002), which measures the fraction of pair-wise

cluster assignments on which the two partitions agree. It counts the numbers

of pairs of points xi and xj that are clustered together in both clusterings2:

Jaccard(A,B) =

∑
i,j

[xi and xj are clustered together in both A and B]∑
i,j

[xi and xj are clustered together in A or B] (3.1)

For the presentation of the following measures it is useful to predefine the

following quantities:
2The formula uses Iverson brackets; it denotes a number that is 1 if the condition in square

brackets is satisfied, and 0 otherwise.
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Nss =
∑
i,j

[xi and xj are clustered together in both A and B]

Ndd =
∑
i,j

[xi and xj are not clustered together in A nor B]

Nsd =
∑
i,j

[xi and xj are clustered together in A but not B]

Nds =
∑
i,j

[xi and xj are clustered together in B but not A]

In terms of the above quantities, the Jaccard index can be re-written as

Jaccard(A,B) = Nss
Nss +Nds +Nsd

(3.2)

Subsequently, Rand (1971) famously proposed a method for comparing

clusterings based on both similarities and differences in point assignments (the

Jaccard index above only takes similarities into account). This metric, known as

the Rand index, is calculated by the fraction of points – taken pairwise – whose

assignments are consistent between two clusterings:

Rand(A,B) = Nss +Ndd
Nss +Nds +Nsd +Ndd

(3.3)

Rand also discussed the notion of partition sensitivity to data perturbation,

which was among the earliest applications of these types of comparison meth-

ods.

Techniques for a more restricted problem, one of comparing the hierar-

chical outputs of agglomerative clustering algorithms have inspired several

set-theoretic solutions as well. The measure proposed by Sokal and Rohlf (1962)

was inspired by the need to compare taxonomies from fields in biology such

as phylogenetic trees. It computes for each pair of elements the height of their
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lowest ancestor in both dendrograms; these measures are then arranged in a

vector and the final measure is a correlation coefficient between these vectors.

Farris (1973) derives a measure to compare hierarchical clusterings (also called

dendrograms or trees) by counting the number of fragments into which the

clusters of one dendrogram are broken into in another dendrogram. Fowlkes

and Mallows (1983) proposed a measure to compare dendrograms by “cutting”

them at different heights to get k = 2, 3, . . . , N clusters in each partition, and

defined the similarity at each k to be

Fowlkes-Mallows(Ak,Bk) = Nss√
(Nss +Nds)(Nss +Nsd)

(3.4)

The approach taken by Rand of counting pair agreements has been built

upon by many others who examined similarity between non-hierarchical par-

titions and formulated a number of novel distance metrics in the process. A

survey of these early partition metrics can be found in Day (1981). For example,

Hubert and Arabie (1985) addressed the Rand index’s well-known problem of

overestimating similarity on randomly clustered data sets and introduced the

Adjusted Rand Index to correct for chance agreement:

AdjustedRand(A,B) = Nss +Ndd − Iexp
Nss +Nds +Nsd +Ndd − Iexp

(3.5)

where Iexp is the expected count for the quantity in the numerator of the Rand

Index:

Iexp =
N2(N2 + 1)−N(N + 1)(

∑
i

|Ai|2 +
∑
j

|Bj |2) +
∑
i,j

|Ai ∩Bj |2

2N(N − 1) (3.6)

The Jaccard, Rand, and Hubert measures above are part of a general class

of clustering comparison techniques based on tuple-counting or set-based

membership. Other more recent measures in this category include the Mirkin,
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van Dongen, Fowlkes-Mallows and Wallace indices, a discussion of which can

be found in Ben-Hur et al. (2002) and Meila (2005).

Hamming Distance

Lange et al. (2004) proposed a clustering similarity measure for the purpose

of measuring stability of clustering solutions. A clustering is considered more

stable if another set of similar data produces a clustering that is similar to the

first one. The similarity measure proposed is a simple Hamming distance: it

is the count of data points that occur in the same cluster in both clusterings,

normalized by the size of the data set. Since there are no labels and therefore

no gold standard correspondence of clusters between two clusterings, the

final quantity is taken to be the minimum normalizing Hamming distance

over all possible permutations of cluster correspondences. Note that for this

particular measure we must have m = n, i.e. the two partitions must have the

same number of clusters. Let LA be a vector of length N constructed from the

cluster assignments of points in X according to partition A, and similarly LB

corresponding to B. The Hamming distance between clusterings is

Hamming(A,B) = min
π∈Gn

1
N

N∑
i=0

[LA(i) 6= π(LB(i))] (3.7)

where π is a permutation of the set {1, 2, . . . , n} and the minimization is over

the group Gn of all such permutations.

Variation of Information

The Variation of Information approach (Meila, 2005), defines an information

theoretic metric between clusterings by considering partitions as points in a

lattice. Here, the distance between partitions is defined by their relationship in

the lattice. This distance measures the information lost and gained in moving

from one clustering to another, over the same set of points. Perhaps its most
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important property is that of convex additivity, which insures locality in the

metric; namely, changes within a cluster (e.g. refinement) cannot affect the

similarity of the rest of the clustering. This metric is defined as follows:

VI(A,B) = H(A) +H(B)− 2I(A,B) (3.8)

where H is the entropy function:

H(A) = −
n∑
i=1

|Ai|
N

log( |Ai|
N

)

and I the mutual information function:

I(A,B) =
n∑
i=1

m∑
j=1

|Ai ∩Bj |
N

log( |Ai ∩Bj |
N

|Ai|
N

|Bj |
N

)

Mallows Distance

Zhou et al. (2005) defined a distance between clusterings that is based on the Mal-

lows distance between probability distributions (equivalent to the Kantorovich-

Wasserstein distance, defined in Section 2.4.1. Clusters are represented as

discrete probability distributions over the data set X , where the density at each

data point is defined by the probability of a point belonging to that cluster.

The distance between clusters is defined as the `1 distance between their corre-

sponding membership distributions, and the distance between clusterings is

defined as the Mallows distance (Section 2.4.1) between them.

This distance shares our motivation of incorporating some notion of distance

into comparing clusterings. However, it is computed over a space of indicator

vectors for each cluster, representing whether each data point is a member of

that cluster. Thus, similarity over clusters is measured by their shared points

and does not make any use of the geometries of the points themselves. The

primary motivation for this work was to introduce soft clustering into the

standard literature of clustering comparisons.
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All the techniques above can be considered as being statistics derived from

analysis of cluster assignments. That is, they are dependent only on the relative

fractions of points in each cluster and cluster intersections. While these mea-

sures can robustly handle a different number of clusters in the clusterings, they

cannot take into account a number of other desirable features as in Table 3.1.

Rand VI Mallows CDistance Hamming ADCO
Different k X X X X × ×

Different data × × × X × X
Spatially aware × × × X × X

Table 3.1: Clustering comparison measures. This table shows the ability of
different clustering comparison measures to handle different numbers of clus-
ters in two clusterings (k), different underlying data sets, and whether they
take into account the geometric properties of points in clusters. The measures
in the columns of this table correspond to the Rand index (Rand, 1971) and
associated set-theoretic methods, Variation of Information (VI) (Meila, 2005),
the Mallows Distance based measure from Zhou et al. (2005), our method,
Hamming distance (Lange et al., 2004), and ADCO (Bae et al., 2006).

ADCO

Bae et al. (2006) present the first and only method we are aware of at the time of

developing CDistance that explicitly utilizes spatial information about points

to compare two clusterings. This approach – called Attribute Distribution Clus-

tering Orthogonality (ADCO) – first bins all data points being clustered along

each dimension. It then computes the counts of points in each cluster in each

bin; these counts are called the cluster-densities. Finally, the distance between

two clusterings is defined as the minimal sum of pairwise cluster-density dot

products (derived from the binning), with the minimization taken over all

possible permutations of cluster correspondences between the clusterings. We

note that this is in general not a feasible computation. The number of bins

grows exponentially with the dimensionality of the space, and more impor-

tantly, examining all matchings between clusters requires O(n!) time, where n

is the number of clusters.
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Table (a)
Ex. Reference Clustering (R) Change 1 Change 2

1

2

Table (b)
Technique Example 1 Example 2

Name d(R,1) d(R,2) ? d(R,1) d(R,2) ?
Hubert 0.38 0.38 × 0.04 0.04 ×
1− Rand 0.00 0.00 × 0.05 0.05 ×
VI 5.22 5.22 × 11.31 11.31 ×
Mallows 8.24 8.24 × 0.90 0.90 ×
ADCO 0.11 0.17 X 0.02 0.04 X

CDistance 0.61 0.73 X 0.06 0.18 X

Table 3.2: Distances to Modified Clusterings. Each row in Table (a) depicts a
dataset with points colored according to a reference clusteringR (left column)
and two different modifications of this clustering (center and right columns). For
each example, Table (b) presents the distance between the reference clustering
and each modification for the indicated clustering comparison techniques. The
column labeled “?” indicates whether the technique provides sensible output.

In Examples 1 and 2 in this table, as well as Example 3 in Table 3.3, we modify
only the cluster assignments; the points remain stationary. Since the pairwise
relationships among the points change in the same way in each modification,
only ADCO and CDistance detect that the modifications are not identical with
respect to the reference.

LiftEMD

Following publication of CDistance in 2010, another spatially aware clustering

comparison measure was proposed by Raman et al. (2011). This measure, called

LiftEMD is similar to CDistance in its structure but uses the lift kernel (detailed
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Table (a)
Ex. Reference Clustering (R) Change 1 Change 2

3

1

2

4

Table (b)
Technique Example 3 Example 4

Name d(R,1) d(R,2) ? d(R,1) d(R,2) ?
Hubert 0.25 0.25 × N/A N/A ×
1− Rand 0.00 0.00 × N/A N/A ×
VI 5.89 5.89 × N/A N/A ×
Mallows 10.0 10.0 × N/A N/A ×
ADCO 0.07 0.09 X 0.00 0.07 ×
CDistance 0.41 0.56 X 0.08 0.09 X

Table 3.3: Distances to Modified Clusterings. (cont’d from Table 3.2.)
In Example 4, the reference clusteringR is modified by moving three points
of the bottom right cluster by small amounts. In Modification 1, the points
do not move across a bin boundary, whereas in Modification 2, they do. As a
result, ADCO detects no change between Modification 1 andR but detects a
large change between Modification 2 andR, even though the two modifications
differ by only a small amount. CDistance correctly reports a similar change
between Modification 1 and R, and Modification 2 and R. Other clustering
comparison techniques are not applicable to this example because the data sets
in the modifications are different from the one inR. This table, the preceding
table, and all included figures are taken from Coen, Ansari, and Fillmore (2010).

in Section 2.6) in place of one of the components in CDistance . LiftEMD uses

the lift kernel to assign distances between the clusters of two clusterings, treating

them as point sets, and then computes the optimal transportation distance dKW
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between them (Section 2.4.1) between the clusterings, treating each clustering

as a set of points (corresponding to their clusters) in a new vector space.

Tables 3.2 and 3.3 show comparisons between the measures above and CDis-

tance on sample pairs of clusterings. Each row in the table highlights a potential

failure mode of non-spatially sensitive clustering comparison methods.

3.3 CDistance : A Spatially Aware Distance Between

Clusterings

Our goal is to construct a measure of comparison between clusterings of points

in a metric space that captures both spatial and partitional information about

the clusterings. This symmetric, non-negative measure will be presented as

a dissimilarity or a distance – not a similarity 3 – with range [0, 1]. As two

clusterings become more similar, the distance between them approaches zero.

This is in contrast with most indices for comparing clusterings, such as Rand

(1971), where a higher value in the range [0, 1] indicates greater similarity.

Our spatially aware distance measure CDistance is thus built to answer

the question: what is the disparity in the “overlap” of two clusterings in a given

space? CDistance does not restrict its evaluation to the assignments of points to

partitions alone, but crucially, also takes into account the locations of the points

in each cluster, the shapes of the clusters, and the spatial relations among the

clusters. We allow for the possibility that the two clusterings have different

numbers of clusters, and also that they are over potentially distinct data sets.

Below we present CDistance together with an algorithm for computing its

value on a pair of clusterings.
3As noted in Section 2.1.3 however, it can be easily converted to a similarity by subtracting

from 1 since CDistance is bounded between 0 and 1.
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3.3.1 Defining CDistance

CDistance makes use of the quantities dKW (Kantorovich-Wasserstein distance,

also called optimal transportation distance) and dsim defined in Section 2.4.1.

Conceptually, our approach is as follows. LetA and B be two clusterings of data

sets DA and DB , consisting of n and m clusters respectively. DA and DB are

subsets of a metric space Ω. Recall that there is no requirement that DA = DB ,

namely, the set of points being clustered need not be equal; in fact, it may well

be the case DA ∩DB = ∅.

1. We first construct a new metric space S – distinct from the metric space Ω

in which the original data lie – which contains one distinct element for

each cluster in A and B.

2. We define the distance between any two elements of this new space S to

be the optimal transportation distance dKW between the corresponding

clusters in Ω. We note here that since dKW is a proper metric (Rubner et al.,

2000) for distributions of equal mass, S is a metric space defined over the

collection of all point sets (i.e. over the power set of Ω).

3. The clusterings A and B can now be used to construct corresponding

weighted point sets A′ and B′ in S (with the weights being determined

by the relative cardinalities of the original clusters).

4. The degree of similarity between A and B is then defined as the degree

of spatial overlap between their corresponding weighted point sets A′

and B′ in S, as measured by dsim:

CDistance (A,B) = dsim(A′,B′; dKW),
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(a) Partition A (b) Partition B

(c) Clusters as points in S (d) Partitions as weighted point sets in S

Figure 3.3: Computing CDistance . This figure shows a visualization of how
CDistance is computed. Panels (a) and (b) show two partitions A and B of the
same data set in R2. Panel (c) shows an approximation of how the clusters in
A and B may be represented as points in a two-dimensional approximation
of the new metric space S. The metric in S is the value of dKW between their
corresponding clusters in R2. The size and color of each point in panel (c) are
adjusted proportionally for visual purposes to the size of the original cluster
and its color in the original partition respectively. Panel (d) shows how the
two clusterings may each be viewed as a weighted point set in the new metric
space. The point set corresponding to partition A is shown in red, and B in
blue. CDistance (A,B) is the value of dsim between these two weighted point
sets.
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where the weight π associated with each clusterA ∈ A is equal to |A|/|DA|

and similarly the weight ρ of each clusterB ∈ B is |B|/|DB |, proportional

to the number of points in the clusters.

Figure 3.3 shows a visual demonstration of these steps on an example data

set. The procedure outlined above transforms a clustering into a weighted

point set. Note the interesting fact that we do not know the coordinates of the

points in S representing each cluster. However, we do not need this information

because the next step of computing dsim only requires knowing pairwise dis-

tances between points in S – which we have by way of dKW – not their absolute

locations. Thus, we have reduced the problem of comparing clusterings to the (solved)

problem of comparing similarity between two point sets. This neatly sidesteps the

computationally intractable problem of examining the exponential space of all

possible permutations of matches between clusters in A to clusters in B; these

are explicitly enumerated in Bae et al. (2006).

An efficient algorithm to compute clustering distance is easily derived from

the definition. Let A and B be as above. We use two steps:

Step 1.

This step computes the dKW metric mentioned above. Each cluster A ∈ A and

B ∈ B is a uniformly weighted point set; for each pair of clusters (A,B) ∈ A×B,

we compute the optimal transportation distance dKW(A,B; dΩ) based on the

distances according to dΩ between points in A and B.

The result of this step is a matrix (dKW(A,B)) which contains the optimal

transportation distance evaluated on all points in S of interest to us. We will

use this matrix in Step 2.

Step 2.

In this step, we compute the CDistance betweenA andB. We will first construct
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weighted point sets in S corresponding to A and B. For each cluster Ai ∈ A

let A′i be its corresponding point in S. Note that we are assured that A′i exists

– due to the metricity of dKW – but we do not know its exact representation.

We construct a weighted point set A′ = {(A′1, π1), . . . , (A′n, πn)} where πi =

|Ai|/|DA| (recall thatDA is the underlying data set that was clustered to produce

A). The weight on each cluster is proportional to the number of points in the

cluster. Similarity, let B′j be the corresponding point in S for each cluster

Bj ∈ B, ρj = |Bj |/|DB | its associated weight, and the weighted point set

B′ = {(B′1, ρ1), . . . , (B′m, ρm)} corresponding to B.

CDistance (A,B) can now be computed as dsim(A′,B′; dKW), using the opti-

mal transportation distances between clusters computed in Step 1.

3.3.2 Discussion of CDistance Design Choices

Note that we use optimal transportation distance to measure the distance be-

tween individual clusters (Step 1), while we use similarity distance to measure

the distance between the clusterings as a whole (Step 2). The reason for this

difference is as follows. In Step 1, we are interested in the absolute distances

between clusters: we want to know how much work is needed to move all the

points in one cluster onto the other cluster. We are not interested here in the

relative improvement of optimal transportation distance over naive transporta-

tion; rather, we would like to know how much work is needed to transform one

cluster into the other and so we use dKW as a measure of how “far” one cluster

is from another.

In contrast, in Step 2 we want to know the degree to which the clusters in one

clustering spatially overlap with those in another clustering using the distances

derived in Step 1. Similarity distance is an appropriate measure of distance

between two clusterings because it determines how well one clustering “fits”

onto another, while respecting the weights of their constituent clusters and
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distances between them. This is an exact and well-motivated optimization that

distills both spatial and categorical information into a single measure.

Our choice to use uniform weights in Step 1 but proportional weights in Step

2 has a similar motivation. In a (hard) clustering, each point in a given cluster

contributes as much to that cluster as any other point in the cluster contributes,

so we weight points uniformly when comparing individual clusters. In contrast,

Step 2 proportionally distributes the influence of each cluster in the overall

computation of CDistance according to its relative weight, as determined by

the number of data points it contains. For example, if a single cluster A ∈ A

contains almost all the points of X , then the degree of spatial overlap of the

clustering A as a whole with any other clustering B is dominated by the spatial

overlap of the single cluster A with clusters of B. By weighting the clusters

in each clustering in proportion to their cardinality, we obtain this desired

behavior.

3.3.3 Properties and Behavior

Since CDistance is defined as the value of dsim between two quantities, many

of its properties are identical to that of dsim. The difference of course, is that

CDistance is defined over collections of weighted point sets and dsim over

weighted point sets. Similar to dsim, CDistance is a dissimilarity measure that

lies in [0, 1]. When two clusterings are identical, it takes the value 0; this happens

when the clusterings overlap perfectly, leading to two identical weighted point

sets in the new metric space S, which in turn causes dsim to be 0.

Figure 3.4 illustrates some values of CDistance for sample clusterings. In

each subfigure, we are comparing two clusterings, one of which has been

translated for visualization purposes. For example, in Figure 3.4 (a), the two

clusterings spatially overlap perfectly so their clustering distance is zero. Match-

ing clusters are connected by lines to illustrate their correspondence. (These
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Figure 3.4: Clustering Stability. Each panel above shows a clustering of two
data sets, either identical to one another or slightly perturbed, and the CDis-
tance value between them. While the clusterings are separated by a blue dotted
line, the data sets overlap significantly and occupy similar regions of space;
the separation is for visualization purposes only. (a) Identical clusterings and
identical data sets; CDistance is 0. (b) Similar clusterings, but over slightly per-
turbed data sets; CDistance is 0.09. (c) Two different algorithms were used to
cluster the same data set. CDistance is 0.40, indicating a moderate mismatch of
clusterings. (d) Two very different clusterings generated by spectral clustering
over almost-identical data sets. CDistance is 0.90, suggesting instability in the
clustering algorithm’s output paired with this data set.

lines are drawn solely for visualization purposes.) The most interesting panel

is Figure 3.4 (d), which demonstrates that symmetries in a shape can produce

wildly disparate clusterings; this is referred to as “instability.” Repeated appli-

cations of spectral clustering to the data shown in Figure 3.4 (d) produce very

different clusterings, both visually and as measured by CDistance . Multiply

clustering a data set and calculating CDistance between the outputs allows us

to gauge whether an algorithm/data set combination are mutually compatible.
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Figure 3.5: CDistance Stability. Examining stability of CDistance with respect
to aggregations of small changes in partitioning. (a) Reference clustering. This
data set is a subset of the unit circle with geodesic distance function. (b) An
intermediate clustering. CDistance between this clustering and the reference
clustering is 0.60. (c) The completely rotated clustering; CDistance between
this clustering and the reference clustering is 0. (d) The graph of variation of
CDistance with angle of rotation is linear.

Figure 3.5 illustrates the smoothness of CDistance as clusterings change

in small increments. Figure 3.5 (d) reflects the distance between the clus-

tering shown in Figure 3.5 (a) and intermediate clusterings as it is rotated

incrementally to the clustering in Figure 3.5 (c). We note these two clusterings

are indistinguishable because they cluster the data equivalently. Thus, rotations

of both 0 and π radians have CDistance zero.
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For the final example, consider the clustering in Figure 3.6 (a), which con-

tains the same data set as Example 4 from Table 3.3 (a). Suppose we incremen-

tally increase the y-coordinates of the cluster consisting of blue triangles. At

each step, we compute both ADCO (Bae et al., 2006) and CDistance between the

modified data set and the reference clustering in Figure 3.6 (a). The resulting

values are plotted in Figure 3.6 (b). We see that ADCO suffers from swings

and discontinuities due to the abrupt transition of data moving between dis-

crete bins. As a result of this behavior, ADCO values are difficult to interpret

intuitively.

3.4 Stability

A spatially aware comparison between clusterings finds application in an im-

portant technique for selecting a given clustering solution. As noted earlier,

the unsupervised nature of clustering makes the task of directly evaluating
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Figure 3.6: ADCO Variation. This figure shows the smooth variation of CDis-
tance as compared to ADCO with small changes in the data set. Panel (a) shows
a reference clustering; Panel (b) shows a plot of CDistance and ADCO values
as a function of how far the “blue triangle” cluster is displaced upwards. This
figure is adapted from Coen, Ansari, and Fillmore (2010).
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the quality of its partitioned outputs very difficult. As advanced by a number

of researchers in the past few years (Dudoit and Fridlyand, 2003; Lange et al.,

2004; Ben-Hur et al., 2002; Shamir and Tishby, 2010), one desirable aspect of

a good clustering solution is “stability,” i.e. the idea that a clustering should

be robust to various perturbations in its input. The output partition should

not be heavily dependent on specific minute features of the data set; if some

aspects of a data set perturbed slightly, the overall clustering solution should

not change significantly. It is here that a spatially aware comparison measure

such as CDistance finds immediate utility: estimating the changes in a partition

caused to due perturbations in the data.

Ben-Hur et al. (2002) proposed that the stability of a clustering solution could

be determined by repeatedly clustering subsamples of its data set. Finding

consistently high similarity across clusterings indicates consistency in locating

similar substructures in the data set. This can increase confidence in the appli-

cability of an algorithm to a particular distribution of data. In other words, by

comparing the resultant clusterings, one can obtain a goodness-of-fit between

a data set and a clustering algorithm. The clustering comparisons in Ben-Hur

et al. (2002) are all done via partitional methods. Shamir and Tishby (2010)

extends this idea further and provides theoretical underpinnings and bounds

for its applicability.

We can instead use CDistance to perform this comparison. This is depicted

in Figure 3.7, where we repeatedly cluster subsamples of a data set with both

Self-Tuning Spectral Clustering (Zelnik-Manor and Perona, 2004) and Affinity

Propagation (Dueck and Frey, 2007). Although these algorithms rely on mathe-

matically distinct properties, we see their resultant clusterings on subsampled

data agree to a surprising extent according to CDistance .

Because CDistance is able to compare clusterings of different cardinality,

we can use it with algorithms that self-determine how many clusters to gener-
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CDistance: 0.16
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CDistance: 0.21
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 6 vs 7 clusters

CDistance: 0.13
 7 vs 9 clusters

CDistance: 0.12
 7 vs 8 clusters

Figure 3.7: Stability. Comparing outputs of different clustering algorithms (self-
tuning spectral clustering and affinity propagation) over randomly sampled
subsets of a data set. The low values of CDistance indicate relative similarity
and stability between the clusterings. The numbers of clusters involved in each
comparison are displayed below the CDistance value. The intuition behind
CDistance is reflected in the lines connecting clusters (across clusterings) that
are spatially similar to one another.

ate (such as self-tuning spectral clustering above). Thus, we can use a wider

assortment of clustering algorithms in ensemble methods and for stability

testing.

3.5 Conclusion

In this chapter we presented a new algorithm for comparing clusterings that

computes a value we call CDistance . This approach employed by CDistance

incorporates both spatial and categorical information into a single distance
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function and varies smoothly with changes to the underlying data. It captures

an intuitive notion of clustering overlap that makes it easy to apply and interpret.

It is unique in enabling comparisons between clusterings that differ in their

data sets, number of points, and number of clusters. This significantly broadens

the range of applications for this measure in comparison to other approaches to

comparing clusterings. The CDistance algorithm is extensible to comparing soft

clusterings (such as those generated by Expectation-Maximization techniques

and other probabilistic methods) by replacing the uniform distribution assumed

across points of a cluster in Step 1 with distributions describing the fractional

clustering memberships.
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4 ensemble clustering

Recent advances in unsupervised learning seek to take advantage of “ensembles”

of outputs of clustering algorithms (Nguyen and Caruana, 2007; Fern and Lin,

2008; Berikov, 2014; Franek and Jiang, 2014; Vega-Pons and Ruiz-Shulcloper,

2011). The contributions of many different clusterings in the ensemble are

then distilled to yield a single consensus clustering. These ensemble methods

provide improved results and can provide several important benefits over

single algorithm clustering. As discussed in Topchy et al. (2004), advantages

of applying ensemble techniques to clustering problems include improved

robustness across data sets and domains, and increased stability of clustering

solutions. Perhaps most importantly however, ensemble techniques provide

the ability to arrive at clusterings that are not individually obtainable by any

single practical clustering algorithm used while generating an “ensemble” (a

collection of candidate clusterings). This phenomenon is possible because there

are an exponential number of ways to partition a given set of points, and any

clustering algorithm only searches a fraction of the space of possible partitions.

Ensemble techniques provide ways to arrive at a clustering that lies outside the

search spaces of individual algorithms, drawing solutions from a larger search

space.

Unsurprisingly, ensemble methods rely on a notion of a distance or similarity

– whether stated explicitly or implicitly – between clusterings. In order to

create an integrated ensemble clustering from several individual clusterings,

information about which clusterings are more similar or less similar or which

parts of which clusterings are compatible with each other and can be combined

is frequently necessary.

Despite the inherent spatial nature of clustering, previous approaches to

ensemble clustering – like approaches to compare clusterings – have mainly
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Figure 4.1: Ensemble Clustering. The typical flowchart of an ensemble clus-
tering framework. Multiple clusterings of a single data set X are generated by
varying parameters, perturbing the data, and subsampling. The collection of
these clusterings, called an “ensemble” is then input to a consensus step that
attempts to combine information from all these clusterings and generate a final
consensus clustering from them.

used “partitional” or set-theoretic techniques to measure similarity between

clusterings. They only account for the cluster identities of points, but not their

spatial information. As we showed above, it is in many contexts a major weak-

ness to ignore spatial information in clustering comparisons. Not taking into

account the location of data points for which labels change across clusterings

can lead to a misleading quantification of the difference between the clusterings.

We present below a state-of-the-art algorithm that compares and combines

information from multiple clusterings by incorporating spatial information.

Our algorithm significantly outperforms other existing ensemble clustering

algorithms (as measured by agreement with ground truth on labeled data

sets) that either do not take spatial information into account or that use spatial

information less effectively, as shown in the experiments below. Specifically, we

use CDistance (introduced in previous sections) to compare the similarity of

any two clusterings. CDistance provides a measure of the extent to which the

constituent clusters of each clustering overlap with the other, and by extension,

how well the two clusterings agree with each other. In the current context, it is

used to measure the diversity in a set of clusterings. Then, given a sufficiently

diverse set of clusterings, we construct a consensus clustering using a variant

of the optimal transportation distance dKW (Section 2.4.1).
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4.1 Ensemble Clustering Overview

An ensemble clustering is a consensus clustering of a data set X based on a

collection of R clusterings. The goal is to combine aspects of each of these

clusterings in a meaningful way so as to obtain a more robust and “superior”

clustering that combines the contributions of each clustering. It is frequently the

case that one set of algorithms can find a certain kind of structure or patterns

within a data set and another set of algorithms can find a different structure.

For example, k-means produces clusters with a search bias for locality, where

locality is defined by radial distance to a center, whereas a spectral clustering

algorithm prefers to segregate clusters of points that lie near each other in a

low-dimensional manifold. An ensemble clustering framework tries to con-

structively combine inputs from different clusterings to generate a consensus

clustering.

There are typically two steps involved in any ensemble framework; a dia-

gram is shown in Figure 4.1. There is also sometimes an optional third step in

between:

1. Generation of R clusterings of X

2. Evaluation of diversity and other metrics in the generated clusterings

3. Generation of a consensus clustering from the clusterings in Step 1

Clusterings may be generated by a number of ways: by using different

algorithms, by supplying different parameters to algorithms, by clustering

subsets of the data, by clustering the data with different feature sets (Fern and

Brodley, 2003), and by generating clusterings with a randomized Metropolis-

Hastings process (Phillips et al., 2011).

The consensus clustering can also be obtained through a number of ways

such as linkage clustering on pairwise co-association matrices (Strehl and
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Ghosh, 2003), graph-based methods (Fern and Brodley, 2004) and maximum

likelihood methods (Topchy et al., 2004). We provide more detail on each of

these below.

4.2 Related Work

There are two primary ways in which ensemble clustering algorithms differ

from one another. The first is the choice of similarity/distance measures used

between clusters or clusterings, and the second is the consensus algorithm.

There are a variety of approaches to distilling all the information contained in

an ensemble of clusterings and coming up with a consensus clustering. A good

survey of the variety of solutions in both problems can be found in Ghaemi

et al. (2009). We focus in this section on prior work in the second category; work

related to the first is detailed in Section 3.2.

4.2.1 Hypergraph-based methods

The set of R clusterings produced in Step 1 of the ensemble framework can

be represented by a hypergraph, G. A hypergraph is a variant of the classic

graph data structure where edges can connect two or more nodes and are called

hyperedges. In this hypergraph, nodes correspond to individual points in data

set X , and hyperedges are used to indicate that a set of points belong to the

same cluster in one of the R clusterings. In other words, there is one hyperedge

in G per cluster, per clustering. A consensus clustering can then be achieved by

finding the minimum k-cut of G (explained in more detail below). Although

the hypergraph min-cut problem is NP-hard, several techniques for efficiently

approximating a solution have been proposed.

Strehl and Ghosh (2003) introduced a framework consisting of three different

methods for performing the consensus step over a hypergraph representation
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of the clusterings. In this framework, the consensus clustering is chosen to be

one that maximizes its average mutual information with all clusterings in the

ensemble.

4.2.2 Graph-based methods

Several ensemble clustering frameworks employ graph-based algorithms for

the combination step (Fred and Jain, 2002; Fern and Brodley, 2003). One popu-

lar idea is to construct a cluster or point graph taking into account the similarity

between clusterings and perform a graph cut or partition that optimizes some

objective function. Fern and Brodley (2004) describe three main graph-based

methods: instance-based, cluster-based and hypergraph partitioning, also dis-

cussed in Strehl and Ghosh (2003). The cluster-based formulation in particular

requires a measure of similarity between clusters, originally the Jaccard In-

dex. The unsuitability of this index and other related indices are discussed in

Section 3.2.

The approach ultimately adopted in Fern and Brodley (2004) uses graph

nodes to represent both individual points (or instances) and clusters. A bipartite

graph is then created with edges connecting each instance to each cluster it

is a member of. The resulting Hybrid Bipartite Graph Formulation can then

be partitioned with standard graph partitioning techniques. In forming a

consensus clustering, this method simultaneously considers both the similarity

of instances and the similarity of clusters.

4.2.3 Others

Several other methods for performing the consensus step have been proposed.

Dudoit and Fridlyand (2003) and others propose voting-based approaches

where each point votes on which cluster it belongs to. In order for this to work,

the correspondence problem must first be solved, where each cluster in each
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Figure 4.2: Spatially-aware ensemble clustering. Panels (a) and (b) show two
different clusterings of the same data set using two different algorithms. Panel
(d) shows the result of a spatially unaware cluster comparison measure (the
Jaccard index used in Fern and Brodley (2004)) used to derive the consensus
clustering, whereas panel (c) shows the result when a spatially aware cluster
comparison measure (CDistance ) is used.

clustering is assigned a corresponding cluster in every other clustering. Once

this correspondence is determined, points within clusters can vote according

to which consensus cluster they appear most frequently in. Other voting ap-

proaches construct a “co-association matrix” (Fred, 2001; Fred and Jain, 2002),

incorporating information about pairs of points co-occurring in the same cluster.

Agglomerative clustering algorithms are then applied to this matrix to generate

a final consensus clustering.
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Similar to the above, Raman et al. (2011) applies the approach of “clustering

the clusterings” based on an informative distance measure between clusterings

derived from the lift kernel (introduced in Section 2.6).

A number of other methods (Topchy et al., 2005; Vinh and Epps, 2009) are

based on optimizing an objective function based on the mutual information

between the labels of individual clusterings and the consensus clustering labels.

Figure 4.2 shows an example on a toy data set of the different consensus

clusterings that can result from spatially aware and unaware methods.

4.3 Algorithm

We present below our ensemble clustering algorithm, followed by results of

experiments using it on real world data sets and comparing it with other en-

semble clustering algorithms. Our algorithm, which we call Spatial Ensemble

Clustering (SEC), proceeds in 3 stages:

1. Ensemble Generation

2. Diversity Estimation

3. Consensus Finding

Before we proceed with a description of the algorithm we define first a variant

of dKW that we will use in the consensus finding step.

4.3.1 Kantorovich-Wasserstein Distance (unnormalized)

In this variant of Kantorovich-Wasserstein Distance (first defined in Section 2.4.1)

we remove the restriction that the set of associated weights for each point set

sum to 1. We instead set each point in both point sets to have equal weight (set

to 1). This has the effect of measuring overlap between two sets of points while

not penalizing for non-overlap.
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Figure 4.3: Un-normalized dKW. This figure contrasts the difference between
normalized and un-normalized Kantorovich-Wasserstein distance. When the
clusters do not overlap, as in the figure on the right, normalization makes little
difference. However, as one of the clusters approaches a subset of the other,
un-normalized distance approaches 0, as can be seen in the figure on the left.

An example contrasting these two transportation distances on clusters

of points is shown in Figure 4.3. We will use this variant of Kantorovich-

Wasserstein distance, called dUKW, in the consensus step of our ensemble clus-

tering algorithm.

4.3.2 Stage 1: Ensemble Generation

We use the following methods to generate candidate clusterings for the ensem-

ble:

• Running a variety of different clusterings algorithms, e.g. k-means (Mac-

Queen et al., 1967), spectral clustering (Ng et al., 2002), affinity propa-

gation (Dueck and Frey, 2007), k-medians (Jain and Dubes, 1988), and

hierarchical linkage algorithms (Kaufman and Rousseeuw, 2009).
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• Running the above algorithms with a variety of different parameters.

In the examples above, among other things we can vary the number of

clusters (k), neighborhood size, and initializations, depending on the

algorithm.

• Running the above algorithms and parameter combinations on random

subsets of the original data set. This is a method of introducing diversity

in the set of clusterings generated because the removal of some data points

may cause the rest to cluster differently (Ben-Hur et al., 2002).

• Running the above algorithms and parameter combinations on the data

set with small amounts of added Gaussian white noise. This achieves a

similar goal as the above point and may lead to different clusterings of

the data set.

• Running the above algorithms and parameter combinations on random

subsets of features of the original data set. This leads to diversity in the

clusterings by considering different views of the same data set.

The methods above allow us to include the output of several algorithms

and parameter combinations without committing to any one such combination.

Our goal will be to combine the information coming from these clusterings in

Step 3.

There are many other methods of generating diversity in clusterings which

may be used as well in this step. Examples include using a Metropolis-Hastings

process to generate high-quality clusterings from existing clusterings (Phillips

et al., 2011), or generating a high-quality clustering optimizing entropy and

maximal difference from a given clustering using information theory (Dang

and Bailey, 2010). These measures of cluster coherence or validity however

introduce an additional inductive bias into the ensemble of clusterings that
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can be avoided. For example, a cluster validity measure may prefer spherical

clusters or clusters that are convex in their shape and assign them higher scores,

whereas the data set may not be conducive to such scores of cluster quality.

4.3.3 Stage 2: Diversity Estimation

Some amount of diversity in clusters constituting the ensemble is crucial to the

quality of the final generated clustering (Hadjitodorov et al., 2006). In Section 3.4

we noted that CDistance is able to detect similarity between clusterings of

subsets of a data set. A corollary of this is that CDistance is also able to

detect diversity in members of an ensemble. Previous methods have used

the Adjusted Rand Index (Hubert and Arabie, 1985) or other such metrics to

quantify diversity. As we demonstrated in Section 3.2, these measures are

surprisingly insensitive to large differences in clusterings. CDistance provides

a smoother, spatially-sensitive measure of the dissimilarity of two clusterings

leading to a more effective characterization of diversity within an ensemble.

Measurement of diversity guides the generation step by indicating whether

the members of an ensemble are sufficiently diverse or differ from each other

only minutely. In case there is insufficient diversity, a return to Step 1 is war-

ranted in order to add more algorithm-parameter combinations to generate

more clusterings.

In the experiments below we defined diversity as the average CDistance

among members of an ensemble. We set a threshold of 0.1 for the diversity in

order to proceed with the final consensus step.

4.3.4 Stage 3: Consensus Finding

Our algorithm employs a graph partitioning method in the final step to gener-

ate the consensus clustering, based on the “cluster-based graph formulation”

method of Fern and Brodley (2004), explained in more detail below. While the
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authors chose not to proceed with this approach due to bad performance, we

have found that it works remarkably well when the cluster similarity measure

is sensitive to the spatial arrangement of the clusters.

Our algorithm requires an input value for k, the desired number of clusters

in the final consensus clustering. This value may be preset according to the

data set, or it may be determined by the domain, or one may use an algorithm

such as Affinity Propagation (Dueck and Frey, 2007) to determine an “optimal”

number of clusters according to some criterion.

We first describe the consensus step on hard clusterings, and extend it to soft

clusterings next. Let S = {S1, S2, . . . , SR} be the set of R clusterings generated

in the first step. Recall from Definition 3.1 that a hard clustering itself is a set

of clusters representing groups of data points. Let C = ∪Ri=1Si, and K be the

cardinality of C i.e. the total number of clusters in all the clusterings.

We generate a graph G = (V,W ) where V is a set of K vertices, each ver-

tex representing a cluster in C and W is a set representing the edge weights

between each pair of vertices. In our case, W is a pairwise similarity matrix

between the clusters of C, with the similarity measure w being derived from

the unnormalized optimal transportation distance dUKW. Since dUKW is a dis-

tance rather than a similarity measure, we use the additive inverse of dUKW to

represent similarity. An example graph is shown in Figure 4.4.

Note that in this graph, clusters that contain points in similar regions of the

original metric space will have high similarity (even if those clusters are from

different clusterings), whereas clusters containing points from different regions

of the metric space will have low similarity. We partition this cluster graph

using the normalized graph cut (Ncut) criterion of Shi and Malik (2000)1 and

set the number of subgraphs to partition the original graph into to be k, the

number of clusters we would like the consensus partition to contain.
1The implementation we used is from Cour et al. (2004).
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Figure 4.4: Graph Cut. This figure shows an example graph that is constructed
from the clusters within an ensemble. Each node in the graph represents a
cluster from one of the clusterings. The edges between nodes represent the
value of the cluster similarity measure between any two clusters (not all edges
are shown), and the red lines show a 3-way normalized cut of this graph. Since
each point appears exactly once in each clustering, different clusters within
a component can contain different instances of the same point. Each point
thus votes as to the number of times it appears in each component, and the
consensus clustering is constructed by placing each point in the component it
occurs the most number of times in.

Ncut is an approximation algorithm that finds a k-way cut minimizing the

sum of normalized graph cuts, i.e. minimizing

Ncutk =
k∑
i=1

cut(Ai, V −Ai)
assoc(Ai, V ) (4.1)

where cut(A,B) =
∑

u∈A,v∈B
w(u, v) is the sum of edges leaving a subgraph

defined by vertices in A, assoc(A, V ) =
∑

u∈A,t∈V
w(u, t) is the sum of weights
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from vertices in A to all vertices in the graph, and Ai’s are subsets of the vertex

set V .

With the cluster graph now partitioned into k disjoint subgraphs, each

subgraph leads to one cluster in the consensus clustering. This operation is

shown on an example graph in Figure 4.4. Each node in the graph represents a

cluster from one of the clusterings in an ensemble. The edges shown represent

the value of the cluster similarity measure between any two clusters.

There are R instances of each point in the original data set scattered among

clusters in the k subgraphs. For each point in the original data set we determine

the subgraph its instances occur most frequently in, and assign it to the cluster

in the consensus clustering corresponding to that subgraph. In this way, each

point is assigned a cluster; the consensus clustering is generated from these

assignments.

4.3.5 Extension to soft clusterings

If in the first step of the ensemble process we make use of clustering algorithms

that output soft clusterings, we may use both subsequent steps with minor

modifications.

We treat the output of a soft clustering algorithm as a matrix Cn×k where n

is the number of data points and k is the number of clusters. An element (i, j)

of this matrix represents the probability p(Aj |xi) of data point i belonging to

cluster j of the soft clustering.

For the diversity estimation step, optimal distance and CDistance both

already require weighted point sets in their inputs. In the hard clustering

case we set each point to have equal weight within the cluster, but in the

soft clustering case we simply set the weight of all points to be equal to their

probability of belonging to that cluster. Each point is thus replicated with

different weights in all clusters, but the sum of weights across replications is 1.
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In the graph construction part of the consensus step, we use a similar proce-

dure as above to calculate the unnormalized optimal transportation distance

dUKW. Instead of using uniform weights, we use the probabilities assigned by

the soft clustering of the point belonging to a cluster.

Finally, after performing the k-way graph cut with this weight matrix, we

proceed with the voting step as before, but in this case the vote of each point

contributes only as much as its weight. For each point x and each subgraph

Gk, we sum the weights of all instances of x occuring in Gk and assign it to the

probability of x belonging to cluster k in the final consensus clustering. This

generates a final soft consensus clustering.

4.3.6 Computational Complexity

The complexity of the generation step depends on the clustering algorithms

employed. The complexity of the diversity estimation step is O(R2k2S) where

R is the number of clusterings used in the ensemble and S is the running time

of dUKW for a cluster of points (see next paragraph). The final consensus step

has two main parts: the pair-wise similarity matrix construction and the k-way

graph cut. The similarity matrix construction will also take O(R2k2S) time

since there are O(Rk) clusters in total from all clusterings. The graph cut step

requires the solution of an expensive eigenvalue problem, but the algorithm we

employ makes use of a special structure in the problem (Shi and Malik, 2000)

to solve it in O(Rkt) time, where t is observed to be less than
√
Rk.

Finally, S, which is the time complexity of dUKW above is O(p3) in the worst

case, and O(p2.6) in practice (see Section 2.4.4), where p is the number of points

in the cluster (p is typically O(n/k) but can be n in the worst case). Optimal

transportation distance runs quite fast in practice, especially when the density

structure of points is taken advantage of (e.g. via hyperclustering described in

Section 2.4.5). This technique lowers the input complexity of the data set with
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Data Set Dimensionality # of instances # of Classes
Iris 4 150 3
Wine 13 173 3
Ionosphere 34 351 2
Soybean 35 47 4
ISOLET 617 1559 26
MNIST (Test) 784 10,000 10
MNIST (Full) 784 60,000 10

Table 4.1: Data Sets. This table displays the characteristics of data sets used
to evaluate ensemble clustering algorithms in this chapter. The data sets Iris,
Wine, Ionosphere, Soybean, and ISOLET are from the UCI Machine Learning
Repository Asuncion and Newman (2007) and form a diverse collection of data
set with respect to high and low dimensionalities, small and large numbers of
instances, and few and many classes. The MNIST LeCun et al. (1998) data sets
are the train and test sets respectively of a large and popular digit recognition
image database.

minimal impact on accuracy (all results shown in Table 4.2 are with hyperclus-

tering).

We measured the training time taken in each experiment and include these

results in Table 4.2. These times are very reasonable even for data sets as large

as the MNIST (LeCun et al., 1998) testbed.

4.4 Experiments

The goal of the experiments in this section is to evaluate the efficacy of our

algorithm and compare the results to other methods such as LiftKM (Raman

et al., 2011) (dimensionality ρ = 2000), the bipartite graph methods of Fern and

Brodley (2004), and the hypergraph methods of Strehl and Ghosh (2003). We

applied all these methods to standard labeled classification data sets (detailed

in Table 4.1) that are used in the literature in evaluation of clustering algorithms

and ensemble clustering techniques.

We generated the ensemble using a combination of the methods described

in Section 4.3 and using the k-means algorithm (MacQueen et al., 1967), spectral
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Data Set Iris Wine Ionosphere Soybean
SEC error 10.67% 29.78% 28.77% 29.79%

LiftKM error 11.33% 37.64% 33.90% 29.79%
KRF error 10.67% 53.37% 28.77% 29.79%

Fern-Brodley error 10.67% 42.13% 32.76% 29.79%
Mean error 15.68% 32.64% 27% 29.1% %
Min error 10.67% 29.78% 0% 0%
Diversity 0.11 0.19 0.06 0.24
SEC Time 11.6s 16.4s 10.5s 3.6s

Data Set ISOLET MNIST (Test) MNIST (Full)
SEC error 41.24% 40.03% 42.64%

LiftKM error 46.76%(ρ = 4000) 63.94% 64.13%
KRF error 43.43% - -

Fern-Brodley error 44.26% - -
Mean error 48.91% 52.88% 51.92%
Min error 42.85% 50.40% 50.82%
Diversity 0.29 0.62 0.66
SEC Time 860s 483s 6733s

Table 4.2: Results. This table presents the results of applying different ensemble
clustering algorithms on standard data sets. The first row contains the data set
used, the second the error rate for our method (SEC), and the third the error rate
of LiftKM. The fourth row contains the least error rate of the knowledge reuse
framework (KRF) of Strehl and Ghosh (2003) and the fifth the least error rate
among the three methods proposed in Fern and Brodley (2004). The sixth and
seventh rows contain the mean and minimum errors respectively of members
of the ensemble relative to the “true” labeling of the data set. The eighth row
displays the diversity measurement of the ensemble and the final row the time
in seconds that SEC took to arrive at a consensus clustering on that data set.
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clustering (Ng et al., 2002), and affinity propagation (Dueck and Frey, 2007). We

generated hundreds of clusterings and set a threshold of 0.1 for the diversity

(defined in Section 4.3) in order to proceed with the final consensus step. Each

ensemble clustering algorithm was given the same ensemble from which to

derive its consensus clustering, wherever applicable.

4.4.1 Measuring Accuracy

A natural criterion to measure the usefulness of each method is the overall accu-

racy (with respect to provided ground truth) of the final consensus clustering

and the improvement over individual members of the ensemble. We define

accuracy by the following formula:

Accuracy = max
p

1
n

k∑
i=1

T (Cp(i), Li) (4.2)

where Li is the ith class in the labeled data set, Cj is the jth cluster in the

consensus clustering, p varies over all permutations of labeling assignments

between the clusters of the consensus clustering and the classes of the data set,

and T (Cj , Li) is the number of points that occur in both Cj and Li.

We approximate the best correspondence p of cluster labels from the consen-

sus clustering to the data set labels by solving the correspondence problem using

the Hungarian algorithm (Munkres, 1957). The “accuracy” of each clustering

with respect to the given labels is then computed using this correspondence.

It is useful to keep in mind here that on these data sets supervised methods

are likely to obtain better accuracies. However, the utility of these experiments

is to demonstrate that information from multiple partitions can be synthesized

in a principled manner to create a more robust partition, still without any

supervision. The utility of ensemble clusterings is with unlabeled data sets

where supervised algorithms are inapplicable.
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4.4.2 Results

Table 4.2 shows the results of applying the above-mentioned ensemble meth-

ods to data sets from the UCI Machine Learning Repository Asuncion and

Newman (2007), and the MNIST digit recognition database (60, 000 data in

784 dimensions, categorized into 10 classes). These data sets were chosen to

maximize the diversity in dimensionality, numbers of classes, and numbers of

instances, to demonstrate the wide applicability of ensemble clustering.

In each column of the table we show results from the application to one

data set of SEC and three other state-of-the-art ensemble clustering algorithms,

each representative of a different approach to computing the consensus. In

the columns we show the error of each algorithm rather than its accuracy to

better demonstrate differences in performance. The least error in each case is

shown in bold. Additionally, we also provide information such as the mean

and minimum error of all clusterings in the ensemble. Finally, we show the

running time of SEC on that data set.

As the bolded numbers show, SEC consistently finds a consensus clustering

that has the least error rate among all the methods tested. In the case of the

Iris data set, three of the four methods arrived at a consensus that has a mis-

clustering error lower than the mean error over the ensemble, and equal to

the minimum error. The data set Wine has a similar result for SEC . For the

Ionosphere and Soybean data sets all methods perform similarly and arrive

at clusterings that are comparable to the mean error in the ensemble. In the

ISOLET and MNIST data sets, SEC reports an error that is significantly lower

than the mean of the ensemble and, more importantly, also lower than the

minimum error. In the case of MNIST, the difference is as much as 10.37%,

corresponding to an error reduction of 20.58%. This is especially interesting

as it indicates that with no further supervision we are able to use information
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from disparate clusterings to reduce the mis-clustering error well below even

the best performing member of the ensemble.

4.5 Conclusion

Following the theme of spatial sensitivity in comparing clusterings from the

previous chapter, in this chapter we proposed an end-to-end ensemble cluster-

ing algorithm that is sensitive not only to the spatial layout of the data but of

the clusters and clusterings as well. Our algorithm allows for domain-specific

ground distance functions to be used on the data points. It outperforms other

state-of-the-art algorithms on standard data sets as measured by accuracy on

labeled data sets, and in some cases is even able to arrive at a partition that has

a higher accuracy than the best-performing member of the ensemble.
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5 neuroimaging

This chapter delves into neuroscience, an area that may be unfamiliar to many readers.
The introductory parts of this chapter (Sections 5.2-5.5) are therefore devoted to pro-
viding background information about Alzheimer’s disease and brain matter in order
to provide context about the experimental data. Following these sections we demon-
strate how methods used in this thesis can detect subtle changes in the brain that are of
clinical relevance.

Alzheimer’s disease (AD) is a form of dementia that affects 18 to 24 million

people worldwide (Prince et al., 2011). By primarily affecting memory and exec-

utive function it greatly reduces the quality of life of people afflicted with it. As

the world’s population ages rapidly in the coming few decades this number is

projected to rise manifold to over 70 million by 2050. In this chapter we address

the problem of detecting subtle changes in neural structure that are indicative

of cognitive decline and correlate with risk factors for Alzheimer’s disease. This

is done by studying structural imaging data derived from middle-aged patients

with and without cognitive impairment. We will use images from brain scans

of a diverse set of subjects to study questions relating to structural differences

between patients from different populations. These questions develop a pro-

gressive framework that allow classification to be performed on individuals, as

opposed to methods that determine statistical differences at the group level.

Through this we aim to advance the state-of-the-art in understanding how

neural change is related to age, memory, and cognitive function. Figure 5.1

shows a visualization of the difference between views of a healthy brain and

one with advanced Alzheimer’s disease.

5.1 Framework

In the remainder of this chapter we show how longitudinal neuroimaging

analysis can be conducted within a point set framework to solve a number of



107

Figure 5.1: Alzheimer’s Brain This figure shows a diagram of two halves of an
axial cross-sectional view of the human brain. The left half depicts a healthy
brain, and the right half a brain in an advanced state of Alzheimer’s disease.
As the figures shows, Alzheimer’s disease is accompanied by significant loss in
volume in both gray and white matter regions of the brain. This figure is taken
from Alzheimer’s Association, 2015b.

problems in this domain. Our approach is significantly different from current

and previous work in this area. Previous approaches to the problem of detecting

changes in brain matter, and relating structural features of brain scans to clinical

observations have focused on separating populations based on gross changes,

such as decreasing overall volume of matter (Magnin et al., 2009; Grydeland

et al., 2013) or on voxel1-based comparisons (Klöppel et al., 2008; Dyrba et al.,

2013; Haller et al., 2013; Gray et al., 2013; Bron et al., 2015; Sun et al., 2015). In

contrast, we apply the spatially-sensitive kernels developed in Chapter 2 that

allow us to characterize individuals, as opposed to populations, and detect

minute differences among them. The problem of detecting structural differences

in white matter over time or across different populations of patients thus lends

itself neatly to the application of techniques that measure spatial overlap. We

use this for both classification and regression, for example, to predict changes
1A voxel represents a location in a three-dimensional grid, similar to a pixel in two dimensions.
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in a participant’s cognitive test scores over time using neuroimaging data alone.

This is a difficult problem, and in solving it, this work has been able to identify

neural regions that are implicated in cognitive performance and change over

time.

More generally, our approach introduces a simple paradigm for addressing

wide-data longitudinal problems. It is not specific to neuroimaging analysis and

shares a number of properties that are representative of this class of problems

and which arise often in medical and related domains. These properties include:

1. The data sets are wide – they have many more features (p) than they do

samples (N ). For example in an MRI study, we may gather O(1e6) voxels

for each of 100 patients. Similarly, a genome-wide association study may

have 500,000 single nucleotide polymorphisms (SNPs) measured over

a similar number of patients. Because p � N , linear models are often

the tool of choice due to their speed and low variance. However, these

models are also often extremely sparse, as described next.

2. Longitudinal studies track changes over time, with the goal of correlating

significant features with some outcome or effect. Naturally occurring

variations across features can mask these correlations. For example in

medical studies based on neuroimaging, most neural variation is non-

pathological and unrelated to the study outcome. The desired model is

therefore often extremely sparse but identifying significant features may

be difficult due to the next issue.

3. We often lack ground truth to validate results. Consider the problem

of determining whether healthy participants tracked over time are ex-

pected to develop some condition, such as AD. Given the subjects are

currently healthy, even if issues (1) and (2) could be ignored, we have

few ways to validate any constructed models. Instead, results are often
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presented as hypothesis tests that distinguish populations, e.g. those with

a family history of the disease from control groups. Predictions about

specific individuals are therefore elusive, outside of summary statistics

for populations of which they are members.

4. It is increasingly common to track longitudinal changes over very short

periods of time. In human neuroimaging, this interval has become as

short as three months (Alzheimer’s Disease Neuroimaging Initiative,

2003). One may ask if there is even a "signal" to find here. How do we

know if there is anything meaningful to detect? This is exacerbated when

the sampling time frame is much shorter than the onset time of observable

phenomena we would like to predict.

5.1.1 Analysis

We focus our analysis on middle-aged participants from the Wisconsin Registry

for Alzheimer’s Prevention (Sager et al., 2005) who underwent both brain

imaging and cognitive testing twice over a span of approximately two years. The

main neuroimaging metric of interest is fractional anisotropy (FA) as indexed

by magnetic resonance diffusion tensor imaging (MR-DTI or DTI). DTI is a very

effective means of identifying and measuring the integrity especially of one

kind of tissue in the brain known as white matter. For expositional purposes we

focus on white matter in this chapter; the computational methods however are

just as applicable to gray matter — the other type of matter in the brain. Based

on prior cross-sectional work from our group, we expected that AD risk and

cognitive function would be related to white matter microstructure. Specifically,

we hypothesized that FA would decline over the two years, that we would find

that participants with Alzheimer’s risk factors such as Apolipoprotein (APOE)

ε4 genotype would show a greater change over time compared to non-carriers,
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and that changes in cognitive function over time would be represented by

alterations to white matter microstructure over time. Given that the population

was cognitively healthy, we expected that the observed changes in both white

matter microstructure would be subtle. This problem therefore is well-suited

to benefit from the methods introduced in Chapter 2 that are able to detect

minute changes in samples drawn from similar, yet different, distributions.

As is common in many classification problems, most previous work in ma-

chine learning applied to neuroimaging data abstracts voxel data into vector

representations that fail to retain spatial information (Dyrba et al., 2013; Gray

et al., 2013; Schnack et al., 2014; Klöppel et al., 2008). Given the inherently spa-

tial nature of the voxel data, we hypothesize that incorporating voxel locations

into our analysis can boost accuracy in a number of experiments. Rather than

serialize the voxels of a brain or region into one vector and lose their locations,

we represent them as a point set B = {(v1, w1), (v2, w2), . . . , (vN , wN )} (see

Chapter 2) where each v1 ∈ R3 is a voxel position, wi ∈ R its weight (corre-

sponding to some observed value at that voxel), and N is the number of voxels

in the brain.

From the general problem of characterizing neural change with respect to

age and cognition we distill three more concrete and specific problems:

1. Predict the chronological order of two scans from the same subject. This

will enable us to identify regions that change with age.

2. Predict the presence or absence of the APOE gene based on longitudinal

changes in brain scans.

3. Predict the direction of change of cognitive performance based on longi-

tudinal changes in brain scans.

These experiments demonstrate application of our framework to detecting

minute, short-term changes in WM structure and relating them to changes in
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cognitive test scores and genetic biomarkers. They present the first evidence

demonstrating that very small changes in white matter structure over a two

year period can predict change in cognitive function in healthy adults.

5.2 Alzheimer’s Disease

Alzheimer’s disease (AD) is a brain disorder that is a type of dementia, a set of

conditions wherein brain cells die or do not function normally. It affects 18 to 24

million people worldwide (Prince et al., 2011). As the world’s population ages

rapidly in the coming few decades this number is projected to rise manifold

to over 70 million by 2050. The problems we seek to solve in this chapter fall

within a larger aim of understanding patterns of neural decay and cognitive

decline in populations at risk of developing Alzheimer’s disease.

Alzheimer’s disease constitutes 50% to 80% of all dementia cases (Prince

et al., 2011; Alzheimer’s, 2015). It affects the brain by damaging and destroying

brain cells (neurons), causing loss of memory, thinking, and other executive

functions and thereby greatly reduces the quality of life of people afflicted with

it. It is the sixth leading cause of death in the United States. It is a “progres-

sive” disorder in that it gets worse with time, to the point where individuals

with an advanced stage of the disease are frequently unable to conduct simple

conversations. AD involves the development of protein buildups called beta

amyloid plaques and neurofibrillary tangles in the brain that are toxic to nerve

cells. The exact cause of AD is unknown; however multiple factors have been

identified as contributing or leading to AD. In addition, the precise physiolog-

ical changes in the brain that lead to AD in patients are also unknown. It is

however established that changes in the brain leading to AD usually begin in

the region responsible for dealing with short term memory and newly acquired

information. Alzheimer’s Disease ultimately leads to death and there is no
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Figure 5.2: A visualization of the modern understanding of the three main
stages in the continuum of Alzheimer’s disease (AD) development and their
relation to cognitive deficits. The first stage, preclinical AD, does not involve any
outward symptoms of cognitive impairment or dementia but is characterized
by physiological changes in the brain. This precedes mild cognitive impairment
(MCI) which may be followed by dementia due to AD. This figure is taken from
Sperling et al. (2011).

“cure” as of now, nor has any treatment been identified to stop or retard its

progress (Alzheimer’s, 2015).

5.2.1 Stages of AD

Modern understanding of AD views its progression as being along a contin-

uum (Alzheimer’s, 2015). At the beginning the individual functions as nor-

mally as before and at the end of the continuum they experience memory loss,

memory change, and situational confusion. This understanding is reflected in

the 2011 Alzheimer’s Association recommendations for diagnostic criteria of

AD Sperling et al. (2011), which demarcates three regions on the continuum,

representing preclinical AD, mild cognitive impairment (MCI), and dementia due

to AD. Figure 5.2 shows these stages and the cognitive characteristics related to

each one. In preclinical AD, the individual exhibits physiological changes in

the brain and biomarkers such as in blood and cerebrospinal fluid (CSF) but
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there are no outward symptoms. With MCI, the individual begins exhibiting

symptoms of memory loss but is still able to function at a high level. In the

final stage, the individual’s ability to function normally is impaired. It is worth

noting that not all individuals who develop MCI go on to develop full-fledged

Alzheimer’s Disease; in fact it is an area of active research to explore what

characterizes these patients (Lindemer et al., 2015; Davatzikos et al., 2011).

5.2.2 Risk factors for AD

A number of attributes predispose one to developing Alzheimer’s disease.

These risk factors include age, family history, presence of a specific allele in

the gene apolipoprotein E, risk factors for cardiovascular disease, and diet. We

discuss some of them briefly below:

Age

The largest risk factor for AD is age. However, AD is not considered a part of the

normal aging process. The more advanced an individual is in age, the higher

they are at risk for developing AD. At the age of 65, the risk for developing AD

is 12-13% and thereafter doubles every five years (Prince et al., 2011).

Family History Individuals with a history of AD in a closely related family

member (parents or siblings) can be up to two to three times more likely to

develop AD than subjects with no family history (Prince et al., 2011). This risk

increases with number of close family members who developed AD.

Genotype: APOE ε4 and TOMM40 The gene apolipoprotein E (APOE) codes

for a protein that carries cholesterol in the bloodstream. Studies have shown

that when the this gene is present in an individual in the ε4 allele form, it places

them at higher risk for developing AD. It has been estimated that presence of

this allele accounts for 50% of the AD population (Ashford, 2004). This factor
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is related to the family history factor in that an individual inherits one copy of

this gene from each parent. If the inherited copies in both chromosomes of an

individual are ε4, he/she is at up to 15 to 20 times higher risk for developing

AD (Ashford, 2004) than an individual with only copies of the ε2 or ε3 allele.

In the experiment detailed in Section 5.7 we examine whether the presence or

absence of the ε4 allele leads to a difference in the way WM changes over time.

Recent studies have identified another gene known as TOMM40 on the

same chromosome in close proximity to the APOE gene whose length has been

correlated to age of onset of AD in individuals with one APOE ε3 allele (Roses

et al., 2010).

5.3 White Matter

Solid matter in the brain is conventionally classified first into gray and white

matter (Purves, 2012). Gray matter (GM), consisting of neuronal cell bodies,

has been the subject of many decades of research, controls muscle control,

perception, memory, speech and a host of other functions. White matter (WM),

on the other hand, consists of the tissue that is responsible for the conduction of

messages between different gray matter regions. Figure 5.3 shows an axial slice

of the brain with marked WM and GM regions. WM constitutes about half of the

matter in the brain and is composed of bundles of insulated nerve fibers called

axons. The insulation is myelin, made of fatty tissue, and it is what gives white

matter its distinctive pink-white color. Myelin continues growing and insulating

axons long after the rest of the brain stops growing. As mentioned earlier, the

most of the experiments described later in this chapter were performed on

white matter regions of the brain, but the underlying techniques are equally

applicable to gray matter regions as well.

Much previous research on Alzheimer’s disease has focused on gray matter;

white matter has historically been regarded as less relevant to cognition. In



115

Figure 5.3: Types of Brain Matter. This figure shows a diagram of an axial
cross-sectional view of the human brain. The types of regions corresponding
to gray and white matter are labeled in the figure. This figure is taken from
Ropper et al. (2009).

recent years, however, the role of white matter in the transfer of information

has attracted vigorous interest (Ziegler et al., 2010). For example, the degree

of myelination in white matter has been found to correlate with cognition, IQ,

executive function, and learning (Fields, 2008). WM is also highly relevant in

understanding deterioration in cognitive control and episodic memory, which

were found to accompanied by marked changes in specific white matter struc-

ture (Ziegler et al., 2010). Recent studies also show that risk factors for AD such

as the apolipoprotein E ε4 genotype and parental family history are associated

with WM changes in the brain (Bartzokis et al., 2007; Bendlin et al., 2010b).

Studies have shown that when the this gene is present in the ε4 allele form,

individuals are at higher risk for developing AD (Ashford, 2004).

In the sections below we describe the mechanism that is used to develop

accurate representations of white matter in the brain and the kind of data that

are derived from this imaging process. The most popular imaging technology
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Figure 5.4: Isotropic and anisotropic diffusion. (A) Water molecules in the
brain are constantly moving (i.e., in Brownian motion). When motion is uncon-
strained, as in the large fluid–filled spaces deep in the brain (i.e., the ventricles,
as illustrated in the MR image on the left), diffusion is isotropic, which means
that motion occurs equally and randomly in all directions. (B) When motion
is constrained, as in white–matter tracts (illustrated on the right), diffusion is
anisotropic, meaning that motion is oriented more in one direction than another
(e.g., along the y axis rather than along the x axis). This picture and caption are
taken from Rosenbloom et al. (2003).

used today to construct representations of white matter uses the same principles

as used in nuclear magnetic resonance imaging (MRI). MRI uses a homogenous

magnetic field to excite water molecules, which then spontaneously de-excite

emitting radiation that is captured and measured. These measurements are then

pieced together to infer soft tissue structure. The following sections describe

how this technology is modified in the case of measuring diffusion of water

molecules in white matter and the format of measurements produced.

5.3.1 Diffusion Tensor Imaging

Diffusion is a physical process by which particles move from one region to

another by means of random motion and without a process of mass transport.

It occurs due to a difference in concentration in the diffusing molecules in

the two regions. In a three-dimensional context, diffusion can be shown to

progress along the surface of an ellipsoid. In white matter, water molecules

show higher diffusion along a nerve fiber than perpendicular to it; this is called
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anisotropic diffusion. In gray matter and in fluid-filled ventricles, by contrast,

diffusion occurs to a similar extent along all directions (i.e. it is isotropic).

Figure 5.4 shows a depiction of the difference between isotropic and anisotropic

diffusion of water in the brain. The difference in diffusion properties is the

principal insight used in reconstruction of white matter structure by diffusion

tensor magnetic resonance imaging (DT-MRI) or diffusion tensor imaging (DTI).

DTI uses bipolar magnetic field gradient pulses to measure diffusion ef-

fects arising out of the Brownian motion of water molecules in the brain. In

DTI, pulses are applied with a time delay where the second pulse undoes the

magnetic alignment effects of the first pulse. However, for water molecules

that move between the two pulses, this second pulse will not completely undo

the magnetization effect of the first pulse. It is this difference that causes a

reduction in the signal received by the MRI machine and provides clues about

the diffusion freedom available to water molecules in each voxel. Diffusion,

being a highly directional process, needs to be measured along at least 6 (in

practice, typically 40) directions in order to get a full three-dimensional profile

of the diffusion taking place in an area. This profile will be referred to as a “DTI

image” henceforth.

Le Bihan et al. (2001) explains that in their random diffusive movement,

water molecules probe tissue structure while interacting with cell membranes

and other entities in the brain. A voxel in the diffusion MRI image thus measures

the displacement distribution of water molecules within that voxel, which in

turn elucidates the tissue structure.

In addition, DTI is capable of measuring the anisotropy (inequality with

respect to direction) of diffusion of the water molecules. This information is

available due to the fact that it measures molecular displacements along a

particular direction — the direction of the magnetic field gradient — in up

to 40 different directions. This anisotropy information is utilized to construct
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a diffusion tensor, which is an order 2 tensor describing molecular mobility

along 3 directions, and correlations among mobilities along those directions.

These diffusion tensors and anisotropy information they encode elucidate the

structure and organization of bundles of myelinated axonal fibers (i.e. white

matter) in the brain. In this way, DTI is helpful in assessing neuronal fiber tract

integrity as a whole in the brain (Dyrba et al., 2012). Studies have shown that

DTI is more sensitive than structural MRIs to detecting memory changes and

Alzheimer’s Disease in patients (Carlesimo et al., 2010).

5.3.2 Diffusion Tensor

As mentioned above, a diffusion tensor encodes information on a per-voxel

basis and is a 3× 3 matrix that fully characterizes the diffusion properties of

that voxel (Hagmann et al., 2006). A voxel in our context is a three-dimensional

volume element of a regular grid, or a coordinate system. The dimensions of one

of the standard coordinate systems (MNI — from the Montreal Neurological

Institute) are 182× 218× 182. Of these voxels, approximately 500, 000 voxels

correspond to white matter and a comparable number of voxels to gray matter.

The complex pattern of displacements of molecules as modelled by a random

diffusion process can be described with nine components — each one as a

diffusion coefficient associated with a pair of axes xx, yy, zz, xy, yx, xz, zx, yz,

and zy. Since this process is symmetric, in reality there are only six independent

components and the matrix is symmetric:

D̄ =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


This matrix can be thought of as representing an ellipsoid with the magni-

tude of the axes and its orientation representing the diffusion that it models.
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The first eigenvector of this matrix corresponds to the principal direction of

diffusion and the eigenvalues correspond to the magnitude of diffusion.

Figure 5.5: Fractional Anisotropy. This figure depicts the fractional anisotropy
values per voxel for voxels in an axial cross-section of a subject’s brain. (a)
The intensity values for each voxel shown in this image corresponds to the FA
value. Darker voxels mean a lower FA value and lighter voxels mean higher
FA. (b) This figure also shows the voxel-wise FA values, but in this case they
are overlaid with direction information encoded by color. Red signifies the
left-right (sagittal) direction, green the front-back (coronal) direction, and blue
the head-foot (axial) direction.

5.3.3 Summary Measures

In addition to the full tensors for each voxel, there are a number of scalar sum-

mary measures that extract and condense different types of information con-

tained in the vector, such as information pertaining to isotropy and anisotropy,

diffusivity, and tract organization (Basser and Pierpaoli, 1996). These summary

measures have been found to be relevant and useful as representations and

encodings of white matter structure for assessing and characterizing devel-

opmental processes in the brain. It is also worth noting that these summary
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measures are invariant with respect to the orientation of the coordinate system

used; in particular they do not vary due to different acquisition parameters or

hardware. We focus on two summary measures: one to characterize the degree

of directionality of diffusion and another to characterize the magnitude of the

diffusion coefficient.

Fractional Anisotropy

One such DTI summary measure is fractional anisotropy (FA), which is a scalar

measure of how directional the diffusion of water molecules is in a voxel. In

other words, FA describes the degree of a diffusion process (Mori, 2007) but

does not contain any direction information. It measures tissue integrity and

is sensitive to axon fiber density and myelination of axons. FA is a measured

between 0 and 1, with 0 representing perfectly isotropic (equal in all directions)

diffusion and 1 representing anisotropic diffusion that is characteristic of highly

ordered white matter fiber bundles). FA characterizes the degree of a diffusion

process Mori (2007) but does not contain any direction information. FA at a

voxel is defined (Hagmann et al., 2006) as:

FA =
√

3
2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2

λ2
1 + λ2

2 + λ2
3

where λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor and λ̂ is the mean

of the eigenvalues. FA thus is a comparison of how different each eigenvalue is

from the mean and is higher when one or two eigenvalues dominate the rest, i.e.

when the diffusion is highly directional and anisotropic. FA can also be seen as

a measure of the ellipsoid eccentricity if the tensor is viewed as representing

an ellipsoid. Figure 5.5 shows an axial slice of FA values from a subject.

Mean Diffusivity

Mean diffusivity (MD) in a voxel measures the local magnitude of diffusion

(regardless of direction) through the mean squared displacement of molecules.
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Higher organization of white matter corresponds to lower MD, while a break-

down in white matter integrity leads to higher MD values (Bennett et al., 2010).

It is defined as the mean of the eigenvalues of the diffusion tensor:

MD = λ1 + λ2 + λ3

3

5.4 Literature Review

The past decade has seen vigorous interest in the application of machine learn-

ing techniques to neuroimaging data. We will focus in this section on providing

a brief overview of work related to AD, MCI, and identifying structural differ-

ences between populations with AD, MCI, and risk factors for AD.

Up until recently, Alzheimer’s Disease and cognitive impairment were

thought of as primarily gray matter phenomena. Research therefore has con-

centrated on studying the gray matter changes associated with AD progression.

Recently however, there has been significant interest in studying the white

matter aspects of AD. A large majority of neuroscience research on Diffusion

Tensor Imaging (DTI) data and Magnetic Resonance Imaging (MRI) data in

general has clustered around two approaches, neither of which exploits spatial

information: voxel-wise comparisons of tensors (or summary measures) and

summary statistics on regions of interest.

The first approach involves registration of all images to a common atlas,

followed by statistical comparisons of corresponding voxels in all subjects; this

is called the voxel-direct approach (Cuingnet et al., 2011). The majority of

these techniques are for cross-sectional experiments, not longitudinal. The

learning step in methods found in the literature following this approach typi-

cally consists of feature selection and classification via support vector machines

(SVMs) using linear or radial basis function (RBF) kernels, random forests,

or Naive Bayes. These methods are not specific to white matter; in fact the
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experiments largely focus on weights derived from gray matter regions with

white matter analysis largely an afterthought, if conducted at all. The factor that

differentiates methods from one another is the feature selection step. Klöppel

et al. (2008) presented the first application of SVMs to classify AD patients

from healthy controls, and AD patients from another class of patients with

frontotemporal lobar degeneration (FTLD). In this method, there is no feature

selection involved, and the T1-weights from MRI scans were used to train a

linear SVM directly. Voxels can then be ranked according to discriminative

power by multiplying each image by its label (+1 or −1) and weight according

to the trained SVM and adding all the images. The resulting image contains

a weight for each voxel reflecting its importance in the classifier. Vemuri et al.

(2008) follows a similar procedure, with downsampling and additional feature

selection steps that discard negatively-weighted voxels. Dyrba et al. (2013) and

Dyrba et al. (2012) proposed a variance reduction step via principal components

analysis (PCA), followed by a feature selection step based on ranking the voxels

by their information gain. This method was applied to both gray and white

matter maps to classify healthy control subjects from those with probable AD.

Dyrba et al. (2012) in addition discusses the use of multi-kernel methods for

the same problem. Haller et al. (2013) performed a cross-sectional study to

classify various sub-kinds of MCI patients using a voxel-direct method. In this

study feature selection is done through the Relief-F algorithm Kononenko et al.

(1997), and training via an SVM with RBF kernels. Falahati et al. (2014) and

Cuingnet et al. (2011) provide surveys of related voxel-direct techniques along

with comparisons between them. Bron et al. (2015) propose a voxel ranking

method based on the “p-map,” a map constructed from the p-value of every

voxel (computed via permutation testing) with respect to the null distribution

on the weight vector of a trained SVM (discussed above in context of the method
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in Klöppel et al. (2008)). Sun et al. (2015) proposed a lasso method (combining

the `1 and `2 norms) for feature selection and simultaneous classification.

The second broad class of methods involves aggregate measurements within

a specified region of interest (ROI), such as means of FA values or WM inten-

sities. These are called “atlas-based” methods. Magnin et al. (2009) classify

AD patients from elderly controls by training an SVM with an RBF kernel on

feature vectors constructed by estimating the relative gray matter content for

each of 90 regions of interest in the brain. Grydeland et al. (2013) presents a

longitudinal study using logistic regression on means of WM and GM changes

aggregated in regions of interest to classify AD patients from age-matched con-

trols. Desikan et al. (2009) follow a similar procedure, but for a cross-sectional

study to separate individuals with MCI from healthy controls.

Other work has taken the approach of analysis on manifolds constructed

from the diffusion tensors. Khurd et al. (2007) describes a method of voxel-based

analysis on manifolds that are learned from diffusion tensors. Fletcher et al.

(2007) uses a path integration based approach to derive connected pathways

between regions and then derive summary volumetric measures along those

pathways. Corouge et al. (2006) proposes a framework for analysis in which

tracts, not voxels, are the units of analysis. This method uses tensor statistics to

model and manipulate diffusion tensors, and defines new summary statistics

on bundles of fibers to compare DTI images.

Adluru et al. (2009) uses a histogram-based method called “3-D shape

context” to characterize fiber tracts as geometric curves and then performs

machine learning analysis on them using the histogram profiles as features. A

similar approach is taken by Chung et al. (2010) but the geometric model of a

curve there is a cosine series representation.
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5.5 Study Data

The data for our experiments come from studies being conducted by the Wis-

consin Registry for Alzheimer’s Prevention (Sager et al., 2005). WRAP is a

longitudinally followed cohort comprising participants who either have a fam-

ily history of late onset AD or no family history of AD. Its purpose is to gain a

better understanding of the processes that occur during pre-clinical stages of

Alzheimer’s disease in those at risk. This understanding can contribute to the

development of future diagnostic methods that identify AD at earlier stages.

The majority of the WRAP participants are adult children of persons with AD

who were evaluated at the Memory Assessment Clinic at the University of

Wisconsin-Madison or satellite memory assessment clinics affiliated with the

Wisconsin Alzheimer’s Institute, and other participants who learned about

the study from educational presentations, health fairs, newsletters, or word

of mouth. The study includes participants with parental family history and

genetic risk for AD, specifically, positive Apolipoprotein E ε4 (APOE4) status.

Each subject in WRAP undergoes regular brain imaging procedures and

neuropsychological cognitive tests that measure memory, executive function,

speed, and other related items. The cognitive tests are designed to measure

those quantities that suffer with the onset of AD or MCI, such as episodic

memory and delayed recall ability which measure the ability to learn over time

and retain the learning. Additionally, patient data and medical data such as

age, family history, results from genotyping tests, and measurements of vitals

are also collected.

5.5.1 Participants

We enrolled 128 participants, ten of whom were excluded due to unexpected

abnormalities found by the reviewing radiologist. The remaining 118 middle
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Figure 5.6: (a) A histogram of ages of all study participants. (b) A histogram of
study participant ages broken down by gender.

to older-aged participants were 43 to 73 years of age at the time of the first scan

(mean = 59.8, SD = 6.58); and 45 to 75 years of age at the time of the second scan

(mean = 61.4, SD = 6.8). There were 41 men and 77 women. A histogram of

subject ages, and subject ages by gender is shown in Figure 5.6. The inclusion

criteria for this study consisted of:

• normal cognitive function determined by neuropsychological evaluation

(MMSE2 ≥ 25)

• no contraindications for magnetic resonance imaging (MRI) and a subse-

quent normal MRI scan

• no current diagnosis of major psychiatric disease or other major medical

conditions (e.g., myocardial infarction, or recent history of cancer)

• no history of head trauma, stroke or transient ischemic attack.

Brain images were reviewed by a neuroradiologist to exclude infarcts and other

abnormalities.
2Mini Mental State Examination (MMSE) is a quick way of quantifying cognitive function and

screening for cognitive loss (Folstein et al., 1975)
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Longitudinal imaging and cognitive testing data were available for these

118 subjects, who were healthy and all tested cognitively normal on neuropsy-

chological assays. A significant percentage (78%) of subjects showed one or

more risk factors for AD, such as parental family history, or presence of of the

apolipoprotein E allele. In addition to imaging data, each subject provided

extensive demographic information.

5.5.2 Imaging

Participants were imaged on a General Electric 3.0 Tesla Discovery MR750

(Waukesha, WI) MRI system with an 8-channel head coil and parallel imaging

(ASSET). DTI was acquired using a diffusion-weighted, spin-echo, single-shot,

echo planar imaging pulse sequence in 40 encoding directions at b = 1300,

with eight non-diffusion weighted (b = 0) reference images. The cerebrum

was covered using contiguous 2.5 mm thick axial slices, FOV = 24 cm, TR =

8000 ms, TE = 67.8, matrix = 96 x 96, resulting in isotropic 2.5 mm3 voxels.

High order shimming was performed prior to the DTI acquisition to optimize

the homogeneity of the magnetic field across the brain and to minimize EPI

distortions.

5.5.3 Neuropsychological Tests

All participants underwent comprehensive neuropsychological testing. Cog-

nitive factor scores were derived from a factor analytic study of the WRAP

neuropsychological battery and adapted from work published by Dowling

et al. (2010). Based on prior studies (Kerchner et al., 2012; Madden et al., 2012;

Lövdén et al., 2010; Bendlin et al., 2010a; Birdsill et al., 2013) showing a strong

relationship between indicators of white matter health and processing speed,

the factor score of interest chosen for our experiment was the Speed and Flexibil-

ity factor, a composite measure based on the interference trial from the Stroop
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Test (Trenerry et al., 1989), and Trail Making Test A and B (Reitan and Wolfson,

2009).

5.5.4 Preprocessing

We utilized a standard series of preprocessing steps to construct tensor and FA

maps for each patient. To make the images comparable, we applied the regis-

tration steps of Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006). TBSS

performs nonlinear registration to a template image followed by transforma-

tion to MNI152 standard space. Each scan underwent identical preprocessing.

Smoothing3 was not applied. Using the white matter atlas from the Johns’

Hopkins University research group (Oishi et al., 2008), we extracted mean FA

and MD values from the voxels corresponding to the corpus callosum, superior

longitudinal fasciculus, fornix, and cingulum bundle. These regions were cho-

sen based on their vulnerability to Alzheimer’s disease (Di Paola et al., 2010;

Benitez et al., 2014; Canu et al., 2013). The sizes of these regions range from

hundreds to over 20,000 voxels. Figure 5.7c shows a three-dimensional view

of the location and shape of one of the regions we analyze: the splenium of

the corpus callosum (over 12,000 voxels), a region known to show significant

changes both in healthy aging and AD.

5.6 Before vs. After

Our approach begins with a “simple” classification problem. For longitudinal

data, one instance of ground truth is the chronological order in which the

data sets were collected. Thus, a natural question is: can we determine this

order for a given individual (see Figure 5.8 for an example)? In other words,

given two scans, our task is to identify which was taken earlier. The aim of
3A blurring technique sometimes applied to neuroimaging data as part of the preprocessing

step to improve the signal-to-noise ratio and ameliorate the potential impact of registration errors.
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(a) (b)
(c)

Figure 5.7: Corpus Callosum (a) The blue outer mesh is a 3-D view of a repre-
sentation of the surface of the human brain. The red inner mesh outlines the
corpus callosum. (b) A view of the corpus callosum in isolation. The corpus
callosum is a thick band of nerve fibers that connects the left and right hemi-
spheres of the brain. (c) A view of the splenium of the corpus callosum, which
contains over 12,000 voxels. The splenium of the corpus callosum carries fibers
that connect the bilateral temporal, parietal and occipital lobes.

this experiment is to understand the neurobiology of changes in the brain with

the passing of time. We hypothesize that features that enable the solution of

this problem are implicated in aging as well as cognitive decline. A related

experiment was performed by Mwangi et al. (2013) using DTI data to predict

the ages of subjects.

The problem of differentiating between earlier and later scans is challenging

for several reasons:

1. The time period between scans is extremely short (1.5-2 years) and the

subtle changes in the scans are believed to be largely unrelated to cogni-

tion.

2. All subjects are healthy, middle-aged, and do not exhibit any pathology.

3. Domain experts in neuroscience and radiology are unable to solve this

problem for healthy patients better than chance.

To successfully solve this problem we must identify and rank the most tem-

porally significant (longitudinally) and consistent (cross-sectionally) voxels in
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our data. We hypothesize that these voxels correlate with other temporally

sensitive data, such as cognitive test scores.

(a) (b)

Figure 5.8: Diffusion Tensor Imaging (DTI). Two axial slices from DTI scans
of the same participant taken approximately two years apart. In our first task,
we treated the order of the scans as unknown and proceeded to use data from
118 subjects to predict the order. The images shown here are slices from the
full three-dimensional scan, which is a stack of these axial slices. The analysis
is performed on the full scans.

The identification of cross-sectional consistency in FA change is of high value

to neuroscientists seeking to understand the short-term evolution of white mat-

ter microstructure in subjects at high risk for AD. The goal of this experiment,

therefore, is simple from a clinical viewpoint, but not quite straightforward

computationally: We want to develop a classifier to distinguish between earlier

and later scans of each subject by exploiting cross-sectionally consistent changes

across voxels.

5.6.1 Identifying subsets of informative voxels

Given the large number of available voxels in our neuroimaging data, we com-

bined longitudinal and cross-sectional data to identify those that had compara-

tively large, consistent, and similar values in all difference images corresponding
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to a class. Our hypothesis is that the voxels that change similarly in all subjects

(cross-sectionally) across time (longitudinally) are the ones most sensitive to

temporal ordering. Towards this, we define two values, “Q” and Cons, for each

voxel. Recall that we represent any region (or collection of regions) of interest

in the brain as a point set R = {(v1, w1), (v2, w2), . . . , (vN , wN )} where each

v1 ∈ R3 is a voxel position, wi ∈ R some value of interest at that voxel, and N

is the number of voxels in the region(s).

Q(vi) = mean(FA1
i − FA2

i )
var(FA1

i − FA2
i )

(5.1)

where FA1
i is the FA value at voxel i at time 1, FA2

i the value at time 2, and mean

and variance are computed cross-sectionally over the subject population.

Consistency or Cons for a voxel is defined as follows:

Posi = 1
#subjects

∑
subjects

[FA1
i − FA2

i > 0] (5.2)

Consi = max(Posi, 1− Posi) (5.3)

Consistency in a voxel measures the percentage of subjects who show the same

sign change in that voxel from time 1 to time 2.

For a point set R = {(v1, w1), . . . , (vN , wN )} (such as those correspond-

ing to a WM region in a brain scan), we define another point set ∆R corre-

sponding to the same region in a new image constructed from the difference

of the two brain scans taken from the same subject and time 1 and time 2.

∆R = {(v1,∆w1), . . . , (vN ,∆wN ) where ∆wi is the change in FA at voxel i

from time 1 to time 2. We set thresholds on Q and Cons to identify subsets of

"informative" voxels ∆R̂Q(τ) and ∆R̂Cons(τ) for a region R and its correspond-

ing ∆R as follows:
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∆R̂Q(τ) = {(vi,∆wi) | (vi,∆wi) ∈ ∆R and Q(vi) > τ} (5.4)

∆R̂Cons(τ) = {(vi,∆wi) | (vi,∆wi) ∈ ∆R and Cons(vi) > τ} (5.5)

By setting an appropriately high threshold for Q in a voxel we are able to

identify a subset of a few hundred voxels (e.g. in the case of the genu of the

corpus callosum, 382 voxels) from among over 12,000 that we now focus on.

For an analysis of Cons and its utility in the experiments below, see Fig-

ure 5.10. At each Cons level (x-axis), the y-axis shows the cross-validated

accuracy of the before-after prediction using 50 randomly selected voxels at

that Cons value. The random voxel subset was varied with every fold while

cross-validating.

5.6.2 Experimental Setup

For each of the 118 subjects, we construct two “difference” images. The first

subtracts the latter image from the earlier one (the “positive difference image”),

and the second by reverses the order of subtraction (the “negative difference

image”). This is done so that when given two new images from a single subject

with no ordering information, we perform the subtraction in an arbitrary man-

ner and compute which set of difference images this new difference image is

more “similar” to, using the spatially aware kernels in Chapter 2.

5.6.3 Baseline

Since there are an equal number of positive and negative difference images,

the baseline accuracy for this experiment is 50%. We applied two classification

methods for comparisons with our method.
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Region-wide means. A standard approach for characterizing images is to

compare mean FA values over a whole WM region across one time point (see

e.g. Magnin et al. (2009)). The classification rule “the image with the higher

mean is the earlier image” achieves an accuracy rate of 53.8% on the splenium

of the corpus callosum — little better than random chance. The reason for this

is that not all voxels show a decrease in FA value over time; in fact some voxels

show an increase. Change in one direction offsets change in the other direction,

leading to a low accuracy. This insight leads us to the next baseline method.

Sign-weighted voxel means. The sign of Q indicates whether the voxel saw

an overall increase or decrease in its value over all subjects. As in the earlier

method, we compute the mean FA value within a region, but this time weighted

by the sign of Q for that voxel. Applying the same classification rule yields

an accuracy of 63.6% for the same region. This accuracy is obtained using

all 12, 729 voxels; experiments with subsets chosen according to Q or Cons

achieved accuracies little better than chance.

5.6.4 Classification & Accuracy

We trained a support vector machine (SVM) (Shawe-Taylor and Cristianini, 2000)

with the lift kernel (Section 2.6) to classify “positive” and “negative” difference

images. For comparison purposes to a widely used non-spatially sensitive ker-

nel, we also provide results for the radial basis function (RBF) kernel. Figure 5.9

shows a visualization of the Gram matrices corresponding to these different

kernels. Accuracy for each region was determined with 10-fold cross validation;

experiments for all three kernels were run for each fold. Cons and voxel selec-

tion were re-calculated per fold in order to prevent any information leakage

from the test set during training. The 10-fold cross-validation accuracies in

predicting “before” scans from “after” scans (i.e. “positive” difference images
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Region Label
Corpus Callosum (whole) 101
Corpus Callosum (splenium) 5
Corpus Callosum (genu) 3
Cingulum bundle (R & L) 35
Superior longitudinal fasciculus (R & L) 41
Uncinate fasciculus (R & L) 45
Fornix (column, body, and cres) 6

Table 5.1: Brain regions. This table lists the regions in the brain we conducted
analysis on. Each region is assigned a label which it is referred to by in the
results in Table 5.2.

Region Mode |∆R̂Cons(τ)| RBF Lift
101 FA 1512.7 voxels 79.7% 91.5%

MD 4803.5 voxels 75.4% 87.3%
5 FA 425.7 voxels 84.7% 93.2%

MD 2282.8 voxels 69.5% 81.4%
3 FA 170.6 voxels 80.9% 88.1%

MD 948.2 voxels 74.6% 86.4%
35 FA 1466.2 voxels 84.7% 91.5%

MD 1090.2 voxels 64.4% 85.6%
41 FA 2032.5 voxels 83.1% 92.4%

MD 505.6 voxels 63.6% 81.4%
45 FA 124.8 voxels 73.8% 86.4%

MD 127.3 voxels 64.4% 79.7%
6 FA 19.3 voxels 66.1% 76.3%

MD 203.2 voxels 71.2% 84.7%

Table 5.2: Before-After Results. Classification results using a linear SVM with
different kernels for predicting the before image from the later image using
seven different WM regions (listed in Table 5.1). The kernels used are radial
basis function (RBF) and lift from Chapter 2. τ was fixed for all experiments
at 0.7 for FA and 0.65 for MD, and the number of voxels reported is the mean
cardinality of the set |∆R̂Cons| across the different folds in each experiment.
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Figure 5.9: Gram Matrix. The panels in this image show Gram matrices for
the first experiment represented as images. A Gram matrix in this context is
composed of kernel values between all instances in the data set. Our data set
contains two scans from each of 118 subjects, leading to 236 positive and nega-
tive difference images. The Gram matrix therefore contains similarity values
for every pair of difference images in this data set. The first 118 entries along
the x and y axes correspond to the positive difference images, and thereafter
the negative difference images. Panels (a) and (b) correspond respectively to
Gram matrices constructed using the lift and RBF kernels. As the colors in the
image in panel (a) show, the positive images are similar to one another, as are
the negative images to one another, but the positive and negative images are
not similar to each other (reflected by the darker color). These differences are
exploited by a linear SVM classifier to yield the accuracy results in Table 5.2.

from “negative” difference images) is shown for different WM regions in Ta-

ble 5.2. As the table shows, approximately 425 voxels are sufficient to achieve

a classification accuracy of 93%. Figure 5.10 shows a further analysis of the

variation of classification accuracy with random subsets of 50 voxels chosen at

different levels of Cons.

5.6.5 Regions of Consistent Cross-Sectional Change

The hypothesis of this experiment was that there exist voxels that undergo

consistent and similar changes across subjects, and identification of these voxels

would help in characterizing cross-sectional FA change. The experimental
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Figure 5.10: Classification Accuracy vs. Cons. This figure illustrates the utility
of the Cons statistic. The plot shows the variation of scan order prediction
accuracy (Section 5.6) using 50 voxels selected at different thresholds of Cons.
As the graph shows, prediction accuracy increases when using voxels with
higher values of Cons.

Figure 5.11: Corpus Callosum. This figure illustrates the portions of the sple-
nium of the corpus callosum that contain voxels with high Cons (≥ 0.65) value.
Red voxels indicate a consistent increase in FA value across subjects, while blue
represents a consistent decrease.
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results above show that this hypothesis holds. In Figures 5.11 and 5.12 we

pinpoint those voxels and visualize them in the context of the WM regions they

belong to. Voxels can be distinguished based on whether they show an upward

trend in FA value or a downward trend. Figure 5.11 shows that voxels tend to be

spatially proximal to other voxels of the same type. We note that this naturally-

occurring “clustering” of nearby voxels with similar trends is readily apparent

even when no smoothing is applied to the data. Study of these regions and

the trends within them will be useful in understanding patterns of age-related

change in FA. Of particular interest are the correlations between FA changes,

demyelination, and cognitive impairment, as discussed in Section 5.9.

5.7 APOE Status Classification

We now apply the framework developed above to a different problem: is there

a difference in the way that WM changes in subjects with different APOE

genotypes? Prior studies have established that subjects with the ε4 allele are

at higher risk for developing AD Ashford (2004). We attempt to answer this

question by predicting the APOE ε4 status (i.e., the presence or absence of this

allele) based on the changes in FA values. This experiment is similar to the

previous one. Rather than have two sets of positive and negative difference

images, we take just one (positive difference images) and group them by the

APOE ε4 status of the subjects they correspond to. We transform these images

into point sets and apply a slightly different voxel selection scheme than before:

within each group we identify the voxels that exhibit increases and decreases

most consistently, and take the union across both groups:

∆R̂Cons(τ) = ∆
ApoE -ve

R̂Cons(τ) ∪ ∆
ApoE +ve

R̂Cons(τ)
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(a) Posterior coronal view (b) Coronal posterior view

(c) Axial top view (d) Axial top view

(e) Sagittal view from right (f) Sagittal view from right

Figure 5.12: FA trends in the brain. In the left column are views from three
directions of the corpus callosum (red), fornix (blue), cingulum (cyan), cingu-
lum projecting to hippocampus (green), uncinate (yellow), and the superior
longitudinal fasciculus (orange). The figures on the right show voxels in these
regions exhibiting large and consistent FA increase (red) and FA decrease (blue).
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We used the lift kernel in conjunction with an SVM to differentiate between

these two classes of point sets. The baseline accuracy for this experiment is

66.95%, since 79 out of 118 subjects are APOE ε4 negative. The best cross-

validated accuracy of 76% was obtained using the whole body of the corpus

callosum, with τ = 0.63. The non-spatial RBF kernel was not able to achieve

more than baseline accuracy. The regions of the corpus callosum we found most

predictive of ε4 status are shown in Figure 5.13 and are in fibers connecting to

the premotor and supplementary motor areas as well as the temporal lobe.

5.8 Predicting Cognitive Changes

We would like to model changes in subjects’ neuropsychological test scores

using FA differences observed over time. Even employing the Q and Cons

scores defined above to prune the space of voxels, it remains the case that

p > N . Fitting multivariate linear models in this case cannot be done without

constraints. Common approaches that limit model exploration including step-

Figure 5.13: Corpus Callosum: APOE-predictive regions. This figure shows
a view of the corpus callosum from behind. The genu (front) and splenium
(back) are labeled. The shaded regions correspond to voxels that are highly
predictive of APOE status. In subjects that have at least one ε4 allele, these
regions showed an FA increase. In subjects without any ε4 allele, these regions
showed an FA decrease.
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wise, best-subset, lasso, and ridge regression. The latter two are often combined

via elastic net regularization. There are many ways to validate these models in-

cluding: using adjustedR2 values, cross-validation, hold out sets, and checking

the distributions of the residuals. However, with a limited number of samples

N , evaluating the assessments themselves is difficult. The data are difficult

to work with, as none of the differences between earlier and later test scores

is statistically significant according to paired t-tests adjusted for inequality of

variances. Scatterplots of earlier vs. later test scores fit lines of slope 1 with

relatively high adjusted R2 (see Figure 5.14 for a plot of these scores). In these

cases, even null models perform well.

While most of the study’s cognitive tests had negative adjusted R2 values

when fit to linear models using the highQ voxels from Section 5.6, the Speed and

Flexibility score (Section 5.5.3) yielded an adjusted R2 of almost 0.4. ANOVA

analysis revealed wide levels of variability within the model, suggesting that

while Q is useful for "screening" informative voxels, it may not be sufficient for

model feature selection.

In cases where p � N , many regression methods become implausibly

slow, due to their computational complexity as a function of p. Even stepwise

techniques become impractical and yield suboptimal models. The problem of

model selection for large p is further compounded by the need for extensive

bootstrapping and cross-validation to guard against overfitting given the rela-

tive paucity of samples N , especially in determining the λ shrinkage parameter

for regularization-based methods.

To better manage the need for constrained variable selection with wide

data, we used the coordinate descent approach for lasso and ridge described

in Friedman et al. (2010). To make the results easier to interpret, we modified

our approach to perform logistic regression on the signs of the test score changes,

viewed as binomial distributions. Doing so normalizes the error penalty and
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Figure 5.14: Speed and Flexibility. (a) A plot of values of the Speed and Flexibility
factor for subjects in our study. The score at Time 2 is plotted against score at
Time 1; each point in the scatter plot represents one subject. The red line (slope
= 0.76) shows the best linear fit for this data. As the plot shows, not all subjects
perform worse at Time 2; in fact, a significant number show improvement.
Panel (b) shows a histogram of the differences in this score for the subjects in our
study. While there is no unit for this factor score, the scale of the scores can be
seen in panel (a). These figures show that roughly similar numbers of people
had lower and higher scores respectively at the second time point.

allows us to pose a well-defined problem: can changes in neuroimaging data

predict whether a subject’s score for some neuropsychological test has increased

or decreased? One might suppose that cognitive abilities uniformly deteriorate

monotonically with age. However, evidence does not bear this out, as discussed

in Section 5.9.

Initially, the chance of finding a successful solution to this problem seemed

implausible. Our output variable is the sign of a small difference that appears to

fluctuate around zero at random. However, lasso logistic regression via coordi-

nate descent run 100 times with 10-fold cross validation achieved a classification

accuracy of 70% with shrinkage parameter λ = .011, which corresponds to

the λ within one standard error of the minimum. Results for this and other
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Method Parameters Accuracy
Lasso logistic regression Friedman et al. (2010) λ = .011 70%

SVM, Lifted kernel 2D = 500, C = 1 58%
SVM, Gaussian kernel σ = 1, C = 1 57%

Baseline Random Guessing 54%

Table 5.3: Classification results for predicting Speed and Flexibility from voxels

Figure 5.15: Corpus Callosum. A view of voxels in the splenium of the corpus
callosum clustered by Q values. Colors correspond to different clusters.

methods are shown in Table 5.3. No significant improvement was seen for other

parameters on competing approaches.

These results are quite surprising. Although achieving 70% accuracy seems

a modest achievement, consider that this prediction is made using voxel-based

neuroimaging data selected because they were able to accurately answer our

initial "Which image came first?" question. Within their own representation, the

outcome data do not appear separable. Viewing them from the neuroimaging

perspective however, we are able classify them.

5.8.1 Clustering

In general, we prefer as few explanatory variables in a model as possible. Wide

linear models always raise the specter of overfitting and are notoriously difficult
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Method Parameters Accuracy
Ridge logistic regression(Friedman et al., 2010) λ = .013 75%

SVM, Lifted kernel 2D = 500, C = 1 55.7%
SVM, Gaussian kernel σ = 1, C = 1 58.5%

Baseline Random Guessing 54%

Table 5.4: Classification results for predicting Speed and Flexibility from 30 clus-
ters of voxels

to interpret, particularly when constructed with lasso. For example, one cannot

determine the significance of variables by the magnitude of their coefficients.

Following the spatial point set approach in Chapter 2, we cluster the voxels

based on spatial proximity and their Q values. Simple linkage-based clustering

connects voxels with their neighbors if their Q values are within ρ percent

of each other. We typically take ρ = 15 and specify the maximum number

of desired clusters as 30. Emerging from the clustering was the observation

that spatially adjacent voxels are likely to have similar Q values. The regions

corresponding to clustered voxels are shown in Figure 5.15.

Because the clusters are internally consistent with respect to Q values, we

used their mean FA values in a ridge logistic regression analysis to predict

the sign of the change in the Speed and Flexibility score. Because p = 30 here,

which is the number of regions, we are no longer dealing with wide data,

alleviating many of the concerns that they raise. While one might imagine the

clustering process is lossy, the clusters are better predictors than the voxels

used in the previous model. Ridge logistic regression via coordinate descent

run 100 times with 10-fold cross validation achieved a classification accuracy

of 75% for shrinking parameter λ = 0.13, as chosen above. Results for this and

other methods are shown in Table 5.4. No significant improvement was seen

for other parameters on competing approaches.
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5.9 Discussion

In this chapter we presented a new approach for longitudinal analysis of neu-

roimaging data. From a computational perspective, our approach relies on the

spatial nature of the data both for defining similarity and for clustering voxels

based on their perceived quality or Q value. We demonstrated this kernel can

be used to reliably classify longitudinal neuroimages based on small changes in

their white matter structure. This task cannot be solved by human experts. We

then used the voxels that enabled this classification to predict changes in the

significant cognitive factor of Speed and Flexibility, a cognitive function known

to be tightly associated with white matter health. While a relationship between

speed based cognitive tests and white matter microstructure has been qualita-

tively examined in cross-sectional studies, this is the first work to determine

that change in FA over two years can predict change in cognitive function in

healthy adults.

From a neuroscience perspective, this work found that over time, certain

portions of the splenium show a decrease in FA from the first time point to the

second time point approximately 2 years later. Given what is known about aging

in general, this was expected. More unexpected were the portions of white

matter tracts that showed an increase in FA from time 1 to time 2 (the red regions

of Figure 5.11). The splenium of the corpus callosum carries fibers that connect

the bilateral temporal, parietal and occipital lobes. While occipital brain regions

do not show high levels of change with age, the temporal and to a lesser extent

parietal cortices do change with age. Studies on white matter in the frontal

cortex of rhesus macaques indicate that age is associated with loss of nerve

fibers, but that this degenerative process may be accompanied by continued

myelination (Bowley et al., 2010). It is possible that changes occurring over

time include both loss of fibers and regenerative myelination. However, in the
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absence of post-mortem pathological findings, this interpretation is speculative.

Another possibility is that our finding reflects the continued myelination that

occurs in aging. Visuo-motor skill training in young adults has been shown to

increase FA over time (Scholz et al., 2009), and Lövdén et al. (2010) have shown

that experience-dependent changes in FA occur even in older age.

Thus, it is possible that we are capturing patterns of white matter change

that reflect continued plasticity in the brain. This is underscored by the tight

relationship found with the Speed and Flexibility factor score. Because speed

of neural conduction relies on intact myelin, it is not surprising that cognitive

speed of processing is linked with white matter health.

5.9.1 Clinical Implications

These results have the potential to inform several promising directions of re-

search in Alzheimer’s disease. The white matter structural patterns that we

found in patients that are at high risk of developing MCI and AD can be used

as part of an early detection test that looks for distinct imaging markers in new

subjects’ brains. Early detection can help in developing more effective treatment

protocols for subjects. Results from this research can also help clinicians and

diagnosticians in making effective treatment decisions early on for patients

whose WM structure is found to correspond to the patterns detected by our

research.

Our computational techniques are capable of identifying structural patterns

that can inform inclusion and exclusion criteria for subjects in future trials.

A full battery of imaging and tests can cost up to thousands of dollars, so

ascertaining the relevance of a subject to further studies can be cost-effective.

For example, in a research project focused on studying the mechanism of

transition from MCI to AD, an exclusionary criteria could be to exclude those
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subjects who show WM microstructure patterns consistent with not going on

to develop AD.

The diagnostic criteria today for AD are solely based on cognition and

memory tests. As such, they are only useful very late in the development of AD,

after it has already manifested clearly. Structurally, the only existing test for AD

is a post-mortem study of the brain. Our results can lead to a diagnostic criteria

that is applicable earlier on in the process when changes in the WM structure of

the brain that are known to eventually lead to AD are visible. Finally, the results

of this research can help in method development for neuroscience studies.
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6 characteristic numbers: revealing new properties of
classical probability distributions

In Chapter 2, we discussed a ratio of two transportation distances that measures

spatial overlap between two point sets. In this chapter we apply a similar

idea and show how it leads to a new and surprising property of classical

probability distributions that we call “characteristic numbers.” Our result

enables the characterization of an entire family of distributions by a single

number that, in many cases, is independent of the distribution parameters as

well as the dimensionality of the distribution. Characteristic numbers are shown

for three common distributions in Table 6.1. This characterization extends neatly

to discrete samples from those distributions as well; the quantity computed

for a sample is, in the limit, the same as the characteristic number for the

source distribution. This is a surprising result, especially noteworthy for its

independence of distribution parameters for families such as the uniform,

normal, exponential distributions. In these cases the characteristic number

depends only on the family of the distribution and the choice of a ground

Ground distance dΩ

Distribution `1 `22

Normal
√

2 2

Uniform 3/2 2

Exponential 2 log (2) π2/6

Table 6.1: Characteristic numbers. Analytically calculated characteristic num-
bers for three common distributions using two ground distance functions.
These numbers are independent of any parameters of the distribution.
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distance function.1 As a consequence of this property, characteristic numbers

enable a powerful new goodness-of-fit test discussed in the next chapter.

Characteristic numbers are grounded in the overall spatial properties of a

distribution, rather than a summary statistic describing one aspect of it, e.g.,

its mean, moments, or tail. Recall that the Kantorovich-Wasserstein distance

dKW (see Section 2.4.1) is a metric from optimization theory providing the

minimum expected distance between two probability distributions. We define

below a variant of dKW that is used to create a measure between a distribution

and itself. A key strength of this approach is its sensitivity to the pairwise

relationships between all points in a sample. In the following sections we define

this quantity, show how to compute it for distributions and point samples,

analyze it empirically for five common families of distributions, and derive a

goodness-of-fit test based on it.

6.1 Characteristic Numbers for Distributions

Characteristic numbers are based upon a variant to the solution to the Trans-

portation Problem by Kantorovich (2006), through what is commonly known as

the Kantorovich-Wasserstein metric (dKW) (Deza and Deza, 2009). Recall from

Section 2.4.1 that dKW computes the minimum amount of work to cooperatively

transport a distributed source mass to a sink distribution. It can equivalently

be seen as the minimum expected `2-distance between two probability distri-

butions (Levina and Bickel, 2001). dNT is defined the amount of work in the

same scenario with no cooperation, where each source distributes its mass to

all sinks independently.

In this section, we define a variant of dKW. We alternate between discrete and

continuous versions of these measures; the discrete formulations are used for
1see Chapter 2 for a discussion of ground distance functions
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determining the values for finite samples, whereas the continuous definitions

allow us to prove properties of entire distributions.

6.1.1 Anti-Transportation Distance

In contrast with dKW, we define the anti-transportation distance (dAT) as the least

efficient solution to the Transportation Problem, as shown in Figure 6.1 (c). Let

µ and ν be two probability distributions on a metric space Ω with associated

distance metric dΩ. dAT is defined as:

dAT(µ, ν; dΩ) = sup
J
{E(dΩ(x, y)) : L(x) = µ,L(y) = ν} (6.1)

where the marginals L are µ and ν respectively, and the supremum – in contrast

to the infimum in dKW – is taken over all joint distributions J on µ and ν (which

are in Ω× Ω). Here, dΩ is the distance metric for Ω and dΩ(x, y) represents the

cost to move a unit amount of mass from x to y.

For the definition of dAT in the discrete case, letA = {(a1, p1), . . . , (am, pm)}

andB = {(b1, q1), . . . , (bn, qn)} be two weighted point sets. The discrete version

of dAT follows the formulation in Section 2.4.1 and transforms into a maximiza-

tion problem as follows. Treating A and B as random variables taking values

{ai} and {bj}with probabilities {pi} and {qj} respectively, dAT is obtained by

maximizing the expected distance between A and B over all joint distributions

F = (fij) of A and B:

EF ‖A−B‖ =
m∑
i=1

n∑
j=1

fijdΩ(ai, bj)
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Figure 6.1: A view of the Transportation Problem. The goal is to transport the
mass in the sources to the sinks. Different solutions involve differing amounts
of work where work is

∑
mass× distance Shown here are the most optimal and

suboptimal ways of transportation. This figure is adapted from Coen (2010).
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where F is subject to:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (6.2)
n∑
j=1

fij = pi, 1 ≤ i ≤ m (6.3)

m∑
i=1

fij = qj , 1 ≤ j ≤ n (6.4)

m∑
i=1

n∑
j=1

fij =
m∑
i=1

pi =
n∑
j=1

qj = 1 (6.5)

For both the discrete and continuous cases, we may compute dAT by ob-

serving that it is the “opposite” of the transportation problem. Thus, we could

modify the linear program above to maximize rather than minimize the flow.

Similarly, we could modify the infimum to be a supremum in the continuous

definition of dKW.

A more elegant approach is simply to note that a supremum over a set can

be computed via the infimum over a new set consisting of additive inverses of

the original quantities. The supremum of the original set is then the additive

inverse of the infimum over the modified set. In other words, we can define

dAT(µ, ν; dΩ) = −dKW(µ, ν;−dΩ).

Minimization is performed over the negative distances and then negated to

obtain a positive value.

6.1.2 Anti-Similarity distance

The optimization measure we will use to derive characteristic numbers is called

anti-similarity distance, defined equivalently to similarity distance (dsim) but

using dAT in the numerator rather than dKW. Namely, the anti-similarity distance

between A and B is defined as:
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dAS(A,B; dΩ) = dAT(A,B; dΩ)
dNT(A,B; dΩ) (6.6)

Likewise it can be defined between continuous probability distributions by

replacing A and B above with distributions µ and ν and using the continuous

counterparts of dAT and dNT. Note that when specifying dAS, we often leave out

dΩ when it is clear from context. In the remainder of this chapter for the purpose

of computing dAS we will assume that each point in A and B is weighted

identically. The anti-similarity distance, dAS, is a measure of the inefficiency

gained when moving distributions in the worst way possible as opposed to

naively. Its most important property is derived when computing the anti-

similarity distance of a sample or distribution to itself, namely, the value of

dAS(µ, µ; dΩ). We refer to this as the self-anti-similarity distance or the self-

dAS of µ. Whereas dsim(µ, µ) = 0 by definition, the value of dAS(µ, µ) is highly

dependent both on µ and the distance function dΩ. It provides an intrinsic

measure of how expensive it is to move something onto itself in the worst possible

way. It is this number that we call the characteristic number of a distribution

with respect to some distance function dΩ.

6.2 Computing dAT

To compute dAT efficiently we first formally define the notion of worst in the

anti-transportation problem; namely, how do you move a distribution onto itself

in the most expensive way possible as defined in Section 2.4.1? We derive an

analytic solution to this problem for a general probability distribution using

the following two theorems. The results below require dΩ to be quasi-antitone:
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Definition 6.1. Quasi-antitone:

A function d(x, y) on R× R is called quasi-antitone if for all x′ ≥ x and y′ ≥ y

d(x′, y′) + d(x, y) ≤ d(x, y′) + d(x′, y) (6.7)

Examples of quasi-antitone functions include |x− y|p for p ≥ 1, max(x, y), and

f(x− y) for convex and continuous f .

The first theorem is taken from Cambanis et al. (1976) and stated here

without proof:

Theorem 6.2 (Upper bound for expected distance between distributions). Let

µ and ν be two probability distributions with (cumulative) distribution functions F

and G respectively. Let H be a joint distribution function between them, and dΩ(x, y)

a quasi-antitone, symmetric, and right continuous function. Then the supremum of

the expected value of EHdΩ(µ, ν) over all joint distribution functions, if it exists, is

sup
H
EH dΩ(µ, ν) =

1∫
0
dΩ(F−1(u), G−1(1− u))du

Theorem 6.3 (Self-anti-transportation distance for a distribution). Let µ be a

probability distribution defined on R and fµ and F its density function and distri-

bution function respectively. Let dΩ be a symmetric, quasi-antitone, and continuous

function. IfF is differentiable and the quantity below exists, the self-anti-transportation

distance of µ may be computed as

dAT(µ, µ; dΩ) =
∫
R
fµ(x)dΩ(x,M(x))dx

where M(x) = F−1(1− F (x)).

Proof. The result follows immediately from the definition of dAT, and the sub-

stitution u = F (x) in the result from Theorem 6.2.
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Note that we no longer require dΩ to be a metric. This formulation captures

the notion that the worst transportation distance between µ and itself can be

achieved when each x ∈ R transports all of its mass to its match M(x), which

is its counterpart in the other half of the distribution. If the extremes of the

domain of µ are a and b (possibly infinity), then the probability mass contained

between x and a is equal to the mass contained between M(x) and b. The

condition that dΩ is quasi-antitone simply ensures that there is no better global

match for a probability mass fµ(x)dx than fµ(M(x))dx. In the specific case of

a continuous symmetric probability distribution µ, we have M(x) = 2m− x.

That is, M(x) is the point reflected about and equidistant from the mean m.

6.2.1 Computational Complexity

We now discuss the computational complexity of the discrete versions of dAT

and dAS. The complexity of computing self-anti-similarity distance for discrete

point samples is identical to that of Sim. This is because, as mentioned earlier,

dAT can be computed by inverting2 the ground distance function, computing

dKW, and inverting the result. In the discussion below, complexity is calculated

assuming an input point set P = {a1, a2, . . . , an} of size n that is unweighted.

The complexity of the dNT step in the general case is O(n2), as before. The final

theoretical complexity of dAS in the general case is therefore O(n3), dominated

by the complexity of dKW.

In the univariate case however, there is significant room for improvement by

building upon the idea of a “match” as discussed above and by using algebraic

tricks to simplify the computation of dNT. Once a point set is sorted, each point

can be matched with its match, and this assignment will lead to the worst

transportation distance possible, without the need to perform any optimization.

This is proven below. Recall that the computation of anti-transportation distance
2i.e. taking the additive inverse
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between a point set and itself involves finding an assignment of points to one

another such that the total summed distance between them is maximized.

Theorem 6.4 (Self-anti-transportation distance for a univariate sample). Let

P be a point set as defined above and d a quasi-antitone distance function. Assume

without loss of generality that P is sorted in ascending order. The anti-transportation

distance between P and itself is

1
n

n∑
i=1

d(ai, an−i+1) (6.8)

In other words, the anti-transportation distance is achieved when each point ai is

matched to its “opposite point” an−i+1.

Proof. Suppose this were not the case; suppose that another assignment C led

to the highest transportation distance W . There must then exist at least one

pair of points in C whose members are not “opposite points” of each other.

For notational convenience we will refer to the coordinate of the point ai using

ai itself. Let aj be the first point in P such that all point masses ak where

k < j are transported to their opposite point an−k+1 (and vice versa) but aj

is transported elsewhere. Suppose aj is instead transported to au and ap−j+1

is transported to av. We note that u must be less than n − j + 1 and v must

be greater than j. Construct a new transportation assignment C ′ such that aj

and an−j+1 exchange masses, as do au and av and let W ′ be the transportation

distance corresponding to C ′. Then we have

W ′ = W − d(aj , au)− d(an−j+1, av) + d(aj , an−j+1) + d(au, av). (6.9)

From the quasi-antitone property of d we have

d(aj , an−j+1) + d(au, av) ≥ d(aj , au) + d(an−j+1, av). (6.10)
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From the above and Equation 6.9 we obtain W ′ ≥W . It cannot be the case that

W ′ > W because W is the highest transportation distance possible. Therefore

the assignmentC ′ leads to a distance no less than the highest distance. Applying

a similar argument to all other points not matched with their respective opposite

points, we conclude that the assignment where each point is matched to its

opposite point leads to the highest transportation distance.

Using the result from Theorem 6.4 the computational complexity of dAS

for univariate samples reduces to O(n2) (dominated by the complexity of

dNT).

A second optimization involves the computation of dNT for both the `1 and

`22 ground distances. For `1 the complexity of dNT can be reduced to O(n) for

one dimensional point sets from O(n2) in the general case as follows. As above,

we will assume A is sorted in ascending order. Applying the definition of dNT

from Equation 2.10 to the point set A and itself, we have:

dNT(A,A) =
n∑
i=1

n∑
j=1

1
n2 |ai − aj | (since each weight pi = 1

n
)

= 2
n2

∑
j<i

(ai − aj)

= 2
n2

∑
j<i

i−1∑
k=j

(ak+1 − ak)

= 2
n2

n−1∑
k=1

k(n− k − 1)(ak+1 − ak) (6.11)

This sum can be computed in O(n) time.
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In the case of the `22 ground distance we similarly apply the definition of

dNT to the point set A and itself to obtain:

dNT(A,A) =
n∑
i=1

n∑
j=1

1
n2 (ai − aj)2 (since each weight pi = 1

n
)

= 1
n2

2n
n∑
i=1

a2
i − 2

n∑
i=1

n∑
j=1

aiaj


= 2
n2

n n∑
i=1

a2
i −

(
n∑
i=1

ai

)2
 (6.12)

Each term in square brackets in Equation 6.12 can be computed in O(n) time.

For both `1 and `22 therefore, the computational complexity of dAS in one

dimension is O(n log(n)), dominated by the complexity of the sorting step in

the computation of dAT.

6.3 Analytic Results for Self-dAS

We now examine values of dAS(µ, µ) for several classical probability distribu-

tions and distance measures using Theorem 6.3. These values are presented

above in Table 6.1. Characteristic numbers are computed for continuous distri-

butions using the continuous form of dAS; for samples from these distributions

we will use its discrete form. Our hypothesis – tested in the following section

– is that dAS for increasingly larger samples will approach the characteristic

number for its source distribution. In the limit, of course, the density profiles

will be identical, leading to the same values for dAS.

Note that the notion of a characteristic number is modular in that it depends

upon a given distance function, of which we will study two in detail, `1 and the

non-metric `22. Derivations of characteristic numbers for univariate uniform,

exponential, and normal distributions using `1 ground distance follow below,

with those for `22 in Appendix A.
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Characteristic numbers can also be computed for multivariate distributions

using the same definitions. Note that in the one-dimensional case the `1 and `2

ground distances are identical; the distinction is relevant in the case of multi-

dimensional distributions. Importantly, it can be shown that for `1 and certain

other choices of ground distance functions these characteristic numbers are

independent of the dimensionality of the data and the distribution parame-

ters.

6.3.1 Uniform Distributions

We now show the calculation of dAS for a uniform distribution using the `1

ground distance function. In doing so we illustrate the general framework

used to obtain characteristic numbers.

Let P be a uniform distribution between a and b (a, b ∈ R) with probability

density function f(x) = 1
b−a for x between a and b and 0 otherwise. Let

m = b+a
2 . To calculate dAS we must first compute dAT and dNT.

Anti-transportation distance for P can be computed as follows:

dAT(P, P ) =
∫ b

a

2|x−m|f(x)dx

=
∫ b

a

2|x−m|
b− a

dx (6.13)

Removing the absolute value using symmetry around m we have

dAT(P, P ) = 2
b− a

2
∫ m

a

(m− x)dx

= 2
b− a

[2m(m− a)− (m− a)(m+ a)]

= 2(m− a)2

b− a

= b− a
2 (6.14)
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The naive distance can be computed as follows:

dNT(P, P ) =
∫ b

a

∫ b

a

|x− y|
(b− a)2 dydx (6.15)

Splitting one interval of integration to remove the absolute value sign we have

dNT(P, P ) = 1
(b− a)2

∫ b

a

(∫ x

a

(x− y)dy +
∫ b

x

(y − x)dy
)
dx

= 1
2(b− a)2

∫ b

a

(
(x− a)2 + (b− x)2) dx (6.16)

(performing the inner integrations)

= 1
2(b− a)2

∫ b

a

(
2x2 − 2(a+ b)x+ (a2 + b2)

)
dx

= 1
6(b− a)2

(
2(b− a)(b2 + ab+ a2)− 3(a+ b)2(b− a)

+ (a2 + b2)(b− a)
)

= 1
6(b− a)

(
2(b2 + ab+ a2)− 3(a+ b)2 + (a2 + b2)

)
= 1

6(b− a)
(
2(a2 + b2)− 4ab

)
= b− a

3 (6.17)

From Equations 6.14 and 6.17 we have

dAS(P, P ) = dAT (P, P )
dNT (P, P ) = (b− a)/2

(b− a)/3 = 3
2

The self-anti-similarity distance of any univariate uniform distribution us-

ing the `1-norm is therefore
3
2 .

6.3.2 Normal Distributions

Let P be a normal distribution with mean µ and variance σ2 and probability

density function f(x) = 1√
2πσ e

− (x−µ)2

2σ2 for x ∈ R. The anti-transportation
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distance for this normal distribution using `1 ground distance can be computed

as:

dAT(P, P ) =
∫ ∞
−∞

2|x− µ|f(x)dx

By symmetry of the integrand about µ we have

dAT(P, P ) = 2
∫ ∞
µ

2(x− µ) 1√
2πσ

e−
(x−µ)2

2σ2 dx

= 2σ
∫ ∞

0
2y 1√

2π
e−

y2
2 dy substituting y = x− µ

σ

= 4σ√
2π

∫ 0

−1
dz substituting z = −e

−y2
2

= 2
√

2σ√
π

(6.18)

Naive distance for this normal distribution:

dNT(P, P ) =
∫ ∞
−∞

∫ ∞
−∞
|x− y|f(x)f(x)dxdy

=
∫ ∞
−∞

∫ ∞
−∞

|x− y|
2πσ2 e−

(x−µ)2+(y−µ)2

2σ2 dxdy

= σ

∫ ∞
−∞

∫ ∞
−∞

|x′ − y′|
2π e−

x′2+y′2
2 dx′dy′(

substituting x′ = x− µ
σ

, y′ = y − µ
σ

)

Splitting the interval of integration in order to eliminate the absolute value sign

we have

dNT(P, P ) = σ

2π

∫ ∞
−∞

(∫ x′

−∞
(x′ − y′)e−

x′2+y′2
2 dy′

+
∫ ∞
x′

(y′ − x′)e−
x′2+y′2

2 dy′
)
dx′

= σ

2π

∫ ∞
−∞

x′e−
x′2

2

(∫ x′

−∞
e−

y′2
2 dy′ −

∫ ∞
x′

e−
y′2

2 dy′

)
dx′
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− σ

2π

∫ ∞
−∞

e−
x′2

2

(∫ x′

−∞
y′e−

y′2
2 dy′ −

∫ ∞
x′

y′e−
y′2

2 dy′

)
dx′ (6.19)

(re-arranging terms)

We note that for an even function f∫ a

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ a

0
f(x)dx =

∫ ∞
0

f(x)dx+
∫ a

0
f(x)dx

and∫ ∞
a

f(x)dx =
∫ 0

a

f(x)dx+
∫ ∞

0
f(x)dx = −

∫ a

0
f(x)dx+

∫ ∞
0

f(x)dx

so that the difference of the two left hand sides becomes

∫ a

−∞
f(x)dx−

∫ ∞
a

f(x)dx = 2
∫ a

0
f(x)dx (6.20)

On the other hand, for an odd function f

∫ a

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ a

0
f(x)dx = −

∫ ∞
0

f(x)dx−
∫ 0

a

f(x)dx

= −
∫ ∞
a

f(x)dx (6.21)

Using the two results from Equations 6.20 and 6.21 in Equation 6.19 above we

obtain

π

σ
dNT(P, P ) = 1

2

∫ ∞
−∞

x′e−
x′2

2 2
(∫ x′

0
e−

y′2
2 dy′

)
dx′

+ 1
2

∫ ∞
−∞

e−
x′2

2 2
(∫ ∞

x′
y′e−

y′2
2 dy′

)
dx′

=
∫ ∞
−∞

∫ x′

0
x′e−

x′2+y′2
2 dy′dx′ +

∫ ∞
−∞

e−
x′2

2

[
−e−y

′2/2
]∞
x′
dx′

=
∫ ∞
−∞

∫ ∞
−∞

x′e−
x′2+y′2

2 [0 < y′ < x′]dy′dx′ +
∫ ∞
−∞

e−x
′2
dx′
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Exchanging integration order by Fubini’s Theorem we have

π

σ
dNT(P, P ) =

∫ ∞
−∞

e−
y2
2

∫ ∞
−∞

x′e−
x′2

2 [0 < y′ < x′]dx′dy′ +
√
π

=
∫ ∞
−∞

e−
y2
2

[
−e− x

2
2

]∞
y
dy′ +

√
π

=
∫ ∞
−∞

e−y
2
dy′ +

√
π

=
√
π +
√
π

= 2
√
π (6.22)

dNT(P, P ) = 2σ√
π

(6.23)

From Equations 6.18 and 6.23 we have

dAS(P, P ) = dAT (P, P )
dNT (P, P ) =

2
√

2σ√
π

2σ√
π

=
√

2

The self-anti-similarity distance of any univariate normal distribution using

the `1-norm, regardless of its mean and variance, is therefore
√

2.

6.3.3 Exponential Distributions

Let P be an exponential distribution with rate parameter λ and probability den-

sity function f(x) = λe−λx for x ≥ 0. Since P is not symmetric, we need its cu-

mulative distribution function F (x) = 1− e−λx as well. The anti-transportation

distance for this exponential distribution using `1 ground distance can be com-

puted as:

dAT(P, P ) =
∫ ∞

0
|x− F−1(1− F (x))|f(x)dx

=
∫ ∞

0
λ|x− F−1(e−λx)|e−λxdx



162

=
∫ ∞

0
λ|x+ log(1− e−λx)

λ
|e−λxdx

=
∫ ∞

0
|xλ+ log(1− e−λx)|e−λxdx

= 1
λ

∫ ∞
0
|y + log(1− e−y)|e−ydy (substituting y = λx)

= − 1
λ

∫ log(2)

0
e−y(y + log(1− e−y))dy

+ 1
λ

∫ ∞
log(2)

e−y(y + log(1− e−y))dy (6.24)

since h(y) = y + log(1− e−y) has a unique zero at log(2).

Consider I(a, b) =
∫ b

a

e−x(x+ log(1− e−x))dx. Integrating by parts we have

I(a, b) =
[
−e−x(x+ log(1− e−x))

]b
a

+
∫ b

a

e−x(1 + e−x

1− e−x )dx

=
[
−e−x(x+ log(1− e−x))

]b
a

+
∫ b

a

( e−x

1− e−x )dx

=
[
−e−x(x+ log(1− e−x))

]b
a

+
∫ e−b

e−a
( −1
1− z )dz

=
[
−e−x(x+ log(1− e−x))

]b
a

+ [log(1− z)]e
−b

e−a

=
[
−e−x(x+ log(1− e−x))

]b
a

+
[
log(1− e−x)

]b
a

=
[
−xe−x + (1− e−x)log(1− e−x))

]b
a

(6.25)

Let g(x) = (1− e−x) log(1− e−x)− xe−x. Then by Equations 6.24 and 6.25

λdAT(P, P ) = −I(0, log(2)) + I(log(2),∞)

= −
(
g(log(2))− lim

x→0+
g(x)

)
+
(

lim
x→∞

g(x)− g(log(2))
)

= −2g(log(2)) + lim
x→0+

g(x) + lim
x→∞

g(x) (6.26)
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These terms can be computed as

g(log(2)) = 1
2 log(1

2)− 1
2 log(2)

= − log(2) (6.27)

lim
x→0+

g(x) = lim
x→0+

(1− e−x) log(1− e−x)

= lim
u→0+

u log(u)

= lim
u→0+

log(u)
1/u

= 0 (applying L’Hôpital’s rule) (6.28)

lim
x→∞

g(x) = − lim
x→∞

xe−x

= − lim
x→∞

x

ex

= 0 (applying L’Hôpital’s rule) (6.29)

From Equations 6.26-6.29 we obtain

dAT(P, P ) = 2 log(2)
λ

. (6.30)

Naive distance for this exponential distribution:

dNT(P, P ) =
∫ ∞

0

∫ ∞
0
|x− y|f(x)f(x)dydx

= λ2
∫ ∞

0

∫ ∞
0
|x− y|e−λ(x+y)dydx

= 1
λ

∫ ∞
0

∫ ∞
0
|x− y|e−(x+y)dydx

Splitting the interval of integration:

dNT(P, P ) = 1
λ

∫ ∞
0

[∫ x

0
(x− y)e−(x+y)dy +

∫ ∞
x

(y − x)e−(x+y)dy

]
dx

= 1
λ

∫ ∞
0

[
xe−x

∫ x

0
e−ydy − xe−x

∫ ∞
x

e−ydy − e−x
∫ x

0
ye−ydy
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+ e−x
∫ ∞
x

ye−ydy

]
dx

= 1
λ

∫ ∞
0

[
xe−x[1− e−x]− xe−x[e−x]

− e−x
[
(1− e−x(1 + x))− e−x(1 + x))

]]
dx

= 1
λ

∫ ∞
0

[
−2xe−2x + xe−x − e−x + 2e−2x(1 + x)

]
dx

= 1
λ

∫ ∞
0

[
2e−2x + e−x(x− 1)

]
dx

= 1
λ

[
−e−2x]∞

0 + 1
λ

∫ ∞
0

e−x(x− 1)dx

= 1
λ

[1] + 1
λ

[
(1− x)e−x

]∞
0 −

1
λ

∫ ∞
0

e−xdx (integrating by parts)

= 1
λ

+ 1
λ

[1]− 1
λ

[
−e−x

]∞
0

= 1
λ

+ 1
λ

[1]− 1
λ

[1]

= 1
λ

(6.31)

From Equations 6.30 and 6.31 we have

dAS(P, P ) = dAT (P, P )
dNT (P, P ) =

2 log(2)
λ
1
λ

= 2 log(2) ≈ 1.3863.

The self-anti-similarity distance of any univariate exponential distribution

using the `1-norm, regardless of its rate parameter, is therefore 2 log (2).

6.3.4 Summary of Analytic Results

Characteristic numbers for uniform, normal, and exponential distributions, ana-

lytically derived in Sections 6.3.1-6.3.3 are summarized in Table 6.2. Derivations

for characteristic numbers using `2 ground distance are in Appendix A.
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Ground distance dΩ

Distribution `1 `22

Normal
√

2 2

Uniform 3/2 2

Exponential 2 log (2) π2/6

Table 6.2: Characteristic numbers. Analytically calculated characteristic num-
bers for three common distributions using two ground distance functions.
These numbers are independent of any parameters of the distribution.

6.4 Empirical Results

In the previous section we calculated asymptotic values of self-dAS for dis-

tributions. Here we compute self-dAS empirically for point samples drawn

repeatedly from various instances of those source distributions and two others.

We ran over 5.8 million Monte Carlo simulations on a massively parallel grid

computing system called the Open Science Grid (Pordes et al., 2008), which

provided 75,000 CPU hours over the course of a weekend. The resulting self-dAS

values are averaged over 500 runs for each parameter setting and displayed for

five distributions in Figure 6.2 plotted against distribution parameters.
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Figure 6.2: These plots show the variation of dAS for 5 different distributions
according to different values of their parameters. (a) As Table 6.2 indicates,
dAS for normal, exponential, and uniform distributions is constant and does
not change with the parameters. (b) For the beta distribution dAS is constant
for parameter values > 1, and asymptotes to 1 and 2 for values < 1. (c) The
value of dAS for a gamma distribution is constant for any given value of the
scale parameter, but varies with the shape parameter between 1 and

√
2.
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6.5 Conclusion

In this chapter we introduced a new measure dAS between probability distribu-

tions. When it is applied to a distribution and itself, it results — in many cases

— in a static value for an entire family of distributions. This measure further-

more has a straightforward counterpart that can be applied to discrete sam-

ples; it is empirically verified that dAS in point sets asymptotically approaches

the characteristic numbers for their source distributions. This is a new theo-

retic property of a number of classical probability distributions that we call

“characteristic numbers.” An entire family of distributions, without regard to

parameters or dimensionality, surprisingly has a single characteristic number.

We derive analytic results for the characteristic numbers of several ubiquitous

distributions and demonstrate that it can be calculated in O(n log(n)) time for

one-dimensional point samples. In the following chapter we present a new

approach to goodness-of-fit testing using dAS.
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7 goodness-of-fit testing

From the earliest days of statistics, statisticians have begun their analysis

by proposing a distribution for their observations and then, perhaps with

less enthusiasm, have checked on whether this distribution is true.

— D’Agostino and Stephens (1986, pg v.)

Goodness-of-fit tests (D’Agostino and Stephens, 1986; Rayner and Best, 2009;

Thas, 2009; Thode, 2002) address the question: is a given data sample consistent

with having been drawn from a specified distribution? For example, one may ques-

tion whether a data set “appears” normal. Certainly, we cannot ask if they

were truly sampled from a normal distribution. It is possible to be unlucky and

have data generated from a uniform distribution appear normal or vice versa –

particularly with small sample sizes. However, we can ask about the plausibility

that the data conform to a particular distribution, for example, based on some

common statistic describing them.

Self-anti-similarity distance, introduced in Section 6.1 enables a novel ap-

proach to goodness-of-fit testing. Since it is a measure between a distribution and

itself, it allows us to create one-sample goodness-of-fit tests without reference

to a hypothetical comparison distribution, e.g. a standard Gaussian. A key

strength of this approach, specifically its sensitivity to the pairwise relation-

ships between all points in a sample, provides the statistical power (Cohen,

1988) of our technique. This framework provides the most statistically powerful

goodness-of-fit techniques of which we are aware.

7.1 Background

Goodness-of-fit tests play a fundamental role in statistics, particularly given the

intensive use of computational statistical methods in recent years. Among their
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most important applications is in assessing the validity of models involving

statistical distributions, a step which is often neglected during the modeling

process. This concern is raised by numerous statisticians, e.g. “One can only

speculate on how many wrong decisions are made due to the use of an incorrect

model.” (Rayner and Best, 2009, p vii.). In the same vein, knowing the distribu-

tion of a sample can shed light on the process that generated it; if a suggested

model for the process is correct, the sample data follow a specific distribution,

which can be tested. Similarly, the parameters describing the distribution are

sometimes recovered during goodness-of-fit testing and can be connected with

important parameters describing the underlying model. Extensive discussion

of the relation between goodness-of-fit testing and model validity may be found

in Huber-Carol (2002).

Knowledge of the data distribution allows for application of standard sta-

tistical and estimation procedures. For example, if the data follow a normal

distribution, inferences concerning the means and variances can be made using

t-tests, analysis of variances, and F-tests. Similarly, if the residuals after fitting

a regression model are normal, tests may be made on the model parameters.

Estimation procedures such as the calculation of confidence intervals, tolerance

intervals, and prediction intervals, often depend strongly on the underlying

distribution. Also, when a distribution can be assumed, extreme tail percentiles,

which are needed for highly unlikely events, can be computed. Additional is-

sues relevant to statistical inference are outlined in D’Agostino and Stephens

(1986).

There is also a close relationship between goodness-of-fit tests, particularly

those employing smoothness approaches, and non-parametric density estima-

tion (orthogonal series expansions) (Thas, 2009). While this is not uncommon

in statistical applications, the connection with goodness-of-fit testing has not

been well examined, where the parameters in the orthogonal series expansions
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are replaced by estimates derived from distributional fit tests. This type of

approach would allow improved density estimation.

While normality testing is by far the most common type of distributional

test, specific tests exist for essentially every common family of distributions.

For example, Knuth (1969) advocates empirical evaluation of pseudo-random

number generators to ensure their output is compatible with that of a uniform

distribution over [0, 1]. Perhaps the very first goodness-of-fit test was the χ2 test

for multinomial distributions, famously applied to demonstrate the Mendelian

theory of genetics (Pearson, 1900; Fisher, 1918). Variants of the Pearson χ2 test

formed the predominant basis for goodness-of-fit testing until the mid 20th

century.

7.2 Viewing as Hypothesis Tests

Hypothesis testing is a statistical method for testing whether observed data

are consistent with an assumed scientific hypothesis. Formally, there are two

hypotheses concerning an observation of X : the “null” hypothesis, and an

alternative hypothesis that is its logical negation. The null hypothesis is rejected

if the observed data are highly improbable according to the assumptions made

by it. It is not possible to prove that the null hypothesis is true; we can only

establish that the data have some level of consistency with it. Let X be a

random variable and T a statistic computed on X . The alternative hypothesis

corresponds to a set of values in the range ofT (X) called the critical region; if the

value of T (X) falls in this region, the null hypothesis is rejected. Values of T (X)

less than a specified threshold correspond to the critical region. This threshold

depends on how “significant” the test is required to be. Test significance is

an upper bound on the probability of the test statistic (corresponding to the

observed data) falling into the critical region purely due to chance, under the
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null hypothesis. The “power” of a test, on the other hand, is the probability of

correctly rejecting the null hypothesis. Power can be seen as a measure of how

effectively a test statistic bifurcates the range of a statistic in order to differentiate

between the two hypotheses. For a more detailed treatment of hypothesis tests

see Wasserman (2013).

In the context of goodness-of-fit testing, a hypothesis test consists of a test

statistic and thresholds corresponding to different significance levels and sam-

ple sizes (e.g. see D’Agostino and Stephens (1986); Stephens (1974)). The null

hypothesis is that a sample was drawn from the distribution of interest, say a

normal distribution. Given a sample of observations, if the computed test statis-

tic lies within the critical region as defined by the thresholds (corresponding to

sample size and significance level), the null hypothesis is rejected. Otherwise,

it fails to be rejected. The sample size is important because some tests were

designed for small samples, and others for large. Frequently, tests designed

for small sample sizes do not work well for large sizes, and vice versa. This

is particularly the case for hypothesis tests that attempt to find a connection

between the point sample and a very specific propery of the assumed source

distribution, such as its moments, tail, and other phenomena.

7.2.1 Goodness-of-fit as a Hypothesis Test

An unusual property of goodness-of-fit tests is that they are typically framed

as hypothesis tests in the null hypothesis H0 is desired to be true. For example,

with a Kolmogorov-Smirnoff test (Stephens, 1974), we are interested in deter-

mining if a given sample is compatible with a standard normal distribution

(µ = 0, σ = 1). The alternative hypothesis H1 is that it is not compatible, giving

little or no information as to the actual source distribution of the data. Thus,

goodness-of-fit testing is somewhat unique in that we want the null hypothesis
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to be accepted.1 In contrast, for much of hypothesis testing, the intent is to

reject the null hypothesis (Lehmann and Romano, 2005; Wasserman, 2013),

thereby proving some population effect, e.g., a group treated with drug had

extended lifespan over a control. Even in cases where we seek to demonstrate a

treatment had no effect, the test statistic is usually clear and we rely upon the

Neyman-Pearson Lemma (Neyman and Pearson, 1933) to maximize the power

of the test.

However, in goodness-of-fit testing, the range of possible statistics is im-

mense and each has varying statistical power. Thus, numerous techniques with

increasing degrees of statistical power have evolved to increase the likelihood

that “failing to reject the null hypothesis” is the same as “accepting the null

hypothesis.” However, none of these has singlehandedly proved to be superior

to the others. Tests are often hand-picked based on visual characteristics of an

empirical density function, e.g., its degree of kurtosis. We outline the range of

approaches to goodness-of-fit testing in the next section.

7.3 Related Work

The body of literature exploring goodness-of-fit techniques is extensive. They

share a common framework, however, of corresponding to hypothesis tests on

unique statistics calculated on given samples. The works of D’Agostino and

Stephens (1986), Rayner and Best (2009), and Thode (2002) provide a thorough

discussion of these tests and the different approaches taken to construct them.

Stephens (1974) also provides a short but informative overview. We compare

statistical power of relevant named tests below with our approach in Section 6.4.

In the discussion here, X refers to an entire sample and xi refers to a member

of that sample.
1Note, “accepting the null hypothesis” is often elliptically referred to as “failing to reject the

null hypothesis.” Namely, not being able to reject something generally does not prove it. In spite of
this, both terms are often used equivalently in statistics and we do so here.
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7.3.1 Graphical Tests

The oldest and most straightforward approach to identifying distributions is to

look at them (Cleveland and McGill, 1985; J. M. Chambers, W. S. Cleveland, B.

Kleiner, and P. A. Tukey, 1983). Tools such as quantile based Q-Q plots (Wilk

and Gnanadesikan, 1968) have become popular for this purpose. However,

visual approaches are subject to the vagaries of perceptual processing and

inductive biases. They have been subject to little scientific study until fairly

recently (Cleveland and McGill, 1987), although they are widely employed

by statisticians. Their greatest utility may well be in dismissing candidate

distributions. Visual observation of a sample is generally considered an analytic

prerequisite, e.g., “There is no excuse for failing to plot and look.” Tukey (1977,

p. 43).

7.3.2 χ2 Based Tests

Classical χ2 tests introduced by Pearson (1900) are generally considered the

first approaches to formalizing goodness-of-fit testing. He introduced a dis-

crete, multinomial framework motivated by a mounting body of evidence

that biological populations were not normally distributed. The test statistic,

X2 =
∑n
i=1

(xi−Ei)2

Ei
measures the difference between observed (xi) and the-

oretically expected (Ei) values for a series of discrete events. Comparing the

value of the statistic to the χ2 distribution allows derivation of a p-value for the

test. While the original formulation was on discrete (or binned) values, much

early work in distributional testing was focused on generalizing the χ2 test for

continuous data and other distributions, notably the smooth tests of Neyman

(1937). A modern smoothness test we compare with is the 4th order Hermite

polynomial statistic (Ŝ4) described in Rayner and Best (1986).
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7.3.3 Tests Based on EDF Statistics

A very popular class of goodness-of-fit techniques are based on empirical

distribution functions (EDFs). The simplest and most well-known of these

is the Kolmogorov-Smirnof test (Kolmogorov, 1933; Smirnov, 1948). Given n

samples, one defines Fn(x) = number of samples≤x
n and F (x) is the probability of

an observation less than or equal to x. The test statisticD is then defined asD =

supx |Fn(x)−F (x)|. A wide variety of statistics are based upon the discrepancy

between observed and predicted values according to an EDF. These include

Cramer-von Mises, Anderson-Darling, and Watson tests (Stephens, 1974), which

all modify the D statistic in some way. Modifications to Kolmogorov-Smirnof

tests were motivated by its low statistical power, as observed in Section 6.4.

7.3.4 Regression and Correlation Tests

Whereas EDF-based tests make use of order statistics, regression tests are a

formalization of the graphical tests discussed above. Namely, they fit a straight

line to a sample and the tests are based on statistics associated with this line. If

the test statistic is derived from the correlation coefficient between the line and

the sample, the test is called a correlation test. The best known of these tests is

perhaps the Shapiro-Wilk test for normality (Shapiro and Wilk, 1965), which is

a regression test based on the residuals. As the full test statistic is somewhat

involved, e.g., (D’Agostino and Stephens, 1986, pg. 206–208), a simpler variation

is the d’Agostino test, whose statistic is DA =
∑n
i xi(i−

1
2 (n+ 1))/Sn3/2),

where S = (
∑
xi − X̄)1/2.

7.3.5 Transformation Methods

Among the most interesting approaches to distributional testing is changing

the underlying distribution of the initial sample to have a distribution for
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which we already have a good test. For example, a straightforward case is

transforming a lognormal distribution into a normal one; we simply take the

log of each term. We can then use a normality test to determine if the original

data are compatible with a lognormal distribution. We note the transformations

themselves may be approximate, introducing their own error into the goodness-

of-fit computation. The Watson statistic for testing uniformity, U2 = (1/12N) +∑n
i=1((2i− 1)/2N − xi)2 −N(X̄ − 0.5)2, has been found to be quite useful in

transformational tests given its reasonable power against numerous classes of

alternatives (Quesenberry and Miller, 1977).

7.3.6 Other Approaches

Two other avenues of measuring goodness of fit deserve mention. The first is

moment techniques that compute descriptive statistics of data sets such as skew,

kurtosis, and variance. The difficulty with these approaches is that they are

exceedingly complex and few exact results can be calculated for non-normal

distributions.

A second and highly important class of alternatives correspond to Bayesian

approaches to goodness-of-fit testing, which are often called posterior predictive

checks or conditional predictive checks (Gelman et al., 2003; Mukhopadhyay et al.,

2005; Rubin, 1984). These are natural in Bayesian modeling and analysis, where

we may have reasonable priors on the distributions of sampled data. The

Bayesian community is notable for typically including distributional checks

in modeling. An increasing number of the above approaches have Bayesian

variants (Gelman et al., 2003).
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7.4 Building a Hypothesis Test for Normality

Normality testing is by far the most common goodness-of-fit test (see Sec-

tion 7.3). This is in large part due to the assumption made in linear regression

techniques that the residuals be normally distributed. We use the analytic

results for `1 and `22 to construct a test statistic AS (from anti-similarity) for

samples from normal distributions. The values of dAS taken by samples quickly

approach the asymptotic values of the distributions shown in Table 6.2. Thus,

our statistic is determined by the difference between a sample’s dAS and the

characteristic number for the parent distribution. We therefore define our

anti-similarity-based normality test statistic (AS) for a point set P as:

AS = |dAS(P, P ; `1)−
√

2|+ |dAS(P, P ; `22)− 2| (7.1)

This statistic is highly robust because it incorporates values from all pairwise

distances between points; it does not rely only on outliers or on non-robust

statistics such as mean, kurtosis, or skewness.

7.4.1 The AS Normality Test

AS is used to construct a hypothesis test as follows. We estimate the distribution

of AS under the null hypothesis empirically using samples drawn from normal

distributions. We selected two significance levels (0.05 and 0.1) and estimated

the thresholds for AS corresponding to each level for different sample sizes.

Given our statistic is lower bounded by zero, we use a one-tailed (upper tail) test.

Monte Carlo simulations provided the necessary upper bound for obtaining

95% confidence intervals. If the test statistic lies above this bound, we reject the

null hypothesis that it came from a normal distribution. Upper bounds for two

significance levels are presented for various sized samples drawn from normal

distributions in Table 7.1. Similar tables were constructed for other distributions
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as well. These tables were used to construct goodness-of-fit hypothesis tests

based on AS. Our approach provides a powerful normality test, which is par-

ticularly noticeable on small samples. Table 7.2 provides power comparisons of

theAS test for several different sample sizes at the 5% significance level with the

most common tests for normality. These include the Cramer-von Mises, Watson,

Kolmogorov-Smirnov, Anderson-Darling, Neyman-type smooth, Lilliefors, and

Shapiro-Wilk (W) tests.

7.4.2 Multivariate Normality Testing with dAS

Self-anti-similarity distance can be used to construct goodness-of-fit tests for

multivariate data as well, following the procedure above. Multivariate goodness-

of-fit testing has received little attention in the literature, as opposed to univari-

ate cases (D’Agostino and Stephens, 1986). As for the univariate case above,

we conducted experiments to derive confidence intervals using Monte Carlo

simulations for multivariate normal distributions. We measured the power of a

test using the `1 norm to reject samples from multivariate uniform distributions.

Figure 7.1 shows the variation of power with respect to point set size and dimen-

sionality. We note that as dimensionality increases, fewer points are required

to achieve high power. This is a result of each point contributing increasing

information about its parent distribution as dimensionality increases.

Sample size(n) Threshold
α = 0.05 α = 0.1

10 .3209 0.1439
20 .2071 0.0876
30 .1436 0.0671
50 .1122 0.0488

100 .0681 0.0308

Table 7.1: AS Statistic. This table provides upper bounds at two significance
levels for values of AS for normality testing of different point set sizes . If
AS lies above the corresponding bound for that point set size, we reject the
hypothesis that the sample originated from a normal distribution.
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Distribution n AS W 2 U2 D A2 Ŝ4 D′ W

Uniform(−1, 1)

10 8.2 6.9 8.0 6.1 7.4 2.2 6.1 4.7
20 14.3 14.8 16.8 8.9 16.2 0.1 9.0 9.9
30 21.9 21.5 25.5 15.1 27.9 0.0 15.7 21.6
50 46.7 43.5 49.4 26.2 57.4 7.4 26.2 57.1

100 80.0 85.3 88.4 62.0 95.2 25.4 61.7 98.2

Exponential(1)

10 45.0 38.0 37.4 31.7 40.8 34.5 31.7 35.6
20 82.5 72.5 70.6 58.5 78.0 62.8 59.1 75.7
30 95.6 88.5 84.2 77.1 92.1 82.9 77.4 93.1
50 99.9 99.2 98.4 95.7 99.7 97.6 95.8 99.8

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Lognormal

10 60.8 55.7 54.4 46.6 58.0 48.8 46.4 53.5
20 93.6 87.8 86.8 78.0 90.3 84.6 78.5 89.5
30 99.5 98.5 97.3 94.6 98.9 95.3 94.7 98.6
50 100.0 99.9 99.8 99.7 100.0 100.0 99.7 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

t(1)

10 56.7 60.1 60.9 57.8 60.1 57.5 57.8 57.7
20 83.8 88.3 88.2 85.1 88.3 86.5 85.1 87.1
30 94.9 95.8 96.0 94.3 95.6 95.1 94.3 95.0
50 99.5 99.3 99.4 98.8 99.4 100.0 98.8 99.3

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

χ2
8

10 13.3 12.0 11.7 10.9 13.3 13.3 10.9 11.3
20 26.9 22.7 20.3 18.6 25.5 25.3 18.8 23.4
30 44.8 31.5 26.2 24.6 35.9 37.2 24.9 34.8
50 66.0 51.4 43.3 40.2 57.5 54.0 40.5 59.2

100 91.2 84.0 75.9 71.1 89.6 89.0 71.1 92.4

Beta(2, 1)

10 13.3 12.5 12.8 11.0 13.1 6.7 10.8 8.8
20 26.2 20.7 20.2 16.1 22.9 8.1 16.1 15.8
30 51.7 36.4 34.9 26.2 42.4 7.8 26.5 35.3
50 75.7 60.7 58.4 43.5 71.7 20.0 43.6 72.9

100 96.2 92.5 90.1 79.9 98.2 84.4 79.8 99.1

Gamma(1, 2)

10 46.9 37.0 36.8 29.0 39.3 34.0 28.8 33.7
20 81.2 71.7 68.5 56.6 76.5 62.8 56.8 73.0
30 95.6 90.3 87.5 78.0 93.5 81.6 78.8 92.6
50 99.8 99.1 98.4 96.1 99.7 96.5 96.1 99.8

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Cauchy(0, 1)

10 55.2 62.4 62.6 58.4 62.2 57.9 58.3 58.8
20 83.6 86.9 86.9 82.9 87.8 86.8 82.9 86.4
30 95.1 96.1 96.3 93.9 96.5 95.6 94.0 96.2
50 99.6 99.7 99.7 99.6 99.7 99.6 99.6 99.6

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 7.2: This table contains the statistical powers Cohen (1988) of our test
statistic (AS) with the Cramer-von Mises (W 2), Watson (U2), Kolmogorov-
Smirnov (D), Anderson-Darling (A2), Neyman-type smooth (Ŝ4), Lilliefors
(D′), and Shapiro-Wilk (W) tests. These tests were performed for each given
sample size on 1000 instances drawn from each specified distribution, with
α = 0.05. The bolded red values indicate the statistically most powerful test
for each sample from a given distribution. All tests have approximately 5%
statistical power on normal samples.
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Figure 7.1: Examining the power of characteristic numbers in `1 in a multivariate
normality test to reject multivariate uniform samples as a function of the number
of dimensions and points. Holding the number of points constant, we note the
statistical power increases with dimensionality, as each point is contributing
more information about its source distribution.

7.5 Conclusion

In this chapter we introduced a new framework for deriving goodness-of-fit

tests based on the concept of characteristic numbers developed in Chapter 6. We

used the characteristic numbers for the normal distribution to present a practical

goodness-of-fit test for normality involving our new statistic AS that measures

deviations from expected asymptotic values. The test statistic incorporates

a robust measure from optimization theory that is sensitive to the pairwise

relationships between all sample points. Our framework provides the most

statistically powerful goodness-of-fit techniques of which we are aware.
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8 evaluations

This chapter contains a summary of experiments conducted in the course of this

research. Results from previous chapters, together with results from three other

experiments not previously mentioned, are gathered together here in one place

to provide an easy-to-peruse collection of results from experiments and learning

tasks using the point set representation. The section-topic correspondence

below is as follows:

• 8.1: Classification of Samples from Probability Distributions (Chapter 2)

• 8.2: Ensemble Clustering (Chapter 4)

• 8.3: Neuroimaging (Chapter 5)

• 8.4: Goodness of fit (Chapter 7)

• 8.5: Document Classification

• 8.6: Object Classification in Images

• 8.7: Protein Structure Similarity Detection

8.1 Classification of Samples from Probability Distributions

One of the common assumptions in machine learning is that data from differ-

ent classes originate from different underlying distributions. When data are

represented in the form of point sets, the classification problem becomes one

of being able to differentiate between samples of points from differing distri-

butions. Below we show results from experiments wherein we sample sets of

points from two different multivariate probability distributions and evaluate

the utility of various spatial and non-spatial point set comparison methods in

classifying these point sets.
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Figure 8.1: (A) Probability density function plots for Experiment 1 in Section 8.1.
The plot in blue is a beta distribution with parameters 0.8 and 1.4, and the
one in red is a truncated gamma distribution, with shape parameter 1.83 and
rate parameter 0.19. (B) Two examples of point sets that are sampled from
distributions shown in (A).

8.1.1 Experiment 1

Consider the pair of 1-dimensional distributions shown in Figure 8.1 where the

densities of both distributions are plotted along the y-axis; one in blue and the

other in red. The distribution shown in blue is a beta distribution (parameters

α = 0.8 and β = 1.4) and the one in red is a truncated gamma distribution

(shape k = 1.83 and rate θ = 0.19). The parameters for these distributions

were chosen so as to make both the means and variances of these distributions

identical to one another respectively.

We sampled 100 point sets from each distribution, each containing a vary-

ing numbers of points between 30 and 60. We then trained a support vector

machine (Shawe-Taylor and Cristianini, 2000) to separate between point sets

originating from these two distributions, using Sim, density overlap, lift kernel,

Bhattacharyya kernel (Kondor and Jebara, 2003), and pyramid match (Grauman
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Accuracy Time
Density overlap (σ = 0.05) 93.5% 2.71s

Sim 87% 33.4s
Pyramid match 85.8% 4.84s

Lift kernel (ρ = 400) 74% 45.25s
Bhattacharyya kernel 83% 120.9s

Table 8.1: Accuracy results for five point set similarity measures on classifying
synthetic data in 1 dimension sampled from the distributions shown in Fig-
ure 8.1. 100 point sets of varying cardinality between 30 and 60 were sampled
from each distribution and used to train a support vector machine classifier.
This classifier was then tested on another 100 samples; the classification accura-
cies are shown in the table above.

and Darrell, 2007) as similarity functions. Classification accuracy results on a

holdout set of another 100 point sets from each distribution are tabulated in

Table 8.1.

8.1.2 Experiment 2

We perform another experiment similar to the one above but with the two-

dimensional distributions shown in Figure 8.2. The density functions in one

dimension of both distributions are plotted along the x-axis, and along the other

dimension on the y-axis. One distribution (in blue) follows a beta distribution

with parameters (1.3, 1.3) in the x-coordinate and a normal distribution with

mean 0.5 and variance 0.04 in the y-coordinate. The other distribution (in red)

follows a uniform distribution with parameters (0, 1) in the x-coordinate and a

beta distribution with parameters α = 2.4 and β = 2.4 in the y-coordinate.

Similar to Experiment 1 above, we sampled 100 point sets from each distri-

bution, each containing a varying numbers of points between 30 and 60. We

then trained a support vector machine to separate between point sets orig-

inating from these two distributions, using Sim, density overlap, lift kernel,

Bhattacharyya kernel (Kondor and Jebara, 2003), and pyramid match (Grauman
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Figure 8.2: (A) Probability density function plots for Experiment 2 in Section 8.1.
The plots in blue represent the density in each dimension of one distribution;
it follows a beta distribution with parameters 1.3 and 1.3 in the x-dimension
and a normal distribution with mean 0.5 and variance 0.04 in the y-dimension.
The plots in red represent the per-dimension densities of the second distribu-
tion; along the x-dimension is a uniform distribution on [0, 1] and along the
y-dimension a beta distribution with parameters 2.4 and 2.4. (B) Two examples
of point sets that are sampled from distributions shown in (A).

Accuracy Time
Density overlap (σ = 0.05) 77.5% 2.96s

Sim 76% 107.52s
Pyramid match 59.3% 5.3s

Bhattacharyya kernel 63% 116.79s
Lift kernel (ρ = 1000) 54.5% 79.48s

Table 8.2: Accuracy results for five point set similarity measures on classi-
fying synthetic data in 2 dimensions sampled from the distributions shown
in Figure 8.2. 100 point sets of varying cardinality between 30 and 60 were
sampled from each distribution and used to train a support vector machine clas-
sifier. This classifier was then tested on another 100 samples; the classification
accuracies are shown in the table above.
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Data Set Dimensionality # of instances # of Classes
Iris 4 150 3
Wine 13 173 3
Ionosphere 34 351 2
Soybean 35 47 4
ISOLET 617 1559 26
MNIST (Test) 784 10,000 10
MNIST (Full) 784 60,000 10

Table 8.3: This table displays the characteristics of data sets used to evaluate
ensemble clustering algorithms in this chapter. The data sets Iris, Wine, Iono-
sphere, Soybean, and ISOLET are from the UCI Machine Learning Repository
Asuncion and Newman (2007) and form a diverse collection of data set with
respect to high and low dimensionalities, small and large numbers of instances,
and few and many classes. The MNIST LeCun et al. (1998) data sets are the
train and test sets respectively of a large and popular digit recognition image
database.

and Darrell, 2007) as similarity functions. Classification accuracy results on a

holdout set of another 100 point sets from each distribution are tabulated in

Table 8.2.

8.2 Ensemble Clustering

In this section we evaluate our ensemble clustering algorithm SEC and compare

results with other methods such as LiftKM (Raman et al., 2011) (dimensionality

ρ = 2000), the bipartite graph methods of Fern and Brodley (2004), and the

hypergraph methods of Strehl and Ghosh (2003). We applied all these methods

to standard labeled classification data sets (detailed in Table 8.3) that are used

in the literature in evaluation of clustering algorithms and ensemble clustering

techniques.

We generated the ensemble using a combination of the methods described

in Section 4.3 and using the k-means algorithm (MacQueen et al., 1967), spectral

clustering (Ng et al., 2002), and affinity propagation (Dueck and Frey, 2007). We

generated hundreds of clusterings and set a threshold of 0.1 for the diversity
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Data Set Iris Wine Ionosphere Soybean
SEC error 10.67% 29.78% 28.77% 29.79%

LiftKM error 11.33% 37.64% 33.90% 29.79%
KRF error 10.67% 53.37% 28.77% 29.79%

Fern-Brodley error 10.67% 42.13% 32.76% 29.79%
Mean error 15.68% 32.64% 27% 29.1% %
Min error 10.67% 29.78% 0% 0%
Diversity 0.11 0.19 0.06 0.24
SEC Time 11.6s 16.4s 10.5s 3.6s

Data Set ISOLET MNIST (Test) MNIST (Full)
SEC error 41.24% 40.03% 42.64%

LiftKM error 46.76%(ρ = 4000) 63.94% 64.13%
KRF error 43.43% - -

Fern-Brodley error 44.26% - -
Mean error 48.91% 52.88% 51.92%
Min error 42.85% 50.40% 50.82%
Diversity 0.29 0.62 0.66
SEC Time 860s 483s 6733s

Table 8.4: This table presents the results of applying different ensemble cluster-
ing algorithms on standard data sets. The first row contains the data set used,
the second the error rate for our method (SEC ), and the third the error rate of
LiftKM. The fourth row contains the least error rate of the knowledge reuse
framework (KRF) of Strehl and Ghosh (2003) and the fifth the least error rate
among the three methods proposed in Fern and Brodley (2004). The sixth and
seventh rows contain the mean and minimum errors respectively of members
of the ensemble relative to the “true” labeling of the data set. The eighth row
displays the diversity measurement of the ensemble and the final row the time
in seconds that SEC took to arrive at a consensus clustering on that data set.
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(defined in Section 4.3) in order to proceed with the final consensus step. Each

ensemble clustering algorithm was given the same ensemble from which to

derive its consensus clustering, wherever applicable.

8.2.1 Measuring Accuracy

A natural criterion to measure the usefulness of each method is the overall

accuracy of the final consensus clustering and the improvement over individual

members of the ensemble. We define accuracy by the following formula:

Accuracy = max
p

1
n

k∑
i=1

T (Cp(i), Li) (8.1)

where Li is the ith class in the labeled data set, Cj is the jth cluster in the

consensus clustering, p varies over all permutations of labeling assignments

between the clusters of the consensus clustering and the classes of the data set,

and T (Cj , Li) is the number of points that occur in both Cj and Li.

We approximate the best correspondence p of cluster labels from the consen-

sus clustering to the data set labels by solving the correspondence problem using

the Hungarian algorithm (Munkres, 1957). The “accuracy” of each clustering

with respect to the given labels is then computed using this correspondence.

8.2.2 Results

Table 8.4 shows the results of applying the above-mentioned ensemble methods

to data sets from the UCI Machine Learning Repository Asuncion and Newman

(2007), and the MNIST digit recognition database LeCun et al. (1998) which

contains 60, 000 data in 784 dimensions, categorized into 10 classes. These

data sets were chosen to maximize the diversity in dimensionality, numbers

of classes, and numbers of instances, to demonstrate the wide applicability of

ensemble clustering.
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Our method is referred to as SEC in the table. In each column we show re-

sults from the application to one data set of SEC and three other state-of-the-art

ensemble clustering algorithms, each representative of a different approach to

computing the consensus. In the columns we show the error of each algorithm

rather than its accuracy to better demonstrate differences in performance. The

least error in each case is shown in bold. Additionally, we also provide infor-

mation such as the mean and minimum error of all clusterings in the ensemble.

Finally, we show the running time of SEC on that data set.

As the bolded numbers show, SEC consistently finds a consensus clustering

that has the least error rate among all the methods tested. In the case of the

Iris data set, three of the four methods arrived at a consensus that has a mis-

clustering error lower than the mean error over the ensemble, and equal to

the minimum error. The data set Wine has a similar result for SEC . For the

Ionosphere and Soybean data sets all methods perform similarly and arrive

at clusterings that are comparable to the mean error in the ensemble. In the

ISOLET and MNIST data sets, SEC reports an error that is significantly lower

than the mean of the ensemble and, more importantly, also lower than the

minimum error. In the case of MNIST, the difference is as much as 10.37%,

corresponding to an error reduction of 20.58%. This is especially interesting

as it indicates that with no further supervision we are able to use information

from disparate clusterings to reduce the mis-clustering error well below even

the best performing member of the ensemble.

8.3 Neuroimaging

The experiments below are designed to yield a better understanding of neural

patterns of change in the brain in relation to aging and the presence of risk

factors for AD. Chapter 5 contains a full description of the data set and prepro-
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cessing steps applied to each image. Here we discuss results from a series of

three experiments.

8.3.1 Detecting Chronological Order of Scans

We begin with a “simple” classification problem. For longitudinal data, one

instance of ground truth is the chronological order in which the data sets were

collected. Thus, a natural question is: can we determine this order for a given

individual (see Figure 5.8 for an example)? In other words, given two scans,

our task is to identify which was taken earlier.

Recall that we represent any region (or collection of regions) of interest

in the brain as a point set R = {(v1, w1), (v2, w2), . . . , (vN , wN )} where each

v1 ∈ R3 is a voxel position, wi ∈ R some value of interest at that voxel, and

N is the number of voxels in the region(s). We define another point set ∆R

corresponding to the same region in a new image constructed from the difference

of the two brain scans taken from the same subject and time 1 and time 2.

∆R = {(v1,∆w1), . . . , (vN ,∆wN ) where ∆wi is the change in FA at voxel i

from time 1 to time 2. We then perform voxel selection according to the Q and

Cons criteria outlined in Section 5.6.1

∆R̂Q(τ) = {(vi,∆wi) | (vi,∆wi) ∈ ∆R and Q(vi) > τ} (8.2)

∆R̂Cons(τ) = {(vi,∆wi) | (vi,∆wi) ∈ ∆R and Cons(vi) > τ} (8.3)

These are the voxels that will be extracted from each scan.

For each of the 118 subjects, we construct two “difference” images. The

first subtracts the latter image from the earlier one (the “positive difference

image”), and the second by reverses the order of subtraction (the “negative

difference image”). This is done so that when given two new images from a

single subject with no ordering information, we perform the subtraction in
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Figure 8.3: Gram Matrix. The panels in this image show Gram matrices for
the first experiment represented as images. A Gram matrix in this context is
composed of kernel values between all instances in the data set. Our data set
contains two scans from each of 118 subjects, leading to 236 positive and nega-
tive difference images. The Gram matrix therefore contains similarity values
for every pair of difference images in this data set. The first 118 entries along
the x and y axes correspond to the positive difference images, and thereafter
the negative difference images. Panels (a) and (b) correspond respectively to
Gram matrices constructed using the lift and RBF kernels. As the colors in the
image in panel (a) show, the positive images are similar to one another, as are
the negative images to one another, but the positive and negative images are
not similar to each other (reflected by the darker color). These differences are
exploited by a linear SVM classifier to yield the accuracy results in Table 8.6.

an arbitrary manner and compute which set of difference images this new

difference image is more “similar” to, using the spatially aware kernels in

Chapter 2.

Since there are an equal number of positive and negative difference images,

the baseline accuracy for this experiment is 50%.

We trained a support vector machine (SVM) (Shawe-Taylor and Cristian-

ini, 2000) with the lift kernel (Section 2.6) to classify “positive” and “negative”

difference images. For comparison purposes to a widely used non-spatially sen-

sitive kernel, we also provide results for the radial basis function (RBF) kernel.

Figure 8.3 shows a visualization of the Gram matrices corresponding to these



190

Region Label
Corpus Callosum (whole) 101
Corpus Callosum (splenium) 5
Corpus Callosum (genu) 3
Cingulum bundle (R & L) 35
Superior longitudinal fasciculus (R & L) 41
Uncinate fasciculus (R & L) 45
Fornix (column, body, and cres) 6

Table 8.5: Brain regions. This table lists the regions in the brain we conducted
analysis on. Each region is assigned a label which it is referred to by in the
results in Table 8.6.

Region Mode |∆R̂Cons(τ)| RBF Lift
101 FA 1512.7 voxels 79.7% 91.5%

MD 4803.5 voxels 75.4% 87.3%
5 FA 425.7 voxels 84.7% 93.2%

MD 2282.8 voxels 69.5% 81.4%
3 FA 170.6 voxels 80.9% 88.1%

MD 948.2 voxels 74.6% 86.4%
35 FA 1466.2 voxels 84.7% 91.5%

MD 1090.2 voxels 64.4% 85.6%
41 FA 2032.5 voxels 83.1% 92.4%

MD 505.6 voxels 63.6% 81.4%
45 FA 124.8 voxels 73.8% 86.4%

MD 127.3 voxels 64.4% 79.7%
6 FA 19.3 voxels 66.1% 76.3%

MD 203.2 voxels 71.2% 84.7%

Table 8.6: Before-After Results. Classification results using a linear SVM with
different kernels for predicting the before image from the later image using
seven different WM regions (listed in Table 8.5). The kernels used are radial
basis function (RBF) and lift from Chapter 2. τ was fixed for all experiments
at 0.7 for FA and 0.65 for MD, and the number of voxels reported is the mean
cardinality of the set |∆R̂Cons| across the different folds in each experiment.
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different kernels. Accuracy for each region was determined with 10-fold cross

validation; experiments for all three kernels were run for each fold. Cons and

voxel selection were re-calculated per fold in order to prevent any information

leakage from the test set during training. The 10-fold cross-validation accura-

cies in predicting “before” scans from “after” scans (i.e. “positive” difference

images from “negative” difference images) is shown for different WM regions

in Table 8.6. As the table shows, approximately 425 well-chosen voxels are

sufficient to achieve a classification accuracy of 93%.

8.3.2 Predicting APOE Status

In this experiment we ask the question “Is there a difference in the way that

WM changes in subjects with different APOE genotypes?” We answer this

question by predicting the APOE ε4 status (i.e., the presence or absence of this

allele) based on the changes in FA values. This experiment is similar to the

previous one. Rather than have two sets of positive and negative difference

images, we take just one (positive difference images) and group them by the

APOE ε4 status of the subjects they correspond to. We transform these images

into point sets and apply a slightly different voxel selection scheme than before:

within each group we identify the voxels that exhibit increases and decreases

most consistently, and take the union across both groups:

∆R̂Cons(τ) = ∆
ApoE -ve

R̂Cons(τ) ∪ ∆
ApoE +ve

R̂Cons(τ)

We used the lift kernel in conjunction with an SVM to differentiate between

these two classes of point sets. The baseline accuracy for this experiment is

66.95%, since 79 out of 118 subjects are APOE ε4 negative. The best cross-

validated accuracy of 76% was obtained using the whole body of the corpus
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Method Parameters Accuracy
Lasso logistic regression Friedman et al. (2010) λ = .011 70%

SVM, Lifted kernel 2D = 500, C = 1 58%
SVM, Gaussian kernel σ = 1, C = 1 57%

Baseline Random Guessing 54%

Table 8.7: Classification results for predicting Speed and Flexibility from voxels

callosum, with τ = 0.63. The non-spatial RBF kernel was not able to achieve

more than baseline accuracy.

8.3.3 Predicting Direction of Cognitive Change

In this experiment we ask the question: Can changes in neuroimaging data predict

whether a subject’s score for some neuropsychological test has increased or decreased?

In answering this question we will use data from the same voxels that en-

abled high-accuracy predictions in the before-after experiment above. To better

manage the need for constrained variable selection with wide data, we used

the coordinate descent approach for lasso and ridge described in Friedman

et al. (2010). Lasso logistic regression via coordinate descent run 100 times

with 10-fold cross validation achieved a classification accuracy of 70% with

shrinkage parameter λ = .011, which corresponds to the λ within one stan-

dard error of the minimum. Results for this and other methods are shown

in Table 8.7. No significant improvement was seen for other parameters on

competing approaches.

In general, we prefer as few explanatory variables in a model as possible.

Wide linear models always raise the specter of overfitting and are notoriously

difficult to interpret, particularly when constructed with lasso. Following the

spatial point set approach in Chapter 2, we cluster the voxels based on spatial

proximity and their Q values. Simple linkage-based clustering connects voxels

with their neighbors if their Q values are within ρ percent of each other. We
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Method Parameters Accuracy
Ridge logistic regression(Friedman et al., 2010) λ = .013 75%

SVM, Lifted kernel 2D = 500, C = 1 55.7%
SVM, Gaussian kernel σ = 1, C = 1 58.5%

Baseline Random Guessing 54%

Table 8.8: Classification results for predicting Speed and Flexibility from 30 clus-
ters of voxels

typically take ρ = 15 and specify the maximum number of desired clusters as

30.

Because the clusters are internally consistent with respect to Q values, we

used their mean FA values in a ridge logistic regression analysis to predict

the sign of the change in the Speed and Flexibility score. Because p = 30 here,

which is the number of regions, we are no longer dealing with wide data,

alleviating many of the concerns that they raise. While one might imagine the

clustering process is lossy, the clusters are better predictors than the voxels

used in the previous model. Ridge logistic regression via coordinate descent

run 100 times with 10-fold cross validation achieved a classification accuracy

of 75% for shrinking parameter λ = 0.13, as chosen above. Results for this and

other methods are shown in Table 5.4. No significant improvement was seen

for other parameters on competing approaches.

8.4 Goodness-of-Fit Tests

Goodness-of-fit tests address the question: is a given data sample consistent with

having been drawn from a specified distribution? Normality testing is by far the

most common goodness-of-fit test (see Section 7.3). This is in large part due

to the assumption made in linear regression techniques that the residuals be

normally distributed. Our hypothesis test uses a test statistic derived from self

anti-similarity distance (self-dAS). It is determined by the difference between

a sample’s dAS and the characteristic number for the source distribution. Our
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Sample size(n) Threshold
α = 0.05 α = 0.1

10 .3209 0.1439
20 .2071 0.0876
30 .1436 0.0671
50 .1122 0.0488

100 .0681 0.0308

Table 8.9: This table provides upper bounds at two significance levels for values
of AS for normality testing of different point set sizes . If AS lies above the
corresponding bound for that point set size, we reject the hypothesis that the
sample originated from a normal distribution.

anti-similarity-based normality test statistic (AS) for a point set P is defined as:

AS = |dAS(P, P ; `1)−
√

2|+ |dAS(P, P ; `22)− 2| (8.4)

AS is used to construct a hypothesis test as follows. We estimate the distribution

of AS under the null hypothesis empirically using samples drawn from normal

distributions. We selected two significance levels (0.05 and 0.1) and estimated

the thresholds for AS corresponding to each level for different sample sizes.

Given our statistic is lower bounded by zero, we use a one-tailed (upper tail) test.

Monte Carlo simulations provided the necessary upper bound for obtaining

95% confidence intervals. If the test statistic lies above this bound, we reject the

null hypothesis that it came from a normal distribution. Upper bounds for two

significance levels are presented for various sized samples drawn from normal

distributions in Table 7.1. Similar tables were constructed for other distributions

as well. These tables were used to construct goodness-of-fit hypothesis tests

based on AS. Our approach provides a powerful normality test, which is

particularly noticeable on small samples. Table 7.2 provides power comparisons

of the AS test for several different sample sizes at the 5% significance level

with the Cramer-von Mises, Watson, Kolmogorov-Smirnov, Anderson-Darling,

Neyman-type smooth, Lilliefors, and Shapiro-Wilk (W) tests.
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Distribution n AS W 2 U2 D A2 Ŝ4 D′ W

Uniform(−1, 1)

10 8.2 6.9 8.0 6.1 7.4 2.2 6.1 4.7
20 14.3 14.8 16.8 8.9 16.2 0.1 9.0 9.9
30 21.9 21.5 25.5 15.1 27.9 0.0 15.7 21.6
50 46.7 43.5 49.4 26.2 57.4 7.4 26.2 57.1

100 80.0 85.3 88.4 62.0 95.2 25.4 61.7 98.2

Exponential(1)

10 45.0 38.0 37.4 31.7 40.8 34.5 31.7 35.6
20 82.5 72.5 70.6 58.5 78.0 62.8 59.1 75.7
30 95.6 88.5 84.2 77.1 92.1 82.9 77.4 93.1
50 99.9 99.2 98.4 95.7 99.7 97.6 95.8 99.8

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Lognormal

10 60.8 55.7 54.4 46.6 58.0 48.8 46.4 53.5
20 93.6 87.8 86.8 78.0 90.3 84.6 78.5 89.5
30 99.5 98.5 97.3 94.6 98.9 95.3 94.7 98.6
50 100.0 99.9 99.8 99.7 100.0 100.0 99.7 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

t(1)

10 56.7 60.1 60.9 57.8 60.1 57.5 57.8 57.7
20 83.8 88.3 88.2 85.1 88.3 86.5 85.1 87.1
30 94.9 95.8 96.0 94.3 95.6 95.1 94.3 95.0
50 99.5 99.3 99.4 98.8 99.4 100.0 98.8 99.3

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

χ2
8

10 13.3 12.0 11.7 10.9 13.3 13.3 10.9 11.3
20 26.9 22.7 20.3 18.6 25.5 25.3 18.8 23.4
30 44.8 31.5 26.2 24.6 35.9 37.2 24.9 34.8
50 66.0 51.4 43.3 40.2 57.5 54.0 40.5 59.2

100 91.2 84.0 75.9 71.1 89.6 89.0 71.1 92.4

Beta(2, 1)

10 13.3 12.5 12.8 11.0 13.1 6.7 10.8 8.8
20 26.2 20.7 20.2 16.1 22.9 8.1 16.1 15.8
30 51.7 36.4 34.9 26.2 42.4 7.8 26.5 35.3
50 75.7 60.7 58.4 43.5 71.7 20.0 43.6 72.9

100 96.2 92.5 90.1 79.9 98.2 84.4 79.8 99.1

Gamma(1, 2)

10 46.9 37.0 36.8 29.0 39.3 34.0 28.8 33.7
20 81.2 71.7 68.5 56.6 76.5 62.8 56.8 73.0
30 95.6 90.3 87.5 78.0 93.5 81.6 78.8 92.6
50 99.8 99.1 98.4 96.1 99.7 96.5 96.1 99.8

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Cauchy(0, 1)

10 55.2 62.4 62.6 58.4 62.2 57.9 58.3 58.8
20 83.6 86.9 86.9 82.9 87.8 86.8 82.9 86.4
30 95.1 96.1 96.3 93.9 96.5 95.6 94.0 96.2
50 99.6 99.7 99.7 99.6 99.7 99.6 99.6 99.6

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 8.10: This table contains the statistical powers Cohen (1988) of our test
statistic (AS) with the Cramer-von Mises (W 2), Watson (U2), Kolmogorov-
Smirnov (D), Anderson-Darling (A2), Neyman-type smooth (Ŝ4), Lilliefors
(D′), and Shapiro-Wilk (W) tests. These tests were performed for each given
sample size on 1000 instances drawn from each specified distribution, with
α = 0.05. The bolded red values indicate the statistically most powerful test
for each sample from a given distribution. All tests have approximately 5%
statistical power on normal samples.
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8.5 Document Classification

In this section we demonstrate how Sim can be used to solve a document classi-

fication problem. The task is to determine which of two newsgroup sources a

given document came from. By modeling the topic of a document as a shape,

we use the idea of spatial overlap to model document similarity. We do this

by mapping the words in each message to points in a “semantic space” so that

similar sets of words (documents) have similar shapes (see Pado and Lapata

(2007) for an overview of work on semantic spaces). Messages (seen as col-

lections of words) can then be compared by the similarity Sim between their

point set representation in this space. We will compare the accuracy of Sim

with C4.5 (Quinlan, 1993), random forests (Breiman, 2001), Naive Bayes, and

support vector machines (Shawe-Taylor and Cristianini, 2000) for classification

of this data set.

8.5.1 Semantic Space Construction

The semantic space we will represent documents in is constructed from a set of

reference words occurring in documents that have high mutual information

with the labels (i.e. the newsgroup).Let D be a collection of documents, with

each document being a collection of words, and V the collection of distinct

words occuring in those documents. Between any two words w, v ∈ V , the

pointwise mutual information (PMI) between w and v is defined as

PMI(w, v) = log P (w, v)
P (w)P (v) ,

where P (w) is the probability that word w occurs in a document and P (w, v)

is the probability that words w and v both occur in a document. PMI, in this

context, can be thought of as a measure of word similarity; many such measures
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have been proposed (Terra and Clarke, 2003), but Terra and Clarke (2003) found

PMI to be more effective than numerous competitors.

We fix a set {w1, . . . , wp} ⊆ W of “reference words” having high mu-

tual information with the labels. We then define a map f : V → Rp taking

each word to the vector of its PMI with respect to each reference word, i.e.,

f(w) = (PMI(w,w1), . . . ,PMI(w,wp)). Every word is thus mapped to a vector

consisting of its similarities with each of these reference words; similarity be-

tween two words w and v being defined by their pointwise mutual information.

Words that have similar PMI with the reference words will be located near each

other in this “semantic space,” and messages involving similar words will have

similar point set shapes. Compared to the most common representation of doc-

uments for text classification as “bag of word” (BOW) vectors, this construction

has a distinct advantage because it makes use of semantic relations between

words.

8.5.2 Experiment and Results

We present the results of an experiment on the 20 Newsgroups data set, a

collection of UseNet articles compiled by Ken Lang (Lang, 1995). For our exper-

iment, we chose 30 articles at random from each of two newsgroups, alt.atheism

and sci.med. We applied simple preprocessing to each article: tokenization,

downcasing, stopword and punctuation removal, and removal of words oc-

curring only once in the collection; 2015 distinct words remained. We selected

6 reference words (christian, doctor, god, medical, say, atheists) having high ex-

pected mutual information with the newsgroup label. To estimate the PMI

between words, we recorded the number of hits cw and cw,v reported by Google

for each word w individually and for each pair of words (w, v), and we set

P̂ (w, v) = cw,v/N , P̂ (w) = cw/N , where N is a normalizing constant (Turney
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Classifier Accuracy Precision Recall F1-Score
Baseline C4.5 (J48) 73.33% 0.763 0.733 0.726
(bag-of Naive Bayes 75.00% 0.789 0.750 0.741
-words) Random forest 78.33% 0.784 0.783 0.783

SVM (RBF kernel) 76.67% 0.800 0.767 0.760
SVM (poly. kernel) 83.33% 0.847 0.833 0.832

Semantic SVM (Pyramid match) 75.36% 0.742 0.719 0.730
space 1-NN (Sim) 85.00% 0.860 0.850 0.849

2-, 3-, 4-NN (Sim) 85.00% 0.854 0.850 0.850
5-NN (Sim) 81.67% 0.835 0.817 0.814
SVM (Sim kernel) 92.75% 0.909 0.938 0.923

Table 8.11: Document Classification. This table presents 10-fold cross-
validated result metrics on a document classification task. There are 30 docu-
ments each in two classes. Each document is represented in a semantic space
defined by six representative words. Classification was performed using differ-
ent learning algorithms such as decision trees, naive Bayes, random forest, and
support vector machines with various kernels. Results using Sim are shown in
red, the best of which is in bold face.

and Littman, 2005). We estimated

P̂MI(w, v) = log P̂ (w, v)
P̂ (w)P̂ (v)

= log cw,v
cwcv

+ const,

and set const = 0 for convenience. Thus, in this experiment, the map from

words into the semantic space is

f̂(w) = (P̂MI(christian, w), . . . , P̂MI(atheists, w)).

We performed classification using k-nearest neighbors (k-NN (Cover and

Hart, 1967)) and support vector machines (Shawe-Taylor and Cristianini, 2000)

using pyramid match kernel and Sim to compare documents. To establish

a baseline, we also performed classification over the original indicator bag-

of-words vectors. We used the C4.5 (Quinlan, 1993), naive Bayes, random

forest (Breiman, 2001), and SVM (with both radial basis function and polynomial

kernels) classification algorithms. All baseline experiments were performed
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Figure 8.4: In the example above, point sets corresponding to two documents
are plotted in the semantic subspace defined by god and medical. In each plot,
one document is display in a blue italic font and the other is displayed in a red
non-italic font. On the left, the two documents are from the same newsgroups.
On the right, the documents are from different newsgroups. Sim captures the
intuitive notion of spatial overlap corresponding to these classifications. (Note
that although the Sim computations in semantic space are performed in R6,
only two dimensions are visualized here.)

in the Weka Explorer Hall et al. (2009) using default settings. We did not

use all common classification algorithms, e.g., decision trees, for the baseline

comparisons, as some are not amenable to semantic space representations.

Classification metrics in Table 1 show that Sim is able to exploit semantic

relationships between words (reflected by their mutual information) to suc-

cessfully classify samples in this experiment. Average classification accuracy,

precision, recall, and F1-score are all consistently higher in the experiments

using Sim than in the baseline bag-of-words experiments. Additionally, Sim

provides an easy way to visualize and understand the results, something which

is uncommon in many classification tasks; an example is shown in Figure 8.4.

8.6 Object Classification in Images

In this experiment we compare the performance of three spatially aware point

set comparison kernels on an image classification task on a subset of the publicly

available ETH-80 data set (Leibe and Schiele, 2003). We use the data set and
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experimental setup of Grauman and Darrell (2007). The data set consists of 8

object classes, 10 objects in each class, and 5 views of each object. We performed

two experiments, one using SIFT descriptors Lowe (2004) sampled from each

image (total of 256 descriptors in 128 dimensions per image) and the other using

a dimensionally reduced version of SIFT in 10 dimensions. Following Grauman

and Darrell (2007) we train an SVM classifier using a variety of kernels on the

following problem: how well can the category of a holdout object be identified

after training on the rest of the data including other instances of objects from

that category? Validation is performed against all 5 available views of an

object that are held out. The baseline accuracy of this experiment is therefore

12.5%. All experiments were conducted using C implementations on a 3.16

GHz machine with 8 GB memory. Classification accuracy results are shown

in Tables 8.12 and 8.13. Using all 128 features in the data set, density overlap

kernel and Sim were able to achieve accuracies above 93%, corresponding to

over 7% and 5% improvements respectively in total cross-validated accuracy

over pyramid match kernel (and nearly 4% improvement over the best accuracy

over all considered methods cited in Grauman and Darrell (2007)).

8.7 Protein Structure Similarity

A fundamental problem in protein structure analysis is determining whether

two proteins have similar folded conformations, especially when they have

low sequence homology. There are a variety of algorithms to compute an

alignment that optimizes some measure of distance between two protein con-

formations (Singh and Brutlag, 2000). A popular method is to minimize the

root mean-squared distance between the 3-D coordinates of each protein’s con-

stituent atoms (assuming a correspondence between their backbone carbon

atoms) using the Kabsch algorithm (Kabsch, 1976). When correspondences
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Kernel Accuracy Time
−dKW 93.75% 22743s

Density overlap (exact) 93.25% 2271s
Density overlap (t = 3) 89.25% 774s
Density overlap (t = 4) 90.5% 1178s
Density overlap (t = 5) 92.75% 1746s

Pyramid match 86% 407s

Table 8.12: Classification accuracy results on ETH-80 data set. There are a total
of 400 images in the data set, consisting of views of objects from eight different
classes. In each fold of the experiment, a classifier is tested on five views of
a held-out object. The total accuracies using a support vector machine with
different learning kernels is shown in this table. All 128 features generated
from SIFT are used in this experiment.

Kernel Accuracy Time
−dKW 89% 21546s

Density overlap (exact) 86.75% 294s
Density overlap (t = 3) 84% 112s
Density overlap (t = 4) 85.75% 167s
Density overlap (t = 5) 86.25% 227s

Pyramid match 81% 108s

Table 8.13: Classification accuracy results on ETH-80 data set. There are a total
of 400 images in the data set, consisting of views of objects from eight different
classes. In each fold of the experiment, a classifier is tested on five views of
a held-out object. The total accuracies using a support vector machine with
different learning kernels is shown in this table. The experiment here used 10
features derived via principal components analysis applied on the original 128.

between constituent atoms are unknown the problem is no longer convex and

approximate algorithms such as softassign can be used (Rangarajan et al., 1997).

We approach this problem by representing protein molecules as weighted

point sets of their constituent atoms. Given two proteins, we measure of struc-

tural similarity by computing Sim between their point set representations.

The first step in this process is spatially aligning the proteins to compute

their Sim value. We perform this alignment using simulated annealing over

gradient descent, guided by the value of dKW between the two structures.

Once the closest structural match has been found, we measure Sim between
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Figure 8.5: Example images from the ETH-80 data set. Two instances from each
of the 8 classes are shown.

Figure 8.6: The result of aligning the 3-D representations of two proteins 1BCT
and 2IFO. The figure on the left displays the alignment obtained by using our
method and has a Sim of 0.814. The figure on the right shows the alignment
using Kabsch and has Sim = 0.568. We only show the first 25 backbone carbons
and their residues for effective visualization. The first alignment is “tighter”
and thus has a higher Sim .
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Figure 8.7: The result of aligning the 3-D representations of two proteins 1ABA
and 1GRX. The figure on the left displays the alignment obtained by using our
method and has a Sim of 0.764. The figure on the right shows the alignment
using Kabsch and has Sim = 0.707. In the second alignment we see the left
ends of the protein chain diverging, leading to a lower value for Sim . As in
Figure 8.6 we restrict visualization to the first 25 units.

the two proteins. In the example shown in Figure 8.6, we align and compare

two protein structures with Protein Data Bank (PDB (Bernstein et al., 1978))

IDs ‘1ABA’ and ‘1GRX’. These two proteins are functionally similar and belong

to the Glutaredoxin subgroup; however, they come from different organisms

and have different amino acid sequences. We perform the alignment on the

backbone atoms (alpha carbons), and then apply the transformation to the

residues corresponding to those atoms. The result of this alignment is shown in

Figure 8.6. The value of Sim between the aligned point sets is 0.764, indicating

a structural homology. For visualization purposes we only show the first 25

carbon atoms and residues. In contrast, when alignment is performed using

the Kabsch algorithm the alignment is not as good (shown in Figure 8.6(b)),

indicated by a lower Sim value of 0.707.

In Figure 8.7, a similar result is shown with proteins ‘1BCT’ and ‘2IFO.’

The result of an alignment based on the Kabsch algorithm is shown in Figure

8.7(b), with a Sim value of 0.568. With our alignment, the Sim value is 0.814,

corresponding to better overlap, illustrated in Figure 8.7(a). Between non-
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similar protein structures Sim averages at 0.30. This type of analysis can be

used to automatically determine remote homologs in a database of protein

structures.

We were able to find this surprising result because similarity is determined

between entire protein structures; the biologically interesting question is how

well do two proteins’ folded conformations overlap, as similar structure is often

indicative of similar function. The magnitude of Sim can be seen as a measure

of how closely the atoms in one structure mirror those in the other.
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9 conclusion

In this dissertation I have presented a thorough study of the theoretical aspects

of the point set representation and its diverse applicability. Point sets enable a

lossless representation of data by allowing the inclusion of fuller descriptions of

each component within a data instance and by allowing for variable numbers of

components within an instance. This representation closely models many real-

world knowledge representation needs that benefit from its flexibility. In the

remainder of this section I conclude by providing a summary of the previous

chapters along with a discussion of my contributions.

9.1 Summary

Chapter 2 provides a detailed study of point sets and extant comparison mea-

sures. Coen (2006) first introduced the idea of defining a measure between

point sets based on spatial overlap; we built on a similar idea and derived

another novel measure between point sets called density overlap kernel. The

chapter concludes with a comparison of many of these measures on a simple

point set classification experiment; spatially-aware measures are shown to be

clearly more effective at this task. The proceeding chapters discuss a diverse

array of application areas of this paradigm and show the different ways in

which these ideas can benefit new and traditional machine learning tasks.

In Chapter 3, we considered the problem of designing a measure to compare

the outputs of clustering algorithms that in addition to the cluster assignments

also takes into account the spatial locations of differences between them. Our

measure CDistance is unique in enabling comparisons between clusterings

that differ in their data sets, number of points, and number of clusters. We also

discussed how CDistance may be used to enable stability analysis for clustering

algorithms and data sets. Stability is a measure of how robust an algorithm-
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data set combination is to perturbations in the input. CDistance is particularly

suited for this task because it is able to effectively compare clusterings generated

from subsamples of the data set.

We built upon the idea of a spatial comparison of clusters and clusterings

in Chapter 4 to introduce a new ensemble clustering algorithm. This algorithm

combines information from a diverse set of candidate clusterings (the ensemble)

to produce a new “consensus” clustering that combines information from

all members of the ensemble. The consensus clustering is generated so that

it maximizes a criterion of internal spatial consistency with respect to the

individual clusters comprising the ensemble members. One of the main benefits

of ensemble methods is that they are able to generate solutions to a task that

may lie outside the search spaces of the algorithms generating the ensemble.

Experimental validation of this algorithm on a diverse collection of data sets

showed that it was able to recover partitions of data sets with lower error than

the best-performing member of the ensemble. In these experiments error was

measured with respect to a known ground truth partitioning of the data set.

In one particularly difficult data set, our algorithm generated a partition that

reduced the error of the best-performing individual ensemble member by over

20%.

In Chapter 5 we examined the problem of tracing subtle changes in the

brain corresponding to natural aging, risk factor disposition, and cognitive

performance of individuals. The goal was to advance current understanding of

the progress of neural decay and regeneration in the brain and to find imag-

ing markers for early diagnosis of Alzheimer’s disease. This is an important

problem with significant clinical relevance to neuroscience practitioners. Brain

imaging techniques yield a three-dimensional view of the brain, assigning

measures of interest such as gray matter volume or directionality of diffusion to

each voxel. These measures are expected to be consistent in local regions of the
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brain. The brain therefore is well-suited to being modelled as a point set. In the

experiments conducted in this chapter we were able to identify regions in the

brain that are predictive of aging, risk factor status, and cognitive performance.

In the process we discovered surprising patterns of increase in white matter in

certain regions of the brain.

Chapter 6 explores an exciting new property of well-studied probability

distributions called characteristic numbers. This property arises from a variant

of the transportation distances discussed in Chapter 2. For many families of

distributions, characteristic numbers are provably independent of parameters

and dimensionality. The quantity used to derive characteristic numbers has

a natural discrete counterpart that can be applied to discrete point samples.

We have found empirically that over samples this quantity approaches the

characteristic number of the source distribution. This insight leads to a new

and powerful goodness-of-fit testing framework described and evaluated in

Chapter 7. These tests are unique in that they use the coordinates of each

point directly, rather than relying on summary statistics such as mean, variance,

kurtosis, moments, or skewness. Our normality test performs exceptionally

well — especially for small sample sizes — in terms of statistical power (being

able to differentiate between samples from distinct probability distributions)

with respect to other widely used state-of-the-art techniques.

Chapter 8 summarizes results from previous chapters in one place and

presents results from three other experiments on image classification, document

classification, and protein similarity detection. In each of these we demonstrated

improved results on standard tasks when using spatially aware techniques.

The common thread underlying all the above applications is the idea of

using the geometric relationships between data points in order to better inform

learning algorithms. There is a significant amount of information contained in

these relationships that conventional representations, kernels, and algorithms
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are not well-positioned to exploit. I have chosen a diverse set of application

domains to demonstrate how spatial analysis can help derive insights and

improve learning outcomes such as predictive accuracy in a way that other

methods in use today cannot. In most cases above, the best results were obtained

not simply by replacing a spatially insensitive kernel with a spatially sensitive

one (in most cases, the choice of representation will not permit this), but rather

by thinking from the paradigm of spatial locality and determining the best

way to incorporate spatial relationships into the learning algorithm. In some

cases this may involve a choice between different transportation distances, as

in Chapter 3, or a modification to them, as in Chapters 4 and 6.

9.2 Contributions

This dissertation contains original contributions that are paradigmatic, theo-

retical, and application-oriented. At a paradigmatic level, it brings together

isolated ideas in optimization theory, knowledge representation, density esti-

mation, and clustering under a common framework and provides a thorough

investigation of its theoretical underpinnings. This is a comprehensive work

dealing with point set representations of data in multiple domains, containing

both a theoretical treatment of the resulting complications and a demonstration

of its applicability in a wide variety of domains.

The theoretical contributions of this dissertation include:

• A novel method of measuring the spatial similarity of point sets based

on kernels (Section 2.5). The main idea is that discrete point sets can be

turned into a continuous distribution by placing Gaussian kernels at each

point, and summing up the contributions of each kernel at each point.

Two point sets can then be compared by measuring the overlap of these

distributions. We showed an analytical way of computing this measure
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as well as approximation methods with guaranteed error bounds that

cut the running time from Ω(n2D) down to O(nD log(n)), where D is the

dimensionality of the feature space.

• A thorough analysis of existing point set to point set similarity measures.

I discussed three methods (Sim, density overlap kernel, and lift distance)

in detail and analyzed each one’s strengths and weaknesses. In addition

I also summarized and analyzed other methods such as pyramid match

kernel (Grauman and Darrell, 2007) and others.

• A discrete formulation of a point set similarity measure sim (first pro-

posed as a distance in Coen (2006)). I analyzed its behavior, running time,

and define variants that capture different aspects of spatial overlap. I also

investigated the efficacy of approximation techniques and how quickly

the approximation degrades in different scenarios.

• A novel method of measuring the similarity or dissimilarity between two

clusterings that takes into account both the partitional differences between

them as well as the geometric locations of points of disagreements be-

tween them. The measure is smooth and does not have discontinuous

jumps at cluster boundaries.

• A complete ensemble clustering algorithm that makes use of the clustering

distance measure above.

• A definition of anti-similarity, a quantity defined for any discrete point

set, and a series of proofs of its asymptotic value for samples from various

distributions. This quantity finds application in a powerful goodness-of-

fit test.

I have applied the above techniques to frame and solve both standard and

new problems in a number of diverse domains:
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Neuroimaging: Brain scans obtained via magnetic resonance imaging can be

seen as a three-dimensional image. The contributions below are an outcome of

formulating and solving problems in the context of characterizing patterns of

change in populations with elevated risk of Alzheimer’s disease:

• A method to rank voxels according to their information content for a

given classification problem.

• A classifier that can be trained to identify the earlier of two scans for a

given subject without any temporal information.

• Identification of regions in the brain that increase and decrease in matter

with age with large probability.

• Prediction of the presence of a gene type based on neural change and

identification of regions in the brain that change maximally differently

based on the presence or absence of this gene.

• Prediction of improvement or decline in neuropsychological test scores

of a subject purely based on changes in their brain scans.

In addition to the above, I have also discussed applications of the point set

representation to problems in the domains of clustering, goodness-of-fit testing,

image classification, protein structure similarity determination, and document

classification.

9.3 Closing Remarks

The goal of this work has been to contribute towards the utility and efficacy

of the point set representation which seems perhaps far simpler than other

forms of knowledge representation in ML, and yet its lossless fidelity provides

advantages difficult to achieve otherwise. It is hoped this humble contribution

enables further exploration of spatially aware machine learning techniques.
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a characteristic numbers using `2
2

In Section 6.3 we computed values of dAS for univariate normal, uniform, and
exponential distributions using `1 ground distance. This appendix contains
the derivations of dAS values for the same distributions using the non-metric
ground distance `22. Table 6.2 shows dAS for both these ground distances.

A.1 Uniform Distributions

Let P be a uniform distribution between a and b (a, b ∈ R) with probability
density function f(x) = 1

b−a for x between a and b and 0 otherwise. Let
m = b+a

2 . To calculate dAS we must first compute dAT and dNT. The ground
distance in this and following section is d(x, y) = (x− y)2. Anti-transportation
distance for P can be computed as follows:

dAT(P, P ) =
∫ b

a

4(x−m)2f(x)dx

=
∫ b

a

4(x−m)2

b− a
dx

= 4
b− a

∫ b

a

(x2 +m2 − 2mx)dx

= 4
3(b− a) ((b− a)(a2 + ab+ b2) + 3m2(b− a)− 3m(b− a)(b+ a))

= 4
3(a2 + ab+ b2 + 3m2 − 3m(b+ a))

= 4
3(a2 + ab+ b2 − 3m2) (since a+ b = 2m)

= 1
3(4(a2 + ab+ b2)− 3(a+ b)2)

= 1
3(a2 − 2ab+ b2)

= (b− a)2

3 (A.1)

Naive distance:

dNT(P, P ) =
∫ b

a

∫ b

a

(x− y)2f(x)f(y)dydx

= 1
(b− a)2

∫ b

a

∫ b

a

(x− y)2dydx
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= 1
(b− a)2

∫ b

a

(
x2
∫ b

a

dy +
∫ b

a

y2dy − x
∫ b

a

2ydy
)
dx

= 1
3(b− a)2

∫ b

a

(
3x2(b− a) + (b− a)(a2 + ab+ b2)

− 3x(b− a)(a+ b)
)
dx

= 1
6(b− a)

∫ b

a

(
6x2 + 2(a2 + ab+ b2)− 6x(a+ b)

)
dx

= 1
6(b− a)

(
2(b− a)(a2 + ab+ b2) + 2(b− a)(a2 + ab+ b2)

− 3(b− a)(a+ b)2
)

= 1
6
(
4(a2 + ab+ b2)− 3(a+ b)2)

= 1
6(a2 − 2ab+ b2)

= (b− a)2

6 (A.2)

From Equations A.1 and A.2 we have

dAS(P, P ) = dAT (P, P )
dNT (P, P ) = (b− a)2/3

(b− a)2/6 = 2

The self-anti-similarity distance of any univariate uniform distribution us-
ing the `22 ground distance is therefore 2.

A.2 Normal Distributions

Let P be a normal distribution with mean µ and variance σ2 and probability

density function f(x) = 1√
2πσ e

− (x−µ)2

2σ2 for x ∈ R. The anti-transportation
distance for this normal distribution using `22 ground distance can be computed



233

as:

dAT(P, P ) =
∫ ∞
−∞

(2(x− µ))2f(x)dx

=
∫ ∞
−∞

4(x− µ)2
√

2πσ
e−

(x−µ)2

2σ2 dx

= 4σ2
√

2π

∫ ∞
−∞

y2e−
y2
2 dy substituting y = x− µ

σ
(A.3)

= 4σ2
√

2π

[[
−ye−

y2
2

]∞
−∞
−
∫ ∞
−∞
−e−

y2
2 dy

]
(integrating by parts)

= 4σ2
√

2π

[
0 +
√

2π
]

(A.4)

= 4σ2 (A.5)

Naive distance for this normal distribution:

dNT(P, P ) =
∫ ∞
−∞

∫ ∞
−∞

(x− y)2f(x)f(x)dxdy

=
∫ ∞
−∞

∫ ∞
−∞

(x− y)2

2πσ2 e−
(x−µ)2+(y−µ)2

2σ2 dxdy

= σ2

2π

∫ ∞
−∞

∫ ∞
−∞

(x′ − y′)2e−
x′2+y′2

2 dx′dy′

(substituting x′ = x− µ
σ

, y′ = y − µ
σ

)

Expanding the square and noting that xe− x
2

2 is an odd function, with an integral
of 0 between −∞ and∞we have

dNT(P, P ) = σ2

2π

∫ ∞
−∞

∫ ∞
−∞

(x′2 + y′2)e−
x′2+y′2

2 dx′dy′

= σ2

2π

[∫ ∞
−∞

x′2e−
x′2

2 dx′
∫ ∞
−∞

e−
y′2

2 dy′

+
∫ ∞
−∞

y′2e−
y′2

2 dy′
∫ ∞
−∞

e−
x′2

2 dx′
]

= σ2

2π

[√
2π
∫ ∞
−∞

x′2e−
x′2

2 dx′ +
√

2π
∫ ∞
−∞

y′2e−
y′2

2 dy′
]

= σ2

2π [2π + 2π] (using the result from A.3 and A.4)

= 2σ2 (A.6)
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From Equations A.5 and A.6 we have

dAS(P, P ) = d
dAT (P, P )
dNT (P, P ) = 4σ2

2σ2 = 2

The self-anti-similarity distance of any univariate normal distribution using
the `22 ground distance, regardless of its mean and variance, is therefore 2.

A.3 Exponential Distributions

Let P be an exponential distribution with rate parameter λ and probability den-
sity function f(x) = λe−λx for x ≥ 0. Since P is not symmetric, we need its cu-
mulative distribution function F (x) = 1− e−λx as well. The anti-transportation
distance for this exponential distribution using `22 ground distance can be com-
puted as:

dAT(P, P ) =
∫ ∞

0
(x− F−1(1− F (x)))2f(x)dx

=
∫ ∞

0
λ(x+ log(1− e−λx)

λ
)2e−λxdx

= 1
λ2

∫ ∞
0

(z + log(1− e−z))2e−zdz

= 1
λ2

[∫ ∞
0

z2e−zdz +
∫ ∞

0
2z log(1− e−z)e−zdz

+
∫ ∞

0
log2(1− e−z)e−zdz

]
= 1
λ2

[
2 + 2

∫ 1

0
(− log(1− y)) log(y)dy +

∫ 1

0
log2(y)dy

]
(substituting y = 1− e−z)

= 1
λ2

[
2− 2

∫ 1

0
log(1− y) log(y)dy +

∫ 1

0
w2ewdw

]
(substituting w = log(y))

= 1
λ2

[
2− 2

∫ 1

0
log(1− y) log(y)dy + 2

]
(A.7)
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Now consider∫ 1

0
log(1− y) log(y)dy = [y log(y) log(1− y)]10

−
∫ 1

0
y

(
− log(y)

1− y + log(1− y)
y

)
dy (by parts)

= 0−
∫ 1

0

(
((1− y)− 1) log(y)

1− y + log(1− y)
)
dy

= −
∫ 1

0
log(1− y)dy −

∫ 1

0
log(y)dy +

∫ 1

0

log(y)
1− y dy

= −2
∫ 1

0
log(y)dy +

∫ 1

0

log(1− y)
y

dy

= 2 +
∫ 1

0

log(1− y)
y

dy (A.8)

Using the Taylor expansion of log(1− y) between 0 and 1 we have

∫ 1

0

log(1− y)
y

dy = =
∫ 1

0
−1
y

∞∑
k=1

yk

k
dy

= −
∞∑
k=1

∫ 1

0

yk−1

k
dy

Since each term is finite, positive, and integrable

= −
∞∑
k=1

[
yk

k2

]1

0
= −

∞∑
k=1

1
k2

= −π2/6 (A.9)

so that finally, from Equations A.7, A.8, and A.9

dAT(P, P ) = 1
λ2

[
2− 2(2− π2/6) + 2

]
= π2

3λ2 (A.10)

Naive distance for this exponential distribution:

dNT(P, P ) =
∫ ∞

0

∫ ∞
0

(x− y)2f(x)f(x)dxdy

=
∫ ∞

0

∫ ∞
0

λ2 (x− y)2 e−λ(x+y)dxdy
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= 1
λ2

∫ ∞
0

∫ ∞
0

(x′ − y′)2 e−(x′+y′)dx′dy′ where x′ = λx, y′ = λy

λ2dNT(P ) =
∫ ∞

0

∫ ∞
0

x′2e−(x′+y′) dx′dy′ −
∫ ∞

0

∫ ∞
0

2x′y′ e−(x′+y′) dx′dy′+∫ ∞
0

∫ ∞
0

y′2e−(x′+y′) dx′dy′

=
∫ ∞

0
x′2e−x

′
dx′
∫ ∞

0
e−y

′
dy′ − 2

∫ ∞
0

x′e−x
′
dx′
∫ ∞

0
y′e−y

′
dy′+∫ ∞

0
e−x

′
dx′
∫ ∞

0
y′2e−y

′
dy′

= (2)(1)− 2(1)(1) + (1)(2) (integrating by parts)

= 2 (A.11)

From Equations A.10 and A.11 we have

dAS(P, P ) = dAT (P, P )
dNT (P, P ) = π2/3λ2

2/λ2 = π2/6 ≈ 1.645.

The self-anti-similarity distance of any exponential distribution using the
`22 ground distance, regardless of its rate parameter, is therefore π2/6.
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