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Abstract

We present a new classification tree method called LDATree and its variant
stepLDATree. We first revise some of the LDA variants and develop an improved
version of stepwise LDA that can better handle non-invertible within-class scatter

matrices. Then, this stepwise LDA serves as the node model and splitting rule

in the decision tree framework, allowing for fast and non-axis-orthogonal splits.

Within the LDATree framework, we explored several approaches for handling

missing values and found that simple methods work best: using the median with

missing flags for numerical variables and new levels for categorical variables.

Simulation studies and real data analysis show that LDATree and stepLDATree
generally outperform single-tree methods and help identify several scenarios where
LDATree and stepLDATree outperform the random forest. We also implement our

algorithms into R packages folda and LDATree, which are available on CRAN.

ix



1 INTRODUCTION

Linear discriminant analysis (LDA), which assumes Gaussian densities on the covari-
ates, is a powerful linear method for classification problems. LDA aims to find linear
combinations of features that can best separate the groups by maximizing the ratio of
between-group variance and within-group variance. Another popular classifier with a
linear decision boundary is the decision tree, which recursively partitions the sample
space into rectangular regions. We aim to combine the advantages of both LDA and
decision trees to develop a better classifier.

One of the biggest problems of the tree-based methods is that it usually cuts in
an axis-orthogonal direction. For numerical covariates, the splitting rule for each
non-terminal node has the form z; < a. For categorical covariates, the splitting rule
can be written as z; € {c1,ca, ..., cx} where {cy, o, ..., ¢} are levels of the variable X;.
Alternatively, this can be written as U,_; 5 x(D; = 1) by transforming X; intoa 0/1
dummy matrix Dy, Ds, Ds, ..., D;. The decision tree loses its effectiveness when the
real decision boundary is not orthogonal to the axes. e.g., Figure 1.1. The decision tree
has 10 splits and uses a staircase function to approximate the boundary line. However,
achieving better performance requires adding many additional splits, consequently
demanding more data. Additionally, this approximation’s accuracy decreases as the
dimensions increase, e.g., Figure 1.2. The gap between the true boundary and the
titted boundary from the decision tree becomes larger, and it might take the decision
tree hundreds of splits to approximate this hyperplane well enough. LDA, which
can directly fit a hyperplane decision boundary in the high-dimension space, is more
suitable for this problem.

On the other hand, LDA uses the Gaussian density assumption, and the decision
boundary for each class is usually a polygon. Therefore, LDA’s performance may

decline when the class centroids are closely situated together or when symmetry is
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present (Figure 1.3). By first applying tree-based methods to split the data on the
x variable, the class centroids can be separated and the symmetry destroyed. This
enables LDA to carry out its classification task more effectively (Figure 1.4).

LDA accuracy: 0.245
One overall LDA model is fitted

response

Class 0
A Class 1
Class 2

Figure 1.3: Decision boundary from LDA in Section 1. Points are the observed data;
the colored background represents LDA prediction regions. Text labels show the class
centroids.

LDA can be viewed as a dimensionality reduction technique that projects data
onto a lower-dimensional space while preserving the information most critical for
distinguishing between groups. These projections in the lower dimension, also known
as linear discriminants, can be useful when building a tree. Some previous approaches
have also integrated LDA components into decision trees, such as FACT (Loh and
Vanichsetakul, 1988) and CRUISE (Kim and Loh, 2003). However, these methods have
some limitations and may result in information loss. For instance, FACT ignores the
relationship between the response variable and covariates by using principal compo-
nent analysis (PCA) during variable selection, while CRUISE uses only the top two
variables to fit LDA, which is suboptimal. Therefore, none of these methods can be

considered truly recursive LDA, which is the goal of this work. The proposed method



LDA accuracy: 0.665
Two individual LDA models are fitted
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Figure 1.4: Decision boundary from LDA after splitting on = = 0 (Section 1).

will be referred to as LDATree for the remainder of the paper.

Another problem is missing values in the datasets, which can compromise the
model’s effectiveness. LDA’s decision boundary is based on linear combinations of
covariates, and missing values in any covariate will make the boundary uncomputable.
This issue with missing values also appears in other machine-learning techniques,
such as the random forest. Thus, we examine some missing value solutions using real
data to identify a solid approach for LDA.

This thesis is organized as follows: Section 2 presents a brief literature review of
previous recursive partitioning methods, setting the stage for developing our proposed
LDATree method. Section 3 is the core of this thesis, which documents our effort to
refine each component of a decision tree: node models, stopping rules, and splitting
rules. Section 4 discusses different missing value imputation methods and identifies
the best method for LDATree using real datasets. Section 5 contains results from
synthetic datasets, while Section 6 contains results from real data analysis. These

two sections also present use cases for stepLDATree and LDATree, respectively. Lastly,



Section 7 concludes the thesis and lists some limitations and directions for future work.



2 BACKGROUND

Recursive partitioning methods are based on the idea of recursively dividing a dataset
into subsets based on the values of its features, such that the resulting partitions are as
homogeneous as possible with respect to the target response variable. The decision
tree, one of the recursive partitioning methods, can be summarized in a top-down tree
graph. At each tree node, the sample is split into two or more subsets using a criterion
determined through a greedy search to minimize within-node heterogeneity. As the
splitting goes on, the decision tree will have more nodes, and each node will have
tewer data but be more homogeneous. In the decision tree, child nodes are the nodes
that branch out from a parent node. Nodes without child nodes are called terminal
nodes (or leaves), while those with child nodes are intermediate nodes. In the simplest
classification setting, the plurality class in each terminal node will be the prediction of
that node. During prediction, new data will start from the root (top) node, recursively
go to one of the child nodes of the current node based on the splitting rules, and
eventually end up in one of the terminal nodes.

Compared with other machine learning methods, decision trees are easy to interpret
and understand, as they represent the decision-making process in a tree-like structure.
Both categorical and numerical data can be well handled by decision trees. Decision
trees are non-parametric, meaning they do not require any assumptions about the
underlying data distribution. Decision trees are robust to outliers due to the nature
of their interval-like cuts on numerical variables, and they can handle missing data
in many ways. One method is through surrogate splits, where the tree grows on a
different backup variable, and the cut is chosen to mimic the original cut as closely
as possible. Another method is through missing flags, where all observations with
missing values are assigned to one of the child nodes by minimizing a pre-defined loss

function. Last but not least, it has an embedded interaction structure. For most models,



you have to pre-specify the interactions in the model, which will dramatically increase
the number of variables and sometimes create a data sparsity problem when the factor
variable involved in the interaction has too many levels. Moreover, interaction might
only exist in parts of the sample. Using a constant coefficient to model the interaction
throughout the sample space might dilute its effect. In the classification tree, the
interaction is added to the model automatically, and its effect is local — only in that

particular node.

2.1 Existing LDA-Integrated Decision Tree Methods

In this section, we review two existing decision tree approaches that incorporate LDA

into their models.

FACT (Loh and Vanichsetakul, 1988) It is a decision tree with multiway splits rather
than a binary tree. This approach supports linear combination splits, whose
splitting rule has the form (J;{3"; a;;z;; < b;} and has been demonstrated to
yield higher accuracy than univariate splits. While the CART method (Breiman
et al., 1984) exclusively uses numerical variables to create linear combination
splits, FACT adopts a more comprehensive approach and includes categorical
variables as well. In particular, a categorical variable is transformed into a 0-1
dummy vector and subsequently projected onto the largest discriminant coordi-
nate (CRIMCOORD). In other words, CRIMCOORD records the coefficients from
the first discriminant score in an LDA model where the response variable is the
original class and the covariates are the 0-1 dummy variables. Unlike earlier tech-
niques that demanded exhaustive searches for linear combination splits, FACT
expedites the process by using LDA to find the combinations in one shot. After
titting an LDA model within the node, the space is partitioned into polygons,

with each polygon being a node associated with a linear discriminant function. To



prevent the appearance of a singular covariance matrix in LDA, FACT uses PCA
to reduce the dimension prior to applying LDA. Additionally, FACT supports
unequal misclassification costs, dispersion splits (splits on | z; — z | instead of

x;), and polar transformations.

CRUISE One of the options available in CRUISE (Kim and Loh, 2003) adopts a uni-
variate split and fits a bivariate LDA model within each terminal node. First,
regarding variable selection for univariate splits, FACT utilizes the ANOVA F-
statistic to rank both numerical and categorical variables (through CRIMCOORD).
Loh and Shih discovered that FACT has selection bias towards categorical vari-
ables, leading them to develop the QUEST method (Loh and Shih, 1997), which
applies ANOVA F-statistic to numerical variables and the contingency table -
statistic to categorical variables. However, the ANOVA F-statistic can only detect
differences in group means and is insensitive to the difference in the shape of
the density functions. To fix that, CRUISE divides all numerical variables at
their sample quartiles and then conducts a x? test. Meanwhile, CRUISE uses
only two variables to fit LDA in terminal nodes, allowing the model to share
some data complexity while maintaining interpretability. It screens (g) pairs of
variables and uses the MANOVA Wilk’s A-statistic (for testing the equality of
the class mean vectors) to select the best pair of variables. In contrast to FACT,
which uses a pre-stopping rule, CRUISE determines the optimal tree size by
initially constructing an oversized tree and subsequently pruning it back using

cost-complexity pruning via cross-validation.

2.2 Case Study: Fishcatch Dataset

Moving forward, we will use the fishcatch dataset as a case study to demonstrate

the results of these decision tree approaches. The Fishcatch data set contains seven



measurements of 159 fish caught in Finland’s Lake Laengelmavesi, obtained from
the Journal of Statistics Education data archive (https://jse.amstat.org/datasets/
fishcatch.dat.txt). The fish are from 7 species: (1) 35 Bream, (2) 11 Parkki, (3) 56
Perch, (4) 17 Pike, (5) 20 Roach, (6) 14 Smelt, (7) 6 Whitefish. The sex variable has 87
cases (54.7%) missing, and the weight variable has 1 case (0.6%) missing. For now, we
focus on the complete dataset without missing values and ignore the sex variable. A
hidden feature of this dataset is that it is mainly sorted by Length1 within each fish
species, with only three exceptions. For the fish with missing weight, we imputed it
by 550g, given that the fish above and below the observation had weight of 500g and
600g, respectively. Table 2.1 provides detailed information about the data. Our task is
to use the six variables to predict the fish species.

Table 2.1: Variables in the fishcatch dataset

Weight Weight of the fish (in grams)

Lengthl  Length from the nose to the beginning of the tail (in cm)
Length2  Length from the nose to the notch of the tail (in cm)
Length3  Length from the nose to the end of the tail (in cm)
Heightpc Maximal height as percent of Length3

Widthpc  Maximal width as percent of Length3

Figure 2.1 presents a decision tree created by the FACT algorithm. An LDA model
is fitted at each intermediate node, unless the pre-stopping condition is met. When
an LDA model is fitted, the sample is partitioned based on the predicted value from
the model. For instance, seven child nodes are formed in the root node as all seven
classes are predicted. On the other hand, fewer classes are predicted in lower nodes,
resulting in fewer child nodes. The plot shows that FACT performed well in predicting
Bream, Parkki, Pike, and Smelt species, but it struggled to differentiate between Perch,
Roach, and Whitefish species. Using leave-one-out cross-validation, FACT produces 31
prediction errors among 159 samples.

Figure 2.2 displays a decision tree generated by the CRUISE algorithm. The algo-

rithm splits on Heightpc, and the splitting points are calculated in a similar fashion to
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20 00O LDA Split(j 0 LDA Split() 0O n®)
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Figure 2.1: FACT Decision Tree on fishcatch Dataset (Section 2.2), showing predicted
species and sample size under each node. Misclassified cases (training errors) are
indicated by the number next to the node.

FACT, but with an added Box-Cox transformation before fitting LDA to better satisfy
the normal assumption. Subsequently, a bivariate LDA model is fitted in each terminal
node. CRUISE made 10 errors out of 159 samples in the leave-one-out cross-validation,
which is a substantial improvement from FACT. Compared to FACT, CRUISE uses
univariate splits which can be interpreted. For instance, the first split is based on
Heightpc, which denotes the percentage ratio between height and length. As a result,
tish species like Bream and Pike (Figure 2.3) can be more easily distinguished, with
these two species occupying opposite ends of the decision tree. CRUISE also encoun-
ters difficulty differentiating between Perch, Roach, and Whitefish species, as these
classes contribute to all of the training errors.

Lastly, an LDA model is fitted to the data, and Figure 2.4 displays a scatter plot
of the fish based on the first two (out of six) discriminant coordinates. With just 1
error, LDA achieves a significantly better performance in comparison to the earlier
two techniques. This plot also reveals a drawback of the marginal analysis on low

dimensions — overlapping. Roach and Whitefish overlap on this 2D plot, but this plot
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< 16.629 . . . 33.6097

0
14 Pike 3 Pike 54 Perch 2 Perch 35 Bream
5 Smelt 9 Smelt 19 Roach 1 Roach 11 Parkki
4 Whitefish 2 Whitefish

Figure 2.2: CRUISE Decision Tree on fishcatch Dataset (Section 2.2): Species distribution
is shown below each node, with the training error from bivariate LDA indicated by
the number next to the node. Splitting criteria is displayed above the nodes, and the
resulting intervals are sorted in ascending order from left to right.

(b) Northern Pike (from Wisconsin Depart-
(a) Sea Bream (from fish-man.co.uk) ment of Natural Resources)

Figure 2.3: Two fish with different height-to-length ratios (Section 2.2).

is a 2D shadow from a 6D space. They are correctly classified with the help of the
features not shown in the plot, which may help to explain why the linear combination
splits perform better than univariate splits.

Our LDATree builds upon previous methods while introducing significant innova-
tions that effectively address their key weaknesses and enhance overall performance.
Starting from the next section, we will discuss all necessary components of a decision

tree and our efforts to refine them.
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3 LDATREE & STEPLDATREE ALGORITHM

3.1 Node Model: LDA Variants

The node model specifies the model used at each terminal node, and its simplest form
is the majority vote which classifies each instance into the most common class within
the node, as seen in CART and Random Forest. In our algorithm, we use an LDA
model instead of this majority vote, introducing a more sophisticated classification rule
for prediction and enhancing the algorithm’s ability to capture non-axis-orthogonal
patterns. However, the original LDA cannot handle certain scenarios effectively, and
the most popular R implementation MASS: :1da (Venables and Ripley, 2002) has its
weaknesses, which affect LDA’s performance. In this section, we will explore some
alternatives to address these issues.

In traditional LDA, the goal is to find linear projections that best separate classes.
These decision boundaries are found by maximizing the ratio of between-class scatter
matrix to within-class scatter matrix, similar to optimizing a signal-to-noise ratio.

RN*M with N observations and M features. OQur

Suppose we have a data matrix X €
response y € RY is a factor vector containing J classes. Let x;; € R represent the ith
observation from class j, x; € R be the mean vector for class j derived from its n;

instances, and x € RM denote the overall mean vector across all samples. Hy € R7*

and Hyy € RY*M are defined as:

HB:[\/n_l(il_i)a\/n_Q(i2_i)a"'v\/n_J(iJ_i)]Ta
Hy = [(x11 —X1) 5oy X1y —X1) 5 (X1 —X2) 5oy (Xony — X1) 5+ v (Xgn, — X))

3.1)

Then, the between-class scatter matrix S, within-class scatter matrix Sy, and total
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scatter matrix St can be defined as:

J
Sp=) n;(x,—%)(x;—x)) =HLHp
j=1
J ny )
Sw = > (x5 — %)) (x;s — %;) = Hyy Hyy
j=1i=1
J nj )
Sr = (xji = %) (x;; —X) =S+ Sw. (3.2)

j=1i=1
Fisher’s criterion aims to find transformation vectors w;;4; that maximizes the
ratio:

w!'Spw

(3.3)

arg max
w wlSyw

The optimal W is derived by solving an eigenvalue problem involving Sﬁ} Sg. The
resulting W projects the original data X into orthogonal linear discriminant scores
Xw;, ranked in a descending order of their signal-to-noise ratios.

However, challenges arise when the within-class scatter matrix, Sy, is not invertible,
such as when there are more variables than observations or when variables are linearly
dependent. Given that rank(Sg) = min(M, J — 1), the transformation matrix W we
seek has at most M/ x (J —1) dimensions. That’s why typically, in a J-class classification,
LDA gives us J — 1 discriminant scores. For the within-class scatter matrix, rank(Sy, ) =
min(N — J, M). When M > N — J, Sy« becomes singular. This situation makes
directly computing LDA’s linear boundary impossible. One might consider reducing
the number of variables by selecting the top-K variables based on certain criteria,
such as importance scores, to make the scatter matrix invertible. Yet, this method has

drawbacks:

* Importance scores are often based on other machine learning methods with
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different criteria, which may not align with LDA’s objective function.

* Variables are typically ranked by their marginal (or univariate) effects, not the

combined effect from linear combinations that LDA seeks to find.

* Some machine learning methods need to finish building the entire classifier

before they can rank the variables, which can be time-consuming.

Therefore, it may be more effective to explore solutions within the LDA family. This
issue, known as the small sample size (SSS) problem, has been widely addressed in the
literature with several solutions proposed (Mai, 2013; Tharwat et al., 2017). We will

discuss some of these approaches and identify the most suitable one for our application.

Existing Methods

PCA-LDA (Belhumeur et al., 1997) This method, also known as Discriminant Analy-
sis of Principal Components (DAPC) (Jombart et al., 2010), uses Principal Com-
ponent Analysis (PCA) to find a smaller subspace where the within-class scatter
matrix isn’t singular and then apply Fisher’s criterion. However, this PCA-LDA
method focuses only on the structure of independent variables and neglects
the dependent variable. Additionally, choosing the right number of principal

components (PCs) is a challenge in practice.

Pseudo-inverse LDA (Fukunaga, 2013) To find the inverse of a singular Sy, matrix,
one alternative is the Moore-Penrose inverse, also used by the R package MASS: : 1da
to mitigate the SSS problem. It involves using Singular Value Decomposition
(SVD) to identify the rank of Sy, and then projecting the data onto the space
defined by the singular vectors with non-zero singular values. Fisher’s criterion
is then applied in this subspace to identify the directions with the most discrimi-
nant power. It is worth mentioning that this approach is equivalent to PCA-LDA

when the number of principal components is set to rank(Sy).
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Unlike the general PCA-LDA, which may use varying numbers of principal
components, this method maintains as much information as possible from the
original Sy;’s column space. It discards the null space of Sy, calculates S in the
reduced space, and extracts up to J — 1 discriminant directions. However, like
PCA-LDA, this method might overlook important information in the null space
of Syy.

Null Space LDA (Chen et al., 2000) This method reduces to the original LDA when
Sy is of full rank. If not, it searches for the most discriminant directions within the
null space of Syy. The rationale is that if there exists a transformation w such that
wlSyww = 0 and wI'Sgw # 0, Fisher’s criterion is maximized to oo. Therefore,
the null space of Sy is considered to contain the most valuable discriminant
information and should be used rather than discarded. However, this approach
relies solely on the null space of Sy, totally neglecting valuable information in
the column space of Sy and being ineffective when the null space of Sy lies in
the null space of S, meaning there is no discriminant information in the null

space of Syy.

Direct LDA (Yu and Yang, 2001) Many LDA variants use simultaneous diagonaliza-
tion to implement Fisher’s criterion. Typically, they first transform the within-class
scatter matrix (Sy/) into an identity matrix and then find an orthogonal trans-
formation to maximize the between-class scatter matrix (Sg). The final selected
directions correspond to the eigenvectors associated with the largest eigenval-
ues. Conversely, Direct LDA adopts a different approach by transforming Sp
first and then Sy. This is because the ratio in Fisher’s criterion becomes zero
when w'Spw = 0, indicating that the null space of Sp is not informative. Direct
LDA, therefore, first finds a subspace with a maximum of J — 1 dimensions that

maximizes Sp, and then searches for the smallest Sy within this subspace.
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An advantage of Direct LDA is its speed, especially in handling high-dimensional
data. This is because the SVD involved in simultaneous diagonalization is of a
smaller dimension, N x J, instead of N x M. However, as noted in (Gao and
Davis, 2006), this method has significant drawbacks. For example, beginning
simultaneous diagonalization with Sy, preserves more information, allowing for
more dimensions to find the largest Sp. Conversely, starting with Sz reduces
the dimensionality to J — 1, often leaving insufficient scope to minimize Sy,
effectively. Another perspective is that this method prefers dimensions where
Sp is large; however, typically these dimensions also have a large Sy, which
results in a less substantial increase in the overall ratio from Fisher’s criterion.
Additionally, unlike some other LDA variants, Direct LDA does not reduce to the

original LDA when Sy is invertible.

LDA/GSVD (Howland et al., 2003; Ye et al., 2004) The incorporation of Generalized
Singular Value Decomposition (GSVD) into LDA enhances the efficiency of si-
multaneous diagonalization. Denoting the diagonal elements (singular values)
of between-class and within-class scatter matrices after GSVD as o7 and 3, re-

spectively, the following properties hold:

1>a?>a3>--->a3, >0, (3.4a)
0<pBr<p<---<By <1, (3.4b)
al+ B2 =1. (3.4¢)

A modified Fisher’s criteria is used here, which maximizes 3%, a2. To preserve
all discriminant information, it suffices to keep only the first rank(Sz) columns
from W where o} > 0. Additionally, this method reduces to the original LDA

when Sy is of full rank.
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It is noteworthy that this method is equivalent to Uncorrelated LDA (ULDA) (Ye
and Yu, 2005; Ji and Ye, 2008), which provides an alternative perspective. ULDA
uses a different way of simultaneous diagonalization, first transforming S; and
then S, where Sp = S + Sy represents the total scatter matrix. The advantage
of involving St is that its null space is the intersection of the null spaces for Sy,
and Sp (w'Spw = w’'Syyw = 0). Consequently, the null space of St can be
safely ignored without affecting the maximization of Fisher’s ratio. ULDA then

proceeds with the original LDA in the remaining subspace.

In the same paper, the authors introduce an extension known as Orthogonal
LDA (OLDA), which includes an extra QR decomposition step to make the trans-
formation matrix orthogonal. (Ye and Xiong, 2006) demonstrated that OLDA is

equivalent to Null Space LDA given that

rank (Sr) = rank (Sp) + rank (Sy) . (3.5)

In cases where this condition is not met, Orthogonal LDA tends to perform better

by preserving more discriminant directions.

Regularized LDA (Friedman, 1989) To avoid the non-invertibility of Sy, Regularized
LDA adds a constant to the diagonal, creating S}, = Sy + nl,;. This adjustment
ensures invertibility. However, choosing the right value for 7 requires tuning,
and a poor choice could lead to unsatisfactory results. Additionally, this method
might be less effective in very high-dimensional settings since it doesn’t involve

any dimension reduction and may not effectively distinguish signal from noise.

Penalized LDA (Witten and Tibshirani, 2011) Penalized LDA introduces a penalty

term to shrink the discriminant vectors, distinguishing it from Regularized LDA.
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To deal with non-invertible Sy, it ignores the correlation structure by approxi-
mating Sy with a diagonal matrix. Using the LASSO penalty, this approach can

be formulated as:

arg max {WTSABW - )\||w||1} subject to w’ Syyw < 1 (3.6)

where Sy is a MLE or LSE of S 5, and Sy is a full rank estimate of Sy-. The main
challenges with this method include its tendency to converge to local optima due
to the non-convexity of the problem and the heavy reliance on the choice and
tuning of the penalty term. Additionally, finding the appropriate hyperparameter
can be time-consuming, particularly when cross-validation is carried out on some

large datasets.

Sparse Discriminant Analysis (Clemmensen et al., 2011) It is similar to the Penal-
ized LDA but under the optimal scoring framework. Optimal scoring, as intro-
duced in (Hastie et al., 1994), is a variant of LDA that operates within a regression
context. It does not have a direct analytical solution but instead relies on an itera-
tive optimization process. This process alternately optimizes the scores and the
regression coefficients until convergence is achieved. Considering our response
variable yn; is converted into dummy variables Yy, the objective function

with a LASSO penalty is:

arg migl {||Y0 — Xw|* + )\Hw||1} subject to 7YY = 1. (3.7)
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Simulation

In this section, we will use a synthetic dataset to demonstrate the strengths and weak-
nesses of those LDA variants. Here are some details on how the simulations are

conducted:

* The simulations were implemented in R and executed on the department’s Linux
server. klaR: :rda is used for Regularized LDA, sparseLDA: : sda for Sparse Dis-
criminant Analysis, and penalizedLDA: :PenalizedLDA for Penalized LDA. Hy-
perparameters are determined via Cross-Validation, and all other settings are left

as default.

¢ We implemented the remaining five LDA variants as there are no available pack-
ages. Notably, most of these variants are primarily used as dimension-reduction
tools in their original papers, typically followed by a K-Nearest Neighbors (KNN)
classifier. However, due to KNN’s slower prediction speed and lack of a simple
closed-form solution, we use traditional likelihood-based LDA as the classifier
throughout this thesis. Let p; denote the centroid of class j, and 7; the prior
probability of class j. The discriminant function of class j for any observation x
is defined as

N—J
2

Sw

Sw
0 N—J>

i(x) = XT(m)_lﬂj -

o ( “uj +log ;. (3.8)

Observations are classified to the class with the highest value of the discriminant
function.

e For PCA-LDA, additional PCs are excluded once at least 95% of the total variance

is explained or Sy becomes singular, whichever occurs first.

* Alltesting accuracies calculated in both simulations and real data analysis through-

out this thesis are derived from a random 70/30 split of the entire data sample.
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* R sometimes has stability issues with calculations involving small numbers. Ad-
ditionally, when a matrix is singular, different methods of calculating its rank can
yield inconsistent results, impacting the reliability of the algorithm. To address
this, we implement some tricks, such as scaling the variables. While theoreti-
cally, scaling the variables doesn’t affect LDA solutions, we find it significantly

improves stability in practice.

* The classical LDA package MASS: :1da in R triggers errors when Sy is singular
but Sg is not, a limitation that also affects dependent packages like sparseLDA.
To compute the discriminant function in Equation 3.8, we add a small positive

constant (1071%) to the diagonal elements of Sy if it is singular.

One significant distinction among LDA variants is their approach to handling
situations where w’Syyw = 0 and w’Sgw # 0. This scenario implies that after the
projection w, Xw are constant within each group but differ across groups. While one
might argue this scenario is rare in real datasets and more common in simulations,
making it seemingly less relevant, it is critical to explore due to the nature of decision
trees. As the tree splits, the sample size in each terminal node decreases, yet the number
of variables remains constant. Therefore, it is common to encounter this pattern in
terminal nodes where there are only tens of data points but hundreds of variables,
particularly when the variables are categorical.

The simulation is conducted as follows: We first generate a response variable
consisting of 10 classes, each with 200 observations. Next, we create a dummy matrix
(one-hot-encoding) for the response variable, resulting in 10 variables. Additionally,
we add 10 mutually independent standard normal noise variables and use these 20
variables for prediction.

The results are summarized in Table 3.1. NLDA, DLDA, LDA /GSVD, and Regu-
larized LDA achieve perfect prediction accuracy. NLDA and LDA /GSVD have good
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method trainAcc testAcc
DLDA 1(0) 1 (0)
LDA/GSVD 1(0) 1(0)

NLDA 1(0) 1(0)
PCA-LDA 0.468 (0.028) | 0.407 (0.029)
PLDA 0.149 (0.003) | 0.102 (0.007)
SDA 0.112 (0) 0.112 (0)
penalizedLDA 0.112 (0) 0.112 (0)
regularizedLDA | 1 (0) 1(0)

Table 3.1: Simulation results in Section 3.1. Two standard deviations are recorded in
parentheses. Data corresponds to the DummyMatrix-Class detailed in Table A.1.

performance since they are designed to handle this specific case. DLDA optimizes
Sp first, avoiding complications from w! Syw = 0. Regularized LDA adds a small
disturbance to the diagonal of Sy, making w” Sy, w # 0, and thus be able to find those
discriminative directions. PCA-LDA, being blind to the response variable, mixes signal
variables with noise, leading to lower testing accuracy. The remaining three methods
perform similarly to random guessing (0.1 testing accuracy) as they cannot effectively

extract information from the null space of Syy.

Real Data Analysis

We first examine performance on a dataset characterized by a nearly equal number
of variables and observations, a scenario that can potentially lead to overfitting for
some methods. The Parkinson dataset from the UCI Machine Learning Repository
is used, consisting of 756 observations and 753 variables. Table 3.2 summarizes the
results. DLDA and PCA-LDA appear to be the most effective classifiers in this prob-
lem. PCA-LDA incorporates a variable selection step through PCA, while DLDA, by
initially focusing on Sp, unintentionally performs variable selection by choosing at
most J — 1 variables. The three LDA variants that require cross-validation marginally
outperform random guessing (0.741 testing accuracy). Notably, LDA/GSVD, NLDA,

and PLDA all exhibit overfitting, as indicated by their 100% training accuracy, resulting
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method trainAcc testAcc
DLDA 0.819 (0.005) | 0.834 (0.012)
LDA/GSVD 1 (0) 0.66 (0.021)
NLDA 1(0) 0.541 (0.017)
PCA-LDA 0.926 (0.004) | 0.828 (0.013)
PLDA 1(0) 0.689 (0.011)
SDA 0.741 (0) 0.741 (0)
penalizedLDA | 0.743 (0.004) | 0.751 (0.011)
regularizedLDA | 0.741 (0.004) | 0.759 (0.009)

Table 3.2: Results on the Parkinson dataset in Section 3.1. Two standard deviations are
recorded in parentheses. Data corresponds to the Parkinson-class detailed in Table
Al

in performance that is worse than random guessing. Section 3.2 discusses our efforts
to mitigate this using stepwise LDA.

To further assess the performance of LDA variants, we conducted tests on 49 datasets
obtained from public sources. This collection is carefully selected to cover a wide
range of datasets: from binary classification to multi-class classification with over 100
classes; from complete datasets to datasets where every observation has at least one
missing entry; from datasets containing hundreds of observations to 70,000; and from
4 predictive variables to 3,000. We aim to make this collection a good representative of
real-world datasets. Detailed descriptions of these datasets are provided in Table A.1.
Missing values are handled using the techniques introduced in Section 4. To normalize
results across different datasets, testing accuracies have been scaled using the arithmetic
mean, and runtime has been scaled using the geometric mean. For methods that trigger
errors or are not completed within the pre-set time limit (5 minutes), the results are
treated as censored. In such cases, the runtime is set to 5 minutes, and the testing
accuracies are imputed using the proportion of the plurality class in the training set.

The results are summarized in Figure 3.1. The best method would ideally be situated
in the bottom right corner, indicating high accuracy and low runtime. It is clear that

LDA /GSVD has the highest testing accuracy among all LDA variants. Its testing
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accuracy falls within the confidence interval of PCA-LDA, yet it is significantly faster.
DLDA turns out to be the fastest LDA variant, albeit with comparatively lower testing
accuracy. The three methods in the top left corner — Penalized LDA, Regularized LDA,
and Sparse Discriminant Analysis — are notably affected by the runtime limit. While
they might be as effective as other candidates if given sufficient time, these slower
methods are not considered practical and are disregarded. This is because the LDA
model needs to be fitted for each node during tree construction. To maintain both speed
and accuracy, such extensive computational costs are unaffordable. Consequently,
LDA /GSVD is recognized as the most effective method thus far, and it will be selected

as our node model for LDATree.

penalizedLDA

;agulJrizedLDA
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soh™ | method
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?
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B
© NLDA
2
£ 40 @ rca-pa
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o= regularizedLDA
SDA
05 oA —
—4 PLDA PCA-LDA LEDQ{GSVD
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0.00
Test accuracy (standardized)

Figure 3.1: Real data analysis results in Section 3.1: Average runtime vs. average testing
accuracy. Confidence intervals for runtimes (on a logarithmic scale) and standardized
accuracies are presented with 25D error bars.
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Speed Enhancement

Next, we introduce our speed enhancement for the LDA/GSVD algorithm when
N > M. (Ye and Yu, 2005) presents a ULDA algorithm that diagonalizes S and Sp
separately. Based on our experience, it is slower by a constant factor compared to
the GSVD-based version (Howland et al., 2003), which is described in Algorithm 1
(rewritten to suit our needs). However, when the sample size N is large, the SVD

JHN)XM in the line 2 of Algorithm 1 creates a runtime bottle-

decomposition on K € R(
neck. This can be resolved by reducing the dimension of K before performing SVD (or
complete orthogonal decomposition). Since Hy, contributes most of the dimension-
ality, and the SVD depends on HY;,Hyy, one possible solution is to replace Hy, with

Gy € RMM where H Hyy = Sy = G, Gyy. We suggest performing a reduced QR

decomposition Hyy = Quw Ry and replacing Hyy with Ry, so that we have

Hi, Hy = Ry, Qi QwRw = Ry Ry (3.9)

Park et al. (2007) follows a similar approach, using a Cholesky decomposition
Sw = C,Cy and replacing Hy with Cy. We now use a simulation to evaluate the

performance of these two variants and the original LDA /GSVD.

Algorithm 1 ULDA via GSVD (Howland et al., 2003)

Require: Data matrix X € RV*M with N observations and M features. Class label
y € R containing J classes
Ensure: Transformation matrix W € RM*%2 that preserves the class structure
1: Compute Hg € R and Hy, € RM*M from X according to equations (3.1).

T
2: Compute the complete orthogonal decomposition of K = (Hg, Ha/) € RU+N)xM

PTKQ — (% g) . (3.10)

3: Let t; = rank(K), to = rank(P(1 : J,1 : ¢;)). Compute V from the SVD of P(1 :
J,1:t1), which satisfies: UTP(1: J,1:t,)V = diag(ay, as, ..., a,,0,...,0).
4: Compute the first ¢, columns of QR ™'V and assign them to W.
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The simulation setup is as follows: in each round, we simulate N = 10000 obser-
vations from J = 10 classes, with each class having the same sampling probability
of 1/10. The features are M mutually independent standard normal noise variables.
We then use the three algorithms to calculate the transformation matrix W. We let
M =2,4,8,16, 32,64, 128,256, 512, and for each M we repeat the simulation 30 times
to obtain a confidence band. The results are summarized in Figure 3.2. Their dif-
ferences in runtime become larger as the number of features increases. For a data
matrix of dimension 10000 x 512, LDA /GSVD with QR decomposition is 32% faster
than the original LDA /GSVD implementation (2.6 seconds vs. 3.9 seconds). Conse-

quently, we added this additional QR decomposition step into the LDA /GSVD pipeline.

Algorithm

Cholesky
Original
14 / QR
/

.455/

w
1

Runtime (secs)
N

1 64 128 256 512
Number of Features

Figure 3.2: The runtime comparisons of three LDA /GSVD implementations (Section
3.1). The data consists of 10,000 observations from 10 classes. The ribbon width
represents the 95% confidence interval.

3.2 Node Model: Stepwise LDA

Motivations

Our initial motivation was inspired by the results in Table 3.2 from Section 3.1. We
selected LDA /GSVD as our final model due to its superior performance across different

types of datasets compared to DLDA. However, in datasets like the Parkinson dataset,
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where the number of variables nearly equals the number of observations, LDA /GSVD
tends to overfit, whereas DLDA and PCA-LDA perform well. Figure 3.3 illustrates the
overfitting patterns on two datasets with a high variable-to-observation ratio, which
shows that continuously adding variables does not necessarily improve testing accuracy.
For CE-[B]REF_RACE (left), the best testing accuracy is reached with about 12.5% of
the variables included, while an even smaller proportion is best for the Parkinson-class
dataset. To outperform DLDA and PCA-LDA, we have to find a smart way to rank the
variables and select the appropriate number of variables for inclusion in LDA/GSVD,

making stepwise LDA a promising solution.

CE-[B]JREF_RACE Parkinson-class

1.00 A

0.75+4
)
@ Type
3 0504 TrainAcc
Q TestAcc
<

0.25 1

0.00

0%  25%  50%  75% 100%0%  25%  50%  75%  100%
Percentage of variables included in the LDA/GSVD model

Figure 3.3: Training and testing accuracies when adding more variables. Variables
are first ranked based on the GUIDE importance score. Data corresponds to CE-
[BJREF_RACE and Parkinson-class detailed in Table A.1.

Beyond addressing overfitting, stepwise LDA offers additional advantages. It can
serve as a method for variable selection, eliminating noise variables to enhance the
robustness of the LDA fit. Reducing the number of variables also simplifies subsequent
interpretations. Another benefit is increased speed. The bottleneck of the LDA/GSVD
algorithm is the SVD computation on a matrix with dimensions (N + J) x M, where

the time complexity of this SVD is O( (N +J) x M x min (N + J, M) ) Reducing the
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total number of variables M can thus considerably decrease runtime, particularly in

large datasets.

Existing Stepwise LDA Framework

Stepwise Discriminant Analysis is a variable selection technique for discriminant anal-
ysis that iteratively adds or removes variables based on their statistical significance to
enhance model performance. Many versions of Stepwise LDA have been implemented,
ranging from stand-alone programs like DIRCRIM (McCabe, 1975) and ALLOC-1 (Her-
mans and Hobbema, 1976), to options within statistical packages like BMDP (Dixon,
1990), SPSS® program (IBM Corp., 2021), and SAS® program (SAS Institute Inc., 2014).
While specific implementations may vary in variable selection criteria or prediction
methods, most follow a common framework extensively discussed in (Jennrich, 1977).
We will briefly introduce this framework below.

Let Sr(1,2,...,p) and Sy(1,2,...,p) be the total and within-class scatter matrix

with p variables {x"),x(® ... x®} added. Then the Wilks’ A is defined as:

det(Sw(1,2,...,p))

A(1,2,... = . 3.11
( Y ’p> det(ST(1a27>p)) ( )
After adding x"*1), we use partial Wilks’ A to evaluate its marginal effect:
A(L2,....,p,p+1)
A 1) = 3.12
=12 ) G12)
The null hypothesis Hj states that the variables {x",x(? ... x®*D} are from

a multivariate normal distribution and are independent of the response y. Unless
otherwise specified, this H, will be assumed as the null hypothesis throughout the

remainder of this paper. Under H, the partial F-statistic follows an F-distribution:

o N—J-pl-Ap+1)
J—-1  Alp+1)

~Fy iNn_g—p (3.13)
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In the (p + 1)-th step, partial F-statistics are calculated for the remaining M — p
variables, and the variable with the largest F-statistic is selected. It will be included in
the model if it meets specific inclusion criteria, such as F' > 4, or if the corresponding
p-value is below a.

Following the addition of a variable, the deletion phase begins. With p + 1 variables
now in the model, p + 1 new pairs of scatter matrices (Sw,, S7;) are computed, each
excluding one variable x(V. The partial F-statistics are then calculated for each pair,
and the variable associated with the smallest F'-statistic is considered for removal if
the exclusion criterion is satisfied (e.g., £ < 3.996 in BMDP). This stepwise process
continues until all variables have been added, or no further variables can be added or
removed.

Alongside Wilks” A-statistic, there are three additional statistics commonly used
to evaluate the performance of discriminant analysis or, more precisely, Multivari-
ate Analysis of Variance (MANOVA). While these statistics may not be directly used
in the stepwise LDA process, many programs include them in their output, provid-
ing valuable insights for statisticians to perform further analysis. To understand the
distinctions among these four statistics, recall from Section 3.1 where we discussed
LDA /GSVD and noted that GSVD simultaneously decomposes Si and Sy, with the
singular values {a?}, {37} outlined in Equation 3.4. Fisher’s criterion aims to maximize
the ratio between between-class scatter and within-class scatter, essentially maximizing
a?/B2. Since af + 32 = 1, this is similar to maximizing «?. The four commonly used

statistics, each reflecting different aspects of this discriminative power, are:

e Wilk’s A: A = [[, 32. A smaller A indicates larger discriminative power as it
corresponds to smaller 3? and thus larger o?. Wilk’s A is unique in that it is based
on the product of the individual 37 values, in contrast to the summation used by

the others.
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* Pillai’s trace: V = >M | o2, aiming to maximize a?.

¢ Lawley-Hotelling trace (or Hotelling’s generalized T?-statistic): U = Y, g—z,
2
emphasizing the ratio % and thus giving more weight to dimensions where o? is

close to 1.

2
* Roy’s largest root: § = max <g2)/ focusing on the maximum ratio, thus capturing

the most discriminative direction.

The stepwise approach enhances forward selection by adding a deletion step, po-
tentially achieving superior results. However, in our simulations, we observed that
it seldom deletes variables from the model. When deletions do occur, they tend to
result from minor fluctuations rather than the discovery of significant patterns that
substantially enhance the model’s performance. Additionally, the deletion process
is time-consuming. The time complexity is O( (p+1) x p3> to go from p to (p + 1)
variables, which becomes increasingly slow as more variables are added to the model.
Furthermore, given the usage of stepwise LDA in a decision tree structure, any minor
decrease in testing accuracy at a single node can often be compensated for by subse-
quent splits, reducing concerns about the stand-alone stepwise LDA performance of
individual nodes. Consequently, we favor forward selection over the forward-and-
backward selection. From now on, whenever stepwise LDA is mentioned in this thesis,
it refers specifically to forward LDA.

We are interested in exploring stepwise LDA for its potential to select a subset
of variables that might improve model performance. However, one can argue that
maximizing testing accuracy and maximizing test statistics might not always coincide.
(Rencher and Christensen, 2002) highlights that no actual discriminant scores are
computed during the stepwise process, suggesting the term stepwise MANOVA might
be more appropriate than stepwise LDA. Furthermore, (Habbema and Hermans, 1977)

notes that variable selection based on Wilks” A doesn’t necessarily yield a higher
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classification accuracy. However, it is unavoidable to use certain types of statistics to
rank the variables, as screening all possible subsets is impractical. The four types of
statistics in the stepwise LDA process are helpful, and we find them align well with
testing accuracies in our simulations. We also tried using a validation set to select the
best subset of variables. This approach is time-consuming and involves data splitting,
which might reduce effectiveness in building the LDA model compared to using all

data in traditional approaches.

Problems with Existing Methods

The first problem is the premature stopping. When perfect linear dependency exists in
the data matrix, we would expect 2 on the right-hand side of equation (3.11), causing
errors in some stepwise LDA programs, such as klaR: :greedy.wilks in R. Wilks’ A is
not well-defined under perfect linear dependency, and to allow the stepwise selection
to continue, a quick fix is to manually set it to 1, indicating no discrimination power.
We know from equation (3.12) that the partial A is the ratio of two Wilks” A. Most
programs will stop the stepwise LDA process when A = 0, as all subsequent partial
A calculations become § and are thus ill-defined. However, stopping at A = 0 isn't
always appropriate, as it indicates that one group of classes is perfectly separable from
another, but it doesn’t necessarily imply perfect separation of all classes in non-binary
classifications, as shown in Figure 3.4. After selecting X,, Wilks” A = 0 since the within-
class variance is zero on X, causing the stepwise selection to stop. It successfully
separates class A from classes B and C but cannot distinguish class B from class C.
Additionally, when multiple variables result in A = 0, only one is selected, leading to
the potential waste of useful information contained in the remaining variables.
Secondly, we use an example to demonstrate that the distribution of the partial
F-statistic does not follow an F-distribution under the stepwise selection framework,

casting doubt on the validity of the associated hypothesis testing. Under H,, the
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Figure 3.4: A simulated pattern used in Section 3.2. The stepwise LDA based on Wilks’
A selects X, and ignores X;, leading to suboptimal performance.

partial F'-statistic follows an F'-distribution (Rencher and Christensen, 2002). However,
the original proof assumes that variables are ordered randomly, rather than selected
through a stepwise process. Intuitively, if we maximize the F-statistic at each step, the
result will be biased, as noted in (Rencher and Larson, 1980).

The simulation setup is as follows: in each round, we simulate N = 150 observations
from J = 3 classes, with each class having the same sampling probability of 1/3.
We simulate X; from a standard normal distribution in the one-variable scenario
and simulate X; and X, from independent standard normal distributions in the two-
variable scenario. We simulate 10,000 rounds and record the partial F-statistic from
each round at each step. We then compare the simulated F'-statistic with the theoretical
distribution, as summarized in Figure 3.5.

The upper plot corresponds to the one-variable scenario. Since we have only one
variable, X, no selection occurs, and the simulated distribution matches the theoretical
distribution closely. The lower plot shows the two-variable scenario. Here, the stepwise
selection first chooses XV, which has a larger partial F-statistic (and a smaller partial
A-statistic) compared to the other variable, resulting in an upward bias in the first
partial F-statistic. The second partial A is the ratio of the overall Wilks” A (with two
variables) to the first (partial) Wilks” A, so its partial A-statistic is biased upwards

and its partial F'-statistic is biased downwards. Note that the theoretical distributions
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for the first and second partial F' are different (£} 147 and F5 146), but the difference is

negligible, so we assign the same color to both distributions in the plot.

One Variable
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Figure 3.5: The partial F-statistic does not follow an F-distribution under the stepwise
selection framework (Section 3.2). When there are two variables (lower plot), the partial
F for the first variable X! is biased upwards, while the partial F' for the second
variable X ? is biased downwards.

The third problem is the inflated Type I error associated with the threshold. In
most programs, a fixed threshold of 4 is applied to the partial F-statistic. Another
possible criterion is comparing the p-value of the partial F-statistic with the predefined

«o. However, both methods fail to account for the number of variables screened.

Proposed Improvements in Stepwise LDA

We now derive the distribution of the test statistics used in the proposed stepwise

LDA /GSVD framework. Without loss of generality, we assume Sy is invertible through-
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out this section, as redundant columns that cause S to be non-invertible have no

discriminative power and can always be removed.
Theorem 3.1. Pillai’s trace is non-decreasing when new variables are added to the model.

Proof. Suppose X € RV*X have been included in the model, and the new variable to
be added is z € RY. The new between-class and total scatter matrices with (K + 1)

variables can be written as:

Sp = Sy = , (3.14)

where B, and T, are the previous between-class and total scatter matrices for X.
If K = 0, the difference in Pillai’s trace will be b, /t,. This value is non-negative since
the between-class scatter matrix is positive semi-definite (b, > 0) and the total scatter

matrix is positive definite (¢, > 0). For K > 1, we aim to show

trace (SFSB> — trace (T;lBI) > 0. (3.15)

Since St and T, are invertible, we have

T, '+ T, t, T (¢, —t. T )" —T . (t, —t, T, t,) !

_(tz o t;Tgltx)_lt;Tgl (tz o t/a:T;ltm)_l
(3.16)

According to the block matrix multiplication and the properties of the trace, we

have
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trace (S}ISB> = trace (T;IBI)
+ (6T, ~1)Sp(t, T, —1)

x (t, —t. T, 't,) " (3.17)

The Schur complement of the block T, in the matrix Sy is given by (¢, —t. T, t,) "
Since T, and Sy are both positive definite, we have (¢, —t/, T, 't,)~' > 0. The quadratic
form (t,T,', —1)Sp(t, T, —1)" is also non-negative because the middle matrix is

positive semi-definite. O

At its core, LDA /GSVD seeks to maximize Pillai’s trace V' = trace (S;IS B). Ac-
cording to Theorem 3.1, with each variable added, the current Pillai’s trace increases
(or remains the same). Let V(™) denote the Pillai’s trace with all M variables included.
The goal of stepwise selection is to approximate V™) using V%), where K < M.

Suppose the variable set {x;, X, ..., xx_1} has been selected after the first (K — 1)
steps, and the Pillai’s trace of that variable set is V(X ~Y. Here, the subscript indicates
that this Pillai’s trace is not of (K — 1) randomly selected variables but is instead
maximized at each step through stepwise forward selection. At step K, we calcu-
late V((ll)(), /AL V((AIX k1), Where V(g() denotes the Pillai’s trace of the variable set
{x1,%x9,...,xXg_1,X()}. Let k = argmax; V(g() We then select x(; as the best candidate
at step K, and VIK) — V(gf)() To establish an inclusion criterion, we must measure the

max

marginal effect of the added variable x(;), which corresponds to V() — V,(K-1,

max max

Theorem 3.2. At step K, let t be the (1 — o)Y/M=E+D guantile of B (%, %) Then,
P(VE) — VIE=D > 1) < aas N — oo under Hy, where the newly added variable z is

max max

normally distributed and independent of both X and y.

Proof. When K = 1, V") under H, follows a beta distribution B(Z5, 2>Z) (Pillai, 1955).
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Since V. — VO — v is the maximum of V"), ViV, ..., V), which are M i.i.d. ran-
dom variables from the beta distribution, its CDF can be written as I/ (5%, £-7) where

L(52, 22 is the CDF of B(452, 252). To control the type I error below «; the thresh-

old ¢ must satisfy IM (1, -2) < 1—a, whichisequivalent to (52, 2>2) < (1—a)V/M.
Then ¢ is the (1 — o)/ quantile of B (%, %)

When K > 1, from equation (3.17) we know that

VO = VIESY = (6,17, —1)Sp(t, T, —1)

max x T )

x (t, —t. T 't,) " (3.18)

This equation still holds if we replace S and Sy with Sg/(N — J) and S;/(N —
J), which are the least squares estimators of the between-class and total covariance
matrices. Since X and z are independent, their covariance t, — 0 as N — oco. Note that
Sg/(N —J)and Sr/(N — J) are finite as N — oo. Substituting t, = 0 into equation

(3.18), we get

V) _yiE=D — (0, —1)S (0, —1)/(t. — 0)~!

(4) max

=b,/t. (3.19)

b./t. is Pillai’s trace for z. Therefore, the distribution of V(g{) — VE-D can be

max

approximated by V!, and the rest follows the scenario where K = 1. O

Based on our experience, this asymptotic approximation sometimes leads to a
very conservative threshold, with the type I error falling well below the predefined

a. Therefore, we introduce an empirical approximation to mitigate this problem and
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achieve higher power. Suppose we have already added K — 1 variables and the current

Pillai’s trace is V.51 Since the maximum Pillai’s trace for J classes is J — 1, the

max

maximum Pillai’s trace that can be added is bounded by J — 1 — V£~ which can

max

be viewed as the maximum Pillai’s trace for a classification problem with J — V(K1)

max

J'—1 NfJ’)

classes. Thus, at the k-th step, the threshold becomes the quantile from B ( 5

instead of B (%, %), where J' = J — V(E-1),

Next, we analyze the type I error under the stepwise LDA /GSVD framework and
demonstrate that the family-wise error rate is controlled at the nominal level o. Suppose
we have M variables in total, some of which are noise variables (x € S,,) and some are
informative (x € S;). At each step, there are three possible outcomes: a noise variable

is selected, the selection stops, or an informative variable is selected. The entire process

is illustrated in Figure 3.6.

Figure 3.6: Illustration of stepwise forward selection (Section 3.2). (n,,n;) next to
each node represents the number of noise and informative variables included so
far. A yellow background indicates an informative variable being selected, a green
background indicates the selection stops, and a purple background indicates that at
least one type I error is made.

Suppose x is the variable with the largest Pillai’s trace and is selected at the K-th

step. Conditional on whether x € S, or x € 5;, there are four possible outcomes:
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pr1 = P(xisadded | x € 5,,)
pr2 = P(xisnotadded | x € S,,)
pis = P(xisadded | x € 5))

prs = P(xisnotadded | x € ;) (3.20)

In situations with pxs and pg4, x is not added, and stepwise selection stops. There-
fore, no type I error is made or will be made. This corresponds to the green regions in
Figure 3.6. For the situation with pgs3, since an informative variable is added, no type I
error is made at the current step, corresponding to the yellow regions in Figure 3.6.
The purple region in Figure 3.6 reflects scenarios where a type I error is made, with px
being the only situation that results in such an error. Theorem 3.2 shows that under
Hy, px1 < a, meaning that at each step, the probability of branching into the purple
region is controlled at «. Now, we aim to show that, overall, the probability of ending
up in any purple region is controlled at a.

The probability of reaching node 2 is p;; < a. The probability of reaching node 5
is p13 X p21 < pa1 < a. The reason we can use the product of p;5 and ps; to calculate
this probability is that under H,, the variable selected in the first step is assumed to
be independent of the variable selected in the second step. For nodes like node 2 and
node 5, where the first noise variable is added in the current step, the probability of
reaching them can be written as

K-1
pr1 | prs < pr1 < a. (3.21)
k=1

Meanwhile, the probability of reaching their child nodes is also controlled at «,
because reaching these nodes requires first reaching their parent node. All purple nodes

fall into one of these two scenarios, so the family-wise type I error rate is controlled at
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. This means that if the stepwise LDA/GSVD selects K variables {x1), %), .., X(x)},

then the probability that at least one x;) is a noise variable is controlled at «.

The stepwise forward selection framework is summarized in Algorithm 2.

Algorithm 2 Proposed stepwise selection based on Pillai’s trace

Require: Data matrix X € RY*M with N observations and M features. Class label

vector y € R containing J classes

Ensure: A reduced data matrix X,ew € RV*X where K < M

—_

: index_in < {}

2: index_pool <= {1,2,..., M}

3: previous_pillai < 0
4: while index_pool is not empty do
5: | < length(index_pool)
6: fori < 1toldo
7: pillai_saved[i] <= get_pillai(X, y, (index_in, index_pool[i])) > Calculate
Pillai’s trace for each feature
8: end for
9: i_selected « arg max; pillai_saved[i]
10: J' = J— previous_pillai
11:  threshold < ]aia)l/l(‘]'gl, N=T)
12: if pillai_saved[i_selected] - previous_pillai < threshold then
13: break > Stop if the improvement is below threshold
14: else
15: index_selected < index_pool[i_selected]
16: index_in < (index_in, index_selected)
17: index_pool < index_pool \ {index_selected}
18: previous_pillai < pillai_saved[i_selected]
19: end if
20: end while
21: if length(index_in) = 0 then
22: Xpew < X > No variable is significant, return all variables
23: else
24: Xpew <= X(:, index_in)
25: end if
Simulation

In this section, we use simulation to showcase the performance of three forward LDA

variants:
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1. Pillai: the proposed variant using Pillai’s trace (see Algorithm 2).

2. Wilks: the original variant based on Wilks” A. The inclusion criterion is based on

p-value, with a variable included if the p-value is below the predefined a.

3. Wilks-Bonferroni: This variant applies an additional Bonferroni correction to
the p-value compared to the second variant. If there are (M — K + 1) variables to
choose from at the K-th step, the p-value is multiplied by (M — K + 1) to adjust

for the multiple testing.

Note that these variants are for selection alone. They help check the type I error and
power (Whether the desired variables are included). To further compare the testing
accuracy, we apply LDA/GSVD to the selected variables.

First, we analyze the type I error rate. We use the same simulation settings from
Section 3.2 to compare the three forward LDA variants, and the results are summarized
in Figure 3.7. Pillai and Wilks-Bonferroni successfully control the type I error in both
scenarios. In contrast, Wilks suffers from an inflated type I error rate due to multiple
testing. These results validate Theorem 3.2, demonstrating that the type I error rate
is well-controlled under H, where the noise variables are normally distributed and
independent of both the informative variables and the response.

Secondly, we illustrate the primary advantage of our proposed method over the
original framework: its ability to handle scenarios where Wilks” A = 0. We use
a simulated dataset, which contains 2,000 observations. The response variable is
randomly selected from 10 classes, each with an equal probability of 1/10. We then
create a dummy matrix (one-hot encoding) of the response, resulting in 10 columns,
each consisting of 1s or 0s. These 10 columns are used as our features. Ideally, these
10 features can perfectly predict the response, and a robust forward selection method
should select them all. However, Wilks stops after selecting only one feature, /cjass One,

the indicator of the first class. Here, Icjass one = 1 for observations from class one and
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Figure 3.7: Type I error rate from three forward LDA variants on the iris dataset (Section
3.2). The ribbon width represents the 95% confidence interval. The ribbon for Pillai
overlaps with the ribbon for Wilks-Bonferroni in the lower plot.

Iciass one = 0 for the other classes. Therefore, the within-class variance is 0, leading to
Wilks” A = 0. Meanwhile, with Pillai, the feature Icj.s one cOntributes a value of 1
to the overall Pillai’s trace, which does not trigger a stop. Pillai continues adding
features, with each feature /¢ i contributing a value of 1 to the overall Pillai’s trace. It
selects 9 features and then stops, as the maximum Pillai’s trace of J — 1 = 9 is reached.

With these 9 features, we have enough information to perfectly predict the response.

Real Data Analysis

We tested the stepwise LDA on the two datasets mentioned in Section 3.2, and the
results are summarized in Table 3.3. As seen, when LDA /GSVD tends to overfit,
stepwise LDA can help it recover, often outperforming the DLDA variant, which is

considered effective in these scenarios.
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dataset method trainAcc testAcc
CE-[B]JREF_RACE | DLDA 0.702 (0.009) | 0.575 (0.011)
CE-[B]JREF_RACE | LDA/GSVD | 0.999 (0.001) | 0.439 (0.018)
CE-[BJREF_RACE | stepLDA 0.783 (0.01) | 0.614 (0.011)
Parkinson-class DLDA 0.819 (0.005) | 0.834 (0.012)
Parkinson-class LDA/GSVD | 1(0) 0.66 (0.021)
Parkinson-class stepLDA 0.853 (0.006) | 0.844 (0.015)

Table 3.3: Results of three LDA variants in Section 3.2. Two standard deviations are
recorded in parentheses. Data corresponds to CE-[B]REF_RACE and Parkinson-class
detailed in Table A.1.

However, stepwise LDA does not always outperform LDA /GSVD. We assessed
stepwise LDA on the same 49 datasets mentioned in Section 3.1 and included its
performance in the comparison. According to Figure 3.8, on average, stepwise LDA
and LDA /GSVD show similar testing accuracies across different datasets. The inferior
performance of stepwise LDA compared to LDA/GSVD on some datasets can be
attributed to its one-variable-at-a-time approach, which can be shortsighted and miss
out on detecting multiple weak signals that work together. Furthermore, stepwise LDA
is slower than LDA /GSVD, as the selection process becomes time consuming with an
increasing number of variables.

Stepwise LDA is inherently effective at distinguishing signal from noise. To further
illustrate this advantage, we selected four small datasets, each with fewer than 1000
observations and less than 10 variables. We then added 500 Gaussian noise variables to
each dataset and assessed the impact on their performance. The results are summarized
in Table 3.4. It is obvious that the testing accuracies of DLDA and LDA/GSVD are
significantly impacted by the added noise, showing decreases ranging from 30.9% to
58.2%. In contrast, stepwise LDA remains relatively stable, with differences in testing
accuracies before and after adding noise variables all being less than 10.4%. In our

simulations, this pattern is consistent across multiple datasets.
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Figure 3.8: Real data analysis results in Section 3.2: Average runtime vs. average testing
accuracy (stepLDA added). Confidence intervals for runtimes (on a logarithmic scale)
and standardized accuracies are presented with 2SD error bars.

iris-Species | fishcatch-Species | Vowel-y Digits-Digit

Before | 0.926 (0.022) | 0.808 (0.025) 0.593 (0.014) | 0.718 (0.023)

DLDA After | 0.616(0.032) | 0.391 (0.031) 0.235 (0.015) | 0.192(0.017)
Diff -0.309 (0.053) | -0.416 (0.056) -0.357 (0.028) | -0.526 (0.04)

Before | 0.975 (0.008) | 0.965 (0.019) 0.593 (0.014) | 0.718 (0.023)

LDA/GSVD | After | 0.603 (0.044) | 0.383 (0.028) 0.223(0.012) | 0.177 (0.022)
Diff -0.372(0.052) | -0.582 (0.047) -0.37(0.026) | -0.541 (0.045)

Before | 0.958 (0.014) | 0.971 (0.016) 0.598 (0.013) | 0.722(0.022)

stepLDA After | 0.938(0.015) | 0.975(0.009) 0.494 (0.017) | 0.685 (0.026)
Dift -0.02 (0.028) | 0.004 (0.025) -0.104 (0.029) | -0.038 (0.048)

Table 3.4: Testing accuracies of three LDA variants in Section 3.2 after adding 500 Gaus-
sian noise variables. Two standard deviations are recorded in parentheses. Detailed
data descriptions can be found in Table A.1.
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Discussion and Conclusion

Based on the analysis results, LDA /GSVD and stepwise LDA have been selected as the
best LDA variants to serve as node models in the subsequent decision tree. Next, we
discuss some failed attempts to help future researchers. Stepwise LDA selects a subset
of variables from the original data. We also tried variable selection in the transformed
space Xw (discriminant scores) but found it ineffective. The reason might be that Xw
has already excluded the effect of noise variables, making de-noising in subsequent
selection less effective. Additionally, the final discriminant scores have at most J — 1
dimensions, leaving not much room for subsequent variable selection, especially in
binary classification where there is only one discriminant score.

We also note some instability in R during our implementation of stepwise LDA.
Calculating Wilks” A involves determinants of the scatter matrices. But different imple-
mentations will return different determinants, especially for nearly singular matrices.
Although the condition number of a matrix can indicate singularity, calculating it via
kappa is very time consuming, sometimes even more than a complete QR decomposi-
tion. Fortunately, Pillai’s trace doesn’t require determinant calculation. In Section 3.1,
we noted that scaling can improve robustness. After finding the discriminant direction
w on the scaled data, we have two options for prediction. We can either transform w
back to its original scale and apply it to the testing data, or we can scale the testing data
and use w directly. Theoretically, both methods should yield identical results, but in
practice, they often differ, sometimes significantly, with discriminant scores differing
by as much as ¢*°. For now, we decided to use the second method as it proved to be

more accurate.
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3.3 Stopping Rule

Decision trees work by recursively dividing the sample space into smaller subspaces
and creating different decision rules for each subspace. This process of splitting cannot
continue indefinitely due to the finite sample size and variable space. Therefore, it’s
crucial to establish a stopping rule for the tree-generating process. This rule ensures
that the tree is not overly complex and doesn’t just work well for the data it was trained
on, but can also make good predictions for new data. By specifying an appropriate
stopping rule, we effectively select the right-size tree from numerous possible candi-
dates. Therefore, the stopping rule can be viewed as the model selection tool for the
decision tree.

Note that forest methods, either using bagging or bootstrap, typically have less
strict stopping rules. They continue splitting until a node becomes trivial, such as
when only one class remains or there are no variables left to split. In forest methods,
the regularization effect is implicitly achieved through the ensemble of trees. How-
ever, since our focus is on developing a single-tree algorithm, we will focus on more
sophisticated stopping rules that better satisfy our needs. All simulation results in this

section are based on the LDA Splitting described in Section 3.4.

Existing Stopping Rules

The stopping rule in decision trees is also referred to as pruning, which can be cate-
gorized into two main types: pre-pruning and post-pruning. Pre-pruning involves
stopping the tree’s growth early to prevent overcomplexity, whereas post-pruning
removes branches from a fully grown tree. Below are some commonly used methods
from both categories. For a more detailed discussion, please refer to (Mingers, 1989;

Esposito et al., 1997).

Reduced Error Pruning (Quinlan, 1987) This technique requires a separate valida-
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tion set. In this method, after growing the tree to its full size, we start at the
bottom and, at every intermediate node, attempt to cut its branches and turn
it into a terminal node that predicts all instances to the plurality class. If such
pruning reduces the classification errors on the validation set, we then keep this

pruning, hence the name Reduced Error Pruning.

Pessimistic Error Pruning (Quinlan, 1987) This technique has an advantage over Re-
duced Error Pruning as it does not require a separate validation set, allowing
for the efficient use of all available samples for training. However, since the
resubstitution error (the testing error when the test set is the same as the train-
ing set) tends to optimistically underestimate the true classification error, two
modifications are made. Firstly, every node incurs a cost of 1/2 in the overall
classification error, thereby penalizing model complexity. Secondly, a split is kept
not just when it has a lower resubstitution error, but it must also be at least 1SD
below that error. The SD is calculated based on the binomial assumption of the

resubstitution error.

Minimum Error Pruning (Niblett and Bratko, 1987) This technique focuses on mini-
mizing the expected error rate, using the entire training set for both building and
pruning the tree. The expected error rate at any node is calculated as one minus
a modified incidence rate of the majority class. This modified incidence rate is
estimated through a weighted average of the observed proportion and its prior
probability of each class. The weight is predefined and assumed to be consistent
across all nodes. In the pruning process, a branch is pruned from a specific node

if it leads to an increase in the expected error rate.

Critical Value Pruning (Mingers, 1987) This method provides a flexible framework
for a range of pruning methods, each defined by a unique test statistic to evaluate

the strength of splits in the tree. The possible choice of the test statistic can be
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the chi-squared statistic from the contingency table or the Gini Impurity. The
pruning process works by examining the tree from the bottom up and pruning

branches that fail to meet a specified threshold.

Occasionally, a situation arises where a node has a small test statistic, but one of
its child nodes exceeds the threshold with a higher statistic. In such cases, this
method will keep the parent node, thereby implicitly enforcing monotonicity
throughout the tree. Typically, this method involves testing many thresholds,
which creates a series of trees of different sizes. Notably, the larger the threshold,
the smaller the resulting tree. The final step involves selecting the best tree from

these candidates; e.g., a separate validation set can be used.

Cost-Complexity Pruning (Breiman et al., 1984) This method, like Pessimistic Error
Pruning, considers the number of child nodes in a split and penalizes a split that
results in many child nodes with little improvement in training accuracy. More
specifically, let R(¢) be the resubstitution error at the current node, and R(7}) the
resubstitution error of the subtree rooted at this node. Let |T;| denote the number
of terminal nodes in the subtree 7}, then the measure « of the current split is

defined as follows:

o= R - BT (622)

T =1
This measure effectively estimates the reduction in resubstitution error per termi-
nal node, which is positively related to the strength of a split. After calculating
«a for all intermediate nodes, pruning begins from the smallest to the largest «,
pruning the tree from its full size to a single root node. And more importantly,

each «a in the range [min(«), max(«)| corresponds to a specific tree in the pruning

process.
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After we get a series of trees, this method uses a smarter approach than Critical
Value Pruning for selecting the best tree. It divides the training set into K folds
and applying K-fold cross-validation. For the i-th model, the i-th fold is excluded,
and a series of trees are built using the remaining K — 1 folds. The i-th fold
then serves as the testing set, and the testing error for each tree in the series is
calculated, with each error corresponding to a specific a. The next step involves
combining information from all K folds to select the best a based on the smallest
average testing errors across all folds. Finally, the original tree is pruned using

the best o obtained from the cross-validation.

Problems with Cost-Complexity Pruning

Implemented in CART, Cost-Complexity Pruning is among the most popular methods,
renowned for its promising theoretical properties and strong practical performance.
However, when attempting to apply this method in our research, we found several
drawbacks, indicating that it might not be the ideal approach for our needs. In Cost-

Complexity Pruning, « plays two critical roles:

1. Determining the Pruning Order: Consider a full-size binary tree with three
levels (8 terminal nodes). To prune this tree back to its root node, 7 cuts are
necessary. Arranging these cuts in different ways results in varied cutting paths.
In this example, there are 80 potential cutting paths leading to 26 unique subtrees.
We can view « as indicating the strength of a split. With the help of o, we can
pick the best path from these 80 possibilities, ideally resulting in a path with a
monotone increasing split strength from bottom to top. Along this path, we get 7

subtrees and then use Cross-Validation (CV) to pick the most accurate one.

2. Establishing a Mapping Rule: Given that our tree is constructed using all the

data, an external referee is necessary to select the best subtree. In Cost-Complexity
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Pruning, this referee is provided by cross-validation (CV). We assume the o
values in the main and CV trees are consistent, meaning they both reflect the
same split strength. The best empirical cutting « is chosen using the CV trees,

and subsequently, this a value is applied to prune the main tree.

There are issues with both outlined objectives. For the first, the concern is relatively
minor. Consistently removing the weakest link does not always guarantee the most
accurate subtree. Moreover, for decision trees with a non-trivial node model, the
value might not necessarily be increasing monotonically from bottom to top, which
brings us to the second objective.

There’s an underlying assumption with the « link: its behavior should be consistent
between CV trees and the main tree. Since we prune the CV tree and the main tree
using the same «, if that « gives us a big CV tree, then the main tree corresponding
to this a should be big as well. This association becomes meaningless when the a
is non-monotonic; a bigger main tree may correspond to a smaller CV tree, while a
smaller main tree may correspond to a bigger CV tree. Note that once some nodes are
pruned, the « for the remaining parts of the tree will change, and that is why we have

non-increasing « (from bottom to top) in the main tree.

NOt

1 2
162/240 473745
Node 5 Node 6

Figure 3.9: A partial plot from LDATree, used in Section 3.3. The number below each
node shows the ratio of correctly classified training samples vs. total node size.
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treeeNo | nodeCount | meanMSE | seMSE | « testAcc
0 31 4141 5.757 | 3.464 | 0.429
1 25 413.5 5.706 12.49 | 0.429
2 23 413.6 5.546 10.392 | 0.429
3 21 4134 5.564 27.495 | 0.429
4 19 412.1 5.604 18.166 | 0.429
5 17 412.1 5.604 40.89 | 0.429
6 15 412.4 5.327 | 44.497 | 0.43
7 13 412.2 5.672 | 7.483 | 0.431
8 11 412.2 5.672 | 63.937 | 0.431
9 9 412.3 5.489 73.498 | 0.431
10 7 411.8 5.475 60.374 | 0.436
11 5 411.8 5.475 95.247 | 0.443
12 3 413.8 5.948 143 0.444
13 1 419.2 6.135 | NA 0.424

Table 3.5: The CVpruning table from LDATree using NHDS-discharge.status data in
Section 3.3. Detailed data descriptions can be found in Table A.1.

Here is an example showing that the a might not be monotonically increasing
using the NHDS-discharge.status data (see Table A.1). Table 3.5 provides the pruning
summary. The « value in the k-th row indicates the «a required to prune the tree from
the k-th row to the (k + 1)-th row. Ideally, the a column should show a monotonic
increase from the top to the bottom. Yet, there’s a pronounced discrepancy between
the 6th and 7th trees. The corresponding cuts for this gap can be seen in nodes 4 and 3,
as shown in Figure 3.9. Node 4 represents a strong split since the count of correctly
classified samples rises from 591 to 162 + 473 = 635, leading to an o = 44.497. Once
this node is pruned, node 3 becomes the next candidate. It’s a weak split, with a slight
increase from 601 to 591 + 11 = 602. Such non-monotonic behavior can make the

mapping confusing and meaning]less.

Proposed Stopping Rules

Based on previous works, we added our own insights and identified two potential

pre-pruning candidates, detailed below:
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Method 1: Validation Set Our first modification involves using the a from the Cost-
Complexity Pruning but replacing the resubstitution error with the validation
error. Many traditional methods rely on resubstitution error or its variants to
measure the performance of a split. Doing so will have low overfitting risks only
with trivial node models. Particularly in nodes with data from multiple classes,
prediction by majority vote is less prone to overfitting. However, in the case of
an LDA model, due to its strong discriminant capability, overfitting can become
a significant problem, making resubstitution error a less reliable indicator of
split efficacy. Using a validation set offers a more objective estimate. Although
reserving part of the data for validation results in a smaller training set, this is less
of an issue for LDA, which primarily depends on class centroids and covariance
matrix estimates. Additional data points may not substantially enhance these

estimates, making the exclusion of some data more acceptable in this context.

Another adaptation is the introduction of a kStepAhead hyperparameter, enabling
lookahead capability. A key limitation of pre-pruning compared to post-pruning
is its potential to overlook higher-order interactions due to its stringent inclusion
of new splits. A beneficial split may follow one or two weaker splits, a pattern
typically detected only in post-pruning. Allowing the stopping rule to look ahead

beyond a hard threshold might address this issue.

Our simulation results indicate that the train-validation ratio significantly influ-
ences model performance, meaning careful tuning is crucial. Besides, setting
the kStepAhead value to either 0 or 1 often yields satisfactory results, suggest-
ing that looking many steps ahead might not be necessary for this collection of
datasets. Overall, the model’s performance is comparable to that achieved with

Cost-Complexity Pruning, but with a substantially reduced runtime.

Method 2: Out-of-Bag with p-value Threshold This method addresses the limitations
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of the first method. First, we replace the separate validation set with Bootstrap
sampling. Our simulations showed a performance decline when using smaller
training sets, leading us to avoid excluding any training data during model fit-
ting. The Bootstrap method is better as it can approximate the observed sample
effectively, with the Out-of-Bag (OOB) samples serving as a convenient validation
set. Moreover, a train-validation split at the root node could significantly change
the tree shape, while bootstrap sampling occurs within each node and ensures

consistency in data size.

We also adapted and modified the binomial distribution concept from Pessimistic
Error Pruning. The original Pessimistic Error Pruning compares the current split
to predicting everyone as the plurality class. However, it is optimistic and may
be overly sensitive to randomness. To address this, let p; represent the prediction
accuracy before the split, and p, the accuracy after the split. We want to test the
hypothesis H, : p; = p; against the alternative H; : p; < p;. We then calculate
the p-value from this one-sided z-test using OOB samples and compare it to the
predefined Type I error rate. One advantage of this p-value thresholding is that it
reflects differences in sample size. For example, a 10% increase in OOB testing
accuracy has different implications depending on whether the node has 10 or

10,000 samples.

The workflow is as follows: At each node, we initially use all data points to find
the split, ensuring full utilization of the training set for tree structure formation.
Within that node, we generate a bootstrap and an OOB sample. The bootstrap
sample is used to fit the LDA model at that node. We then apply the split to
the bootstrap data and fit LDA models in the child nodes. Finally, the OOB
sample assesses the change in testing accuracy. Splitting stops if this change lacks
statistical significance. Our simulations indicate that this stopping rule often

yields better results than Method 1, and the test accuracies from separate test
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sets closely align with OOB test accuracies.

After an extensive examination of Method 2, we decided to remove the bootstrap
step and instead directly used changes in resubstitution error for the two-sample z-test
(Modified Method 2). This simplification of the algorithm led to reduced runtime while
maintaining comparable performance on most datasets. Additionally, we investigated
the differences between pre-pruning and post-pruning in this p-value threshold method.
In pre-pruning, the tree stops growing as long as the p-value is not significant. In
contrast, post-pruning allows the tree to grow to full depth and then prunes from the
bottom up, removing branches with non-significant p-values. In practice, we found
that the post-pruning method had better performance on synthetic datasets featuring
high-order interactions but insignificant main effects.

We also examined post-pruning with cross-validation, where we used CV trees to
choose the best p-value threshold for the main tree. We found that post-pruning is not
very helpful when there is no overfitting. Unlike typical models, the LDATree does not
have the usual convex testing error pattern, where errors decrease as underfitting is
resolved and then increase due to overfitting. Most of the time, it shows a monotone
trend. We tested post-pruning on the 49 datasets, and summarized the results in
Figure 3.10. In each small plot, the x-axis represents the p-value defined above, also the
a for cost-complexity pruning. A larger p-value threshold implies fewer constraints,
allowing the tree to grow deeper. The y-axis measures testing accuracy. Averaging
the 49 plots yields Figure 3.11. This indicates that in general, LDATree benefits from
additional splits and is robust to overfitting. However, due to the minor changes in
testing accuracy, we set a = 0.01 to achieve a shorter tree and potentially improved
interpretability.

Overall, we claim that the post-pruning with cross-validation is by far the most
accurate stopping rule. It is recommended if runtime is not a big concern. However,

in our real data analysis, the pre-stopping rule shows good testing accuracies within
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Figure 3.10: Test Accuracy vs. a: the performance of stepLDATree on 49 datasets. The
individual plot title indicates the index of the dataset. « is the p-value cutoff during
tree construction.
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Figure 3.11: Test Accuracy vs. a: the performance of stepLDATree on 49 datasets and
averaged. a is the p-value cutoff during tree construction.

the time limit. On most datasets, the differences are not significant compared to the
post-pruning with cross-validation. Therefore, we set the Modified Method 2 as the
default stopping rule in our implementation, and use it for the rest of our analysis
unless otherwise specified. Below is a detailed description.

Suppose there are n samples in the current node. We fit the LDA model within the
node and record the number of correctly predicted observations as ;. Next, we use
all data points to find the split, distribute the data points, and fit LDA models in all
child nodes. We then sum the number of correctly predicted observations across child
nodes and record this as ny. Thus, we have p; = ny/n and p = ny/n. The z-statistic is

calculated as

nog — 1M

\/nﬁl(l —p1) + npa(1l — po)

z

The p-value is then given by 1 — ®(z), where ®(z) is the CDF of the standard normal
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distribution.

3.4 Splitting Rule

Introduction: Classical Methods and Their Challenges

Now, let us turn our attention to another crucial aspect of decision tree architecture:
the splitting rule. This rule determines how samples are distributed from a parent
node to its child nodes. A good splitting rule can effectively divide the sample space
so that each resulting subset is as internally homogeneous as possible (for the simple
node model). Conversely, a bad splitting rule may fail to define the correct decision
boundaries or might provide misleading information, potentially due to issues such as
selection bias (Loh and Shih, 1997).

For many splitting methods, the process can be divided into two stages. Initially, an
objective function is defined, which the method aims to optimize. This applies to both
univariate splits, where the rule is based on a single variable, and to forms like linear
combination (or oblique) splits. In these cases, every potential split point is exhaustively
evaluated to select the one that optimizes the objective function. For example, if the
split involves a numerical variable with 100 distinct values, there are 99 possible split
points, and this number increases linearly with the sample size. Traditional methods
that focus on univariate splits use objective functions like the Gini Index (Breiman et al.,
1984) or information gain (Quinlan, 1986). In the last two decades, several methods
have emerged targeting oblique splits, including Forest-RC (Breiman, 2001), Random
Rotation Random Forest (Blaser and Fryzlewicz, 2016), the Canonical Correlation
Forest (Rainforth and Wood, 2015), and Sparse Projection Oblique Randomer Forests
(Tomita et al., 2020). While these methods vary in how they determine the linear
combination of variables, they all use the same objective function within an exhaustive

search framework. However, this framework might not be the best for our LDATree.
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Most of the methods mentioned above rely on a simple node model that predicts
all instances to be the majority class. This approach has zero training error in nodes
where all instances belong to a single class. Consequently, measures of node impurity,
like the Gini Index or information gain, are used as effective criteria for splitting. For
LDA, a pure node is beneficial but it’s not necessary. LDA is most effective when
different classes are linearly separable. When pure nodes are unattainable, we can
focus on another metric that characterizes linear separability, potentially enhancing

LDA’s performance.

Exploration of Various Splitting Methods

Leading Discriminant Score Splitting Our first method coincides with the approach
outlined in (Padmanabhan et al., 1999), using the leading discriminant score (LD1
score) as the splitting criterion. The LD1 score, being a linear combination of
variables, offers advantages over univariate splits, particularly in handling non-
axis-aligned decision boundaries common in real data. As shown in Figure 1.1,
univariate splits are less effective; they require multiple splits, forming a staircase
function to approximate the boundary line. In contrast, LDA can achieve this

with a single split, perpendicular to the LD1 score.

Moreover, other methods using linear combination splits either generate direc-
tions randomly (lacking guaranteed effectiveness) or require extensive time to
find an effective combination due to the infinite possible directions. The LD1
score, derived from LDA, can find a powerful split efficiently without reliance
on random choices or exhausted searches. It represents the best single direction
to maximize Fisher’s criterion. Following this, we only need to perform one
exhaustive search on the LD1 score (or on sample quantiles for larger datasets),

selecting the cut that maximizes the reduction in the Gini Index.
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LDA Splitting This method is adapted from the LDA split introduced in FACT (Loh
and Vanichsetakul, 1988), with some modifications. Within each node, we first
fit an LDA model using the data in that node. Then, we create J’ subnodes,
where J’ represents the number of distinct predicted classes. Each observation
is distributed to a branch along with others in the same predicted class. Similar
to the LD1 score method, this approach also originates from LDA, offering the
advantage of quickly identifying powerful linear combinations of variables for
splitting. However, they are different in several aspects. Firstly, this method
does not always produce a binary tree, except in binary classification problems.
The use of multi-way splits typically results in a shorter tree, as the sample
size in each node decreases more rapidly with branching. More importantly,
this method generates splits in one shot, eliminating the need for exhaustive
searching. While LD1 score splitting divides the sample space into halves to
maximize the Gini Index reduction, LDA splitting partitions the space into J’
parts, with decision boundaries determined by LDA. Another benefit of using
LDA for decision tree splitting is its guaranteed superiority over a stand-alone
LDA. It becomes equivalent to a stand-alone LDA when the LDATree consists of

only one LDA split and a trivial node model.

Another distinction from the FACT split concerns the hidden class scenario. Oc-
casionally, we encounter J’ < .J, indicating that some classes are not predicted
(hidden), yet these classes might appear in predictions of new cases. In such
instances, we assign the observation to the class with the highest posterior proba-
bility among the non-hidden classes. However, this approach can sometimes lead
to premature stopping, as illustrated in Figure 3.12. For instance, Node 3, con-
taining 498 observations, might benefit from further splitting. In this node, LDA
predicted all observations as class B and the posterior probability plot indicated

the red curve is below the blue curve almost everywhere. While this pattern is
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good for a prediction task, it’s less effective for finding a splitting rule aimed at
efficiently dividing the sample space. The lower testing accuracy should not be
a big concern, since it will recover from subsequent splits. To address this, we
adjust our strategy by assigning equal priors to all classes whenever there exists a
dominant class. This change enables LDA to identify a cut between the centroids
of the classes, thereby facilitating continued splitting. In our implementation, we
switch to equal priors when the Gini Index in a particular node falls within the
range (0, 0.1].
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Figure 3.12: A toy example demonstrating the ineffectiveness of the LDA split in the
presence of a class with a dominant prior. The right plot shows the posterior probability
of data in node 3 from the left plot (Section 3.4).

Scatter Trace Splitting This method draws inspiration from the XOR (or chessboard)
problem. Figures 3.13 and 3.14 demonstrate how the previous two splitting meth-
ods perform on this XOR problem. Although the results are generally fine, there
is room for improvement. The primary challenge is that both univariate splits
and linear combination splits struggle to identify this pattern. In symmetrical

patterns like the XOR, LDA does not work effectively.

We believe that the best splitting method should complement LDA. So far, the
two splitting criteria we have used seem to conflict with the LDA node model,
each striving to explain more of the data variance. Our aim is for the split to

play a supportive role, enhancing the effectiveness of the subsequent LDA node
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Figure 3.14: LD1 score splitting on XOR data (Section 3.4).

model. In this context, Pillai’s trace, which we extensively discussed in Section
3.2, is particularly useful as it serves as a measure of LDA performance. However,
we have not derived an analytical solution for this metric at this moment, so we
turn to simulated annealing, using the optim function in R to iteratively find a

numerical solution. The algorithm is outlined as follows:

¢ Initialize a direction vector v,«1 and a scalar h. Partition the data into two

groups (A and B) based on whether Xv > h or Xv < h.

* For groups A and B, with n4, np samples respectively, calculate n Atr(S(A)) +
n Btr(S ) A larger value indicates better separation. The original Pillai’s
trace is defined as tr(S;'Sp). To increase speed, I disregard the correlation

structure and scale all columns to have unit variance before calculating the
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metric.

¢ Use simulated annealing to find the next v and 4 until convergence is reached

or the iteration limit (200) is met.
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Figure 3.15: Illustration of the scatter trace splitting rule on XOR data, executed four
times (Section 3.4).

As Figure 3.15 demonstrates, the scatter trace splitting effectively solves the XOR
problem. However, due to the inherent randomness in the simulated annealing

process and the initial value selection, the split might not always be unique.

Random Splits Random splits are widely used as splitting criteria in forest methods.
These splits are fast and can help escape local optima due to their inherent

randomness. We propose two candidates for random splits:

¢ The first, inspired by (Tomita et al., 2020), is completely random. At each
node, we randomly select v/ M variables and randomly assign them coef-

ficients of +1 (after scaling) to form a linear combination split. We then
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project all observations along this direction and split at the median. This

approach creates a balanced decision tree with half of the data on each side.

¢ The second approach is inspired by the XOR pattern discussed earlier. In
some cases, different classes might exhibit different patterns, but their cen-
troids overlap when averaged, leading to ineffective LDA splits. A line (or
hyperplane) passing through all group means (centroids) can mitigate this
issue. The challenge arises with many variables, where multiple hyperplanes
are possible, or with fewer variables, where it’s impossible for a hyperplane
to intersect all group means. For the former scenario, we rank the variables
by a stepwise process. For the latter, we use the least square estimate (LSE)
due to its uniqueness. Let’s say we have .J classes, resulting in a J x M matrix
of group means. We rank the )M variables by their within-to-between-class
variance ratio, selecting the top J variables. If fewer than J variables are
available, we choose all of them. The top-ranked variable is treated as the
response variable, and we perform a linear regression of that variable on the
intercept and the remaining variables. This linear regression’s X and y are
based on the group mean matrix (J x M), not the original dataset (/N x M).
We can’t include more than J variables in order to do linear regression.
And in cases where X'X is not invertible, we remove the least important
variable until it becomes invertible. The identified hyperplane is then used
for splitting. Interestingly, as this hyperplane usually passes through the
group means (and, by nature, near the group medians), it often results in a

balanced split with about half the data on each side.

Probabilistic Adaptive Splits Random splits can also be viewed as useful alternatives
when the LDA splits are ineffective. Consequently, we try to combine these two
types of splitting criteria: using the original splitting rule when the LDA node

model performs well, and resorting to random splits when it does not. In each
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node, we calculate Pillai’s trace and its associated p-value as indicators of LDA
performance. The threshold for p-value is set at 0.05/100, applying the Bonferroni
correction with a = 0.05, and considering that LDATree typically has fewer than
100 nodes.

Real Data Analysis and Conclusion

To evaluate the performance of these splitting variants, we used the same testing
framework as outlined in Section 3.1. In this comparison, we evaluate a total of 22
methods, comprising 11 for LDATree and 11 for stepLDATree. The distinction between
LDATree and stepLDATree lies in their approach to LDA modeling: LDATree uses
LDA /GSVD for all LDA models used in both node model and splitting rules, while
stepLDATree uses stepwise LDA instead. For both LDATree and stepLDATree, we test

the following:

e Single splitting rule (5 methods): This category includes LD1 splitting (LD1), LDA
splitting (LDA), scatter trace splitting (Trace), totally random splits (Random),

and group mean splitting (GM).

* Probabilistic adaptive splits (6 methods): Here, we use a p-value threshold to
determine whether to use definitive splits or random splits. With three definitive

splits and two random splits, there are six methods in total.

The results for LDATree are presented in Figure 3.16, and the results for stepL-
DATree are summarized in Figure 3.17. The first observation from both plots is their
wide confidence intervals. This can be attributed to the inherently higher variance
of LDATree and stepLDATree compared to previous LDA variants. Another possible
reason for these performance variations could be the inherent variability in datasets.

Certain methods may excel with specific datasets while underperforming with others.
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Overall, we anticipate that differences in testing accuracies across splitting methods

would become statistically significant with a larger dataset collection.
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Figure 3.16: Real data analysis results in Section 3.4: Average runtime vs. average
testing accuracy for LDATree. Confidence intervals for runtimes (on a logarithmic
scale) and standardized accuracies are presented with 25D error bars.

The methods from the Trace family suffer from their speed — they fail to complete

within five minutes on over half of the datasets. Given sufficient time, their performance

could potentially match or surpass other methods. For LDATree, the top-tier methods

include LDA, GM, and LDAGM, with LDA being the most accurate and GM the fastest.

In the case of stepwise LDA, the best performers are LDA, LDAGM, and LDARandom.

Analyzing their performance across various datasets, we conclude that the LDA split

is the most effective overall. Consequently, it will be adopted as the default splitting

rule in both LDATree and stepLDATree.
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scale) and standardized accuracies are presented with 25D error bars.
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4  MISSING VALUE SOLUTIONS

The LDATree algorithm and its derivation have been covered in previous sections. All
previous simulation results were based on complete datasets; this section will focus
on missing values. Missing values are common in machine learning, with numerous
methods developed to address them. This section will explore some of these methods
within the LDATree framework. Node-wise simple imputation with missing value
indicators has shown to be the most effective method in terms of runtime and prediction

accuracy.

4.1 Existing Methods

The decision tree family has a special way to handle missing values using the decision
tree structure. As observations move down the tree, the splitting variable may some-
times be missing. Instead of imputing these missing values, some methods can bypass

them. Here are four popular methods:

¢ The most famous one is the surrogate splits Breiman et al. (1984). When the
target variable for splitting is missing, it will use another backup variable to split

the data.

¢ Probabilistic split, like the one in C4.5 Quinlan (1993), which distributes the
current observation to all child nodes with certain weights. The weights are
proportional to the relative frequencies of the child nodes and the sum of the

weights is one.

* Treat missing values as a separate category, as implemented in GUIDE Loh (2002).
All missing values will be distributed to either left or right, depending on which

loss is smaller.
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* The internal node strategy, which is used mainly in cost-sensitive trees Ling et al.
(2004). If the target variable is missing, the observations will stay in this internal

node, and the prediction is made using the training data in this node.

However, these methods are not applicable to our LDATree because LDA itself
cannot handle missing values. This means that even if we bypass the missing value
imputation during the splitting, we must still address them when fitting an LDA node
model. Therefore, we select and list some popular methods (and their R imputations)

below:

Simple Imputation Impute numerical variables using the mean or median, and cat-
egorical variables using the mode or a new level. Variants of this framework
include adding missing value indicators to save the missing information or adding

Gaussian errors to the imputed values to retain the variance.

Node-Wise Simple Imputation Compared to the simple imputation, this method dif-
fers in the timing of the imputation. Simple imputation imputes all missing
values at the root node, treating these values as observed in all subsequent nodes.
However, node-wise simple imputation handles missing values separately in
each node. Once the observation is passed to the child nodes, imputed missing
values from the current node are removed and re-imputed using the child nodes.
This method can be viewed as conditional imputations based on the samples in

the node.

Matrix Completion Matrix completion assumes that a low-rank matrix can well ap-
proximate the data matrix. This method fits patterns from observed data us-
ing SVD and applies them to impute missing values. We use the R package
softImpute Hastie et al. (2015), which claims to combine two popular approaches

into a more efficient method using fast alternating ridge regression.
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Hot-Deck Imputation Hot-deck imputation replaces missing values with observed
responses from similar units, termed donors, grouped into imputation cells.
These cells are constructed based on the similarity of observations. The standard
approach involves fitting logistic regression on propensity scores and creating
imputation cells based on posterior probabilities. Besides, decision trees are also

ideal for the hot-deck method, as each terminal node forms an imputation cell.

missForest Many packages use random forest for imputation; here, we select the R
package missForest Stekhoven and Biithlmann (2012). This package uses random
forests to impute missing values in all variables. After each iteration, the package

records a measure of imputation performance and stops if the performance drops.

GUIDE We use a predictive model from GUIDE to impute the missing values. GUIDE
can handle missing values, offering it a significant advantage over other methods.
When both predictors and responses have missing values, GUIDE can directly
output a predictive model, unlike most methods that must first address the

missing values in predictors.

We also tested the mice package, but its runtime (several days) forced us to abandon
it. Amelia, another missing value solution using the Expectation-Maximization (EM)

algorithm, consistently crashed during our tests.

4.2 Proposed Methods

Inspired by the methods mentioned in the previous section, we propose two new
solutions for handling missing values. The first solution allows LDA to directly handle
missing values, while the second uses class-wise imputation.

To find decision boundaries, LDA requires two components: the group centroids

and the scatter matrices. When faced with missing values, we can estimate the group
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centroids using non-missing entries. In R, this can be done using mean(. .., na.rm
= TRUE). The scatter matrix, which is proportional to a covariance matrix, can handle
missing values using pairwise deletion. This involves using only complete pairs of vari-
ables to calculate each entry in the covariance matrix. We use the following strategies

to address potential problems:

¢ Sometimes, the correlation may be amplified with few observations. If there are
fewer than four observations, we manually set the correlation to zero. With more
than four observations, we calculate Fisher’s confidence interval for the pairwise

correlation and set the correlation to zero if the interval covers zero.

* The covariance matrix derived from pairwise deletion may not be semi-positive
definite. In such cases, we use the R function Matrix: :nearPD() to approximate

it with the nearest positive definite matrix.

However, this method has intrinsic problems that cannot be resolved. For example,
using only complete observations to estimate the group centroids could result in bias
if the data is not Missing Completely at Random (MCAR). Therefore, to improve
imputation accuracy, we have to use information from other variables, leading to our
second method. This second method involves conditional imputation based on the

response variable. The basic steps for this method are as follows:

1. For each numerical variable in the current node, save the class-wise means and
standard deviations (SD). If the variable is categorical, then save the frequency

for each level.

2. Then, predict the class label for each observation, regardless of whether the true
class label is known. The prediction model here is probability-based. For each
variable, based on the previously saved information, we calculate a posterior

probability table including all classes; we use normal density with the saved
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mean and SD if the variable is numeric, and the saved frequency table if the
variable is categorical. For a numerical variable z, the posterior probability for

each class j is calculated as

then normalized so that >-7_, p; = 1, where 7}, 7, and ;? represent the estimated

class prior, mean, and variance for class j, respectively. For a factor variable z,

posterior probability follows the Bayes formula, approximated as

L plip) ey
=00 Y

)

then normalized so that Z}']:1 p(j|z) = 1. Here, n,; means the observed frequency

of the combination {z = 2} N {y = j}, and n,; means the observed frequency of
{x = x}. Suppose there are a total of M variables, and the current observation
has K observed and M — K missing. Then we have K sets of posterior probability

tables. There are three methods to determine the final predicted class:

a) Vote: Directly determine the class using each of the K variables separately
to obtain K predicted classes. Then ensemble the results, and the final

predicted class will be the one with the most votes.

b) ProdPost: Multiply the K sets of posterior probability tables and standardize
them to obtain a final posterior probability table. We then classify it to be

the class with the largest posterior probability.

c) MeanPost: Sum the K sets of posterior probability tables and standardize
them to obtain a final posterior probability table. We then classity it to be

the class with the largest posterior probability.

3. Finally, impute each of the M — K missing entries using the class-wise mean or
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mode, where the class is the predicted class from the previous step.

4.3 Simulation

Simulation Setting

We use 25 real datasets, each containing missing values. The data description is pro-
vided in Table A.2. The last column of Table A.2 shows the percentage of observations
missing at least one covariate. Notably, most datasets do not have a single complete
observation, highlighting the complexity of this challenge. The testing framework is
the same as in Section 3.1. For each dataset, we randomly sample 70% for training and
use the remaining 30% to assess testing accuracy. This process is repeated 20 times to
obtain confidence intervals for the testing accuracies.

We tested two versions of most methods: one with missing value indicators and
one without. To avoid overlapping different methods, we grouped and displayed the
results separately. We then put together the best method from each group for a more
comprehensive understanding. We evaluated the performance of these missing value
imputation methods on both LDATree and stepLDATree. However, because they are

very similar, we only present the results for stepLDATree here.

Simple Methods

In this subsection, we evaluated sixteen simple imputation methods. We impute all
missing entries at the root node using column statistics such as the mean and median.
To differentiate these methods, we adopt an A. .B. .CD syntax for the methods’ names,

which denotes:

* A:mean or median, used to impute missing values in numerical variables.
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* B:mode or newLevel, used for imputing missing values in categorical variables.
Here, mode refers to the most frequent level, while newLevel means assigning an

additional level beyond the original levels for missing entries.

e C:0or 1. If Cequals 0, no extra steps are taken. If C equals 1, we add Gaussian
noise to the deterministic imputation for numerical variables. This Gaussian noise
has a mean of zero, and its SD is estimated from the column’s SD. Consider using
median imputation for column X. The column median and SD are calculated as
mx and sy respectively, using the complete entries. For each missing entry, if C
equals 0, it is imputed with m; if C equals 1, it is imputed with mx + ¢;, where

g; is drawn from a normal distribution N (0, s%).

* D: empty or _IND, indicating the use of missing value indicators. This indicator is
added for every column with missing values, whether numerical or categorical.
If there are M variables and K have missing values, then for D = _IND, the total

will be M + K columns.

The final results are summarized in Figure 4.1. Sixteen methods are approximately
grouped into four clusters based on the missing value indicator and the use of ex-
tra Gaussian noise. It is clear that the missing value indicator improves the testing
accuracy, as methods ending with _IND are positioned to the right of those with-
out it, indicating higher testing accuracies. When using missing value indicators,
other variants appear to have not much effect. Gaussian noise (methods with . .1
before the _IND) seems to speed up the program because they have shorter trees com-
pared to those without Gaussian noise. However, the group without Gaussian noise
has slightly better testing accuracy because it performs significantly better in one of
the datasets compared to the group with Gaussian noise. Therefore, we consider

median. .newLevel..0_IND and median..mode..0_IND to be the best candidate from



73

this group. We favor median. .newLevel..0_IND over median. .mode..0_IND because

newLevel has slightly higher testing accuracies than mode across all four clusters.
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Figure 4.1: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.
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Hot-deck Methods

In this subsection, we evaluated eight hot-deck imputation methods. All of these
methods are based on the GUIDE decision tree. Compared to logistic regression and

other methods, using a decision tree as the hot-deck method offers several advantages:

* The key aspect of hot-deck imputation is identifying donor groups, also known as
imputation cells. In logistic regression with the propensity scores as the response,
the outcomes are posterior probabilities that must be manually divided into five
groups. This process is somewhat arbitrary compared to decision trees, where

each terminal node naturally serves as an imputation cell.

* Another advantage of decision trees is that they do not rely on assumptions about
the distribution, unlike logistic regression, which assumes an S-curve on the

probability distribution, limiting its generality.

* A major drawback of logistic regression and other methods is that they can
not handle missing values. However, the GUIDE method does not require any

pre-processing before fitting the model.

The methods we tested include:

GPTHD GUIDE Propensity Score Tree with Hot-Deck Imputation: Assume we have
M variables and K of them contain missing values. For the i-th variable among
the K, we define the observed flag Z as Z = I(X® # NA) and fit a GUIDE
propensity score tree using the available covariates {X®) ... X®)1\ {X®1
This GUIDE method applies an internal check and ensures that the predicted
Z € (0,1], indicating that each terminal node of the GUIDE tree contains at
least one observed response. Missing values in XV are then imputed using the
hot-deck method, with imputation cells corresponding to the tree’s terminal

nodes.
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GRTHD GUIDE Regression Tree with Hot-Deck Imputation: Similar to GPTHD, but
replaces the propensity score tree with a regression or classification tree, depend-
ing on the variable type. It uses X as the response variable in the GUIDE model,

fitted only with rows where X is observed.

GCTHD GUIDE Combined Tree with Hot-Deck Imputation: We want to use both the
information from the missingness and the values themselves, so we combine the
propensity score tree with the regression tree. This approach creates two trees,
GPTHD and GRTHD. For each missing entry, one donor group is obtained from each
method, with the final donor group being the intersection of these two groups.

If the intersection is empty, the final donor group is the union of the two.

GCT2HD The second version of GUIDE Combined Tree with Hot-Deck Imputation:
The key difference is that when the intersection is empty, the final donor group
defaults to that from GRTHD, which, based on our experience, is more accurate
than GPTHD. However, this method and GCTHD have the downside of being twice

as slow.

For each method, we test two versions, one with missing value indicators and one
without. The missing value indicators have nothing to do with the hot-deck imputation.
They are added after all missing values have been imputed and are used only when
titting the LDATree model.

The final results are summarized in Figure 4.2. Again, this shows the necessity
of missing value indicators. Although GPTHD_IND is twice as fast as the other three
methods, we selected GRTHD_IND as the best candidate from this group because of its

slightly higher testing accuracy.
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Figure 4.2: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.
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LDA-Exclusive Methods

In this subsection, we evaluate eight LDA-exclusive imputation methods. The main
idea is to use complete entries to estimate group centroids and pairwise complete
entries to estimate scatter matrices. More details can be found in Section 4.2. We adopt

the posAfisherBC syntax for the methods” names, which denotes:

* A:YorN, used to denote whether to use R function Matrix: :nearPD() to approx-

imate the scatter matrix with the nearest positive definite matrix.

e B: Y or N, used to denote whether to use Fisher’s confidence interval for the

pairwise correlation and set the correlation to zero if the interval covers zero.

* C: empty or _IND, indicating the use of missing value indicators. The missing
value indicators are added before calculating the group centroids and scatter

matrices.

The final results are summarized in Figure 4.3. The eight methods are approximately
grouped into four clusters. Missing indicators are necessary, and approximating the
scatter matrices should not be done even if they are not semi-positive definite. We
selected posNfisherN_IND as the best candidate because of its slightly higher testing

accuracy than posNfisherY_IND.

Class-Wise Methods

In this subsection, we evaluate six class-wise imputation methods. The main idea is
to predict the class for each observation, and then use the class-wise mean or mode
to impute these values. Although the predicted class may not always be correct, it is
expected to be more accurate than class-blind imputations. More details, including the
three methods we propose, can be found in Section 4.2. Given our results in previous

sections on the importance of missing value indicators, all methods tested here have
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Figure 4.3: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.
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them. If the method’s name includes _chi, this indicates that an additional chi-squared-
based variable selection is performed for class prediction. This step aims to eliminate
noise variables that might affect prediction accuracy.

The final results are summarized in Figure 4.4. Except for prodPost_IND, all other
methods had similar performance. We selected meanPost_chi_IND as the best candi-

date due to its slightly higher testing accuracy.

4.4 Combined Result and Conclusion

Now, let’s combine the best candidate from each method group with methods that do
not belong to any category for a comprehensive comparison. The descriptions of meth-
ods are summarized in Table 4.1, and the final result is summarized in Figure 4.5. Based
on the runtime and testing accuracies, nodeWise_IND and median..newLevel..0_IND
appear to be the best candidates. We will compare these two methods more carefully
in Section 4.4.

Below are some comments during the simulation:

¢ The matrix completion method has three issues. First, it requires transforming
categorical variables into dummy variables before fitting the model, so the im-
puted values in dummy columns may not be strictly 0 or 1. The second, and
the more critical issue is that the fitted model cannot predict new observations
since it modifies rows and columns simultaneously. Our tentative solution is to
vertically combine the training and testing sets and perform matrix completion a
second time for imputations in the testing set. Third, the tuning process for the
key parameter ) is both time-consuming and ill-defined. The package authors
suggest manually tuning the parameter through trial and error. Therefore, we

skip this step, select the highest possible rank, and set A\ysed = v/ Amax-
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Figure 4.4: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.
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method

description

median..newLevel..0_IND

Use the median for numerical variables and a new level
for categorical variables. Add missing value indicators
for numerical variables. Imputation occurs only once
in the root node.

nodeWise IND

Use the median, a new level, and missing indicators.
Imputation occurs at each intermediate node.

meanlPost_chi IND

We apply chi-squared-based variable selection to elimi-
nate noise variables and calculate posterior probabili-
ties to predict the class for each observation. We then
average these probabilities across all predictors, pre-
dict the class, and impute missing values using the
class-wise mean or mode. Missing value indicators are
added. More details can be found in Section 4.2.

GRTHD_IND GUIDE Regression Tree with Hot-Deck Imputation.
Missing value indicators are added. More details can
be found in Section 4.3.

GUIDE_IND This method is similar to GRTHD from Section 4.3, but it

does not use hot-deck. For each variable with missing
values, a GUIDE regression or classification tree is fitted
according to its type, and predicted values are used
directly for imputation.

posNfisherN_IND

Use complete entries to estimate group centroids and
pairwise complete entries for scatter matrices. Missing
value indicators are added. More details can be found
in Section 4.3 and Section 4.2.

softimpute_IND

It is the matrix completion method that uses the R pack-
age softImpute. Missing value indicators are added.
More details can be found in Section 4.2.

missForest IND

It is the missForest method that is introduced in Sec-
tion 4.2. Missing value indicators are added.

Table 4.1: Descriptions of missing value methods tested in Section 4.4.
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* Like softImpute, missForest cannot save the fitted model for future prediction.
Again, we vertically combine the training and testing sets and rerun missForest
to impute missing values in the testing set. Additionally, as it uses randomForest
backend, which cannot handle factors with more than 53 levels, we delete such

columns.

¢ For the GUIDE_IND method, only one iteration occurs over all variables, unlike
mice. GUIDE can directly handle missing values, thereby eliminating the need

for multiple imputations and avoiding the randomness propagated by mice.

Root-Node and Node-Wise Simple Imputation

In previous simulations, nodeWise_IND and median..newLevel..O0_IND turned out
to be the best candidates. This section will compare their differences. The method
median..newLevel..0_IND, which is our root-node simple imputation method, im-
putes only once at the root node by imputing the sample median for numerical vari-
ables, adding missing value indicators, and imputing categorical variables with a
new level. On the other hand, nodeWise_IND uses the same imputation techniques for
numerical and categorical variables but performs these at every intermediate node.

We denote this specific imputation technique as M1, and we have the following results.

Lemma 4.1. For a numerical predictor X containing missing values, we impute with a constant
C and add the missing value indicator X~ = I(X = NA). Then, the column spaces of {X, X~}

does not depend on the choice of C.

Proof. We want to show that the column spaces of {X,,, X, } and {X,,, X", } are the
same for any cy, cs.

Any element E in the column space of {X.,, X", } can be expressed as E = a
X¢, +bx X7.,. For the i-th entry that is not missing in X, E; = a - X; + b - 0. For

the j-th entry thatis missingin X, £, =a-¢c;+b-1=a-co+ (b+a-c; —a-c) - L.
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Thus, E can be rewrittenas E = a - X, +b0- X7, = a* - X, + 0" - X7,, where
a* =aand b* = b+ a-c —a-cy Therefore, E belongs to the column space of
{X.,, X", }, showing that span(X,,,X",,) C span(X,,,X ,). Similarly, we have
span(X,,, X ,) C span(X,.,,X ). Eventually, this shows that span(X,,,X ,) =

span(X,,, X, ) O

Lemma 4.2. For K numerical predictors Xy, Xa, - - , Xk containing missing values, the
combined column spaces of {X1, X1, Xq, X5, -+, Xk, Xg } does not depend on the choice of
017027' o 7CK-

Proof. This result is a simple extension of Lemma 4.1. O

Lemma 4.3. The decision rules from the LDA/GSVD model do not depend on the choice of
017027' o 7CK'

Proof. Suppose we have two design matrices X; and X, where the only difference is
their choices of C;. Based on Lemma 4.2 we know that they share the same column
space, which means X; = X;R where R is full rank square matrix. LDA/GSVD tries

to find the transformation matrix W that can maximize the criterion Ye and Yu (2005)

Fx (W) = trace ((SW)Jr SB)

where (Sy)" denotes the pseudo-inverse of the within-class scatter matrix.
Suppose the transformation matrices we find for X; and X, are W; and Wy, re-

spectively. Then we have

Fx,(W3) = Fx,(RW3) < Fx, (W)).

By similar argument, we have Fx,(W;) < Fx,(W;). Therefore, Fx,(W;) =

Fx,(W3), and their decision rules are the same. Here, the same decision rule means
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the same discriminant power, but the transformation matrix can differ by a full-rank

rotation matrix. O]

Theorem 4.4. For the LDATree model, the node-wise imputation and the root-node imputation

will lead to the same decision rule.

Proof. The difference between these two imputation methods is their choice of C;. For
categorical variables, they both impute with a new level. For numerical variables, the
root-node imputation always imputes with the median from the root node, while the
node-wise imputation imputes with the median from the current node, leading to a
different set of C;.

In the LDATree model, we use LDA/GSVD for both the node model and split.
As long as the current LDA /GSVD models are the same for both methods, they will
share the same split and child node structure, and the rest will follow. Therefore, we
only need to prove that in one particular node, these two imputations yield the same
LDA /GSVD model while having different choices of C;, which is proved in Lemma
4.3. O

Generally speaking, node-wise imputation should yield a different solution com-
pared to root-node imputation. However, we do two things differently: we add the
missing value indicators and use the LDA split. Together, these make the two methods
equivalent under the LDATree model. Although the two trained models are the same,

the testing results could differ if both of the following occur:
1. There exists perfect linear dependency in the design matrix.
2. The new testing data does not comply with the same linear dependency.

During our simulation, this seldom happens. When it does, the difference is negli-

gible.
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When fitting a stepLDATree model, the difference between the two imputation
methods becomes much harder to investigate, as taking a subset of variables changes
the column space of the design matrix. The only scenario in which these two methods

yield different results is when all of the following occur:

1. The stepLDATree should have at least two levels (depth > 2), since the node-wise
imputation at the root node is the same as the root-node imputation. This also
means that the LDA at the root node cannot be so powerful that subsequent splits

are rendered useless.

2. To find a difference in one specific node, the two imputation methods should
impute different values. This means the node-wise median should differ from

the overall median.

3. To find a difference in one specific node, the stepwise LDA should select different
sets of variables. This means that for at least one variable, one imputation method

will treat it as significant while the other will not.

The trickiest part is the third point above. The significance of the variable after
imputation depends on the class structure, so neither of these two methods is theo-
retically admissible. Based on the testing accuracies on real datasets, the difference
between the two methods when fitting stepLDATree is negligible. Due to the three
constraints above, it is hard to find a simulation example to illustrate the difference

between these two methods. We favor root-node imputation for the following reasons:

1. It is computationally faster. Root-node imputation imputes once at the root node,

while node-wise imputation imputes at every node.

2. It provides more stable results when certain nodes have very few observations.

The median estimate in that particular node will have a much higher variance.
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3. Node-wise imputation might generate some unreasonable decision paths, which
are hard to interpret. Suppose one particular observation has missing values on
Xi, and has been imputed with qa, b, and c in the 1st, 2nd, and 3rd split using
node-wise imputation. To end up in the terminal nodes it reaches, the value of
X takes three different values. However, in real life, there is only one realization
of X;. The three splits that this observation passes through might never form
a feasible decision path if the imputation remains the same in all three splits.

Root-node imputation, on the other hand, does not have this type of logical issue.

4. It has a slightly better testing accuracy compared to the node-wise imputation

based on our simulation.

Therefore, we decide to use root-node imputation as our default missing value

solution.
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5 SIMULATION

In this section, we use synthetic datasets to illustrate the strengths of stepLDATree and
LDATree. First, we demonstrate their performances on understandable 2D patterns.
Second, we identify two scenarios where the performance of stepLDATree surpasses
that of the random forest. Details about the other methods used for comparison can be
found in Table 5.1. Note that we use the default parameters in all methods without
special tuning. For LDATree and stepLDATree, we use the post-pruning stopping rule

in this section.

5.1 Some 2D Patterns

3X3 Square

The first pattern is a 3x3 square with three classes. The shape is carefully designed to
be symmetric, with the class centroids of all three classes being the same. Each small
square contains 1000 points, resulting in a total of 9000 points. We split the data 50:50
for training and testing purposes, and the results are summarized in Figure 5.1. Except
for the original pattern, other plots show the prediction regions.

Due to the symmetric pattern, LDA struggles and classifies all observations into

the majority class due to its higher prior. All other methods perform well. Notice that

method | description

LDA The LDA /GSVD method, which is introduced in Sec-
tion 3.1

SVM Support vector machine from the R package e1071.
rpart CART method from the R package rpart.

GUIDE | GUIDE classification tree, introduced in Section 4

GF GUIDE forest, the forest version of the GUIDE classifi-
cation tree.

ranger | The random forest method from the R package ranger.

Table 5.1: Descriptions of the methods tested in Section 5.
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Original Pattern LDA accuracy: 0.44 SVM accuracy: 0.95

Figure 5.1: The first simulation results (3X3 square) in Section 5.1. Except for the
original pattern, other plots show the prediction regions.



90

methods rpart and GUIDE have obvious axis-orthogonal decision boundaries, which

limits their performance.

Spiral Shape

The second pattern is spiral shapes with three classes. Each class contains 5000 points,
resulting in a total of 15000 points. We split the data 50:50 for training and testing
purposes, and the results are summarized in Figure 5.2.

Again, LDA struggles because it only supports linear boundaries. Spiral decision
boundaries are needed here, and SVM also has difficulty finding effective boundaries.
rpart, GUIDE, and GF perform poorly in this scenario, partly due to their axis-orthogonal

splits. In contrast, LDATree, stepLDATree, and ranger yield satisfying results.

Concentric Circles

The third pattern contains concentric circles from four classes. Each class contains
2000 points, resulting in a total of 8000 points. We split the data 50:50 for training and
testing purposes, and the results are summarized in Figure 5.3.

Here, SVM and ranger have the best performance. Other methods have similar

performances, except for LDA.

5.2 Use Case for StepLDATree

Robustness to Noise Variables

In this section, we aim to show that stepLDATree is robust to noise variables and can
simultaneously be used as a variable selection tool. This is a useful property, especially

if you have many variables.
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Original Pattern LDA accuracy: 0.34 SVM accuracy: 0.51

Figure 5.2: The second simulation results (spiral) in Section 5.1. Except for the original
pattern, other plots show the prediction regions.
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Original Pattern LDA accuracy: 0.25 SVM accuracy: 0.98

Figure 5.3: The third simulation results (concentric circles) in Section 5.1. Except for
the original pattern, other plots show the prediction regions.
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We use the 3X3 square data from Section 5.1. In addition to the two informative
variables, we add 300 pure Gaussian noise variables to both the training and testing

sets. Results are summarized in Figure 5.4.

Original Pattern LDA accuracy: 0.39 SVM accuracy: 0.44

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 5.4: The simulation results (3X3 square + noises) in Section 5.2. Except for the
original pattern, other plots show the prediction regions.

Most methods perform much worse compared to the previous situation without
noise variables. Notably, ranger is also heavily affected by noise variables. When

performing classification problems, the random forest randomly chooses /M variables
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(where M is the number of available variables) in each split, so the chance of selecting
the informative variables becomes much lower. In this example, the signal-to-noise
ratio is 2 : 300. GF, SVM, and LDATree also suffer from the same problem. However,
stepLDATree, GUIDE, and rpart achieve decent testing accuracy due to their ability to
ignore useless variables. This result shows that stepLDATree has a higher chance of

outperforming the random forest when there are many noise variables.

Look-Ahead Splitting

In this section, we will show that both LDATree and stepLDATree have the ability to
look ahead when splitting the tree, giving them an advantage over other decision tree
methods with more greedy strategies.

Our simulation result is based on the XOR shape in five-dimensional space. The
standard XOR problem is in two-dimensional space with two classes. (0,0) and (1,1)
return 0, while (0,1) and (1,0) return 1. In a 2D plot, this looks like a chessboard
pattern. The reason methods like CART or random forest struggle with this pattern
is that there is no single cut that can significantly decrease the impurity. They need
to look one step ahead, make one trivial cut, and then make the powerful cut. For a
3D XOR, it requires looking two steps ahead. As you can imagine, the difficulty of the
problem increases with dimensionality.

To set up the simulation, we first find the 32 centers in the five-dimensional space.
Suppose we denote the five variables as X, X», - - - , X5. Each variable can take either 0
or 1, leading to 2° = 32 centers. We define our response variable Y as Y = (X; + X, +
X3+ X4 + X5) mod 2. We sample 200 data points around each center. For a specific
center C = (cy, ¢, - , ¢5), the points are sampled from N (C, 0.2 x I). This results in a
total of 200 x 32 = 6400 points. We split the data 50:50 for training and testing purposes,
and the results are summarized in Figure 5.5. Note that the confidence intervals are

calculated based on 96 replications.
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Figure 5.5: The testing results (6D XOR) in Section 5.2. Methods are ordered by their
accuracies, with confidence intervals for accuracies shown in 2SD error bars.
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SVM has the highest testing accuracy, followed by stepLDATree and LDATree.
Single-tree methods like rpart and GUIDE have the lowest testing accuracies. Forest
methods like ranger and GF are in the middle. We believe that for problems requiring
proactive searching, stepLDATree and LDATree perform better compared to random

forest and single-tree methods.
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6 REAL DATA ANALYSIS

The purpose of this section is to validate the performance of stepLDATree and LDATree
using real datasets and to compare them against existing methods. First, we show the
average performance across all datasets. Then, we examine specific datasets and discuss
the potential use cases for stepLDATree and LDATree. For LDATree and stepLDATree,

we use the pre-pruning stopping rule in this section.

6.1 Performance Across 49 Datasets

Once again, we use the same datasets, method processing, and graphing techniques
as in Section 3.1. Details about the other methods used for comparison can be found
in Table 6.1. Note that for methods that cannot handle missing values, we apply the
root-node imputation, as mentioned in Section 4.4. The final results are summarized
in Figure 6.1.

Among all machine learning methods, the random forest (ranger) achieves the
highest testing accuracy. GUIDE forest (GF) and stepLDATree form the second tier

in terms of testing accuracy, but stepLDATree is much faster. LDATree and GUIDE

method | description

LDA The LDA /GSVD method, which is introduced in Sec-
tion 3.1

stepLDA | The stepwise LDA/GSVD method, which is introduced
in Section 3.2.

ctree Conditional tree method Hothorn et al. (2006) from the
R package partykit.

rpart CART method from the R package rpart.

GUIDE | GUIDE classification tree, introduced in Section 4

GF GUIDE forest, the forest version of the GUIDE classifi-
cation tree.

ranger The random forest method from the R package ranger.

Table 6.1: Descriptions of the methods tested in Section 6.1.
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Figure 6.1: Real data analysis results in Section 6.1 using 49 datasets: Average runtime
vs. average testing accuracy. Confidence intervals for runtimes (on a logarithmic scale)
and standardized accuracies are presented with 2SD error bars.
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have similar performance in both runtime and testing accuracy. On the other side,
rpart and ctree have poor testing accuracy, with rpart being particularly slow on
certain datasets. Based on these results, we conclude that stepLDATree, on average,

outperforms all other single-tree methods but is not as effective as the random forest.

6.2 Use Case for LDATree

Among the 49 tested datasets, there are some datasets where LDATree has better
performance compared to the random forest. We list three of them below and illustrate

the potential use case for LDATree.

fishcatch-Species It is introduced in Section 2.2.

Arcene—Class The data set, obtained from the UC Irvine Machine Learning Repository
(https://archive.ics.uci.edu/dataset/167/arcene), contains ten thousand
mass-spectrometry measurements from 200 patients. Our task is to use those

features to separate cancer patients from healthy patients.

Digits_ CART-Digit This dataset, along with the following descriptions, is borrowed
from Section 2.6.1 in Breiman et al. (1984). Digits are ordinarily displayed on
electronic watches and calculators using seven horizontal and vertical lights in
on-off combinations (see Figure 6.2). Number the lights as shown in Figure 6.3,
and the scheme for all ten digits is shown in Figure 6.4. However, the data for
the example are generated from a faulty calculator. Each of the seven lights has
a probability of 0.1 of not doing what it is supposed to do. The final dataset
contains 200 data points of ten digits, and our task is to predict the digit class

given the seven lights.


https://archive.ics.uci.edu/dataset/167/arcene
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Figure 6.2: Electronic digits from the Digits dataset in Section 6.2.

7

Figure 6.3: Number the electronic lights from the Digits dataset in Section 6.2.

Digit xy xp x3 Xy, X5 Xg Xy
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
S 1 1 1 1 0 1 1
0 1 1 1 0 1 1 1

Figure 6.4: Notation of the ten electronic digits from the Digits dataset in Section 6.2.
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The results are summarized in Figure 6.5. On all three datasets, the LDATree is one
of the best methods, while ranger seems to struggle in these cases. We suspect the

potential reasons are:

* Small sample size. To make the random forest effective, one must build many
trees, each requiring substantial data to approximate the pattern well enough
through a non-parametric way. However, there are at most 200 observations in
all three examples, which significantly limits its power. In contrast, for LDATree
and stepLDATree, the tree size is adaptive, so they tend to choose simpler models
when few samples are available. Additionally, since LDA is a parametric model,

it does not require many data points to perform well.

¢ Useful interactions between variables. The shape is the most important informa-
tion when identifying fish. Therefore, for the fishcatch data, knowing the length
of a fish is not enough unless you also know the width. For the digits dataset, one
particular light cannot fully decide which number it is unless you know all other
lights. The same occurs for the Arcene data, where there are interactions between
different proteins. In each split, the random forest will search for the best single
variable and its cut point. However, the LDATree uses the LDA split, which is
the linear combination of variables, and the decision boundary is not restricted
to dichotomous splits (unless it is a binary classification problem). Sometimes,
one variable might be marginally insignificant but is significant in interactions
with other variables. This explains why stepLDATree is not as effective as the

LDATree in the Arcene data, as stepLDATree has a variable selection step.
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Figure 6.5: Real data analysis results in Section 6.2 on three datasets: Confidence
intervals for testing accuracies are presented with 25D error bars.
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7 CONCLUSION & FUTURE WORK

In this thesis, we focus on the integration of LDA and the decision tree, introducing
stepLDATree and LDATree. We aim to make them powerful single-tree classifiers
that address most of the well-known weaknesses of both LDA and decision trees.
Additionally, we touch on the problem of missing values, seeking the best solution
within our framework. Throughout our research, the metric we care about the most is
testing accuracy.

Section 3 mainly focuses on algorithm development and documents our efforts in
revising and improving each part of the tree structure. We review some traditional LDA
methods that can deal with the small-sample-size problem in Section 3.1, and select
LDA /GSVD as our best candidate. It can retain all discriminant information without
the necessity of tuning. To address the potential overfitting problem with LDA, we
review the most popular stepwise LDA method in Section 3.2 and propose an improved
version. This new version uses Pillai’s trace instead of Wilk’s A, solving the problem
of premature stopping and better integrating with our LDA /GSVD framework. We
then review several stopping rules in Section 3.3 and present a new direct-stopping
rule using the p-value from the z-test of comparing pre-split and post-split training
errors. We also recommend traditional cost-complexity pruning when time cost is
not a concern and look-ahead splitting is needed. In Section 3.4, we explore several
new splitting rules and choose the LDA split as our best candidate. The LDA split
is not forced to be axis-orthogonal, making it more general. It uses the prediction
region from the LDA, making it a powerful discriminative tool if we have a good LDA
tit. If not, the split serves as a random split, which can break the symmetry pattern
and facilitate subsequent splits. Additionally, the LDA split is fast since there is no
searching involved, and it has already been fitted in the previous step.

Section 4 is about missing values. We explored new missing value solutions and
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applied them, along with several well-known missing value solutions, to our stepL-
DATree and LDATree models. We found that the simple missing value solution is
sufficient in terms of testing accuracy. We prove in Section 4.4 that simple imputation
at the root node is equivalent to node-wise simple imputation within the LDATree
framework. Section 5 presents results from synthetic datasets, illustrating the methods’
performance and providing use cases for stepLDATree. In Section 6, we analyze real
datasets and present use cases for LDATree.

We claim that both LDATree and stepLDATree generally outperform single-tree
classifiers in terms of testing accuracy. Compared to ensemble methods like random
forests, there are potential use cases where both methods may outperform. StepLDA-
Tree is preferable when there are many noise variables or when look-ahead splitting
is needed. LDATree is more effective when the sample size is small and there are
interactions between variables. Overall, stepLDATree is more accurate, more general,
and can handle more scenarios, while LDATree might be a better choice when noise
variables are not a concern and the sample size is not large.

Next, we discuss the limitations from two perspectives. First, regarding the algo-
rithm itself, each part can be improved. The LDA/GSVD in Section 3.1 has decent
accuracy, but it can be very slow when there are many columns. Another notorious
problem with LDA is its sensitivity to outliers. Currently, this is not a huge problem
since the tree structure helps mitigate it, but it would be better if LDA could handle
this independently. The splitting rule in Section 3.4 might be modified to make the
decision boundary clearer and more intuitive, unlike those in Figure 5.1 and Figure 5.4.
Value grouping might be helpful. Additionally, LDA only considers class centroids,
and decision boundaries are calculated solely based on the normality assumption.
Borrowing ideas from SVM to make it more data-driven could be helpful. In the future,
we can integrate importance scores into our algorithm since stepLDATree and stepwise

LDA have generated them implicitly.
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Second, from the dataset perspective, collecting additional datasets is necessary, as
the current set of 49 datasets may not provide sufficient diversity or representation. It
is important to have data with various missing patterns. It will be interesting to see if

our current solution remains effective with datasets having diverse MAR patterns.
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A SUPPLEMENTARY DATA DESCRIPTION




dataset colName rowSize | colSize | nLevels | maxProp | missing
CE EARNCOMP 4693 916 8 0.274 Yes
CE REF_RACE 4693 914 6 0.888 Yes
CE [BJREF_RACE 1051 889 6 0.5 Yes
NHTSA TRANSM 3270 920 9 0.412 Yes
NHTSA COLMEC 3028 920 9 0.603 Yes
NHTSA ENGINE 3273 911 18 0.382 Yes
COVID DeathIntube 54313 48 2 0.792 Yes
COVID [B]DeathIntube | 22606 47 2 0.5 Yes
ACS CIT 79060 114 5 0.2 Yes
ACS RELSHIPP 49039 99 19 0.053 Yes
NHDS marital.status 4374 59 6 0.167 No
NHDS admission.type | 29235 61 5 0.2 No
NHDS discharge.status | 10829 59 7 0.143 No
birthwt DBWT 90000 139 3 0.33 Yes
iris Species 150 4 3 0.33 No
fishcatch Species 159 7 7 0.352 Yes
DummyMatrix Class 2000 20 10 0.1 No
DummyMatrix[M] | Class 2000 20 10 0.1 Yes
Vowel y 990 10 11 0.09 No
PrelimSim1 response 16000 87 8 0.125 Yes
PrelimSim2 response 16000 4 8 0.125 Yes
Internet adOrNot 3279 1558 2 0.86 Yes
Internet [B]JadOrNot 919 1470 2 0.5 Yes
Indoor Space 21048 522 124 0.053 No
Indoor BF 21048 522 13 0.131 No
Parkinson class 756 753 2 0.746 No
Parkinson [B]class 384 753 2 0.5 No
Arcene Class 200 9961 2 0.56 No
peptide bind 310 254 2 0.584 No
Digits CART Digit 200 7 10 0.14 No
golubdata Y 72 3571 2 0.653 No
CapitalOne dissatisfied 22242 25 2 0.852 Yes
CapitalOne [B]dissatisfied 6576 25 2 0.5 Yes
DummyAndSim1 | response 16000 28 9 0.498 No
spam spam 4601 57 2 0.606 No
simSurface2 Y 5000 10 2 0.5 No
simSurface4 Y 5000 10 4 0.25 No
jobSatis DV_JobSatis 50225 74 5 0.466 Yes
Diabetes Diabetes_binary | 70692 21 2 0.5 No
SUPPORT2 death 9105 64 2 0.681 Yes
SUPPORT?2 hospdead 9105 64 2 0.741 Yes
MI ZSN 1700 111 2 0.768 Yes
MI LET_IS 1700 111 8 0.841 Yes
APS_Failure class 2750 169 2 0.5 Yes
SECOM result 208 468 2 0.5 Yes
Motion_Capture Class 78095 39 5 0.21 Yes
Polish_bankruptcy | class 4182 64 2 0.5 Yes
Mice_Protein class 1080 77 8 0.139 Yes
Diabetes130 readmitted 34071 1983 3 0.33 Yes
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Table A.1: Data description for the dataset used in Section 3.1. Here, nLevels represents
the number of levels of the response variable, and maxProp represents the proportion
of the plurality class in the response variable.
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dataset colName rowSize | colSize | nLevels | maxProp | naProp | naAnyProp
CE EARNCOMP 4693 916 8 0.274 0.148 1

CE REF_RACE 4693 914 6 0.888 0.146 1

CE [BIREF_RACE | 1051 889 6 0.5 0.147 1
NHTSA TRANSM 3270 920 9 0.412 0.093 1
NHTSA COLMEC 3028 920 9 0.603 0.093 1
NHTSA ENGINE 3273 911 18 0.382 0.093 1
ACS CIT 79060 114 5 0.2 0.31 1
ACS RELSHIPP 49039 99 19 0.053 0.366 1

MI ZSN 1700 111 2 0.768 0.084 1

MI LET_IS 1700 111 8 0.841 0.084 1
SECOM result 208 468 2 0.5 0.047 1
Motion_Capture Class 78095 39 5 0.21 0.328 1
COVID [B]DeathIntube | 22606 47 2 0.5 0.075 0.988
COVID DeathIntube 54313 48 2 0.792 0.075 0.986
SUPPORT?2 death 9105 64 2 0.681 0.115 0.966
SUPPORT?2 hospdead 9105 64 2 0.741 0.115 0.966
APS_Failure class 2750 169 2 0.5 0.129 0.957
birthwt DBWT 90000 139 3 0.33 0.035 0.894
Polish_bankruptcy | class 4182 64 2 0.5 0.019 0.663
fishcatch Species 159 7 7 0.352 0.069 0.553
jobSatis DV_JobSatis 50225 74 5 0.466 0.028 0.508
Mice_Protein class 1080 77 8 0.139 0.017 0.489
Internet adOrNot 3279 1558 2 0.86 0.001 0.281
CapitalOne dissatisfied 22242 25 2 0.852 0.003 0.079
CapitalOne |B]dissatisfied 6576 25 2 0.5 0.003 0.078

Table A.2: Data description for the dataset used in Section 4.3, sorted by naAnyProp.
Here, nLevels represents the number of levels of the response variable, maxProp repre-
sents the proportion of the plurality class in the response variable, naProp represents
the proportion of the missing entries across all entries, and naAnyProp is defined as
one minus the proportion of complete cases.
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