
LDATree: Integrating LDA and Decision Trees for Enhanced Classification with
Missing Values

by

Siyu Wang

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: December 5th, 2024

The dissertation is approved by the following members of the Final Oral Committee:
Wei-Yin Loh, Professor, Statistics
Peter Chien, Professor, Statistics
Lu Mao, Associate Professor, Biostatistics and Medical Informatics
Yinqiu He, Assistant Professor, Statistics
Yongyi Guo, Assistant Professor, Statistics

© Copyright by Siyu Wang 2024
All Rights Reserved

i

acknowledgments

I want to express my deepest gratitude to my advisor, Prof. Wei-Yin Loh. I never
imagined that a single course in my first semester in Madison would fundamentally
change my life. He showed me that learning can be incredibly fun and that Statistics
can be learned in a completely new and exciting way! Six years have passed, but I
still feel the same passion I had in his STAT 602. He supported me every step of the
way, especially during COVID-19, allowing me to work remotely and stay with my
family, who were overjoyed to have me home. He provided tremendous comfort and
encouragement when I got stuck in my research. And that’s not all — he’s also an
incredible tour guide! Thanks to him, Albert and I enjoyed the most authentic street
food in Singapore. Words cannot express how much he has shaped my life. I know I
will miss our weekly conversations deeply.

I would like to sincerely thank Prof. Yongyi Guo and Prof. Yinqiu He for their
valuable time, suggestions, and comments. Special thanks to Prof. Peter Chien, Prof.
Lu Mao, and Prof. Sameer Deshpande for raising insightful questions during my
preliminary exam. I greatly appreciate the fresh perspectives you brought to this
project.

I want to thank my internship manager, Allen Shu, for his support and guidance.
The project we completed together was crucial in my full-time job search. I also want
to thank Roger Chang, a friendly and athletic guy who always bought me milk tea,
and Ray Su, who is incredibly smart, candid, and resourceful.

I owe my friends a huge thanks; without their support, this Ph.D. journey would
have been impossible. Thanks to Bingye Bai and Mingyang Ni, who were there for
me when my grandpa passed away. Thanks to Dongyu Lyu, Sicheng Bian, Yu Luan,
Zhongrui Zhang, and Xiaoxuan Ren, who spent countless nights helping me develop
memorization skills (through poker games). Thanks to Jiyun Zhang, Minghao Sun,
Hanzhe Teng, Changhao Shi, Rencong Zhang, Peiji Zhang, Baiheng Chen, and Yudi
Wang for their hospitality when I needed companionship. Thanks to Xiaoxi Sun and
Zongru Li for sharing their genuine insights when I needed them most. Thanks to
Keyanna Qi and Tim Mai for their deep care and for making Madison feel like home. I
am incredibly grateful to the best roommates in the world, Linquan Ma and Jiatong Li,
who treated me with patience, understanding, and love. You always have my deepest
respect — and not just because of the countless delicious meals you cooked. To my
best friend, Kehui Yao, and his wife, Yingjiang Jiang, I cannot thank you enough; you
have become an irreplaceable part of my life.

ii

I want to thank my wife, Shiyu Ding, and my family for their support. Lastly, I
want to thank God. You have guided me through each step of my life and have shown
me that there is someone in this world who knows me completely and still loves me
unconditionally.

iii

contents

Contents iii

List of Tables iv

List of Figures v

1 Introduction 1

2 Background 6
2.1 Existing LDA-Integrated Decision Tree Methods 7
2.2 Case Study: Fishcatch Dataset . 8

3 LDATree & stepLDATree Algorithm 13
3.1 Node Model: LDA Variants . 13
3.2 Node Model: Stepwise LDA . 26
3.3 Stopping Rule . 45
3.4 Splitting Rule . 56

4 Missing Value Solutions 66
4.1 Existing Methods . 66
4.2 Proposed Methods . 68
4.3 Simulation . 71
4.4 Combined Result and Conclusion . 79

5 Simulation 88
5.1 Some 2D Patterns . 88
5.2 Use Case for StepLDATree . 90

6 Real Data Analysis 97
6.1 Performance Across 49 Datasets . 97
6.2 Use Case for LDATree . 99

7 Conclusion & Future Work103

A Supplementary Data Description106

References109

iv

list of tables

2.1 Variables in the fishcatch dataset . 9

3.1 Simulation results in Section 3.1. Two standard deviations are recorded
in parentheses. Data corresponds to the DummyMatrix-Class detailed in
Table A.1. 22

3.2 Results on the Parkinson dataset in Section 3.1. Two standard deviations are
recorded in parentheses. Data corresponds to the Parkinson-class detailed
in Table A.1. 23

3.3 Results of three LDA variants in Section 3.2. Two standard deviations
are recorded in parentheses. Data corresponds to CE-[B]REF_RACE and
Parkinson-class detailed in Table A.1. 42

3.4 Testing accuracies of three LDA variants in Section 3.2 after adding 500 Gaus-
sian noise variables. Two standard deviations are recorded in parentheses.
Detailed data descriptions can be found in Table A.1. 43

3.5 The CVpruning table from LDATree using NHDS-discharge.status data in
Section 3.3. Detailed data descriptions can be found in Table A.1. 50

4.1 Descriptions of missing value methods tested in Section 4.4. 81

5.1 Descriptions of the methods tested in Section 5. 88

6.1 Descriptions of the methods tested in Section 6.1. 97

A.1 Data description for the dataset used in Section 3.1. Here, nLevels repre-
sents the number of levels of the response variable, and maxProp represents
the proportion of the plurality class in the response variable. 107

A.2 Data description for the dataset used in Section 4.3, sorted by naAnyProp.
Here, nLevels represents the number of levels of the response variable,
maxProp represents the proportion of the plurality class in the response
variable, naProp represents the proportion of the missing entries across all
entries, and naAnyProp is defined as one minus the proportion of complete
cases. 108

v

list of figures

1.1 2D Decision boundary in Section 1. Straight line: actual boundary. Staircase:
from rpart (a decision tree algorithm in R), and the colored background
represents the prediction regions from rpart. 2

1.2 3D Decision boundary in Section 1. Gray surface: actual boundary. Red
step-function surface: from rpart. 2

1.3 Decision boundary from LDA in Section 1. Points are the observed data; the
colored background represents LDA prediction regions. Text labels show
the class centroids. 3

1.4 Decision boundary from LDA after splitting on x = 0 (Section 1). 4

2.1 FACT Decision Tree on fishcatch Dataset (Section 2.2), showing predicted
species and sample size under each node. Misclassified cases (training
errors) are indicated by the number next to the node. 10

2.2 CRUISE Decision Tree on fishcatch Dataset (Section 2.2): Species distribution
is shown below each node, with the training error from bivariate LDA
indicated by the number next to the node. Splitting criteria is displayed
above the nodes, and the resulting intervals are sorted in ascending order
from left to right. 11

2.3 Two fish with different height-to-length ratios (Section 2.2). 11
2.4 LDA Result on fishcatch Dataset (Section 2.2). 12

3.1 Real data analysis results in Section 3.1: Average runtime vs. average testing
accuracy. Confidence intervals for runtimes (on a logarithmic scale) and
standardized accuracies are presented with 2SD error bars. 24

3.2 The runtime comparisons of three LDA/GSVD implementations (Section
3.1). The data consists of 10,000 observations from 10 classes. The ribbon
width represents the 95% confidence interval. 26

3.3 Training and testing accuracies when adding more variables. Variables are
first ranked based on the GUIDE importance score. Data corresponds to
CE-[B]REF_RACE and Parkinson-class detailed in Table A.1. 27

3.4 A simulated pattern used in Section 3.2. The stepwise LDA based on Wilks’
Λ selects X2 and ignores X1, leading to suboptimal performance. 32

vi

3.5 The partial F -statistic does not follow an F -distribution under the stepwise
selection framework (Section 3.2). When there are two variables (lower plot),
the partial F for the first variable X(1) is biased upwards, while the partial
F for the second variable X(2) is biased downwards. 33

3.6 Illustration of stepwise forward selection (Section 3.2). (nn, ni) next to each
node represents the number of noise and informative variables included so
far. A yellow background indicates an informative variable being selected,
a green background indicates the selection stops, and a purple background
indicates that at least one type I error is made. 37

3.7 Type I error rate from three forward LDA variants on the iris dataset (Section
3.2). The ribbon width represents the 95% confidence interval. The ribbon
for Pillai overlaps with the ribbon for Wilks-Bonferroni in the lower plot. 41

3.8 Real data analysis results in Section 3.2: Average runtime vs. average testing
accuracy (stepLDA added). Confidence intervals for runtimes (on a loga-
rithmic scale) and standardized accuracies are presented with 2SD error
bars. 43

3.9 A partial plot from LDATree, used in Section 3.3. The number below each
node shows the ratio of correctly classified training samples vs. total node
size. 49

3.10 Test Accuracy vs. α: the performance of stepLDATree on 49 datasets. The
individual plot title indicates the index of the dataset. α is the p-value cutoff
during tree construction. 54

3.11 Test Accuracy vs. α: the performance of stepLDATree on 49 datasets and
averaged. α is the p-value cutoff during tree construction. 55

3.12 A toy example demonstrating the ineffectiveness of the LDA split in the
presence of a class with a dominant prior. The right plot shows the posterior
probability of data in node 3 from the left plot (Section 3.4). 59

3.13 LDA splitting on XOR data (Section 3.4). 60
3.14 LD1 score splitting on XOR data (Section 3.4). 60
3.15 Illustration of the scatter trace splitting rule on XOR data, executed four

times (Section 3.4). 61
3.16 Real data analysis results in Section 3.4: Average runtime vs. average testing

accuracy for LDATree. Confidence intervals for runtimes (on a logarithmic
scale) and standardized accuracies are presented with 2SD error bars. . . . 64

vii

3.17 Real data analysis results in Section 3.4: Average runtime vs. average testing
accuracy for stepLDATree. Confidence intervals for runtimes (on a loga-
rithmic scale) and standardized accuracies are presented with 2SD error
bars. 65

4.1 Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for
runtimes (on a logarithmic scale) and standardized accuracies are presented
with 2SD error bars. 73

4.2 Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for
runtimes (on a logarithmic scale) and standardized accuracies are presented
with 2SD error bars. 76

4.3 Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for
runtimes (on a logarithmic scale) and standardized accuracies are presented
with 2SD error bars. 78

4.4 Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for
runtimes (on a logarithmic scale) and standardized accuracies are presented
with 2SD error bars. 80

4.5 Real data analysis results in Section 4.4 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for
runtimes (on a logarithmic scale) and standardized accuracies are presented
with 2SD error bars. 82

5.1 The first simulation results (3X3 square) in Section 5.1. Except for the original
pattern, other plots show the prediction regions. 89

5.2 The second simulation results (spiral) in Section 5.1. Except for the original
pattern, other plots show the prediction regions. 91

5.3 The third simulation results (concentric circles) in Section 5.1. Except for
the original pattern, other plots show the prediction regions. 92

5.4 The simulation results (3X3 square + noises) in Section 5.2. Except for the
original pattern, other plots show the prediction regions. 93

5.5 The testing results (5D XOR) in Section 5.2. Methods are ordered by their
accuracies, with confidence intervals for accuracies shown in 2SD error bars. 95

viii

6.1 Real data analysis results in Section 6.1 using 49 datasets: Average runtime
vs. average testing accuracy. Confidence intervals for runtimes (on a log-
arithmic scale) and standardized accuracies are presented with 2SD error
bars. 98

6.2 Electronic digits from the Digits dataset in Section 6.2. 100
6.3 Number the electronic lights from the Digits dataset in Section 6.2. 100
6.4 Notation of the ten electronic digits from the Digits dataset in Section 6.2. 100
6.5 Real data analysis results in Section 6.2 on three datasets: Confidence inter-

vals for testing accuracies are presented with 2SD error bars. 102

ix

Abstract

We present a new classification tree method called LDATree and its variant
stepLDATree. We first revise some of the LDA variants and develop an improved
version of stepwise LDA that can better handle non-invertible within-class scatter
matrices. Then, this stepwise LDA serves as the node model and splitting rule
in the decision tree framework, allowing for fast and non-axis-orthogonal splits.
Within the LDATree framework, we explored several approaches for handling
missing values and found that simple methods work best: using the median with
missing flags for numerical variables and new levels for categorical variables.
Simulation studies and real data analysis show that LDATree and stepLDATree
generally outperform single-tree methods and help identify several scenarios where
LDATree and stepLDATree outperform the random forest. We also implement our
algorithms into R packages folda and LDATree, which are available on CRAN.

1

1 introduction

Linear discriminant analysis (LDA), which assumes Gaussian densities on the covari-

ates, is a powerful linear method for classification problems. LDA aims to find linear

combinations of features that can best separate the groups by maximizing the ratio of

between-group variance and within-group variance. Another popular classifier with a

linear decision boundary is the decision tree, which recursively partitions the sample

space into rectangular regions. We aim to combine the advantages of both LDA and

decision trees to develop a better classifier.

One of the biggest problems of the tree-based methods is that it usually cuts in

an axis-orthogonal direction. For numerical covariates, the splitting rule for each

non-terminal node has the form xi ≤ a. For categorical covariates, the splitting rule

can be written as xi ∈ {c1, c2, . . . , ck} where {c1, c2, . . . , ck} are levels of the variable Xi.

Alternatively, this can be written as ⋃i=1,2,...,k(Di = 1) by transforming Xi into a 0/1

dummy matrix D1, D2, D3, . . . , DJ . The decision tree loses its effectiveness when the

real decision boundary is not orthogonal to the axes. e.g., Figure 1.1. The decision tree

has 10 splits and uses a staircase function to approximate the boundary line. However,

achieving better performance requires adding many additional splits, consequently

demanding more data. Additionally, this approximation’s accuracy decreases as the

dimensions increase, e.g., Figure 1.2. The gap between the true boundary and the

fitted boundary from the decision tree becomes larger, and it might take the decision

tree hundreds of splits to approximate this hyperplane well enough. LDA, which

can directly fit a hyperplane decision boundary in the high-dimension space, is more

suitable for this problem.

On the other hand, LDA uses the Gaussian density assumption, and the decision

boundary for each class is usually a polygon. Therefore, LDA’s performance may

decline when the class centroids are closely situated together or when symmetry is

2

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x1

x2
response

Class 0
Class 1

Figure 1.1: 2D Decision boundary in Section 1. Straight line: actual boundary. Staircase:
from rpart (a decision tree algorithm in R), and the colored background represents
the prediction regions from rpart.

Figure 1.2: 3D Decision boundary in Section 1. Gray surface: actual boundary. Red
step-function surface: from rpart.

3

present (Figure 1.3). By first applying tree-based methods to split the data on the

x variable, the class centroids can be separated and the symmetry destroyed. This

enables LDA to carry out its classification task more effectively (Figure 1.4).

Class 0

Class 1 Class 2

−2

−1

0

1

2

−2 −1 0 1 2

response
Class 0
Class 1
Class 2

One overall LDA model is fitted

LDA accuracy: 0.245

Figure 1.3: Decision boundary from LDA in Section 1. Points are the observed data;
the colored background represents LDA prediction regions. Text labels show the class
centroids.

LDA can be viewed as a dimensionality reduction technique that projects data

onto a lower-dimensional space while preserving the information most critical for

distinguishing between groups. These projections in the lower dimension, also known

as linear discriminants, can be useful when building a tree. Some previous approaches

have also integrated LDA components into decision trees, such as FACT (Loh and

Vanichsetakul, 1988) and CRUISE (Kim and Loh, 2003). However, these methods have

some limitations and may result in information loss. For instance, FACT ignores the

relationship between the response variable and covariates by using principal compo-

nent analysis (PCA) during variable selection, while CRUISE uses only the top two

variables to fit LDA, which is suboptimal. Therefore, none of these methods can be

considered truly recursive LDA, which is the goal of this work. The proposed method

4

Class 0

Class 0Class 1

Class 1

Class 2

Class 2

−2

−1

0

1

2

−2 −1 0 1 2

response
Class 0
Class 1
Class 2

Two individual LDA models are fitted

LDA accuracy: 0.665

Figure 1.4: Decision boundary from LDA after splitting on x = 0 (Section 1).

will be referred to as LDATree for the remainder of the paper.

Another problem is missing values in the datasets, which can compromise the

model’s effectiveness. LDA’s decision boundary is based on linear combinations of

covariates, and missing values in any covariate will make the boundary uncomputable.

This issue with missing values also appears in other machine-learning techniques,

such as the random forest. Thus, we examine some missing value solutions using real

data to identify a solid approach for LDA.

This thesis is organized as follows: Section 2 presents a brief literature review of

previous recursive partitioning methods, setting the stage for developing our proposed

LDATree method. Section 3 is the core of this thesis, which documents our effort to

refine each component of a decision tree: node models, stopping rules, and splitting

rules. Section 4 discusses different missing value imputation methods and identifies

the best method for LDATree using real datasets. Section 5 contains results from

synthetic datasets, while Section 6 contains results from real data analysis. These

two sections also present use cases for stepLDATree and LDATree, respectively. Lastly,

5

Section 7 concludes the thesis and lists some limitations and directions for future work.

6

2 background

Recursive partitioning methods are based on the idea of recursively dividing a dataset

into subsets based on the values of its features, such that the resulting partitions are as

homogeneous as possible with respect to the target response variable. The decision

tree, one of the recursive partitioning methods, can be summarized in a top-down tree

graph. At each tree node, the sample is split into two or more subsets using a criterion

determined through a greedy search to minimize within-node heterogeneity. As the

splitting goes on, the decision tree will have more nodes, and each node will have

fewer data but be more homogeneous. In the decision tree, child nodes are the nodes

that branch out from a parent node. Nodes without child nodes are called terminal

nodes (or leaves), while those with child nodes are intermediate nodes. In the simplest

classification setting, the plurality class in each terminal node will be the prediction of

that node. During prediction, new data will start from the root (top) node, recursively

go to one of the child nodes of the current node based on the splitting rules, and

eventually end up in one of the terminal nodes.

Compared with other machine learning methods, decision trees are easy to interpret

and understand, as they represent the decision-making process in a tree-like structure.

Both categorical and numerical data can be well handled by decision trees. Decision

trees are non-parametric, meaning they do not require any assumptions about the

underlying data distribution. Decision trees are robust to outliers due to the nature

of their interval-like cuts on numerical variables, and they can handle missing data

in many ways. One method is through surrogate splits, where the tree grows on a

different backup variable, and the cut is chosen to mimic the original cut as closely

as possible. Another method is through missing flags, where all observations with

missing values are assigned to one of the child nodes by minimizing a pre-defined loss

function. Last but not least, it has an embedded interaction structure. For most models,

7

you have to pre-specify the interactions in the model, which will dramatically increase

the number of variables and sometimes create a data sparsity problem when the factor

variable involved in the interaction has too many levels. Moreover, interaction might

only exist in parts of the sample. Using a constant coefficient to model the interaction

throughout the sample space might dilute its effect. In the classification tree, the

interaction is added to the model automatically, and its effect is local — only in that

particular node.

2.1 Existing LDA-Integrated Decision Tree Methods

In this section, we review two existing decision tree approaches that incorporate LDA

into their models.

FACT (Loh and Vanichsetakul, 1988) It is a decision tree with multiway splits rather

than a binary tree. This approach supports linear combination splits, whose

splitting rule has the form ⋃
i{
∑
j aijxij ≤ bi} and has been demonstrated to

yield higher accuracy than univariate splits. While the CART method (Breiman

et al., 1984) exclusively uses numerical variables to create linear combination

splits, FACT adopts a more comprehensive approach and includes categorical

variables as well. In particular, a categorical variable is transformed into a 0-1

dummy vector and subsequently projected onto the largest discriminant coordi-

nate (CRIMCOORD). In other words, CRIMCOORD records the coefficients from

the first discriminant score in an LDA model where the response variable is the

original class and the covariates are the 0-1 dummy variables. Unlike earlier tech-

niques that demanded exhaustive searches for linear combination splits, FACT

expedites the process by using LDA to find the combinations in one shot. After

fitting an LDA model within the node, the space is partitioned into polygons,

with each polygon being a node associated with a linear discriminant function. To

8

prevent the appearance of a singular covariance matrix in LDA, FACT uses PCA

to reduce the dimension prior to applying LDA. Additionally, FACT supports

unequal misclassification costs, dispersion splits (splits on | xi − x̄ | instead of

xi), and polar transformations.

CRUISE One of the options available in CRUISE (Kim and Loh, 2003) adopts a uni-

variate split and fits a bivariate LDA model within each terminal node. First,

regarding variable selection for univariate splits, FACT utilizes the ANOVA F-

statistic to rank both numerical and categorical variables (through CRIMCOORD).

Loh and Shih discovered that FACT has selection bias towards categorical vari-

ables, leading them to develop the QUEST method (Loh and Shih, 1997), which

applies ANOVA F-statistic to numerical variables and the contingency table χ2-

statistic to categorical variables. However, the ANOVA F-statistic can only detect

differences in group means and is insensitive to the difference in the shape of

the density functions. To fix that, CRUISE divides all numerical variables at

their sample quartiles and then conducts a χ2 test. Meanwhile, CRUISE uses

only two variables to fit LDA in terminal nodes, allowing the model to share

some data complexity while maintaining interpretability. It screens
(
p
2

)
pairs of

variables and uses the MANOVA Wilk’s Λ-statistic (for testing the equality of

the class mean vectors) to select the best pair of variables. In contrast to FACT,

which uses a pre-stopping rule, CRUISE determines the optimal tree size by

initially constructing an oversized tree and subsequently pruning it back using

cost-complexity pruning via cross-validation.

2.2 Case Study: Fishcatch Dataset

Moving forward, we will use the fishcatch dataset as a case study to demonstrate

the results of these decision tree approaches. The Fishcatch data set contains seven

9

measurements of 159 fish caught in Finland’s Lake Laengelmavesi, obtained from

the Journal of Statistics Education data archive (https://jse.amstat.org/datasets/

fishcatch.dat.txt). The fish are from 7 species: (1) 35 Bream, (2) 11 Parkki, (3) 56

Perch, (4) 17 Pike, (5) 20 Roach, (6) 14 Smelt, (7) 6 Whitefish. The sex variable has 87

cases (54.7%) missing, and the weight variable has 1 case (0.6%) missing. For now, we

focus on the complete dataset without missing values and ignore the sex variable. A

hidden feature of this dataset is that it is mainly sorted by Length1 within each fish

species, with only three exceptions. For the fish with missing weight, we imputed it

by 550g, given that the fish above and below the observation had weight of 500g and

600g, respectively. Table 2.1 provides detailed information about the data. Our task is

to use the six variables to predict the fish species.

Table 2.1: Variables in the fishcatch dataset

Weight Weight of the fish (in grams)
Length1 Length from the nose to the beginning of the tail (in cm)
Length2 Length from the nose to the notch of the tail (in cm)
Length3 Length from the nose to the end of the tail (in cm)
Heightpc Maximal height as percent of Length3
Widthpc Maximal width as percent of Length3

Figure 2.1 presents a decision tree created by the FACT algorithm. An LDA model

is fitted at each intermediate node, unless the pre-stopping condition is met. When

an LDA model is fitted, the sample is partitioned based on the predicted value from

the model. For instance, seven child nodes are formed in the root node as all seven

classes are predicted. On the other hand, fewer classes are predicted in lower nodes,

resulting in fewer child nodes. The plot shows that FACT performed well in predicting

Bream, Parkki, Pike, and Smelt species, but it struggled to differentiate between Perch,

Roach, and Whitefish species. Using leave-one-out cross-validation, FACT produces 31

prediction errors among 159 samples.

Figure 2.2 displays a decision tree generated by the CRUISE algorithm. The algo-

rithm splits on Heightpc, and the splitting points are calculated in a similar fashion to

https://jse.amstat.org/datasets/fishcatch.dat.txt
https://jse.amstat.org/datasets/fishcatch.dat.txt

10

LDA Split
159

2
Bream
37

0
Parkki

9

LDA Split

4
Perch
48

1
Roach
5

1
Whitefish

2

0
Pike
17

LDA Split

LDA Split

0
Perch
4

0
Roach
2

4
Roach
13

1
Whitefish

4

0
Smelt
14

2
Whitefish

4

Figure 2.1: FACT Decision Tree on fishcatch Dataset (Section 2.2), showing predicted
species and sample size under each node. Misclassified cases (training errors) are
indicated by the number next to the node.

FACT, but with an added Box-Cox transformation before fitting LDA to better satisfy

the normal assumption. Subsequently, a bivariate LDA model is fitted in each terminal

node. CRUISE made 10 errors out of 159 samples in the leave-one-out cross-validation,

which is a substantial improvement from FACT. Compared to FACT, CRUISE uses

univariate splits which can be interpreted. For instance, the first split is based on

Heightpc, which denotes the percentage ratio between height and length. As a result,

fish species like Bream and Pike (Figure 2.3) can be more easily distinguished, with

these two species occupying opposite ends of the decision tree. CRUISE also encoun-

ters difficulty differentiating between Perch, Roach, and Whitefish species, as these

classes contribute to all of the training errors.

Lastly, an LDA model is fitted to the data, and Figure 2.4 displays a scatter plot

of the fish based on the first two (out of six) discriminant coordinates. With just 1

error, LDA achieves a significantly better performance in comparison to the earlier

two techniques. This plot also reveals a drawback of the marginal analysis on low

dimensions — overlapping. Roach and Whitefish overlap on this 2D plot, but this plot

11

159

0
14 Pike
5 Smelt

Heightpc
≤ 16.6296

0
3 Pike
9 Smelt

≤ 20.9946
3

54 Perch
19 Roach
4 Whitefish

≤ 29.6718
3

2 Perch
1 Roach
2 Whitefish

≤ 33.6097
0

35 Bream
11 Parkki

> 33.6097

Figure 2.2: CRUISE Decision Tree on fishcatch Dataset (Section 2.2): Species distribution
is shown below each node, with the training error from bivariate LDA indicated by
the number next to the node. Splitting criteria is displayed above the nodes, and the
resulting intervals are sorted in ascending order from left to right.

(a) Sea Bream (from fish-man.co.uk)
(b) Northern Pike (from Wisconsin Depart-
ment of Natural Resources)

Figure 2.3: Two fish with different height-to-length ratios (Section 2.2).

is a 2D shadow from a 6D space. They are correctly classified with the help of the

features not shown in the plot, which may help to explain why the linear combination

splits perform better than univariate splits.

Our LDATree builds upon previous methods while introducing significant innova-

tions that effectively address their key weaknesses and enhance overall performance.

Starting from the next section, we will discuss all necessary components of a decision

tree and our efforts to refine them.

12

BreamBream
Bream

Bream
BreamBream

Bream

Bream

Bream
Bream

BreamBream
BreamBream

Bream
Bream

Bream
Bream
Bream

Bream
Bream

Bream
Bream
Bream

Bream
Bream

Bream
Bream
Bream

Bream

BreamBreamBream

Bream

Bream

Whitefish
Whitefish
Whitefish

Whitefish

Whitefish

Whitefish
RoachRoachRoachRoach

RoachRoach

Roach

RoachRoach

Roach
RoachRoach

Roach

Roach
Roach

RoachRoach
Roach

RoachRoach

Parkki

Parkki
ParkkiParkkiParkki

Parkki

Parkki
ParkkiParkkiParkkiParkki

SmeltSmelt
Smelt

Smelt

Smelt
SmeltSmeltSmeltSmeltSmelt

SmeltSmelt

Smelt

Smelt

Pike

PikePike

Pike

Pike

Pike
PikePike

Pike

Pike

Pike
PikePikePike

PikePike
Pike

Perch

Perch
Perch

Perch
Perch

PerchPerch
Perch

PerchPerchPerchPerchPerch
Perch

Perch
Perch

PerchPerchPerchPerch

Perch

Perch

Perch

Perch

Perch

PerchPerch
Perch

PerchPerch

Perch

PerchPerch
PerchPerchPerch

Perch

Perch

Perch

Perch

Perch
Perch

PerchPerch
Perch

Perch

Perch

PerchPerch

Perch

Perch
Perch PerchPerchPerch

Perch

−10

−5

0

−25 −20 −15 −10 −5
1st linear discriminant coord

2n
d

lin
ea

r
di

sc
rim

in
an

t c
oo

rd

Species
a
a
a
a
a
a
a

Bream
Parkki
Perch
Pike
Roach
Smelt
Whitefish

Figure 2.4: LDA Result on fishcatch Dataset (Section 2.2).

13

3 ldatree & stepldatree algorithm

3.1 Node Model: LDA Variants

The node model specifies the model used at each terminal node, and its simplest form

is the majority vote which classifies each instance into the most common class within

the node, as seen in CART and Random Forest. In our algorithm, we use an LDA

model instead of this majority vote, introducing a more sophisticated classification rule

for prediction and enhancing the algorithm’s ability to capture non-axis-orthogonal

patterns. However, the original LDA cannot handle certain scenarios effectively, and

the most popular R implementation MASS::lda (Venables and Ripley, 2002) has its

weaknesses, which affect LDA’s performance. In this section, we will explore some

alternatives to address these issues.

In traditional LDA, the goal is to find linear projections that best separate classes.

These decision boundaries are found by maximizing the ratio of between-class scatter

matrix to within-class scatter matrix, similar to optimizing a signal-to-noise ratio.

Suppose we have a data matrix X ∈ RN×M with N observations and M features. Our

response y ∈ RN is a factor vector containing J classes. Let xji ∈ RM represent the ith

observation from class j, x̄j ∈ RM be the mean vector for class j derived from its nj

instances, and x̄ ∈ RM denote the overall mean vector across all samples. HB ∈ RJ×M

and HW ∈ RN×M are defined as:

HB = [√n1 (x̄1 − x̄) ,√n2 (x̄2 − x̄) , . . . ,√nJ (x̄J − x̄)]T ,

HW = [(x11 − x̄1) , . . . , (x1n1 − x̄1) , (x21 − x̄2) , . . . , (x2n2 − x̄1) , . . . , (xJnJ
− x̄J)]T .

(3.1)

Then, the between-class scatter matrix SB , within-class scatter matrix SW , and total

14

scatter matrix ST can be defined as:

SB =
J∑
j=1

nj (x̄j − x̄) (x̄j − x̄)′ = HT
BHB

SW =
J∑
j=1

nj∑
i=1

(xji − x̄j) (xji − x̄j)′ = HT
WHW

ST =
J∑
j=1

nj∑
i=1

(xji − x̄) (xji − x̄)′ = SB + SW . (3.2)

Fisher’s criterion aims to find transformation vectors wM×1 that maximizes the

ratio:

arg max
w

wTSBw
wTSWw

(3.3)

The optimal W is derived by solving an eigenvalue problem involving S−1
W SB . The

resulting W projects the original data X into orthogonal linear discriminant scores

Xwi, ranked in a descending order of their signal-to-noise ratios.

However, challenges arise when the within-class scatter matrix, SW , is not invertible,

such as when there are more variables than observations or when variables are linearly

dependent. Given that rank(SB) = min(M,J − 1), the transformation matrix W we

seek has at mostM×(J−1) dimensions. That’s why typically, in a J-class classification,

LDA gives us J−1 discriminant scores. For the within-class scatter matrix, rank(SW) =

min(N − J,M). When M > N − J , SW (M×M) becomes singular. This situation makes

directly computing LDA’s linear boundary impossible. One might consider reducing

the number of variables by selecting the top-K variables based on certain criteria,

such as importance scores, to make the scatter matrix invertible. Yet, this method has

drawbacks:

• Importance scores are often based on other machine learning methods with

15

different criteria, which may not align with LDA’s objective function.

• Variables are typically ranked by their marginal (or univariate) effects, not the

combined effect from linear combinations that LDA seeks to find.

• Some machine learning methods need to finish building the entire classifier

before they can rank the variables, which can be time-consuming.

Therefore, it may be more effective to explore solutions within the LDA family. This

issue, known as the small sample size (SSS) problem, has been widely addressed in the

literature with several solutions proposed (Mai, 2013; Tharwat et al., 2017). We will

discuss some of these approaches and identify the most suitable one for our application.

Existing Methods

PCA-LDA (Belhumeur et al., 1997) This method, also known as Discriminant Analy-

sis of Principal Components (DAPC) (Jombart et al., 2010), uses Principal Com-

ponent Analysis (PCA) to find a smaller subspace where the within-class scatter

matrix isn’t singular and then apply Fisher’s criterion. However, this PCA-LDA

method focuses only on the structure of independent variables and neglects

the dependent variable. Additionally, choosing the right number of principal

components (PCs) is a challenge in practice.

Pseudo-inverse LDA (Fukunaga, 2013) To find the inverse of a singular SW matrix,

one alternative is the Moore-Penrose inverse, also used by the R package MASS::lda

to mitigate the SSS problem. It involves using Singular Value Decomposition

(SVD) to identify the rank of SW and then projecting the data onto the space

defined by the singular vectors with non-zero singular values. Fisher’s criterion

is then applied in this subspace to identify the directions with the most discrimi-

nant power. It is worth mentioning that this approach is equivalent to PCA-LDA

when the number of principal components is set to rank(SW).

16

Unlike the general PCA-LDA, which may use varying numbers of principal

components, this method maintains as much information as possible from the

original SW ’s column space. It discards the null space of SW , calculates SB in the

reduced space, and extracts up to J − 1 discriminant directions. However, like

PCA-LDA, this method might overlook important information in the null space

of SW .

Null Space LDA (Chen et al., 2000) This method reduces to the original LDA when

SW is of full rank. If not, it searches for the most discriminant directions within the

null space of SW . The rationale is that if there exists a transformation w such that

wTSWw = 0 and wTSBw 6= 0, Fisher’s criterion is maximized to∞. Therefore,

the null space of SW is considered to contain the most valuable discriminant

information and should be used rather than discarded. However, this approach

relies solely on the null space of SW , totally neglecting valuable information in

the column space of SW and being ineffective when the null space of SW lies in

the null space of SB, meaning there is no discriminant information in the null

space of SW .

Direct LDA (Yu and Yang, 2001) Many LDA variants use simultaneous diagonaliza-

tion to implement Fisher’s criterion. Typically, they first transform the within-class

scatter matrix (SW) into an identity matrix and then find an orthogonal trans-

formation to maximize the between-class scatter matrix (SB). The final selected

directions correspond to the eigenvectors associated with the largest eigenval-

ues. Conversely, Direct LDA adopts a different approach by transforming SB

first and then SW . This is because the ratio in Fisher’s criterion becomes zero

when wTSBw = 0, indicating that the null space of SB is not informative. Direct

LDA, therefore, first finds a subspace with a maximum of J − 1 dimensions that

maximizes SB, and then searches for the smallest SW within this subspace.

17

An advantage of Direct LDA is its speed, especially in handling high-dimensional

data. This is because the SVD involved in simultaneous diagonalization is of a

smaller dimension, N × J , instead of N ×M . However, as noted in (Gao and

Davis, 2006), this method has significant drawbacks. For example, beginning

simultaneous diagonalization with SW preserves more information, allowing for

more dimensions to find the largest SB. Conversely, starting with SB reduces

the dimensionality to J − 1, often leaving insufficient scope to minimize SW

effectively. Another perspective is that this method prefers dimensions where

SB is large; however, typically these dimensions also have a large SW , which

results in a less substantial increase in the overall ratio from Fisher’s criterion.

Additionally, unlike some other LDA variants, Direct LDA does not reduce to the

original LDA when SW is invertible.

LDA/GSVD (Howland et al., 2003; Ye et al., 2004) The incorporation of Generalized

Singular Value Decomposition (GSVD) into LDA enhances the efficiency of si-

multaneous diagonalization. Denoting the diagonal elements (singular values)

of between-class and within-class scatter matrices after GSVD as α2
i and β2

i , re-

spectively, the following properties hold:

1 ≥ α2
1 ≥ α2

2 ≥ · · · ≥ α2
M ≥ 0, (3.4a)

0 ≤ β2
1 ≤ β2

2 ≤ · · · ≤ β2
M ≤ 1, (3.4b)

α2
i + β2

i = 1. (3.4c)

A modified Fisher’s criteria is used here, which maximizes ∑M
i=1 α

2
i . To preserve

all discriminant information, it suffices to keep only the first rank(SB) columns

from W where α2
i > 0. Additionally, this method reduces to the original LDA

when SW is of full rank.

18

It is noteworthy that this method is equivalent to Uncorrelated LDA (ULDA) (Ye

and Yu, 2005; Ji and Ye, 2008), which provides an alternative perspective. ULDA

uses a different way of simultaneous diagonalization, first transforming ST and

then SB , where ST = SB + SW represents the total scatter matrix. The advantage

of involving ST is that its null space is the intersection of the null spaces for SW

and SB (wTSBw = wTSWw = 0). Consequently, the null space of ST can be

safely ignored without affecting the maximization of Fisher’s ratio. ULDA then

proceeds with the original LDA in the remaining subspace.

In the same paper, the authors introduce an extension known as Orthogonal

LDA (OLDA), which includes an extra QR decomposition step to make the trans-

formation matrix orthogonal. (Ye and Xiong, 2006) demonstrated that OLDA is

equivalent to Null Space LDA given that

rank (ST) = rank (SB) + rank (SW) . (3.5)

In cases where this condition is not met, Orthogonal LDA tends to perform better

by preserving more discriminant directions.

Regularized LDA (Friedman, 1989) To avoid the non-invertibility of SW , Regularized

LDA adds a constant to the diagonal, creating S′W = SW + ηIM . This adjustment

ensures invertibility. However, choosing the right value for η requires tuning,

and a poor choice could lead to unsatisfactory results. Additionally, this method

might be less effective in very high-dimensional settings since it doesn’t involve

any dimension reduction and may not effectively distinguish signal from noise.

Penalized LDA (Witten and Tibshirani, 2011) Penalized LDA introduces a penalty

term to shrink the discriminant vectors, distinguishing it from Regularized LDA.

19

To deal with non-invertible SW , it ignores the correlation structure by approxi-

mating SW with a diagonal matrix. Using the LASSO penalty, this approach can

be formulated as:

arg max
w

{
wT ŜBw− λ‖w‖1

}
subject to wT S̃Ww ≤ 1 (3.6)

where ŜB is a MLE or LSE of SB , and S̃W is a full rank estimate of SW . The main

challenges with this method include its tendency to converge to local optima due

to the non-convexity of the problem and the heavy reliance on the choice and

tuning of the penalty term. Additionally, finding the appropriate hyperparameter

can be time-consuming, particularly when cross-validation is carried out on some

large datasets.

Sparse Discriminant Analysis (Clemmensen et al., 2011) It is similar to the Penal-

ized LDA but under the optimal scoring framework. Optimal scoring, as intro-

duced in (Hastie et al., 1994), is a variant of LDA that operates within a regression

context. It does not have a direct analytical solution but instead relies on an itera-

tive optimization process. This process alternately optimizes the scores and the

regression coefficients until convergence is achieved. Considering our response

variable yN×1 is converted into dummy variables YN×J , the objective function

with a LASSO penalty is:

arg min
w,θ

{
‖Yθ −Xw‖2 + λ‖w‖1

}
subject to θTYTYθ = 1. (3.7)

20

Simulation

In this section, we will use a synthetic dataset to demonstrate the strengths and weak-

nesses of those LDA variants. Here are some details on how the simulations are

conducted:

• The simulations were implemented in R and executed on the department’s Linux

server. klaR::rda is used for Regularized LDA, sparseLDA::sda for Sparse Dis-

criminant Analysis, and penalizedLDA::PenalizedLDA for Penalized LDA. Hy-

perparameters are determined via Cross-Validation, and all other settings are left

as default.

• We implemented the remaining five LDA variants as there are no available pack-

ages. Notably, most of these variants are primarily used as dimension-reduction

tools in their original papers, typically followed by a K-Nearest Neighbors (KNN)

classifier. However, due to KNN’s slower prediction speed and lack of a simple

closed-form solution, we use traditional likelihood-based LDA as the classifier

throughout this thesis. Let µj denote the centroid of class j, and πj the prior

probability of class j. The discriminant function of class j for any observation x

is defined as

δj(x) = xT (SW
N − J

)−1µj −
N − J

2 µT
j (SW
N − J

)−1µj + log πj. (3.8)

Observations are classified to the class with the highest value of the discriminant

function.

• For PCA-LDA, additional PCs are excluded once at least 95% of the total variance

is explained or SW becomes singular, whichever occurs first.

• All testing accuracies calculated in both simulations and real data analysis through-

out this thesis are derived from a random 70/30 split of the entire data sample.

21

• R sometimes has stability issues with calculations involving small numbers. Ad-

ditionally, when a matrix is singular, different methods of calculating its rank can

yield inconsistent results, impacting the reliability of the algorithm. To address

this, we implement some tricks, such as scaling the variables. While theoreti-

cally, scaling the variables doesn’t affect LDA solutions, we find it significantly

improves stability in practice.

• The classical LDA package MASS::lda in R triggers errors when SW is singular

but SB is not, a limitation that also affects dependent packages like sparseLDA.

To compute the discriminant function in Equation 3.8, we add a small positive

constant (10−15) to the diagonal elements of SW if it is singular.

One significant distinction among LDA variants is their approach to handling

situations where wTSWw = 0 and wTSBw 6= 0. This scenario implies that after the

projection w, Xw are constant within each group but differ across groups. While one

might argue this scenario is rare in real datasets and more common in simulations,

making it seemingly less relevant, it is critical to explore due to the nature of decision

trees. As the tree splits, the sample size in each terminal node decreases, yet the number

of variables remains constant. Therefore, it is common to encounter this pattern in

terminal nodes where there are only tens of data points but hundreds of variables,

particularly when the variables are categorical.

The simulation is conducted as follows: We first generate a response variable

consisting of 10 classes, each with 200 observations. Next, we create a dummy matrix

(one-hot-encoding) for the response variable, resulting in 10 variables. Additionally,

we add 10 mutually independent standard normal noise variables and use these 20

variables for prediction.

The results are summarized in Table 3.1. NLDA, DLDA, LDA/GSVD, and Regu-

larized LDA achieve perfect prediction accuracy. NLDA and LDA/GSVD have good

22

method trainAcc testAcc
DLDA 1 (0) 1 (0)
LDA/GSVD 1 (0) 1 (0)
NLDA 1 (0) 1 (0)
PCA-LDA 0.468 (0.028) 0.407 (0.029)
PLDA 0.149 (0.003) 0.102 (0.007)
SDA 0.112 (0) 0.112 (0)
penalizedLDA 0.112 (0) 0.112 (0)
regularizedLDA 1 (0) 1 (0)

Table 3.1: Simulation results in Section 3.1. Two standard deviations are recorded in
parentheses. Data corresponds to the DummyMatrix-Class detailed in Table A.1.

performance since they are designed to handle this specific case. DLDA optimizes

SB first, avoiding complications from wTSWw = 0. Regularized LDA adds a small

disturbance to the diagonal of SW , making wTSWw 6= 0, and thus be able to find those

discriminative directions. PCA-LDA, being blind to the response variable, mixes signal

variables with noise, leading to lower testing accuracy. The remaining three methods

perform similarly to random guessing (0.1 testing accuracy) as they cannot effectively

extract information from the null space of SW .

Real Data Analysis

We first examine performance on a dataset characterized by a nearly equal number

of variables and observations, a scenario that can potentially lead to overfitting for

some methods. The Parkinson dataset from the UCI Machine Learning Repository

is used, consisting of 756 observations and 753 variables. Table 3.2 summarizes the

results. DLDA and PCA-LDA appear to be the most effective classifiers in this prob-

lem. PCA-LDA incorporates a variable selection step through PCA, while DLDA, by

initially focusing on SB, unintentionally performs variable selection by choosing at

most J − 1 variables. The three LDA variants that require cross-validation marginally

outperform random guessing (0.741 testing accuracy). Notably, LDA/GSVD, NLDA,

and PLDA all exhibit overfitting, as indicated by their 100% training accuracy, resulting

23

method trainAcc testAcc
DLDA 0.819 (0.005) 0.834 (0.012)
LDA/GSVD 1 (0) 0.66 (0.021)
NLDA 1 (0) 0.541 (0.017)
PCA-LDA 0.926 (0.004) 0.828 (0.013)
PLDA 1 (0) 0.689 (0.011)
SDA 0.741 (0) 0.741 (0)
penalizedLDA 0.743 (0.004) 0.751 (0.011)
regularizedLDA 0.741 (0.004) 0.759 (0.009)

Table 3.2: Results on the Parkinson dataset in Section 3.1. Two standard deviations are
recorded in parentheses. Data corresponds to the Parkinson-class detailed in Table
A.1.

in performance that is worse than random guessing. Section 3.2 discusses our efforts

to mitigate this using stepwise LDA.

To further assess the performance of LDA variants, we conducted tests on 49 datasets

obtained from public sources. This collection is carefully selected to cover a wide

range of datasets: from binary classification to multi-class classification with over 100

classes; from complete datasets to datasets where every observation has at least one

missing entry; from datasets containing hundreds of observations to 70,000; and from

4 predictive variables to 3,000. We aim to make this collection a good representative of

real-world datasets. Detailed descriptions of these datasets are provided in Table A.1.

Missing values are handled using the techniques introduced in Section 4. To normalize

results across different datasets, testing accuracies have been scaled using the arithmetic

mean, and runtime has been scaled using the geometric mean. For methods that trigger

errors or are not completed within the pre-set time limit (5 minutes), the results are

treated as censored. In such cases, the runtime is set to 5 minutes, and the testing

accuracies are imputed using the proportion of the plurality class in the training set.

The results are summarized in Figure 3.1. The best method would ideally be situated

in the bottom right corner, indicating high accuracy and low runtime. It is clear that

LDA/GSVD has the highest testing accuracy among all LDA variants. Its testing

24

accuracy falls within the confidence interval of PCA-LDA, yet it is significantly faster.

DLDA turns out to be the fastest LDA variant, albeit with comparatively lower testing

accuracy. The three methods in the top left corner — Penalized LDA, Regularized LDA,

and Sparse Discriminant Analysis — are notably affected by the runtime limit. While

they might be as effective as other candidates if given sufficient time, these slower

methods are not considered practical and are disregarded. This is because the LDA

model needs to be fitted for each node during tree construction. To maintain both speed

and accuracy, such extensive computational costs are unaffordable. Consequently,

LDA/GSVD is recognized as the most effective method thus far, and it will be selected

as our node model for LDATree.

DLDA

LDA/GSVD
NLDA

PCA−LDAPLDA

SDA

penalizedLDA

regularizedLDA

0.5

4.0

32.0

−0.05 0.00 0.05 0.10

method

DLDA

LDA/GSVD

NLDA

PCA−LDA

penalizedLDA

PLDA

regularizedLDA

SDA

Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Figure 3.1: Real data analysis results in Section 3.1: Average runtime vs. average testing
accuracy. Confidence intervals for runtimes (on a logarithmic scale) and standardized
accuracies are presented with 2SD error bars.

25

Speed Enhancement

Next, we introduce our speed enhancement for the LDA/GSVD algorithm when

N > M . (Ye and Yu, 2005) presents a ULDA algorithm that diagonalizes ST and SB

separately. Based on our experience, it is slower by a constant factor compared to

the GSVD-based version (Howland et al., 2003), which is described in Algorithm 1

(rewritten to suit our needs). However, when the sample size N is large, the SVD

decomposition on K ∈ R(J+N)×M in the line 2 of Algorithm 1 creates a runtime bottle-

neck. This can be resolved by reducing the dimension of K before performing SVD (or

complete orthogonal decomposition). Since HW contributes most of the dimension-

ality, and the SVD depends on HT
WHW , one possible solution is to replace HW with

GW ∈ RM×M , where HT
WHW = SW = GT

WGW . We suggest performing a reduced QR

decomposition HW = QWRW and replacing HW with RW , so that we have

HT
WHW = RT

WQT
WQWRW = RT

WRW . (3.9)

Park et al. (2007) follows a similar approach, using a Cholesky decomposition

SW = CT
WCW and replacing HW with CW . We now use a simulation to evaluate the

performance of these two variants and the original LDA/GSVD.

Algorithm 1 ULDA via GSVD (Howland et al., 2003)
Require: Data matrix X ∈ RN×M with N observations and M features. Class label

y ∈ RN containing J classes
Ensure: Transformation matrix W ∈ RM×t2 that preserves the class structure

1: Compute HB ∈ RJ×M and HW ∈ RN×M from X according to equations (3.1).
2: Compute the complete orthogonal decomposition of K =

(
HT
B,HT

W

)T
∈ R(J+N)×M

:
PTKQ =

(
R 0
0 0

)
. (3.10)

3: Let t1 = rank(K), t2 = rank(P(1 : J, 1 : t1)). Compute V from the SVD of P(1 :
J, 1 : t1), which satisfies: UTP(1 : J, 1 : t1)V = diag(α1, α2, . . . , αt2 , 0, . . . , 0).

4: Compute the first t2 columns of QR−1V and assign them to W.

26

The simulation setup is as follows: in each round, we simulate N = 10000 obser-

vations from J = 10 classes, with each class having the same sampling probability

of 1/10. The features are M mutually independent standard normal noise variables.

We then use the three algorithms to calculate the transformation matrix W. We let

M = 2, 4, 8, 16, 32, 64, 128, 256, 512, and for each M we repeat the simulation 30 times

to obtain a confidence band. The results are summarized in Figure 3.2. Their dif-

ferences in runtime become larger as the number of features increases. For a data

matrix of dimension 10000× 512, LDA/GSVD with QR decomposition is 32% faster

than the original LDA/GSVD implementation (2.6 seconds vs. 3.9 seconds). Conse-

quently, we added this additional QR decomposition step into the LDA/GSVD pipeline.

0

1

2

3

4

1 64 128 256 512

Number of Features

R
u

n
ti
m

e
 (

s
e

c
s
)

Algorithm

Cholesky

Original

QR

Figure 3.2: The runtime comparisons of three LDA/GSVD implementations (Section
3.1). The data consists of 10,000 observations from 10 classes. The ribbon width
represents the 95% confidence interval.

3.2 Node Model: Stepwise LDA

Motivations

Our initial motivation was inspired by the results in Table 3.2 from Section 3.1. We

selected LDA/GSVD as our final model due to its superior performance across different

types of datasets compared to DLDA. However, in datasets like the Parkinson dataset,

27

where the number of variables nearly equals the number of observations, LDA/GSVD

tends to overfit, whereas DLDA and PCA-LDA perform well. Figure 3.3 illustrates the

overfitting patterns on two datasets with a high variable-to-observation ratio, which

shows that continuously adding variables does not necessarily improve testing accuracy.

For CE-[B]REF_RACE (left), the best testing accuracy is reached with about 12.5% of

the variables included, while an even smaller proportion is best for the Parkinson-class

dataset. To outperform DLDA and PCA-LDA, we have to find a smart way to rank the

variables and select the appropriate number of variables for inclusion in LDA/GSVD,

making stepwise LDA a promising solution.

CE−[B]REF_RACE Parkinson−class

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
0.00

0.25

0.50

0.75

1.00

Percentage of variables included in the LDA/GSVD model

A
cc

ur
ac

y

Type
TrainAcc
TestAcc

Figure 3.3: Training and testing accuracies when adding more variables. Variables
are first ranked based on the GUIDE importance score. Data corresponds to CE-
[B]REF_RACE and Parkinson-class detailed in Table A.1.

Beyond addressing overfitting, stepwise LDA offers additional advantages. It can

serve as a method for variable selection, eliminating noise variables to enhance the

robustness of the LDA fit. Reducing the number of variables also simplifies subsequent

interpretations. Another benefit is increased speed. The bottleneck of the LDA/GSVD

algorithm is the SVD computation on a matrix with dimensions (N + J)×M , where

the time complexity of this SVD is O
(

(N + J)×M ×min (N + J,M)
)

. Reducing the

28

total number of variables M can thus considerably decrease runtime, particularly in

large datasets.

Existing Stepwise LDA Framework

Stepwise Discriminant Analysis is a variable selection technique for discriminant anal-

ysis that iteratively adds or removes variables based on their statistical significance to

enhance model performance. Many versions of Stepwise LDA have been implemented,

ranging from stand-alone programs like DIRCRIM (McCabe, 1975) and ALLOC-1 (Her-

mans and Hobbema, 1976), to options within statistical packages like BMDP (Dixon,

1990), SPSS® program (IBM Corp., 2021), and SAS® program (SAS Institute Inc., 2014).

While specific implementations may vary in variable selection criteria or prediction

methods, most follow a common framework extensively discussed in (Jennrich, 1977).

We will briefly introduce this framework below.

Let ST (1, 2, . . . , p) and SW (1, 2, . . . , p) be the total and within-class scatter matrix

with p variables {x(1),x(2), . . . ,x(p)} added. Then the Wilks’ Λ is defined as:

Λ(1, 2, . . . , p) = det(SW (1, 2, . . . , p))
det(ST (1, 2, . . . , p)) . (3.11)

After adding x(p+1), we use partial Wilks’ Λ to evaluate its marginal effect:

Λ(p+ 1) = Λ(1, 2, . . . , p, p+ 1)
Λ(1, 2, . . . , p) . (3.12)

The null hypothesis H0 states that the variables {x(1),x(2), . . . ,x(p+1)} are from

a multivariate normal distribution and are independent of the response y. Unless

otherwise specified, this H0 will be assumed as the null hypothesis throughout the

remainder of this paper. Under H0, the partial F -statistic follows an F -distribution:

F = N − J − p
J − 1

1− Λ(p+ 1)
Λ(p+ 1) ∼ FJ−1,N−J−p. (3.13)

29

In the (p + 1)-th step, partial F -statistics are calculated for the remaining M − p

variables, and the variable with the largest F -statistic is selected. It will be included in

the model if it meets specific inclusion criteria, such as F ≥ 4, or if the corresponding

p-value is below α.

Following the addition of a variable, the deletion phase begins. With p+ 1 variables

now in the model, p + 1 new pairs of scatter matrices (SWi
,STi

) are computed, each

excluding one variable x(i). The partial F -statistics are then calculated for each pair,

and the variable associated with the smallest F -statistic is considered for removal if

the exclusion criterion is satisfied (e.g., F < 3.996 in BMDP). This stepwise process

continues until all variables have been added, or no further variables can be added or

removed.

Alongside Wilks’ Λ-statistic, there are three additional statistics commonly used

to evaluate the performance of discriminant analysis or, more precisely, Multivari-

ate Analysis of Variance (MANOVA). While these statistics may not be directly used

in the stepwise LDA process, many programs include them in their output, provid-

ing valuable insights for statisticians to perform further analysis. To understand the

distinctions among these four statistics, recall from Section 3.1 where we discussed

LDA/GSVD and noted that GSVD simultaneously decomposes SB and SW , with the

singular values {α2
i }, {β2

i } outlined in Equation 3.4. Fisher’s criterion aims to maximize

the ratio between between-class scatter and within-class scatter, essentially maximizing

α2
i /β

2
i . Since α2

i + β2
i = 1, this is similar to maximizing α2

i . The four commonly used

statistics, each reflecting different aspects of this discriminative power, are:

• Wilk’s Λ: Λ = ∏M
i=1 β

2
i . A smaller Λ indicates larger discriminative power as it

corresponds to smaller β2
i and thus larger α2

i . Wilk’s Λ is unique in that it is based

on the product of the individual β2
i values, in contrast to the summation used by

the others.

30

• Pillai’s trace: V = ∑M
i=1 α

2
i , aiming to maximize α2

i .

• Lawley-Hotelling trace (or Hotelling’s generalized T 2-statistic): U = ∑M
i=1

α2
i

β2
i
,

emphasizing the ratio α2
i

β2
i

and thus giving more weight to dimensions where α2
i is

close to 1.

• Roy’s largest root: θ = max
(
α2

i

β2
i

)
, focusing on the maximum ratio, thus capturing

the most discriminative direction.

The stepwise approach enhances forward selection by adding a deletion step, po-

tentially achieving superior results. However, in our simulations, we observed that

it seldom deletes variables from the model. When deletions do occur, they tend to

result from minor fluctuations rather than the discovery of significant patterns that

substantially enhance the model’s performance. Additionally, the deletion process

is time-consuming. The time complexity is O
(

(p+ 1) × p3
)

to go from p to (p + 1)

variables, which becomes increasingly slow as more variables are added to the model.

Furthermore, given the usage of stepwise LDA in a decision tree structure, any minor

decrease in testing accuracy at a single node can often be compensated for by subse-

quent splits, reducing concerns about the stand-alone stepwise LDA performance of

individual nodes. Consequently, we favor forward selection over the forward-and-

backward selection. From now on, whenever stepwise LDA is mentioned in this thesis,

it refers specifically to forward LDA.

We are interested in exploring stepwise LDA for its potential to select a subset

of variables that might improve model performance. However, one can argue that

maximizing testing accuracy and maximizing test statistics might not always coincide.

(Rencher and Christensen, 2002) highlights that no actual discriminant scores are

computed during the stepwise process, suggesting the term stepwise MANOVA might

be more appropriate than stepwise LDA. Furthermore, (Habbema and Hermans, 1977)

notes that variable selection based on Wilks’ Λ doesn’t necessarily yield a higher

31

classification accuracy. However, it is unavoidable to use certain types of statistics to

rank the variables, as screening all possible subsets is impractical. The four types of

statistics in the stepwise LDA process are helpful, and we find them align well with

testing accuracies in our simulations. We also tried using a validation set to select the

best subset of variables. This approach is time-consuming and involves data splitting,

which might reduce effectiveness in building the LDA model compared to using all

data in traditional approaches.

Problems with Existing Methods

The first problem is the premature stopping. When perfect linear dependency exists in

the data matrix, we would expect 0
0 on the right-hand side of equation (3.11), causing

errors in some stepwise LDA programs, such as klaR::greedy.wilks in R. Wilks’ Λ is

not well-defined under perfect linear dependency, and to allow the stepwise selection

to continue, a quick fix is to manually set it to 1, indicating no discrimination power.

We know from equation (3.12) that the partial Λ is the ratio of two Wilks’ Λ. Most

programs will stop the stepwise LDA process when Λ = 0, as all subsequent partial

Λ calculations become 0
0 and are thus ill-defined. However, stopping at Λ = 0 isn’t

always appropriate, as it indicates that one group of classes is perfectly separable from

another, but it doesn’t necessarily imply perfect separation of all classes in non-binary

classifications, as shown in Figure 3.4. After selectingX2, Wilks’ Λ = 0 since the within-

class variance is zero on X2, causing the stepwise selection to stop. It successfully

separates class A from classes B and C but cannot distinguish class B from class C.

Additionally, when multiple variables result in Λ = 0, only one is selected, leading to

the potential waste of useful information contained in the remaining variables.

Secondly, we use an example to demonstrate that the distribution of the partial

F -statistic does not follow an F -distribution under the stepwise selection framework,

casting doubt on the validity of the associated hypothesis testing. Under H0, the

32

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4

X1

X
2

Class

A

B

C

Figure 3.4: A simulated pattern used in Section 3.2. The stepwise LDA based on Wilks’
Λ selects X2 and ignores X1, leading to suboptimal performance.

partial F -statistic follows an F -distribution (Rencher and Christensen, 2002). However,

the original proof assumes that variables are ordered randomly, rather than selected

through a stepwise process. Intuitively, if we maximize the F -statistic at each step, the

result will be biased, as noted in (Rencher and Larson, 1980).

The simulation setup is as follows: in each round, we simulateN = 150 observations

from J = 3 classes, with each class having the same sampling probability of 1/3.

We simulate X1 from a standard normal distribution in the one-variable scenario

and simulate X1 and X2 from independent standard normal distributions in the two-

variable scenario. We simulate 10,000 rounds and record the partial F -statistic from

each round at each step. We then compare the simulated F -statistic with the theoretical

distribution, as summarized in Figure 3.5.

The upper plot corresponds to the one-variable scenario. Since we have only one

variable,X1, no selection occurs, and the simulated distribution matches the theoretical

distribution closely. The lower plot shows the two-variable scenario. Here, the stepwise

selection first chooses X(1), which has a larger partial F -statistic (and a smaller partial

Λ-statistic) compared to the other variable, resulting in an upward bias in the first

partial F -statistic. The second partial Λ is the ratio of the overall Wilks’ Λ (with two

variables) to the first (partial) Wilks’ Λ, so its partial Λ-statistic is biased upwards

and its partial F -statistic is biased downwards. Note that the theoretical distributions

33

for the first and second partial F are different (F2,147 and F2,146), but the difference is

negligible, so we assign the same color to both distributions in the plot.

0.0

0.2

0.4

0.6

0.8

0 5 10 15

F value

d
e

n
s
it
y

Simulated F

Theoretical F

One Variable

0.0

0.5

1.0

1.5

0 3 6 9 12

F value

d
e

n
s
it
y Simulated F − X

(1)

Simulated F − X
(2)

Theoretical F − X
(1)

Theoretical F − X
(2)

Two Variables

Figure 3.5: The partial F -statistic does not follow an F -distribution under the stepwise
selection framework (Section 3.2). When there are two variables (lower plot), the partial
F for the first variable X(1) is biased upwards, while the partial F for the second
variable X(2) is biased downwards.

The third problem is the inflated Type I error associated with the threshold. In

most programs, a fixed threshold of 4 is applied to the partial F -statistic. Another

possible criterion is comparing the p-value of the partial F -statistic with the predefined

α. However, both methods fail to account for the number of variables screened.

Proposed Improvements in Stepwise LDA

We now derive the distribution of the test statistics used in the proposed stepwise

LDA/GSVD framework. Without loss of generality, we assume ST is invertible through-

34

out this section, as redundant columns that cause ST to be non-invertible have no

discriminative power and can always be removed.

Theorem 3.1. Pillai’s trace is non-decreasing when new variables are added to the model.

Proof. Suppose X ∈ RN×K have been included in the model, and the new variable to

be added is z ∈ RN . The new between-class and total scatter matrices with (K + 1)

variables can be written as:

SB =

Bx bx

b′x bz

 ST =

Tx tx

t′x tz

 , (3.14)

where Bx and Tx are the previous between-class and total scatter matrices for X.

If K = 0, the difference in Pillai’s trace will be bz/tz. This value is non-negative since

the between-class scatter matrix is positive semi-definite (bz ≥ 0) and the total scatter

matrix is positive definite (tz > 0). For K ≥ 1, we aim to show

trace
(
S−1
T SB

)
− trace

(
T−1
x Bx

)
≥ 0. (3.15)

Since ST and Tx are invertible, we have

S−1
T =

T−1
x + T−1

x txt′xT−1
x (tz − t′xT−1

x tx)−1 −T−1
x tx(tz − t′xT−1

x tx)−1

−(tz − t′xT−1
x tx)−1t′xT−1

x (tz − t′xT−1
x tx)−1

 .
(3.16)

According to the block matrix multiplication and the properties of the trace, we

have

35

trace
(
S−1
T SB

)
= trace

(
T−1
x Bx

)
+ (t′xT−1

x ,−1)SB(t′xT−1
x ,−1)′

× (tz − t′xT−1
x tx)−1. (3.17)

The Schur complement of the block Tx in the matrix ST is given by (tz− t′xT−1
x tx)−1.

Since Tx and ST are both positive definite, we have (tz−t′xT−1
x tx)−1 > 0. The quadratic

form (t′xT−1
x ,−1)SB(t′xT−1

x ,−1)′ is also non-negative because the middle matrix is

positive semi-definite.

At its core, LDA/GSVD seeks to maximize Pillai’s trace V = trace
(
S−1
T SB

)
. Ac-

cording to Theorem 3.1, with each variable added, the current Pillai’s trace increases

(or remains the same). Let V (M) denote the Pillai’s trace with all M variables included.

The goal of stepwise selection is to approximate V (M) using V (K), where K �M .

Suppose the variable set {x1,x2, . . . ,xK−1} has been selected after the first (K − 1)

steps, and the Pillai’s trace of that variable set is V (K−1)
max . Here, the subscript indicates

that this Pillai’s trace is not of (K − 1) randomly selected variables but is instead

maximized at each step through stepwise forward selection. At step K, we calcu-

late V (K)
(1) , V

(K)
2 , . . . , V

(K)
(M−K+1), where V (K)

(i) denotes the Pillai’s trace of the variable set

{x1,x2, . . . ,xK−1,x(i)}. Let k = arg maxi V (K)
(i) . We then select x(k) as the best candidate

at step K, and V (K)
max = V

(K)
(k) . To establish an inclusion criterion, we must measure the

marginal effect of the added variable x(k), which corresponds to V (K)
max − V (K−1)

max .

Theorem 3.2. At step K, let tK be the (1 − α)1/(M−K+1) quantile of B
(
J−1

2 , N−J2

)
. Then,

P (V (K)
max − V (K−1)

max ≥ tK) ≤ α as N → ∞ under H0, where the newly added variable z is

normally distributed and independent of both X and y.

Proof. WhenK = 1, V (1) underH0 follows a beta distribution B(J−1
2 , N−J2) (Pillai, 1955).

36

Since V (1)
max − V (0)

max = V (1)
max is the maximum of V (1)

1 , V
(1)

2 , . . . , V
(1)
M , which are M i.i.d. ran-

dom variables from the beta distribution, its CDF can be written as IMx (J−1
2 , N−J2) where

Ix(J−1
2 , N−J2) is the CDF of B(J−1

2 , N−J2). To control the type I error below α, the thresh-

old tmust satisfy IMt (J−1
2 , N−J2) ≤ 1−α, which is equivalent to It(J−1

2 , N−J2) ≤ (1−α)1/M .

Then t is the (1− α)1/M quantile of B
(
J−1

2 , N−J2

)
.

When K > 1, from equation (3.17) we know that

V
(K)

(i) − V
(K−1)

max = (t′xT−1
x ,−1)SB(t′xT−1

x ,−1)′

× (tz − t′xT−1
x tx)−1. (3.18)

This equation still holds if we replace SB and ST with SB/(N − J) and ST/(N −

J), which are the least squares estimators of the between-class and total covariance

matrices. Since X and z are independent, their covariance tx → 0 asN →∞. Note that

SB/(N − J) and ST/(N − J) are finite as N → ∞. Substituting tx = 0 into equation

(3.18), we get

V
(K)

(i) − V
(K−1)

max = (0,−1)SB(0,−1)′(tz − 0)−1

= bz/tz (3.19)

bz/tz is Pillai’s trace for z. Therefore, the distribution of V (K)
(i) − V (K−1)

max can be

approximated by V (1), and the rest follows the scenario where K = 1.

Based on our experience, this asymptotic approximation sometimes leads to a

very conservative threshold, with the type I error falling well below the predefined

α. Therefore, we introduce an empirical approximation to mitigate this problem and

37

achieve higher power. Suppose we have already added K− 1 variables and the current

Pillai’s trace is V (K−1)
max . Since the maximum Pillai’s trace for J classes is J − 1, the

maximum Pillai’s trace that can be added is bounded by J − 1 − V (K−1)
max , which can

be viewed as the maximum Pillai’s trace for a classification problem with J − V (K−1)
max

classes. Thus, at the k-th step, the threshold becomes the quantile from B
(
J ′−1

2 , N−J
′

2

)
instead of B

(
J−1

2 , N−J2

)
, where J ′ = J − V (K−1)

max .

Next, we analyze the type I error under the stepwise LDA/GSVD framework and

demonstrate that the family-wise error rate is controlled at the nominal levelα. Suppose

we have M variables in total, some of which are noise variables (x ∈ Sn) and some are

informative (x ∈ Si). At each step, there are three possible outcomes: a noise variable

is selected, the selection stops, or an informative variable is selected. The entire process

is illustrated in Figure 3.6.

✭✵✱�✮ ✶

✁✂✄☎✆ ✷

✿ ✝ ✞

✸

✟✠✡☛☞

✹ ✌✍✎✏✑

✒✓✔✕✖ ✺

✗ ✘ ✙

✻

✚✛✜✢✣

✼ ✤✥✦✧★

✩ ✪ ✫ ✬ ✯ ✰ ✲ ✳ ✴

Figure 3.6: Illustration of stepwise forward selection (Section 3.2). (nn, ni) next to
each node represents the number of noise and informative variables included so
far. A yellow background indicates an informative variable being selected, a green
background indicates the selection stops, and a purple background indicates that at
least one type I error is made.

Suppose x is the variable with the largest Pillai’s trace and is selected at the K-th

step. Conditional on whether x ∈ Sn or x ∈ Si, there are four possible outcomes:

38

pK1 = P (x is added | x ∈ Sn)

pK2 = P (x is not added | x ∈ Sn)

pK3 = P (x is added | x ∈ Si)

pK4 = P (x is not added | x ∈ Si) (3.20)

In situations with pK2 and pK4, x is not added, and stepwise selection stops. There-

fore, no type I error is made or will be made. This corresponds to the green regions in

Figure 3.6. For the situation with pK3, since an informative variable is added, no type I

error is made at the current step, corresponding to the yellow regions in Figure 3.6.

The purple region in Figure 3.6 reflects scenarios where a type I error is made, with pK1

being the only situation that results in such an error. Theorem 3.2 shows that under

H0, pK1 ≤ α, meaning that at each step, the probability of branching into the purple

region is controlled at α. Now, we aim to show that, overall, the probability of ending

up in any purple region is controlled at α.

The probability of reaching node 2 is p11 ≤ α. The probability of reaching node 5

is p13 × p21 ≤ p21 ≤ α. The reason we can use the product of p13 and p21 to calculate

this probability is that under H0, the variable selected in the first step is assumed to

be independent of the variable selected in the second step. For nodes like node 2 and

node 5, where the first noise variable is added in the current step, the probability of

reaching them can be written as

pK1

K−1∏
k=1

pk3 ≤ pK1 ≤ α. (3.21)

Meanwhile, the probability of reaching their child nodes is also controlled at α,

because reaching these nodes requires first reaching their parent node. All purple nodes

fall into one of these two scenarios, so the family-wise type I error rate is controlled at

39

α. This means that if the stepwise LDA/GSVD selects K variables {x(1),x(1), . . . ,x(K)},

then the probability that at least one x(i) is a noise variable is controlled at α.

The stepwise forward selection framework is summarized in Algorithm 2.

Algorithm 2 Proposed stepwise selection based on Pillai’s trace
Require: Data matrix X ∈ RN×M with N observations and M features. Class label

vector y ∈ RN containing J classes
Ensure: A reduced data matrix Xnew ∈ RN×K where K ≤M

1: index_in⇐ {}
2: index_pool⇐ {1, 2, . . . ,M}
3: previous_pillai⇐ 0
4: while index_pool is not empty do
5: l⇐ length(index_pool)
6: for i⇐ 1 to l do
7: pillai_saved[i]⇐ get_pillai(X, y, (index_in, index_pool[i])) . Calculate

Pillai’s trace for each feature
8: end for
9: i_selected⇐ arg maxi pillai_saved[i]

10: J ′ = J− previous_pillai
11: threshold⇐ I−1

(1−α)1/l(J
′−1
2 , N−J

′

2)
12: if pillai_saved[i_selected] - previous_pillai ≤ threshold then
13: break . Stop if the improvement is below threshold
14: else
15: index_selected⇐ index_pool[i_selected]
16: index_in⇐ (index_in, index_selected)
17: index_pool⇐ index_pool \ {index_selected}
18: previous_pillai⇐ pillai_saved[i_selected]
19: end if
20: end while
21: if length(index_in) = 0 then
22: Xnew ⇐ X . No variable is significant, return all variables
23: else
24: Xnew ⇐ X(:, index_in)
25: end if

Simulation

In this section, we use simulation to showcase the performance of three forward LDA

variants:

40

1. Pillai: the proposed variant using Pillai’s trace (see Algorithm 2).

2. Wilks: the original variant based on Wilks’ Λ. The inclusion criterion is based on

p-value, with a variable included if the p-value is below the predefined α.

3. Wilks-Bonferroni: This variant applies an additional Bonferroni correction to

the p-value compared to the second variant. If there are (M −K + 1) variables to

choose from at the K-th step, the p-value is multiplied by (M −K + 1) to adjust

for the multiple testing.

Note that these variants are for selection alone. They help check the type I error and

power (whether the desired variables are included). To further compare the testing

accuracy, we apply LDA/GSVD to the selected variables.

First, we analyze the type I error rate. We use the same simulation settings from

Section 3.2 to compare the three forward LDA variants, and the results are summarized

in Figure 3.7. Pillai and Wilks-Bonferroni successfully control the type I error in both

scenarios. In contrast, Wilks suffers from an inflated type I error rate due to multiple

testing. These results validate Theorem 3.2, demonstrating that the type I error rate

is well-controlled under H0, where the noise variables are normally distributed and

independent of both the informative variables and the response.

Secondly, we illustrate the primary advantage of our proposed method over the

original framework: its ability to handle scenarios where Wilks’ Λ = 0. We use

a simulated dataset, which contains 2,000 observations. The response variable is

randomly selected from 10 classes, each with an equal probability of 1/10. We then

create a dummy matrix (one-hot encoding) of the response, resulting in 10 columns,

each consisting of 1s or 0s. These 10 columns are used as our features. Ideally, these

10 features can perfectly predict the response, and a robust forward selection method

should select them all. However, Wilks stops after selecting only one feature, IClass One,

the indicator of the first class. Here, IClass One = 1 for observations from class one and

41

α = 0.05

0.00

0.25

0.50

0.75

1.00

1 4 8 16 32 64 128

Number of Noise Features

T
y
p

e
 I

 E
rr

o
r

R
a

te Threshold

Pillai

Wilks

Wilks.Bonferroni

Scenario 1: Signals and Noises

α = 0.05

0.00

0.25

0.50

0.75

1.00

1 4 8 16 32 64 128

Number of Noise Features

T
y
p

e
 I

 E
rr

o
r

R
a

te Threshold

Pillai

Wilks

Wilks.Bonferroni

Scenario 2: Pure Noises

Figure 3.7: Type I error rate from three forward LDA variants on the iris dataset (Section
3.2). The ribbon width represents the 95% confidence interval. The ribbon for Pillai
overlaps with the ribbon for Wilks-Bonferroni in the lower plot.

IClass One = 0 for the other classes. Therefore, the within-class variance is 0, leading to

Wilks’ Λ = 0. Meanwhile, with Pillai, the feature IClass One contributes a value of 1

to the overall Pillai’s trace, which does not trigger a stop. Pillai continues adding

features, with each feature IClass i contributing a value of 1 to the overall Pillai’s trace. It

selects 9 features and then stops, as the maximum Pillai’s trace of J − 1 = 9 is reached.

With these 9 features, we have enough information to perfectly predict the response.

Real Data Analysis

We tested the stepwise LDA on the two datasets mentioned in Section 3.2, and the

results are summarized in Table 3.3. As seen, when LDA/GSVD tends to overfit,

stepwise LDA can help it recover, often outperforming the DLDA variant, which is

considered effective in these scenarios.

42

dataset method trainAcc testAcc
CE-[B]REF_RACE DLDA 0.702 (0.009) 0.575 (0.011)
CE-[B]REF_RACE LDA/GSVD 0.999 (0.001) 0.439 (0.018)
CE-[B]REF_RACE stepLDA 0.783 (0.01) 0.614 (0.011)
Parkinson-class DLDA 0.819 (0.005) 0.834 (0.012)
Parkinson-class LDA/GSVD 1 (0) 0.66 (0.021)
Parkinson-class stepLDA 0.853 (0.006) 0.844 (0.015)

Table 3.3: Results of three LDA variants in Section 3.2. Two standard deviations are
recorded in parentheses. Data corresponds to CE-[B]REF_RACE and Parkinson-class
detailed in Table A.1.

However, stepwise LDA does not always outperform LDA/GSVD. We assessed

stepwise LDA on the same 49 datasets mentioned in Section 3.1 and included its

performance in the comparison. According to Figure 3.8, on average, stepwise LDA

and LDA/GSVD show similar testing accuracies across different datasets. The inferior

performance of stepwise LDA compared to LDA/GSVD on some datasets can be

attributed to its one-variable-at-a-time approach, which can be shortsighted and miss

out on detecting multiple weak signals that work together. Furthermore, stepwise LDA

is slower than LDA/GSVD, as the selection process becomes time consuming with an

increasing number of variables.

Stepwise LDA is inherently effective at distinguishing signal from noise. To further

illustrate this advantage, we selected four small datasets, each with fewer than 1000

observations and less than 10 variables. We then added 500 Gaussian noise variables to

each dataset and assessed the impact on their performance. The results are summarized

in Table 3.4. It is obvious that the testing accuracies of DLDA and LDA/GSVD are

significantly impacted by the added noise, showing decreases ranging from 30.9% to

58.2%. In contrast, stepwise LDA remains relatively stable, with differences in testing

accuracies before and after adding noise variables all being less than 10.4%. In our

simulations, this pattern is consistent across multiple datasets.

43

stepLDA

LDA/GSVD

NLDA
PCA−LDA

PLDA

SDA

penalizedLDA

regularizedLDA

DLDA

0.5

4.0

32.0

−0.05 0.00 0.05 0.10

method

DLDA

LDA/GSVD

NLDA

PCA−LDA

penalizedLDA

PLDA

regularizedLDA

SDA

stepLDA

Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Figure 3.8: Real data analysis results in Section 3.2: Average runtime vs. average testing
accuracy (stepLDA added). Confidence intervals for runtimes (on a logarithmic scale)
and standardized accuracies are presented with 2SD error bars.

iris-Species fishcatch-Species Vowel-y Digits-Digit

DLDA
Before 0.926 (0.022) 0.808 (0.025) 0.593 (0.014) 0.718 (0.023)
After 0.616 (0.032) 0.391 (0.031) 0.235 (0.015) 0.192 (0.017)
Diff -0.309 (0.053) -0.416 (0.056) -0.357 (0.028) -0.526 (0.04)

LDA/GSVD
Before 0.975 (0.008) 0.965 (0.019) 0.593 (0.014) 0.718 (0.023)
After 0.603 (0.044) 0.383 (0.028) 0.223 (0.012) 0.177 (0.022)
Diff -0.372 (0.052) -0.582 (0.047) -0.37 (0.026) -0.541 (0.045)

stepLDA
Before 0.958 (0.014) 0.971 (0.016) 0.598 (0.013) 0.722 (0.022)
After 0.938 (0.015) 0.975 (0.009) 0.494 (0.017) 0.685 (0.026)
Diff -0.02 (0.028) 0.004 (0.025) -0.104 (0.029) -0.038 (0.048)

Table 3.4: Testing accuracies of three LDA variants in Section 3.2 after adding 500 Gaus-
sian noise variables. Two standard deviations are recorded in parentheses. Detailed
data descriptions can be found in Table A.1.

44

Discussion and Conclusion

Based on the analysis results, LDA/GSVD and stepwise LDA have been selected as the

best LDA variants to serve as node models in the subsequent decision tree. Next, we

discuss some failed attempts to help future researchers. Stepwise LDA selects a subset

of variables from the original data. We also tried variable selection in the transformed

space Xw (discriminant scores) but found it ineffective. The reason might be that Xw

has already excluded the effect of noise variables, making de-noising in subsequent

selection less effective. Additionally, the final discriminant scores have at most J − 1

dimensions, leaving not much room for subsequent variable selection, especially in

binary classification where there is only one discriminant score.

We also note some instability in R during our implementation of stepwise LDA.

Calculating Wilks’ Λ involves determinants of the scatter matrices. But different imple-

mentations will return different determinants, especially for nearly singular matrices.

Although the condition number of a matrix can indicate singularity, calculating it via

kappa is very time consuming, sometimes even more than a complete QR decomposi-

tion. Fortunately, Pillai’s trace doesn’t require determinant calculation. In Section 3.1,

we noted that scaling can improve robustness. After finding the discriminant direction

w on the scaled data, we have two options for prediction. We can either transform w

back to its original scale and apply it to the testing data, or we can scale the testing data

and use w directly. Theoretically, both methods should yield identical results, but in

practice, they often differ, sometimes significantly, with discriminant scores differing

by as much as e40. For now, we decided to use the second method as it proved to be

more accurate.

45

3.3 Stopping Rule

Decision trees work by recursively dividing the sample space into smaller subspaces

and creating different decision rules for each subspace. This process of splitting cannot

continue indefinitely due to the finite sample size and variable space. Therefore, it’s

crucial to establish a stopping rule for the tree-generating process. This rule ensures

that the tree is not overly complex and doesn’t just work well for the data it was trained

on, but can also make good predictions for new data. By specifying an appropriate

stopping rule, we effectively select the right-size tree from numerous possible candi-

dates. Therefore, the stopping rule can be viewed as the model selection tool for the

decision tree.

Note that forest methods, either using bagging or bootstrap, typically have less

strict stopping rules. They continue splitting until a node becomes trivial, such as

when only one class remains or there are no variables left to split. In forest methods,

the regularization effect is implicitly achieved through the ensemble of trees. How-

ever, since our focus is on developing a single-tree algorithm, we will focus on more

sophisticated stopping rules that better satisfy our needs. All simulation results in this

section are based on the LDA Splitting described in Section 3.4.

Existing Stopping Rules

The stopping rule in decision trees is also referred to as pruning, which can be cate-

gorized into two main types: pre-pruning and post-pruning. Pre-pruning involves

stopping the tree’s growth early to prevent overcomplexity, whereas post-pruning

removes branches from a fully grown tree. Below are some commonly used methods

from both categories. For a more detailed discussion, please refer to (Mingers, 1989;

Esposito et al., 1997).

Reduced Error Pruning (Quinlan, 1987) This technique requires a separate valida-

46

tion set. In this method, after growing the tree to its full size, we start at the

bottom and, at every intermediate node, attempt to cut its branches and turn

it into a terminal node that predicts all instances to the plurality class. If such

pruning reduces the classification errors on the validation set, we then keep this

pruning, hence the name Reduced Error Pruning.

Pessimistic Error Pruning (Quinlan, 1987) This technique has an advantage over Re-

duced Error Pruning as it does not require a separate validation set, allowing

for the efficient use of all available samples for training. However, since the

resubstitution error (the testing error when the test set is the same as the train-

ing set) tends to optimistically underestimate the true classification error, two

modifications are made. Firstly, every node incurs a cost of 1/2 in the overall

classification error, thereby penalizing model complexity. Secondly, a split is kept

not just when it has a lower resubstitution error, but it must also be at least 1SD

below that error. The SD is calculated based on the binomial assumption of the

resubstitution error.

Minimum Error Pruning (Niblett and Bratko, 1987) This technique focuses on mini-

mizing the expected error rate, using the entire training set for both building and

pruning the tree. The expected error rate at any node is calculated as one minus

a modified incidence rate of the majority class. This modified incidence rate is

estimated through a weighted average of the observed proportion and its prior

probability of each class. The weight is predefined and assumed to be consistent

across all nodes. In the pruning process, a branch is pruned from a specific node

if it leads to an increase in the expected error rate.

Critical Value Pruning (Mingers, 1987) This method provides a flexible framework

for a range of pruning methods, each defined by a unique test statistic to evaluate

the strength of splits in the tree. The possible choice of the test statistic can be

47

the chi-squared statistic from the contingency table or the Gini Impurity. The

pruning process works by examining the tree from the bottom up and pruning

branches that fail to meet a specified threshold.

Occasionally, a situation arises where a node has a small test statistic, but one of

its child nodes exceeds the threshold with a higher statistic. In such cases, this

method will keep the parent node, thereby implicitly enforcing monotonicity

throughout the tree. Typically, this method involves testing many thresholds,

which creates a series of trees of different sizes. Notably, the larger the threshold,

the smaller the resulting tree. The final step involves selecting the best tree from

these candidates; e.g., a separate validation set can be used.

Cost-Complexity Pruning (Breiman et al., 1984) This method, like Pessimistic Error

Pruning, considers the number of child nodes in a split and penalizes a split that

results in many child nodes with little improvement in training accuracy. More

specifically, let R(t) be the resubstitution error at the current node, and R(Tt) the

resubstitution error of the subtree rooted at this node. Let |T̃t| denote the number

of terminal nodes in the subtree Tt, then the measure α of the current split is

defined as follows:

α = R(t)−R(Tt)
|T̃t| − 1

(3.22)

This measure effectively estimates the reduction in resubstitution error per termi-

nal node, which is positively related to the strength of a split. After calculating

α for all intermediate nodes, pruning begins from the smallest to the largest α,

pruning the tree from its full size to a single root node. And more importantly,

each α in the range [min(α),max(α)] corresponds to a specific tree in the pruning

process.

48

After we get a series of trees, this method uses a smarter approach than Critical

Value Pruning for selecting the best tree. It divides the training set into K folds

and applyingK-fold cross-validation. For the i-th model, the i-th fold is excluded,

and a series of trees are built using the remaining K − 1 folds. The i-th fold

then serves as the testing set, and the testing error for each tree in the series is

calculated, with each error corresponding to a specific α. The next step involves

combining information from all K folds to select the best α based on the smallest

average testing errors across all folds. Finally, the original tree is pruned using

the best α obtained from the cross-validation.

Problems with Cost-Complexity Pruning

Implemented in CART, Cost-Complexity Pruning is among the most popular methods,

renowned for its promising theoretical properties and strong practical performance.

However, when attempting to apply this method in our research, we found several

drawbacks, indicating that it might not be the ideal approach for our needs. In Cost-

Complexity Pruning, α plays two critical roles:

1. Determining the Pruning Order: Consider a full-size binary tree with three

levels (8 terminal nodes). To prune this tree back to its root node, 7 cuts are

necessary. Arranging these cuts in different ways results in varied cutting paths.

In this example, there are 80 potential cutting paths leading to 26 unique subtrees.

We can view α as indicating the strength of a split. With the help of α, we can

pick the best path from these 80 possibilities, ideally resulting in a path with a

monotone increasing split strength from bottom to top. Along this path, we get 7

subtrees and then use Cross-Validation (CV) to pick the most accurate one.

2. Establishing a Mapping Rule: Given that our tree is constructed using all the

data, an external referee is necessary to select the best subtree. In Cost-Complexity

49

Pruning, this referee is provided by cross-validation (CV). We assume the α

values in the main and CV trees are consistent, meaning they both reflect the

same split strength. The best empirical cutting α is chosen using the CV trees,

and subsequently, this α value is applied to prune the main tree.

There are issues with both outlined objectives. For the first, the concern is relatively

minor. Consistently removing the weakest link does not always guarantee the most

accurate subtree. Moreover, for decision trees with a non-trivial node model, the α

value might not necessarily be increasing monotonically from bottom to top, which

brings us to the second objective.

There’s an underlying assumption with the α link: its behavior should be consistent

between CV trees and the main tree. Since we prune the CV tree and the main tree

using the same α, if that α gives us a big CV tree, then the main tree corresponding

to this α should be big as well. This association becomes meaningless when the α

is non-monotonic; a bigger main tree may correspond to a smaller CV tree, while a

smaller main tree may correspond to a bigger CV tree. Note that once some nodes are

pruned, the α for the remaining parts of the tree will change, and that is why we have

non-increasing α (from bottom to top) in the main tree.

Figure 3.9: A partial plot from LDATree, used in Section 3.3. The number below each
node shows the ratio of correctly classified training samples vs. total node size.

50

treeeNo nodeCount meanMSE seMSE α testAcc
0 31 414.1 5.757 3.464 0.429
1 25 413.5 5.706 12.49 0.429
2 23 413.6 5.546 10.392 0.429
3 21 413.4 5.564 27.495 0.429
4 19 412.1 5.604 18.166 0.429
5 17 412.1 5.604 40.89 0.429
6 15 412.4 5.327 44.497 0.43
7 13 412.2 5.672 7.483 0.431
8 11 412.2 5.672 63.937 0.431
9 9 412.3 5.489 73.498 0.431
10 7 411.8 5.475 60.374 0.436
11 5 411.8 5.475 95.247 0.443
12 3 413.8 5.948 143 0.444
13 1 419.2 6.135 NA 0.424

Table 3.5: The CVpruning table from LDATree using NHDS-discharge.status data in
Section 3.3. Detailed data descriptions can be found in Table A.1.

Here is an example showing that the α might not be monotonically increasing

using the NHDS-discharge.status data (see Table A.1). Table 3.5 provides the pruning

summary. The α value in the k-th row indicates the α required to prune the tree from

the k-th row to the (k + 1)-th row. Ideally, the α column should show a monotonic

increase from the top to the bottom. Yet, there’s a pronounced discrepancy between

the 6th and 7th trees. The corresponding cuts for this gap can be seen in nodes 4 and 3,

as shown in Figure 3.9. Node 4 represents a strong split since the count of correctly

classified samples rises from 591 to 162 + 473 = 635, leading to an α = 44.497. Once

this node is pruned, node 3 becomes the next candidate. It’s a weak split, with a slight

increase from 601 to 591 + 11 = 602. Such non-monotonic behavior can make the

mapping confusing and meaningless.

Proposed Stopping Rules

Based on previous works, we added our own insights and identified two potential

pre-pruning candidates, detailed below:

51

Method 1: Validation Set Our first modification involves using the α from the Cost-

Complexity Pruning but replacing the resubstitution error with the validation

error. Many traditional methods rely on resubstitution error or its variants to

measure the performance of a split. Doing so will have low overfitting risks only

with trivial node models. Particularly in nodes with data from multiple classes,

prediction by majority vote is less prone to overfitting. However, in the case of

an LDA model, due to its strong discriminant capability, overfitting can become

a significant problem, making resubstitution error a less reliable indicator of

split efficacy. Using a validation set offers a more objective estimate. Although

reserving part of the data for validation results in a smaller training set, this is less

of an issue for LDA, which primarily depends on class centroids and covariance

matrix estimates. Additional data points may not substantially enhance these

estimates, making the exclusion of some data more acceptable in this context.

Another adaptation is the introduction of a kStepAhead hyperparameter, enabling

lookahead capability. A key limitation of pre-pruning compared to post-pruning

is its potential to overlook higher-order interactions due to its stringent inclusion

of new splits. A beneficial split may follow one or two weaker splits, a pattern

typically detected only in post-pruning. Allowing the stopping rule to look ahead

beyond a hard threshold might address this issue.

Our simulation results indicate that the train-validation ratio significantly influ-

ences model performance, meaning careful tuning is crucial. Besides, setting

the kStepAhead value to either 0 or 1 often yields satisfactory results, suggest-

ing that looking many steps ahead might not be necessary for this collection of

datasets. Overall, the model’s performance is comparable to that achieved with

Cost-Complexity Pruning, but with a substantially reduced runtime.

Method 2: Out-of-Bag with p-value Threshold This method addresses the limitations

52

of the first method. First, we replace the separate validation set with Bootstrap

sampling. Our simulations showed a performance decline when using smaller

training sets, leading us to avoid excluding any training data during model fit-

ting. The Bootstrap method is better as it can approximate the observed sample

effectively, with the Out-of-Bag (OOB) samples serving as a convenient validation

set. Moreover, a train-validation split at the root node could significantly change

the tree shape, while bootstrap sampling occurs within each node and ensures

consistency in data size.

We also adapted and modified the binomial distribution concept from Pessimistic

Error Pruning. The original Pessimistic Error Pruning compares the current split

to predicting everyone as the plurality class. However, it is optimistic and may

be overly sensitive to randomness. To address this, let p1 represent the prediction

accuracy before the split, and p2 the accuracy after the split. We want to test the

hypothesis H0 : p1 = p2 against the alternative H1 : p1 < p2. We then calculate

the p-value from this one-sided z-test using OOB samples and compare it to the

predefined Type I error rate. One advantage of this p-value thresholding is that it

reflects differences in sample size. For example, a 10% increase in OOB testing

accuracy has different implications depending on whether the node has 10 or

10,000 samples.

The workflow is as follows: At each node, we initially use all data points to find

the split, ensuring full utilization of the training set for tree structure formation.

Within that node, we generate a bootstrap and an OOB sample. The bootstrap

sample is used to fit the LDA model at that node. We then apply the split to

the bootstrap data and fit LDA models in the child nodes. Finally, the OOB

sample assesses the change in testing accuracy. Splitting stops if this change lacks

statistical significance. Our simulations indicate that this stopping rule often

yields better results than Method 1, and the test accuracies from separate test

53

sets closely align with OOB test accuracies.

After an extensive examination of Method 2, we decided to remove the bootstrap

step and instead directly used changes in resubstitution error for the two-sample z-test

(Modified Method 2). This simplification of the algorithm led to reduced runtime while

maintaining comparable performance on most datasets. Additionally, we investigated

the differences between pre-pruning and post-pruning in this p-value threshold method.

In pre-pruning, the tree stops growing as long as the p-value is not significant. In

contrast, post-pruning allows the tree to grow to full depth and then prunes from the

bottom up, removing branches with non-significant p-values. In practice, we found

that the post-pruning method had better performance on synthetic datasets featuring

high-order interactions but insignificant main effects.

We also examined post-pruning with cross-validation, where we used CV trees to

choose the best p-value threshold for the main tree. We found that post-pruning is not

very helpful when there is no overfitting. Unlike typical models, the LDATree does not

have the usual convex testing error pattern, where errors decrease as underfitting is

resolved and then increase due to overfitting. Most of the time, it shows a monotone

trend. We tested post-pruning on the 49 datasets, and summarized the results in

Figure 3.10. In each small plot, the x-axis represents the p-value defined above, also the

α for cost-complexity pruning. A larger p-value threshold implies fewer constraints,

allowing the tree to grow deeper. The y-axis measures testing accuracy. Averaging

the 49 plots yields Figure 3.11. This indicates that in general, LDATree benefits from

additional splits and is robust to overfitting. However, due to the minor changes in

testing accuracy, we set α = 0.01 to achieve a shorter tree and potentially improved

interpretability.

Overall, we claim that the post-pruning with cross-validation is by far the most

accurate stopping rule. It is recommended if runtime is not a big concern. However,

in our real data analysis, the pre-stopping rule shows good testing accuracies within

54

0.945

0.947

0.949

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

1

0.880

0.882

0.884

0.886

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

2

0.601

0.602

0.603

0.604

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

3

0.693

0.694

0.695

0.696

0.697

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

4

0.892

0.894

0.896

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

5

0.7400

0.7425

0.7450

0.7475

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

6

0.76

0.78

0.80

0.82

0.84

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

7

0.478

0.479

0.480

0.481

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

8

0.340

0.342

0.344

0.346

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

9

0.465

0.470

0.475

0.480

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

10

0.700

0.705

0.710

0.715

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

11

0.424

0.428

0.432

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

12

0.6785

0.6790

0.6795

0.6800

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

13

0.925

0.950

0.975

1.000

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

14

0.950

0.975

1.000

1.025

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

15

0.950

0.975

1.000

1.025

1.050

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

16

0.95900

0.95925

0.95950

0.95975

0.96000

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

17

0.58

0.60

0.62

0.64

0.66

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

18

0.775

0.780

0.785

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

19

0.578

0.580

0.582

0.584

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

20

0.525

0.550

0.575

0.600

0.625

0.650

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

21

0.96614

0.96615

0.96616

0.96617

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

22

0.9165

0.9170

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

23

0.49950

0.49975

0.50000

0.50025

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

24

0.908

0.910

0.912

0.914

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

25

0.8310

0.8311

0.8312

0.8313

0.8314

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

26

0.726

0.728

0.730

0.732

0.734

0.736

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

27

0.687

0.689

0.691

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

28

0.8735

0.8740

0.8745

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

29

0.700

0.725

0.750

0.775

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

30

0.9060

0.9065

0.9070

0.9075

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

31

0.825

0.850

0.875

0.900

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

32

0.58

0.60

0.62

0.64

0.66

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

33

0.950

0.975

1.000

1.025

1.050

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

34

0.9100

0.9125

0.9150

0.9175

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

35

0.5950

0.5975

0.6000

0.6025

0.6050

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

36

0.355

0.360

0.365

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

37

0.7445

0.7450

0.7455

0.7460

0.7465

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

38

0.700

0.725

0.750

0.775

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

39

0.92425

0.92430

0.92435

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

40

0.962

0.963

0.964

0.965

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

41

0.7655

0.7660

0.7665

0.7670

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

42

0.852

0.853

0.854

0.855

0.856

0.857

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

43

0.9424

0.9426

0.9428

0.9430

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

44

0.612

0.613

0.614

0.615

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

45

0.9700

0.9725

0.9750

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

46

0.762

0.764

0.766

0.768

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

47

0.98090

0.98095

0.98100

0.98105

0.98110

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

48

0.4330

0.4332

0.4334

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

49

Figure 3.10: Test Accuracy vs. α: the performance of stepLDATree on 49 datasets. The
individual plot title indicates the index of the dataset. α is the p-value cutoff during
tree construction.

55

0.758

0.759

0.760

0.761

0.00 0.05 0.10 0.15 0.20
alpha

te
st

A
cc

Average Across All Datasets

Figure 3.11: Test Accuracy vs. α: the performance of stepLDATree on 49 datasets and
averaged. α is the p-value cutoff during tree construction.

the time limit. On most datasets, the differences are not significant compared to the

post-pruning with cross-validation. Therefore, we set the Modified Method 2 as the

default stopping rule in our implementation, and use it for the rest of our analysis

unless otherwise specified. Below is a detailed description.

Suppose there are n samples in the current node. We fit the LDA model within the

node and record the number of correctly predicted observations as n1. Next, we use

all data points to find the split, distribute the data points, and fit LDA models in all

child nodes. We then sum the number of correctly predicted observations across child

nodes and record this as n2. Thus, we have p̂1 = n1/n and p̂2 = n2/n. The z-statistic is

calculated as

z = n2 − n1√
np̂1(1− p̂1) + np̂2(1− p̂2)

.

The p-value is then given by 1−Φ(z), where Φ(x) is the CDF of the standard normal

56

distribution.

3.4 Splitting Rule

Introduction: Classical Methods and Their Challenges

Now, let us turn our attention to another crucial aspect of decision tree architecture:

the splitting rule. This rule determines how samples are distributed from a parent

node to its child nodes. A good splitting rule can effectively divide the sample space

so that each resulting subset is as internally homogeneous as possible (for the simple

node model). Conversely, a bad splitting rule may fail to define the correct decision

boundaries or might provide misleading information, potentially due to issues such as

selection bias (Loh and Shih, 1997).

For many splitting methods, the process can be divided into two stages. Initially, an

objective function is defined, which the method aims to optimize. This applies to both

univariate splits, where the rule is based on a single variable, and to forms like linear

combination (or oblique) splits. In these cases, every potential split point is exhaustively

evaluated to select the one that optimizes the objective function. For example, if the

split involves a numerical variable with 100 distinct values, there are 99 possible split

points, and this number increases linearly with the sample size. Traditional methods

that focus on univariate splits use objective functions like the Gini Index (Breiman et al.,

1984) or information gain (Quinlan, 1986). In the last two decades, several methods

have emerged targeting oblique splits, including Forest-RC (Breiman, 2001), Random

Rotation Random Forest (Blaser and Fryzlewicz, 2016), the Canonical Correlation

Forest (Rainforth and Wood, 2015), and Sparse Projection Oblique Randomer Forests

(Tomita et al., 2020). While these methods vary in how they determine the linear

combination of variables, they all use the same objective function within an exhaustive

search framework. However, this framework might not be the best for our LDATree.

57

Most of the methods mentioned above rely on a simple node model that predicts

all instances to be the majority class. This approach has zero training error in nodes

where all instances belong to a single class. Consequently, measures of node impurity,

like the Gini Index or information gain, are used as effective criteria for splitting. For

LDA, a pure node is beneficial but it’s not necessary. LDA is most effective when

different classes are linearly separable. When pure nodes are unattainable, we can

focus on another metric that characterizes linear separability, potentially enhancing

LDA’s performance.

Exploration of Various Splitting Methods

Leading Discriminant Score Splitting Our first method coincides with the approach

outlined in (Padmanabhan et al., 1999), using the leading discriminant score (LD1

score) as the splitting criterion. The LD1 score, being a linear combination of

variables, offers advantages over univariate splits, particularly in handling non-

axis-aligned decision boundaries common in real data. As shown in Figure 1.1,

univariate splits are less effective; they require multiple splits, forming a staircase

function to approximate the boundary line. In contrast, LDA can achieve this

with a single split, perpendicular to the LD1 score.

Moreover, other methods using linear combination splits either generate direc-

tions randomly (lacking guaranteed effectiveness) or require extensive time to

find an effective combination due to the infinite possible directions. The LD1

score, derived from LDA, can find a powerful split efficiently without reliance

on random choices or exhausted searches. It represents the best single direction

to maximize Fisher’s criterion. Following this, we only need to perform one

exhaustive search on the LD1 score (or on sample quantiles for larger datasets),

selecting the cut that maximizes the reduction in the Gini Index.

58

LDA Splitting This method is adapted from the LDA split introduced in FACT (Loh

and Vanichsetakul, 1988), with some modifications. Within each node, we first

fit an LDA model using the data in that node. Then, we create J ′ subnodes,

where J ′ represents the number of distinct predicted classes. Each observation

is distributed to a branch along with others in the same predicted class. Similar

to the LD1 score method, this approach also originates from LDA, offering the

advantage of quickly identifying powerful linear combinations of variables for

splitting. However, they are different in several aspects. Firstly, this method

does not always produce a binary tree, except in binary classification problems.

The use of multi-way splits typically results in a shorter tree, as the sample

size in each node decreases more rapidly with branching. More importantly,

this method generates splits in one shot, eliminating the need for exhaustive

searching. While LD1 score splitting divides the sample space into halves to

maximize the Gini Index reduction, LDA splitting partitions the space into J ′

parts, with decision boundaries determined by LDA. Another benefit of using

LDA for decision tree splitting is its guaranteed superiority over a stand-alone

LDA. It becomes equivalent to a stand-alone LDA when the LDATree consists of

only one LDA split and a trivial node model.

Another distinction from the FACT split concerns the hidden class scenario. Oc-

casionally, we encounter J ′ < J , indicating that some classes are not predicted

(hidden), yet these classes might appear in predictions of new cases. In such

instances, we assign the observation to the class with the highest posterior proba-

bility among the non-hidden classes. However, this approach can sometimes lead

to premature stopping, as illustrated in Figure 3.12. For instance, Node 3, con-

taining 498 observations, might benefit from further splitting. In this node, LDA

predicted all observations as class B and the posterior probability plot indicated

the red curve is below the blue curve almost everywhere. While this pattern is

59

good for a prediction task, it’s less effective for finding a splitting rule aimed at

efficiently dividing the sample space. The lower testing accuracy should not be

a big concern, since it will recover from subsequent splits. To address this, we

adjust our strategy by assigning equal priors to all classes whenever there exists a

dominant class. This change enables LDA to identify a cut between the centroids

of the classes, thereby facilitating continued splitting. In our implementation, we

switch to equal priors when the Gini Index in a particular node falls within the

range (0, 0.1].

Figure 3.12: A toy example demonstrating the ineffectiveness of the LDA split in the
presence of a class with a dominant prior. The right plot shows the posterior probability
of data in node 3 from the left plot (Section 3.4).

Scatter Trace Splitting This method draws inspiration from the XOR (or chessboard)

problem. Figures 3.13 and 3.14 demonstrate how the previous two splitting meth-

ods perform on this XOR problem. Although the results are generally fine, there

is room for improvement. The primary challenge is that both univariate splits

and linear combination splits struggle to identify this pattern. In symmetrical

patterns like the XOR, LDA does not work effectively.

We believe that the best splitting method should complement LDA. So far, the

two splitting criteria we have used seem to conflict with the LDA node model,

each striving to explain more of the data variance. Our aim is for the split to

play a supportive role, enhancing the effectiveness of the subsequent LDA node

60

Figure 3.13: LDA splitting on XOR data (Section 3.4).

Figure 3.14: LD1 score splitting on XOR data (Section 3.4).

model. In this context, Pillai’s trace, which we extensively discussed in Section

3.2, is particularly useful as it serves as a measure of LDA performance. However,

we have not derived an analytical solution for this metric at this moment, so we

turn to simulated annealing, using the optim function in R to iteratively find a

numerical solution. The algorithm is outlined as follows:

• Initialize a direction vector vp×1 and a scalar h. Partition the data into two

groups (A and B) based on whether Xv ≥ h or Xv < h.

• For groups A and B, with nA, nB samples respectively, calculate nAtr(S(A)
B) +

nBtr(S(B)
B). A larger value indicates better separation. The original Pillai’s

trace is defined as tr(S−1
T SB). To increase speed, I disregard the correlation

structure and scale all columns to have unit variance before calculating the

61

metric.

• Use simulated annealing to find the next v and h until convergence is reached

or the iteration limit (200) is met.

Figure 3.15: Illustration of the scatter trace splitting rule on XOR data, executed four
times (Section 3.4).

As Figure 3.15 demonstrates, the scatter trace splitting effectively solves the XOR

problem. However, due to the inherent randomness in the simulated annealing

process and the initial value selection, the split might not always be unique.

Random Splits Random splits are widely used as splitting criteria in forest methods.

These splits are fast and can help escape local optima due to their inherent

randomness. We propose two candidates for random splits:

• The first, inspired by (Tomita et al., 2020), is completely random. At each

node, we randomly select
√
M variables and randomly assign them coef-

ficients of ±1 (after scaling) to form a linear combination split. We then

62

project all observations along this direction and split at the median. This

approach creates a balanced decision tree with half of the data on each side.

• The second approach is inspired by the XOR pattern discussed earlier. In

some cases, different classes might exhibit different patterns, but their cen-

troids overlap when averaged, leading to ineffective LDA splits. A line (or

hyperplane) passing through all group means (centroids) can mitigate this

issue. The challenge arises with many variables, where multiple hyperplanes

are possible, or with fewer variables, where it’s impossible for a hyperplane

to intersect all group means. For the former scenario, we rank the variables

by a stepwise process. For the latter, we use the least square estimate (LSE)

due to its uniqueness. Let’s say we have J classes, resulting in a J×M matrix

of group means. We rank the M variables by their within-to-between-class

variance ratio, selecting the top J variables. If fewer than J variables are

available, we choose all of them. The top-ranked variable is treated as the

response variable, and we perform a linear regression of that variable on the

intercept and the remaining variables. This linear regression’s X and y are

based on the group mean matrix (J ×M), not the original dataset (N ×M).

We can’t include more than J variables in order to do linear regression.

And in cases where X′X is not invertible, we remove the least important

variable until it becomes invertible. The identified hyperplane is then used

for splitting. Interestingly, as this hyperplane usually passes through the

group means (and, by nature, near the group medians), it often results in a

balanced split with about half the data on each side.

Probabilistic Adaptive Splits Random splits can also be viewed as useful alternatives

when the LDA splits are ineffective. Consequently, we try to combine these two

types of splitting criteria: using the original splitting rule when the LDA node

model performs well, and resorting to random splits when it does not. In each

63

node, we calculate Pillai’s trace and its associated p-value as indicators of LDA

performance. The threshold for p-value is set at 0.05/100, applying the Bonferroni

correction with α = 0.05, and considering that LDATree typically has fewer than

100 nodes.

Real Data Analysis and Conclusion

To evaluate the performance of these splitting variants, we used the same testing

framework as outlined in Section 3.1. In this comparison, we evaluate a total of 22

methods, comprising 11 for LDATree and 11 for stepLDATree. The distinction between

LDATree and stepLDATree lies in their approach to LDA modeling: LDATree uses

LDA/GSVD for all LDA models used in both node model and splitting rules, while

stepLDATree uses stepwise LDA instead. For both LDATree and stepLDATree, we test

the following:

• Single splitting rule (5 methods): This category includes LD1 splitting (LD1), LDA

splitting (LDA), scatter trace splitting (Trace), totally random splits (Random),

and group mean splitting (GM).

• Probabilistic adaptive splits (6 methods): Here, we use a p-value threshold to

determine whether to use definitive splits or random splits. With three definitive

splits and two random splits, there are six methods in total.

The results for LDATree are presented in Figure 3.16, and the results for stepL-

DATree are summarized in Figure 3.17. The first observation from both plots is their

wide confidence intervals. This can be attributed to the inherently higher variance

of LDATree and stepLDATree compared to previous LDA variants. Another possible

reason for these performance variations could be the inherent variability in datasets.

Certain methods may excel with specific datasets while underperforming with others.

64

Overall, we anticipate that differences in testing accuracies across splitting methods

would become statistically significant with a larger dataset collection.

LDATreeGM

LDATreeLD1 LDATreeLD1GM

LDATreeLD1Random

LDATreeLDA

LDATreeLDAGMLDATreeLDARandom

LDATreeRandom

LDATreeTrace

LDATreeTraceGM

LDATreeTraceRandom

0.5

1.0

2.0

4.0

−0.01 0.00 0.01

method

LDATreeGM

LDATreeLD1

LDATreeLD1GM

LDATreeLD1Random

LDATreeLDA

LDATreeLDAGM

LDATreeLDARandom

LDATreeRandom

LDATreeTrace

LDATreeTraceGM

LDATreeTraceRandom

Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Figure 3.16: Real data analysis results in Section 3.4: Average runtime vs. average
testing accuracy for LDATree. Confidence intervals for runtimes (on a logarithmic
scale) and standardized accuracies are presented with 2SD error bars.

The methods from the Trace family suffer from their speed — they fail to complete

within five minutes on over half of the datasets. Given sufficient time, their performance

could potentially match or surpass other methods. For LDATree, the top-tier methods

include LDA, GM, and LDAGM, with LDA being the most accurate and GM the fastest.

In the case of stepwise LDA, the best performers are LDA, LDAGM, and LDARandom.

Analyzing their performance across various datasets, we conclude that the LDA split

is the most effective overall. Consequently, it will be adopted as the default splitting

rule in both LDATree and stepLDATree.

65

stepLDATreeGM

stepLDATreeLD1
stepLDATreeLD1GM

stepLDATreeLD1Random

stepLDATreeLDA

stepLDATreeLDAGM
stepLDATreeLDARandom

stepLDATreeRandom

stepLDATreeTrace

stepLDATreeTraceGM

stepLDATreeTraceRandom

1

2

4

−0.01 0.00 0.01 0.02

method

stepLDATreeGM

stepLDATreeLD1

stepLDATreeLD1GM

stepLDATreeLD1Random

stepLDATreeLDA

stepLDATreeLDAGM

stepLDATreeLDARandom

stepLDATreeRandom

stepLDATreeTrace

stepLDATreeTraceGM

stepLDATreeTraceRandom

Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Figure 3.17: Real data analysis results in Section 3.4: Average runtime vs. average
testing accuracy for stepLDATree. Confidence intervals for runtimes (on a logarithmic
scale) and standardized accuracies are presented with 2SD error bars.

66

4 missing value solutions

The LDATree algorithm and its derivation have been covered in previous sections. All

previous simulation results were based on complete datasets; this section will focus

on missing values. Missing values are common in machine learning, with numerous

methods developed to address them. This section will explore some of these methods

within the LDATree framework. Node-wise simple imputation with missing value

indicators has shown to be the most effective method in terms of runtime and prediction

accuracy.

4.1 Existing Methods

The decision tree family has a special way to handle missing values using the decision

tree structure. As observations move down the tree, the splitting variable may some-

times be missing. Instead of imputing these missing values, some methods can bypass

them. Here are four popular methods:

• The most famous one is the surrogate splits Breiman et al. (1984). When the

target variable for splitting is missing, it will use another backup variable to split

the data.

• Probabilistic split, like the one in C4.5 Quinlan (1993), which distributes the

current observation to all child nodes with certain weights. The weights are

proportional to the relative frequencies of the child nodes and the sum of the

weights is one.

• Treat missing values as a separate category, as implemented in GUIDE Loh (2002).

All missing values will be distributed to either left or right, depending on which

loss is smaller.

67

• The internal node strategy, which is used mainly in cost-sensitive trees Ling et al.

(2004). If the target variable is missing, the observations will stay in this internal

node, and the prediction is made using the training data in this node.

However, these methods are not applicable to our LDATree because LDA itself

cannot handle missing values. This means that even if we bypass the missing value

imputation during the splitting, we must still address them when fitting an LDA node

model. Therefore, we select and list some popular methods (and their R imputations)

below:

Simple Imputation Impute numerical variables using the mean or median, and cat-

egorical variables using the mode or a new level. Variants of this framework

include adding missing value indicators to save the missing information or adding

Gaussian errors to the imputed values to retain the variance.

Node-Wise Simple Imputation Compared to the simple imputation, this method dif-

fers in the timing of the imputation. Simple imputation imputes all missing

values at the root node, treating these values as observed in all subsequent nodes.

However, node-wise simple imputation handles missing values separately in

each node. Once the observation is passed to the child nodes, imputed missing

values from the current node are removed and re-imputed using the child nodes.

This method can be viewed as conditional imputations based on the samples in

the node.

Matrix Completion Matrix completion assumes that a low-rank matrix can well ap-

proximate the data matrix. This method fits patterns from observed data us-

ing SVD and applies them to impute missing values. We use the R package

softImpute Hastie et al. (2015), which claims to combine two popular approaches

into a more efficient method using fast alternating ridge regression.

68

Hot-Deck Imputation Hot-deck imputation replaces missing values with observed

responses from similar units, termed donors, grouped into imputation cells.

These cells are constructed based on the similarity of observations. The standard

approach involves fitting logistic regression on propensity scores and creating

imputation cells based on posterior probabilities. Besides, decision trees are also

ideal for the hot-deck method, as each terminal node forms an imputation cell.

missForest Many packages use random forest for imputation; here, we select the R

package missForest Stekhoven and Bühlmann (2012). This package uses random

forests to impute missing values in all variables. After each iteration, the package

records a measure of imputation performance and stops if the performance drops.

GUIDE We use a predictive model from GUIDE to impute the missing values. GUIDE

can handle missing values, offering it a significant advantage over other methods.

When both predictors and responses have missing values, GUIDE can directly

output a predictive model, unlike most methods that must first address the

missing values in predictors.

We also tested the mice package, but its runtime (several days) forced us to abandon

it. Amelia, another missing value solution using the Expectation-Maximization (EM)

algorithm, consistently crashed during our tests.

4.2 Proposed Methods

Inspired by the methods mentioned in the previous section, we propose two new

solutions for handling missing values. The first solution allows LDA to directly handle

missing values, while the second uses class-wise imputation.

To find decision boundaries, LDA requires two components: the group centroids

and the scatter matrices. When faced with missing values, we can estimate the group

69

centroids using non-missing entries. In R, this can be done using mean(..., na.rm

= TRUE). The scatter matrix, which is proportional to a covariance matrix, can handle

missing values using pairwise deletion. This involves using only complete pairs of vari-

ables to calculate each entry in the covariance matrix. We use the following strategies

to address potential problems:

• Sometimes, the correlation may be amplified with few observations. If there are

fewer than four observations, we manually set the correlation to zero. With more

than four observations, we calculate Fisher’s confidence interval for the pairwise

correlation and set the correlation to zero if the interval covers zero.

• The covariance matrix derived from pairwise deletion may not be semi-positive

definite. In such cases, we use the R function Matrix::nearPD() to approximate

it with the nearest positive definite matrix.

However, this method has intrinsic problems that cannot be resolved. For example,

using only complete observations to estimate the group centroids could result in bias

if the data is not Missing Completely at Random (MCAR). Therefore, to improve

imputation accuracy, we have to use information from other variables, leading to our

second method. This second method involves conditional imputation based on the

response variable. The basic steps for this method are as follows:

1. For each numerical variable in the current node, save the class-wise means and

standard deviations (SD). If the variable is categorical, then save the frequency

for each level.

2. Then, predict the class label for each observation, regardless of whether the true

class label is known. The prediction model here is probability-based. For each

variable, based on the previously saved information, we calculate a posterior

probability table including all classes; we use normal density with the saved

70

mean and SD if the variable is numeric, and the saved frequency table if the

variable is categorical. For a numerical variable x, the posterior probability for

each class j is calculated as

pj = π̂j
1√

2πσ̂2
j

exp
(xobs − x̄j)2

2σ̂2
j

 ,

then normalized so that∑J
j=1 pj = 1, where π̂j , x̄j , and σ̂2

j represent the estimated

class prior, mean, and variance for class j, respectively. For a factor variable x,

posterior probability follows the Bayes formula, approximated as

p(j|x) = p(x|j)p(j)
p(x) ≈ nxj

nx+
,

then normalized so that∑J
j=1 p(j|x) = 1. Here, nxj means the observed frequency

of the combination {x = x} ∩ {y = j}, and nx+ means the observed frequency of

{x = x}. Suppose there are a total of M variables, and the current observation

hasK observed andM−K missing. Then we haveK sets of posterior probability

tables. There are three methods to determine the final predicted class:

a) Vote: Directly determine the class using each of the K variables separately

to obtain K predicted classes. Then ensemble the results, and the final

predicted class will be the one with the most votes.

b) ProdPost: Multiply theK sets of posterior probability tables and standardize

them to obtain a final posterior probability table. We then classify it to be

the class with the largest posterior probability.

c) MeanPost: Sum the K sets of posterior probability tables and standardize

them to obtain a final posterior probability table. We then classify it to be

the class with the largest posterior probability.

3. Finally, impute each of the M −K missing entries using the class-wise mean or

71

mode, where the class is the predicted class from the previous step.

4.3 Simulation

Simulation Setting

We use 25 real datasets, each containing missing values. The data description is pro-

vided in Table A.2. The last column of Table A.2 shows the percentage of observations

missing at least one covariate. Notably, most datasets do not have a single complete

observation, highlighting the complexity of this challenge. The testing framework is

the same as in Section 3.1. For each dataset, we randomly sample 70% for training and

use the remaining 30% to assess testing accuracy. This process is repeated 20 times to

obtain confidence intervals for the testing accuracies.

We tested two versions of most methods: one with missing value indicators and

one without. To avoid overlapping different methods, we grouped and displayed the

results separately. We then put together the best method from each group for a more

comprehensive understanding. We evaluated the performance of these missing value

imputation methods on both LDATree and stepLDATree. However, because they are

very similar, we only present the results for stepLDATree here.

Simple Methods

In this subsection, we evaluated sixteen simple imputation methods. We impute all

missing entries at the root node using column statistics such as the mean and median.

To differentiate these methods, we adopt an A..B..CD syntax for the methods’ names,

which denotes:

• A: mean or median, used to impute missing values in numerical variables.

72

• B: mode or newLevel, used for imputing missing values in categorical variables.

Here, mode refers to the most frequent level, while newLevel means assigning an

additional level beyond the original levels for missing entries.

• C: 0 or 1. If C equals 0, no extra steps are taken. If C equals 1, we add Gaussian

noise to the deterministic imputation for numerical variables. This Gaussian noise

has a mean of zero, and its SD is estimated from the column’s SD. Consider using

median imputation for column X . The column median and SD are calculated as

mX and sX respectively, using the complete entries. For each missing entry, if C

equals 0, it is imputed with mX ; if C equals 1, it is imputed with mX + εi, where

εi is drawn from a normal distribution N(0, s2
X).

• D: empty or _IND, indicating the use of missing value indicators. This indicator is

added for every column with missing values, whether numerical or categorical.

If there are M variables and K have missing values, then for D = _IND, the total

will be M +K columns.

The final results are summarized in Figure 4.1. Sixteen methods are approximately

grouped into four clusters based on the missing value indicator and the use of ex-

tra Gaussian noise. It is clear that the missing value indicator improves the testing

accuracy, as methods ending with _IND are positioned to the right of those with-

out it, indicating higher testing accuracies. When using missing value indicators,

other variants appear to have not much effect. Gaussian noise (methods with ..1

before the _IND) seems to speed up the program because they have shorter trees com-

pared to those without Gaussian noise. However, the group without Gaussian noise

has slightly better testing accuracy because it performs significantly better in one of

the datasets compared to the group with Gaussian noise. Therefore, we consider

median..newLevel..0_IND and median..mode..0_IND to be the best candidate from

73

this group. We favor median..newLevel..0_IND over median..mode..0_IND because

newLevel has slightly higher testing accuracies than mode across all four clusters.

mean..mode..0

mean..mode..0_IND

mean..mode..1

mean..mode..1_IND

mean..newLevel..0

mean..newLevel..0_IND

mean..newLevel..1

mean..newLevel..1_IND

median..mode..0

median..mode..0_IND

median..mode..1

median..mode..1_IND

median..newLevel..0

median..newLevel..0_IND

median..newLevel..1

median..newLevel..1_IND

0.90

0.94

0.97

1.01

1.05

1.09

1.13

1.17

1.21

1.25

−0.010 −0.005 0.000 0.005
Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Missing Value Solutions

Simple Methods

Figure 4.1: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.

74

Hot-deck Methods

In this subsection, we evaluated eight hot-deck imputation methods. All of these

methods are based on the GUIDE decision tree. Compared to logistic regression and

other methods, using a decision tree as the hot-deck method offers several advantages:

• The key aspect of hot-deck imputation is identifying donor groups, also known as

imputation cells. In logistic regression with the propensity scores as the response,

the outcomes are posterior probabilities that must be manually divided into five

groups. This process is somewhat arbitrary compared to decision trees, where

each terminal node naturally serves as an imputation cell.

• Another advantage of decision trees is that they do not rely on assumptions about

the distribution, unlike logistic regression, which assumes an S-curve on the

probability distribution, limiting its generality.

• A major drawback of logistic regression and other methods is that they can

not handle missing values. However, the GUIDE method does not require any

pre-processing before fitting the model.

The methods we tested include:

GPTHD GUIDE Propensity Score Tree with Hot-Deck Imputation: Assume we have

M variables and K of them contain missing values. For the i-th variable among

the K, we define the observed flag Z as Z = I(X(i) 6= NA) and fit a GUIDE

propensity score tree using the available covariates {X(1), · · · , X(M)} \ {X(i)}.

This GUIDE method applies an internal check and ensures that the predicted

Ẑ ∈ (0, 1], indicating that each terminal node of the GUIDE tree contains at

least one observed response. Missing values in X(i) are then imputed using the

hot-deck method, with imputation cells corresponding to the tree’s terminal

nodes.

75

GRTHD GUIDE Regression Tree with Hot-Deck Imputation: Similar to GPTHD, but

replaces the propensity score tree with a regression or classification tree, depend-

ing on the variable type. It uses X(i) as the response variable in the GUIDE model,

fitted only with rows where X(i) is observed.

GCTHD GUIDE Combined Tree with Hot-Deck Imputation: We want to use both the

information from the missingness and the values themselves, so we combine the

propensity score tree with the regression tree. This approach creates two trees,

GPTHD and GRTHD. For each missing entry, one donor group is obtained from each

method, with the final donor group being the intersection of these two groups.

If the intersection is empty, the final donor group is the union of the two.

GCT2HD The second version of GUIDE Combined Tree with Hot-Deck Imputation:

The key difference is that when the intersection is empty, the final donor group

defaults to that from GRTHD, which, based on our experience, is more accurate

than GPTHD. However, this method and GCTHD have the downside of being twice

as slow.

For each method, we test two versions, one with missing value indicators and one

without. The missing value indicators have nothing to do with the hot-deck imputation.

They are added after all missing values have been imputed and are used only when

fitting the LDATree model.

The final results are summarized in Figure 4.2. Again, this shows the necessity

of missing value indicators. Although GPTHD_IND is twice as fast as the other three

methods, we selected GRTHD_IND as the best candidate from this group because of its

slightly higher testing accuracy.

76

GCT2HD GCT2HD_IND

GCTHD GCTHD_IND

GPTHD
GPTHD_IND

GRTHD GRTHD_IND

0.66

0.77

0.89

1.00

1.11

1.23

1.34

1.46

1.57

1.69

−0.010 −0.005 0.000 0.005 0.010
Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Missing Value Solutions

Hot−Deck Methods

Figure 4.2: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.

77

LDA-Exclusive Methods

In this subsection, we evaluate eight LDA-exclusive imputation methods. The main

idea is to use complete entries to estimate group centroids and pairwise complete

entries to estimate scatter matrices. More details can be found in Section 4.2. We adopt

the posAfisherBC syntax for the methods’ names, which denotes:

• A: Y or N, used to denote whether to use R function Matrix::nearPD() to approx-

imate the scatter matrix with the nearest positive definite matrix.

• B: Y or N, used to denote whether to use Fisher’s confidence interval for the

pairwise correlation and set the correlation to zero if the interval covers zero.

• C: empty or _IND, indicating the use of missing value indicators. The missing

value indicators are added before calculating the group centroids and scatter

matrices.

The final results are summarized in Figure 4.3. The eight methods are approximately

grouped into four clusters. Missing indicators are necessary, and approximating the

scatter matrices should not be done even if they are not semi-positive definite. We

selected posNfisherN_IND as the best candidate because of its slightly higher testing

accuracy than posNfisherY_IND.

Class-Wise Methods

In this subsection, we evaluate six class-wise imputation methods. The main idea is

to predict the class for each observation, and then use the class-wise mean or mode

to impute these values. Although the predicted class may not always be correct, it is

expected to be more accurate than class-blind imputations. More details, including the

three methods we propose, can be found in Section 4.2. Given our results in previous

sections on the importance of missing value indicators, all methods tested here have

78

posNfisherN

posNfisherN_IND

posNfisherY

posNfisherY_IND

posYfisherN

posYfisherN_IND

posYfisherY

posYfisherY_IND

0.83

0.89

0.96

1.02

1.08

1.15

1.21

1.27

1.34

1.40

−0.02 0.00 0.02
Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Missing Value Solutions

LDA−Exclusive Methods

Figure 4.3: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.

79

them. If the method’s name includes _chi, this indicates that an additional chi-squared-

based variable selection is performed for class prediction. This step aims to eliminate

noise variables that might affect prediction accuracy.

The final results are summarized in Figure 4.4. Except for prodPost_IND, all other

methods had similar performance. We selected meanPost_chi_IND as the best candi-

date due to its slightly higher testing accuracy.

4.4 Combined Result and Conclusion

Now, let’s combine the best candidate from each method group with methods that do

not belong to any category for a comprehensive comparison. The descriptions of meth-

ods are summarized in Table 4.1, and the final result is summarized in Figure 4.5. Based

on the runtime and testing accuracies, nodeWise_IND and median..newLevel..0_IND

appear to be the best candidates. We will compare these two methods more carefully

in Section 4.4.

Below are some comments during the simulation:

• The matrix completion method has three issues. First, it requires transforming

categorical variables into dummy variables before fitting the model, so the im-

puted values in dummy columns may not be strictly 0 or 1. The second, and

the more critical issue is that the fitted model cannot predict new observations

since it modifies rows and columns simultaneously. Our tentative solution is to

vertically combine the training and testing sets and perform matrix completion a

second time for imputations in the testing set. Third, the tuning process for the

key parameter λ is both time-consuming and ill-defined. The package authors

suggest manually tuning the parameter through trial and error. Therefore, we

skip this step, select the highest possible rank, and set λused =
√
λmax.

80

meanPost_IND

meanPost_chi_IND

prodPost_IND

prodPost_chi_IND

vote_IND

vote_chi_IND
0.65

0.76

0.86

0.97

1.08

1.18

1.29

1.39

1.50

1.60

−0.004 −0.002 0.000 0.002
Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Missing Value Solutions

Class−Wise Methods

Figure 4.4: Real data analysis results in Section 4.3 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.

81

method description
median..newLevel..0_IND Use the median for numerical variables and a new level

for categorical variables. Add missing value indicators
for numerical variables. Imputation occurs only once
in the root node.

nodeWise_IND Use the median, a new level, and missing indicators.
Imputation occurs at each intermediate node.

meanPost_chi_IND We apply chi-squared-based variable selection to elimi-
nate noise variables and calculate posterior probabili-
ties to predict the class for each observation. We then
average these probabilities across all predictors, pre-
dict the class, and impute missing values using the
class-wise mean or mode. Missing value indicators are
added. More details can be found in Section 4.2.

GRTHD_IND GUIDE Regression Tree with Hot-Deck Imputation.
Missing value indicators are added. More details can
be found in Section 4.3.

GUIDE_IND This method is similar to GRTHD from Section 4.3, but it
does not use hot-deck. For each variable with missing
values, a GUIDE regression or classification tree is fitted
according to its type, and predicted values are used
directly for imputation.

posNfisherN_IND Use complete entries to estimate group centroids and
pairwise complete entries for scatter matrices. Missing
value indicators are added. More details can be found
in Section 4.3 and Section 4.2.

softImpute_IND It is the matrix completion method that uses the R pack-
age softImpute. Missing value indicators are added.
More details can be found in Section 4.2.

missForest_IND It is the missForest method that is introduced in Sec-
tion 4.2. Missing value indicators are added.

Table 4.1: Descriptions of missing value methods tested in Section 4.4.

82

GRTHD_IND

GUIDE_IND

meanPost_chi_IND

median..newLevel..0_IND

missForest_IND

nodeWise_IND

posNfisherN_IND

softImpute_IND
4

64

1024

−0.02 −0.01 0.00
Test accuracy (standardized)

R
un

tim
e

(s
ta

nd
ar

di
ze

d)

Missing Value Solutions

All Methods

Figure 4.5: Real data analysis results in Section 4.4 using 25 datasets: Average runtime
vs. average testing accuracy for stepLDATree. Confidence intervals for runtimes (on a
logarithmic scale) and standardized accuracies are presented with 2SD error bars.

83

• Like softImpute, missForest cannot save the fitted model for future prediction.

Again, we vertically combine the training and testing sets and rerun missForest

to impute missing values in the testing set. Additionally, as it uses randomForest

backend, which cannot handle factors with more than 53 levels, we delete such

columns.

• For the GUIDE_IND method, only one iteration occurs over all variables, unlike

mice. GUIDE can directly handle missing values, thereby eliminating the need

for multiple imputations and avoiding the randomness propagated by mice.

Root-Node and Node-Wise Simple Imputation

In previous simulations, nodeWise_IND and median..newLevel..0_IND turned out

to be the best candidates. This section will compare their differences. The method

median..newLevel..0_IND, which is our root-node simple imputation method, im-

putes only once at the root node by imputing the sample median for numerical vari-

ables, adding missing value indicators, and imputing categorical variables with a

new level. On the other hand, nodeWise_IND uses the same imputation techniques for

numerical and categorical variables but performs these at every intermediate node.

We denote this specific imputation technique as M1, and we have the following results.

Lemma 4.1. For a numerical predictor X containing missing values, we impute with a constant

C and add the missing value indicatorX− = I(X = NA). Then, the column spaces of {X,X−}

does not depend on the choice of C.

Proof. We want to show that the column spaces of {Xc1 ,X−c1} and {Xc2 ,X−c2} are the

same for any c1, c2.

Any element E in the column space of {Xc1 ,X−c1} can be expressed as E = a ∗

Xc1 + b ∗ X−c1 . For the i-th entry that is not missing in X, Ei = a · Xi + b · 0. For

the j-th entry that is missing in X, Ej = a · c1 + b · 1 = a · c2 + (b + a · c1 − a · c2) · 1.

84

Thus, E can be rewritten as E = a · Xc1 + b · X−c1 = a∗ · Xc2 + b∗ · X−c2 , where

a∗ = a and b∗ = b + a · c1 − a · c2. Therefore, E belongs to the column space of

{Xc2 ,X−c2}, showing that span(Xc1 ,X−c1) ⊆ span(Xc2 ,X−c2). Similarly, we have

span(Xc2 ,X−c2) ⊆ span(Xc1 ,X−c1). Eventually, this shows that span(Xc1 ,X−c1) =

span(Xc2 ,X−c2).

Lemma 4.2. For K numerical predictors X1,X2, · · · ,XK containing missing values, the

combined column spaces of {X1,X−1 ,X2,X−2 , · · · ,XK ,X−K} does not depend on the choice of

C1, C2, · · · , CK .

Proof. This result is a simple extension of Lemma 4.1.

Lemma 4.3. The decision rules from the LDA/GSVD model do not depend on the choice of

C1, C2, · · · , CK .

Proof. Suppose we have two design matrices X1 and X2 where the only difference is

their choices of Ci. Based on Lemma 4.2 we know that they share the same column

space, which means X2 = X1R where R is full rank square matrix. LDA/GSVD tries

to find the transformation matrix W that can maximize the criterion Ye and Yu (2005)

FX(W) = trace
(
(SW)+ SB

)
where (SW)+ denotes the pseudo-inverse of the within-class scatter matrix.

Suppose the transformation matrices we find for X1 and X2 are W1 and W2, re-

spectively. Then we have

FX2(W2) = FX1(RW2) ≤ FX1(W1).

By similar argument, we have FX1(W1) ≤ FX2(W2). Therefore, FX1(W1) =

FX2(W2), and their decision rules are the same. Here, the same decision rule means

85

the same discriminant power, but the transformation matrix can differ by a full-rank

rotation matrix.

Theorem 4.4. For the LDATree model, the node-wise imputation and the root-node imputation

will lead to the same decision rule.

Proof. The difference between these two imputation methods is their choice of Ci. For

categorical variables, they both impute with a new level. For numerical variables, the

root-node imputation always imputes with the median from the root node, while the

node-wise imputation imputes with the median from the current node, leading to a

different set of Ci.

In the LDATree model, we use LDA/GSVD for both the node model and split.

As long as the current LDA/GSVD models are the same for both methods, they will

share the same split and child node structure, and the rest will follow. Therefore, we

only need to prove that in one particular node, these two imputations yield the same

LDA/GSVD model while having different choices of Ci, which is proved in Lemma

4.3.

Generally speaking, node-wise imputation should yield a different solution com-

pared to root-node imputation. However, we do two things differently: we add the

missing value indicators and use the LDA split. Together, these make the two methods

equivalent under the LDATree model. Although the two trained models are the same,

the testing results could differ if both of the following occur:

1. There exists perfect linear dependency in the design matrix.

2. The new testing data does not comply with the same linear dependency.

During our simulation, this seldom happens. When it does, the difference is negli-

gible.

86

When fitting a stepLDATree model, the difference between the two imputation

methods becomes much harder to investigate, as taking a subset of variables changes

the column space of the design matrix. The only scenario in which these two methods

yield different results is when all of the following occur:

1. The stepLDATree should have at least two levels (depth > 2), since the node-wise

imputation at the root node is the same as the root-node imputation. This also

means that the LDA at the root node cannot be so powerful that subsequent splits

are rendered useless.

2. To find a difference in one specific node, the two imputation methods should

impute different values. This means the node-wise median should differ from

the overall median.

3. To find a difference in one specific node, the stepwise LDA should select different

sets of variables. This means that for at least one variable, one imputation method

will treat it as significant while the other will not.

The trickiest part is the third point above. The significance of the variable after

imputation depends on the class structure, so neither of these two methods is theo-

retically admissible. Based on the testing accuracies on real datasets, the difference

between the two methods when fitting stepLDATree is negligible. Due to the three

constraints above, it is hard to find a simulation example to illustrate the difference

between these two methods. We favor root-node imputation for the following reasons:

1. It is computationally faster. Root-node imputation imputes once at the root node,

while node-wise imputation imputes at every node.

2. It provides more stable results when certain nodes have very few observations.

The median estimate in that particular node will have a much higher variance.

87

3. Node-wise imputation might generate some unreasonable decision paths, which

are hard to interpret. Suppose one particular observation has missing values on

X1, and has been imputed with a, b, and c in the 1st, 2nd, and 3rd split using

node-wise imputation. To end up in the terminal nodes it reaches, the value of

X1 takes three different values. However, in real life, there is only one realization

of X1. The three splits that this observation passes through might never form

a feasible decision path if the imputation remains the same in all three splits.

Root-node imputation, on the other hand, does not have this type of logical issue.

4. It has a slightly better testing accuracy compared to the node-wise imputation

based on our simulation.

Therefore, we decide to use root-node imputation as our default missing value

solution.

88

5 simulation

In this section, we use synthetic datasets to illustrate the strengths of stepLDATree and

LDATree. First, we demonstrate their performances on understandable 2D patterns.

Second, we identify two scenarios where the performance of stepLDATree surpasses

that of the random forest. Details about the other methods used for comparison can be

found in Table 5.1. Note that we use the default parameters in all methods without

special tuning. For LDATree and stepLDATree, we use the post-pruning stopping rule

in this section.

5.1 Some 2D Patterns

3X3 Square

The first pattern is a 3x3 square with three classes. The shape is carefully designed to

be symmetric, with the class centroids of all three classes being the same. Each small

square contains 1000 points, resulting in a total of 9000 points. We split the data 50:50

for training and testing purposes, and the results are summarized in Figure 5.1. Except

for the original pattern, other plots show the prediction regions.

Due to the symmetric pattern, LDA struggles and classifies all observations into

the majority class due to its higher prior. All other methods perform well. Notice that

method description
LDA The LDA/GSVD method, which is introduced in Sec-

tion 3.1
SVM Support vector machine from the R package e1071.
rpart CART method from the R package rpart.
GUIDE GUIDE classification tree, introduced in Section 4
GF GUIDE forest, the forest version of the GUIDE classifi-

cation tree.
ranger The random forest method from the R package ranger.

Table 5.1: Descriptions of the methods tested in Section 5.

89

−1

0

1

2

0 1 2 3 4

Original Pattern

−1

0

1

2

0 1 2 3 4

LDA accuracy: 0.44

−1

0

1

2

0 1 2 3 4

SVM accuracy: 0.95

−1

0

1

2

0 1 2 3 4

rpart accuracy: 0.88

−1

0

1

2

0 1 2 3 4

LDATree accuracy: 0.96

−1

0

1

2

0 1 2 3 4

stepLDATree accuracy: 0.95

−1

0

1

2

0 1 2 3 4

GUIDE accuracy: 0.91

−1

0

1

2

0 1 2 3 4

GF accuracy: 0.94

−1

0

1

2

0 1 2 3 4

ranger accuracy: 0.98

Figure 5.1: The first simulation results (3X3 square) in Section 5.1. Except for the
original pattern, other plots show the prediction regions.

90

methods rpart and GUIDE have obvious axis-orthogonal decision boundaries, which

limits their performance.

Spiral Shape

The second pattern is spiral shapes with three classes. Each class contains 5000 points,

resulting in a total of 15000 points. We split the data 50:50 for training and testing

purposes, and the results are summarized in Figure 5.2.

Again, LDA struggles because it only supports linear boundaries. Spiral decision

boundaries are needed here, and SVM also has difficulty finding effective boundaries.

rpart, GUIDE, and GF perform poorly in this scenario, partly due to their axis-orthogonal

splits. In contrast, LDATree, stepLDATree, and ranger yield satisfying results.

Concentric Circles

The third pattern contains concentric circles from four classes. Each class contains

2000 points, resulting in a total of 8000 points. We split the data 50:50 for training and

testing purposes, and the results are summarized in Figure 5.3.

Here, SVM and ranger have the best performance. Other methods have similar

performances, except for LDA.

5.2 Use Case for StepLDATree

Robustness to Noise Variables

In this section, we aim to show that stepLDATree is robust to noise variables and can

simultaneously be used as a variable selection tool. This is a useful property, especially

if you have many variables.

91

−2

0

2

−2 0 2

Original Pattern

−2

0

2

−2 0 2

LDA accuracy: 0.34

−2

0

2

−2 0 2

SVM accuracy: 0.51

−2

0

2

−2 0 2

rpart accuracy: 0.71

−2

0

2

−2 0 2

LDATree accuracy: 0.94

−2

0

2

−2 0 2

stepLDATree accuracy: 0.94

−2

0

2

−2 0 2

GUIDE accuracy: 0.8

−2

0

2

−2 0 2

GF accuracy: 0.83

−2

0

2

−2 0 2

ranger accuracy: 0.95

Figure 5.2: The second simulation results (spiral) in Section 5.1. Except for the original
pattern, other plots show the prediction regions.

92

−2

−1

0

1

2

−2 −1 0 1 2

Original Pattern

−2

−1

0

1

2

−2 −1 0 1 2

LDA accuracy: 0.25

−2

−1

0

1

2

−2 −1 0 1 2

SVM accuracy: 0.98

−2

−1

0

1

2

−2 −1 0 1 2

rpart accuracy: 0.84

−2

−1

0

1

2

−2 −1 0 1 2

LDATree accuracy: 0.9

−2

−1

0

1

2

−2 −1 0 1 2

stepLDATree accuracy: 0.91

−2

−1

0

1

2

−2 −1 0 1 2

GUIDE accuracy: 0.85

−2

−1

0

1

2

−2 −1 0 1 2

GF accuracy: 0.9

−2

−1

0

1

2

−2 −1 0 1 2

ranger accuracy: 0.97

Figure 5.3: The third simulation results (concentric circles) in Section 5.1. Except for
the original pattern, other plots show the prediction regions.

93

We use the 3X3 square data from Section 5.1. In addition to the two informative

variables, we add 300 pure Gaussian noise variables to both the training and testing

sets. Results are summarized in Figure 5.4.

−1

0

1

2

0 1 2 3 4

Original Pattern

−1

0

1

2

0 1 2 3 4

LDA accuracy: 0.39

−1

0

1

2

0 1 2 3 4

SVM accuracy: 0.44

−1

0

1

2

0 1 2 3 4

rpart accuracy: 0.88

−1

0

1

2

0 1 2 3 4

LDATree accuracy: 0.39

−1

0

1

2

0 1 2 3 4

stepLDATree accuracy: 0.92

−1

0

1

2

0 1 2 3 4

GUIDE accuracy: 0.91

−1

0

1

2

0 1 2 3 4

GF accuracy: 0.5

−1

0

1

2

0 1 2 3 4

ranger accuracy: 0.71

Figure 5.4: The simulation results (3X3 square + noises) in Section 5.2. Except for the
original pattern, other plots show the prediction regions.

Most methods perform much worse compared to the previous situation without

noise variables. Notably, ranger is also heavily affected by noise variables. When

performing classification problems, the random forest randomly chooses
√
M variables

94

(where M is the number of available variables) in each split, so the chance of selecting

the informative variables becomes much lower. In this example, the signal-to-noise

ratio is 2 : 300. GF, SVM, and LDATree also suffer from the same problem. However,

stepLDATree, GUIDE, and rpart achieve decent testing accuracy due to their ability to

ignore useless variables. This result shows that stepLDATree has a higher chance of

outperforming the random forest when there are many noise variables.

Look-Ahead Splitting

In this section, we will show that both LDATree and stepLDATree have the ability to

look ahead when splitting the tree, giving them an advantage over other decision tree

methods with more greedy strategies.

Our simulation result is based on the XOR shape in five-dimensional space. The

standard XOR problem is in two-dimensional space with two classes. (0, 0) and (1, 1)

return 0, while (0, 1) and (1, 0) return 1. In a 2D plot, this looks like a chessboard

pattern. The reason methods like CART or random forest struggle with this pattern

is that there is no single cut that can significantly decrease the impurity. They need

to look one step ahead, make one trivial cut, and then make the powerful cut. For a

3D XOR, it requires looking two steps ahead. As you can imagine, the difficulty of the

problem increases with dimensionality.

To set up the simulation, we first find the 32 centers in the five-dimensional space.

Suppose we denote the five variables as X1, X2, · · · , X5. Each variable can take either 0

or 1, leading to 25 = 32 centers. We define our response variable Y as Y = (X1 +X2 +

X3 +X4 +X5) mod 2. We sample 200 data points around each center. For a specific

center C = (c1, c2, · · · , c5), the points are sampled fromN (C, 0.2× I5). This results in a

total of 200×32 = 6400 points. We split the data 50:50 for training and testing purposes,

and the results are summarized in Figure 5.5. Note that the confidence intervals are

calculated based on 96 replications.

95

rpart

LDA

GUIDE

ranger

GF

LDATree

stepLDATree

SVM

0.5 0.6 0.7 0.8 0.9

Testing Accuracy

M
et

ho
ds

Figure 5.5: The testing results (5D XOR) in Section 5.2. Methods are ordered by their
accuracies, with confidence intervals for accuracies shown in 2SD error bars.

96

SVM has the highest testing accuracy, followed by stepLDATree and LDATree.

Single-tree methods like rpart and GUIDE have the lowest testing accuracies. Forest

methods like ranger and GF are in the middle. We believe that for problems requiring

proactive searching, stepLDATree and LDATree perform better compared to random

forest and single-tree methods.

97

6 real data analysis

The purpose of this section is to validate the performance of stepLDATree and LDATree

using real datasets and to compare them against existing methods. First, we show the

average performance across all datasets. Then, we examine specific datasets and discuss

the potential use cases for stepLDATree and LDATree. For LDATree and stepLDATree,

we use the pre-pruning stopping rule in this section.

6.1 Performance Across 49 Datasets

Once again, we use the same datasets, method processing, and graphing techniques

as in Section 3.1. Details about the other methods used for comparison can be found

in Table 6.1. Note that for methods that cannot handle missing values, we apply the

root-node imputation, as mentioned in Section 4.4. The final results are summarized

in Figure 6.1.

Among all machine learning methods, the random forest (ranger) achieves the

highest testing accuracy. GUIDE forest (GF) and stepLDATree form the second tier

in terms of testing accuracy, but stepLDATree is much faster. LDATree and GUIDE

method description
LDA The LDA/GSVD method, which is introduced in Sec-

tion 3.1
stepLDA The stepwise LDA/GSVD method, which is introduced

in Section 3.2.
ctree Conditional tree method Hothorn et al. (2006) from the

R package partykit.
rpart CART method from the R package rpart.
GUIDE GUIDE classification tree, introduced in Section 4
GF GUIDE forest, the forest version of the GUIDE classifi-

cation tree.
ranger The random forest method from the R package ranger.

Table 6.1: Descriptions of the methods tested in Section 6.1.

98

GF

GUIDE

LDA

LDATree

ctree

ranger

rpart

stepLDA

stepLDATree

0.18

107.64

215.11

322.57
430.03
537.50
644.96752.42859.89967.35

−0.10 −0.05 0.00 0.05 0.10
testAcc

R
un

tim
e

(m
in

s)

Figure 6.1: Real data analysis results in Section 6.1 using 49 datasets: Average runtime
vs. average testing accuracy. Confidence intervals for runtimes (on a logarithmic scale)
and standardized accuracies are presented with 2SD error bars.

99

have similar performance in both runtime and testing accuracy. On the other side,

rpart and ctree have poor testing accuracy, with rpart being particularly slow on

certain datasets. Based on these results, we conclude that stepLDATree, on average,

outperforms all other single-tree methods but is not as effective as the random forest.

6.2 Use Case for LDATree

Among the 49 tested datasets, there are some datasets where LDATree has better

performance compared to the random forest. We list three of them below and illustrate

the potential use case for LDATree.

fishcatch–Species It is introduced in Section 2.2.

Arcene–Class The data set, obtained from the UC Irvine Machine Learning Repository

(https://archive.ics.uci.edu/dataset/167/arcene), contains ten thousand

mass-spectrometry measurements from 200 patients. Our task is to use those

features to separate cancer patients from healthy patients.

Digits_CART–Digit This dataset, along with the following descriptions, is borrowed

from Section 2.6.1 in Breiman et al. (1984). Digits are ordinarily displayed on

electronic watches and calculators using seven horizontal and vertical lights in

on-off combinations (see Figure 6.2). Number the lights as shown in Figure 6.3,

and the scheme for all ten digits is shown in Figure 6.4. However, the data for

the example are generated from a faulty calculator. Each of the seven lights has

a probability of 0.1 of not doing what it is supposed to do. The final dataset

contains 200 data points of ten digits, and our task is to predict the digit class

given the seven lights.

https://archive.ics.uci.edu/dataset/167/arcene

100

Figure 6.2: Electronic digits from the Digits dataset in Section 6.2.

Figure 6.3: Number the electronic lights from the Digits dataset in Section 6.2.

Figure 6.4: Notation of the ten electronic digits from the Digits dataset in Section 6.2.

101

The results are summarized in Figure 6.5. On all three datasets, the LDATree is one

of the best methods, while ranger seems to struggle in these cases. We suspect the

potential reasons are:

• Small sample size. To make the random forest effective, one must build many

trees, each requiring substantial data to approximate the pattern well enough

through a non-parametric way. However, there are at most 200 observations in

all three examples, which significantly limits its power. In contrast, for LDATree

and stepLDATree, the tree size is adaptive, so they tend to choose simpler models

when few samples are available. Additionally, since LDA is a parametric model,

it does not require many data points to perform well.

• Useful interactions between variables. The shape is the most important informa-

tion when identifying fish. Therefore, for the fishcatch data, knowing the length

of a fish is not enough unless you also know the width. For the digits dataset, one

particular light cannot fully decide which number it is unless you know all other

lights. The same occurs for the Arcene data, where there are interactions between

different proteins. In each split, the random forest will search for the best single

variable and its cut point. However, the LDATree uses the LDA split, which is

the linear combination of variables, and the decision boundary is not restricted

to dichotomous splits (unless it is a binary classification problem). Sometimes,

one variable might be marginally insignificant but is significant in interactions

with other variables. This explains why stepLDATree is not as effective as the

LDATree in the Arcene data, as stepLDATree has a variable selection step.

102

LDATree

ranger

stepLDATree

0.7 0.8 0.9 1.0

testAcc

m
et

ho
d dataset
fishcatch−−Species
Arcene−−Class
Digits_CART−−Digit

Figure 6.5: Real data analysis results in Section 6.2 on three datasets: Confidence
intervals for testing accuracies are presented with 2SD error bars.

103

7 conclusion & future work

In this thesis, we focus on the integration of LDA and the decision tree, introducing

stepLDATree and LDATree. We aim to make them powerful single-tree classifiers

that address most of the well-known weaknesses of both LDA and decision trees.

Additionally, we touch on the problem of missing values, seeking the best solution

within our framework. Throughout our research, the metric we care about the most is

testing accuracy.

Section 3 mainly focuses on algorithm development and documents our efforts in

revising and improving each part of the tree structure. We review some traditional LDA

methods that can deal with the small-sample-size problem in Section 3.1, and select

LDA/GSVD as our best candidate. It can retain all discriminant information without

the necessity of tuning. To address the potential overfitting problem with LDA, we

review the most popular stepwise LDA method in Section 3.2 and propose an improved

version. This new version uses Pillai’s trace instead of Wilk’s Λ, solving the problem

of premature stopping and better integrating with our LDA/GSVD framework. We

then review several stopping rules in Section 3.3 and present a new direct-stopping

rule using the p-value from the z-test of comparing pre-split and post-split training

errors. We also recommend traditional cost-complexity pruning when time cost is

not a concern and look-ahead splitting is needed. In Section 3.4, we explore several

new splitting rules and choose the LDA split as our best candidate. The LDA split

is not forced to be axis-orthogonal, making it more general. It uses the prediction

region from the LDA, making it a powerful discriminative tool if we have a good LDA

fit. If not, the split serves as a random split, which can break the symmetry pattern

and facilitate subsequent splits. Additionally, the LDA split is fast since there is no

searching involved, and it has already been fitted in the previous step.

Section 4 is about missing values. We explored new missing value solutions and

104

applied them, along with several well-known missing value solutions, to our stepL-

DATree and LDATree models. We found that the simple missing value solution is

sufficient in terms of testing accuracy. We prove in Section 4.4 that simple imputation

at the root node is equivalent to node-wise simple imputation within the LDATree

framework. Section 5 presents results from synthetic datasets, illustrating the methods’

performance and providing use cases for stepLDATree. In Section 6, we analyze real

datasets and present use cases for LDATree.

We claim that both LDATree and stepLDATree generally outperform single-tree

classifiers in terms of testing accuracy. Compared to ensemble methods like random

forests, there are potential use cases where both methods may outperform. StepLDA-

Tree is preferable when there are many noise variables or when look-ahead splitting

is needed. LDATree is more effective when the sample size is small and there are

interactions between variables. Overall, stepLDATree is more accurate, more general,

and can handle more scenarios, while LDATree might be a better choice when noise

variables are not a concern and the sample size is not large.

Next, we discuss the limitations from two perspectives. First, regarding the algo-

rithm itself, each part can be improved. The LDA/GSVD in Section 3.1 has decent

accuracy, but it can be very slow when there are many columns. Another notorious

problem with LDA is its sensitivity to outliers. Currently, this is not a huge problem

since the tree structure helps mitigate it, but it would be better if LDA could handle

this independently. The splitting rule in Section 3.4 might be modified to make the

decision boundary clearer and more intuitive, unlike those in Figure 5.1 and Figure 5.4.

Value grouping might be helpful. Additionally, LDA only considers class centroids,

and decision boundaries are calculated solely based on the normality assumption.

Borrowing ideas from SVM to make it more data-driven could be helpful. In the future,

we can integrate importance scores into our algorithm since stepLDATree and stepwise

LDA have generated them implicitly.

105

Second, from the dataset perspective, collecting additional datasets is necessary, as

the current set of 49 datasets may not provide sufficient diversity or representation. It

is important to have data with various missing patterns. It will be interesting to see if

our current solution remains effective with datasets having diverse MAR patterns.

106

a supplementary data description

107

dataset colName rowSize colSize nLevels maxProp missing
CE EARNCOMP 4693 916 8 0.274 Yes
CE REF_RACE 4693 914 6 0.888 Yes
CE [B]REF_RACE 1051 889 6 0.5 Yes
NHTSA TRANSM 3270 920 9 0.412 Yes
NHTSA COLMEC 3028 920 9 0.603 Yes
NHTSA ENGINE 3273 911 18 0.382 Yes
COVID DeathIntube 54313 48 2 0.792 Yes
COVID [B]DeathIntube 22606 47 2 0.5 Yes
ACS CIT 79060 114 5 0.2 Yes
ACS RELSHIPP 49039 99 19 0.053 Yes
NHDS marital.status 4374 59 6 0.167 No
NHDS admission.type 29235 61 5 0.2 No
NHDS discharge.status 10829 59 7 0.143 No
birthwt DBWT 90000 139 3 0.33 Yes
iris Species 150 4 3 0.33 No
fishcatch Species 159 7 7 0.352 Yes
DummyMatrix Class 2000 20 10 0.1 No
DummyMatrix[M] Class 2000 20 10 0.1 Yes
Vowel y 990 10 11 0.09 No
PrelimSim1 response 16000 87 8 0.125 Yes
PrelimSim2 response 16000 4 8 0.125 Yes
Internet adOrNot 3279 1558 2 0.86 Yes
Internet [B]adOrNot 919 1470 2 0.5 Yes
Indoor Space 21048 522 124 0.053 No
Indoor BF 21048 522 13 0.131 No
Parkinson class 756 753 2 0.746 No
Parkinson [B]class 384 753 2 0.5 No
Arcene Class 200 9961 2 0.56 No
peptide bind 310 254 2 0.584 No
Digits_CART Digit 200 7 10 0.14 No
golubdata Y 72 3571 2 0.653 No
CapitalOne dissatisfied 22242 25 2 0.852 Yes
CapitalOne [B]dissatisfied 6576 25 2 0.5 Yes
DummyAndSim1 response 16000 28 9 0.498 No
spam spam 4601 57 2 0.606 No
simSurface2 Y 5000 10 2 0.5 No
simSurface4 Y 5000 10 4 0.25 No
jobSatis DV_JobSatis 50225 74 5 0.466 Yes
Diabetes Diabetes_binary 70692 21 2 0.5 No
SUPPORT2 death 9105 64 2 0.681 Yes
SUPPORT2 hospdead 9105 64 2 0.741 Yes
MI ZSN 1700 111 2 0.768 Yes
MI LET_IS 1700 111 8 0.841 Yes
APS_Failure class 2750 169 2 0.5 Yes
SECOM result 208 468 2 0.5 Yes
Motion_Capture Class 78095 39 5 0.21 Yes
Polish_bankruptcy class 4182 64 2 0.5 Yes
Mice_Protein class 1080 77 8 0.139 Yes
Diabetes130 readmitted 34071 1983 3 0.33 Yes

Table A.1: Data description for the dataset used in Section 3.1. Here, nLevels represents
the number of levels of the response variable, and maxProp represents the proportion
of the plurality class in the response variable.

108

dataset colName rowSize colSize nLevels maxProp naProp naAnyProp
CE EARNCOMP 4693 916 8 0.274 0.148 1
CE REF_RACE 4693 914 6 0.888 0.146 1
CE [B]REF_RACE 1051 889 6 0.5 0.147 1
NHTSA TRANSM 3270 920 9 0.412 0.093 1
NHTSA COLMEC 3028 920 9 0.603 0.093 1
NHTSA ENGINE 3273 911 18 0.382 0.093 1
ACS CIT 79060 114 5 0.2 0.31 1
ACS RELSHIPP 49039 99 19 0.053 0.366 1
MI ZSN 1700 111 2 0.768 0.084 1
MI LET_IS 1700 111 8 0.841 0.084 1
SECOM result 208 468 2 0.5 0.047 1
Motion_Capture Class 78095 39 5 0.21 0.328 1
COVID [B]DeathIntube 22606 47 2 0.5 0.075 0.988
COVID DeathIntube 54313 48 2 0.792 0.075 0.986
SUPPORT2 death 9105 64 2 0.681 0.115 0.966
SUPPORT2 hospdead 9105 64 2 0.741 0.115 0.966
APS_Failure class 2750 169 2 0.5 0.129 0.957
birthwt DBWT 90000 139 3 0.33 0.035 0.894
Polish_bankruptcy class 4182 64 2 0.5 0.019 0.663
fishcatch Species 159 7 7 0.352 0.069 0.553
jobSatis DV_JobSatis 50225 74 5 0.466 0.028 0.508
Mice_Protein class 1080 77 8 0.139 0.017 0.489
Internet adOrNot 3279 1558 2 0.86 0.001 0.281
CapitalOne dissatisfied 22242 25 2 0.852 0.003 0.079
CapitalOne [B]dissatisfied 6576 25 2 0.5 0.003 0.078

Table A.2: Data description for the dataset used in Section 4.3, sorted by naAnyProp.
Here, nLevels represents the number of levels of the response variable, maxProp repre-
sents the proportion of the plurality class in the response variable, naProp represents
the proportion of the missing entries across all entries, and naAnyProp is defined as
one minus the proportion of complete cases.

109

references

Belhumeur, Peter N., Joao P Hespanha, and David J. Kriegman. 1997. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. IEEE Transactions on
pattern analysis and machine intelligence 19(7):711–720.

Blaser, Rico, and Piotr Fryzlewicz. 2016. Random rotation ensembles. The Journal of
Machine Learning Research 17(1):126–151.

Breiman, L, JH Friedman, R Olshen, and CJ Stone. 1984. Classification and Regression
Trees.

Breiman, Leo. 2001. Random forests. Machine learning 45:5–32.

Chen, Li-Fen, Hong-Yuan Mark Liao, Ming-Tat Ko, Ja-Chen Lin, and Gwo-Jong Yu.
2000. A new LDA-based face recognition system which can solve the small sample
size problem. Pattern recognition 33(10):1713–1726.

Clemmensen, Line, Daniela Witten, Trevor Hastie, and Bjarne Ersbøll. 2011. Sparse
discriminant analysis. Technometrics 406–413.

Dixon, Wilfrid Joseph. 1990. Bmdp statistical software manual: to accompany the 1990
software release, vol. 1. University of California Press.

Esposito, Floriana, Donato Malerba, Giovanni Semeraro, and J Kay. 1997. A com-
parative analysis of methods for pruning decision trees. IEEE transactions on pattern
analysis and machine intelligence 19(5):476–491.

Friedman, Jerome H. 1989. Regularized discriminant analysis. Journal of the American
Statistical Association 84(405):165–175.

Fukunaga, Keinosuke. 2013. Introduction to statistical pattern recognition. Elsevier.

Gao, Hui, and James W Davis. 2006. Why direct LDA is not equivalent to LDA. Pattern
Recognition 39(5):1002–1006.

Habbema, JDF, and J Hermans. 1977. Selection of variables in discriminant analysis
by F-statistic and error rate. Technometrics 19(4):487–493.

Hastie, Trevor, Rahul Mazumder, Jason D Lee, and Reza Zadeh. 2015. Matrix com-
pletion and low-rank SVD via fast alternating least squares. The Journal of Machine
Learning Research 16(1):3367–3402.

110

Hastie, Trevor, Robert Tibshirani, and Andreas Buja. 1994. Flexible discriminant
analysis by optimal scoring. Journal of the American Statistical Association 1255–1270.

Hermans, J, and JDF Hobbema. 1976. Manual for the alloc discriminant analysis programs:
A package of fortran computer programs. University of Leiden, Department of Medical
Statistics.

Hothorn, Torsten, Kurt Hornik, and Achim Zeileis. 2006. Unbiased recursive parti-
tioning: A conditional inference framework. Journal of Computational and Graphical
statistics 15(3):651–674.

Howland, Peg, Moongu Jeon, and Haesun Park. 2003. Structure preserving dimension
reduction for clustered text data based on the generalized singular value decomposi-
tion. SIAM Journal on Matrix Analysis and Applications 25(1):165–179.

IBM Corp. 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM
Corp.

Jennrich, Robert I. 1977. Stepwise discriminant analysis. Statistical methods for digital
conputers 76.

Ji, Shuiwang, and Jieping Ye. 2008. Generalized linear discriminant analysis: a unified
framework and efficient model selection. IEEE Transactions on Neural Networks 19(10):
1768–1782.

Jombart, Thibaut, Sébastien Devillard, and François Balloux. 2010. Discriminant anal-
ysis of principal components: a new method for the analysis of genetically structured
populations. BMC genetics 11(1):1–15.

Kim, Hyunjoong, and Wei-Yin Loh. 2003. Classification trees with bivariate linear
discriminant node models. Journal of Computational and Graphical Statistics 12(3):512–
530.

Ling, Charles X, Qiang Yang, Jianning Wang, and Shichao Zhang. 2004. Decision trees
with minimal costs. In Proceedings of the twenty-first international conference on machine
learning, 69.

Loh, Wei-Yin. 2002. Regression tress with unbiased variable selection and interaction
detection. Statistica Sinica 361–386.

Loh, Wei-Yin, and Yu-Shan Shih. 1997. Split selection methods for classification trees.
Statistica sinica 815–840.

111

Loh, Wei-Yin, and Nunta Vanichsetakul. 1988. Tree-structured classification via
generalized discriminant analysis. Journal of the American Statistical Association 83(403):
715–725.

Mai, Qing. 2013. A review of discriminant analysis in high dimensions. Wiley Interdis-
ciplinary Reviews: Computational Statistics 5(3):190–197.

McCabe, George P. 1975. Computations for variable selection in discriminant analysis.
Technometrics 17(1):103–109.

Mingers, John. 1987. Expert systems—rule induction with statistical data. Journal of
the operational research society 38:39–47.

———. 1989. An empirical comparison of pruning methods for decision tree induction.
Machine learning 4:227–243.

Niblett, Tim, and Ivan Bratko. 1987. Learning decision rules in noisy domains. In Pro-
ceedings of expert systems’ 86, the 6th annual technical conference on research and development
in expert systems iii, 25–34.

Padmanabhan, Mukund, Lalit R Bahl, and David Nahamoo. 1999. Partitioning the
feature space of a classifier with linear hyperplanes. IEEE Transactions on Speech and
Audio Processing 7(3):282–288.

Park, Haesun, Barry L Drake, Sangmin Lee, and Cheong Hee Park. 2007. Fast linear
discriminant analysis using qr decomposition and regularization. Tech. Rep., Georgia
Institute of Technology.

Pillai, KC Sreedharan. 1955. Some new test criteria in multivariate analysis. The Annals
of Mathematical Statistics 117–121.

Quinlan, J. Ross. 1986. Induction of decision trees. Machine learning 1:81–106.

———. 1987. Simplifying decision trees. International journal of man-machine studies
27(3):221–234.

Quinlan, J Ross. 1993. C4.5: Programs for machine learning. The Morgan Kaufmann
Series in Machine Learning.

Rainforth, Tom, and Frank Wood. 2015. Canonical correlation forests. arXiv preprint
arXiv:1507.05444.

112

Rencher, Alvin C, and WF Christensen. 2002. Methods of multivariate analysis. 3rd ed.
John Wiley & Sons.

Rencher, Alvin C, and Steven F Larson. 1980. Bias in Wilks’ Λ in stepwise discriminant
analysis. Technometrics 22(3):349–356.

SAS Institute Inc. 2014. SAS/ETSő 13.2 User’s Guide: High-Performance Procedures.
Cary, NC: SAS Institute Inc.

Stekhoven, Daniel J, and Peter Bühlmann. 2012. MissForest—non-parametric missing
value imputation for mixed-type data. Bioinformatics 28(1):112–118.

Tharwat, Alaa, Tarek Gaber, Abdelhameed Ibrahim, and Aboul Ella Hassanien. 2017.
Linear discriminant analysis: A detailed tutorial. AI communications 30(2):169–190.

Tomita, Tyler M, James Browne, Cencheng Shen, Jaewon Chung, Jesse L Patsolic,
Benjamin Falk, Carey E Priebe, Jason Yim, Randal Burns, Mauro Maggioni, et al. 2020.
Sparse projection oblique randomer forests. The Journal of Machine Learning Research
21(1):4193–4231.

Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with s. 4th ed. New
York: Springer. ISBN 0-387-95457-0.

Witten, Daniela M, and Robert Tibshirani. 2011. Penalized classification using Fisher’s
linear discriminant. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 73(5):753–772.

Ye, Jieping, Ravi Janardan, Cheong Hee Park, and Haesun Park. 2004. An optimization
criterion for generalized discriminant analysis on undersampled problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26(8):982–994.

Ye, Jieping, and Tao Xiong. 2006. Null space versus orthogonal linear discriminant
analysis. In Proceedings of the 23rd international conference on machine learning, 1073–1080.

Ye, Jieping, and Bin Yu. 2005. Characterization of a family of algorithms for generalized
discriminant analysis on undersampled problems. Journal of Machine Learning Research
6(4).

Yu, Hua, and Jie Yang. 2001. A direct LDA algorithm for high-dimensional data—with
application to face recognition. Pattern recognition 34(10):2067–2070.

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Existing LDA-Integrated Decision Tree Methods
	Case Study: Fishcatch Dataset

	LDATree & stepLDATree Algorithm
	Node Model: LDA Variants
	Node Model: Stepwise LDA
	Stopping Rule
	Splitting Rule

	Missing Value Solutions
	Existing Methods
	Proposed Methods
	Simulation
	Combined Result and Conclusion

	Simulation
	Some 2D Patterns
	Use Case for StepLDATree

	Real Data Analysis
	Performance Across 49 Datasets
	Use Case for LDATree

	Conclusion & Future Work
	Supplementary Data Description
	References

