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0.1. Introduction

The most important assumption made in the ordinary least squares regression model

(OLS) is the orthogonality between the random disturbance term and the regressors.

This assumption is not fulfilled in many relevant economic scenarios in which a set

of explanatory variables, referred to as endogenous regressors, are correlated with the

random disturbance. The earliest example, as documented by Stock and Trebbi (2003),

arose with the estimation of demand equations and price elasticities. Researchers that

explored this problem in the early twentieth century found that the result of regressing

quantities demanded on prices was an upward sloping demand curve. The reason for

this occurrence is that the equilibrium prices and quantities are affected by movements in

the supply curve, something that yields a violation of the assumption that the error term

and the regressors are independent. This problem is also present in the regression that

relates individual wages to schooling choices and other individual characteristics. In this

case there exist components of the random disturbance, for instance unobserved ability,

that are correlated with schooling choices.

The instrumental variable procedure addresses this problem by introducing a set

of regressors that are uncorrelated to the random disturbance and are related to the

explanatory variable of interest only through the endogenous regressors. In the case

of the demand equation, a valid instrument would be a variable that shifts the supply

affecting the quantity demanded only through its effect on the equilibrium prices. In
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the case of the wage equation, a valid instrument would be one that affects the years of

schooling of an individual but has no direct effect on the wages.

In this dissertation, I provide solutions to problems sometimes encountered by

researchers when employing an instrumental variable methodology. I explore the in-

strumental variable problem in a nonparametric framework and in a situation where

there exists a large set of instruments that are weakly correlated with the endogenous

variable of interest. The latter case is referred to as the many weak instrument problem

and is characterized by the fact that it yields inconsistent estimators with nonstandard

asymptotic distributions. I also explore the model selection advantages of the least

absolute shrinkage and selection operator (LASSO) as an instrument selection procedure

in this context.

In the first chapter of this dissertation, I analyze a many weak instrument setting that

extends the Chao and Swanson (2005a) framework to consider a potentially large number

of irrelevant instruments. In this setting I propose a new 2SLS estimator that addresses

two concerns: first, the selection of the relevant instruments; and second, inconsistent

estimates that arise in a 2SLS context with many weak and irrelevant instruments. The

methodology put forth addresses the first concern by disregarding with high probability

those instruments that should not be included in the model using an adaptive absolute

shrinkage and selection operator (LASSO). The second concern comes from the fact that
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in the environment described, the traditional 2SLS estimator is not consistent. I prove

that the proposed estimator is simultaneously consistent and asymptotically normal in

the presence of many weak and irrelevant instruments.

The first stage can also be constructed using a mean independent instrument assump-

tion to provide the possibility of a nonparametric version of the adaptive LASSO. The

methodology allows for heteroskedasticity, which has been shown to affect the consis-

tency of the structural parameter in a setting with many weak instruments (Chao et al.

(2010); Hausman et al. (2010)). However, using the adaptive LASSO yields first stage

estimates with considerable bias. To address this concern and exploit the instrument

selection properties of the adaptive LASSO, I run an OLS regression with the selected

instruments in the first stage as suggested by Belloni and Chernozhukov (2010).

The second chapter is an empirical application of the findings and method of the first

chapter to the data set used in Angrist and Krueger (1991). This paper is the most com-

monly cited study when referring to the many weak instrument problem and provides

a clear illustration of how the estimator introduced in chapter 1 can help select a set of

instruments and alleviate the weak instrument problem. Moreover, the results found in

this chapter can be readily compared to others presented in the literature. In particular I

will contrast my estimation results with those presented in Belloni et al. (2010a).
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In the third chapter, I explore a solution to the nonparametric instrumental variable

problem within the context of reproducing kernel Hilbert Spaces (RKHs) by recognizing

that the object of interest is the solution to a Fredholm integral equation of the first kind.

RKHs are characterized by the fact that linear functionals in the space are bounded.

Therefore, the results of the previous literature, which assume the function of interest lies

in a bounded Hilbert space, can be mapped into a RKH.

Solutions to Fredholm integral equations of the first kind are called regularized solu-

tions. The methodology proposed in this chapter is, as was typified by Nychka et al.

(1984), a cross-validated spline solution. Within this framework the solution can be

thought of as a penalized least squares estimate. The penalty over the roughness of the

function, characteristic of these setups, is controlled by a regularization parameter that is

chosen by Generalized Cross Validation (GCV). Except for Gagliardini and Scaillet (2006),

the previous papers have no explicit mechanism for choosing the regularization param-

eter and some, like Newey and Powell (2003), recognize their estimator is very sensitive

to the choice of parameters. One advantage of GCV over the methodology of Gagliardini

and Scaillet (2006) is that its optimality has been established by Wahba (1977) within the

context of integral equations which are the object of interest in the literature of nonpara-

metric endogeneity.
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Chapter 1

Instrumental Variable Estimation and

Selection with Many Weak and

Irrelevant Instruments

1.1. Introduction

In this paper, I extend the many weak instruments framework of Chao and Swanson

(2005) to allow for a potentially large number of irrelevant instruments. In a setting

with many weak, possibly irrelevant instruments, traditional 2SLS leads to inconsistent

estimates when all potential instruments are used, but it is unclear how to select the

right instruments to include. I introduce a new 2SLS estimator that selects the correct

instruments with high probability and is simultaneously consistent and asymptotically
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normal in the presence of heteroskedasticity.

Bound et al. (1995) show that even when instruments are plausible the resulting esti-

mator can be inconsistent and have a significant finite sample bias if their correlation with

the endogenous variable is small. They make the striking argument that results derived

under weak instruments can be equivalent to those obtained with a set of randomly

generated instruments. The work of Staiger and Stock (1997) proves that under weak

instruments the traditional simultaneous equation estimators have a non-standard lim-

iting distribution. When many instruments are available the conclusions are not as dire.

Chao and Swanson (2003b, 2005b, 2003a) prove that when this is the case the traditional

simultaneous equation estimators can be consistent and asymptotically normal even if

the instrument set is weak. Their work suggests that using all available instruments can

alleviate the weak instrument problem.

In the presence of many weak instruments, heteroskedasticity presents an additional

challenge. Chao et al. (2010), Hausman et al. (2010), and Chao and Swanson (2003a),

prove that simultaneous equations estimators that would be consistent in the presence

of many weak instruments are rendered inconsistent. To solve this problem Chao et al.

(2010) and Hausman et al. (2010) propose jackknife versions of the traditional simultane-

ous equations estimators.
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Two asymptotic frameworks can be used to analyze the 2SLS estimator I propose in

this paper. In both cases the inconsistency of the conventional 2SLS estimator can be

characterized by the convergence of the estimator to an expression that depends on the

ratio of the concentration parameter to the number of instruments. The concentration

parameter is the canonical measure of instrument weakness and can be understood as

capturing the signal to noise ratio of the reduced form equation in a linear instrumental

variable estimation.

The first asymptotic framework, proposed by Staiger and Stock (1997), studies a

sequence of models where the number of instruments is fixed and the concentration

parameter remains constant in expectation. Under these conditions, if the concentration

parameter is small, 2SLS is inconsistent. In the Chao and Swanson (2003b, 2005b) frame-

work, a sequence of models that allows the concentration parameter and the number of

instruments to grow with the sample size is considered. Here, the conventional 2SLS

estimator is consistent if the rate at which the number of instruments grows is slower

than the growth rate of the concentration parameter. Intuitively, this means that the

signal to noise ratio per instrument is growing which implies additional instruments

provide information asymptotically.

I contribute to the weak instrument literature by providing an estimator that is consis-

tent and asymptotically normal in the presence of many weak and irrelevant instruments
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and heteroskedasticity. To do so, I employ the asymptotic framework of Chao and Swan-

son (2003b, 2005b) because it incorporates the many instruments framework of Bekker

(1994) and Morimune (1983) and the fixed number of instruments framework of Staiger

and Stock (1997). As was shown by Chao and Swanson (2003b), the selected asymptotic

framework also characterizes the conditions under which a wide class of estimators is

consistent in the presence of many weak instruments.

In contrast with Chao and Swanson (2003b, 2005b), I consider a framework were some

of the instruments are irrelevant. These irrelevant instruments, ideally, should not be

introduced. They are included because researchers are uncertain which regressors should

be in the model, but the solution to the endogeneity problem demands the inclusion of

all possible sources of exogenous variation.1 Additionally, including many instruments,

as was shown by Chao and Swanson (2003b, 2005b, 2003a), can result in the traditional

simultaneous equation estimators2 being consistent and asymptotically normal, even if

the instruments set is weak. I argue that when a large instrument set is generated some

of the instruments available may be potentially irrelevant. The results I present suggest

that having an instrument selection procedure to exclude irrelevant instruments yields a

more reliable estimator of the structural parameter of interest.

1Traditional solutions to the endogeneity problem assume the endogenous variable is composed of an
endogenous and an exogenous component. The solution to the problem comes from subtracting an estimate
of the endogenous component from the endogenous variable. Therefore, including all possible sources of
exogenous variation is fundamental to solve the endogeneity problem.

2Here reference is being made to two stage least squares, 2SLS, limited information maximum likelihood,
LIML, and the modified LIML estimator proposed by Fuller (1977).
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The instrument selection procedure I employ in this paper to identify the relevant

instruments is the adaptive LASSO. The adaptive LASSO selects the set of first stage

regressors with non-zero coefficients and excludes the irrelevant ones with probability

approaching one. However, the adaptive LASSO comes at the price of post selection

bias. The procedure I introduce in this paper runs an OLS regression using the selected

instruments, reducing the bias inherent to the adaptive LASSO as is proposed by Belloni

and Chernozhukov (2010), Belloni et al. (2010a), and Belloni et al. (2010b).

Introducing an instrument selection procedure is important because it exploits the

relationship between the number of instruments and their signal to noise ratio. Chao

and Swanson (2003b), define instrument weakness employing this relationship. The

definition is directly related to the first stage F statistic, the most common measure of in-

strument weakness. Specifically, the F statistic is an estimator of the ratio of the signal to

noise ratio and the number of instruments. The adaptive LASSO excludes the irrelevant

instruments, increasing the signal to noise ratio and reducing the number of instruments.

Therefore, the signal to noise ratio per instrument, and hence the associated F statistic,

will be higher than if irrelevant instruments are included. This feature is essential for

obtaining consistency and asymptotic normality for the 2SLS estimator I propose, in

a scenario where many of the instruments are potentially irrelevant. In contrast, the

conventional 2SLS that does not use an instrument selection procedure to exclude the
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irrelevant instruments will never achieve consistency and normality in the presence of

instrument weakness.

With regard to the instrument selection literature, my paper can be compared to the

work of Belloni et al. (2010a), Belloni et al. (2010b), Caner and Fan (2010), and Kuersteiner

and Okui (2010). Belloni et al. (2010a) propose the use of the variables selected by the

LASSO to run an OLS regression instead of using the LASSO estimates and prove an

improvement in the bias properties of the estimators for this procedure. They refer to

this methodology as a post-l1-penalized estimator. Similarly, I use the adaptive LASSO

as an instrument selection procedure and not as a first stage estimator directly. Caner

and Fan (2010) use the adaptive LASSO to provide instrument selection and use the

selected instruments to compute a GMM estimator. They conjecture that the estima-

tor thus constructed will behave like a GMM estimator computed with the true set of

instruments. Kuersteiner and Okui (2010) provide a model averaging version of the

traditional simultaneous equations estimators. Their methodology is a combination of

the instrument selection procedure proposed by Donald and Newey (2001) and the least

squares model averaging introduced by Hansen (2007). Finally, Belloni et al. (2010b)

extends the work of Belloni et al. (2010a) to include heteroskedasticity.

My work differs from these papers in two important ways: first, the post-selection

bias inherent to the adaptive LASSO and the model averaging estimators proposed in
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Kuersteiner and Okui (2010) is tackled using a post-l1-penalized estimator; and second,

I use a different data generating process and adopt a different asymptotic theory. In

the work of Belloni et al. (2010a), Belloni et al. (2010b), and Caner and Fan (2010) the

model consists of a set of strong instruments and a set of irrelevant instruments. In both

cases the solution of the problem is to select enough strong instruments in the first stage.

In contrast, in this paper the data generating process yields instruments that are weak

or irrelevant and the solution to the problem is to exclude the irrelevant instruments

and select enough of the weak instruments in the first stage. Therefore, the asymptotic

behavior of the estimator I propose has a different limiting distribution than the one

proposed by Belloni et al. (2010a) and Belloni et al. (2010b) that attain
√

n consistency.

As in Chao and Swanson (2003a) my estimator has a slower convergence rate that is

associated to the degree of instrument weakness. Also, the Chao and Swanson (2005b)

asymptotic framework allows the analysis of a fixed or a growing number of instruments

and provides an insight to the effects of instrument selection using a LASSO type estimate

when many of the instruments are weak or irrelevant. These effects can be understood

using conventional weak instrument asymptotics.

I also allow for mean independence between the instruments and the structural

random disturbance. The idea is for the researcher to be able to use the instruments in a

flexible way. The traditional assumption of random disturbances being uncorrelated with

the instruments only allows the instruments to enter linearly into the specification. The
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form of the first stage considered is one in which the conditional mean function consists

of a large number of additive components. These additive components are approximated

using truncated series expansions with B-splines. The problem is that many of the

additive components are zero and some of the terms in the expansion are weakly related

to the endogenous variable. The adaptive LASSO will act to identify which coefficients

to include in the expansion. The Chao and Swanson (2003b, 2005b) definition of instru-

ment weakness and their necessary and sufficient condition to establish consistency is

extended to account for the possibility of terms in the expansion being weakly correlated

to the endogenous variable.

The estimator in this study is therefore unique in the sense that it combines into

one theoretical framework the model selection advantages of the adaptive LASSO, in

its linear and nonparametric version, and the many instruments and adaptive LASSO

asymptotics. At the same time it reduces the post-selection bias inherent to the adaptive

LASSO using a post-l1-penalized estimator. Moreover, it avoids the problems inherent

to the estimators proposed by Chao et al. (2010), Hausman et al. (2010), and Chao and

Swanson (2003b) in the presence of weak instruments and heteroskedasticity which do

not possess high order moments and thus may lead to unreliable conclusions.3 With

regard to the instrument selection literature, the simulation studies I present below, un-

der different degrees of instrument weakness and endogeneity, show that the estimators

3This is the case of LIML, which is amply documented in the literature and, in the simulations presented
below, of the jackknife instrumental variable estimator in Chao et al. (2010) and Hausman et al. (2010).
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put forth by Kuersteiner and Okui (2010) generate estimates with non-trivial bias. The

estimator I propose reduces this bias significantly. Simulation results indicate that my

procedure has better performance than the existent estimators for high levels of endo-

geneity and instrument weakness. However, the simulation results I present do not yield

an estimator that dominates all other in terms of mean square error and median absolute

deviation. For instance, under homoskedastic designs the Fuller estimator tends to be the

most reliable alternative in terms of median absolute deviation. When endogeneity and

instrument weakness are low 2SLS is a viable alternative. Finally, the Kuersteiner and

Okui (2010) estimators reduce variance significantly, sometimes yielding a smaller mean

square error than all other estimators.

The paper is structured as follows. Section 1.2 presents the model and its fundamen-

tal assumptions. Section 1.3 establishes the conditions under which the 2SLS estimator

attains consistency. Section 1.4 presents the asymptotic normality results and suggests an

inference procedure. Section 1.5 compares the performance of the estimator proposed in

this study via simulation to those in Chao and Swanson (2003b), Chao et al. (2010), Caner

and Fan (2010), and Kuersteiner and Okui (2010). Section 1.6 presents the concluding

remarks and suggests possible extensions while all proofs are gathered in Section 1.7.
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1.2. Framework

The framework is a simultaneous equations model where some of the regressors are irrel-

evant. The presentation of the model is divided into two subsections. The first subsection

discusses instruments that are uncorrelated with the random disturbances, which is the

traditional instrumental variable assumption. The second subsection introduces the pos-

sibility of having mean independence between the instruments and the random distur-

bance. The assumptions, regularity conditions, and a definition of instrument weakness

are also presented and discussed.

1.2.1 Instruments Uncorrelated with the Random Disturbances

The model of interest is given by:

y1n = Y2nβ + un (1.1)

Y2n = ZnΠn + Vn (1.2)

Πn = (Πn1 Πn2) = (Πn1 0) (1.3)

E (uiY2ni) 6= 0, E
(
v′iZni

)
= 0 and E (uiZni) = 0 (1.4)

In (1.1) and (1.2) y1n has dimensions n× 1, Y2n is n× 1, and Zn is n× pn. (Πn1 Πn2)

in (1.3) with Πn1 6= 0, of dimensions pn1× 1, and Πn2 = 0, of dimensions pn2× 1, denotes

the fact that some of the potential instruments have no explanatory power. In (1.4) Zni is
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the ith column of Zn and Y2ni, ui and vi are the ith elements of Y2n, un and Vn.4 Without

loss of generality all components of Y2n are considered to be endogenous and the data is

assumed to be centered so intercepts are not included in the regression function.

The estimator I propose for the model described in (1.1) and (1.2) uses the adaptive

LASSO to select a set of instruments, denoted by Z̃n1. The selected instruments are then

used in the first stage to run an OLS regression as is suggested by Belloni et al. (2010a)

and Belloni et al. (2010b).5 This yields a first stage estimator given by:

Ŷ2n = Z̃n1
(
Z̃′n1Z̃n1

)−1 Z̃′n1Y2n

Ŷ2n is then used to obtain an estimator of the structural parameter of interest β given

by:

β̂ =
(
Ŷ′2nŶ2n

)−1 (Ŷ′2ny1n
)

(1.5)

The first stage regression (1.2) starts with an adaptive LASSO which is a modified ver-

4In this paper, I will focus on the case of one endogenous variable. I do this for ease of notation. Notice
that the analysis could be generalized by allowing Y2n to be of dimensions n× K for K > 1. As is proposed
by Caner and Fan (2010) to handle this case Y2n can be vectorized and the analysis follows in similar fashion
to the case where K = 1.

5It is important to emphasize that the adaptive LASSO selects instruments and produces a first stage
estimator. In this paper the adaptive LASSO is only used as an instrument selection procedure and the first
stage estimates are not utilized.
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sion of the LASSO suggested by Tibshirani (1996). The adaptive LASSO was introduced

by Zou (2006), and its estimates are defined by:

Π̂n = arg min
Πn

∥∥∥∥∥Y2n −
p

∑
j=1

ZnjΠnj

∥∥∥∥∥
2

2

+ λn

p

∑
j=1

wnj
∣∣Πnj

∣∣ (1.6)

The expression above has two components. The first one
∥∥∥Y2n −∑

p
j=1 ZnjΠnj

∥∥∥2

2
is

the loss function of a least squares problem, where for a vector a its norm is defined by

‖a‖2 ≡
(

∑j=1
∣∣aj
∣∣2)1/2

. The second expression is a penalty that arises from the restriction

∑
p
j=1 wnj

∣∣Πnj
∣∣ ≤ c, where c is a constant. In this context λn is the Lagrange multiplier

associated with the previously mentioned constraint that regulates the amount of shrink-

age that is occurring. Notice that if λn = 0 the problem would simplify to a least squares

estimation.

The main difference between the standard LASSO and the adaptive LASSO in (1.6)

are the weights, wnj, which are not present in the original Tibshirani (1996) formulation.

Zou (2006) proposes that these weights be a function of the ordinary least squares esti-

mate of Πn, which I will denote by Π̂n(OLS). In his framework the weights are given by
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wnj =
1

|Π̂nj(OLS)|γ
, where γ > 0. The addition of the weights addresses the fact that the

LASSO generates biased estimates of the larger coefficients and, under certain situations,

is inconsistent for variable selection. By adding these weights, the adaptive LASSO solves

these two difficulties and attains what the model selection literature refers to as the oracle

property. Specifically, if we define A =
{

j : Πnj 6= 0
}

:

Definition 1 (Oracle Property). An estimation procedure has the oracle property if it

asymptotically:

• Identifies the correct subset model P
({

j : Π̂nj 6= 0
}
= A

)
→ 1

• Has the optimal estimation rate,
√

n
(
Π̂njA −ΠnjA

)
→d N (0, V)

Proposition 3 guarantees that the first component of the oracle property is attained by

the adaptive LASSO. 6 This result is important because it allows researchers to argue for

the validity of the selected instruments and eliminates with high probability instruments

that provide no signal.

The adaptive LASSO introduced by Zou (2006) obtains the oracle property for a

fixed number of regressors p. However, I exploit the properties of the adaptive LASSO

when the number of regressors, pn, grows with the sample size. Huang et al. (2007) has

established the oracle properties under this scenario.7

6The second condition of the oracle property is not relevant here since the main interest is in the coeffi-
cients of the second stage.

7Following Huang et al. (2007), this study suggests using wnj =
1

|Π̂nj(OLS)|γ
with γ = 1 when pn ≤ n.

When pn ≥ n a different set of weights is suggested. I will define these weights in section 1.2.2.
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Using the adaptive LASSO first stage estimates, however, leaves unattended its conse-

quent post-model-selection bias. This will be addressed using the estimator proposed by

Belloni and Chernozhukov (2010). They suggest an l1-penalized method, like the adap-

tive LASSO, to select the instruments and then run OLS with the selected regressors. They

prove this yields a smaller bias than the LASSO. The simulations presented below, under

different degrees of endogeneity and instrument weakness, confirm this fact. It is impor-

tant to highlight that the method suggested by Belloni and Chernozhukov (2010) is used

as a bias reducing mechanism only. Specifically, the assumptions that the errors are ho-

moskedastic and Gaussian, as presented in Belloni and Chernozhukov (2010) and Belloni

et al. (2010a), are not present here. The results in this paper follow in the presence of het-

eroskedasticity and may allow for errors with tail behavior that ranges from subgaussian

to exponential and therefore is in line with Belloni et al. (2010b).

1.2.2 Mean Independence Between the Instruments and the Random

Disturbances

The mean independence assumption modifies equation (1.4) which is now given by:

E (ui|Y2i) 6= 0, E
(
v′i|Zni

)
= 0 and E (ui|Zni) = 0 (1.7)



15

Equation (1.7) is stronger than the uncorrelated instruments and random disturbances

in (1.4). The main reason for this new assumption is that the framework in this section

will allow for arbitrary functions of Zn and not only a linear combination of its elements.

Under (1.7) and assuming an additive form for the first stage8:

Y2ni =
pn

∑
j=1

f j
(
Znij

)
+ vi (1.8)

The f j functions in (1.8) are approximated using truncated series expansions with

B-splines. I assume that many of the additive components are zero and some of the

terms in the expansion are weakly related to the endogenous variable. As in section 1.2.1

a set of coefficients is going to be selected. These coefficients are going to be used to

approximate each nonparametric component.

For completeness, I present the spline framework as introduced in Huang et al. (2010).

Let Znij take values in [a, b] where a < b are finite numbers. Let [a, b] be partitioned into

T subintervals, ITk = [ξk, ξk+1) , k = 0, . . . , T − 1, and ITT = [ξT, ξT+1], for T ≡ Tn = nν

where 0 < ν < 0.5 satisfies max1≤k≤T+1 |ξk − ξk−1| = O (nν). Defining Sn as the space of

8In Huang et al. (2010) the model is given by:

Y2i = µ +
pn

∑
j=1

f j
(
Znj
)
+ vi

For notational simplicity µ = 0. In an earlier version of the paper results are derived with µ 6= 0.
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polynomial splines of degree l ≥ 1 consisting of functions s that satisfy: (i) the restriction

of s to ITk is a polynomial of degree l for 1 ≤ k ≤ T; (ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, s is l′

times continuously differentiable on [a, b].

Under smoothness conditions stated in section 1.2.3, the f j’s can be arbitrarily well

approximated by a function fnj ∈ Sn. The fnj ∈ Sn are defined by the existence of a

normalized B-spline basis {ψt, 1 ≤ t ≤ sn} for Sn, with sn ≡ Tn + l which yields the

expression:

fnj (z) =
sn

∑
t=1

Πjtψt (z) (1.9)

Although Πjt has different dimensions than Πnj in section 1.2.1, I will refer to them

both as Πnj throughout the document. It will be clear from the context if reference is

made to random disturbances that are uncorrelated or mean independent of the instru-

ments. The principal reason for this notational simplification is that the assumptions and

properties regarding Πn will be analogous in both cases.

Furthermore, as in Huang et al. (2010) it is assumed that E f j
(
Znij

)
= 0. This gives rise

to the sample analog:
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n

∑
j=1

sn

∑
t=1

Πjtψt
(
Znij

)
= 0, 1 ≤ j ≤ pn (1.10)

To simplify the notation let ψt (z) = ψjt (z) and Xnij ≡
(
ψ1
(
Znij

)
, . . . , ψsn

(
Znij

))′.
Also define Xnj ≡

(
Xn1j, . . . , Xnnj

)′, the n × sn design matrix associated with the jth

covariate. Finally, let the design matrix be given by Xn.

Under this framework, denoting the basis functions selected by the nonparametric

adaptive LASSO by X̃n1, the estimator of the parameter of interest, β, is described by:

β̂ =
(
Ŷ′2nŶ2n

)−1 (Ŷ2ny1n
)

Ŷ2n = X̃n1
(
X̃′n1X̃n1

)−1 X̃′n1Y2n

Once again, the adaptive LASSO is only used for instrument selection. Its estimates

are not used to construct Ŷ2n.

The framework described above provides a version of (1.6) that incorporates the mean

independence assumption and the additive form in (1.8) that is given by:

Π̂n = arg min
Πn

∥∥∥∥∥Y2n −
pn

∑
j=1

XnjΠnj

∥∥∥∥∥
2

2

+ λnl

pn

∑
j=1

wnj
∥∥Πnj

∥∥
2

 (1.11)



18

The form of (1.11), which comes from the additivity structure assumed for (1.8), is

important because the concepts of instrument weakness and instrument selection present

themselves in a form that resembles the case of uncorrelated instruments and random

disturbances of section 1.2.1. In particular, we can think of Πn as being zero or nearly

zero as in section 1.2.1.

The main distinctions between equations (1.11) and (1.6) are that Znj has been re-

placed by a set of basis functions Xnj, another regularization parameter, λnl, is used and

the weights, defined in (1.12) below, will have a different form. As in section 1.2.1, the

adaptive LASSO is selecting instruments. Through (1.11), a group of coefficients is being

selected to approximate each nonparametric component f j. This is clear by inspection of

Xnj ≡
(
ψ1
(
Znj
)

, . . . , ψsn

(
Znj
))

given that when Πnj is zero so is Znj. It follows that weak

instruments, in the model described by (1.4) and the model described by (1.7), will refer

to the Znj’s that do not provide a strong signal. The addition of another regularization

parameter, λnl, implies that the amount of shrinkage is going to be different when the

random disturbances are uncorrelated with the instruments.

Instead of obtaining the weights in (1.11) from a least squares optimization problem,

I find them using LASSO to select a group of coefficients to approximate each additive

component f j. This incorporates the possibility that pn ≥ n that I allow in the model with

the mean independent random disturbances.9 Defining the LASSO estimates as Π̃nj the

9In section 1.2, pn ≤ n. Here I relax that assumption to illustrate the possibility that, when pn ≥ n, a
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weights are given by:

wnj =



∥∥Π̃nj
∥∥−1

2 if
∥∥Π̃nj

∥∥
2 > 0,

∞ if
∥∥Π̃nj

∥∥
2 = 0.

(1.12)

1.2.3 Assumptions, Definitions, and Regularity Conditions

This subsection lists and interprets the main assumptions, definitions, and regularity con-

ditions used in the paper and discusses their relevance.

Assumption 1. Πn = Cn
bn

for some sequence of positive real numbers {bn}, nondecreasing

in n. In the parametric model of section 1.2.1 {Cn} is a sequence of nonrandom, pn × 1

parameter vectors. In the nonparametric model of section 1.2.2 {Cn} is a sequence of

nonrandom, (pnsn)× 1 parameter vectors.

Assumption 2. Let {Zn} be a triangular array ofRpn-valued random variables with finite

first and second moments, τ denote a generic eigenvalue, lim the limit inferior, and lim

the limit superior. Also, let {Xn} be a set of Rpn×sn-valued basis functions depending on

Zn, and:

(a) For the model of section 1.2.1, pn → ∞ as n→ ∞ such that pn
n → α where α ∈ [0, 1)

(b) There exists a sequence of positive real numbers {mn}, nondecreasing in n, and con-

different set of weight functions and a different amount of regularization are needed.
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stants D1 and D2, with 0 < D1 ≤ D2 < ∞, such that

D1 ≤ limn→∞τmin

(
Z′nZn

mn1

)
a.s

and

limn→∞τmax

(
Z′nZn

mn2

)
≤ D2 a.s

(c) There exists a sequence of positive real numbers {mnx}, nondecreasing in n, and con-

stants D1x and D2x, with 0 < D1x ≤ D2x < ∞, such that

D1x ≤ limn→∞τmin

(
X′nXn

mn1x

)
a.s

and

limn→∞τmax

(
X′nXn

mn2x

)
≤ D2x a.s

(d) There exists a sequence of positive real numbers {hn}, nondecreasing in n and con-

stants D3 and D4, with 0 < D3 ≤ D4 < ∞, such that

D3 ≤ limn→∞τmin

(
C′nCn

hn

)
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and

limn→∞τmax

(
C′nCn

hn

)
≤ D4

Assumption 3. Let zi and xi be the ith rows of Zn and Xn respectively. Then for constants

0 < D7 < ∞ and 0 < D7x < ∞:

max
1≤i≤n

∣∣z′i (Z′nZn
)

zi
∣∣ ≤ D7

pn

mn1

max
1≤i≤n

∣∣x′i (X′nXn
)

xi
∣∣ ≤ D7x

pnsn

mn1x

Assumption 4. Let us define S = w′sign (Πn) where w is the vector of weights defined in

equation (1.6). It is assumed that there exist constants 0 < D8 ≤ D9 < ∞ and a sequence

of positive real numbers {ln} such that:

limn→∞τmax

(
S′S
ln

)
≤ D9 a.s

and

D8 ≤ limn→∞τmin

(
S′S
ln

)
a.s

Assumption 5. Define vik as an element of the matrix Vn and ηi ≡
(
ui, v′i

)′ where η are

identically distributed, vi is a row Vn, and:

(a) ηi⊥Zn, E (ηi) = 0, and Var (ηi) = Σi, where Σi is positive definite and defined to be
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σuu σ′Vu

σVu ΣVV

.

(b) Eu4
i < ∞ and Ev4

ik < ∞

(c) E
(
u3

i
)
= E

(
v3

ik
)
= E

(
u2

i vik
)
= E

(
v2

ikui
)
= 0

(d) The tail probabilities of the individual components of the random vector Vn, vi, satisfy

for certain constants D5 > 0, D6, and 1 ≤ d ≤ 2, P (|vik| > t) ≤ D6exp
(
−D5td) for all

t ≥ 0 with i = 1, 2, . . . n.

Assumption 6. For a constant ϑ such that 0 ≤ ϑ < ∞:

(a) Define the ratio rn = mn2hn
b2

n
. As n→ ∞, rn

n → ϑ and Π′nZ′nZnΠn
rn

→ Φ almost surely for a

nonrandom positive constant Φ.

(b) Define the ratio rnx = mnx2hn
b2

n
. As n → ∞ Π′nX′nXnΠn

rnx
→ Φx almost surely for a positive

constant Φx.

Assumption 7. Let πn ≡ min
{∣∣Πnj

∣∣ : j ∈ A
}

. Then the variables {pn1, pn2, λn, λnl, ln, mn2, mnx2, sn}

satisfy the following conditions:

(a)

λn
√

ln√
mn2

, log (n)I{d=1}
(

log(pn1)
1/d

√
mn2πn

)
, and log (n)I{d=1}

(
log(pn2)

1/d

λn

)
→ 0
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(b)

log (n)I{d=1}
(

log(pn2)
1/d√rn

λn

)
→ 0

(c)

qnlog(pnsn)

m2
nx2

,
nq√
mnx2

[
s−∂

n +

√
sn

n

]2

,
λ2

nlq
√

rnx

m2
nx2

and
λ2

nlq
m2

nx2
→ 0

Assumption 8. Let κ be a nonnegative integer, and $ ∈ (0, 1] in such a way that ∂ =

κ + $ > 0.5. Also, let F be a class of functions on [0, 1] whose $th derivative f (κ) exists

and satisfies for a constant C ≥ 0:

∣∣∣ f (κ) (s)− f (κ) (t)
∣∣∣ ≤ C |s− t|$ for s, t ∈ [a, b]

Assumption 9. Let f j (z) 6= 0, 1 ≤ j ≤ q, but f j (z) ≡ 0, q + 1 ≤ j ≤ pn. Also define

‖ f ‖2 =
[∫ b

a f 2 (z) dz
]1/2

for any function when the integral exists. Then the number of

nonzero components q is fixed and there exists a constant c f such that min1≤j≤q
∥∥ f j
∥∥

2 ≥

c f .

Assumption 10. E f j
(
Znj
)
= 0 and f j ∈ F , j = 1, . . . q.

Assumption 11. For the model described in (1.7) and (1.8) the covariate vectors Znj have

continuous densities and there exist constants C and C̄ such that the density function gj

of Znj satisfies 0 < C ≤ gj ≤ C̄ < ∞ on [a, b] for every 1 ≤ j ≤ pn.
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Proposition 1. Under assumptions 1 to 11 for λnl ≥ C
√

nlog (pnsn) and a constant C > 0.

The Π̃nj of the nonparametric model described in (1.11) satisfy:

i) All Πnj 6= 0 are selected with probability converging to one.

ii)

pn

∑
j=1

∥∥Π̃nj −Πnj
∥∥2

2 = Op

(
nqlog (pnsn)

m2
nx2

)
+O

(
nq

mnx2

[
s−∂

n +

√
sn

n

]2)
+O

(
λ2

nlq
m2

nx2

)

Proposition 1 refers to the behavior of the weights used by the adaptive LASSO in the

nonparametric case. The initial weights should, in the linear and nonparametric cases, be

consistent estimators for the first stage parameter. In the case of the linear model the OLS

estimator clearly attains this goal. In the case of the nonparametric model Proposition 1

shows this.

Proposition 1 is grouped with the assumptions because it constitutes a condition that

precedes the estimation stage and should be satisfied for the proposed methodology to

be selection consistent, for the first stage estimator, and consistent and asymptotically

normal, in the case of the second stage. A proof of Propositions 1 is provided in section

1.7.

Discussion of Assumptions and Regularity Conditions

Chao and Swanson (2003b, 2005b) show that the concentration parameter, given assump-
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tions 1 to 6 above, is of the order O(rn) almost surely whereas in Staiger and Stock (1997) it

is fixed. It is via the characterization of the behavior of rn that Chao and Swanson (2003b,

2005b) bring together the local to zero Staiger and Stock (1997) framework with the many

instrument ideas of Bekker (1994) and Morimune (1983). Allowing the concentration

parameter to grow with the sample size guarantees consistency of LIML and Fuller by

modeling the additional instruments as a source of increasing information asymptotically.

A useful way to interpret rn, as discussed in Chao and Swanson (2003b), is to think of

it as divided into two components. The first one is hn
b2

n
. This component explicitly defines

the local to zero part via b2
n, but accounts for the possibility of the instruments having a

signal asymptotically, C′nCn = O(hn). The second component, mn2, is the rate at which

the information in the instruments accumulates.

For instance, in the Staiger and Stock (1997) framework bn =
√

n, mn2 = n, and the

number of instruments is fixed for all n, making C′nCn = O (1) and hn = 1. This implies

that the concentration parameter is constant: rn = 1. Under this setup, no conventional

simultaneous equations estimator is consistent if the instruments set is weak. If, how-

ever, the instruments provide some information asymptotically (hn → ∞ as n grows

and rn = hn), the concentration parameter growth can yield consistency even under

instrument weakness as proved by Chao and Swanson (2003b).
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In this paper these ideas are extended to the nonparametric case via rnx which has

the same interpretation as rn. In the case of the nonparametric model the concentration

parameter is given by Σ−1/2
VV Π′nX′nXnΠnΣ−1/2

VV . Here it is important to highlight that the

concentration parameter is defined with respect to the spline functions, fnj, and not to f j.

Also, by definition Xn is a set of basis functions that depend on Zn and, therefore, a weak

signal is inherently related to Zn.

Assumption 2 allows for different growth rates of the sequences Πn, Zn, Xn. In the

case of Zn, and analogously for Xn, assumption 2(b) implies that τmax (Z′nZn) = O(mn2)

almost surely and τmin (Z′nZn) = O(mn1) almost surely and is in line with Portnoy (1984),

a seminal work for linear regression when the regressors grow with the sample size, and

Koenker and Machado (1999). Portnoy (1984) argues that for a fixed number of regressors

mn1 = mn2 = n but when the regressors grow with the sample size this is not necessarily

true. He constructs results for the case where mn1 = mn2 = n and then discusses under

which circumstances the condition is satisfied. For example he shows that the setup with

mn1 = mn2 = n addresses situations where the regressors are normal or a scale mixture of

normals. On the other hand, Koenker and Machado (1999) make explicit use of rates of

growth of the eigenvalues of the information matrix that are different than n. They allow

τmin and τmax to have different growth rates. In the case of the nonparametric model a

similar analysis follows for mn1x and mn2x in the place of mn1 and mn2. The conditions in

assumption 2 can be understood as equivalent to strong laws of large numbers.
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In the context of this paper allowing for different rates of growth for τmax (Z′nZn)

and τmin (Z′nZn) is going to be important because it denotes the fact that there are some

instruments that provide different information than others. This is important because I

am considering instruments that are weak along side with instruments that are useless.

Chao and Swanson (2003b, 2005b) impose the condition that τmax (Z′nZn) = O(mn) and

τmin (Z′nZn) = O(mn) almost surely which is tantamount to all the instruments consid-

ered being informationally equivalent.

Assumption 3 is assumption X2 of Koenker and Machado (1999). In their paper it is

important to establish their inference results. In the case of this paper assumption 3 is

going to be important to characterize the asymptotic behavior of the first stage estimators

once they are plugged into the second stage.

Assumption 5(a) explicitly allows for heteroskedasticity of the variance-covariance

matrix. The only requirement for the proposed estimator to be robust to heteroskedastic-

ity is that the elements of the variance-covariance matrix are bounded. This requirement

is given by Assumption 5(b).

Assumption 5(c) comes from Chao and Swanson (2003a). It imposes symmetry on

the distribution of the disturbances and allows the results to hold for the family of
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elliptical distributions. It is similar to assumption U1 of Koenker and Machado (1999).

The assumption is important to establish the asymptotic normality of the estimator.

Assumption 5(d) imposes restrictions on the tails of the distribution of the random

disturbance Vn. For instance if d = 2 in the expression P (|Vni| > t) ≤ D6exp
(
−D5td)

the tail behavior is subgaussian and if d = 1 the tail behavior is exponential. This tail

behavior assumption defines exponential Orlicz norms that allow the use of the maximal

inequalities defined by van der Vaart and Wellner (1996). This restriction is also used in

Huang et al. (2007) to obtain the variable selection consistency of the adaptive LASSO.

Moreover, it provides a sense of the number of variables that will be selected by the

adaptive LASSO. If the tails are exponential the number of variables selected will be

fewer than if the tails are subgaussian. This distinction is not present in Belloni et al.

(2010a) where the error terms are required to be Gaussian or in Huang et al. (2010) where

the tail behavior of the errors is assumed to be subgaussian. I modify the proofs of Huang

et al. (2010) to allow for the possibility that d ∈ [1, 2].

With regards to assumption 6, the statement that Π′nZ′nZnΠn
rn

→ Φ is not unique to this

paper. Chao and Swanson (2005b) require this condition. It is also invoked for certain

proofs in Chao and Swanson (2003a). However, the condition is not restrictive if one

notes that by assumption 2, Π′nZ′nZnΠn
rn

= O(1) almost surely. The same assumption is

extended to the nonparametric case.
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Assumption 7(a) restricts the asymptotic behavior of λn and the number of zero and

nonzero coefficients. It is a restatement of assumption A4 of Huang et al. (2007) that

incorporates the behavior of the information matrix of the instruments accounted for in

assumption 2 instead of the assumption 1
n ∑n

i=1 Z2
nij = 1 for j = 1 . . . pn.

Assumption 7(b) is needed for the proof of consistency and asymptotic normality of

the proposed estimator. In the literature it is common to obtain results depending on the

amount of regularization and the growth rate of pn1 and pn2.10 Additionally, the growth

rate of the concentration parameter and of the information matrix enter the expressions

in assumption 7(b). This is a consequence of the conjunction of the two asymptotic

frameworks in this paper. Assumption 7(c) is a restatement of (b) for the nonparametric

case.

The terms in assumption 7(d) come from the assumptions of Huang et al. (2010) in-

corporating the notation of assumption 2. The elements of the assumption are necessary

to guarantee consistency of the nonparametric estimator once the results of Proposition

2 are incorporated to the analysis. One important consequence of assumption 7(d) is

that the approximating spline functions are of order O
(

nq
mnx2

[
s−∂

n +
√

sn
n

]2
)

. To pro-

vide some intuition, assumption 7(d) would follow if q were taken to be constant and

10An excellent example of a wide class of solutions that arise in the LASSO literature, embedding a wide
class of loss functions and regularization schemes, is Zhang et al. (2010).
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sn = O
(

n1/(2∂+1)
)

, when n1/(2∂+1)
√

mnx2
→ 0. This condition would be satisfied immediately if

mnx2 = n and is likely to be satisfied if f j is sufficiently smooth.

Assumptions 8, 10, and 11 come from Huang et al. (2010). These assumption are used

in the literature of nonparametric spline models to estimate the nonzero f j components.

Assumption 9, that artificially bounds the f j’s away from zero, is not present in the

traditional nonparametric spline model literature. This is related to the fact that Huang

et al. (2010) are considering zero and nonzero f j components. I will be able to establish

this bound for the approximating spline functions fnj.

Proposition 1 is satisfied if, as discussed in Huang et al. (2010), for an increasing se-

quence en → ∞, that is defined by the convergence rates in part ii) of Proposition 1, the

initial estimators Π̃nj satisfy two conditions:

en max
j/∈A

∥∥Π̃nj
∥∥

2 = Op (1)

And for a constant c > 0

P
(

min
j∈A

∥∥Π̃nj
∥∥

2 ≥ cπn

)
→ 1



31

These two relationships imply that the zero an non-zero components are estimated

consistently by the weights.

Definition of Instrument Weakness

The notion of instrument weakness from Chao and Swanson (2003b) that will be used

here is given by:

Definition 2 (Instrument Weakness). The following classification will be used to denote

instrument weakness:

• The set of available instruments is not weak if pn
rn
→ 0 as n→ ∞

• The set of available instruments is weak if pn
rn

9 0

The definition highlights the importance of the growth rate of the concentration pa-

rameter relative to the number of instruments. For instance, if rn grows at a faster rate

than pn it implies that the signal is growing for every additional instrument. In this case,

the instruments are not weak. In a similar fashion if pn
rn
→ δ1 bor 0 ≤ δ1 < ∞ the signal for

every additional instrument is vanishing asymptotically and instruments are weak. Def-

inition 2 can be extended to the nonparametric case by replacing rn with rnx and pn with

pnsn. These two differences come from the fact that each instrument is associated with a

number sn of basis function and the fact that the asymptotic behavior of the concentration

parameter in the nonparametric framework is given by rnx.
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1.2.4 Smallest Nonzero Coefficient and Oracle Property

The objective in what follows is to understand how the proposed estimator behaves

under the taxonomy of definition 2. The first component needed for the analysis is the

threshold between the coefficients that are chosen to be zero and those that are not. The

second component is the first part of the oracle property in definition 1, which establishes

that the adaptive LASSO selects the correct model asymptotically.

Various studies derive theoretical results by imposing such a threshold. In this paper

the approach of Zhang and Huang (2008) is used to determine it endogenously. Their

proofs are modified to arrive at the conclusion for error terms that have subgaussian

tails and for a behavior of the regularization parameter consistent with assumption 7(a).

The idea is to obtain a conservative lower bound away from zero for the coefficients

of the selected instruments. This is important because the conclusions of this paper

depend on the fact that after instrument selection the term p̂n1
rn
→ 0, where p̂n1 is the

number of selected instruments, while pn
rn
→ ∞. The conditions pn

rn
→ ∞ and p̂n1

rn
→ 0

imply that before introducing the adaptive LASSO instruments are weak but that after

selection a condition that is equivalent to having strong instruments might be attained.

Including a reduced number of instruments will make this conclusion artificially strong.

Allowing subgaussian tails the maximum possible number of instruments and the most

conservative lower bound possible for the selected coefficients is allowed. If p̂n1
rn
→ 0 is

valid for subgaussian tails it will necessarily be true for heavier tails.
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Zhang and Huang (2008) do not attempt for the LASSO to be selection consistent

but try to analyze LASSO under weaker conditions. The idea in their work is that the

coefficients outside an ideal model are assumed to be small, but not necessarily zero. By

relaxing the assumption that the excluded coefficients are exactly zero, their approach is

ideal for constructing a conservative lower bound.

To see how this works, define:

ζα1 ≡
(

∑
j∈A

∣∣Πnj
∣∣α1 I

{
Π̂nj = 0

})1/α1

α1 ∈ [0, ∞] (1.13)

B (λ) ≡
∥∥ZnΠn − ZnΠ̂n

∥∥
2 (1.14)

η2 ≡ max
A′⊂Ac

∥∥∥∥∥ ∑
j∈A′

ZnjΠnj

∥∥∥∥∥
2

(1.15)

Above (1.13) is a measure of the number of coefficients excluded by the model that

should have been included, B (λ) in (1.14) is a measure of the model’s bias, and (1.15) is
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an upper bound on the contribution of a given set of the excluded regressors. Under this

framework Zhang and Huang (2008) prove that the LASSO selects a model of the correct

order of dimensionality pn1, controls the bias of the selected model at a level determined

by the contributions of small regression coefficients, and selects all coefficients of greater

order than the bias of the selected model. This is equivalent to:

P
{
A ⊂ Â, B (λ) ≤ η2 and ζα1 = 0

}
→ 1 (1.16)

The arguments of Zhang and Huang (2008) imply that the threshold between the

selected and excluded coefficients is related to the fact that the adaptive LASSO may

include some variables that are not relevant and exclude some coefficients that are rele-

vant. Specifically, under what they refer to as a sparse Riesz condition, the LASSO selects

all coefficients of greater order than the bias of the selected model, B (λ). The size of

this error, under the assumptions of this paper, is O
(

λn
√

pn1√
mn2

)
. This also constitutes the

threshold between the included and excluded instruments as stated in Proposition 2.

Belloni and Chernozhukov (2010) also acknowledge the existence of this bias and

try to quantify it for Gaussian errors within their framework. In this paper the post-

l1-penalized methodology they propose is used to reduce this bias. Simulation results,

however, show that bias reduction is also effective when the errors are not Gaussian and

suggests that the post-l1-penalized methodology is ideally endowed to reduce the bias of
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the estimators produced by the adaptive LASSO.

To allow for subgaussian tails the following regularity condition needs to be im-

posed11:

Regularity Condition 1. The constant c0 which will determine the amount of shrinkage

in (1.6) is such that c0 ≥ 0 and c0 ≥ 1
D5
− 1.

The result that defines the threshold between the included and excluded coefficients

is given by:

Proposition 2 (Minimum Πnj). Under assumptions 2 to 7, and regularity condition 1 the

set Ac ⊂ {1, . . . , pn} satisfies:

# {j ≤ pn : j /∈ Ac} = pn1, ∑
j∈Ac

∣∣Πnj
∣∣ ≤ η1 (1.17)

Under these conditions the smallest of the coefficients in Πn1 is of order greater than

λn
√

pn1√
mn2

.

A proof of Proposition 2 is available in the appendix (Section 7.1.2). Proposition 2

gives us an approximation of the coefficients that are deemed to be non-zero by the

11In regularity condition 1 the constant D5, which is presented in assumption 5, comes from the Orlicz
norm used in Huang et al. (2007). The Orlicz norm as is introduced in van der Vaart and Wellner (1996)
is defined by ‖X‖ψ = in f

{
D5 > 0 : Eψ

(
|X|
D5

)
≤ 1

}
. On the other hand, c0 is a constant defined in Zhang

and Huang (2008) that affects the level of the minimum λn. A bigger c0 increases the possibility that the
adaptive LASSO selects variables to be zero which are not.
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adaptive LASSO. It is an asymptotic approximation of the order of Πn = Cn
bn

for the

coefficients that are included. In particular, a consequence of Proposition 2 is that the

coefficients of the disregarded instruments are of the order O
(

λn
√

pn1√
mn2

)
.

In Proposition 2 expression (1.17) is the sparsity condition of Zhang and Huang (2008).

It tells us that there are a maximum of pn1 large coefficients and that the sum of the l1

norms of the small coefficients is no greater than η1. Another way of thinking about it is

that the excluded instruments are either zero or very small. Assumption 2 gives us the

Riesz condition of Zhang and Huang (2008). It is necessary for Proposition 2 and states

that the smallest eigenvalue of
(

Z′nZn
mn2

)
is bounded away from zero and the largest one is

finite. These two conditions imply the fulfillment of the sparse Riesz condition in Zhang

and Huang (2008) and allow the use of their theoretical framework in the context of this

paper.

Corollary 1. If the conditions of Proposition 2 are satisfied, for the nonparametric model

the smallest of the coefficients in Πn1 is of order greater than λn
√

pn1sn
mnx2

.

The distinctions between the instruments selection in the parametric and nonpara-

metric case, given that the same assumptions are made about the Πn coefficients, are

the dimensions of Πn and that the weights are based on the LASSO. Thus, the pn1sn

term instead of pn1 and the additional mnx2 in the statement of the Corollary. The last

distinction is a consequence of the fact that the estimator of the weights, LASSO, is

already excluding some of the coefficients. In particular Corollary 1 can be interpreted as
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a restatement of Corollary 2.1 of Wei and Huang (2008).

Proposition 2 and Corollary 1 establish the mechanics of how the adaptive LASSO

selects instruments. The following propositions determine the accuracy of the procedure

to exclude the irrelevant instruments:

Proposition 3. Under assumptions 1 to 7 the adaptive LASSO identifies the correct subset

model and is sign consistent. In other words:

P
(

Π̂nj =s Πnj

)
→ 1

Proposition 4. Under assumptions 1 to 11 and Proposition 1 the nonparametric adaptive

LASSO identifies the correct subset model and is sign consistent. In other words:

P
(

Π̂nj =s Πnj

)
→ 1

Proposition 3 states that, asymptotically, the adaptive LASSO will exclude the coeffi-

cients that are exactly zero and will provide the correct sign for the included coefficients.

This feature is beneficial when the set of instruments at hand is numerous and many are

potentially irrelevant, which is the framework studied in this paper. As I will show in

section 1.3, being able to exclude the irrelevant coefficients is important to achieve the
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properties of the estimator I propose.

The proof of Proposition 3 follows directly from Huang et al. (2007) once it is shown

that the assumptions in this paper are equivalent to the assumptions in their paper, as was

discussed in section 1.2.3. Similarly, for the nonparametric estimator the result follows

by virtue of Proposition 1 and noting that the assumptions in Huang et al. (2010) are

satisfied in the context of the assumptions of this paper. The modifications to their proof

are essentially the same as those presented in the proof of Proposition 1.

1.3. Consistency of 2SLS Using Adaptive LASSO

In this section, the conditions under which the procedure proposed is consistent are

determined. The taxonomy of Chao and Swanson (2003b) is used to express the result for

different degrees of instrument weakness.

Chao and Swanson (2003b) define consistency in terms of the growth of the concen-

tration parameter. Specifically, consistency can be achieved in their framework if:

Ŷ′2nun

rn
→ 0 (1.18)

This definition of consistency is a consequence of the fact that under weak instru-
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ments E
(

Ŷ′2nun

)
6= 0. This implies that a stronger condition than Ŷ′2nun

n → 0 is required

to achieve consistency, i.e, Ŷ′2nun
rn
→ 0. This is a stronger statement because rn grows at a

slower rate than n under weak instruments.

In Chao and Swanson (2003b) 2SLS does not satisfy (1.18) and is inconsistent because

pn
rn
→ ∞. However, even if pn

rn
→ ∞, the 2SLS estimator proposed in this paper can

achieve consistency. Intuitively, by disregarding the useless instruments the remaining

ones can achieve the condition p̂n1
rn

= pn1
rn

+ op(1) → 0. This generates the possibility that

even when the estimator is inconsistent using all of the instruments available, it will be

consistent when using the reduced instrument set.

Eliminating the irrelevant instruments is important to achieve a greater signal per

instrument. More importantly, it conveys the message that even though the solution

to the endogeneity problem suggests including all sources of exogenous variation and

the work of Chao and Swanson (2003b, 2005b) calls for the introduction of all available

instruments, having irrelevant instruments affects the precision of the estimator of the

structural parameter of interest.

Using Propositions 2 and 3 the conditions under which relationship (1.18) is satisfied

can be found. The proof of the result is presented in the appendix. It states that:
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Theorem 1. If assumptions 1 to 7 and regularity condition 1 are satisfied then:

Ŷ′2nun

rn
→ 0.

The same is true for consistency in the case of the nonparametric model described in

section 1.2.2. In particular:

Theorem 2. Let f0 ≡
(

∑
pn
j=1 f j

(
Z1j
)

, . . . , ∑
pn
j=1 f j

(
Znj
))

and define the collection of esti-

mators of each f j
(
Zij
)
, i.e ∑sn

t=1 Π̂jtψt(Zij), by f̂n. If assumptions 1 to 11 and regularity

condition 1 are satisfied, for λnl ≥ C
√

nlog (pnsn) with C > 0:

f̂ ′nun

rnx
→ 0.

1.4. Asymptotic Distribution

One of the advantages of the proposed estimator is that under the assumptions in the

text it is asymptotically normal. This allows for reliable inference under many weak

instruments.

Before the results are presented I define the following two matrices. For ε ≡ Vnβ +

βV′n + un:
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Λ = Φ−1′Var
(

Π′n1Z′n1ε
√

rn

)
Φ−1

Λx = Φ−1′
x Var

(
Π′n1X′n1ε
√

rn

)
Φ−1

x

The following theorem provides the asymptotic result:

Theorem 3. If assumptions 1 to 7 and regularity condition 1 are satisfied, then:

√
rn
(

β̂− β
)
→d N (0, Λ)

It is important to mention that rn could be asymptotically equivalent to n or slower de-

pending on the growth rate of the concentration parameter. However, rn is not available

to the researcher. The following result addresses this fact.

Theorem 4. Under the conditions of Theorem 3:

Λ̂−1/2 (β̂− β
)
→d N (0, 1)

In the appendix I establish that rnΛ̂→p Λ.

From the previous discussion it follows that:
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Λ̂−1/2 (β̂− β
)
→ Λ−1/2√rn

(
β̂− β

)
→d N (0, 1)

In the case of the nonparametric estimator:

Theorem 5. If assumptions 1 to 11 and regularity condition 1 are satisfied, for λ ≥

C
√

nlog (pnsn) with C > 0:

√
rnx
(

β̂− β
)
→d N (0, Λx)

Theorem 6. Under the conditions of Theorem 5:

Λ̂−1/2
x

(
β̂− β

)
→d N (0, 1)

In the appendix I establish that rnxΛ̂x →p Λ.

1.5. Simulation Analysis

The simulation analysis below compares eight different estimators and the post-l1-

penalized procedure I introduce. Three of these estimators are more traditional simul-

taneous equation estimators in the presence of endogeneity: 2SLS, limited information
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maximum likelihood (LIML), and a mean unbiased Fuller estimator. I selected the three

estimators because they are the most commonly used and discussed in the literature.

The fourth estimator is the adaptive LASSO without the post selection component. This

estimator serves to highlight the importance of introducing a post-selection correction to

the adaptive LASSO. The next three estimators are the model averaging versions of the

2SLS, LIML, and mean unbiased Fuller estimators as presented in Kuersteiner and Okui

(2010) with unrestricted weight matrices.12 These estimators can be thought of as includ-

ing Donald and Newey (2001) as a subset when all the weights are the same. The last

estimator is the jackknife instrumental variable estimator (JIVE) proposed by Chao et al.

(2010). The authors of Chao et al. (2010) have also suggested other JIVE estimators based

on LIML and Fuller. I select the 2SLS JIVE to see the performance of the post-l1-penalized

procedure when compared to an estimator that is robust to heteroskedasticity. Also,

Chao et al. (2010) claim that under heteroskedasticity the 2SLS JIVE performs similarly to

the other jackknife estimators.

The comparison of the estimators is based on three data generating processes. The

first data generating process uses random disturbances and instruments that come from

a normal distribution. In this setup I allow for the presence of heteroskedasticity. The

second data generating process is analogous except for the fact that the design is ho-

12Kuersteiner and Okui (2010) suggest the possibility of using different weight matrices for the con-
struction of their model averaging estimators. An unrestricted weight matrix is used because it allows for
negative weights, something that Kuersteiner and Okui (2010) suggest is advisable for a situation in which
many of the instruments are zero.
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moskedastic. In the third data generating process I want to capture the behavior of the

estimator when the tails of the random disturbance are thick. I use a homoskedastic

design were the instruments and random disturbances come from a t-distribution with 5

degrees of freedom. All the designs incorporate the performance of the estimators under

different degrees of endogeneity and instrument weakness. At the same time I test a

scenario with a growing instrument set. The specifications yield six different scenarios

for each data generating process and sample size. These scenarios are the result of the

two levels of endogeneity and three measures of instrument weakness.

I use six criteria to compare the estimators. The first three criteria are the traditional

mean square error and the associated bias and variance. This deviates from what is

reported in Donald and Newey (2001) and Kuersteiner and Okui (2010) in which the

concern for the existence of the moments of the estimators restricts the analysis to mea-

sures of central tendency and dispersion. However, considering the mean square error

is important for researchers to analyze the potential benefits and caveats of employing

the different estimators analyzed under the scenarios presented. The remaining three

criteria, the median bias, median absolute deviation, with respect to the true β, and

the interquartile range, are consistent with the work of Donald and Newey (2001) and

Kuersteiner and Okui (2010).
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1.5.1 Simulation Design

The simulation results presented below rely on the construction of a variance-covariance

matrix given by:

Σi ≡ Var (un, Vn, Zn) =



1 σuv 0 . . . 0

σuv 1 0 . . . 0

0 0

...
... Ipn×pn

0 0


(1.19)

In the matrix above, σuv measures the level of endogeneity. In the simulations, two

levels of endogeneity will be tested, 0.15 (low endogeneity) and 0.95 (high endogeneity),

for sample sizes n = 100 and 500. The number of instruments associated with each

sample size is 20 and 50 respectively. The results presented are for 1000 replications.

Πn in equation (1.2) will be constructed in two ways. The first one is a modification of

Kuersteiner and Okui (2010) and is given by:

πnj = c (pn)

(
1− pn/2− j

pn/2 + 1

)4

for j ≤ pn/2 (1.20)

πnj = 0 for j > pn/2
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In Kuersteiner and Okui (2010), the first j ≤ pn/2 are zero and not the last j > pn/2 as

presented above. The reason for this change is that the signal of the instruments will be

unnecessarily small otherwise. In the expression above the coefficients are constructed

for two different pseudo R-squared values, defined by R2
f =

π′njπnj

π′njπnj+1 = 0.1, and 0.01. The

pseudo R-squared is the way in which Kuersteiner and Okui (2010) introduce instrument

weakness into their simulation exercise. The term c (pn) guarantees that R2
f keeps its

predetermined values.

The second way in which the matrix Πn in equation (1.2) will be constructed follows

the criteria of definition 2 for a set of moderately weak instruments. The vector of param-

eters Πn in this case is given by:

Πn =

(
0pn−8,

1√
n

,
−1√

n
,
−1

log (n)
,

1
log (n)

,
1√

log(n)
,
−1√
log(n)

,
1

n1/3 ,
−1

n1/3

)
(1.21)

Three data generating process are analyzed. The first one is devised so that both the

random components Vn and un and the instruments come from a normal distribution

with heteroskedastic variance. The second design is analogous except for the fact that the

variance is homoskedastic. The final design is one in which the variance is homoskedastic

but the draws come from a distribution with a thick tail, a t-distribution with 5 degrees of

freedom. Formally, the data generating processes are given by:
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Data Generating Process 1 (DGP 1: Σi Normal).

ũn = un + Z′n1Zn1

Y2n = ZnΠn + Vn

y1n = 0.5Y2n + 2Zn1 + ũn

Data Generating Process 2 (DGP 2: Σi Normal).

Y2n = ZnΠn + Vn

y1n = 0.5Y2n + 2Zn1 + un

Data Generating Process 3 (DGP 3: Σi t-distribution with 5 d.f.).

Y2n = ZnΠn + Vn

y1n = 0.5Y2n + 2Zn1 + un

1.5.2 DGP 1: Normal with Heteroskedastic Variance Covariance Matrix

In this section I analyze the performance of the post-l1-penalized estimator I construct

with respect to the traditional estimators, 2SLS, LIML, and Fuller, the model averaging
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versions of these estimators, and with respect to the JIVE estimator of Chao et al. (2010)

for DGP 1. The full results of the simulations can be found at the end of the document

in tables 1.10, 1.11, and 1.12. Tables 1.1, 1.2, and 1.3 summarize the results in a way that

facilitates the understanding of how the estimators are behaving.

In tables 1.1, 1.2, and 1.3, if the post-l1-penalized estimator is ranked as 1 it is the best

along the dimension analyzed, for instance bias. If the value that appears on the table is

2a it means its performance is the second best after 2SLS, 2b denotes it comes after LIML

and 2c, after Fuller, 2d after the adaptive LASSO, and 2j after JIVE. The other numbers

follow a similar logic. The magnitudes that generate these rankings can be found in

tables 1.10 to 1.12.

Table 1.1 shows the performance of the post-l1-penalized estimator with respect to the

traditional estimators. The results suggest that in general the post-l1-penalized estimator

has a lower variance than LIML and Fuller which under most the scenarios leads to

a smaller means squared error (MSE). This is also the case for the robust measure of

dispersion, the interquartile range (IQR), which is lower than that of LIML and Fuller.

However, LIML and Fuller tend to have a smaller bias with the notable exception of

the scenario in which the instruments are the weakest. When endogeneity is low the

post-l1-penalized estimator tends to be better centered around the true value according

to the mean absolute deviation (MAD) criterion. When the endogeneity is high the LIML
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and Fuller are better centered around the true value in terms of MAD except for the

case when instrument weakness is high. Therefore, when the instrument weakness is

high, regardless of the level of endogeneity, the post-l1-penalized estimator has a smaller

MAD. With regard to 2SLS, the proposed estimator tends to exhibit a lower MSE and

always has a smaller bias, median bias, and MAD. Nonetheless, the variance and IQR are

higher than that of 2SLS.

Table 1.2 compares the post-l1-penalized estimator to the model averaging estimators

proposed by Kuersteiner and Okui (2010). The results suggest that the proposed estima-

tor tends to have a smaller bias, median bias, MAD, and MSE, than the model averaging

estimators. However, these estimators have a smaller variance than the post-l1-penalized

estimator.

The comparison with the JIVE estimator and the adaptive LASSO appears in Table 1.3.

The conclusion is that when instrument weakness is the greatest the post-l1-penalized

estimator is superior in every respect. Also, the proposed estimator always has a smaller

variance and IQR. When instruments are not as weak the JIVE estimator tends to exhibit

a smaller bias, and median bias. When the instruments have low endogeneity the post-l1-

penalized estimator tends to have a smaller MAD, something that does not occur when

endogeneity is high.
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From the previous discussion one can conclude that the post-l1-penalized estimator is

more efficient than LIML, Fuller and JIVE. In the case of LIML and JIVE, as is presented

in tables 1.10 to 1.12, the estimators do not seem to have a second moment. In terms

of the bias these three estimators tend to perform better than the post-l1-penalized esti-

mator. With regard to the MAD the post-l1-penalized estimator is a good option when

instrument weakness is severe. When this is not the case LIML, Fuller, and JIVE tend to

do better. Furthermore, the post-l1-penalized estimator is better centered around the true

value than 2SLS but has a greater variability. With respect to the model averaging esti-

mators the post-l1-penalized estimator has a lower bias and is better centered around the

true value but has greater variability. Finally, the post-l1-penalized estimator performs

unambiguously better than the adaptive LASSO.

1.5.3 DGP 2: Normal with Homoskedastic Variance Covariance Matrix

In this section I analyze the performance of the post-l1-penalized estimator I construct

with respect to the traditional estimators, 2SLS, LIML, and Fuller, the model averaging

versions of these estimators, and with respect to the JIVE estimator of Chao et al. (2010)

for DGP 2. The full results of the simulations can be found at the end of the document

in tables 1.13, 1.14, and 1.15. Tables 1.4, 1.5, and 1.6 summarize the results in a way that

facilitates the understanding of how the estimators are behaving.

In tables 1.4, 1.5, and 1.6, if the post-l1-penalized estimator is ranked as 1 it is the best
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along the dimension analyzed, for instance bias. If the value that appears on the table is

2a it means its performance is the second best after 2SLS, 2b denotes it comes after LIML

and 2c, after Fuller, 2d after the adaptive LASSO, and 2j after JIVE. The other numbers

follow a similar logic. The magnitudes that generate these rankings can be found in

tables 1.13 to 1.15.

Table 1.4 suggests that the LIML and Fuller estimators tend to be less biased and better

centered than the post-l1-penalized estimator. This conclusion does not hold when instru-

ments are the weakest and endogeneity is low, in which case only LIML is superior. Once

again, LIML and Fuller tend to have a higher variance and IQR than the post-l1-penalized

estimator. This is not true, however, when endogeneity is high and instruments are com-

pletely weak, when the Fuller estimator tends to have a smaller variance yet still has a

higher IQR. With regard to 2SLS the post-l1-penalized estimator has a smaller bias, me-

dian bias, and MAD and has an inferior performance with respect to its variance and IQR.

The results of Table 1.5 show that the post-l1-penalized estimator has a lower bias and

median bias, than the modeling average estimators proposed by Kuersteiner and Okui

(2010) when endogeneity is low. This is the same when endogeneity is high except in

one of the six cases analyzed. Also, the post-l1-penalized estimator tends to have a lower

MAD and MSE. With respect to the variance and IQR the modeling average estimators

always outperforms the post-l1-penalized estimator.
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The comparison with the JIVE estimator and the adaptive LASSO appears in Table

1.6. When the instruments are the weakest, the post-l1-penalized estimator has a smaller

bias, median bias, MAD, and variance. However, when instruments are not as weak JIVE

tends to be have smaller bias, median bias, and MAD but a larger variance and IQR.

From the previous discussion one can conclude that the post-l1-penalized estimator is

more efficient than LIML, Fuller and JIVE. The LIML and JIVE estimators, as is presented

in tables 1.13 to 1.15, do not seem to have a second moment. In terms of the bias these

three estimators tend to perform better than the post-l1-penalized estimator and, LIML

and Fuller outperform JIVE. With regard to the MAD the post-l1-penalized estimator is

a good option when instrument weakness is severe. When this is not the case LIML,

Fuller, and JIVE tend to do better. With respect to the model averaging estimators the

post-l1-penalized estimator has a lower bias and is better centered around the true value

but has greater variability. Furthermore, the post-l1-penalized estimator is better centered

around the true value than 2SLS but has a greater variability. Finally, the post-l1-penalized

estimator is unambiguously better than the adaptive LASSO.
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1.5.4 DGP 3: t-distribution with Homoskedastic Variance Covariance

Matrix

In this section I analyze the performance of the post-l1-penalized estimator I construct

with respect to the traditional estimators, 2SLS, LIML, and Fuller, the model averaging

versions of these estimators, and with respect to the JIVE estimator of Chao et al. (2010)

for DGP 3. The full results of the simulations can be found at the end of the document

in tables 1.16, 1.17, and 1.18. Tables 1.7, 1.8, and 1.9 summarize the results in a way that

permits the understanding of how the estimators are behaving.

In tables 1.7, 1.8, and 1.9, if the post-l1-penalized estimator is ranked as 1 it is the best

along the dimension analyzed, for instance bias. If the value that appears on the table is

2a it means its performance is the second best after 2SLS, 2b denotes it comes after LIML

and 2c, after Fuller, 2d after the adaptive LASSO, and 2j after JIVE. The other numbers

follow a similar logic. The magnitudes that generate these rankings can be found in

tables 1.16 to 1.18.

Table 1.7 suggests that 2SLS tends to have a higher bias than LIML, Fuller, and the

post-l1-penalized estimator when endogeneity is high but has a smaller MAD and MSE

when instruments have low endogeneity. Once again, 2SLS has the smallest variance and

IQR with respect to the traditional estimators and the post-l1-penalized estimator. Table

1.7 also suggests that the LIML and Fuller estimators tend to be less biased and better
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centered than the post-l1-penalized estimator according to MAD and both measures of

bias. As in the previous DGPs LIML and Fuller have a higher variance and IQR than the

post-l1-penalized estimator.

The results of Table 1.7 show that the post-l1-penalized estimator has a lower bias

and median bias, unambiguously, than the modeling average estimators proposed by

Kuersteiner and Okui (2010) when endogeneity is low. This is the same when endogene-

ity is high except in one of the six cases analyzed. Also, the post-l1-penalized estimator

tends to have a lower MAD except when instruments are moderately weak. The MSE

that in the previous two DGPs had been lower for the post-l1-penalized estimator is now

unambiguously inferior when instruments have low endogeneity. When endogeneity is

high MSE still tends to be lower for the proposed estimator. With respect to the variance

and IQR the modeling average estimators always outperforms the proposed estimator.

The comparison with the JIVE estimator and the adaptive LASSO appears in Table

1.9. When the instruments are the weakest the post-l1-penalized estimator has a smaller

bias, median bias, MAD, and variance. However, when instruments are not as weak JIVE

tends to be have smaller bias, median bias, and MAD but a larger variance and IQR.

From the previous discussion the conclusion is that the post-l1-penalized estimator is

more efficient than LIML, Fuller and JIVE. In the case of LIML and JIVE, tables 1.16 to 1.18
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suggest the estimators do not have a second moment. In terms of the bias these three esti-

mators tend to perform better than the post-l1-penalized estimator and, LIML and Fuller

outperform JIVE. With regards to the MAD this also holds except when endogeneity of

the instruments is low in which case 2SLS is better.With respect to the model averaging

estimators the post-l1-penalized estimator has a lower bias and is better centered around

the true value but has greater variability. Finally, the post-l1-penalized estimator is unam-

biguously better than the adaptive LASSO.

1.6. Conclusion

In this paper, I consider a setting with many weak, possibly irrelevant instruments, where

traditional 2SLS leads to inconsistent estimates when all potential instruments are used,

but it is unclear how to select the right instruments to include. I introduce a new 2SLS

estimator that selects the correct instruments with high probability, and is simultaneously

consistent and asymptotically normal.

I exploit the idea that signal per instrument is what determines the quality of the

instrument set and provide a methodology to attain a higher signal per instrument. I

achieve this objective using the adaptive LASSO, a selection procedure that excludes the

irrelevant instruments with probability approaching one. The result is the possibility that

even though the initial signal per instrument stays constant as the sample size increases,

after instrument selection the signal per instrument diverges asymptotically. This implies
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that estimators that were inconsistent before instrument selection, because the signal

per instrument remained constant asymptotically, become consistent and asymptotically

normal. I derive these results bringing together the many weak instrument asymptotic

framework of Chao and Swanson (2003b, 2005b) and the adaptive LASSO asymptotics of

Huang et al. (2007).

The results I obtain are robust to heteroskedasticity which, as Chao et al. (2010) and

Hausman et al. (2010) prove, is an important consideration because it affects not only the

properties of confidence intervals but the consistency of the estimator of the structural

parameter. In addition, by allowing for the assumption that the instruments are mean

independent of the structural random disturbance, I allow the possibility of a nonpara-

metric adaptive LASSO in the first stage.

Finally, simulation results show that the proposed estimator performs better than the

estimators discussed in section 1.5 under heteroskedasticity, when the instruments are

the weakest and endogeneity is high. This suggests that the estimator is fulfilling the

description of the theoretical results and that it is an important alternative for researchers

that suspect high levels of endogeneity, a set of considerably weak instruments, and the

possibility of the presence of irrelevant instruments in their specification.
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1.7. Appendix

All proofs of the results in the text are presented in this section. Below C will be used

generically to refer to a constant.

1.7.1 Proof of Propositions

In this subsection I present a proof of Propositions 1 and 2. Both results are important

to establish the existence of the asymptotic order of the minimum non-zero coefficient

selected by the adaptive LASSO.

Proposition 2

Proof. (Proposition 2) First notice that from the Kuhn-Tucker conditions, Π̂n =(
Π̂n1 . . . Π̂nn

)′
is the unique solution to the adaptive LASSO if:

z′j
(

Y2 − ZnΠ̂n

)
= λnwnjsgn

(
Π̂nj

)
, Π̂nj 6= 0 (1.22)∣∣∣z′j (Y2 − ZnΠ̂n

)∣∣∣ < λnwnj, Π̂nj = 0

The proof below follows from verifying that the assumptions in Theorem 1 and Theo-

rem 2 of Zhang and Huang (2008) are satisfied using λ∗ ≡ λnwnj. The reason for this is

that they use the LASSO, i.e wnj = 1 ∀j, instead of the adaptive LASSO. Also, they assume

Vn is normally distributed. Here instead of having normal residuals, assumption 5 is

used to attain the results for subgaussian tails. As was explained in the text this allows

us to obtain a conservative lower bound for the minimum of the excluded coefficients.
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Let us define:

ζα1 ≡
(

∑
j∈A

∣∣Πnj
∣∣α1 I

{
Π̂nj = 0

})1/α1

α1 ∈ [0, ∞] (1.23)

B (λ) ≡
∥∥ZnΠn − ZnΠ̂n

∥∥ (1.24)

η2 ≡ max
A′⊂Ac

∥∥∥∥∥ ∑
j∈A′

ZnjΠnj

∥∥∥∥∥ (1.25)

Also, for m ≤ pn, I denoting an identity matrix, ZnY denoting a matrix of instruments

of dimensions n×Y, and PY ≡ ZnY
(
Z′nYZnY

)−1 Z′nY:

χ∗m ≡ max
|A|=m

max
s∈{±1}m

∣∣∣∣∣∣V′n ZnA
(
Z′nAZnA

)−1 sλ∗ − (I − PA)ZnΠn∥∥∥ZnA
(
Z′nAZnA

)−1 sλ∗ − (I − PA)ZnΠn

∥∥∥
∣∣∣∣∣∣ (1.26)

Finally for c0 ≥ 0 and an ≥ 0 satisfying pn/ (pn ∨ an)
1+c0 → 0:
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Ω0 ≡
{
(Zn, Vn) : χ∗m ≤

√
2 (1 + c0) (m ∨ 1) log (pn ∨ an)

}
(1.27)

Above (1.23) is a measure of the number of coefficients excluded by the model that

should have been included, B (λ) in (1.24) is a measure of the model’s bias, and (1.25) is

an upper bound on the contribution of a given set of the excluded regressors.

If (Zn, Vn) ∈ Ω0 and the sparse Riesz condition of Zhang and Huang (2008) is fulfilled

the result of Proposition 2 follows. Expression (1.17) is the definition of sparsity in

Zhang and Huang (2008). It tells us that there are a maximum of pn1 large coefficients

and that the sum of the l1 norms of the small coefficients is no greater than η1. The

estimator of the weights guarantees that this condition is satisfied. Also, assumption

2 gives us the Riesz condition of Zhang and Huang (2008). It states that the smallest

eigenvalue of
(

Z′nZn
mn1

)
is bounded away from zero and the largest one is finite. These two

conditions imply the fulfillment of the sparse Riesz condition in Zhang and Huang (2008).

What remains to be shown is that (Zn, Vn) ∈ Ω0. This in turn implies, denoting the set

of selected instruments by Â, that:

P
{
A ⊂ Â, B (λ) ≤ η2 and ζα1 = 0

}
→ 1
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For Vn in assumption 5 with d = 2, (Zn, Vn) ∈ Ω0 is given by:

1− P {(Zn, Vn) ∈ Ω0} ≤
∞

∑
m=0

2m∨1
(

pn

m

)
D6exp {−D5 (m ∨ 1) (1 + c0) log (p ∨ an)}

≤ 2D6

(pn ∨ an)
(1+c0)D5

+ D6exp

(
2pn

(pn ∨ an)
(1+c0)D5

)
− D6

→ 0

Regularity condition 1 guarantees that the final expression goes to zero.

By Theorem 1 and 2 of Zhang and Huang (2008) it follows that (Zn, Vn) ∈ Ω0. This

implies that the excluded instruments are of the order O
(

λ∗√pn1
mn2

)
. Also, given that wnj =

O (
√

mn2), the excluded instruments are of the order O
(

λ∗√pn1
mn2

)
translates to the excludes

instruments being of the order:

O
(

λn
√

pn1√
mn2

)
(1.28)

Proposition 1

Proof. Proposition 1 is a restatement of Theorem 1 of Huang et al. (2010) with two differ-

ences. The first difference is that the tail behavior of the errors in the first stage are not
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assumed to be subgaussian. The second one is that the eigenvalues of the information

matrix of the selected basis functions X′n1Xn1 is determined by mnx2 in assumption 2.

This fact is equivalent to Lemma 3 in their paper being fulfilled. The proof below will

first address part ii) of Proposition 1 and then part i).

Below the Lemmas used to prove Theorem 1 in Huang et al. (2010) will be modified

to incorporate these differences. As was mentioned previously, Lemma 3 in their paper

follows from assumption 2. Also, Lemma 1m which comes directly from the theory of

regression splines, is not modified.

The first component is to modify Lemma 2 of Huang et al. (2010) to allow for

the tail behavior of Vn to range from exponential to subgaussian. Let us define

Tjk ≡
√

sn√
n ∑n

i=1 ψk
(
Zij
)

vi for 1 ≤ j ≤ pn, 1 ≤ k ≤ sn and Tn ≡ max1≤j≤pn,1≤k≤sn

∣∣Tjk
∣∣.

Also, define t2
njk ≡ ∑n

i=1 ψ2
k
(
Zij
)

and t2
n ≡ max1≤j≤pn,1≤k≤sn t2

njk. The first detail to notice

is that conditional on the Zij’s the Tjk’s behave according to the exponential Orlicz norm

given assumption 5. This implies that by van der Vaart and Wellner (1996):

E
(

max
1≤j≤pn,1≤k≤sn

∣∣Tjk
∣∣ | {Zij, 1 ≤ i ≤ n, 1 ≤ j ≤ pn

})
≤ C
√

sn√
n

tn (log (pnsn))
1/d for d ∈ [1, 2]

By the law of iterated expectations the expression above becomes:
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E
(

max
1≤j≤pn,1≤k≤sn

∣∣Tjk
∣∣) ≤ C

√
sn√
n
(log (pnsn))

1/d E (tn) for d ∈ [1, 2]

The remaining arguments in Huang et al. (2010) remain unmodified. The conclusion

of Lemma 2 in their text then becomes:

E (Tn) ≤ C
√

sn√
n
(log (pnsn))

1/d
(√

2C
n
sn

log(pnsn) + 4log(2pnsn) + C
n
sn

)1/2

for d ∈ [1, 2]

It remains now to restate the elements of the proof of Theorem 1 in Huang et al. (2010)

that have been modified by the changes introduced to the Lemmas in their text.

Lets first define ς ≡ Y2n−∑
pn
j=1 XnjΠnj and ς∗ ≡ Xn1 (X′n1Xn1)

−1 X′n1ς. The expression

for ς can be rewritten to incorporate the fact that ∑
pn
j=1 XnjΠnj is an approximation to

∑
pn
j=1 f j

(
Znj
)

by noting that:

ςi = Y2i −
pn

∑
j=1

XnjΠnj −
pn

∑
j=1

f j
(
Znj
)
+

pn

∑
j=1

f j
(
Znj
)

= vi +
pn

∑
j=1

f j
(
Znj
)
−

pn

∑
j=1

XnjΠnj

By the fact that
∥∥∥∑

pn
j=1 f j

(
Znj
)
−∑

pn
j=1 XnjΠnj

∥∥∥
∞
= O

(
s−∂

n +
√

sn
n

)
, which comes from
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results of Lemma 1 of Huang et al. (2010), where ∂ is defined in assumption 8, it follows

that:

‖ς∗‖2
2 ≤ 2 ‖vi∗‖2

2 + O

(
nq
[

s−∂
n +

√
sn

n

]2)

Where vi∗ ≡ Xn1 (X′n1Xn1)
−1 X′n1vi. Furthermore, by assumption 2 it follows that

ncn∗, which is the equivalent to the growth rate of the information matrix in Huang et al.

(2010), can be replaced by mnx2, and:

‖vi∗‖2
2 =

∥∥∥Xn1
(
X′n1Xn1

)−1 X′n1vi

∥∥∥2

2

=
C

mnx2

∥∥X′n1vi
∥∥2

2

It follows from the arguments above and those of Theorem 1 in Huang et al. (2010)

that:

‖vi∗‖2
2 = Op(1)

Op(q)nlog (pnsn)

mnx2

Again using assumption 2 paired with Theorem 1 of Huang et al. (2010):
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∥∥Π̃n1 −Πn1
∥∥2

2 ≤
C ‖ς∗‖2

2
mnx

+
Cλ2

nlOp(q)
m2

nx2

It follows from the arguments above that:

∥∥Π̃n1 −Πn1
∥∥2

2 ≤ Op

(
qnlog (pnsn)

m2
nx

)
+ O

(
nq

mnx2

[
s−∂

n +

√
sn

n

]2)
+ O

(
λ2

nlq
m2

nx2

)

By virtue of assumption 7:

qnlog(pnsn)

m2
nx2

→ 0,
nq

mnx2

[
s−∂

n +

√
sn

n

]2

→ 0 and
λ2

nlq
m2

nx2
→ 0

The above relationships and the arguments found in Huang et al. (2010) guarantee

that part (i) of Proposition 1 is satisfied. This completes the proof of the Proposition.

1.7.2 Theorem 1

Lemmas

The first lemma presented below allows the use of the true set of instruments in the

proofs, as opposed to those selected by the adaptive LASSO. This is going to simplify
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the notation and it also facilitates the analysis of the implications of incorporating the

adaptive LASSO into a two stage procedure.

Lemma 1. Defining p̂n1 as the number of selected instrument, if the conditions of Propo-

sition 2 are satisfied by assumption 7(b) and Proposition 3:

p̂n1

rn
→p 0

Proof. By Proposition 3, p̂n1
rn

= pn1
rn

+ op(1). Replacing rn in the expression pn1
rn

by its defi-

nition and using Proposition 2:

pn1

rn
=

pn1b2
n

mn2hn
≤ C

pn1m2
n2

m2
n2λ2

n pn1
= C

1
λ2

n
→ 0 (1.29)

It is important to highlight that division by b2
n

hn
, the asymptotic order of the first stage

coefficient vector, is bounded above by Proposition 2. In other words dividing by b2
n

hn

necessarily yields a smaller number than dividing by the asymptotic order of the smallest

of the non-zero coefficients. This yields the first inequality and is the key argument to

prove lemma 1. The conclusion follows by Assumption 7(b).

The first lemma presented below allows the use of the true set of instruments in the

proofs, as opposed to those selected by the adaptive LASSO. This is going to simplify
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the notation and it also facilitates the analysis of the implications of incorporating the

adaptive LASSO into a two stage procedure.

Let us define β̂ as the estimator proposed in this paper using the instruments selected

by the adaptive LASSO, Z̃n1, and β̂oracle as the unfeasible estimator that could be com-

puted if the true set of relevant instruments, Zn1, were known. It follows that:

√
rn
(

β̂− β
)

=
√

rn
(

β̂− β
)

I
{

Zn1 = Z̃n1
}
+
√

rn
(

β̂− β
)

I
{

Zn1 6= Z̃n1
}

=
√

rn
(

β̂oracle − β
)
+
√

rn
(

β̂− β
)

I
{

Zn1 6= Z̃n1
}

From Theorem 1 of Huang et al. (2007) and assumptions 5 and 7, for A ={
j : Πnj 6= 0

}
, the sign consistency of the adaptive LASSO implies that:

1− P
({

j : Π̂nj 6= 0
}
= A

)
= Op

(
log (n)I{d=1}

(
log(pn2)

1/d

λn

))
(1.30)

= op(1)

The second equality is a consequence of assumption 7. In the expression above d

represents the tail behavior of the random disturbances as described in assumption 5.
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Assumption 7(b) and equation (1.30) guarantee that:

√
rn I
{

Zn1 6= Z̃n1
}

= Op

(
log (n)I{d=1}

(
log(pn2)

1/d√rn

λn

))
= op (1)

If I can show that for any random set of instruments
(

β̂− β
)
= Op (1) then it will

follow that:

√
rn
(

β̂− β
)
=
√

rn
(

β̂oracle − β
)
+ op (1)

This is what is proved in Lemma 2.

Lemma 2. For any random set of instruments Znk:

(
β̂− β

)
= Op (1)

Proof. Let us define Pz = Zn (Z′nZn)
−1 Zn as the projection matrix using all the in-

struments, Pz1 = Zn1 (Z′n1Zn1)
−1 Zn1 as the projection matrix using the correct set of

instruments, and Pzk = Znk
(
Z′nkZnk

)−1 Z′nk as the projection matrix associated with a

random set of k instruments.
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The analysis will focus on the estimator that would arise for any random set of instru-

ments:

β̂− β =
(
Y′2nPzkY2n

)−1 (Y′2nPzkun
)

I will first focus on the denominator. The first step is to rewrite the denominator as:

Y′2nPzkY2n = (ZnΠn + Vn)
′ Pzk (ZnΠn + Vn)

= Π′nZ′nPzkZnΠn + V′nPzkZnΠn + Π′nZ′nPzkVn + V′nPzkVn

To analyze the first term above, let zki be the ith row of Znk and zi be the ith rows of Zn.

Also, I define wi ≡
(
Z′nkZnk

)−1/2 zki:

E
∥∥Π′nZ′nPzkZnΠn

∥∥2

= E

(
n

∑
i=1

n

∑
i=1

Π′nziz′ki
(
Z′nkZnk

)−1 zkjz′jΠn

)2

= E

(
n

∑
i=1

n

∑
i=1

w′iwjz′jΠnΠ′nzi

)2

= E

(
n

∑
i=1

n

∑
i=1

n

∑
k=1

n

∑
l=1

w′iwjw′kwlz′jΠnΠ′nziz′lΠnΠ′nzk

)

= E

(
n

∑
i=1

(
w′iwi

)2 (z′iΠnΠ′nzi
)2

+ 4
n

∑
i=2

i−1

∑
j=1

(
w′iwj

)2 (z′iΠnΠ′nzj
)2

)

+ E

(
2

n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzi

) (
z′jΠnΠ′nzj

) [(
w′iwi

) (
w′jwj

)
+ 2

(
w′iwj

)2
])

+ E

(
4

n

∑
i=2

i−1

∑
j=1

(
w′iwi

) (
w′iwj

) (
z′iΠnΠ′nzi

) (
z′iΠnΠ′nzj

))
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≤ E

(
n

∑
i=1

(
w′iwi

)2 (z′iΠnΠ′nzi
)2

+ 4
n

∑
i=2

i−1

∑
j=1

(
w′iwi

) (
w′jwj

) (
z′iΠnΠ′nzj

)2

)

+ E

(
2

n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzi

) (
z′jΠnΠ′nzj

) [(
w′iwi

) (
w′jwj

)
+ 2

(
w′iwi

) (
w′jwj

)])

+ E

(
4

n

∑
i=2

i−1

∑
j=1

(
w′iwi

)√(
w′iwi

) (
w′jwj

) (
z′iΠnΠ′nzi

) (
z′iΠnΠ′nzj

))

≤ E

((
max

1≤i≤n

∣∣∣z′ki
(
Z′nkZnk

)−1 zki

∣∣∣)2
[

n

∑
i=1

(
z′iΠnΠ′nzi

)2
+ 2

n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzj

)2

])

+ E

(
3
(

max
1≤i≤n

∣∣∣z′ki
(
Z′nkZnk

)−1 zki

∣∣∣)2
[

2
n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzi

) (
z′jΠnΠ′nzj

)])

+ E

((
max

1≤i≤n

∣∣∣z′ki
(
Z′nkZnk

)−1 zki

∣∣∣)2
[

2
n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzi

) (
z′iΠnΠ′nzj

)])

≤ E

(
C

p2
nk

m2
n1

[
n

∑
i=1

(
z′iΠnΠ′nzi

)2
+ 4

n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzj

)2

])

+ E

(
C

p2
nk

m2
n1

[
2

n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzi

) (
z′jΠnΠ′nzj

)])

+ E

(
C

p2
nk

m2
n1

[
2

n

∑
i=2

i−1

∑
j=1

(
z′iΠnΠ′nzi

) (
z′iΠnΠ′nzj

)])

≤ C
E
(

p2
nk
)

r2
n

m2
n1

≤ C
E
(

p2
nk
)

r2
n

m2
n1

In the expression above the first inequality uses the Cauchy-Schwarz inequality. The

second and third inequalities exploit assumption 3. The third inequality follows from

assumptions 1, 2, and 6.
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For the second term:

E
∥∥V′nPzkZnΠn

∥∥2

= E

(
n

∑
i=1

n

∑
j=1

viz′ki
(
Z′nkZnk

)−1 zkjz′iΠn

)2

= E

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

vivkz′jΠnΠ′nzlw′iwjw′kwl

)

= E

(
n

∑
i=1

v2
i z′iΠnΠ′nzi

(
w′iwi

)2
+ 2

n

∑
i=2

i−1

∑
j=1

v2
i z′iΠnΠ′nzi

(
w′jwi

)2
)

+ E

(
2

n

∑
i=2

i−1

∑
j=1

v2
i z′iΠnΠ′nzj

(
w′iwi

) (
w′iwj

)
+ 2

n

∑
i=2

i−1

∑
j=1

v2
j z′iΠnΠ′nzj

(
w′iwi

) (
w′iwj

))

≤ E

(
n

∑
i=1

v2
i z′iΠnΠ′nzi

(
w′iwi

)2
+ 2

n

∑
i=2

i−1

∑
j=1

v2
i z′iΠnΠ′nzi

(
w′iwi

) (
w′jwj

))

+ E

(
2

n

∑
i=2

i−1

∑
j=1

v2
i z′iΠnΠ′nzj

(
w′iwi

)√(
w′iwi

) (
w′jwj

)
+ 2

n

∑
i=2

i−1

∑
j=1

v2
j z′iΠnΠ′nzj

(
w′iwi

)√(
w′iwi

) (
w′jwj

))

≤ E

(
max

i
E
(

v2
i |z
)

max
1≤i≤n

∣∣∣z′ki
(
Z′nkZnk

)−1 zki

∣∣∣2 [ n

∑
i=1

z′iΠnΠ′nzi + 2
n

∑
i=2

i−1

∑
j=1

z′iΠnΠ′nzi

])

+ E

(
max

i
E
(

v2
i |z
)

max
1≤i≤n

∣∣∣z′ki
(
Z′nkZnk

)−1 zki

∣∣∣2 [4
n

∑
i=2

i−1

∑
j=1

z′iΠnΠ′nzj

])

≤ C
rnE (pnk)

2

m2
n1

The first inequality above follows from the Cauchy-Schwarz inequality. The second

and third inequalities use assumptions 5 and 3.

For the last term, let pij denote the (i, j)th element of Pzk and vi the ith element of Vn
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and let C1 be a positive constant:

E
∥∥V′nPzkVn

∥∥2
=

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

E
(

pij pklvivjvkvl
)

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

E
(

pij pkl
)

E
(
vivjvkvl

)
=

n

∑
i=1

E
(

p2
ii

)
E
(

v4
i

)
+ 2

n

∑
i=2

i−1

∑
j=1

E
(

v2
i

)
E
(

v2
j

)
E
(

2p2
ij + pii pjj

)
≤ max

i
E
(

v4
i

) n

∑
i=1

E
(

p2
ii

)
+ max

i
E
(

v2
i

)
E
(

v2
j

)
2

n

∑
i=2

i−1

∑
j=1

E
(

2p2
ij + pii pjj

)
≤ max

i
E
(

v4
i

) n

∑
i=1

E (pii) + max
i

E
(

v2
i

)
E
(

v2
j

)
2

n

∑
i=2

i−1

∑
j=1

E
(

2p2
ij + pii pjj

)
= max

i
E
(

v4
i

)
E (trace (Pzk))

+ max
i

E
(

v2
i

)
E
(

v2
j

) [
E
(

trace (Pzk)
2
)
+ 2trace

(
E
(

P′zkPzk
))
− 3

n

∑
i=1

E
(

p2
ii

)]
=

(
C1 + op (1)

) (
E (pnk)

2 + E (pnk)
)

The second equality comes from the independence of Vn and Zn. The third equality comes

by virtue of two facts. The first is that the vis are independent and the second that only

when i = j = k = l or when two equalities of the elements in {i, j, k, l} hold, do the terms

in the summation become different than zero. The first inequality is a consequence of the

boundedness of the second and fourth moments of Vn. The second inequality comes from

the fact that 0 ≤ pii ≤ 1. The first argument of the fourth equality is the definition of the



72

trace. For the second term in the fourth equality two relationships are used. The first:

E
(

trace (Pzk)
2
)

= E

(
n

∑
i=1

pii

)2

= E

(
n

∑
i=1

p2
ii + 2

n

∑
i=2

i−1

∑
j=1

pii pjj

)

The second argument used to derive the fourth inequality of E ‖V′nPzkVn‖2 is given by the

fact that:

trace
(
E
(

P′zkPzk
))

=
n

∑
i=1

E
(

p2
ii

)
+ 2

n

∑
i=2

i−1

∑
j=1

E
(

p2
ij

)

Combining these two expression I obtain that:

E
(

trace (Pzk)
2
)
+ 2trace

(
E
(

P′zkPzk
))
− 3

n

∑
i=1

E
(

p2
ii

)
= E

(
n

∑
i=1

p2
ii + 2

n

∑
i=2

i−1

∑
j=1

pii pjj

)
+ 2

(
n

∑
i=1

E
(

p2
ii

)
+ 2

n

∑
i=2

i−1

∑
j=1

E
(

p2
ij

))
− 3

n

∑
i=1

E
(

p2
ii

)
= 2

n

∑
i=2

i−1

∑
j=1

E
(

2p2
ij + pii pjj

)
The conclusion from the analysis of the first three terms is that, for a positive constant

C1:

Y′2nPzkY2n = Op (1)
E (pnk) rn

mn1
+Op (1)

E (pnk)
√

rn

mn1
+
(
C1 + op (1)

)
(E (pnk) + E (

√
pnk))



73

From a similar analysis it follows that:

Y′2nPzkun = (ZnΠn + Vn)
′ Pzkun

= Π′nZ′nPzkun + V′nPzkun

= Op (1)
E (pnk)

√
rn

mn1
+
(
C1 + op (1)

) (
E (pnk) +

√
E (pnk)

)

It follows that:

β̂− β

=

(
Op (1)

E (pnk) rn

mn1
+ Op (1)

E (pnk)
√

rn

mn1
+
(
C1 + op (1)

) (
E (pnk) +

√
E (pnk)

))−1

(
Op (1)

E (pnk)
√

rn

mn1
+
(
C1 + op (1)

) (
E (pnk) +

√
E (pnk)

))

=

(
Op (1)

rn

mn1
+ Op (1)

√
rn

mn1
+
(
C1 + op (1)

) (
1 +

1√
E (pnk)

))−1

(
Op (1)

√
rn

mn1
+
(
C1 + op (1)

) (
1 +

1√
E (pnk)

))
=

(
C1 + op (1)

)−1 (C1 + op (1)
)

= Op (1)

In the expression above the first three equalities follow from algebraic manipulations

and the definitions of rn and mn1. The last equality results from the fact that C1 is a

positive constant.

For the nonparametric case a similar analysis follows. In particular by assumption

7(c):
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√
rnx I

{
Xn1 6= X̃n1

}
= Op

(
λnl
√

rnx

m2
nx2

)
= op (1)

It then remains to be established that:

Lemma 3. For any random set of instruments and basis functions defined by Xnk:

(
β̂− β

)
= Op (1)

Proof. Defining θ ≡ f0 − Xn1Πn1, the selected Xns by X̃n1, the true nonzero ones by Xn1,

PX̃ = X̃n1
(
X̃′n1X̃n1

)−1 X̃n1, Px = Xn1 (X′n1Xn1)
−1 Xn1, and the number of random Xnks by

pnksn:

(
β̂− β

)
=
(
Y′2nPX̃Y2n

)−1 Y′2nPX̃un

As in Lemma 2 the analysis starts with:

Y′2nPX̃Y2n =
(
θ′ + Π′n1X′n1 + V′n

)
PX̃ (θ + Xn1Πn1 + Vn)

= θ′PX̃θ + Π′n1X′n1PX̃θ + V′nPX̃θ + Π′n1X′n1PX̃Xn1Πn1
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+ Π′n1X′n1Vn + V′nPX̃Vn + AE (1.31)

In the expression above AE refers to terms that are asymptotically equivalent to those

already accounted for.

From Lemma 2 it follows that for a positive constant C1:

Y′2nPX̃Y2n = θ′PX̃θ + Π′n1X′n1PX̃θ + V′nPX̃θ +
Op (1) E (pnksn) rnx

mn1x

+
Op (1) E (pnksn)

√
rnx

mn1x
+
(
C1 + op (1)

) (
E (pnksn) +

√
E (pnksn)

)
+ AE

Also, by the theory of regression splines, assumption 5, assumption 6, and assumption

7:

E
∥∥θ′PX̃θ

∥∥2 ≤ E
∥∥θ′θ

∥∥2 ‖PX̃‖
2

= op (1) E (pnksn)

E
∥∥Π′n1X′n1PX̃θ

∥∥2 ≤ E
∥∥Π′n1Xn1

∥∥2 ‖PX̃‖
2 ‖θ‖2

= E (pnksn)
√

rnx
nq

mnx2

[
s−∂

n +

√
sn

n

]2

= E (pnksn) op (1)

E
∥∥V′nPX̃θ

∥∥2 ≤ E ‖θ‖2 E ‖PX̃‖
2 E
∥∥V′n

∥∥2
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= op (1) E (pnksn)

Using similar arguments it can be shown that:

Y′2nPX̃un = θ′PX̃un + V′nPX̃un + Π′n1X′n1PX̃un

= op (1) E (pnksn) +
(
C1 + op (1)

) (
E (pnksn) +

√
E (pnksn)

)

From the arguments used in the proof of Lemma 2 it is immediate that:

β̂− β = Op (1)

Below Lemma 2 and Lemma 3 are used. The aforementioned Lemmas imply that in

the proofs below the true pn1 and Zn1 can be used instead of their estimated counterparts.

Theorem 1

Proof.

Π̂n1 =
(
Z′n1Zn1

)−1 Z′n1Y2n
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Thus, Ŷ2n satisfies:

Ŷ2n = Zn1
(
Z′n1Zn1

)−1 Z′n1Y2n (1.32)

I analyze the expression Ŷ′2nun
rn

:

Ŷ′2nun

rn
=

Y′2nZn1 (Z′n1Zn1)
−1 Z′n1un

rn

Ŷ′2nun

rn
=

(Zn1Πn1 + Vn)
′ Zn1 (Z′n1Zn1)

−1 Z′n1un

rn

Ŷ′2nun

rn
=

Π′n1Z′n1un

rn
+

V′nZn1 (Z′n1Zn1)
−1 Z′n1un

rn
(1.33)

For the first term above:

E
∥∥∥∥Π′n1Z′n1un

rn

∥∥∥∥2

=
E (trace (u′nZn1Πn1Π′n1Z′n1un))

r2
n

≤
CE (trace (Zn1Πn1Π′n1Z′n1))

r2
n

≤ C
rn

= op (1)

The first equality comes from the definition of the matrix norm. The first inequality
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uses assumption 5 and the law of iterated expectations. The second inequality and the

conclusion are a consequence of assumption 6.

For the second term:

E

∥∥∥∥∥V′nZn1 (Z′n1Zn1)
−1 Z′n1un

rn

∥∥∥∥∥
2

=
E
(

trace
(

u′nZn1 (Z′n1Zn1)
−1 Z′n1VnV′nZn1 (Z′n1Zn1)

−1 Z′n1un

))
r2

n

≤
CE
(

trace
(

Zn1 (Z′n1Zn1)
−1 Z′n1

))
r2

n

=
Cpn1

r2
n

= op (1)

The first inequality uses the law of iterated expectations and assumption 5. The second

inequality follows by the properties of the trace operator. The conclusion comes from

Lemma 1.

1.7.3 Theorem 2

Lemmas for Theorem 2

Lemma 4. If the conditions of Proposition 2 are satisfied by assumption 7(c):

pn1sn

rnx
→ 0 as n→ ∞
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Proof. Replacing rnx in the expression pn1sn
rnx

by its definition and using the corollary of

Proposition 2:

pn1sn

rnx
=

pn1snb2
n

mnxhn
≤ C

pn1m2
nx

m2
nxλ2

nl pn1sn
→ 0 (1.34)

Theorem 2

Proof. As in Theorem 1 the starting point is:

Π̂n1 =
(
X′n1Xn1

)−1 X′n1Y2n (1.35)

=
(
X′n1Xn1

)−1 X′n1Vn +
(
X′n1Xn1

)−1 X′n1θ + Πn1

(1.36)

From (1.35) and defining Px = Xn1 (X′n1Xn1)
−1 X′n1 it follows that:

f̂n = PxVn + Pxθ + Xn1Πn1 (1.37)

It needs to be shown that:
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f̂ ′nun

rnx
= op(1)

Relationship (1.37) implies that:

f̂ ′nun

rnx
=

V′nPxun + θ′Pxun + Π′n1X′n1un

rnx
(1.38)

For the first term of (1.38):

E ‖V′nPxun‖2

r2
nx

=
E (trace (u′nPxVnV′nPxun))

r2
nx

≤ CE (trace (Px))

r2
nx

≤ C
pn1sn

r2
nx

→ 0

The first equality is the definition of the matrix norm. The second inequality is a

consequence of the law of iterated expectations and assumption 5. The third inequality

comes from the definition of Px and manipulations inside the trace operator. The conclu-

sion follows from Lemma 4.
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For the second term:

E ‖θ′Pxun‖2

r2
nx

=
E (trace (u′nPxθθ′Pxun))

r2
nx

≤
CE
(

trace (θ′θ)2 trace (Px)
2
)

r2
nx

≤ Cn (qpn1sn)
2

r2
nxm2

nx

[
s−∂

n +

√
sn

n

]4

→ 0

The first inequality is a result of the law of iterated expectations and the fact that

‖AB‖ ≤ ‖A‖ ‖B‖. The second inequality is a consequence of Lemma 1 of Huang et al.

(2010). The conclusion follows by assumption 7.

For the third term:

E
∥∥Π′n1X′n1un

∥∥2

r2
nx

=
E (trace (u′nXn1Πn1Π′n1X′n1un))

r2
nx

≤
CE (trace (Xn1Πn1Π′n1X′n1))

r2
nx

≤ C
rnx

→ 0

The first inequality is a consequence of the law of iterated expectations. The second

inequality follows from assumption 6. The conclusion is a result of the fact that rnx grows
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to infinity as n grows to infinity.

The above statements imply that:

f̂ ′nun

rnx
= op(1)

1.7.4 Theorem 3

Proof. Let us first define the proposed estimator of β, β̂, and rewrite the latter in a way

that is more malleable to construct the argument:

β̂ ≡
(

Ŷ′2nŶ2n

)−1
Ŷ′2ny1n

=
(

Π̂′n1Z′n1Zn1Π̂n1

)−1
Π̂′n1Z′n1y1n

=
(

Π̂′n1Z′n1Zn1Π̂n1

)−1
Π̂′n1Z′n1 (Zn1Πβ + Vnβ + un)

(1.39)

To construct the proof equation 1.39 above is multiplied on both sides by
√

rn. This yields

for the right hand side,
(

Π̂′n1Z′n1Zn1Π̂n1
rn

)−1
Π̂′n1Z′n1√

rn
(Zn1Πβ + Vnβ + un) The analysis starts
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with the term Π̂′n1Z′n1Zn1Π̂n1
rn

≡ B1 + B2. The expression below comes from replacing Π̂n.

B1 ≡
(

Π′n1Z′n1Zn1Πn1

rn

)
+

Π′n1Z′n1Vn

rn

= Φ +
Π′n1Z′n1Vn

rn
+ op(1)

= Φ + Op

(√
1
rn

)
+ op(1)

= Φ + op(1)

(1.40)

In equation 1.40 above the first equality uses the fact that
(

Π′n1Z′n1Zn1Πn1
rn

)
→ Φ. The

second equality follows from similar arguments to those employed in the proof of Theo-

rem 1. The last equality follows by assumption 7 and by the definition of rn.

B2 ≡
V′nZn1Πn1

r1n
+

V′nZn1 (Z′n1Zn1)
−1 Z′n1Vn

rn

= Op

(√
1
rn

)
+ Op

(√
pn1

rn

)
= op(1)

The first equality follows from similar arguments to those employed in the proof of

Theorem 1 and the arguments used for B1. The last equality follows by assumption 7.
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The summary of the three statements above is that:

Π̂′n1Z′n1Zn1Π̂n1

rn
= Φ + op(1) (1.41)

The second term under analysis is Π̂′n1Z′n1(Zn1Πβ+Vnβ+un)√
rn

≡ B3. Defining ε ≡ 2Vnβ + un

and ε̃ ≡ Vnβ + un, B3 can be rewritten as:

B3 =
2Π′n1Z′n1Vnβ + Π′n1Z′n1un + VnZn1 (Z′n1Zn1)

−1 Z′n1Vnβ + VnZn1 (Z′n1Zn1)
−1 Z′n1un√

rn

+
Π′n1Z′n1Z′n1Πn1β

√
rn

= Φβ
√

rn +
Π′Z′n1ε
√

rn
+

V′nZn1 (Z′n1Zn1)
−1 Z′n1ε̃

√
rn

+ op(1)

= Φβ
√

rn +
Π′Z′n1ε
√

rn
+ Op

(√
pn1

rn

)
+ op(1)

= Φβ
√

rn +
Π′Z′n1ε
√

rn
+ op(1)

The second equality is a consequence of the assumption that Π′n1Z′n1Z′n1Πn1
rn

→ Φ and the

third equality follows by arguments analogous to the ones used in the proof of Theorem

1 . The fourth equality equality is the result of some algebraic manipulation of the last

term in the third equality, the definition of rn. The result follows by assumption 7.

Combining the previous arguments:
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√
rn
(

β̂− β
)
= Φ−1

(
Π′n1Z′n1ε
√

rn

)
+ op(1)

It now suffices to show that Π′n1Z′n1ε√
rn

satisfies Liupanov’s condition to render the ex-

pression asymptotically normal. First, note that by the law of iterated expectations and

assumption 5, E
(

Π′n1Z′n1ε√
rn

)
= 0. Also:

Var
(

Π′n1Z′n1ε
√

rn

)
=

E (Z′n1Π′n1εε′Zn1Πn1)

rn

≡ Ω

By assumptions 5 and 6 this term is finite. What remains to be determined is that for a

δ > 0, limn→∞ E
∣∣∣Π′n1Z′n1ε√

rn

∣∣∣2+δ
= 0. For δ = 1 and by the symmetry imposed by assumption

5(c):

E
∣∣∣∣Π′n1Z′n1ε
√

rn

∣∣∣∣3 =
2E (Z′n1Π′n1εε′Zn1Πn1Z′n1Π′n1ε)

r3/2
n

=
2E (Z′n1Π′n1E (εε′|Z) Zn1Πn1Z′n1Π′n1E (ε|Z))

r3/2
n

= 0

The conclusions above follow by assumption 5. In particular the symmetry assump-
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tion 5(c) is crucial.

The previous results imply that:

√
rn
(

β̂− β
)
= N (0, Λ) (1.42)

In the expression above Φ−1′ΩΦ−1 ≡ Λ.

1.7.5 Theorem 4

In this subsection a proof of Theorem 4 is provided. The first step is to prove the consis-

tency of the variance-covariance estimator of Λ. To do so a set of Lemmas is established

that are applications of the Law of Large Numbers.

Proofs of Lemmas

Lemma 5.

σ̂2
v ≡ V̂ar (Vnβ)→ σ2

v ≡ Var (Vnβ)

Proof. Let Zn1 (Z′n1Zn1)
−1 Z′n1 ≡ Pz. Then from the proof of Theorem 3 and V̂n = Y2n− Ŷ2n
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it follows that:

V̂n β̂ = (Vn − PzVn)
(

β + op (1)
)

= Vnβ− PzVnβ + op (1)

The previous development allows the estimated variance to be written as:

σ̂2
v =

∑n
i=1
(
v̂ni β̂

)2

n− pn1

=
∑n

i=1 (vniβ (1− Pzi))
2

n− pn1

=
β′V′n (In×n − Pz)Vnβ

n− pn1

= C

The analysis below will follow for E
((

σ̂2
v
))

E (C) =
E (E (C|Z))

n− pn1

=
E (E (trace (β′V′n (In×n − Pz)Vnβ) |Z))

n− pn1

= Var (Vnβ)
n− pn1

n− pn1
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= Var (Vnβ)

The conclusion follows by the law of iterated expectations and the properties of the

trace operator.The conclusion of the Lemma follows directly by the Law of Large Num-

bers.

Lemma 6.

σ̂vβu ≡
β̂′V̂′nûn

n− pn1
− σ̂2

v → σvβu → Cov (Vnβ, un)

Proof. Noting that y1n − ŷ1n = ûn:

ûn = Zn1Πn1β + Vnβ + un − (Zn1Πn1 + PzVn)
(

β + op (1)
)

= Vnβ− PzVnβ + un + op(1)

It follows immediately from Lemma 5 and the expression above that:

β̂′V̂′nûn

n− pn1
= σ̂2

v +
u′n (In×n − Pz)Vnβ

n− pn1
+ op(1)

The first term on the right hand side above was analyzed in the previous lemma. It
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remains to explore the term u′n(In×n−Pz)Vnβ
n−pn1

.

E
(

u′n (In×n − Pz)Vnβ

n− pn1

)
= E

(
trace

(
u′n (In×n − Pz)Vnβ

n− pn1

))
= Cov (Vnβ, u)

= σvβu

The conclusion follows by the law of iterated expectations and similar algebra to the

one used in Lemma 5. The conclusion of the Lemma follows directly by the Law of Large

Numbers.

Lemma 7.

σ̂2
uu ≡

û′nûn

n− pn1
− 2σ̂vβu − σ̂2

v → σuu ≡ Var (un)

Proof. From Lemma 6 the following holds:

ûn = Zn1Πn1β + Vnβ + un − (Zn1Πn1 + PzVn)
(

β + op (1)
)

= Zn1Πn1β + Vnβ + un + Pzun − Pzun − (Zn1Πn1 + PzVn)
(

β + op (1)
)

= (In×n − Pz)Vnβ + (In×n − Pz) un + Pzun

Using the expression above:
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û′nûn

n− pn1
=

σ̂2
v + β′V′n (In×n − Pz) un + u′n (In×n − Pz)Vnβ + u′n (In×n − Pz) un + u′nPzun + R

n− pn1

=
σ̂2

v + 2σ̂vβu + u′n (In×n − Pz) un + u′nPzun + R
n− pn1

In the equation above R contains terms that have a conditional mean zero or are di-

rectly zero because they have terms of the form (In×n − Pz) Pz. The second equality above

comes from Lemma 6. Also:

E (u′nPzun)

n− pn1
=

E (trace (u′nPzun))

n− pn1

=
σuu pn1

n− pn1

→ 0

In the expression above the fact that pn1
n → 0, assumption 5, and the law of iterated

expectations yield the conclusion.

Finally by arguments similar to the ones presented in the lemmas above:

E
(

u′n (In×n − Pz) un

n− pn1

)
= σuu
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The lemma follows by the arguments above and the Law of Large Numbers.

The first important fact to realize about Lemmas 5 to 7 is that they imply the

consistency of Σ̂εε. Σεε = Var (2Vnβ + un) is equivalent to 4Var (Vnβ) + Var (un) +

4Cov (Vnβ, un). Therefore, by Lemmas 5 to 7 Σ̂εε = 4σ̂2
v + σ̂2

uu + 4σ̂vβu is a consistent

estimator of Σεε. Moreover, this estimator simplifies to a terse expression:

4σ̂2
v + σ̂2

uu + 4σ̂vβu = 4σ̂2
v +

ûnun

n− pn1
− 2σ̂vβu − σ̂2

v + 4σ̂vβu

= 3σ̂2
v +

ûn
′ûn

n− pn1
+ 2σ̂vβu

= 3σ̂2
v +

ûn
′ûn

n− pn1
+ 2

(
β̂′V̂′nûn

n− pn1
− σ̂2

v

)

=
β̂′V̂′nV̂n β̂

n− pn1
+

ûn
′ûn

n− pn1
+ 2

β̂′V̂′nûn

n− pn1

Lemma 8.

rnΛ̂→ Λ + op(1)

Proof. By Lemmas 5 to 7, equation (1.41) and assumption 6:
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rnΛ̂ = rnΦ̂−1′Ω̂Φ̂−1 (1.43)

=

(
Π̂′n1Z′n1Zn1Π̂n1

rn

)−1
Π̂′n1Z′n1√

rn
Σ̂εε

Zn1Π̂n1√
rn

(
Zn1Π̂n1Π̂′n1Z′n1

rn

)−1

= Λ + op(1)

The third equality is a consequence of assumption 6 and Lemma 1 noting that:

Π̂′n1Z′n1√
rn

=
Π′n1Z′n1 + V′nPz√

rn

= Φ + Op

(√
pn1

rn

)
= Φ + op (1)

Proof of Theorem 4

Proof. Lemma 8 yields that:

Λ̂−1/2 (β̂− β
)
→ Λ−1/2√rn

(
β̂− β

)
→d N (0, 1) (1.44)
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1.7.6 Theorem 5

Proof. Let us first define the proposed estimator of β, β̂, and rewrite the latter in a way

that is more malleable to construct the argument:

β̂ ≡
(

Ŷ′2nŶ2n

)−1
Ŷ′2ny1n

=
(

Π̂′n1X′n1Xn1Π̂n1

)−1
Π̂′n1X′n1y1n

=
(

Π̂′n1X′n1Xn1Π̂n1

)−1
Π̂′n1X′n1 (Y2nβ + un)

=
(

Π̂′n1X′n1Xn1Π̂n1

)−1
Π̂′n1X′n1 ((Y2n + f0 − f0 + Xn1Πn1 − Xn1Πn1) β + un)

=

(
Π̂′n1X′n1Xn1Π̂n1

rnx

)−1
Π̂′n1X′n1

rnx
(Vnβ + θβ + Xn1Πn1β + un)

First it is established that:

(
Π̂′n1X′n1Xn1Π̂n1

rnx

)
→ Φx (1.45)

As in Theorem 3 the first order conditions give us:

Π̂n1 =
(
X′n1Xn1

)−1 X′n1Y2n

=
(
X′n1Xn1

)−1 X′n1 (Y2n + f0 − f0 + Xn1Πn1 − Xn1Πn1)

=
(
X′n1Xn1

)−1 X′n1Vn +
(
X′n1Xn1

)−1 X′n1θ + Πn1
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In the expression above θ ≡ f0 − Xn1Πn1. It is important to notice that the expres-

sion is similar to the one derived in Theorem 3 above with the exception of one term:

(X′n1Xn1)
−1 X′n1θ. Therefore, the results of Theorem 3 follow by assumption 7(c) and fo-

cus can be centered on expressions that involve (X′n1Xn1)
−1 X′n1θ to get a final result.

Π̂′n1X′n1Xn1Π̂n1

rnx
=

Π′n1X′n1Xn1Πn1

rnx
+ L1 + L2

= Φx + op(1)

In the expression above L1 is given by:

L1 =
[
Πn1 +

(
X′n1Xn1

)−1 X′n1Vn

]′ X′n1Xn1

rnx[
Πn1 +

(
X′n1Xn1

)−1 X′n1Vn

]

The terms in the equation above are analogous to those in Theorem 3 and are of order

op(1) by assumption 7(c) and the arguments of Theorem 3. On the other hand, defining

Px = Xn1 (X′n1Xn1)
−1 X′n1, L2 is given by:

L2 =
Π′n1X′n1θ + V′nPxθ + θ′Pxθ

rnx
+ AE

In the equation above AE is a collection of terms that are asymptotically equivalent to
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the other terms in the equation.

For the first term:

E
∥∥Π′n1X′n1θ

∥∥2

r2
nx

=
E (trace (θ′Xn1Πn1Π′n1θ))

r2
nx

≤ Φx
E (trace (θ′θ))

rnx

≤ C

(
nq

rnxmnx2

[
s−∂

n +

√
sn

n

]2)
→ 0

In the expression above the first equality comes from the matrix norm. The first

inequality comes from assumption 6(b). The second inequality follows from Lemma 1 of

Huang et al. (2010). The conclusion comes from assumptions 7(c) and 7(d).

For the second term:

E ‖V′nPxθ‖2

r2
nx

=
E (trace (θ′PxVnV′nPxθ))

r2
nx

≤ C
E (trace (θ′PxPxθ))

r2
nx

≤ C
E
(

trace (θ′θ)2 trace (Px)
2
)

r2
nx

= C
(pn1sn)

2 E
(

trace (θ′θ)2
)

r2
nx
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= CE
(

trace
(
θ′θ
)2
) (pn1sn)

2

r2
nx

→ 0

Above the first equality is the matrix norm. The first inequality comes from assump-

tion 5 that bounds the moments of Vn. The second inequality comes from the fact that

trace (AB)n ≤ trace(A′A)ntrace(B′B)n for n ≥ 0. The second equality arises from the

properties of the trace operator and the dimension of Px. The conclusion follows by the

properties of the spline approximation and by pn1sn
rnx
→ 0 which shall be proved in Lemma

4 below.

For the third term:

E ‖θ′Pxθ‖2

r2
nx

=
E (trace (θ′Pxθθ′Pxθ))

r2
nx

≤
E
(

trace (θ′θ)4 trace (Px)
2
)

r2
nx

=
pn1sn

r2
nx

E
(

trace
(
θ′θ
)4
)

→ 0

The first inequality is due to trace (AB)n ≤ trace(A′A)ntrace(B′B)n for n ≥ 0. The

conclusion follows by assumption 7, Lemma 1 of Huang et al. (2010), and Lemma 4.
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To complete the proof the second part of (1.45) has to be shown to be asymptotically

normal. Defining this term as F and Px = Xn1 (X′n1Xn1)
−1 X′n1:

F =
Π̂′n1X′n1√

rnx
(Vnβ + θβ + Xn1Πn1β + un)

=

(
V′nPx + θ′Px + Π′n1X′n1√

rnx

)
(Vnβ + θβ + Xn1Πn1β + un)

= F1 + F2 + F3 + AE

In the expression above AE refers to terms that are asymptotically equivalent to F1 to

F4. Starting the analysis with F1

F1 ≡ V′nPxVnβ + VnPxθβ + V′nPxun√
rnx

= Op

(√
pn1sn

rnx

)
+

V′nPxθβ√
rnx

= Op

(√
pn1sn

rnx

)
+ Op

(√
pn1sn

rnx

√
qn

mnx2

[
s−∂

n +

√
sn

n

])
→ 0

The first equality follows by assumption 5 and the law of iterated expectations using

arguments similar to those employed in the proof of Theorem 2. The conclusion follows

by assumption 7. The second equality is a consequence of:
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E ‖V′nPxθβ‖2

rnx
=

E (trace (β′θ′PxVnV′nPxθβ))

rnx

≤ Cpn1snnq
rnxmnx2

[
s−∂

n +

√
sn

n

]2

= Op

(√
pn1sn

rnx

√
qn

mnx2

[
s−∂

n +

√
sn

n

])

Above the first inequality is a consequence of assumption 5 and Lemma 1 of Huang

et al. (2010). The second equality is a result of assumption 6 and Proposition 2.

For F2:

F2 =
θ′Pxθβ + θ′Xn1Πn1β + AE√

rnx

= Op

(√
nq

mnx

[
s−∂

n +

√
sn

n

])
+ Op

(√
pn1sn

rnx

nq
mnx

[
s−∂

n +

√
sn

n

]2)
→ 0

For the first term in F2:

E ‖θ′Pxθβ‖2

rnx
=

E (trace (β′θ′Pxθθ′Pxθβ))

rnx

≤
CE
(

trace (θ′θ)4 trace (Px)
2
)

rnx

≤ Cpn1sn

rnx

pn1sn

m2
nx2

n4q4

m2
nx2

[
s−∂

n +

√
sn

n

]8
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→ 0

The second inequality comes from Lemma 1 of Huang et al. (2010). The conclusion

follows from assumption 7.

For the second term in F2:

E ‖θ′Xn1Πn1β‖2

rnx
=

E (trace (β′Π′n1X′n1θθ′Xn1Πn1β))

rnx

≤ CE
(
trace

(
θ′θ
))

→ 0

Let ε ≡ 2Vnβ + un. Then F3 is given by:

F3 =
Π′n1X′n1ε
√

rnx
+

Π′n1X′n1Xn1Πn1β
√

rnx

=
Π′n1X′n1ε
√

rnx
+
√

rnxΦxβ + op(1)

Combining the previous arguments:

√
rnx
(

β̂− β
)
= Φ−1

x

(
Π′n1X′n1ε
√

rnx

)
+ op(1)
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It now suffices to show that Π′n1X′n1ε√
rnx

satisfies Liupanov’s condition to render the ex-

pression asymptotically normal. First, note that by the law of iterated expectations and

assumption 5, E
(

Π′n1X′n1ε√
rnx

)
= 0. By virtue of this argument:

Var
(

Π′n1X′n1ε
√

rn

)
=

E (X′n1Π′n1εε′Xn1Πn1)

rnx

≡ Ω

From assumptions 5 and 6 it follows that the term above is constant. What remains

to be determined is that for a δ > 0, limn→∞ E
∣∣∣Π′n1X′n1ε√

rnx

∣∣∣2+δ
= 0. For δ = 1 and by the

symmetry imposed by assumption 5(c):

E
∣∣∣∣Π′n1X′n1ε
√

rnx

∣∣∣∣3 =
2E (X′n1Π′n1εε′Xn1Πn1X′n1Π′n1ε)

r3/2
nx

=
2E (X′n1Π′n1E (εε′|X) Xn1Πn1X′n1Π′n1E (ε|X))

r3/2
nx

= 0

The conclusions above follow by assumption 5. In particular the symmetry assump-

tion 5(c) is crucial.

The previous results imply that:



101

√
rnx
(

β̂− β
)
= N (0, Λx) (1.46)

In the expression above Φ−1′
x ΩΦ−1

x ≡ Λx.

Lemma 9.

rnΛ̂x → Λx + op(1)

Proof. By Lemmas 5 to 7 and arguments similar to those used in Theorem 3:

rnxΛ̂x = rnxΦ̂−1′
x1 Ω̂Φ̂−1

x1 (1.47)

=

(
Π̂′n1X′n1Xn1Π̂n1

rnx

)−1′ (
Π̂′n1X′n1√

rnx

)
Σ̂εε

(
Xn1Π̂n1√

rnx

)(
Xn1Π̂n1Π̂′n1X′n1

rnx

)−1

= Λx + op(1)

Proof of Theorem 6

Proof. Lemma 9 yields that:
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Λ̂−1/2
x

(
β̂− β

)
→ Λ−1/2

x
√

rnx
(

β̂− β
)

→d N (0, 1) (1.48)

1.8. Tables
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Table 1.1: Ranking of Post-l1-Penalized against Traditional Estimators for DGP 1
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 1 3bc 2a 3bc 1 2a

500 1 3bc 2a 3bc 3bc 2a
Completely Weak (R2

f = .1) 100 2a 2c 2a 3bc 1 2a
500 1 3bc 2a 3bc 3bc 2a

Completely Weak (R2
f = .01) 100 1 1 2a 1 1 2a

500 2a 2c 2a 3bc 1 2a
High Endogeneity

Moderately Weak 100 2c 3bc 2a 3bc 3bc 2a
500 3bc 3bc 2a 3bc 3bc 2a

Completely Weak (R2
f = .1) 100 1 3bc 2a 3bc 2b 2a

500 2c 3bc 2a 3bc 3bc 2a
Completely Weak (R2

f = .01) 100 1 1 2a 1 1 2a
500 1 1 2a 3bc 1 2a

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure
of the respective column. 2a means it ranks second to 2SLS, 2b to LIML, and 2c to the Fuller estimator.
The same logic follows for the other rankings.
Note 2: DGP 1 is defined by by a normal distribution with the variance covariance matrix (1.19), with
heteroskedasticity introduced via ũn = un + Z′n1Zn1. σvu = .95 defines a high level of endogeneity,
σvu = .15 defines a low level of endogeneity, and R2

f is the pseudo R-squared of Kuersteiner and Okui
(2010).
Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2

f ,
with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute De-
viation); IQR(Interquartile Range).
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Table 1.2: Ranking of Post-l1-Penalized against Model Averaging Estimators for DGP 1
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 1 1 1 1 1 3bc

500 1 1 1 1 1 4
Completely Weak (R2

f = .1) 100 3bc 1 4 1 2a 4
500 1 1 4 1 2a 4

Completely Weak (R2
f = .01) 100 3bc 1 4 1 1 4

500 3bc 1 4 1 1 4
High Endogeneity

Moderately Weak 100 1 2a 1 1 1 4
500 1 1 1 1 1 4

Completely Weak (R2
f = .1) 100 1 1 4 1 1 4

500 1 1 4 1 1 4
Completely Weak (R2

f = .01) 100 1 1 4 1 1 4
500 1 1 4 1 1 4

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2a means it ranks second to the model averaging 2SLS, 2b to the model averaging
LIML, 2c to the the model averaging Fuller estimator. The same logic follows for the other rankings.
Note 2:DGP 1 is defined by by a normal distribution with the variance covariance matrix (1.19), with
heteroskedasticity introduced via ũn = un + Z′n1Zn1. σvu = .95 defines a high level of endogeneity,
σvu = .15 defines a low level of endogeneity, and R2

f is the pseudo R-squared of Kuersteiner and Okui
(2010).
Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2

f ,
with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.3: Ranking of Post-l1-Penalized against JIVE and Adaptive LASSO for DGP 1
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 1 2j 1 2j 1 1

500 1 2j 1 2j 2j 1
Completely Weak (R2

f = .1) 100 1 1 1 1 1 1
500 1 2j 1 2j 1 1

Completely Weak (R2
f = .01) 100 1 1 1 1 1 1

500 1 1 1 1 1 1
High Endogeneity

Moderately Weak 100 1 2j 1 2j 2j 1
500 1 2j 1 2j 2j 1

Completely Weak (R2
f = .1) 100 1 1 1 1 1 1

500 1 2j 1 2j 2j 1
Completely Weak (R2

f = .01) 100 1 1 1 1 1 1
500 1 1 1 1 1 1

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2d means it ranks second to the adaptive LASSO and 2j to the JIVE.
Note 2:DGP 1 is defined by by a normal distribution with the variance covariance matrix (1.19), with
heteroskedasticity introduced via ũn = un + Z′n1Zn1. σvu = .95 defines a high level of endogeneity,
σvu = .15 defines a low level of endogeneity, and R2

f is the pseudo R-squared of Kuersteiner and Okui
(2010).
Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2

f ,
with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.4: Ranking of Post-l1-Penalized against Traditional Estimators for DGP 2
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 3bc 3bc 2a 3bc 3bc 2a

500 3bc 3bc 2a 3bc 3bc 2a
Completely Weak (R2

f = .1) 100 1 3bc 2a 3bc 3bc 2a
500 3bc 3bc 2a 3bc 3bc 2a

Completely Weak (R2
f = .01) 100 1 2b 2a 1 1 3ac

500 1 2b 2a 3bc 2b 2a
High Endogeneity

Moderately Weak 100 3bc 3bc 2a 3bc 3bc 2a
500 3bc 3bc 2a 3bc 3bc 2a

Completely Weak (R2
f = .1) 100 2b 3bc 3ab 3bc 3bc 2a

500 3bc 3bc 2a 3bc 3bc 2a
Completely Weak (R2

f = .01) 100 1 2b 3ac 3bc 3bc 4
500 2b 3bc 3ac 3bc 3bc 2a

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2a means it ranks second to 2SLS, 2b to LIML, 2c to the Fuller estimator. The same
logic follows for the other rankings.
Note 2: DGP 2 is defined by by a normal distribution with the variance covariance matrix (1.19) and mean
zero. σvu = .15 defines a high level of endogeneity, σvu = .95 defines a high level of endogeneity, and R2

f
is the pseudo R-squared of Kuersteiner and Okui (2010).
Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2

f ,
with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.5: Ranking of Post-l1-Penalized against Model Averaging Estimators for DGP 2
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 1 1 4 1 1 4

500 1 1 4 1 1 4
Completely Weak (R2

f = .1) 100 2a 1 4 1 2a 4
500 1 1 4 1 2a 4

Completely Weak (R2
f = .01) 100 1 1 4 1 1 4

500 1 1 4 1 1 4
High Endogeneity

Moderately Weak 100 1 1 4 1 1 4
500 1 1 4 1 1 4

Completely Weak (R2
f = .1) 100 1 1 4 1 1 4

500 2a 1 4 2a 2a 4
Completely Weak (R2

f = .01) 100 1 1 4 1 1 4
500 1 1 4 1 1 4

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2a means it ranks second to the model averaging 2SLS, 2b to the model averaging
LIML, 2c to the the model averaging Fuller estimator. The same logic follows for the other rankings.
Note 2: DGP 2 is defined by by a normal distribution with the variance covariance matrix (1.19) and mean
zero. σvu = .15 defines a low level of endogeneity, σvu = .95 defines a high level of endogeneity, and R2

f is
the pseudo R-squared of Kuersteiner and Okui (2010).
Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2

f ,
with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.6: Ranking of Post-l1-Penalized against JIVE and Adaptive LASSO for DGP 2
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 1 2j 1 2j 2j 1

500 2j 2j 1 2j 2j 1
Completely Weak (R2

f = .1) 100 1 1 1 2j 1 1
500 1 2j 1 2j 2j 1

Completely Weak (R2
f = .01) 100 1 1 1 1 1 2j

500 1 1 1 1 1 1
High Endogeneity

Moderately Weak 100 1 2j 1 2j 2j 1
500 1 2j 1 2j 2j 1

Completely Weak (R2
f = .1) 100 1 2j 1 2j 1 1

500 1 2j 1 2j 2j 1
Completely Weak (R2

f = .01) 100 1 1 1 1 1 2j
500 1 1 1 1 1 1

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2d means it ranks second to the adaptive LASSO and 2j to the JIVE.
Note 2: DGP 2 is defined by by a normal distribution with the variance covariance matrix (1.19) and mean
zero. σvu = .15 defines a low level of endogeneity, σvu = .95 defines a high level of endogeneity, and R2

f is
the pseudo R-squared of Kuersteiner and Okui (2010).
Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2

f ,
with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.7: Ranking of Post-l1-Penalized against Traditional Estimators for DGP 3
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 2a 2c 2a 3bc 2a 2a

500 2a 3bc 2a 3bc 1 2a
Completely Weak (R2

f = .1) 100 2a 1 2a 1 2a 2a
500 2a 3bc 2a 3bc 2a 2a

Completely Weak (R2
f = .01) 100 2a 1 2a 1 2a 2a

500 2a 2b 2a 3bc 2a 2a
High Endogeneity

Moderately Weak 100 2c 3bc 2a 3bc 3bc 2a
500 3bc 3bc 2a 3bc 3bc 2a

Completely Weak (R2
f = .1) 100 2c 3bc 2a 3bc 3bc 2a

500 3bc 3bc 2a 3bc 3bc 2a
Completely Weak (R2

f = .01) 100 1 1 3ac 2b 1 2a
500 1 3bc 2a 3bc 3bc 2a

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2a means it ranks second to 2SLS, 2b to LIML, 2c to the Fuller estimator and 2d to
the Adaptive LASSO. The same logic follows for the other rankings.
Note 2: DGP 3 is defined by a zero mean t-distribution with 5 degrees of freedom using the variance
covariance matrix (1.19). σvu = .95 defines a high level of endogeneity while σvu = .15 defines a low level
of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010).

Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2
f ,

with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.8: Ranking of Post-l1-Penalized against Model Averaging Estimators for DGP 3
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 4 1 4 1 4 4

500 2a 1 4 1 2a 4
Completely Weak (R2

f = .1) 100 4 1 4 1 4 4
500 4 1 4 1 4 4

Completely Weak (R2
f = .01) 100 4 1 4 1 4 4

500 4 1 4 1 4 4
High Endogeneity

Moderately Weak 100 1 1 4 1 1 4
500 1 1 4 1 1 4

Completely Weak (R2
f = .1) 100 1 1 4 1 1 4

500 2a 1 4 2a 2a 4
Completely Weak (R2

f = .01) 100 1 1 4 1 1 4
500 1 1 4 1 1 4

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2a means it ranks second to the model averaging 2SLS, 2b to the model averaging
LIML, 2c to the the model averaging Fuller estimator. The same logic follows for the other rankings.
Note 2: DGP 3 is defined by a zero mean t-distribution with 5 degrees of freedom using the variance
covariance matrix (1.19). σvu = .95 defines a high level of endogeneity while σvu = .15 defines a low level
of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010).

Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2
f ,

with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.9: Ranking of Post-l1-Penalized against JIVE and Adaptive LASSO for DGP 3
Low Endogeneity

Instrument Weakness Sample Size MSE BIAS VAR M.BIAS MAD IQR
Moderately Weak 100 1 1 1 2j 1 1

500 1 2j 1 2j 1 1
Completely Weak (R2

f = .1) 100 1 1 1 1 1 1
500 1 1 1 2j 1 1

Completely Weak (R2
f = .01) 100 1 1 1 1 1 1

500 1 1 1 2j 1 1
High Endogeneity

Moderately Weak 100 1 2j 1 3 3 1
500 1 2j 1 2j 3 1

Completely Weak (R2
f = .1) 100 1 1 1 1 2j 1

500 1 2j 1 2j 2j 1
Completely Weak (R2

f = .01) 100 1 2j 1 1 1 2j
500 1 1 1 1 1 1

Note 1: 1 means that the Post-l1-Penalized estimator had the lowest value with regards to the measure of
the respective column. 2d means it ranks second to the adaptive LASSO and 2j to the JIVE.
Note 2: DGP 3 is defined by a zero mean t-distribution with 5 degrees of freedom using the variance
covariance matrix (1.19). σvu = .95 defines a high level of endogeneity while σvu = .15 defines a low level
of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010).

Note 3: The terms Moderately Weak and Completely Weak follow definition 2. For both values of R2
f ,

with regards to the criteria of definition 2 the instruments are completely weak.
Note 4: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Devia-
tion); IQR(Interquartile Range).
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Table 1.10: DGP 1: Low Endogeneity Level Using Πn of equation (1.20)
R2

f = 0.1; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 0.92 1.36 0.44 1.11 1.02 0.68
Liml 1053.75 2.46 1579.73 0.71 1.77 2.62
Fuller 3.77 0.67 5.45 0.77 1.48 2.16
Lasso 3.71 1.98 3.62 1.28 1.37 1.48
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.92 1.30 0.53 1.21 1.20 0.34
MaFuller 0.91 1.30 0.53 1.21 1.19 0.34
Ma2SLS 1.22 1.57 0.59 1.07 0.97 0.85
JIVE 707.76 3.15 1058.09 1.09 2.20 3.02
R2

f = 0.1; n=500
2SLS 1.03 1.07 0.74 1.03 1.06 0.90
Liml 3.66 0.21 12.37 0.60 0.90 2.14
Fuller 2.04 0.11 6.91 0.62 0.86 2.06
Lasso 2.43 1.61 2.08 1.23 1.56 1.34
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.99 1.60 0.59 1.27 1.65 0.34
MaFuller 1.99 1.60 0.59 1.27 1.65 0.34
Ma2SLS 1.00 1.08 0.61 1.00 0.99 0.99
JIVE 11.71 0.51 39.28 0.55 1.01 2.45
R2

f = 0.01; n=100
2SLS 1.01 2.20 0.33 1.35 1.33 0.38
Liml 124701.06 16.33 146837.88 1.30 3.41 2.30
Fuller 4.68 2.11 4.72 1.30 2.31 1.60
Lasso 3.82 2.53 3.36 1.39 1.49 1.46
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.79 1.90 0.29 1.34 1.33 0.17
MaFuller 0.80 1.91 0.29 1.35 1.33 0.16
Ma2SLS 1.24 2.54 0.31 1.32 1.32 0.45
JIVE 235.50 2.10 276.62 1.38 2.66 1.78
R2

f = 0.01; n=500
2SLS 0.88 1.19 0.25 1.05 1.10 0.63
Liml 1505.77 1.34 3298.76 0.85 2.40 5.17
Fuller 6.63 0.82 13.74 0.86 1.91 4.20
Lasso 5.52 2.40 5.24 1.57 2.06 1.82
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.86 1.22 0.12 1.08 1.15 0.19
MaFuller 0.86 1.22 0.12 1.08 1.15 0.20
Ma2SLS 1.00 1.31 0.12 1.05 1.09 0.74
JIVE 52476.96 14.94 114772.56 1.12 2.36 4.39

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the Post-l1-

Penalized estimator.
Note 2: DGP 1 is defined by by a normal distribution with the variance covariance matrix (1.19), with heteroskedasticity introduced via
ũn = un + Z′n1Zn1 . σvu = .15 defines a low level of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010). The Πn

was constructed following πnj = c (pn)
(

1− j−pn /2
pn/2+1

)4
for j ≤ pn/2 and πnj = 0 for j > pn/2.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Table 1.11: DGP 1: High Endogeneity Level Using Πn of equation (1.20)
R2

f = 0.1; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 1.13 1.41 0.21 1.10 1.18 0.57
Liml 422.02 0.64 864.89 0.73 1.22 2.64
Fuller 1.90 0.99 2.87 0.81 0.91 1.93
Lasso 3.45 1.87 3.39 1.33 1.56 1.64
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.28 1.45 0.42 1.18 1.30 0.24
MaFuller 1.27 1.44 0.42 1.18 1.30 0.25
Ma2SLS 1.12 1.33 0.45 1.08 1.14 0.67
JIVE 2885.49 2.97 5907.18 1.06 1.72 3.01
R2

f = 0.1; n=500
2SLS 1.07 1.07 0.45 1.03 1.05 0.83
Liml 136.38 0.32 1147.24 0.45 0.53 2.77
Fuller 0.96 0.08 8.01 0.48 0.50 2.54
Lasso 2.98 1.68 4.09 1.32 1.56 1.71
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.86 1.43 0.52 1.23 1.41 0.28
MaFuller 1.86 1.43 0.52 1.23 1.41 0.27
Ma2SLS 1.00 1.03 0.54 1.00 1.00 0.91
JIVE 183.33 0.42 1541.85 0.43 0.78 4.29
R2

f = 0.01; n=100
2SLS 1.23 1.84 0.14 1.18 1.28 0.23
Liml 652.61 1.42 981.63 1.12 1.83 1.36
Fuller 2.50 1.87 2.00 1.14 1.34 0.89
Lasso 3.57 2.11 3.13 1.39 1.63 1.53
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.17 1.73 0.25 1.19 1.30 0.09
MaFuller 1.17 1.73 0.25 1.18 1.30 0.10
Ma2SLS 1.27 1.81 0.26 1.18 1.29 0.27
JIVE 214848.36 24.27 323205.09 1.14 1.66 1.04
R2

f = 0.01; n=500
2SLS 1.06 1.25 0.10 1.03 1.05 0.57
Liml 1802.37 1.32 5257.55 0.83 1.45 5.83
Fuller 2.69 1.01 5.90 0.86 1.11 4.45
Lasso 4.86 2.23 4.68 1.58 1.90 2.45
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.10 1.28 0.09 1.06 1.09 0.17
MaFuller 1.10 1.27 0.09 1.06 1.09 0.16
Ma2SLS 1.08 1.26 0.09 1.03 1.05 0.68
JIVE 8844.86 6.32 25740.39 1.09 1.46 4.60

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the Post-l1-

Penalized estimator.
Note 2: DGP 1 is defined by by a normal distribution with the variance covariance matrix (1.19), with heteroskedasticity introduced via
ũn = un + Z′n1Zn1 . σvu = .95 defines a high level of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010). The

Πn was constructed following πnj = c (pn)
(

1− j−pn/2
pn /2+1

)4
for j ≤ pn/2 and πnj = 0 for j > pn/2.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Table 1.12: DGP 1: High and Low Endogeneity Levels Using Πn of equation (1.21)
σuv = 0.15; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 1.03 1.19 0.87 1.03 1.06 0.98
Liml 1.70 0.09 2.37 0.75 1.09 1.45
Fuller 1.47 0.02 2.06 0.78 1.05 1.40
Lasso 1.41 1.22 1.37 1.03 1.13 1.11
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 2.36 1.40 2.52 1.38 2.08 0.63
MaFuller 2.35 1.39 2.52 1.38 2.09 0.62
Ma2SLS 1.08 1.60 2.53 1.02 1.06 1.01
JIVE 6.19 0.54 8.54 0.71 1.18 1.64
σuv = 0.95; n=100
2SLS 1.16 1.19 0.70 1.07 1.14 0.91
Liml 5.07 0.09 13.79 0.61 0.71 1.65
Fuller 0.97 0.01 2.65 0.64 0.68 1.55
Lasso 1.66 1.29 1.63 1.07 1.17 1.19
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 3.37 1.99 2.37 1.47 2.11 0.51
MaFuller 3.36 1.98 2.37 1.47 2.11 0.51
Ma2SLS 1.13 0.61 2.44 1.04 1.08 0.95
JIVE 121.25 0.71 329.24 0.54 0.87 2.13
σuv = 0.15; n=500
2SLS 1.34 1.44 0.82 1.09 1.26 0.93
Liml 1.05 0.03 1.80 0.81 0.86 1.29
Fuller 1.03 0.01 1.76 0.81 0.84 1.28
Lasso 1.28 1.13 1.27 1.02 1.10 1.12
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 7.01 3.89 1.21 1.63 3.59 0.45
MaFuller 6.99 3.89 1.21 1.63 3.57 0.46
Ma2SLS 1.18 1.04 1.25 1.05 1.16 0.99
JIVE 1.24 0.16 2.10 0.78 0.93 1.48
σuv = 0.95; n=500
2SLS 1.53 1.34 0.63 1.12 1.32 0.77
Liml 0.51 0.06 2.21 0.63 0.48 1.34
Fuller 0.48 0.01 2.08 0.65 0.47 1.34
Lasso 1.30 1.13 1.34 1.04 1.12 1.12
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 6.71 2.90 1.08 1.70 2.88 0.32
MaFuller 6.67 2.89 1.08 1.70 2.87 0.33
Ma2SLS 1.12 1.05 1.16 1.03 1.10 0.87
JIVE 2.16 0.27 9.14 0.60 0.61 1.70

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to

the Post-l1-Penalized estimator.
Note 2: DGP 1 is defined by by a normal distribution with the variance covariance matrix (1.19), with heteroskedasticity in-
troduced via ũn = un + Z′n1Zn1 . σvu = .95 defines a high level of endogeneity, σvu = .15 defines a low level of en-
dogeneity, and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010). The Πn was constructed following Πn =(
0pn−8 , 1√

n , −1√
n , −1

log(n) , 1
log(n) , 1√

log(n)
, −1√

log(n)
, 1

n1/3 , −1
n1/3

)
.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile
Range).
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Table 1.13: DGP 2: Low Endogeneity Level Using Πn of equation (1.20)
R2

f = 0.1; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 1.00 1.33 0.20 1.06 1.02 0.67
Liml 260.13 0.75 532.74 0.67 0.97 2.84
Fuller 1.38 0.62 2.42 0.73 0.75 2.17
Lasso 4.08 1.97 4.30 1.29 1.47 1.75
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.28 1.57 0.06 1.16 1.21 0.35
MaFuller 1.28 1.56 0.06 1.15 1.21 0.34
Ma2SLS 0.99 1.36 0.07 1.03 0.96 0.78
JIVE 446.81 2.02 911.78 0.95 1.39 3.51
R2

f = 0.1; n=500
2SLS 1.13 1.08 0.66 1.03 1.07 0.86
Liml 0.55 0.15 5.96 0.58 0.42 2.22
Fuller 0.45 0.07 4.97 0.60 0.41 2.09
Lasso 2.62 1.61 2.93 1.22 1.53 1.56
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 2.64 1.70 0.12 1.27 1.66 0.38
MaFuller 2.64 1.70 0.12 1.27 1.66 0.37
Ma2SLS 1.00 1.04 0.16 1.00 0.99 0.96
JIVE 7.67 0.45 84.06 0.53 0.56 3.16
R2

f = 0.01; n=100
2SLS 1.11 2.19 0.09 1.12 1.23 0.18
Liml 3431.54 0.63 4379.85 1.03 1.83 1.15
Fuller 2.00 2.05 1.39 1.06 1.18 0.75
Lasso 3.76 2.48 3.09 1.39 1.76 1.51
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.08 2.22 0.02 1.13 1.25 0.09
MaFuller 1.08 2.22 0.02 1.13 1.25 0.09
Ma2SLS 1.26 2.39 0.02 1.12 1.24 0.21
JIVE 244.82 2.89 310.17 1.15 1.63 0.79
R2

f = 0.01; n=500
2SLS 1.00 1.21 0.08 1.01 1.02 0.66
Liml 178.02 1.05 539.08 0.80 1.17 5.58
Fuller 2.20 0.91 4.99 0.83 0.92 4.49
Lasso 5.59 2.41 5.20 1.57 2.03 2.83
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.09 1.27 0.01 1.04 1.08 0.22
MaFuller 1.09 1.27 0.01 1.04 1.08 0.22
Ma2SLS 1.01 1.23 0.01 1.01 1.02 0.76
JIVE 2894.45 3.66 8774.63 1.00 1.34 5.06

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the

Post-l1-Penalized estimator.
Note 2: DGP 2 is defined by by a normal distribution with the variance covariance matrix (1.19) and mean zero. σvu = .15 defines
a high level of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010). The Πn was constructed following

πnj = c (pn)
(

1− j−pn/2
pn/2+1

)4
for j ≤ pn/2 and πnj = 0 for j > pn/2.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Table 1.14: DGP 2: High Endogeneity Level Using Πn of equation (1.20)
R2

f = 0.1; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 1.17 1.40 0.02 1.04 1.06 0.42
Liml 201.12 0.29 487.11 0.45 0.43 3.21
Fuller 0.31 0.54 0.34 0.61 0.37 1.14
Lasso 3.42 1.85 3.40 1.31 1.51 2.87
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.48 1.59 0.00 1.12 1.20 0.14
MaFuller 1.48 1.59 0.00 1.12 1.20 0.14
Ma2SLS 1.08 1.35 0.01 1.01 1.01 0.58
JIVE 717.56 0.99 1736.92 0.92 1.12 4.94
R2

f = 0.1; n=500
2SLS 1.10 1.08 0.12 1.03 1.05 0.67
Liml 0.18 0.10 2.94 0.42 0.22 2.79
Fuller 0.11 0.01 1.88 0.46 0.20 2.43
Lasso 3.02 1.68 6.09 1.31 1.55 3.06
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 2.09 1.49 0.01 1.25 1.45 0.15
MaFuller 2.09 1.49 0.01 1.25 1.45 0.15
Ma2SLS 0.96 1.01 0.03 0.99 0.98 0.95
JIVE 201.42 0.61 3480.60 0.41 0.50 7.48
R2

f = 0.01; n=100
2SLS 1.30 1.84 0.00 1.02 1.03 0.03
Liml 724.68 0.02 1173.33 0.82 0.82 0.71
Fuller 1.16 1.70 0.10 0.91 0.86 0.23
Lasso 3.57 2.10 3.05 1.33 1.50 1.60
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.33 1.86 0.00 1.03 1.05 0.01
MaFuller 1.33 1.87 0.00 1.03 1.05 0.01
Ma2SLS 1.28 1.83 0.00 1.02 1.02 0.04
JIVE 91.28 2.42 144.17 1.03 1.06 0.15
R2

f = 0.01; n=500
2SLS 1.11 1.24 0.00 1.01 1.01 0.52
Liml 296.98 0.86 1055.97 0.42 0.45 11.95
Fuller 0.43 0.66 0.44 0.63 0.43 2.99
Lasso 4.98 2.23 4.97 1.55 1.84 10.52
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.19 1.28 0.00 1.03 1.05 0.07
MaFuller 1.19 1.29 0.00 1.03 1.05 0.08
Ma2SLS 1.09 1.23 0.00 1.00 1.00 0.69
JIVE 32.00 1.27 109.86 1.01 1.07 7.25

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the

Post-l1-Penalized estimator.
Note 2: DGP 2 is defined by by a normal distribution with the variance covariance matrix (1.19). σvu = .95 defines a high
level of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010). The Πn was constructed following πnj =

c (pn)
(

1− j−pn/2
pn/2+1

)4
for j ≤ pn/2 and πnj = 0 for j > pn/2.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Table 1.15: DGP 2: High and Low Endogeneity Levels Using Πn of equation (1.21)
σuv = 0.15; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 1.19 1.20 0.80 1.04 1.16 0.93
Liml 0.86 0.13 2.14 0.75 0.65 1.38
Fuller 0.75 0.02 1.89 0.78 0.64 1.32
Lasso 1.59 1.23 1.69 1.03 1.11 1.30
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 4.81 2.75 0.60 1.39 2.56 0.64
MaFuller 4.79 2.75 0.60 1.39 2.55 0.64
Ma2SLS 1.12 1.19 0.70 1.02 1.09 0.98
JIVE 14.26 0.57 35.41 0.74 0.76 1.65
σuv = 0.95; n=100
2SLS 1.24 1.18 0.49 1.06 1.14 0.78
Liml 0.40 0.14 2.46 0.58 0.36 1.64
Fuller 0.28 0.00 1.81 0.63 0.36 1.50
Lasso 1.76 1.30 2.21 1.08 1.19 1.46
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 4.45 2.29 0.25 1.48 2.18 0.43
MaFuller 4.44 2.28 0.24 1.48 2.18 0.42
Ma2SLS 1.16 1.14 0.47 1.03 1.08 0.84
JIVE 120.79 0.61 775.89 0.54 0.57 2.98
σuv = 0.15; n=500
2SLS 1.69 1.44 0.68 1.09 1.42 0.88
Liml 0.46 0.03 1.66 0.79 0.51 1.30
Fuller 0.45 0.01 1.60 0.80 0.51 1.28
Lasso 1.29 1.13 1.30 1.02 1.11 1.14
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 12.10 4.08 0.23 1.63 3.99 0.42
MaFuller 12.08 4.08 0.23 1.62 3.98 0.43
Ma2SLS 1.23 1.26 0.31 1.03 1.16 0.96
JIVE 0.68 0.15 2.39 0.78 0.59 1.50
σuv = 0.95; n=500
2SLS 1.64 1.34 0.29 1.12 1.32 0.57
Liml 0.16 0.04 1.57 0.63 0.26 1.28
Fuller 0.15 0.01 1.43 0.65 0.26 1.23
Lasso 1.28 1.13 1.24 1.04 1.11 1.13
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 7.81 2.95 0.05 1.70 2.86 0.19
MaFuller 7.78 2.94 0.05 1.70 2.86 0.20
Ma2SLS 1.14 1.12 0.19 1.03 1.09 0.80
JIVE 2.36 0.27 22.04 0.61 0.38 2.08

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to

the Post-l1-Penalized estimator.
Note 2: DGP 2 is defined by by a normal distribution with the variance covariance matrix (1.19). σvu = .95 defines a high level of
endogeneity while σvu = .15 defines a low level of endogeneity and R2

f is the pseudo R-squared of Kuersteiner and Okui (2010).

The Πn was constructed following Πn =

(
0pn−8 , 1√

n , −1√
n , −1

log(n) , 1
log(n) , 1√

log(n)
, −1√

log(n)
, 1

n1/3 , −1
n1/3

)
.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile
Range).
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Table 1.16: DGP 3: Low Endogeneity Level Using Πn of equation (1.20)
R2

f = 0.1; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 0.57 8.68 0.48 1.14 0.74 0.69
Liml 1025.09 57.02 1022.44 1.00 2.29 2.33
Fuller 6.43 5.10 6.41 1.02 1.98 2.02
Lasso 3.31 13.62 3.09 1.13 1.54 1.39
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.32 12.79 0.13 1.16 0.57 0.43
MaFuller 0.32 12.77 0.13 1.17 0.58 0.43
Ma2SLS 0.71 21.57 0.15 1.15 0.79 0.75
JIVE 3373.93 52.58 3374.65 1.14 2.61 2.56
R2

f = 0.1; n=500
2SLS 0.68 1.19 0.57 1.01 0.89 0.80
Liml 53.87 0.56 61.86 0.83 2.08 2.35
Fuller 11.47 0.01 13.18 0.83 2.04 2.30
Lasso 3.83 2.96 3.09 1.20 1.72 1.37
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.48 1.70 0.12 1.06 0.93 0.43
MaFuller 0.48 1.70 0.12 1.06 0.93 0.43
Ma2SLS 0.77 2.25 0.13 1.00 0.91 0.87
JIVE 2388.55 2.57 2743.80 0.82 2.20 2.45
R2

f = 0.01; n=100
2SLS 0.54 1.92 0.45 1.66 0.50 0.53
Liml 44832.31 14.37 45983.47 1.63 2.16 2.61
Fuller 6.30 1.87 6.38 1.66 1.70 1.99
Lasso 3.82 1.77 3.83 1.26 1.14 1.35
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.26 2.65 0.09 1.69 0.38 0.29
MaFuller 0.27 2.70 0.09 1.69 0.37 0.29
Ma2SLS 0.64 4.69 0.09 1.66 0.52 0.59
JIVE 6079.38 2.91 6235.98 1.79 1.79 2.08
R2

f = 0.01; n=500
2SLS 0.46 2.59 0.31 1.06 0.69 0.58
Liml 1674.74 0.59 1714.69 0.87 3.73 4.25
Fuller 17.55 1.54 17.91 0.89 3.45 3.84
Lasso 14.91 8.39 13.59 1.43 2.20 1.83
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.25 2.98 0.04 1.08 0.65 0.26
MaFuller 0.24 2.96 0.04 1.08 0.65 0.25
Ma2SLS 0.51 4.49 0.04 1.07 0.75 0.63
JIVE 2652.64 5.92 2715.08 0.96 3.33 3.88

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the

Post-l1-Penalized estimator.
Note 2: DGP 3 is defined by a zero mean t-distribution with 5 degrees of freedom using the variance covariance matrix (1.19). σvu = .15
defines a low level of endogeneity and R2

f and is the pseudo R-squared of Kuersteiner and Okui (2010). The Πn was constructed following

πnj = c (pn)
(

1− j−pn/2
pn/2+1

)4
for j ≤ pn/2 and πnj = 0 for j > pn/2.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Table 1.17: DGP 3: High Endogeneity Level Using Πn of equation (1.20)
R2

f = 0.1; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 1.15 1.46 0.06 1.05 1.09 0.44
Liml 481.76 0.20 1020.12 0.51 0.56 2.37
Fuller 0.75 0.48 1.32 0.60 0.46 1.53
Lasso 3.83 1.71 4.82 1.16 1.27 2.46
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.41 1.63 0.01 1.13 1.22 0.25
MaFuller 1.41 1.63 0.01 1.13 1.22 0.24
Ma2SLS 1.07 1.42 0.02 1.02 1.04 0.52
JIVE 4448.35 5.72 9383.19 0.93 1.17 3.56
R2

f = 0.1; n=500
2SLS 1.07 1.05 0.32 1.03 1.05 0.73
Liml 0.52 0.14 8.83 0.46 0.28 2.46
Fuller 0.33 0.08 5.61 0.48 0.27 2.32
Lasso 2.39 1.44 7.67 1.18 1.34 2.38
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.81 1.38 0.04 1.20 1.38 0.29
MaFuller 1.81 1.39 0.04 1.20 1.38 0.29
Ma2SLS 0.96 1.00 0.06 0.99 0.99 0.87
JIVE 2117.46 0.18 36896.15 0.44 0.49 4.84
R2

f = 0.01; n=100
2SLS 1.29 1.98 0.02 1.06 1.09 0.08
Liml 334.77 2.08 492.90 0.99 1.11 0.59
Fuller 1.47 1.89 0.46 1.00 1.01 0.42
Lasso 3.45 1.98 3.21 1.19 1.30 1.46
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.44 2.10 0.02 1.07 1.10 0.05
MaFuller 1.32 2.02 0.01 1.07 1.10 0.05
Ma2SLS 1.28 1.99 0.01 1.06 1.09 0.10
JIVE 211.92 0.82 313.01 1.07 1.15 0.35
R2

f = 0.01; n=500
2SLS 1.09 1.23 0.02 1.02 1.03 0.59
Liml 235.60 0.32 829.45 0.70 0.78 7.26
Fuller 1.18 0.87 2.23 0.75 0.63 5.17
Lasso 70.17 2.28 234.02 1.42 1.66 5.25
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.16 1.27 0.00 1.04 1.06 0.24
MaFuller 1.16 1.27 0.00 1.04 1.06 0.24
Ma2SLS 1.08 1.23 0.00 1.01 1.02 0.64
JIVE 1753.49 2.63 6157.66 1.01 1.09 4.50

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the

Post-l1-Penalized estimator.
Note 2: DGP 3 is defined by a zero mean t-distribution with 5 degrees of freedom using the variance covariance matrix (1.19). σvu = .95
defines a high level of endogeneity and R2

f and is the pseudo R-squared of Kuersteiner and Okui (2010). The Πn was constructed

following πnj = c (pn)
(

1− j−pn/2
pn/2+1

)4
for j ≤ pn/2 and πnj = 0 for j > pn/2.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Table 1.18: DGP 3: High and Low Endogeneity Levels Using Πn of equation (1.21)
σuv = 0.15; n=100 MSE BIAS VAR M.BIAS MAD IQR
2SLS 0.73 1.26 0.70 1.01 0.95 0.87
Liml 3237.05 9.17 3343.69 0.90 1.39 1.38
Fuller 2.57 0.23 2.66 0.90 1.38 1.35
Lasso 2.48 2.11 2.41 1.02 1.31 1.30
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 0.70 2.65 0.48 1.08 0.94 0.71
MaFuller 0.69 2.60 0.48 1.09 0.95 0.70
Ma2SLS 0.77 2.99 0.49 1.01 0.94 0.88
JIVE 271.04 3.93 279.69 0.92 1.45 1.42
σuv = 0.95; n=100
2SLS 1.16 1.19 0.55 1.04 1.11 0.78
Liml 1.00 0.17 3.27 0.64 0.45 1.24
Fuller 0.57 0.08 1.90 0.66 0.44 1.18
Lasso 9.46 1.23 28.14 0.98 0.97 1.35
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 3.56 2.22 0.31 1.39 2.09 0.56
MaFuller 3.54 2.22 0.31 1.39 2.09 0.58
Ma2SLS 1.13 1.20 0.39 1.03 1.07 0.82
JIVE 510.93 0.69 1710.91 0.61 0.64 2.12
σuv = 0.15; n=500
2SLS 0.84 1.37 0.74 1.03 1.01 0.91
Liml 2.55 0.10 2.80 0.93 1.34 1.50
Fuller 2.47 0.07 2.71 0.93 1.33 1.49
Lasso 1.76 1.72 1.65 1.05 1.28 1.23
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 1.11 3.06 0.31 1.13 1.41 0.61
MaFuller 1.10 3.04 0.31 1.13 1.39 0.61
Ma2SLS 0.83 2.48 0.32 1.02 0.98 0.95
JIVE 4.63 0.33 5.06 0.92 1.34 1.47
σuv = 0.95; n=500
2SLS 1.64 1.37 0.45 1.12 1.34 0.72
Liml 0.25 0.07 1.44 0.67 0.32 1.22
Fuller 0.23 0.04 1.39 0.68 0.32 1.20
Lasso 1.09 1.01 1.37 1.00 0.99 1.24
Post Lasso 1.00 1.00 1.00 1.00 1.00 1.00
MaLiml 6.69 2.83 0.11 1.61 2.79 0.36
MaFuller 6.68 2.83 0.11 1.61 2.79 0.36
Ma2SLS 1.32 1.25 0.19 1.06 1.18 0.81
JIVE 8.20 0.35 48.22 0.64 0.42 1.69

Note 1: The values in the table are computed as Estimator Measure
Post Lasso Measure to capture the estimators’ relative performance with respect to the

Post-l1-Penalized estimator.
Note 2: DGP 3 is defined by a zero mean t-distribution with 5 degrees of freedom using the variance covariance matrix (1.19). σvu = .95
defines a high level of endogeneity while σvu = .15 defines a low level of endogeneity and R2

f is the pseudo R-squared of Kuersteiner

and Okui (2010). The Πn was constructed following Πn =

(
0pn−8 , 1√

n , −1√
n , −1

log(n) , 1
log(n) , 1√

log(n)
, −1√

log(n)
, 1

n1/3 , −1
n1/3

)
.

Note 3: MSE(Mean Square Error); VAR(Variance); M.BIAS(Median Bias); MAD(Median Absolute Deviation); IQR(Interquartile Range).
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Chapter 2

Angrist and Krueger (1991) Using a Post

Adaptive LASSO

2.1. Introduction

The most commonly cited example of an instrumental variables specification in the

presence of many weak instruments is Angrist and Krueger (1991). It is therefore impor-

tant to be able to determine the performance of any procedure that addresses the many

weak instruments problem with respect to the Angrist and Krueger (1991) paper. In this

chapter of my dissertation I show the performance of the estimator I introduced in the

first chapter and compare the results of my estimation with those encountered by Belloni

et al. (2010a), which is the paper that most closely resembles mine. I also include the

results that would arise if the traditional simultaneous equations estimators were used.
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The problem faced by Angrist and Krueger (1991) is to determine the impact of school-

ing on wages. As is usually the case when considering a wage equation, the endogeneity

of schooling is a motive for concern. Specifically, unobserved factors may influence both

educational attainment and earnings, resulting in a biased coefficient in an Ordinary Least

Squares regression of schooling on wages. Angrist and Krueger (1991) argue that an in-

dividual’s quarter of birth is a valid instrument in this scenario. Their claim is that the

quarter of birth affects the years of schooling of an individual due to specific state reg-

ulations. For instance, if state legislation determines that anybody that is four years of

age by June 30 of a particular year can enroll in school, those born in June 31 will have

one less year of compulsory schooling than those born on June 30. The fundamental in-

tuition behind the quarter of birth as an instrument is that it affects the years of schooling

of an individual but should not be a direct determinant of wage. Thus, it satisfies the

exogeneity condition that is demanded from a valid instrument.

2.2. Background

2.2.1 Returns to Education

The economic literature on the returns to schooling arises from the work of Becker (1964)

and Mincer (1958). The building block of the original theory is that individuals maximize

lifetime earnings by selecting how much education to attain. The early empirical litera-
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ture, however, starts with the work of Mincer (1974) who devise a production function

representation of the relationship between accumulated skills, viewed as an output, and

education, experience and abilities, viewed as inputs. This idea is summarized in what is

known in the literature as the Mincer wage regression, proposed by Mincer (1974):

log (Wt) = φ0 + φ1(St) + φ2(Expt) + εt (2.1)

φ1(St) represents the effects of schooling, φ2(Expt) represents the effects of post-

schooling decisions, usually approximated by experience, and εt can be understood as an

idiosyncratic productivity shock.

The estimation of the returns to schooling using the Mincerian wage regression (2.1)

became one of the most widely analyzed topics in applied econometrics. Griliches (1977)

discusses numerous econometric problems in estimating the returns to schooling. In

particular, problems arise related to the measurement of both schooling and ability. More

importantly, he suggests that the endogeneity of schooling decisions is a serious problem

that constitutes an obstacle in establishing the causal effect of education on earnings. The

main concern is the correlation between unobserved individual characteristics (predomi-

nantly the ability of individuals) and schooling choices.

The work of Angrist and Krueger (1991) can then be viewed as instrumental vari-

able approach to estimating the Mincer equation that tries to address this endogeneity
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problem. The instruments in this framework originate from natural experiments in

the compulsory education and enrollment legislation in each state. Also, Angrist and

Krueger (1991) can be understood as a static model, in the spirit of Becker (1964), in

which once education decisions are taken individuals start working and there are no

dynamics that allow for individuals to transition between the labor force and educational

institutions. The previous consideration is one of the reasons for an additional literature

on the structural modeling of schooling decisions pioneered by Keane and Wolpin (1997).

There thus exist a structural dynamic approach and a static reduced form approach

that yields two different sets of estimates of the returns to schooling. As Belzil (2006)

mentions, instrumental variable estimators of the returns to education fall in a range of a

10 to 15 percent increase the in weekly wage for an additional year of schooling. On the

other hand, structural dynamic models, as discussed by Belzil (2006), find a range of 4

to 7 percent increases in the weekly wage resulting from an additional year of schooling.

In this chapter, I present results of an instrumental variable estimation but do not take a

stance on which is the preferred way of modeling the problem as the literature has not

settled this debate.

2.2.2 Angrist and Krueger (1991)

The data for the computations in the Angrist and Krueger (1991) paper comes from the

1970 and 1980 census. For the 1970 census a 1 percent sample of white and black men
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born between 1920 and 1929 is used. For the 1980 census a 5 percent sample of white and

black men born between 1930 and 1939 is used. In both cases only data for individuals

that have positive earnings are used. Furthermore, observations that were imputed by

the Census Bureau were dropped.13 For my estimations I use the data as is provided by

Angrist on his website.14

The model estimated by Angrist and Krueger (1991) is a cross sectional simultaneous

equations model given by:

wagei = β0 + β1educationi + β2Xi + εi

educationi = Π0 + Π1quartero f birthi + Π2Xi + Π3Zi + ηi (2.2)

In the expression above the subscript i refers to the individual i, wagei is the natural

logarithm of weekly wage, educationi are the years of education, Xi are other determi-

nants of wage, Zi are the excluded instruments, and quartero f birthi is the quarter of birth

instrument proposed by Angrist and Krueger (1991).

The authors obtain this instrument set by interacting the quarter of birth instrument

with the state of birth and year of birth of the individual. Also, they use the state of

13A more thorough description of the data set used can be found at the end of Angrist and Krueger (1991)
14http://economics.mit.edu/faculty/angrist/data1/data/angkru1991
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birth, the region of birth, age, age squared, and a dummy variable for marital status as

part of the included instrument set. This gives rise to 180 excluded instruments plus the

62 included instruments coming from state and region of birth dummy variables. As is

argued by Bound et al. (1995), and more widely by the many weak instrument literature,

these instrument are weak. In the first chapter of my dissertation I demonstrate that

in this scenario and under the possibility that some of the instruments are irrelevant,

disregarding the irrelevant instruments is fundamental to obtain a consistent estimator in

a 2SLS framework. Therefore, my purpose is to disregard the irrelevant instruments and

to illustrate the consequences of using a large set of weak and irrelevant instruments.

In table 2.1 I present the result of the traditional simultaneous equations models,

two stage least squares (2SLS), limited information maximum likelihood (LIML), and

Fuller, and, of ordinary least squares (OLS) for the model in (2.2). Under endogeneity

we expect largest biases in estimation to arise under OLS. In the presence of many weak

instruments, the weaker the instruments are the closer they are to the OLS estimates. As

the results of table 2.1 illustrate, 2SLS, LIML, and Fuller are all close to OLS when the

entire instrument set is used. Another important consideration that arises from table 2.1

is that the first stage F-statistic is low, below the rule of thumb value of 10 suggested by

Stock et al. (2002) an often cited in applied work as an indication of a weak instrument

problem. As I mentioned in the first chapter, the F-statistic is an estimator of the concen-

tration parameter and as such is a measure of the instrument weakness. The results of
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table 2.1, therefore, suggest the presence of weak instruments and estimates of the return

to education that are inconsistent.

Another important reflection comes from the solution of the many weak instrument

problem that is proposed by Chao and Swanson (2005a). They recommend that when

there is evidence of weak instruments a plausible solution is to include more instruments

in the specification. Their results suggest that, even though the set of instruments is weak,

the information provided by the additional instruments can help the LIML and Fuller

estimators to achieve consistency. The basic intuition that arises from their asymptotic

theory is that additional instruments provide a signal asymptotically, that even if small it

helps to attain consistency. The practitioner that encounters instrument weakness might

then be advised to include extra instruments to address the difficulty at hand. In the first

chapter I argue that this is not the case if additional instruments are irrelevant.

Table 2.2 shows a situation a researcher that uses the Angrist and Krueger (1991) data

might face. In the case illustrated the researcher uses 153 excluded instruments,coming

from quarter of birth interactions with state and quarter of birth, and 62 included instru-

ments, the state dummies and other determinants of wage, and finds that the first stage

F-statistic is below 10. The suggestion of Chao and Swanson (2005a) would be to include

a larger set of instruments. Table 2.1 illustrates what occurs in the case you include 27

additional excluded instruments that come from interacting quarter of birth with year of
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birth. The F-statistic decreases from 5.63 to 2.36 and the coefficients move closer to the

OLS estimate. The conclusion from this simple example is that by including additional

instruments the weak instrument problem can become worse. In the language of chapter

1, including instruments that are irrelevant or are providing more noise than information

compounds the difficulties of the researcher. As I demonstrated in chapter 1, the key is

the ability to be able to exclude the irrelevant instruments and to include instruments that

provide enough information in order to guarantee the possibility that 2SLS, after instru-

ment selection, will be consistent.

2.3. Results

In this section I present the results that arise from using the post-adaptive LASSO method

proposed in Chapter 1. I also try to ascertain the robustness of the results by revisit-

ing the criticism of Bound et al. (1995). Finally, I describe the computation of the estimator.

Table 2.3 shows that when using the adaptive LASSO on the first stage to select the

instruments and then running a 2SLS estimate with the selected regressors as I proposed

in Chapter 1. It is important to highlight that there is a reduction from 242 to 166 in-

struments and that the F-statistic increases to 17.88, which is outside the danger zone for

weak instruments stipulated in the literature. As is to be expected, the quarter of birth

instruments are included. Angrist and Krueger (1991) do include specifications with

only the quarter of birth instruments; it is only when they depart from this specification
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that the weak instrument problem arises. This suggests that the set of instruments

selected by any procedure should be somewhere in between 3 (with only quarter of birth

instruments) and 242 (with the entire instrument set discussed above). The uncertainty

inherent in deciding exactly which instruments actually belong in the estimation, paired

with the weak instrument problem, that makes the estimator in Chapter 1 appealing.

The estimate of the return to education in table 2.3 which has a value of 14 percent falls

within the range found in similar studies summarized by Belzil (2006).

Belloni et al. (2010a) also study instrument selection in Angrist and Krueger (1991).

In Table 5 of Belloni et al. (2010a), the authors show two instrument sets selected by

the procedure they propose. The first one, advocated by them as the preferred method,

only selects 1 instrument. The second method, a then fold cross-validation procedure

which is not presented in the paper, selects 12 instruments including the quarter of birth

instruments. Their method to select the regularization parameter appears to impose

heavy shrinkage. This also suggests a deeper discussion about the selection of the regu-

larization parameter is needed.

In graph 1 I show the cross-validation function that I use to select the regularization

parameter. In this context, I find that cross-validation performed better in simulations

than generalized cross-validation which was the proposed method in Fu (1998).
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2.3.1 Revisiting Bound et al. (1995)

Bound et al. (1995) are skeptical about the results presented in Angrist and Krueger

(1991). Their main concern is the fact that education is weakly correlated with quarter

of birth. However, they also highlight the possibility that quarter of birth and education

might be correlated for reasons other than compulsory education rules and that there

might be some correlation between quarter of birth and wages. Therefore, they are not

only preoccupied by instrument weakness but by the validity, i.e. exogeneity, of the

instrument itself.

Angrist and Krueger (1991) present many specifications, some of which are clearly

weaker than others. Bound et al. (1995) focus on the case in which instruments are the

weakest in order to illustrate the potential problems that arise in this situation. They

generate a simulated quarter of birth variable and estimate the specifications presented

in Angrist and Krueger (1991). These instruments, by construction, are uncorrelated with

education and are therefore ultimately weak, i.e. irrelevant. Bound et al. (1995) show that

under these conditions their results are the same as those in Angrist and Krueger (1991)

in the specification in which instrument weakness is highest.

In table 2.4, I repeat the Bound et al. (1995) exercise. I also include the LIML and Fuller

estimators. As in Bound et al. (1995) I find that the 2SLS result is extremely close to the

OLS result which suggests an extreme level of instrument weakness, as established by
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Stock et al. (2002). The same occurs with LIML. In the three cases mentioned previously

the coefficient associated with education is positive and statistically significant yet given

the weakness of the instruments coefficient is unreliable. For the Fuller estimator, the

standard errors are large, suggesting that the instruments, as expected, do not have

identifying power.

As with the Fuller estimator, my estimator exhibits a large standard error, see table

2.4. Furthermore, my estimator only selects 10 instruments, in contrast to the case with

actual instruments where my estimator selects 166. That is, my estimator method treats

the cases with many instruments and with many simulated irrelevant instruments quite

differently, suggesting that there is information content in the original instruments, that

was not captured by the standard estimators considered in Bound et al. (1995). Yet, at

the same time, the F-statistic is smaller than that of the other three estimators, suggesting

that the model is ultimately weak. From these results I conclude that in the case where

instruments are by construction uncorrelated with the endogenous regressor, my estima-

tor eliminates most of the instruments but, given the small value of the F-statistic, even

after instrument selection the instruments do not have much identifying power.

2.3.2 Computation of the Adaptive LASSO

In this section, I present the algorithm I use to compute the adaptive LASSO. The adap-

tive LASSO is computed using the procedure proposed by Fu (1998). This methodology
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is selected for its ease of implementation.15 The optimization procedure and results will

be illustrated for a single endogenous variable, given that the main concern is to demon-

strate the behavior of the estimator in the presence of many instruments. Further, this

aids discussion given that many of the finite sample distribution results in the literature

are derived under this framework.

Let us define Zn ≡ (Zi, Xi, quartero f birth) where Zi and Xi and quarter of birth are

the first stage instruments presented in (2.2) and Πn ≡ (Π0, Π1, Π2). The first order

conditions of the problem defined in equation (1.6) yield, for the jth column of Zn, Z(j)
n :

2Z(j)′
n Z(j)

n Πnj + 2 ∑
i 6=j

Z(j)′
n Z(i)

n Πni − 2Z(j)′
n Y2n = −λnwnjsign

(
Πnj

)

To simplify the exposition the right hand side (RHS), left hand side (LHS), and the

regularization parameter in the expression above are redefined to be:

LHS = Sj

(
Πnj, Π−j

n , Zn, Y2n

)
RHS = d(Πnj, λn∗)

λn∗ = λnwnj

15Much has been written about the computation of the LASSO and its variants. A good source for
computational aspects concerning the LASSO is http://www-stat.stanford.edu/t̃ibs/lasso.html and the
references cited there.
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where Π−j
n refers to the coefficients that are different from Πnj.

The algorithm used to compute the proposed adaptive LASSO estimator is:

(i) Start with Πn0 = ΠOLS =
(
Π̂1, . . . , Π̂pn

)′
(ii) At step m, for each j = 1, . . . , p, let S0 = Sj

(
0, Π−j

n , Zn, Y2n

)
and set

Π̂nj =



λn∗−S0

2Z(j)′
n Z(j)

n
if S0 > λn∗

−λn∗−S0

2Z(j)′
n Z(j)

n
if S0 < −λn∗

0 if |S0| ≤ λn∗

Form a new estimator Π̂m =
(
Π̂1, . . . , Π̂pn

)′ after updating Π̂nj

(iii) Repeat (ii) until Π̂m converges.

This procedure selects instruments and at the same time generates an estimator. Here,

the selected instruments are used as an input to perform a 2SLS regression as proposed

by Belloni and Chernozhukov (2010).

2.4. Conclusion

The results in this section highlight the benefits of using the estimator proposed in Chap-

ter 1. As is explicit in table 2.3 the F-statistic increases significantly with respect to the

result where all instruments are included, suggesting that some of the instruments pro-
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vide more noise than signal or are altogether insignificant. In this regard both Belloni

et al. (2010a) and this study agree. The estimator thus derived is more reliable as it ad-

dresses the many weak instrument problem. However, with respect to the instrument

selection procedure my results and those of Belloni et al. (2010a) are inconclusive. This is

due to the fact that there exist a considerable difference with the results presented in Bel-

loni et al. (2010a) and there is no definitive optimality criteria to select the regularization

parameter. In my case this was determined using cross-validation given my experience

with the simulation experiments. Finally, as was mentioned in Belzil (2006) the value of

the coefficients in my study falls within the range of values found by similar studies in

the literature.

2.5. Tables and Graphs
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Table 2.1: Return to Education for Men Born 1930-1939: 1980 Census

OLS 2SLS LIML Fuller
Education 0.06 0.07 0.08 0.08
Standard Error (0.00) (0.01) (0.02) (0.02)
First Stage F-Statistic — 2.36 2.36 2.36
Number of Instruments — 242 242 242
Number of Observations 329,509 329,509 329,509 329,509

The dependent variable is the log of weekly earnings. The excluded regressors are age, age squared, dummies for race, marital status,
state of birth, and quarter of birth, and interactions of quarter of birth with year of birth and state of birth.

Table 2.2: Return to Education for Men Born 1930-1939: 1980 Census. Without Year of
Birth time Quarter of Birth Interactions

OLS 2SLS LIML Fuller
Education 0.06 0.08 0.09 0.09
Standard Error (0.00) (0.02) (0.02) (0.02)
First Stage F-Statistic — 5.63 5.63 5.63
Number of Instruments — 215 215 215
Number of Observations 329,509 329,509 329,509 329,509

The dependent variable is the log of weekly earnings. The excluded regressors are age, age squared, dummies for race, marital status,
state of birth, and quarter of birth, and interactions of quarter of birth with state of birth.

Graph 1:

Cross-Validation Function Values for 100 grid points
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Table 2.3: Return to Education for Men Born 1930-1939: 1980 Census. Using a Post-
Adaptive LASSO

OLS 2SLS LIML Fuller Post-A LASSO
Education 0.06 0.08 0.08 0.08 0.14
Standard Error (0.00) (0.01) (0.02) (0.02) (0.04)
First Stage F-Statistic — 2.36 2.36 2.36 17.88
Instruments — 242 242 242 166
Observations 329,509 329,509 329,509 329,509 329,509

The dependent variable is the log of weekly earnings. The excluded regressors are age, age squared, dummies for race, marital status,
state of birth, and quarter of birth, and interactions of quarter of birth with state of birth.

Table 2.4: Return to Education for Men Born 1930-1939: 1980 Census. Revisiting Bound
et al. (1995)

OLS 2SLS LIML Fuller Post-A LASSO
Education 0.062 0.064 0.056 0.416 0.055
Standard Error (0.000) (0.015) (0.005) (4.879) (0.135)
First Stage F-Statistic — 1.001 1.008 1.008 0.210
Instruments — 242 242 242 10
Observations 329,509 329,509 329,509 329,509 329,509

The dependent variable is the log of weekly earnings. The excluded regressors are age, age squared, dummies for race, marital status,
state of birth, and quarter of birth, and interactions of quarter of birth with state of birth.
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Chapter 3

A Cross-Validated Spline Method for

Nonparametric Instrumental Variable

Estimation

3.1. Introduction

Empirical studies in economics often deal with the challenges posed by potential en-

dogeneity in their estimations. A common solution to this difficulty is based on an

instrumental variable procedure. The instrumental variable methodology was extended

to the nonparametric framework by the work of Brown and Matzkin (1998), Newey et al.

(1999), Altonji and Matzkin (2005), Darolles et al. (2003), Ai and Chen (2003), Newey and

Powell (2003), Hall and Horowitz (2005), and Gagliardini and Scaillet (2006).
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This paper solves the nonparametric instrumental variable problem within the con-

text of reproducing kernel Hilbert Spaces (RKHs) recognizing that the object of interest

is the solution to a Fredholm integral equation of the first kind. RKHs are characterized

by the fact that linear functionals in the space are bounded. Therefore, the results of the

previous literature, which assume the function of interest lies in a bounded Hilbert space,

can be mapped into a RKH.

Solutions to Fredholm integral equations of the first kind are called regularized so-

lutions. The methodology proposed in this paper is, as was typified by Nychka et al.

(1984), a cross-validated spline solution. Within this framework the solution can be

thought of as a penalized least squares estimate. The penalty over the roughness of the

function, characteristic of these setups, is controlled by a regularization parameter that

is chosen by Generalized Cross Validation (GCV). Except for Gagliardini and Scaillet

(2006), the previous papers have no explicit mechanism to choose the regularization

parameter and some, like Newey and Powell (2003), recognize their estimator is very

sensitive to the choice of parameters. One advantage of GCV over the methodology of

Gagliardini and Scaillet (2006) is that its optimality has been established by Wahba (1977)

within the context of integral equations which are the object of interest in the literature of

nonparametric endogeneity.
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The solution proposed follows the strategy of Wahba (1969, 1973) and Kress (1989) to

solve ill-posed inverse problems. However, many of the objects that are observed in the

context of integral equations are unknown in the economic framework modeled in this

study. These unknown objects will be replaced by nonparametric estimates. In this sense

the solution in this paper is a modified version of the traditional cross-validated spline

solutions to integral equations.

3.2. Background

The model of interest, which is a variation of the one presented by Newey and Powell

(2003), is of the form

y = g0 (x) + κ

E [κ|z] = 0 (3.1)

In the expression above y is an observable scalar random variable, g0 represents the

true structural function, x is an explanatory variable vector of dimension dx × 1, z is a

vector of instruments of dimension dz × 1, and κ is a disturbance.

Taking the conditional expectation of equation (3.1) one obtains the expression:
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E [y|z] = E [g0|z] =
∫

g0 (x) f (x|z) dx (3.2)

The relationship described in (3.2) is a Fredholm integral equation of the first kind,

which in this case leads to an ill-posed inverse problem.16 Fredholm integral equations of

the first kind are usually written as:

w (z) =
∫

x
T (x, z) ϕ (x) dx

For the expression above, in the integral equation literature, all the components are

known except for ϕ (x). It follows that (3.2) fits into the theory of integral equations with

the function T (.) being f (x|z), the function that only depends on the constant term z on

the left hand side being E(y|z) and the unknown function being g0 (x).

The ill-posed inverse problem, as is stated in Kress (1989), is a consequence of g0 (x)

being an element of a space of functions, an infinite dimensional space. Specifically

Theorem 15.4 of Kress (1989)ascertains:

16Chapter 15 of Kress (1989)provides a discussion of the ill-posed inverse problems and gives some
examples. Chapter 8 of Wahba (1990) briefly discusses the problem in a framework that is closer to how I
present it here.
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Let X and Y be normed spaces and let A : X → Y be a compact linear operator. Then for

the unknown function ϕ the equation of the first kind Aϕ = Ψ is improperly posed if X is not of

finite dimension.

The theorem is trying to convey that, given the infinite dimension of X , the operator

A does not have a bounded inverse. This is exactly what happens in equation (3.2) where

g0 (x) is an element of a space of functions. The solution to this difficulty in theory

consists in finding a bounded approximation to the unbounded inverse operator.

The ill-posed inverse problem also has a computational manifestation. To recover

g0 (x) from equation (3.2) the components of the solution must be computed discretely.

As is pointed out by Wahba (1990), these discrete approximations are often numerically

unstable. The situation deteriorates as the degree of discretization increases.

In summary, any solution to the ill-posed inverse problem needs to impose some

bounds to the inverse integral operator that recovers g0. As was discussed above the

solution is sensitive to the bounds imposed. Therefore, a careful choice of the parameters

of the problem is fundamental.

In what follows the methodology proposed to solve the problem is described. Then

the convergence rates of the solution are derived.
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3.3. Framework

Wahba (1969, 1973) propose a solution to Fredholm integral equations of the first kind

within the context of RKHs. A fundamental difference arises, however, between the

nonparametric instrumental variable problem and hers. In Wahba’s approach a noisy

version of E(y|z), E(y|zi)
∗, is observed for some values of z and f (x|z) is known. Her

methodology cannot be applied directly to equation (3.2) because f (x|z) and E(y|zi)
∗ are

unknown. Instead the solution she proposes is taken as a starting point and f (x|z) and

E(y|zi)
∗ are replaced by nonparametric estimates.

The underlying model in Wahba (1969, 1973), for i = 1, . . . , n, is:

E(y|zi)
∗ = E(y|zi) + εi

E(εi) = 0

Within her framework the solution to the problem becomes to find a function in a

RKHS,HR, which satisfies the following expression:

min
g∈HR

n

∑
i=1

(∫
g0 (x) f (x|zi) dx − E(y|zi)

∗
)2

+ α ‖g‖2
HR

(3.3)
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In the expression above
∫

X g(x) f (x|z)dx is what is referred to as an approximate

solution for (3.2) which becomes exactly E(y|zi) at g0 (x).

Before commenting on the solution of equation (3.3) some basic concepts of RKHs that

are related to the solution of (3.3) using Wahba’s methodology are introduced.

Definition 1 (Reproducing Kernel Hilbert Space). A RKHS is a Hilbert space of real-

valued functions on an index set T , for instance T = [0, 1], with the property that for

t ∈ T , the evaluation functional Lt, which associates g with g(t), is a bounded linear

functional in the sense that, ∃M such that:

Lth = |g(t)| ≤ M ‖g‖ for all h in the RKH,

where ‖.‖ is the norm in the Hilbert space.

It is a well known result in the literature of RKHs17 that to every RKH there corre-

sponds a unique positive definite function on T xT that is referred to as its reproducing

kernel. By definition the reproducing kernel is an object which has the property that its

inner product with any function in the RKH space yields the function. It will be denoted

by R(t, t′) and assumed that:

Assumption 1. The reproducing Kernel R(t, t′) is continuous and
∫ ∫
T R2(t, t′)dtd′t < ∞

17A more detailed description can be found in Aronszajn (1950).
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For every space of functions that satisfies definition 1 and assumption 1 the following

properties of RKHs can be defined.

Property of RKHS 1. By the theorems of Hilbert, Schmidt, and Mercer 18 the reproducing

kernel can be written as:

R(t, t′) =
∞

∑
ν=1

λνφν (t) φν

(
t′
)

where {φν}∞
ν=1 is a complete orthonormal system of eigenfunctions on the space with

corresponding eigenvalues {λν}∞
ν=1, λν > 0, ∑∞

ν=1 λν < ∞, and λ1 ≥ λ2 ≥ . . . ≥ 0.

Property of RKHS 2. Definition 1 of the RKHSHR above can be stated explicitly in terms

of the inner product of the RKHS, 〈.〉HR
, by the following relationships:

HR =

{
g : g ∈ L2 (T ) ,

∞

∑
ν=1

(g, φν)
2

λν
< ∞

}
〈

g, g′
〉
HR

=
∞

∑
ν=1

(g, φν) (g′, φν)

λν

In the expression above (.) is the inner product in the L2 (T ) space.

Property of RKHS 3. As a consequence of properties 1 and 2 we have that:

a. For a fixed value t, R(t, t′) = Rt(t′) ∈ HR

b. 〈Rt, g〉HR
, t ∈ T

18The theorems can be found in Riesz (1955) in pages 242-246
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Property of RKHS 4. For any bounded linear functional one can find its representer ηt

which is defined by:

Lt = 〈ηt, g〉HR
and ηt(t′) = 〈ηt, Rt′〉HR

The intuition behind properties 3 and 4 is that by knowing the reproducing kernel

and the representer of a space one can characterize any function and linear functional

in the RKH. Furthermore, as will be seen when we study the convergence proper-

ties of the solution to equation (3.3), the characterization of the reproducing kernel as

∑∞
ν=1 λνφν (t) φν (t′) and of the inner product in property 2 allows an analysis of conver-

gence rate of elements in the space by imposing conditions on the decreasing sequence

{λν}∞
ν=1 of property 1. More importantly, these properties allow the main problem to be

written as a finite dimensional problem using the methodology proposed by Kimeldorf

and Wahba (1971).

In assumption 2 below conditions on the function g0 are imposed to explicitly obtain

its reproducing kernel. A different assumption on the function g0 will yield a different

reproducing kernel and different representers. The properties imposed on g0 in assump-

tion 2 are restrictive. However, they are in accordance with the proposed solutions in the

literature to nonparametric instrumental variables.

Assumption 2. The function g0 defined in equation (3.2) belongs to the Hilbert space Wm

defined by:
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Wm [X] =
{

g : g(m−1) is absolutely continuous and g(m) ∈ L2 [X]
}

In the expression above g(m) is the mth derivative of g. By virtue of assumption 2 and

following Wahba (1990), the reproducing kernel of the space is defined to be19:

R(x, x′) =
m

∑
ν=1

xν−1x′ν−1

(ν− 1)! (ν− 1)!
+
∫

X

(x− u)m−1
+ (x′ − u)m−1

+

(m− 1)! (m− 1)!
du (3.4)

where (x)+ = x for x ≥ 0 and otherwise (x)+ = 0.

An explicit expression for the representers of property 4 can be found. To find it note

that Lt of property 4 is the integral defined in equation (3.3) and that Rt is defined by

equation (3.4). The representers are defined by:

ηz(x) =
∫

X
f
(
x′|z

)
R
(
x, x′

)
dx′ x, x′ ∈ X (3.5)

Now that the properties of RKHS have been stated and that exact expressions for the

representers and the reproducing kernel have been rendered, I can describe the solution

19Wahba (1990) has a detailed discussion of the construction of this reproducing kernel which is based
on the Taylor approximation to an m times continuously differentiable function.
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to the problem in (3.3) using RKHs can be described.

A starting point for the solution of (3.3) in Wahba (1969, 1973) is the knowledge of

E(y|zi)
∗ for certain values of z ∈ {z1, z2 . . . , zn} where z1 < z2 < . . . < zn. Also, by

property 4 of RKHS the approximate solution to E(y|zi) can be written in terms of the

representers. Specifically,

∫
X

g(x) f (x|zi) dx = 〈nzi , g〉HR
(3.6)

Using (3.6) expression (3.3) can be rewritten as:

min
g∈HR

n

∑
i=1

(
E (y|zi)

∗ − 〈nzi , g〉HR

)2
+ α ‖g‖2

HR
(3.7)

The problem in (3.7) consists of two parts. The first component ∑n
i=1

(
E (y|zi)

∗ − 〈nzi , g〉HR

)2

can be thought of as the fidelity of the data, while the second component is controlling the

amount of smoothing. The parameter alpha controls this trade-off and imposes a bound

on the variability of the function of interest. This is another reason why constructing a

data driven mechanism to choose α is important.

Within this framework Kimeldorf and Wahba (1971) have established the following
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result:

Proposition 1. The solution to problem (3.3) using (3.7) is given by:

g∗ (x) = (ηz1 (x) , . . . , ηzn (x)) (Qn + αI)−1 (E (y|z1)
∗ , . . . , E (y|zn)

∗) (3.8)

In equation (3.8) Qn is an n× n matrix whose ijth element is
〈

ηzi , ηzj

〉
HR

.

The solution g∗ (x) in (3.8) can be thought of as lying in a space spanned by the

representers. Therefore, the representers can be viewed as a basis of the space where

the solution exists. This is the intuition that underlies the latter computation of the

solution and is another way of stating the main conclusion of the representer theorem of

Kimeldorf and Wahba (1971) . This way of understanding and writing the solution relies

critically on the use of the RKHS machinery.

Another important consideration is that the regularized solution given in (3.8) is not

the solution to the problem in (3.3) but an approximation that tries to control for the

ill-posedness of the problem via α. The true solution to the problem, which is infeasible

by the ill-posedness embedded in the matrix Qn, occurs when α = 0. The convergence

rates of the solution then depend on the rate at which a sequence of regularization

parameters tends to zero as n increases. This will be discussed later with respect to the

convergence rates.
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The estimator in (3.8) is, however, infeasible. The first reason for this is that f (x|z) is

unknown. Also the zero mean perturbed version of E(y|zi) is not observed. What will be

observed is a nonparametric estimate of E(y|zi) that will be used to approximate E(y|z)∗.

This biased estimator is defined as Υ (zi) and will be computed using a series estimator

to be described below. The estimate of f (x|z), on the other hand, will be done using the

methodology of Fan et al. (1996). The estimator under this framework becomes:

g̃ (x) = (η̂z1 (x) , . . . , η̂zn (x))
(
Q̂n + αI

)−1
(Υ (z1) , . . . , Υ (zn)) (3.9)

In equation (3.9) Q̂n is an n× n matrix whose ijth element is
〈

η̂zi , η̂zj

〉
HR

and:

η̂z (x) =
∫

X
f̂
(
x′|z

)
R
(
x, x′

)
dx′ x, x′ ∈ X

3.4. Estimation of E (y|z), f (x|z), and selection of α

For the estimation of f (x|z) we will adopt the estimator of Fan et al. (1996) that can be

written as:
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f̂ (x|z) = 1
h1h2

n

∑
i=1

Wn
0

(
zi − z

h1

)
N
(

xi − x
h2

)
(3.10)

In the above equation N(.) is a kernel weight, h1 and h2 are bandwidths, and Wn
0 (.),

which can be thought of as a local quadratic approximation to obtain the conditional

density, is determined by the following expressions:

Wn
0 = τT

0 S−1
n

(
1, h1t, h1t2

)T
×W (t) (3.11)

Sn =


sn,0 sn,1 sn,2

sn,1 sn,2 sn,3

sn,2 sn,3 sn,4


sn,j =

1
h1

n

∑
i=1

(Zi − z)j W
(

Zi − z
h1

)
(3.12)

In equation (3.12) W(.) is another kernel weight and τ0 is the unit vector with the first

element equal to one. For the estimation an Epanechnikov kernel is used. The choice

of kernel obeys to the fact that it satisfies the assumptions of Newey (1994), which are

important for the convergence rate results, and because the integral that defines the
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representers has a closed form solution20.

To determine how to select the regularization parameter in (3.9) and the bandwidths

h1 and h2 Generalized Cross Validation as proposed by Wahba (1977) and Golub et al.

(1979) will be used. For the purpose of writing the cross-validation criterion function

(3.9) can be expressed in terms of the parameters as:

g̃ (x, α, h1, h2) = A (x, α, h1, h2)Υ (z) (3.13)

A (x, α, h1, h2) = (ηz1 (x, h1, h2) , . . . , ηzn (x, h1, h2))
(
Q̂n (h1, h2) + αI

)−1
(3.14)

Υ (z) = (Υ (z1) , . . . , Υ (zn)) (3.15)

One can obtain the optimal regularization parameter, α, and the bandwidths that min-

imize the generalized cross-validation function given by:

V (α, h1, h2) =
n

∑
i=1

(yi − g̃ (x, α, h1, h2))
2[

1
n Trace (I − A (x, α, h1, h2))

]2 (3.16)

This choice of the regularization parameter as well as the solution to the ill-posed

problem was suggested by Wahba in the context of RKHS. This study adds the choice

of bandwidths to this procedure thus providing a data driven mechanism to choose the

20The Gaussian kernel which is the other conventional choice does not satisfy these two conditions
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parameters of the estimation. The fact that the choice of the regularization parameter and

the bandwidths comes from the minimization of the criterion function V (α, h1, h2) and

is not to be arbitrarily chosen by the researcher is a contribution of this paper.

The computation of E(y|z) will use a power series estimator. Let us define a vector of

L approximating functions pL(.) of dimension L× 1 by:

pL (z) = (p1 (z) , . . . , pL (z))
′ (3.17)

Also, let us define P to be an n× L matrix whose ith row is given by pL (Zi)
′. Under

this framework the estimate of E(y|z) is given by:

Υ (z) = pL (z)′
(

P′P
)− P′y (3.18)

In (3.18) the term (.)− denotes the generalized inverse of (.).

The number of series terms of this estimator is once more chosen using Generalized

Cross Validation. In this specific case the generalized cross-validation function to be min-

imized has the form:
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1
n

n

∑
i=1

(yi − g̃ (x, α, h1, h2))
2
(

1− L
n

)−2

3.5. Properties of the Proposed Solution

The results established in this section come from three sources. The first is the paper of

Lukas (1988) , who studies the properties of the convergence rates for regularized solu-

tions like the one in (3.8) for a wide class of RKHs. The second source is Newey (1994)

, who studies the convergence rates of kernel estimators under a Sobolev supremum

norm. The third is the paper of Newey (1997) , which studies the properties of power

series.

The convergence rates of the estimator proposed in (3.9) are determined in two

stages. In the first stage the convergence properties of g∗ as an estimate of g0 are es-

tablished. This result comes directly from the literature on ill-posed inverse problems

as is presented in Lukas (1988). In the second stage g̃ as an approximation of g∗ is

studied. This is achieved using the conclusions in Newey (1994, 1997) and Lemma 1

of the Appendix. As noted in the Appendix, Lemma 1 provides a link between the

work of Lukas (1988) and the results of Newey (1994, 1997). The inputs from the two

stages will be united to determine the convergence rates that arise from the relationship

‖g0 − g̃‖Wu
= ‖g0 − g̃ + g ∗ −g∗‖Wu

≤ ‖g0 − g∗‖Wu
+ ‖g∗ − g̃‖Wu

. The norm ‖.‖Wu
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comes from Lukas (1988) and will be defined below.

Some notation is introduced to simplify the exposition. For an arbitrary function g,

define the operators: K̂g =
∫

f̂ (x|z) h(.)dx and Kg =
∫

f (x|z) h(.)dx. Also by property

4 of the RKHs and equation (3.5):

K̂g̃ (x) =
(
Q̂ (z1, z) , . . . , Q̂ (zn, z)

) (
Q̂n + αI

)−1
(Υ (z1) , . . . , Υ (zn))

Following Kimeldorf and Wahba (1971) and Lukas (1988) it can be established that

Q̂ is continuous on Z × Z and, for an arbitrary function g, the following operator Q :

L2[Z]→ L2[Z] can be defined by:

Qg (z) =
∫

Z
Q̂
(
z, z′

)
g
(
z′
)

d′z (3.19)

Lukas (1988) shows that Q is bounded and positive definite. Assumption 1 and Defi-

nition 1 are satisfied and so Q̂(z, z′) is a reproducing kernel for the RKH. I shall refer to it

asHRQ. Let us define its non-increasing sequence of eigenvalues by λ1Q ≥ λ2Q ≥ . . . ≥ 0

and the corresponding orthonormal eigenfunctions by
{

φvQ
}∞

v=1. Therefore, HRQ is de-

fined in a similar way as HR in property 2 with λiQ in place of λi and φvQ in place of φv.

The following assumption on the λiQ is imposed.
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Assumption 3. 0 < a1i−2b ≤ λiQ ≤ a2i−2b, i = 1, 2, . . . and b > 1/2 for non negative

constants a1 and a2.

Lukas (1988) studies a class of RKHS defined by:

Hu =

{
g ∈ L2 [Z] :

∞

∑
i=1

(
g, φiQ

)2

λu
iQ

< ∞

}

and inner product given by,

(
g, g′

)
Hu

=
∞

∑
i=1

(
g, φiQ

) (
g′, φiQ

)
λu

iQ

The expressions above are analogous to those put forth in property 2. The difference

arises in the λu
iQ term that imposes faster convergence rates on the Fourier coefficients

for higher u 21. An important fact is that for u= 1 we obtain HR defined in property 2

of RKHs and that for v < u we have that Hu ⊂ Hu
22. By allowing different values of u

Lukas (1988) studies the convergence rate for a wide class of RKHs.

Lukas (1988) defines,

21In each of these cases the reproducing kernel changes for each u. Specifically, for each u the reproducing
kernel will be written, using property 1 of RKHS, by ∑∞

i=1 λu
iQφiQ(t)φiQ(t′).

22The previous result comes from the fact that ‖g‖2
Hv

= ∑∞
i=1

(g,φiQ)
2

λv
iQ

= ∑∞
i=1

(g,φiQ)
2
λu−v

iQ
λu

iQ
≤

max
∥∥∥λu−v

iQ

∥∥∥ ‖g‖2
Hu

.
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Wu ≡
{

g ∈ HRQ : Kg ∈ Hu
}

and shows the existence of an isometric isomorphism between Wu andHu defined by

the relationship:

(
g, g′

)
Wu

=
(
Kg,Kg′

)
Hu

(3.20)

These elements of Lukas (1988) are used to define the distance between the true

function, g0, and the regularized solution, g∗. Under regularity conditions presented in

the Appendix, it can be established that for E(y|z)∗ that belongs to Hs, where s ≥ max u, v:

for u ≤ s ≤ u + 2,

‖g0 − g∗‖Wu
= Op

((
αs−u

∥∥E (y|z)∗
∥∥2

s +
σ2

u
n α−u−1/2b

)1/2
)

and for s ≥ u + 2,

‖g0 − g∗‖Wu
= Op

((
α2
∥∥E (y|z)∗

∥∥2
s +

σ2
u

n α−u−1/2b
)1/2

)
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The above statement gives the first component of the convergence result of this paper.

The outcome depends on the rate of decay of the Fourier coefficients. This occurs via

b that establishes bounds on the eigenvalues, the constant s that governs the rate of

decay of the eigenvalues on Hs, and u which, similarly, controls the rate of decay of the

eigenvalues inHu.

The second component of the convergence rates is established in Theorem 1, stated

precisely and proved in the Appendix. Theorem 1 concludes that:

‖g∗ − g̃‖Wu
= Op

(
L3/2
√

n
+ L1−τ + ln(n)2

(
nhk+2m

)−1/2
+ hω̄

)

In the expression above, L refers to the number of series terms; τ is rate at which the

approximation error of the power series estimator to E(y|z) shrinks under the Sobolev

Supremum norm, which is exactly O (L−τ); ω̄ is the order of the kernel Wn
0 (.); h is a

bandwidth that is asymptotically equivalent to h1 and h2; m is the order of the deriva-

tives of the Sobolev space defined in Assumption 2; and k denotes the existence of an

extension of f (x|z) to all of Rk that is continuously differentiable to order ζ on Rk. ζ is a

non-negative integer.

Using the results given for ‖g− g∗‖Wu
and ‖g∗ − g̃‖Wu

and the triangle inequality

the conclusion of Theorem 2, presented rigorously in the Appendix, can be ascertained.
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Specifically:

for u ≤ s ≤ u + 2,

‖g0 − g̃‖Wu
= Op

(αs−u +
α−u−1/2b

n

)1/2

+
L3/2
√

n
+ L1−τ + ln(n)2

(
nhk+2m

)−1/2
+ hω̄



for s > u + 2 :

‖g0 − g̃‖Wu
= Op

(α2 +
α−u−1/2b

n

)1/2

+
L3/2
√

n
+ L1−τ + ln(n)2

(
nhk+2m

)−1/2
+ hω̄


From Theorem 2 it is clear that the convergence rates of the solution are neatly sep-

arated between the effect of the series estimate of E (y|z), the regularized solution, and

the kernel estimate of the conditional density. The convergence rate of g̃ to g0 is then

dominated by the convergence of the slowest of these terms. From this analysis and as a

consequence of Theorem 2 the following result holds:
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Corollary 1. Let δn ≡ (ln (n))
4

2(ω̄+m)+k . Then the optimal α, h, and L are given by:

h∗ = Op

(
δnn

−1
2(ω̄+m)+k

)
L∗ = Op

(
n
−1

n2τ+1

)

for u ≤ s ≤ u + 2,

α∗ = Op

(
n
−b

2bs+1

)

and for s > u + 2:

α∗ = Op

(
n

−b
4b+2bu+1

)

Moreover,

for u ≤ s ≤ u + 2,

‖go − g̃‖Wu
= Op

(
min

{(
n
−b(s−u)

2bs+1 + n
−2b(2s−u)−1

2(2bs+1)

)1/2

; n
−τ−2
2τ−1 ; δ

2(ω̄+m)+k−1
2

n n
ω̄

2(ω̄+m)+k

})

for s > u + 2:
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‖go − g̃‖Wu
= Op

(
min

{(
n

−2b
4b+2bu+1 + n

−2b(4b+u)−1
4b+2bu+1

)1/2

; n
−τ−2
2τ−1 ; δ

2(ω̄+m)+k−1
2

n n
ω̄

2(ω̄+m)+k

})

3.6. Results

This section illustrates how the methodology proposed works. It is tested on the function:

y = g (x) + κ = −sin (8x) + 0.025κ (3.21)

x = z + v (3.22)
κ

v

x

 ∼ N


1 0.5 0

0, 0.5 1 0

0 0 1

 (3.23)

The x and z are normalized to lie between zero and one and given this modification κ

is rescaled by c1. The estimations are performed for 50 and 100 grid points of the vector

z. This is equivalent to the number of representers used to span the space of functions.

As the number of grid points augments, the ill-posedness of the problem increases, so

having too many grid points is not advisable. One can test the degree of ill-posedness by

plotting the log of the eigenvalues of the matrix Q̂n. The plot should be decreasing until
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at some point it starts to show an oscillating behavior. If the plot for a number of grid

points starts to fluctuate before another, the matrix is more ill-conditioned. A higher level

of oscillation also indicates a more ill-conditioned matrix. If the plots are similar, the one

with the least number of grid points should be selected. Although not a formal theory of

how to determine the number of grid points, this method can serve as a guideline.

Graph 1 below shows the plot for 20, 50, and 100 grid points. The solid line represents

the eigenvalues of Q̂n for 100 grid points, the dashed line for 50, and the dash-dot line is

for 20 grid points. According to the suggested criteria a choice of 50 grid points seems to

be the most adequate. However, results are presented both for 50 and 100 grid points.

Graph 1:

Eigenvalues of the matrix Q̂n for three different grids for equation (3.21).

The dashed line corresponds to the grid with 50 points, the dotted line is for 20, and the solid for 100
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Table 3.1: Values of the Parameters Using Generalized Cross-Validation
Regularization Parameter α 1.235
Bandwidth for Z’s 3.335
Bandwidth for the X’s 0.009

Results correspond to grid size of 50 for equation (3.21).

In Table 1 below the values of the parameters are presented for the function in equa-

tion (3.21), for the two sets of grid sizes selected. As was explained above they were

chosen by minimizing the function in equation (3.16). The minimization was done by

a grid search. The optimization was implemented in this way because the generalized

cross validation function is very flat in some regions and built-in minimization routines

in software can be very sensitive to starting values.

In Graphs 2 and Graph 3 the estimation results are presented for equation (3.21) for

the two grid sizes selected. The graphs correspond to the mean after 500 realizations of

the estimation. The confidence intervals are constructed ±1.96
√

mean standard error to

this estimate. In the graphs the confidence intervals are the dashed lines, the estimator is

solid line, and the true function is the dotted line.

Graph 2:

Estimation Results for g̃ in (3.21).
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Estimates with 50 grid points and parameters of Table 1

Dashed line for confidence intervals, dotted for true g, and solid for g̃

The results indicate that the methodology proposed does a good job in recovering the

shape of the function of interest for the grid points selected. Also, it performs well in the

regions of the curve that are less flat. Graphs 1a and 1b, moreover, show that for the exper-

iment presented the matrices are very ill-conditioned. Careful choice of the parameters is

therefore crucial and in this sense this paper makes an important contribution.
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Graph 3:

Estimation Results for g̃ in (3.21).

Estimates with 50 grid points and parameters of Table 1

Dashed line for confidence intervals, dotted for true g, and solid for g̃

3.7. Appendix

Here, the results of the section where the properties of the solution were described is

presented in detail. The assumptions used to derive the conclusions are stated explicitly

and all proofs are provided. First, results of g∗ as an approximation of g0 are given,

followed by those of g̃ as an estimator of g∗.

Using the result in (3.20), and following Lukas (1988), the mean squared error for g∗

as an estimate of g0 can be determined by the following relationship:
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E ‖go − g∗‖2
Wu

= E ‖Kgo −Kg∗‖2
Hu

(3.24)

Assumptions 4 and 5, needed to derive the convergence rates of the relation expressed

in equation (3.24), are stated as follows:

Assumption 4. There exists v, 0 < v < 1− 1/4b, and a sequence cn → 0 such that for all

g, g′ ∈ H:

∣∣∣∣∣
∫

Z
gg′ − 1

n

n

∑
i=1

g (zi) g′ (zi)

∣∣∣∣∣ ≤ cn ‖g‖Hv

∥∥g′
∥∥

Hv

Assumption 5. The random disturbances εi in equation (3.3) satisfies, Eεi = 0,

supi Var (εi) = σ2
u and the ε′is are independent.

Assumption 5 is a slight modification of the assumptions of Lukas (1988) . Specifi-

cally, Lukas (1988) assumes a homoskedastic variance. Here it is assumed instead that

the variance is bounded above. The results of Lukas (1988) are not modified by this and

proceed in the same way with σ2
u in place of the homoskedastic variance.

A restatement of Lukas (1988) Theorem 2.1 using the notation of this study is:

Under assumptions 3 to 5, let E (y|z)∗ belongs to Hs, where s ≥ max u, v and u < 2− v−

1/2b. Suppose that α = α(n) → 0 as n → ∞ in such a way that cnα−v−1/4b → 0 and, if u > v
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and s > v + 2, cnα
−v
2 −

−u
2 −

1
4b → 0. Then for u ≤ s ≤ u + 2,

E ‖g0 − g∗‖2
Wu

= E ‖Kg0 − E(y|z)∗‖2
Hu

= O
(

αs−u ‖E(y|z)∗‖2
s +

σ2
u

n
α−u−1/2b

)

and for s ≥ u + 2,

E ‖g0 − g∗‖2
Wu

= E ‖Kg0 − E(y|z)∗‖2
Hu

= O
(

α2 ‖E(y|z)∗‖2
s +

σ2
u

n
α−u−1/2b

)

Assumptions 6-a2ch8 below come from Newey (1997) and Assumptions 9-11 from

Newey (1994) . They are used by him to derive the convergence rate of series estimators

and of kernel estimators respectively. They will be used here to construct the second

element necessary to arrive at the convergence rate of the solution in (3.9), that is:

‖g∗ − g̃‖Wu
(3.25)

Assumption 6. (y1, z1) , . . . , (yn, zn) are i.i.d and Var (y|z) is bounded.

Assumption 7. For every L, as defined in (3.17), there is a nonsingular matrix B such

that for PL (z) = BL
p (z); (i) the smallest eigenvalue of E

[
PL (zi) PL (zi)

′] is bounded

away from zero uniformly in L and; (ii) there is a sequence of constants ξ0(L) satisfy-

ing supz∈Z

∥∥PL (z)
∥∥ ≤ ξ0(L) and L = L(n) such that ξ0(L) follows ξ0(L)2L/n → 0 as
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n→ ∞.

Assumption 8. For an integer m ≥ 0 there are τ and βL such that E
∥∥∥E (y|z)− PL′βL

∥∥∥
m
=

O (L−τ) as L→ ∞.

In assumption 8 for an arbitrary function h, ‖h‖m = max|θ|≤m supz∈Z

∥∥∥∂|θ|h (z)
∥∥∥where

θ = (θ1, . . . , θr)′ is a vector of nonnegative integers with the same dimension as z, |θ| =

∑r
j=1 θj and ∂|θ|h (z) is a vector of partial derivatives. This is a Sobolev supremum norm.

Lemma 1. Using Assumption 1, if g ∈ Wm converges in the Sobolev supremum norm

‖g‖m = max|θ|≤m supz∈Z

∥∥∥∂|θ|g (z)
∥∥∥ it converges in the norm for Hu, where Wm is as

defined in Assumption 2.

Proof. Assume that a sequence of functions gn(x) in Wm converges in the Sobolev supre-

mum norm to g. Define the reproducing kernel by Rx. Then the following relationship

holds:

|gn(x)− g(x)| =
∣∣∣(gn, g, Rx)Hu

∣∣∣
≤ ‖gn − g‖Hu

‖Rx‖

=

√√√√m−1

∑
v=0

[∂m (gn − g) (0)]2 +
∫ 1

0
[∂m (gn − g) (u)]2 du ‖Rx‖

=
√

m max
|θ|≤m

[∂m (gn − g) (0)]2 + max
|θ|≤m

sup
x∈X

[∂m (gn − g) (u)]2 du ‖Rx‖

≤ (m + 1) ‖gn − g‖m ‖Rx‖

The first equality comes from property 3 of RKHs. The first three relationships use
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the fact that norm convergence in a RKHS implies pointwise convergence (Wahba (1990),

pg.2). The second equality is the definition of the norm of the space in assumption 2.

Assumption 1 bounds ‖Rx‖ and the fact that ‖h‖m converges in the norm guarantees the

convergence of ‖hn − h‖Hu
.

Lemma 1 allows the use of the results of Newey (1994) and Newey (1997) in conjunc-

tion with the results of Lukas (1988) . Specifically, Lemma 1 facilitates the analysis of the

convergence rate of equation (3.24) under the norm of Hu or Wu regardless of the fact that

the convergence of some of its elements was studied under different norms.

Before stating assumptions 9-11 a connection between Newey (1994) and the object of

study of this paper will be established. To simplify notation let (η̂z1 (x) , . . . , η̂zn (x)) ≡ η̂

and
(
Q̂n + αI

)−1 ≡ Q̂α, similarly (ηz1 (x) , . . . , ηzn (x)) ≡ η and (Qn + αI)−1 ≡ Qα.

Expression (3.25) using the previous simplifications can be rewritten as:

‖g∗ − g̃‖Wu
=

∥∥ηQαE (y|z) ∗ −η̂Q̂αΥ (z)
∥∥

Wu

=
∥∥ηQαE (y|z) ∗ −η̂Q̂αΥ (z) + ηQαE (y|z)− ηQαE (y|z) + η̂Q̂αE (y|z)− η̂Q̂αE (y|z)

∥∥
Wu

=
∥∥ηQαεi + η̂Q̂α (E (y|z)− Υ (z)) + E (y|z)

(
η̂Q̂α − αQα

)∥∥
Wu

(3.26)
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The distance between E(y|z)− Υ(z) is studied by Newey (1997) and assumptions 6-8

can be used to ascertain its properties. On the other hand, Newey (1994) can help in the

analysis η̂Q̂α − ηQα. In particular given that the matrices η̂Q̂α and ηQα are functions of η̂

and η and are invertible and bounded, to examine η̂Q̂α − ηQα it suffices to look at η̂ and

η. Specifically, the following relationship will be used:

∥∥ ˆeta− η
∥∥

Wu
=

∥∥∥∥∫X

[
f̂
(
x′|z

)
− f

(
x′|z

)]
R
(
x, x′

)
d′x

∥∥∥∥
Wu

≤
∥∥∥ f̂ − f

∥∥∥
m

∥∥∥∥∫X
R
(
x, x′

)
d′x

∥∥∥∥
Wu

= C
∥∥∥ f̂ − f

∥∥∥
m

(3.27)

The inequality in (3.27) applies the Sobolev supremum norm. This norm will be noted

as ‖.‖m, where m denotes the number of derivatives assumed. It is important to notice

that the reproducing kernel as an element of the RKH is bounded and so can be replaced

by the constant C. From now on C will be used to denote an arbitrary constant in different

contexts. Therefore, the object to analyze becomes
∥∥∥ f̂ − f

∥∥∥
m

. This is where the work of

Newey (1994) becomes relevant for the purpose of this study, as he derives convergence

rates under the Sobolev supremum norm for derivatives of kernel estimators.

Newey (1994) studies the nonparametric estimation of functions of the form Λ0(z) =

E (ρ|z) ∗ ψ0 (z) where the approximation is represented by:
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Λ̂0 (z) =
1

nh

n

∑
i=1

ρiK
(

z− zi

h

)
(3.28)

In the expression above K is a kernel weight. The object of interest as is presented

by Fan et al. (1996) originates in a similar framework. Fan et al. (1996) construct the

conditional density using the following idea:

f (x|r) ≈ E
(

N
(

Xi − x
h2

)
|Z = r

)

A Taylor expansion around z ∈ Z gives:

f (x|r) ≈ f (x|z) + ∂ f (x|z)
∂z

(r− z) +
∂2 f (x|z)

∂2z2 (r− z)2

Combining the previous two statements results in:

f (x|z) ≈ E
(

N
(

Xi − x
h2

)
|Z = r

)
− ∂ f (x|z)

∂z
(r− z)− ∂2 f (x|z)

∂2z2 (r− z)2

f (x|z) ≈ E
(

N
(

Xi − x
h2

)
|Z = r

)
Ψ (z) (3.29)
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In the expression above:

Ψ (z) ≡
[

1−
(

E
(

N
(

Xi − x
h2

)
|Z = r

))−1(∂ f (x|z)
∂z

(r− z) +
∂2 f (x|z)

∂2z2 (r− z)2
)]

Within this framework Fan et al. (1996) build their estimator. In analogy to Newey

(1994) and using the Appendix of Fan et al. (1996), the following estimator can be con-

structed:

m̂ (x, z) =
1

nh1h2

n

∑
i=1

Wn
0

(
Zi − z

h1

)
N
(

Xi − x
h2

)
= =

1
nh1h2

n

∑
i=1

Wn
0

(
Zi − z

h1

)
πi (3.30)

Above N
(

Xi−x
h2

)
≡ πi.

From the previous arguments a correspondence between the conditional density

estimation in this paper and the work of Newey (1994) can be established. Explic-

itly, Wn
0 (.) is equivalent to K(.) and πi to ρi. Likewise, equation (3.29) is analogous

to Λ0 (z) = E (ρ|z)ψ0 (z) where E
(

N
(

Xi−x
h2

)
|Z = r

)
∼ E(ρ|z), ψ0 (z) ∼ Ψ (z), and

Λ0 (z) ∼ f (x|z).

The assumptions and arguments of Newey (1994) can be rephrased in terms of equa-
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tion (3.29) and equation (3.30). As will be seen below two sets of assumptions are being

made. The first set restricts the behavior of Wn
0 . The second set imposes conditions on

the moments of N(.).

Using the remark after Theorem 1 in Fan et al. (1996) it can be noted that h1 and h2 are

asymptotically equivalent. Therefore, without loss of generality for the convergence rate

results we can write equation (3.30) as:

m̂ (x, z) =
1

nh2

n

∑
i=1

Wn
0

(
Zi − z

h

)
πi (3.31)

Assumptions 9-11, which come from Newey (1994), in this framework become:

Assumption 9. There are positive integers ∆ and ω̄ such that Wn
0 (u) is differentiable of

order ∆, the derivatives of order ∆ are Lipschitz, Wn
0 (u) is zero outside a bounded set, for

all m < ω̄,
∫

Wn
0 (u)

[
⊗m

l=1

]
du = 0 and

∫
Wn

0 (u) du = 1.

Assumption 10. There is a non-negative integer ζ and an extension of f (x|z) to all ofRk

that is continuously differentiable to order ζ onRk.

Assumption 11. For µ ≥ 4, E
[
‖πi‖µ] < ∞ and E

[
‖πi‖µ |z

]
Ψ (z) is bounded.

Assumption 12. The perturbation varepsiloni is independent of E (y|z)− Υ (z).

Assumption 12 is trying to impose that for E (y|zi)
∗ = E (y|zi) + εi the perturbations

are independent of E(y|zi) and via this channel independent from the error in the esti-
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mation of E(y|zi). In other words, the source of randomness of the observed E(y|zi)
∗ is

unrelated to the error of the nonparametric estimation of E(y|z).

Using the notation of this paper Lemma B.1 of Newey (1994) can be written as:

Suppose E
[
‖π‖µ] < ∞ for µ > 2, E

[
‖π‖µ |zΨ (z)

]
is bounded, Z is compact, assump-

tion 9 is satisfied for m ≤ ∆, and h = h (n) such that h (n) is bounded and n1− 2
µ

ln(n) → ∞.

Then:

∥∥∥ f̂ − E ( f )
∥∥∥

m
= Op

(
ln (n)2

(
nhk+2m

)−1/2
)

Likewise Lemma B.2 of ? can be reworded as:

If Assumptions 9-11 are satisfied for ζ ≥ m + ω̄ then:

∥∥∥E
(

f̂
)
− f

∥∥∥
m
= O

(
hω̄
)

Proposition 2. If the conditions of Lemma B.1 and B.2 in Newey (1994) are satisfied and



175

assumption 10 is fulfilled for ζ ≥ m + ω̄ then:

∥∥∥ f̂ − f
∥∥∥

m
= Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)

Proof. The proof follows from Lemma B.1 and Lemma B.2 in Newey (1994) using the

triangle inequality

Proposition 3.

∥∥η̂Q̂α − ηQα

∥∥
m = Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)

Proof. The outline of the proof was given in the discussion after equation (3.27). It follows

by applying Proposition 2 to equation (3.28), by the fact that Q̂α and Qα are invertible and

bounded, and by the result that convergence in the Sobolev supremum norm implies

convergence in the Sobolev norm (Lemma 1).

The elements constructed so far can now be used to analyze equation (3.27). In partic-

ular the following result is true:

Theorem 1. If Assumptions 5-12 are satisfied, the conditions of Proposition 3 are fulfilled,

and L3

n → 0 then:

‖g∗ − g̃‖Wu
= Op

(
L3/2
√

n
+ L1−τ + ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)

Proof. Let us assume that Assumptions 5-12 are satisfied, the conditions of Proposition 3
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are fulfilled, and L3

n → 0. Then:

∥∥ηQαεi + η̂Q̂α (E (y|z)− Υ (z)) + E (y|z)
(
η̂Q̂α − ηQα

)∥∥
Wu

≤ ‖ηQαεi + ηQα (E (y|z)− Υ (z))‖m + Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)

In this first inequality the Sobolev supremum norm and the result of Proposition 3

are imposed. Since η and Qα are elements of a RKH they are bounded. This allows the

inequality above to be written as:

‖Cεi + C (E (y|z)− Υ (z))‖m + Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)

≤ ‖Cεi‖m + E ‖C (E (y|z)− Υ (z))‖m + Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)

Here Assumption 12 and the triangle inequality are used. Now merging the results of

Newey (1997) for series estimators when L3

n → 0 and Assumption 5 it follows that:

‖Cεi‖m + E ‖C (E (y|z)− Υ (z))‖m + Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)
≤ Op

(
L3/2
√

n
+ L1−τ

)
+ Op

(
ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)
+ C2σ2

u

= Op

(
L3/2
√

n
+ L1−τ + ln (n)2

(
nhk+2m

)−1/2
+ hω̄

)
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With the above results the distance from the true function the estimator proposed

in this paper can be ascertained. Before that, it is important to notice that from the

restatement of Lukas (1988) Theorem 2.1 using the notation of this study it follows that:

for u ≤ s ≤ u + 2,

‖g0 − g∗‖Wu
= Op

((
αs−u

∥∥E (y|z)∗
∥∥2

s +
σ2

u
n α−u−1/2b

)1/2
)

and for s ≥ u + 2,

‖g0 − g∗‖Wu
= Op

((
α2
∥∥E (y|z)∗

∥∥2
s +

σ2
u

n α−u−1/2b
)1/2

)

Also, by Assumption 5, which bounds the conditional variance E(y|z), and Assump-

tion 6, that does the same for E(y|zi)
∗ − E(y|zi), E(y|z)∗ σ2

u above can be taken to be

constants.

Combining these results the convergence rates of the proposed estimator are obtained.

Theorem 2. If the conditions of Theorem 1 are fulfilled and u ≤ s ≤ u + 2,

‖g0 − g̃‖Wu
= Op

(αs−u +
α−u−1/2b

n

)1/2

+
L3/2
√

n
+ L1−τ + ln(n)2

(
nhk+2m

)−1/2
+ hω̄


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for s > u + 2 :

‖g0 − g̃‖Wu
= Op

(α2 +
α−u−1/2b

n

)1/2

+
L3/2
√

n
+ L1−τ + ln(n)2

(
nhk+2m

)−1/2
+ hω̄


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