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Abstract

Most engineering applications have relied on conventional materials of which their material proper-

ties such as elastic moduli, the coefficient of thermal expansion, Poisson’s ratio, etc. are considered

to be intrinsic. Engineered materials employing dissimilar elements and/or carefully designed ge-

ometries, also called as metamaterials (in Greek, the word ‘meta’ means ‘beyond’ or ‘superior’), can

provide material response beyond the limitations of the conventional materials. Hence, they can

offer new types of structures with novel properties that are not found in nature. Examples of such

extraordinary properties include negative refractive index, negative Poisson’s ratio (also known as

‘anti-rubber’ or ‘auxetic’), and negative stiffness. Due to their unique, unprecedented, and ben-

eficial properties, the engineered materials have been of considerable interest in the development

of materials with advanced functionalities in various engineering fields such as biomedical sciences,

health care, aerospace, automobile, microelectromechanical systems (MEMS), national defense, etc.

This dissertation presents several engineered materials with novel mechanical properties that

have been systematically designed and analyzed using various approaches including theory, finite

element analysis, and experiment. These newly designed materials are categorized into three overar-

ching themes: 1) Hierarchical structures with controllable thermal expansion. 2) Cosserat structures

with advanced functionalities. 3) Energy absorption structure.

The first overarching theme deals with the design and analysis of hierarchical structures with

controllable thermal expansion. First, a thermoelastic triangular cell lattice composed of bi-material

curved ribs is examined via finite element analysis (FEA) to determine if bonded (or fixed) con-

nections between neighboring ribs can lead to zero thermal expansion. Results have showed that a

lattice with bonded joints gives rise to substantial positive thermal expansion regardless of changes

in both rib slenderness ratio and rib curvature. A square lattice design utilizing bi-material curved

ribs with bonded joints is suggested to achieve zero thermal expansion. Next, a chiral negative
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Poisson’s ratio lattice with thermal expansion of large magnitude is developed and analyzed by

analytical and experimental approaches. Such a lattice consisting of curved bi-metallic rib elements

can exhibit thermal expansion larger than that of either constituent in magnitude, and this is shown

with a good agreement between the two approaches. Designs for positive, zero, or negative thermal

expansion can also be achieved by controlling geometric parameters of the lattice. These two studies

in the context of hierarchical structures with controllable thermal expansion have provided useful

insights to design dimensionally stable structures subjected to considerable changes in temperature.

For the next overarching theme, several Cosserat structures with novel multi-functional prop-

erties are presented. First, a chiral three-dimensional (3D) cubic lattice is developed. This lattice

is composed of multiple unit cells exhibiting stretch-twist coupling associated with chirality. FEA

following by a customized post-processing developed in MATLAB has revealed that tuning ge-

ometry facilitates to control its mechanical properties such as elastic moduli, Poisson’s ratio, and

stretch-twist coupling. The lattice is then designed to be elastically isotropic to provide a better in-

terpretation and practicability, and this is accomplished by utilizing an elastic relation E = 2G(1+ν)

as a measure of isotropy. The designed chiral 3D isotropic cubic lattice exhibits negative Poisson’s

ratio and significant size effects in torsion. Such size effects cannot be analyzed by a classical

theory of elasticity. Thus, Cosserat elasticity, including additional degrees of freedom which can

give rise to a richer framework to describe materials than the classical elasticity, is adopted and

have revealed large size effects approaching a factor of five in torsional rigidity. In a similar vein,

another Cosserat structure consisting of rotating cubes with pivots at their corners is presented.

This structure has unusual behavior in a sense that it is compliant in tension but rigid in torsion

and bending. Analytical expressions for strains are derived and compared with that computed from

computer-aided design models. Arbitrarily large bulk compliance is verified together with a large

negative Poisson’s ratio. Due to these unusual behaviors, this structure is not classically elastic but

can be considered as an extreme Cosserat solid. According to designs of the present Cosserat struc-

tures, various beneficial properties including stiff yet light-weight, stretch-twist coupling, size effect,

tailorable mechanical property, and a large negative Poisson’s ratio are achievable. Furthermore,
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these designs enable to develop and manufacture multi-functional applications without the need of

different types of homogeneous materials.

Lastly, a lattice structure capable of energy absorption is designed and investigated numerically

and experimentally. The concept of negative stiffness is employed to develop a tetra-beam-plate

unit cell exhibiting snap-through behavior to provide energy absorption phenomenon. This unit

cell is designed to be elastically stable itself even for the presence of negative stiffness and does not

rely on hinges or residual stress. Nonlinear FEA is performed to establish a criterion for designing

the unit cell to exhibit the desirable snap-through behavior as a function of the selected geometric

parameters. This criterion offers to modify design space such as tailoring the performance of energy

absorption capacity and controlling force threshold. According to this criterion, a set of geometric

parameters is chosen to create energy absorption lattice structures with different sizes for nonlinear

FEA and experiments using physical models fabricated by selective laser sintering (SLS) method.

Both numerical and experimental approaches have revealed hysteresis clearly in load-displacement

relationships of the designed structure in response to cyclic loading, indicating its energy absorption

capability. Moreover, drop tests are performed to quantify energy loss due to impact in terms of

the coefficient of restitution. Lower rebound heights are observed for the structure exhibiting the

designed snap-through behavior, which demonstrates energy dissipation. Due to its capability to

absorb energy, the present lattice structure may be useful in vibration isolators, impact absorbers,

protective devices, and so forth.

In summary, newly engineered materials presented in this dissertation can offer access to previ-

ously unoccupied material design space that is not achievable by utilizing homogeneous materials

solely. Their unprecedented properties may be of considerable interest in diverse engineering appli-

cations such as sandwich panel cores, sensors, actuators, dampers, protective devices, etc. Further-

more, they may open up new dimension for designing next-generation engineered materials with

advanced functionality.
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Chapter 1

Introduction

1.1 Background information

1.1.1 Controllable thermal expansion

Dimensional stability subject to large temperature change is essential or desirable for various engi-

neering applications, particularly in fields such as aerospace, civil engineering and microelectronics

[1]. With such temperature changes, thermal stresses are likely caused by different thermal expan-

sions in components of a structure which contains materials with dissimilar coefficients of thermal

expansion (CTE). In extreme thermal surroundings, structures are subject to considerable thermal

strains and/or thermo-mechanical fatigue which may result in structural failure. Thermal gradients

can also affect dimensional stability in sensitive applications in which precise positioning of parts is

critical. A material’s CTE is therefore a key consideration when selecting materials for engineering

applications with such large gradients in temperature [2]. Thermal expansion for a linear elastic

isotropic material with linear thermal expansion properties is described as follows.

εij =
1 + ν

E
σij −

[ ν
E
σij − α∆T

]
δij (1.1)

where ν is Poisson’s ratio, E is Young’s modulus, α is CTE, and δij is Kronecker’s delta. Thermal

expansion of crystalline solids is considered to be an intrinsic property to each material since it is

attributed to the anharmonicity (i.e., nonlinearity) of the interatomic potential. Thermal expansion
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in common materials tends to decrease with increasing elastic modulus [3]. Some materials such as

Zirconium tungstate, Zr(WO4)2, have negative thermal expansion. Unlike other negative expansion

solids, it has negative thermal expansion throughout a temperature range of more than 1000 ◦C.

Thermal expansion of composite materials had been realized to be bounded by the expansion

coefficient of the constituent phases [4]. Particularly, the bounds for α of isotropic composite

materials of two solid phases in terms of constituent expansions α1 and α2, bulk moduli K1 and K2

are as follows.

α = α1V1 + α2(1− V1)

α = α1V1
K1

K
+ α2(1− V1)

K2

K

(1.2)

where V1 is the volume fraction of phase 1 and K is the bulk modulus of the composite. Similarly

with the classical Voigt-Reuss and Hashin-Shtrikman bounds that provides limits on the elastic

modulus of composites [5] [6] [7], Equation 1.2 assumes that the two phases are perfectly bonded,

that there is no porosity, and that each phase has a positive definite strain energy. Such bounds

can be useful in the study of complex composites or biological tissues where the structure is so

complicated that one cannot readily study the relation between structure and physical properties.

If any of the assumptions above is relaxed, arbitrarily large or small values of expansion is possible,

which is higher than the upper bound or lower than the lower bound. Three-phase bounds assuming

positive definite energy is also possible when allowing void space [8] [9].

Cellular solids include void space (i.e., porosity). Thermal expansion of the cellular solid is

the same as that of the solid from which it is made if the ribs (struts) in a foam or honeycomb

is homogeneous [10]. With two solid phases and void space, arbitrarily high positive or negative

thermal expansion can be achieved in composites [11]. Provided this concept, it is then possible to

design composites with high thermal expansion with the aid of topology optimization [12]. Extreme

values of expansion can be achieved in dense composites with slip interfaces [13]. Two and three
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dimensional cellular solids made of bi-material curved rib elements can give a rise to any desired

thermal expansions (such as zero, or large positive, or large negative) [3] [11]. The difference in

CTEs leads to bending of the rib in response to temperature change, which results in a decrease

of the distance between its ends. This change in length gives rise to the thermal expansion of the

lattice as a whole. Large values of piezoelectric sensitivity are also possible; lattices with bi-material

piezoelectric elements have been developed and analyzed [14] and investigated experimentally [15].

1.1.2 Cosserat continuum theory

Generalized continuum theories for mechanical behavior allowing degrees of freedom that are not

considered in the classical theory of elasticity have developed over the centuries: for example couple

stresses, body couples, and local motions by Voigt [16], and E. and F. Cosserat [17]. A key idea of

these theories is the Cosserat continuum has six degrees of freedom at each point of a medium.

Mindlin and Tiersten [18] in 1962 introduced the indeterminate couple stress theory in which

the rotation of a material point is the same as the local rotation of the surrounding medium; this

represents a constrained Cosserat continuum with three degrees of freedom. This constraint leads

to the indeterminacy of both the anti-symmetric part of the stress tensor and the spherical part of

the couple stress tensor. A characteristic length (i.e., couple stress constant) was introduced in this

theory, which is a material property. Classical elasticity is obtained when this length parameter

vanishes.

Eringen and Suhubi [19] [20] in 1964 developed a nonlinear theory of microelastic solids that

needs 42 constitutive functions of the joint invariants of the kinematic variables to represent the

continuum. These 42 functions are reduced to 18 material constants in the linear isotropic forms;

Mindlin [21] in 1964 who derived a linear theory via variational principles obtained similar results.

The theory by Erigen and Suhubi includes a special case of a linear couple stress if the microrotation

tensor and the stress moment tensor are required to be anti-symmetric. Such a constraint is identical

to a case when one specifies rigid microelements in an elastic matrix. The linear displacements are

kinematically independent of the microrotation, and generalized Cosserat continuum with the six
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degrees of freedom is preserved. The stress and couple stress tensors are fully established, and the

number of elastic constants is reduced to six. Due to the greater generality of this couple stress

theory compared to the Mindlin-Tiersten theory, Eringen [22] in 1966 renamed it as micropolar

elasticity.

The constitutive equations for an anisotropic Cosserat elastic solid [23] are as follows.

σij = Cijklεkl + Pijklφk,l (1.3)

mij = Qijklφk,l + Pijklεkl (1.4)

where εkl is the strain tensor, σij is the (asymmetric) Cauchy stress tensor, Cijkl is the elastic mod-

ulus tensor. mij is the couple stress tensor in unit of moment per unit area which is asymmetric

in general. Pijkl and Qijkl are Cosserat constants that contribute to sensitivity to local gradient

of microrotation vector. The Cosserat microrotation vector φ is kinematically independent of the

macrorotation vector ri = (eijkuk,j)/2 which is associated with the motion of neighboring points.

The usual Einstein summation convention is used and the comma denotes differentiation with re-

spect to ensuring subscripts, which represent Cartesian coordinates.

Cosserat isotropic solids

The constitutive equations of linear isotropic non-chiral micropolar elasticity, considered to be iden-

tical to the Cosserat elasticity, are as follows [23].

σij = λεkkδij + 2Gεij + κeijk(rk − φk) (1.5)

mij = αφk,kδij + βφi,j + γφj,i (1.6)

in which the usual Einstein summation convention is employed and the comma represents differen-

tiation with respect to spatial variables. The constants λ and (2µ+κ) = 2G have the same meaning
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as in classical elasticity. σkl is the (asymmetric) usual (Cauchy or force) stress tensor, mij is the

couple stress tensor (moment per unit area) which is asymmetric in general, εij = 1
2(ui,j + uj,i)

is the (symmetric) small strain tensor, ui is the displacement vector, and eijk is the permutation

symbol. The microrotation vector φi refers to rotation of points of themselves, while ri refers to the

rotation associated with movement of nearby points.

As described in Equations 1.5 and 1.5, there are six elastic constants for an isotropic Cosserat

linear solid (α, β, γ, κ, λ, G) compared with two for the classical solids; α, β, and γ refer to sensitivity

to rotation gradients, and κ refers to the degree of coupling between fields. Note that Eringen [23]

uses 2µ + κ = 2G, consequently µ is different from the shear modulus G in this notation. The

following technical constants obtained from the tensorial constants are useful in terms of physical

insight as follows.

Young’s modulus E =
2G(3λ+ 2G)

2λ+ 2G
(1.7)

Shear modulus G (1.8)

Poisson’s ratio ν =
λ

2(λ+G)
(1.9)

Characteristic length for torsion `t =

[
β + γ

2G

]1/2
(1.10)

Characteristic length for bending `b =

[
γ

4G

]1/2
(1.11)

Coupling number N =

[
κ

2G+ κ

]1/2
(1.12)

Polar ratio Ψ =
β + γ

α+ β + γ
(1.13)

The classical solid can be obtained as a special case of the Cosserat solid allowing α, β, γ,

κ to tend to zero. The case of N = 1 (its upper bound) can be interpreted as couple stress

theory [18] [24] [25]. This corresponds to κ→∞, which implies a situation permitted by energetic

considerations such as, for example, incompressibility in classical elasticity. In contrast, the case
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κ→ 0, or equivalently, N = 0, decouples the rotational and translational degrees of freedom.

In many aspects from a classically elastic solid, a Cosserat solid is predicted to behave differently

as follows: dispersion of transverse waves [23], the existence of new types of waves [23], size effects

in torsion [26] and in bending [27] of a cylindrical member, a reduction in the concentration of stress

around holes [28] [29] [30], a modification of the mode shapes in vibrating bodies [18] and in human

compact bone, which is a natural composite material [31].

Cosserat chiral isotropic solids

Chiral materials and structures do not have a center of symmetry (i.e., noncentrosymmetry); they

are not invariant to inversion of coordinates. Chirality is not revealed in classical elasticity. For

chiral solids viewed as a continuum, which is isotropic with respect to direction, chiral Cosserat

constitutive equations are as follows [32].

σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm) + C1φr,rδkl + C2φk,l + C3φl,k (1.14)

mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl + (C2 + C3)εkl + (C3 − C2)eklm(rm − φm) (1.15)

The elastic constants C1, C2 and C3 denote the effect of chirality. There are nine elastic con-

stant whereas isotropic non-chiral Cosserat elasticity mentioned previously has six. Cosserat elastic

constants were determined by analysis of 2D chiral lattices [33] [34] and obtained experimentally in

non-chiral foams [35] [36].

New phenomena are predicted qualitatively in chiral materials. A rod deforms in torsion in

response to tensile load [32]. Examples of chiral materials include crystalline materials such as

quartz and sugar which are chiral on an atomic scale, as well as composites with helical inclusions

or spiraling fibers.
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Size effects

Classical elasticity has no length scale. Hence, there is no predicted sensitivity to gradients of

strain. A structural length scale can be found in composites and foams. This length scale provides

experimentally observed size effects; the predictions of classical elasticity do not agree with the

rigidity of slender bars or plates. In addition, the toughness of materials has a length scale (in unit

of MPa
√
m); for example, for foams the toughness is connected with the cell size [10].

Cosserat elasticity, also known as micropolar elasticity, is a continuum elasticity theory that

contains a length scale. A size effect is observed in the torsion of circular cylinders of Cosserat

elastic materials [26]. Slender cylinders appear stiffer than that expected via classical elasticity.

In the bending of plates and of beams, a similar size effect is predicted [27]. In tension, no size

effect is predicted since there is no strain gradient. In addition, waves with short wavelength reveal

dispersion; the velocity depends upon frequency. Size effects are seen to occur in torsion and

bending of foams [36]. A natural composite, human compact bone, also exhibit size effect [37]. In

classical elasticity, effective shear modulus is independent of specimen size. This study [37] showed

experimentally that the apparent modulus increases significantly as the specimen diameter becomes

smaller. In a view of micro-structure, twist of each individual osteon as a large fiber that contributes

to the twisting moment.

An isotropic Cosserat solid has six elastic constants, as given in Equations 1.5 and 1.6, and these

constants can be obtained from size effect experiments [38] [39]. As these constants tend to zero,

the characteristic lengths also tend to zero, and the Cosserat elasticity becomes classical elasticity

for which there is no characteristic length. The stress concentration factor for a circular hole is

seen to be smaller in composites compared to a value via classical elasticity, and larger holes exhibit

more stress concentration than small ones. Cosserat elasticity can predict such situations.

1.1.3 Negative Poisson’s ratio

Classical isotropic solids may be described using two elastic constants, Young’s modulus E and

Poisson’s ratio ν. While Young’s modulus is considered to be a measure of stiffness and has a wide
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range from several KPa for soft materials to 1 TPa for diamond, Poisson’s ratio is typically between

0.25 and 0.35 for most common materials and approaches 0.5 for rubbery materials. Poisson’s ratio

is practically important since it governs the deformation fields of elastic objects. Poisson’s ratio also

influences wave speeds in a material. Longitudinal waves propagate much faster than shear waves

if Poisson’s ratio is large. In contrast, a small Poisson’s ratio leads to shear waves propagate faster

than longitudinal waves [40].

Poisson’s ratio, named after a French mathematician Siméon Denis Poisson [41], is defined as the

ratio of transverse contraction strain to longitudinal extension strain in the direction of stretching

force.

ν = − εtransverse
εlongitudinal

(1.16)

where ε is the change in length divided by the original length as defined in elementary form. Nearly

all ordinary materials have a positive Poisson’s ratio. That is, they become smaller in cross-section

when stretched and larger when compressed. For example, a rubber band becomes narrower in cross

section when it is stretched.

Negative Poisson’s ratio is permissible theoretically. Materials with −ν expand laterally sub-

jected to tensional load. Foams with ν as small as -0.7 with enhanced resilience [42] [43], α-

cristobalite with ν equal to -0.16 [44], a planar chiral lattice with ν equal to -1 [45], cubic elemental

metals exhibiting −ν in the [110] direction [46], and metamaterials with negative Poisson’s ratio

and bistability based on reentrant origami [47] have been made. Negative Poisson’s ratio materi-

als are often termed as ‘anti-rubber’ in a New York Times survey [48] of the 1987 Science article

[42], ‘auxetics’ [49], and ‘dilational’ [50]. The term ‘dilational’ arises from the fact that negative

Poisson’s-ratio-materials easily undergo volume changes but are stiff to shear. In contrast, rubbery

materials are stiff in relation to volume change (i.e., resist volumetric (bulk) deformation) but read-

ily undergo shape changes (i.e., shear deformation). Theoretically, the allowable range of Poisson’s

ratio for three-dimensional isotropic solids is from -1 to 1
2 [2]. This is based on intrinsic structural
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stability of materials in view of energy considerations [51]. A stable material with free surfaces must

be in a minimum energy state at zero strain. The bulk modulus B and shear modulus G must be

greater than zero for an isotropic solid with free surfaces to be stable under conditions of prescribed

surface load. For isotropic objects, four common elastic constants (E, G, B, and ν) are interre-

lated. For example, the Young’s modulus is E = 2G(1 + ν), the bulk modulus is B = 2G 1+ν
3(1−2ν) .

Thus, to be stable, the range of Poisson’s ratio for isotropic solids with free surfaces and with no

constraints is −1 < ν < 1
2 . In contrast, Poisson’s ratio for anisotropic materials is not as limited as

compared to that of isotropic materials. For solids having sufficient anisotropy, Poisson’s ratio can

occur in a range from −∞ to ∞. The negative Poisson’s ratio effect is not from Cosserat elasticity.

The classical theory of elasticity has no length scale. Negative Poisson’s ratio does not require the

characteristic length scale appears in Cosserat or micropolar elasticity.

1.1.4 Negative stiffness

For most elastic materials, stiffness is positive (i.e., positive force to displacement ratio). That is,

these materials tend to resist deflection or deformation by an applied force. Negative stiffness is a

counter-intuitive phenomenon that entails a reversal of the usual directional relationship between

force and displacement, and it can occur in pre-strained objects such as models of single foam cells

[43], buckled flexible tubes forming kinks (which contain stored energy at a state of equilibrium)

[52], and lumped systems containing discrete buckled tubes [53].

An object or structure with negative stiffness is usually unstable itself. A constrained buckled

column with ‘S’-shaped configuration is in unstable equilibrium [54]. However, a structure may be

stable if constrained under some circumstances. For snap-through response due to negative stiff-

ness which can be caused by pressing laterally on the column, one can stabilize the column with

a lateral constraint. Structures with negative stiffness can also be stabilized by incorporation in

heterogeneous materials or composites. This process can offer extreme values of physical properties.

For example, a lumped system composed of discrete buckled tubes exhibits both tunable negative
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stiffness and resulting extreme damping [53], composites with negative stiffness inclusions in a vis-

coelastic matrix give rise to higher stiffness and mechanical damping than that of either constituent

[55], a composite made of a pure tin matrix with negative stiffness inclusions of ferroelastic vanadium

dioxide results in extreme (viscoelastic) mechanical damping and large anomalies in stiffness [56],

particulate composites with a negative stiffness inclusions in a viscoelastic matrix display extreme

thermal expansion and other extreme linear coupled filed properties such as piezoelectricity and

pyroelectricity [57], composites made with a small volume fraction of negative stiffness inclusions

disclose overall stiffness much higher than that of either constituent [58], a simple spring model with

pre-load to exhibit negative stiffness gives rise to extreme overall stiffness [59], composite materials

with negative stiffness due to constraint upon a phase transformation disclose material properties

greater than those of either constituent [60], and composite materials containing barium titanate

inclusions in a tin matrix exhibit a viscoelastic (Young’s) modulus much higher than that of either

constituent and stiffer than diamond over a narrow temperature range [61].

These extreme behaviors exceed classical bounds [62], where composite properties cannot exceed

the properties of the constituents. Such bounds are based on theorems assuming that each con-

stituent does not have initial stored energy. In contrast, an object with negative stiffness initially

contains stored energy; composite stability can be enhanced by viscoelastic dissipation, if present

[61].

Recently, due to its unique and beneficial aspect, negative stiffness behavior has been of con-

siderable interest in various engineering applications [63] including energy harvesting/dissipation

[64] [65] [66] [67] [68], shock/vibration isolation and damping [69] [70] [71] [72] [73] [74] [75], and

sensitivity enhancement [76] [77] [78].

1.2 Thesis organization

This dissertation presents the development and characterization of materials with novel mechanical

properties and contains three main themes: 1) Hierarchical structures with controllable thermal
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expansion. 2) Cosserat structures with advanced functionalities. 3) Energy absorption structure.

Chapters 2 and 3 provide the design and analysis of hierarchical structures with controllable

thermal expansion. First, the feasibility of zero thermal expansion for a thermoelastic triangular

cell lattice with fixed (or bonded) joints is examined in Chapter 2. This lattice is composed of

bi-material curved ribs to control thermal expansion due to bending of the ribs. Finite element

analysis (FEA) utilizing a commercial code called ANSYS APDL is adopted to explore the effects

of joint conditions on the lattice. The effects of both rib curvature and rib slenderness ratio are also

investigated. By extending the idea of hierarchical structures with controlling thermal expansion in

another direction, a chiral negative Poisson’s ratio lattice with thermal expansion of large magnitude

is presented in Chapter 3. This lattice utilizes bi-metallic rib elements and circular nodes to achieve

control of thermal expansion. Using geometric relations of the lattice together with Timoshenko’s

beam theory, analytical expressions that predict the thermal expansion coefficient of an individual

bi-metallic rib element are derived. Laboratory experiment is performed to validate the analytical

result.

Cosserat structures with advanced functionalities are presented in Chapter 4 through 6. First,

the development and characterization of a chiral three-dimensional (3D) cubic lattice are discussed

in Chapter 4. This lattice contains multiple unit cells that consist of deformable beams and rigid

cubical nodules. A design of this unit cell is inspired by the shape of deoxyribonucleic acid (DNA) to

employ chirality giving rise to stretch-twisting coupling in response to external stimulus. Geometric

dependency of mechanical properties and Cosserat effects are examined by FEA following by a

customized post-processing developed in MATLAB. In Chapter 5, a similar analysis as Chapter 4

is performed but focuses on designing elastically isotropic Cosserat solids. Size effects in torsion are

studied in accord with Cosserat elasticity. In Chapter 6, another 3D Cosserat structure consisting

of cubes connected by pivots at their corners is presented. This structure is designed to undergo

arbitrarily large volumetric changes while it is compliant in tension but rigid in torsion and bending.

Hence, it has zero Young’s modulus and zero bulk modulus. To validate this behavior, analytical

expressions predicting strains are derived and compared to that computed from 3D computer-aided
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design (CAD) models created by a commercial CAD software SolidWorks.

The last main theme of the development and analysis of an energy absorption lattice structure

is discussed in Chapter 7. A design of a tetra-beam-plate unit cell exhibiting snap-through behavior

is proposed by utilizing negative stiffness from geometric nonlinearities caused by large deflection

of the constituent beams. Nonlinear FEA is employed to establish a criterion for designing the

unit cell to exhibit the desirable snap-through behavior as a function of the selected geometric

parameters of the unit cell. This criteria is then used to choose a set of geometric parameters of the

unit cell to create energy absorption structures for numerical and experimental studies. Physical

models representing such structures are fabricated by selective laser sintering (SLS) method. The

two studies are demonstrated to reveal energy absorption capability of the designed structures

which is indicated by hysteresis in the load-displacement relationships in response to cyclic loading.

Correlation analysis between the two approaches is performed, and energy loss due to impact in

terms of the coefficient of restitution is investigated by performing drop tests.

Lastly, Chapter 8 makes concluding remarks regarding the work presented in this dissertation

and covers future work in this research area.
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Chapter 2

Simulations of thermoelastic triangular

cell lattices with bonded joints by finite

element analysis

The following chapter has been published:

C. Ha, M. E. Plesha, and R. S. Lakes, "Simulations of thermoelastic triangular cell lattices with

bonded joints by finite element analysis", Extreme Mechanics Letters, 12, 101-107 (2017).

Abstract Thermoelastic triangular cell lattices composed of bi-material curved ribs were de-

signed and analyzed by finite element simulation. Positive, negative, or zero thermal expansion was

possible by varying rib curvature if joints can pivot freely, as expected. Welded or bonded joints

result in nonzero expansion but smaller in magnitude than that of a constituent material having

higher thermal expansion coefficient. The effects of rib curvature variation for bonded joints were

found to be negligible. Rib slenderness for both joints did not influence the coefficient of thermal

expansion. We present a square lattice with bonded joints that has zero net thermal expansion;

each curved bi-material rib has zero expansion.
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2.1 Introduction

Various engineering structures in fields such as aerospace, civil engineering, and microelectronics

often undergo large temperature changes [1]. They lead to thermal stresses caused by different

thermal expansions in components of a structure which are made of materials with dissimilar coef-

ficients of thermal expansion. In the field of aerospace, supersonic and hypersonic vehicles exhibit

significant thermal stresses, and thermodynamic propulsion plants also experience similar stresses

[79]. For these structures, dimensional stability (i.e., structural integrity) is surely a key considera-

tion. An example of the importance of dimensionally stable design of structures is the Hubble space

telescope; considerable thermal distortions were produced by rapid temperature changes during its

orbit, which led to undesired vibration of the telescope and the arrays [80]. A material’s coefficient

of thermal expansion is thus clearly one of the driving factors when selecting materials for structures

subject to large fluctuations in temperature [2].

Materials of zero or minimal thermal expansion can provide dimensionally stable designs of

structures subject to large temperature change. For example, zero or nearly zero thermal expansion

is desirable in fields in which precise positioning of parts is critical, such as optics and electron-

ics [81]. Similarly, aerospace and civil engineering applications, like piping systems designed with

tight dimensional tolerances, are required to have minimal or zero thermal expansion for achieving

dimensional stability under extreme variation in temperature [82]. By contrast, materials exhibit-

ing negative thermal expansion are of interest for applications need to contract with increases in

temperature [83]. It is also possible to control any desired thermal expansions (such as zero, or

large positive, or large negative) in composite materials with void spaces by tuning design of their

microstructure [11] [84].

Recently, Lehman and Lakes [85] showed that zero coefficient of thermal expansion in a lattice

made of bi-material curved rib elements can be achieved by designing hierarchical material structures

with carefully chosen geometry and materials while optimizing the total mechanical stiffness of a

thermoelastic triangular lattice, as shown in Figure 2.1. Two different metals with different positive



15

thermal expansion coefficients were used to design this microstructure, which is composed of ribs

whose cross section was rectangular. The difference in thermal expansion coefficients leads to

bending of the rib during temperature change, which results in a decrease of the distance between its

ends which is exactly counterbalanced by overall thermal expansion of the rib. By carefully tuning

geometric parameters of the bi-material curved rib, zero net thermal expansion in a honeycomb

or lattice structure can be achieved. An overall thermal expansion coefficient for an individual bi-

material curved rib element with pin-ended joints, as depicted in Figure 2.2, is provided by Equation

2.1 [85]. The derivation of this equation was based on Timoshenko’s work for bi-material strips [86]

αnet = (α1 − α2)
Larc
t

( θ
12

) 6(1 +m2)

3(1 +m)2 + (1 +mn)(m2 + 1
mn)

+
α1 + α2

2
+ (α2 − α1)

[ 4m2 + 3m+ 1
mn

nm3 + 4m2 + 6m+ 1
mn + 4

− 1

2

] (2.1)

where α1 and α2 are the thermal expansion coefficients of material one and two, respectively, E1

and E2 are the elastic modulus of material one and two, respectively, Larc is the arc length of the

curved rib, m is the thickness ratio of material one to material two (i.e., m = a1
a2
), n is the elastic

modulus ratio of material one to material two (i.e., n = E1
E2

), θ is the included angle and t is the

total thickness of the rib. In order to obtain zero coefficient of thermal expansion, material one,

positioned on the inner portion of the curved rib, is required to have a smaller thermal expansion

coefficient than material two on the outer portion. Invar was used as material one, while material

two was steel, and their material properties are given in Table 2.1.
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Figure 2.1: The equilateral triangular lattice composed of bi-material curved ribs
[85]. Material one with a lower coefficient of thermal expansion is shown as white (on
the inner portion of each rib), while material two with a higher coefficient of thermal

expansion is shown as black (on the other portion of each rib).

(a) (b)

Figure 2.2: (a) The loading state used to determine analytical results of zero co-
efficient of thermal expansion on the bi-material curved rib for pin-ended joints [85].
(b) Larc is the arc length of the rib, θ is the included angle, and P represents axially
applied load. The cross-sectional area of the bi-material curved rib [85] is shown.

Table 2.1: Material properties of selected materials.

Material 1 (invar) Material 2 (steel)
Elastic modulus, E 140 GPa 200 GPa

CTE, α 1 µstrain/K 12 µstrain/K
Poisson’s ratio, νLT 0.28 0.3
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The analysis of such a lattice [85] relies on pin-ended joints between the bi-material curved ribs.

These joints allow a force transmission to adjacent ribs while rotation is unconstrained; the ends

of adjoining ribs are free to rotate with respect to one another. For these reasons, the curvature,

and hence the moment, throughout a rib is uniform, with the result that it was straightforward to

obtain the analytic solution given in Equation 2.1. For other engineering reasons such as limitations

during the manufacturing process, bonded (or welded) joints between these ribs may be desirable or

may be necessary. For example, we are currently investigating the use of 3-D printing to fabricate

new materials, and this technology will most likely require bonded joints. With bonded joints, the

curvature and moment will not be uniform and the resulting differential equations will be difficult

or impossible to solve in closed form. Hence, the use of finite element analysis is effective.

In the present manuscript, an individual bi-material curved rib connected by pin-ended joints

was modeled using the commercial finite element program ANSYS APDL to verify the analytical

results of reference [85]. A finite element model of the bi-material curved rib with bonded joints was

then created and studied to determine if it could achieve zero or reduced thermal expansion. For

both ribs, the effective coefficients of thermal expansion were calculated. The effects of rib curvature

and of rib slenderness for both joints were also investigated. To incorporate the effects of interactions

between adjacent ribs in a lattice, several finite element models of a thermoelastic triangular lattice

were created by assembling the finite element models representing each of individual bi-material

curved ribs. The influence of bonded joints between such ribs in the lattice was then investigated

subject to uniform temperature change. The effective thermal expansion coefficient of the lattice

was also computed. A change in the orientation of some of the ribs in the lattice was studied to

observe how such a change would influence the overall thermal expansion. Finally, we conclude this

paper with discussion of a square lattice with bonded joints that has zero net thermal expansion

provided that each rib has zero thermal expansion.
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2.2 An individual bi-material curved rib

2.2.1 Determination of optimized geometric parameters

In order to achieve zero thermal expansion coefficient of an individual bi-material curved rib, geo-

metric parameters and material properties need to be specified carefully [85]. With Equation 2.1

describing the net thermal expansion coefficient of the rib in terms of geometric parameters and

elastic moduli of the two materials, the included angle to obtain a zero net thermal expansion coef-

ficient can be numerically computed by varying the invar fraction, as illustrated in Figure 2.3. Invar

fraction is the ratio of the thickness of invar to the total thickness of the rib, and the rib aspect

ratio, AR, is the ratio of the arc length to the total thickness of the rib. Each curve denotes a

different aspect ratio for representing slenderness of the rib. Materials used in this graph are typical

invar and steel. The prior analytical results described an optimum invar fraction as approximately

45 % [85]. The input to FEM requires a more precise value than is needed to draw graphs for an

analytical result. This value was extracted from Equation 2.1 to show that the optimum fraction

was actually 46.39 % regardless of the rib aspect ratio. This parameter was confirmed by obtaining

desired thermal expansion of a rib with pin-ended joints by finite element analyses.

The optimum invar fraction of 46.39 % was then substituted into Equation 2.1 to obtain opti-

mized geometric parameters of an individual bi-material curved rib. With the total thickness of the

rib of 1 mm and the rib aspect ratio of 10, the included angle was calculated as 0.4909 radians, the

radius of curvature was found to be 20.3684 mm, and the thickness of materials one and two was

computed as 0.4639 mm and 0.5361 mm, respectively. These optimized values are summarized in

Table 2.2.

Table 2.2: Optimized geometric parameters of an individual bi-material curved rib.

Optimized geometric parameters Values
The thickness of the material 1, a1 0.4639 [mm]
The thickness of the material 2, a2 0.5361 [mm]

The included angle, θ 0.4909 [radians]
The radius of curvature, ρ 20.3684 [mm]
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Figure 2.3: The included angle of the bi-material curved rib versus the invar fraction
with various aspect ratios to achieve zero thermal expansion coefficient. For all aspect
ratios, the minimum included angle θ, which corresponds to the rib with the least

curved geometry, occurs for the invar fraction of approximately 46.39 %.

2.2.2 Design of an individual bi-material curved rib

Baseline finite element model

A baseline finite element model of an individual bi-material curved rib, as depicted in Figure 2.4a,

was created by using the optimized geometric parameters given in Table 2.2. This model allows

simulation of both the pin-ended and the bonded joints by imposing two different sets of support

conditions. For design of the baseline model, PLANE 183 elements were used in ANSYS with

linear elastic isotropic plane stress behavior. The width in the direction perpendicular to xy-plane

was 1 mm. This element is a higher order two-dimensional 8-node element, and has a quadratic

displacement behavior and two degrees of freedom (d.o.f.) at each node: nodal translation in the x

and y directions. Material one positioned on the inner portion of the rib was invar, while material

two on the outer portion was steel. The material properties given in Table 2.1 for invar and steel

were used for this model.
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(a)

(b)

(c)

Figure 2.4: (a) A two-dimensional baseline finite element model of an individual
bi-material curved rib. PLANE 183 elements in ANSYS were used with plane stress
behavior. Geometric parameters listed in Table 2.2 were applied to this model. The
width was set to 1 mm in the direction perpendicular to xy-plane. All nodes and
elements lie in the plane of the figure. (b) A two-dimensional finite element model
describing a simply supported bi-material curved rib. (c) A two-dimensional finite
element model describing an individual bi-material curved rib with bonded joints.

In general, an increase in the number of finite elements in a model produces greater accuracy of

the results at the expense of greater computation time. A convergence analysis was performed to

determine a suitable number of elements in order to have acceptable accuracy. The model meshed
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with 100 elements per rib was considered as reference. It was found that at least 80 elements per rib

were required to obtain displacement error less than 1 %. For this reason, unless specified otherwise

throughout this paper, all of the finite element models are meshed using a total of 100 elements per

rib.

Finite element model of an individual bi-material curved rib with pin-ended joints

The finite element model shown in Figure 2.4b was created so that it could reproduce the same

support conditions that were employed in the analytical study [85]. Namely, this model is simply

supported with a pin at the left and a roller at the right that constrains the vertical motion at the

right tip. Hence, this model is appropriate to verify the prior study of a zero net thermal expan-

sion of an individual bi-material curved rib with pin connections at ends [85]. Since the support

conditions do not constrain rotation at either end, both ends are allowed to rotate freely, and the

right end is free to displace horizontally due to either an axial load at the right tip or a temperature

change. Note that the supports (i.e., locations of the pin and the roller) are positioned at the

interface between materials.

Finite element model of an individual bi-material curved rib with bonded joints

A finite element model representing an individual bi-material curved rib with bonded joints on both

ends was developed, as shown in Figure 2.4c. This model is built-in at the left and is supported

with a roller at the right tip with constraint equations that prevent rotation of the right end while

allowing a uniform translation of the right end in the x direction (i.e., nodal displacements of the

right end in the x direction are uniform). Hence, these support conditions represent bonded joints

at both ends of the curved rib. Note that the roller support is located at the interface between

materials on the right edge.
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2.2.3 Results and discussion

Thermal expansion of an individual bi-material curved rib with bonded joints

Uniform temperature changes, ∆T , of 1K, 10K, 20K, 50K, and 100K were applied to both finite

element models with pin-ended and bonded joints. Since our models are linear elastic, only one

temperature change would be adequate to characterize the thermal expansion behavior, but we

believe the usefulness of the results is enhanced by considering multiple temperature changes. Note

that the finite element model with the pin-ended joints was used to numerically study the validity

and/or limitations of the analytical results [85] regarding parameters that allow design of a rib with

a zero net thermal expansion. Thus, this model was expected to have zero thermal expansion. For

useful comparisons, additional finite element models for a homogeneous curved rib made entirely

of invar or entirely of steel were also modeled, and the corresponding thermal expansions were

computed numerically for both the pin-ended and the bonded joints.

Figure 2.5 demonstrates numerically obtained horizontal tip displacements for both homogeneous

and bi-material curved ribs as a function of uniform temperature change. In this graph, solid data

points represent the ribs with the bonded joints, while the ribs that are pin connected are illustrated

as hollow data points. As expected, for homogeneous ribs, there was very small difference in

horizontal tip displacements regardless of the joint conditions; these ribs produced uniform thermal

expansion which resulted in no cross section rotation of the ends, and the coefficients of thermal

expansion were about 1 µstrain/K for a rib made of invar and about 12 µstrain/K for a rib made

of steel. This is consistent with the notion that constraint of rotation should not be influenced by

uniform deformation.

A bi-material curved rib with pin-ended joints produced nearly zero horizontal tip displacements.

The corresponding coefficient of thermal expansion was found to be 0.1884 µstrain/K. Therefore it

can be concluded that there is good agreement between the finite element model and the analytical

results [85]. On the other hand, a bi-material curved rib with bonded joints showed a substantial

increase in the horizontal tip displacement, and the thermal expansion coefficient of this rib was
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computed to be 8.0157 µstrain/K. This rib experienced a horizontal tip displacement that is 42.5

times larger than that for the pin-ended joints subjected to the same temperature change, but still

exhibited approximately 33 % less expansion than that of a homogeneous rib made of steel.

The constraint of rotation reduces the bending effect that would otherwise enable the bi-material

curved rib to achieve zero expansion. As a result, it appears that the optimized geometric parameters

to obtain zero thermal expansion according to the analytical results [85] need to be revised for a rib

with bonded joints.

Uniform temperature change, ∆T [K]
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Figure 2.5: The horizontal tip displacement of homogeneous and bi-material curved
ribs versus uniform temperature change, ∆T .

The effects of rib curvature

A further investigation on a bi-material curved rib with bonded joints was performed to determine

whether careful tuning of the geometric parameters could result in zero net thermal expansion.

Four rib curvatures were generated by varying the radius of curvature, ρ, and the included angle,

θ, simultaneously while holding a constant distance between the ends of the rib constant, as shown
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in Figure 2.6. The thick solid curve shown represents the rib curvature obtained using the opti-

mized geometric parameters (ρopt and θopt) given in Table 2.2. Geometric parameters for other rib

curvatures are given in Table 2.3.

Rib span
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rib curvature #4 (i.e., least curved)

optimized rib curvature

Figure 2.6: Several rib curvatures, shown to scale, for the bi-material curved rib.
Each curve was generated by varying the optimized geometric parameters while hold-
ing a constant distance between the ends of the rib constant. The thick solid curve

shown represents the optimized curvature of the bi-material curved rib [85].

Table 2.3: Geometric parameters for several rib curvatures. The radius of rib
curvature and the included angle were varied simultaneously while holding a constant

distance between the ends of the rib constant.

ρ/ρopt θ/θopt
Rib curvature #1 0.685 1.541
Rib curvature #2 0.816 1.232
Rib curvature #3 1.237 0.806
Rib curvature #4 1.5 0.663

The baseline finite element model of the bi-material curved rib was modified in order to develop

finite element models of the bi-material curved rib having rib curvatures shown in Figure 2.6. Similar

to the analysis in the previous section, horizontal tip displacements of these models due to uniform

temperature changes were computed numerically and are illustrated in Figure 2.7. In addition to
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the ribs with bonded joints, pin-ended ribs associated with each rib curvature shown in Figure 2.6

were also studied to observe how they would result in thermal expansion depending on varying the

rib curvature under uniform temperature change. As before, hollow data points illustrate the ribs

with pin-ended joints, while solid data points represent the ribs with bonded joints.

As depicted in Figure 2.7, the horizontal tip displacements of the bi-material curved ribs with

pin-ended joints decrease as the rib becomes more curved (i.e., increasing rib curvature). If the rib

is more curved than one designed based on optimal parameters leading to zero thermal expansion,

material two with a higher coefficient of thermal expansion (i.e., the outer portion of the rib)

dominates deformation, which leads to negative thermal expansion. On the other hand, material

one with a lower coefficient of thermal expansion plays a substantial role resulting in positive

thermal expansion when the rib is less curved. This indicates that such ribs allow one to produce

either positive or negative thermal expansion by varying rib curvature (i.e., changing ρ and θ

simultaneously) while holding other geometric parameters constant.

In contrast, for the ribs with bonded joints, the horizontal tip displacements were not altered

significantly regardless of how much these ribs were curved. The thermal expansion coefficients

for these ribs were found to be approximately 8 µstrain/K. A study of the effect of rib curvature

was done by holding a constant distance between the ends of the rib while varying the radius of

curvature, ρ, the included angle, θ, and the arc length, Larc. For the ribs with bonded joints, the

bending moment that is produced varies depending on the rib curvature. As the rib curvature

increases, the arc length extends, which minimizes the effect of the bending moment. This results

in the minimal influence on thermal expansion.

Consequently, it would be desirable to have an analytical solution for a rib with bonded joints.

This would help to explore the design space to determine if and how zero thermal expansion could

be obtained. However, even with such a solution, it would not provide the same results as for a rib

with bonded connections that is part of a lattice, because of the effects of rotation of the ends.
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Uniform temperature change, ∆T [K]
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Figure 2.7: The horizontal tip displacement versus uniform temperature change.
Each line represents the horizontal tip displacement of the bi-material curved ribs
for several rib curvatures described in Figure 2.6 with either pin-ended or bonded
joints. While the ribs with the pin-ended joints can produce either positive or negative
thermal expansion by controlling geometric parameters, such thermal expansions are

not possible with the ribs with the bonded joints.

The effects of rib aspect ratio

If ribs are straight and slender, it is known that a lattice with bonded joints behaves similarly to a

lattice with pin joints. A difference is observed in the present lattice which has curved ribs. The

reason is that curved ribs when deformed tend to rotate at the end. A bending moment is generated

at a bonded joint but not at a pin joint. If ribs are straight there is neither a tendency to rotate

nor a bending moment.

A brief study of the effects of aspect ratio, AR, was carried out. As defined earlier, the aspect

ratio is the ratio of the rib’s arc length to its total thickness; increasing AR corresponds to an

increasingly slender rib. Although we do not present detailed results here, we found that under

uniform temperature change, regardless of aspect ratio, a rib with pin-ended joint achieves nearly

zero thermal expansion, and thermal expansion of a rib with bonded joints is unchanged. Thus, the

role of bending moments in ribs with the bonded joints continues importantly even for slender ribs.
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2.3 Thermoelastic triangular lattices composed of bi-material curved

ribs

In Section 2.2 of this paper, finite element models were developed to represent individual bi-material

curved ribs with pin-ended and bonded joints. Although these finite element models have provided

insightful results, they do not necessarily characterize the thermal expansion behavior of a lattice

that is composed of these ribs. Thus, it is necessary to develop finite element models of possible

lattice structures, and several of these are considered in this section and the next.

2.3.1 Design of a thermoelastic triangular bi-material lattice

A finite element model of a thermoelastic triangular bi-material lattice

A finite element model of a two-dimensional equilateral triangular lattice composed of bi-material

curved ribs was created by assembling the finite element model of an individual bi-material curved

rib, as shown in Figure 2.8a. The elastic moduli and thermal expansion coefficients for invar and

steel described in Table 2.1 were applied to the model. Thus, this model is adequate to represent

the lattice proposed by reference [85]. Node numbers at the locations of joints are shown in this

figure. This model is supported by a pin at node 1 (i.e., the left-bottom node) and rollers at nodes

2, 3, 4, and 5 (i.e., the remaining bottom nodes). Additionally, in order to reproduce bonded joints

between the ribs in the lattice, a rotational degree of freedom (i.e., rotation about the z direction)

on edges at both ends of the ribs needs to be constrained in such a way that adjacent edges of

adjoining ribs have the same rotational displacement. To do so, each of these edges was meshed

with two BEAM 189 elements in ANSYS APDL, as shown in Figures 2.9a and 2.9b. This element is

a three-dimensional quadratic three-node beam element having six degrees of freedom at each node;

three translations in the x, y, and z directions and rotations about the x, y, and z directions. To

render these beam elements as two-dimensional, the superfluous degrees of freedom for all nodes of

the beam elements were constrained to have zero values (i.e., for each node of the beam elements,

translation in the z direction and rotations about the x and y axes were given zero prescribed
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values). Moreover, a stiffer elastic modulus (100 times stiffer than steel) and the same rectangular

cross sectional area were applied to the beam elements compared to that of the baseline model of

an individual bi-material curved rib, for representing a realistic bonded joint in practice. A thermal

expansion coefficient of these beam elements used at the ends was also set to zero.

(a) (b)

Figure 2.8: (a) A two-dimensional equilateral triangular lattice composed of bi-
material curved ribs. Node numbers at the locations of joints are shown. (b) A
two-dimensional equilateral triangular lattice composed bi-material curved ribs with
reversed rib curvatures. This model is identical to that described in Figure 2.8a except

the bottom ribs of each cell have been reversed.

A finite element model of a thermoelastic triangular bi-material lattice with reversed

rib curvatures

Figure 2.8b shows a finite element model representing a two-dimensional equilateral triangular lattice

where the bottom ribs of each cell in the lattice are reversed compared to Figure 2.8a. Material

properties, element types used for modeling, nodal locations, and support conditions are identical

to the finite element model of the lattice described in the previous section.

2.3.2 Results and discussion

Thermal expansion of a thermoelastic triangular bi-material lattice

Uniform temperature changes, ∆T , of 1K, 10K, 20K, 50K, and 100K were considered. Figure 2.10
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(a) (b)

Figure 2.9: A representation of bonded joints in the lattice model using four 3-node
beam elements (BEAM 183) on the ends of ribs. Two ribs are shown separated for
clarity. (a) The rib has two stiff beam elements, and similarly for the rib on the right.
(b) The nodes and element edges for the solid elements are not shown for clarity.
The beam elements share a common node, and due to their high stiffness, they are
essentially rigid and effectively model a bonded connection between the two ribs.

illustrates overall thermal expansions in the x and y directions of a thermoelastic triangular bi-

material lattice with two different joint conditions (i.e., pin-ended and bonded joints), respectively.

Solid data points represent the lattices with the bonded joints while the pin-ended lattices are given

as hollow data points. Such displacements of homogeneous lattices made entirely of invar or entirely

of steel were also plotted in these figures for useful comparisons. The results showed that the overall

thermal expansion displacements of the bi-material lattice with the bonded joints were significantly

larger in both x and y directions than those with the pin-ended joints; the corresponding effective

coefficients of thermal expansion were calculated to be approximately 6.6707 µstrain/K for the

bonded lattice and -0.0326 µstrain/K for the pin-ended lattice.

As a result, a pin-ended bi-material lattice allows tuning of thermal expansion coefficient to

approach zero, while a similar lattice with bonded joints exhibits substantial thermal expansion.

Moreover, it is worthwhile noting that the pin-ended bi-material lattice produces very small negative

coefficient of thermal expansion rather than small positive value that has been observed in a study of

an individual bi-material curved rib with pin-ended joints. Thus, an analytical solution for a lattice
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with bonded joints would be desirable, which would help to study the design space to determine

whether zero thermal expansion could be obtained.

Uniform temperature change, ∆T [K]
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Figure 2.10: Overall thermal expansions in the x and y direction of a thermoe-
lastic triangular lattice composed of bi-material curved ribs with two different joint

conditions.

Thermal expansion of a thermoelastic triangular bi-material lattice with reversed rib

curvatures

Figure 2.11 illustrates overall thermal expansions in the x and y directions of a thermoelastic

triangular bi-material lattice having reversed curvature bottom ribs of each cell (shown in Figure

2.8b) with both pin-ended and bonded joints due to uniform temperature changes. A change in the

orientation of the rib curvature from concave-down to concave-up had negligible effect on the overall

thermal expansion in a pin-ended lattice regardless of its material constitution. On the other hand,

such change resulted in an overall thermal expansion of a lattice with bonded joints that is larger

in the x direction by a factor of 1.20 and in the y direction by a factor of 1.03, when compared to

a similar lattice with no reversed rib curvatures. Therefore, it appears that thermal expansion of a

bi-material lattice with bonded joints is sensitive to the shape of each cell.
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Uniform temperature change, ∆T [K]

0 20 40 60 80 100

O
v
e
ra

ll 
th

e
rm

a
l 
e
x
p
a
n
s
io

n
 i
n
 t
h
e
 x

 d
ir
e
c
ti
o
n

o
f 
a
n
 e

q
u
ila

te
ra

l 
tr

ia
n
g
u
la

r 
la

tt
ic

e

h
a
v
in

g
 r

e
v
e
rs

e
d
 c

u
rv

a
tr

u
e
 b

o
tt
o
m

 r
ib

s
 [
µ

m
]

-10

0

10

20

30

40

50

Bimaterial-bonded

Bimaterial-pinned

Invar-bonded

Invar-pinned

Steel-bonded

Steel-pinned

Uniform temperature change, ∆T [K]

0 20 40 60 80 100

O
v
e
ra

ll 
th

e
rm

a
l 
e
x
p
a
n
s
io

n
 i
n
 t
h
e
 y

 d
ir
e
c
ti
o
n

o
f 
a
n
 e

q
u
ila

te
ra

l 
tr

ia
n
g
u
la

r 
la

tt
ic

e

h
a
v
in

g
 r

e
v
e
rs

e
d
 c

u
rv

a
tr

u
e
 b

o
tt
o
m

 r
ib

s
 [
µ

m
]

-10

0

10

20

30

40

50

Bimaterial-bonded

Bimaterial-pinned

Invar-bonded

Invar-pinned

Steel-bonded

Steel-pinned

Figure 2.11: Overall thermal expansions in the x and y direction of a thermoelastic
triangular lattice having reversed curvature bottom ribs of each cell composed of

bi-material curved ribs with two different joint conditions.

2.4 A square lattice composed of bi-material curved ribs

Zero thermal expansion in lattices with bonded joints is possible if ribs are orientated with cubic

symmetry, as shown in Figure 2.12. This lattice is stiff in the principal directions but not in oblique

directions. Due to a uniform temperature change, each rib produce the same displacement and

rotation. However, the joint rotation of each rib is accommodated by equal rotation of adjoining

ribs, hence there is zero moment in each rib at each joint, even though joints are bonded. This leads

to zero net thermal expansion provided that each rib individually has zero net thermal expansion

and provided the temperature change is uniform. Due to a temperature gradient, this lattice will

likely have thermal expansion, although perhaps this will be small. Further finite element studies

are needed to elucidate this behavior.
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Figure 2.12: A square lattice composed of bi-material curved ribs with bonded
joints. This lattice will display zero thermal expansion provided each rib has zero

thermal expansion and the temperature change is uniform.

2.5 Conclusions

This manuscript shows that an individual bi-material curved rib with pin-ended joints can exhibit

desired thermal expansion, as expected. On the other hand, a rib with bonded joints produced

substantial positive thermal expansion. The effects of rib curvature variation were negligible on

thermal expansion of a rib with bonded joints, while a rib with pin-ended joints depended highly

on it. The effective coefficient of thermal expansion of a rib with both pin-ended and bonded joints

stays the same regardless of different slenderness. The role of bending moments in curved ribs

bonded at the joints persists even for slender ribs. Similar results were observed for equilateral

triangular lattices with these two different joint conditions. A change in the orientation of some of

the ribs in a lattice had a negligible thermal expansion change in pin-ended lattices regardless of

its material constitution. However, for lattices with bonded joints, the shape of cells in the lattice

strongly influence the overall thermal expansion. A square lattice composed of bi-material curved

ribs with bonded joints can provide zero expansion.
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Chapter 3

Controllable thermal expansion of large

magnitude in chiral negative Poisson’s

ratio lattices

The following chapter has been published:

C. Ha, E. Hestekin, J. Li, M. E. Plesha, and R. S. Lakes, "Controllable thermal expansion of large

magnitude in chiral negative Poisson’s ratio lattice", Physica Status Solidi (b), 252 (7), 1431-1434

(2015).

Abstract Lattices of controlled thermal expansion are presented based on planar chiral lattice

structure with Poisson’s ratio approaching -1. Thermal expansion values can be arbitrarily large

positive or negative. A lattice was fabricated from bimetallic strips and the properties analyzed

and studied experimentally. The effective thermal expansion coefficient of the lattice is about

α = −3.5 × 10−4K−1. This is much larger in magnitude than that of constituent metals. Nodes

were observed to rotate as temperature was changed corresponding to a Cosserat thermoelastic

solid.
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3.1 Introduction

Materials with large thermal expansions have many potential applications as thermal actuators.

Available materials such as common metals, alloys, and polymers have a limited range of expansion

that may not suffice for some applications. Composite materials may be considered, but until

recently were not thought to be promising, because thermal expansion of a two phase composite

has been constrained by analytical bounds [4]. The expansion of the composite cannot be larger

than the maximum expansion of the constituents. These bounds were derived assuming that the

two phases are perfectly bonded, also that there is no porosity, and that each phase has a positive

definite strain energy. If one relaxes any of these assumptions, one can achieve arbitrarily large

or small values of expansion. For example if the composite contains void space, lattices may be

envisaged with controllable expansion of large or small magnitude, or even negative expansion [11]

[3]. The ribs in the lattice can be made of a sandwich of two materials of different thermal expansion,

giving rise to bending [86]. In a related vein, lattices with bi-material piezoelectric elements have

been developed and analyzed [14] and studied experimentally [15]; these lattices give rise to large

values of piezoelectric sensitivity.

The concept used in the present research is based on a planar chiral lattice with Poisson’s ratio

-1 [34]. The Poisson’s ratio was determined experimentally and analytically. Experiments revealed

that the Poisson’s ratio is approximately constant for axial compressive strains up to 25%. This is

in contrast to the nonlinearity observed in the Poisson’s ratio of negative Poisson’s ratio foams [42]

and of honeycombs [87] with inverted hexagonal cells of bow-tie shape. Negative Poisson’s ratio

materials are commonly referred to as “auxetic". Chiral lattices have been analyzed [33] in the

context of Cosserat (micropolar) elasticity [23] in which rotation of points has physical significance.

Analysis shows this lattice has the largest Cosserat characteristic length scale of all known lattice

topologies [88].

Chiral lattices have been considered for use as chiral honeycomb [89] [90] in sandwich panels

for airplane wings that change shape, and they have been analyzed for buckling [91] and other
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characteristics such as stop bands in wave propagation [92]; they have also been fitted with sensors

and actuators for possible use as smart structures [93].

3.2 Procedure

Figure 3.1: Chiral lattice structure with bi-material ribs with alternating orienta-
tion. Two materials indicated as light and dark, differ in their thermal expansion.

The lattice structure is chiral in plane and gives rise to a Poisson’s ratio approaching -1. To

achieve control of the thermal expansion, the lattice structure makes use of bi-material rib elements

as shown in Figure 3.1. These ribs bend upon a temperature change, giving rise to node rotation

and to strain of the lattice.

As for materials, the most active bimetallic strip material available was used: Engineered Ma-

terials Solutions “P675R" strip [94]. Its high expansion alloy is 52.8% by weight and is composed

of 72% manganese, 18% copper, and 10% nickel. Its low expansion alloy is 36% nickel and 64%

iron [94]. The thermal expansion coefficient for constituent metals is from about 10 × 10−6 K−1

(for iron) to 22 × 10−6 K−1 (for manganese). The low expansion alloy appears to be Invar, with

α = 1.3× 10−6 K−1 and the high expansion alloy [95], α = 27.2× 10−6 K−1.
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The strips were first cut from a large roll of bimetallic sheet. The strips were cut to a length of

Lrib = 75 mm, and a width of 10 ± 0.2 mm. The thickness of the strips is h = 0.25 ± 0.05 mm. The

high and low expansion sides were determined by heating a strip on a hot plate and observing the

curvature. The circular nodes used for the chiral cells were cut from a chlorinated PVC plastic pipe

with outer diameter d = 16 mm and wall thickness 2 mm. In an initial trial, a lattice was made by

bonding constituents with conventional cyanoacrylate cement, but the glue joints did not survive

repeated excursions to 70◦C. Constituents were bonded with Loctite type 491 cement, intended for

use at elevated temperature up to 400◦C. The lattice cells were constructed following the design in

Figure 3.1 except that some overlap of rib segments was provided to facilitate bonding, rather than

cementing end to end. The same type 491 cement was used to make the mid-rib joints. The lattice

consisted of six triangular cells arranged in a hexagonal pattern.

Temperature control was achieved using a Fisher model 126 muffle furnace. The lattice was

placed in the furnace behind a calibrated length scale. Digital photographs were taken from the

same height and angle for all measurements. Isolation from ambient temperature was achieved

by taping a transparent plastic film over the furnace. A thermocouple lead was placed in the

middle of the lattice for temperature measurements. Output indicated that the plastic film was a

sufficient insulator from ambient temperature outside the furnace. With this configuration, digital

photographs of the lattice in room temperature air were taken (25◦C), followed by photographs

at temperatures up to 120◦C. Specifically the lattice was photographed in the furnace at ambient

temperature, then the temperature was progressively increased. Further digital photographs of the

lattice were taken at elevated temperature, then more photographs were taken during slow cooling.

Some further experiments were conducted below ambient temperature by using the uniform low

temperature outdoors in winter. Dimensions of the lattice in the vertical and horizontal directions

were measured from the digital images using Photoshop software. The scale in the digital images

was about 150 pixels/cm.
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3.3 Analysis

Figure 3.2: Bending of a rib in a chiral lattice structure.

Ribs are assumed to be sufficiently slender that deformation from axial strain is negligible in

comparison with deformation due to bending of the ribs. Nodes are assumed to be rigid. Also,

thermal expansion is assumed to occur freely without constraint. In the chiral lattice, strain is

geometrically linked to rotation φ, node outer radius r and the spacing R of nodes between centers

[34]:

ε =
rφ

R
(3.1)

A temperature change causes bending of the bi-material rib segments which produces curvature

with radius ρ in which the included angle is 2φ as shown in Figure 3.2. So

φ =
Lrib
4ρ

(3.2)

where the rib length Lrib is such that, from the diagram,

R =
√
L2
rib + (2r)2 (3.3)

Each half of the rib has a uniform curvature but in the opposite direction because the bi-material
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strips have opposite orientation. Hence, the deformed rib has an S shape. Combining Equations

3.1 - 3.3 yields

ε =
r

4ρ

1√
1 + (2r/Lrib)2

(3.4)

The thermal expansion α is expressed in terms of specific curvature ρs−1 = ρ−1/δT so

α =
r

4ρs

1√
1 + (2r/Lrib)2

. (3.5)

But the curvature is provided by the manufacturer [94] as a specific curvature parameter κ =

37 - 41 ×10−6mmmm
◦C−1 that incorporates the change of curvature with temperature change; in the

following a value of 40 is used. ρs−1 = κ
h , so with h = 0.25 mm, substituting the dimensions and

specification of κ in Equation 3.5, the lattice has expansion of magnitude α = 320 ×10−6 K−1. The

analysis does not provide the sign because orientation was not considered.

If one is provided with the elastic modulus and thermal expansion of each constituent, E1 and

α1 for phase 1 and E2 and α2 for phase 2 respectively, and with the corresponding thickness a1 and

a2 of each layer in the bi-material strip, then the curvature is [86],

ρ−1 =
(α2 − α1)δT

h
2 + 2(E1I1+E2I2)

h [ 1
E1a1

+ 1
E2a2

]
(3.6)

in which δT is temperature change, and I1 =
a31
12 and I2 =

a32
12 are the section moments of inertia of

the layers. The total thickness is h = a1 + a2.

This lattice structure allows one to design the thermal expansion. Larger nodes give rise to a

larger magnitude of thermal expansion. The sign of the expansion depends on the orientation of

the bimetallic rib elements. Also, the specific curvature, hence the thermal expansion, will increase

as the ribs become more slender (smaller h).
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3.4 Results and discussion

Figure 3.3: Experimentally determined thermal expansion coefficient α of the
lattice vs. temperature. The lattice has no thermal strain at the reference temperature

of 25◦C

Experimentally determined thermal expansion vs. temperature is shown in Figure 3.3. The thermal

expansion is negative, there is no systematic difference between expansion in the vertical and hori-

zontal directions, and there is no systematic difference between heating and cooling. Measurements

at small temperature deviations were limited by image resolution and are not shown. The straight

line is a guide for the eye. Negative thermal expansion is uncommon in homogeneous materials; it

entails contraction with increasing temperature and expansion with decreasing temperature. The

lattice underwent substantial deformation at elevated temperature, sufficient to observe rib curva-

ture, as shown in Figure 3.4. The maximum global strain, however, did not exceed 0.05.
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Figure 3.4: Deformation of lattice at 115◦C in which ribs were initially straight
at ambient temperature of 25◦C. Horizontal and vertical refer to directions in which

lattice expansion was measured.

The determination of thermal expansion α obtained via analysis and experiment are in rea-

sonable agreement, in view of limits associated with resolution and the range of quoted specific

curvature values. Also, the overlap of rib segments was not incorporated in the analysis. Too, the

expansion of the polymer nodes is on the order 10−4 K−1 but the node diameter is only 1/5 the rib

length. This contributes a reduction of about 5% in the total negative expansion of the lattice. The

magnitude of α for the lattice is more than 30 times larger in magnitude than the α value for iron.

Higher values could be obtained by using larger nodes, more slender ribs, or both. Positive thermal

expansion can be achieved by reversing the orientation of the constituents of the rib elements.

Expansion can be made small by reducing the node radius r. Zero expansion is possible if the



42

positive axial expansion of each rib element (not considered in the present analysis due to its relative

smallness) is balanced by negative expansion due to rib bending. If the ribs have layers of equal

thickness, their axial expansion could be balanced by contraction due to rib bending if r < 0.5

mm. This is comparable to the rib thickness and the thermal expansion is likely to be sensitive to

variations in dimensions. So design for zero expansion by this approach would require high precision

in the geometrical parameters. Zero expansion is also possible in other lattices [3] [96].

Node rotation for a single node was φ = 0.15 rad for a temperature change of 33◦C. Node rotation

is consistent with the notion of homogenizing the lattice as a continuum via Cosserat elasticity.

Cosserat solids incorporate rotational degrees of freedom in the microstructure in addition to the

usual translation. There are additional elastic constants associated with sensitivity to gradients of

rotation; in three dimensions there are six elastic constants for an isotropic, non-chiral Cosserat

solid; nine constants if it is chiral. Cosserat solids exhibit an internal length scale in contrast to

classically elastic solids; characteristic lengths are expressed in terms of ratios of tensorial elastic

constants. Cosserat elastic constants were obtained via analysis of chiral lattices [33]. Cosserat

elastic constants have been determined experimentally in several non-chiral foam materials from

size effect experiments [35] [36]. Specifically, slender rods in torsion or bending are observed to be

more rigid than anticipated based on classical elasticity. In these foams, the characteristic length

is comparable to the cell size; for these materials, 0.3-3 mm. Rotations have been studied in the

context of rotational waves [97] in designed granular materials. In Cosserat solids, concentrations

of stress around holes and cracks is ameliorated, so there is a link to the toughness of the material.

A continuum view is more appropriate to thermoelastic lattices such as the present ones than for

piezoelectric lattices. Temperature changes can be imposed globally as with a homogeneous material;

by contrast piezoelectric lattices thus far entail an electrical connectivity between layers that must

be provided for the piezoelectric effect to be manifest. Local rotations in isotropic Cosserat elastic

materials are driven by gradients in deformation. If the material is chiral, a uniform stretch gives

rise, in three dimensions, to a twisting deformation, hence rotations [32]. Stretch-twist coupling

of this kind has been analyzed for cholesteric elastomers [98]. In thermo-elastic chiral materials or
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lattices such as the present lattice, a uniform temperature change gives rise to local rotations.

The sign of the thermal expansion and the sign of Poisson’s ratio are independent. For example,

the present lattice with Poisson’s ratio -1 can be made with positive thermal expansion by reversing

the rib orientation or by using homogeneous ribs. As for the freedom associated with Cosserat

elasticity, the characteristic length can be made large or small by choice of the size of the cells in

the lattice; small cells are possible via 3-D printing methods.

As for chiral lattices, such structures have been envisaged for chiral honeycomb [90] in sandwich

panels for airplane wings that change shape. Chiral honeycombs of various type have also been

optimized for buckling strength [99]. Related structures containing rotating hexamers and trimers

[100] and stochastic distributions of circular node sizes can have negative Poisson’s ratio of large

magnitude. Such structures do not have tunable thermal expansion but variants may be envisaged

with such a capability. Indeed, bi-material elements in anti-tetrachiral honeycombs [101] have been

analyzed via finite elements; negative properties can be obtained. In view of the additional freedom

associated with thermal expansion, the present lattices may be considered further in this context or

other lattices developed. The large thermal expansion of the lattice in comparison to its constituent

metals can be useful in devices where a large response is desired from a small temperature change.

3.5 Conclusion

The effective thermal expansion coefficient of the chiral lattice is about α = −3.5×10−4K−1. This is

much larger in absolute magnitude than the value for known homogeneous materials. The thermal

expansion can be controlled by varying the geometrical parameters of the lattice.
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Chapter 4

Chiral three-dimensional lattices with

tunable Poisson’s ratio

The following chapter has been published:

C. Ha, M. E. Plesha, and R. S. Lakes, "Chiral three-dimensional lattices with tunable Poisson’s

ratio", Smart Materials and Structures, 25 (5), 054005 (2016).

Abstract Chiral three-dimensional cubic lattices are developed with rigid cubical nodules and

analyzed via finite element analysis. The lattices exhibit geometry dependent Poisson’s ratio that

can be tuned to negative values. Poisson’s ratio tends to zero as the cubes become further apart. The

lattices exhibit stretch-twist coupling. Such coupling cannot occur in a classical elastic continuum

but it can occur in a chiral Cosserat solid.

4.1 Introduction

Chiral materials and structures lack a center of symmetry; they are not invariant to inversion of

coordinates. For example, quartz is chiral at the inter-atomic level; left and right forms exist.

Chirality may also be introduced in composites on a micro, milli, or macro scale. For example, a

planar chiral lattice with Poisson’s ratio -1 [34] was developed to have a constant Poisson’s ratio

essentially independent of strain. Analysis revealed Poisson’s ratio to be -1, equal to the lower limit
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for stability in 2D or in 3D. Experiments revealed Poisson’s ratio to be approximately constant for

axial compressive strains up to 25%. By contrast, negative Poisson’s ratio of (3D) foams [42] and of

(2D) honeycombs [87] with inverted hexagonal cells of bow-tie shape is dependent on strain. Two

dimensional structures containing rotating hexamers and trimers [100] and distributions of node

sizes can have negative Poisson’s ratio of large magnitude. Negative Poisson’s ratio materials have

been called “auxetic" or “anti-rubber"; if the Poisson’s ratio is independent of strain, they have been

called “dilational".

Chiral 2D lattices have been studied for use as structural honeycomb [89] [90] in sandwich panels

for airplane wings that morph or change shape. Buckling [91] [99] of such lattices has been studied

in such a structural context. Lattices have been made with sensors and actuators for possible use

as smart structures [93]. The lattices exhibit interesting characteristics in wave propagation (e.g.,

tunable band gaps [92]).

Three dimensional lattices offer design freedom in comparison with foams [10]. For example,

3D lattices with ribs organized in a triangulated structure are stiffer than foams made of the same

rib material because the ribs deform axially rather than in bending [102]. A negative Poisson’s

ratio 3D model was developed [103] to better understand the deformation of α-cristobalite [44], a

negative Poisson’s ratio form of silicon dioxide. A 3D model of cubical nodules linked at their corners

was developed [104] to model the nodule-fibril structure and properties of an auxetic microporous

polymer [105]. Also, 3D lattices have been made with a negative Poisson’s ratio [106]. Such lattices

have been made using 3D printing methods.

If a lattice or foam contains a sufficient number of cells, it may be analyzed as a continuum. In

most analyses (e.g., [10]), the continuum is a classical one; classical elasticity has no length scale.

If the cell size is not negligible compared with length scales associated with the specimen or with

strain gradients applied to it, then a more general continuum model may be appropriate. Cosserat

(micropolar) elasticity [23] is such a continuum theory in which rotation of points has physical

significance. For example, chiral lattices [34] have been analyzed [33] [88] in the context of Cosserat

elasticity.
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4.2 Analysis

Figure 4.1: Unit cell of chiral lattice structure (1×1×1). The aspect ratio is defined
to be L/a, where L/a > 1.

Lattices were constructed using the unit cell (1×1×1) shown in Figure 4.1. This cell consists of

eight rigid cubes at the corners of the cell (with edge lengths a) and multiple deformable ribs (i.e.,

beams) connecting various corners of cubes to one another as shown. The center-to-center cube

spacing is L, and the aspect ratio for the unit cell is defined to be L/a, where L/a > 1. The ribs

are steel with E = 200 GPa and ν = 0.3, and circular cross section with diameter of the ribs is 10

µm. This leads to the ratio of the cube side length to the rib diameter equal to be 100.

A finite element model for the unit cell was constructed using ANSYS. Each rib was modeled

using one BEAM 189 element. This beam element has three nodes with six degrees of freedom at

each node (three translations and three rotations); has cubic displacement interpolations; and allows

for modeling bending behavior and torsion in three dimensions. Because each rib is loaded only by

forces and moments at its ends, only one BEAM 189 is needed to obtain exact (or nearly exact)
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Figure 4.2: Examples of chiral lattice structures consisting of multiple unit cells.
At left is a structure with two cells per side (2×2×2), and at right is a structure with

five cells per side (5×5×5).

response [107]. Each cube was modeled using 24 SHELL 181 elements. This shell element has four

nodes with six degrees of freedom at each node (three translations and three rotations). Its material

properties were taken to be eight orders of magnitude greater than E of the ribs, so that effectively

the cubes are rigid. As such, each cube is a hollow object where its six surfaces are discretized using

four shell elements each. The merit of this treatment is that all nodes throughout the finite element

model have the same degrees of freedom, especially rotations, which makes it straightforward to

connect the ribs to the cubes. Note that it is tempting to use solid finite elements to model

the cubes, but these elements have only translational degrees of freedom and hence it would be

difficult to attach the ribs to the cubes since the sets of degrees of freedom for these elements are

fundamentally different. Furthermore, by using four shell elements for each surface of a cube, there

is a node present in the center of each cube’s face, which is convenient for purposes of applying

loads and supports.

Using this unit cell, lattices of multiple unit cells were constructed as shown in Figure 4.2, and

various aspect ratios including 1.5, 1.8, 2, 2.2, 5, 10 and 20 were modeled.

To determine an effective Young’s modulus of the lattices in response to axial compression
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loading, equal point loads in the negative z direction were applied to the center node of each cube

on the surface of the lattice (the surface with positive z as the normal direction) as shown in Figure

4.2 for the 2×2×2 lattice. Support conditions on the opposite surface of the lattice (the surface

with negative z as the normal direction) consisted of zero z direction translation for all center nodes

on cubes, plus a small number of additional constraints to prohibit rigid body motion of the lattice.

Thus, the bottom surface of the lattice is supported by rollers and the Poisson effect is allowed to

fully develop.

Finite element simulations were performed for five lattice structures (1×1×1 through 5×5×5),

and for seven aspect ratios for each of these. Each finite element simulation provided the displace-

ments and rotations of all nodes in the lattice. For each unit cell in a lattice, we computed effective

strains throughout the unit cell by the following process.

Using the eight x direction displacements of each cube of one unit cell, as provided by the finite

element simulation, we fit the following polynomial

ux = a1 + a2x+ a3y + a4z + a5xy + a6yz + a7xz + a8xyz (4.1)

so that the coefficients a1 − a8 could be determined. Similarly, this process was repeated to obtain

polynomials for the y and z direction displacements, namely uy and uz. Equation 5.1 allows one to

embody the notion of average strain in a continuum model. Then, using the standard definition of

small strains

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (4.2)

where x1, x2 and x3 correspond to x, y and z, respectively, we determine the effective strains

throughout each unit cell of a lattice. Note that this entire process is identical to using the shape

functions and [B] matrix for an 8-node brick finite element. Thus, by using the [B] matrix given

in [107], along with the displacements of each cube in the unit cell, the effective strains throughout

each unit cell are easily determined by evaluating {ε} = [B]{d}.
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4.3 Results and discussion

Figure 4.3: Effective Young’s modulus in a principal direction vs. aspect ratio for
chiral lattice.
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Figure 4.4: Poisson’s ratio in a principal direction vs. aspect ratio for chiral lattice.

The effective Young’s modulus in a principal direction versus aspect ratio for chiral lattice is shown

in Figure 4.3. The relative Young’s modulus, Eeff/Erib, was also plotted in this figure. The effective

Young’s modulus first rises then decreases with aspect ratio. The decrease occurs because the round

section rib elements are of constant diameter, but their length increases with aspect ratio. The lower

modulus for the smallest aspect ratio is a result of the highly oblique angle of the ribs with respect

to the nodules.

Poisson’s ratio of the chiral lattice depends on the aspect ratio, as shown in Figure 4.4. Poisson’s

ratio in a principal direction tends to zero as relative rib slenderness increases except when there is

only one cell. Poisson’s ratio can be negative provided there are a sufficient number of cells, and

for an appropriate range of aspect ratio near 2. The minimum in Poisson’s ratio was delineated by

conducting studies at fine intervals of Poisson’s ratio. As the number of cells is increased, the lattice

can be envisaged to approach a continuum for which continuum concepts are appropriate. The model
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with only one cell is better viewed as a structure; it is included in the plot for completeness.

Lattices exhibit stretch twist coupling, as shown in Figure 4.5. Coupling increases with the

aspect ratio except for a single cell; coupling decreases slowly with the number of cells.

Figure 4.5: Stretch twist coupling, ratio of torsion strain / axial strain vs. aspect
ratio for chiral lattice.

As the number of cells increases, the effective Young’s modulus appears to converge to a constant

value as shown in Figure 4.6. Convergence of the Poisson’s ratio to an asymptotic constant value is

slower. The Poisson’s ratios for orthogonal directions are unequal: νxy 6= νyx. Lattices with an even

number of cells on a side exhibit less anisotropy than those with an odd number of cells on a side.

For a cubic classical elastic continuum, these Poisson’s ratios are equal. More cells would be needed

to probe convergence of Poisson’s ratio to the constant, symmetric value of a classical continuum.
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Figure 4.6: Effective Young’s modulus, Poisson’s ratio and stretch twist coupling
vs. number of cells on a side.

Stretch twist coupling in the limit of a classical elastic continuum must be zero but in this series,

no such asymptotic limit is reached. In the limit of sufficiently many cells, the lattice is expected to
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be treatable as an equivalent continuum as is done with foams [10]. However, the continuum need

not be classical. Use of a non-classical continuum model can account for some of the response of

the chiral lattice as follows.

Stretch-twist coupling is associated with chirality. The twisting is either to the left or to the

right. The material or structure must have the requisite asymmetry, specifically chirality, to exhibit

such behavior. As for continuum models, classical elasticity does not distinguish left from right. The

reason is that classical elasticity is a fourth rank tensor property. An inversion of all coordinate axes

converts left to right but has no effect on tensor properties of even rank. Therefore more freedom

is needed in a continuum model to account for chiral elastic effects. Cosserat elasticity provides

sufficient freedom. Cosserat solids incorporate rotational degrees of freedom in the microstructure

in addition to the usual translation. Cosserat solids exhibit a characteristic length scale in contrast

to classically elastic solids. There are six elastic constants for a 3D isotropic, non-chiral Cosserat

solid; nine constants for a 3D chiral solid. Cosserat elastic constants were calculated by analysis

[33] of 2D chiral lattices [34] and determined experimentally in non-chiral foams [35] [36].

For 3D chiral solids viewed as a continuum, chiral Cosserat constitutive equations [32] are

considered.

σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm) + C1φr,rδkl + C2φk,l + C3φl,k (4.3)

mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl + (C2 + C3)εkl + (C3 − C2)eklm(rm − φm) (4.4)

The elastic constants C1, C2 and C3 represent the effect of chirality. There are nine elastic con-

stants compared with six for isotropic non-chiral Cosserat elasticity, and two for classical elasticity.

As with the non-chiral case, characteristic lengths are defined based on ratios of tensorial constants;

further detail is provided in an experimental study of non-chiral foam [35]. The chiral isotropic

Cosserat model predicts the following.
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(1) Stretch-twist coupling in a round rod of isotropic chiral material occurs and is a function of

all nine elastic constants [32].

(2) Stretch-twist coupling in a round rod is nearly constant for small rod radius R; γ/ε ∼ 1/R

for large R much larger than the characteristic length.

(3) The transverse deformation associated with the Poisson effect is nonuniform though the

material is assumed to be a uniform continuum.

The present chiral lattice has cubic symmetry and the shape is cubic, so a direct correspondence

with isotropic continuum models is not to be expected. Nevertheless, the stretch twist coupling

exhibited by the lattice and its slow decrease with size is anticipated in the continuum view. More

detail on the Cosserat interpretation is to be provided elsewhere. The lattice model may also

be modified to obtain orthotropic symmetry by providing different spacing of nodules in three

orthogonal directions.

Poisson’s ratio of individual cells vs. cell position in two transverse directions is shown in

Figure 4.7 and Figure 4.8. As anticipated via the Cosserat continuum view, the Poisson effect is

not homogeneous; it depends on position. The Poisson’s ratio reported for the lattice as a whole,

Figure 4.4, refers to the Poisson’s ratio based on changes in the outer dimensions, corresponding

to standard measurement methods. The lattice, which is cubic not isotropic, exhibits anisotropy in

the Poisson effect.



55

Figure 4.7: Poisson’s ratio of individual cells vs. cell position in x direction for
chiral 5×5×5 lattice.

Figure 4.8: Poisson’s ratio of individual cells vs. cell position in diagonal transverse
direction for chiral 5×5×5 lattice.



56

The ribs in the present lattice were assumed to be made of a single material. Lattices with

bi-material ribs have been studied in the context of control of thermal expansion or of piezoelectric

sensitivity. For example, 2D lattices have been formulated and analyzed with controllable positive

or negative expansion of large or small magnitude [11] [84], or zero thermal expansion [84] [96].

Also, 2D lattices with bi-material piezoelectric elements [14] were studied experimentally [15]; these

lattices exhibit large values of piezoelectric sensitivity.

4.4 Conclusion

Chiral 3D lattices exhibit stretch-twist coupling that increases with relative slenderness of ribs.

Poisson’s ratio depends on geometry and can be negative. Chiral 3D lattices also exhibit Poisson’s

ratio that tends to zero as relative rib slenderness increases. The lattices have cubic structure and

cubic symmetry. Isotropic solids are conceptually easier to model, therefore future development of

lattices can aim to achieve material isotropy of the equivalent continuum.
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Chapter 5

Chiral three-dimensional isotropic

lattices with negative Poisson’s ratio

The following chapter has been published:

C. Ha, M. E. Plesha, R. S. Lakes, "Chiral three-dimensional isotropic lattices with negative Pois-

son’s ratio", physica status solidi (b), 253 (7), 1243-1251 (2016).

Abstract Chiral three-dimensional isotropic cubic lattices with rigid cubical nodules and mul-

tiple deformable ribs are developed and analyzed via finite element analysis. The lattices exhibit

geometry dependent Poisson’s ratio that can be tuned to negative values. Poisson’s ratio decreases

from positive to negative values as the number of cells increases. Isotropy is obtained by adjustment

of aspect ratio. The lattices exhibit significant size effects. Such a phenomenon cannot occur in a

classical elastic continuum but it can occur in a Cosserat solid.

5.1 Introduction

Chiral materials and structures do not have a center of symmetry. There is a distinction between

right and left so they are not invariant to inversion of coordinates. Quartz is a crystal that is

chiral at the inter-atomic level [108]. There is left and right quartz. Chirality may also be designed

in composites on various length scales. A planar chiral lattice with Poisson’s ratio -1 [34] was
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developed. The cell size was several centimeters. Poisson’s ratio was -1, essentially independent of

strain, via experiment and analysis. In contrast, negative Poisson’s ratio of (3D) foams [42] and

of (2D) honeycombs [87] with inverted hexagonal cells of bow-tie shape depends on strain. 2D

structures with rotating hexamers and trimers [100] can exhibit negative Poisson’s ratio of large

magnitude. Negative Poisson’s ratio materials have been called “anti-rubber" [48] or “auxetic" [49]

[109].

Chiral 2D lattices have been analyzed for use as structural honeycomb [89] [90] that may be used

in sandwich panels for airplane wings that morph or change shape. Buckling [91] [99] deformation of

lattices of this type has been studied in a structural context. Lattices have been made with sensors

and actuators [93]. These are referred to as smart structures. The lattices exhibit tunable band

gaps [92] in wave propagation; potentially useful in reducing vibration.

Three dimensional lattices provide design freedom in contrast with foams [10], the structure of

which is a consequence of the foaming method. 3D lattices with triangulated cells are stiffer than

foams made of the same rib material. The reason is the ribs in the triangulated structure deform

axially rather than in bending [102] as they do in foams. A negative Poisson’s ratio 3D model was

developed [103] in order to elucidate the deformation mechanisms of α-cristobalite [44], a negative

Poisson’s ratio form of silicon dioxide. A 3D structure containing corner-linked cubical nodules was

developed [104] to model structure property relations of an auxetic microporous polymer [105]. 3D

lattices with a negative Poisson’s ratio [106] have been designed and fabricated.

Continuum mechanics is used when the size of an object is sufficiently larger than the size of its

microstructure. In most analyses of cellular solids (e.g., [10]), the continuum is classical. Classical

elasticity has no length scale. If the cell size is not small compared with length scales associated with

the object or with strain gradients imposed on it, then it is sensible to use a more general continuum

model. Cosserat (micropolar) elasticity [23] is a continuum elasticity theory which contains a length

scale. Chiral 2D lattices [34] have been analyzed [33] [88] in the context of Cosserat elasticity.

In the present research, 3D chiral lattices [110] with cubic structure are designed to be elastically

isotropic. The rationale of having isotropy is that it provides a simpler interpretation. Also, any
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novel or unusual effects in an elastically isotropic solid cannot be ascribed to directional anisotropy.

Size effects are studied and interpreted via Cosserat elasticity.

5.2 Analysis

Lattice structures were designed using the same finite element analysis (FEA) approach as we have

done previously [110], using the FEA program ANSYS (release 14.5). Here the ribs are made thicker

than in [110] and the aspect ratio is tuned to obtain elastic isotropy. Lattices were designed based

on the unit cell (1×1×1) shown in Figure 5.1a. This cell was constructed using eight essentially rigid

cubes at the corners of the cell (with cube side length a) and numerous deformable ribs (i.e., beams)

connecting different corners of cubes to one another as shown. Note that chirality is introduced

here. The center-to-center cube spacing is L, and aspect ratio of the unit cell is defined as L/a,

which is always greater than unity. The ribs are made of steel with Young’s modulus E = 200 GPa

and Poisson’s ratio ν = 0.3, and have circular cross section with diameter of the ribs equal to 200

µm. The ratio of the cube side length to the rib diameter, a/d is then equal to 5. In prior analysis

[110], this ratio was equal to 100. While such a ratio reveals behavior of stretch-dominated lattices,

thicker ribs are pertinent to bend dominated structures and to the possibility of manufacture via 3D

printing. A three dimensional isotropic chiral lattice was fabricated by fused deposition modeling

(FDM) technology is shown in Figure 5.2. A Dimension Elite 3D printer with Stratasys ABSplus

P430 thermoplastic was used here; the finest resolution is 0.178 mm. A prototype was first designed

and was represented by SolidWorks 2015 in .stl (StereoLithography) format. Additional support

materials (P400 SR) were removed by dissolving them in detergent and water.

A finite element model for the unit cell was constructed as described in [110]. Each rib was

modeled using one beam finite element and each cube was modeled using 24 shell finite elements.

The beam finite element includes shear deformation (i.e., they are based on Timoshenko beam

theory). Nonetheless, despite the relatively low aspect ratio of the beams, `rib/d, in our model

(e.g., for a lattice with L/a equal to 2, `rib/d is 7.07), shear deformations are not expected to be a
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significant source of deformation; they are dominated by bending and torsion. The elastic modulus

for the shell elements was taken to be eight orders of magnitude greater than E of the ribs, so

that effectively the cubes are rigid. As such, each cube is a hollow object where its six surfaces are

discretized using four shell elements each. The merit of this treatment is that all nodes throughout

the finite element model have the same degrees of freedom, namely three translations and three

rotations, which makes it straightforward to connect the ribs to the cubes. Furthermore, by using

four shell elements for each surface of a cube, there is a node present in the center of each cube’s

face, which is convenient for purposes of applying loads and supports. Using this unit cell, lattices

of multiple unit cells were constructed as shown in figure 5.1b, and various aspect ratios including

1.5, 1.8, 2, 2.2, 5, 10 and 20 were modeled.

(a) (b)

Figure 5.1: (a) Unit cell of chiral lattice structure (1×1×1). (b) A structure with
five cells per side (5×5×5). The aspect ratio is defined to be L/a, where L/a > 1.
Note that the cubes and ribs shown here are not to scale; ribs are shown as lines for

providing a better view of chirality.

To determine an effective Young’s modulus of the lattices in response to axial compression

loading, equal point loads in the negative z direction were applied to the center node of each cube

on the upper surface of the lattice (the surface with positive z as the normal direction) as shown

in Figure 5.3a for the 2×2×2 lattice. Support conditions on the opposite surface of the lattice (the
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Figure 5.2: A photograph of a 3d-printed 5×5×5 lattice with an aspect ratio of
1.642. The lattice is about 92 mm on a side.

surface with negative z as the normal direction) consisted of zero z direction translation for all center

nodes on cubes. To prohibit rigid body motion of the lattice, this surface also has the x displacement

at one node and the y displacement at one node constrained, plus one more constraint to prevent

rotation about the z direction. Thus, the bottom surface of the lattice is supported by rollers and

the Poisson effect is allowed to fully develop. Note that there are other ways of applying uniform

compression loading to the top surface of our finite element models. We have chosen to apply forces

to nodes on the top surface, whereas another option is to prescribe z direction displacements. The

disadvantage with the latter case is that it will not allow warping displacements in the z direction

to develop, which we observe do occur due to the chirality of our model. Hence, among these two

basic choices for applying loading (i.e., prescribed forces versus prescribed displacements) we believe

using prescribed forces is more accurate for our purposes.

Elastic isotropy was achieved by tuning the aspect ratio such that the elastic relation E/2G(1 +
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ν) = 1 between Young’s modulus E, shear modulus G, and Poisson’s ratio ν is obtained. To

that end, pure shear loadings were applied to the lattices in order to determine an effective shear

modulus. To model pure shear, equal point loads were applied to the center node of each cube on the

appropriate surfaces of the lattice (the surfaces parallel to the xy and xz planes), as shown in Figure

5.3b. The surface whose normal is the negative z direction was constrained to eliminate rigid body

motion of the lattice; namely, as shown in Figure 5.3b, the x, y and z displacements at one node,

and y and z displacements at another node, and z displacement at yet another node are constrained.

For the present chiral lattices, E and ν were obtained from a compression simulation and G from

a pure shear simulation. The quantity E/2G(1 + ν) was used as a measure of isotropy; this was

computed for all lattice structures, except 1×1×1 lattices, and for all aspect ratios. The results

for the 1×1×1 lattices were not used in this process because models with only one cell are better

viewed as structures. Aspect ratios resulting in elastic isotropy were determined by fitting computed

measures of isotropy (seven data points for each lattice structure) to a 5th degree polynomial using

a least-squares best fit. Indeed, a lower degree polynomial best fit would probably be sufficient,

but the merit to a 5th degree polynomial is that it is able to fit the number of data points we have

(seven) better.
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(a) (b) (c)

Figure 5.3: Loading cases for (a) compression, (b) pure shear, and (c) torsion,
illustrated for 2×2×2 lattices. Support conditions (i.e., displacement constraints) are
also shown. For (a) and (b), the arrows represent equal point loads. For (c), a local
X and Y coordinate system is defined on the upper surface (i.e., the surface with
positive z as the normal direction) with origin at the center of this surface, where
these directions are parallel to the x and y global coordinate directions of the model.
The arrows shown in (c) represent prescribed displacements in the x and y directions

as given by Equation 5.11.

Finite element simulations were performed for all lattice structures (1×1×1 through 6×6×6),

and for seven aspect ratios for each of these. The displacements and rotations of all nodes in the

lattices were computed in each finite element simulation. Effective strains throughout each unit

cell in the lattices were computed similar to our previous research [110] by using the polynomial

interpolation

ux = a1 + a2x+ a3y + a4z + a5xy + a6yz + a7xz + a8xyz (5.1)

The coefficients a1 through a8 were determined by fitting this polynomial to the eight x direction

displacements for each cube in one unit cell of the lattice. Likewise, this process was repeated

for determining polynomials for the y and z direction displacements, namely uy and uz. Equation
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5.1 allows the average continuum strains throughout each unit cell to be determined by using the

standard definition of small strains

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.2)

where x1, x2 and x3 correspond to x, y and z, respectively. Note that this entire process of computing

the effective strains is identical to using the shape function [N ] and the strain-displacement matrix

[B] for an 8-node brick finite element

{ε} = [B]{d} (5.3)

where [B] = [∂][N ]. Thus, the effective strains throughout each unit cell were determined by

evaluating Equation 5.3 with the [B] matrix provided in [107] along with the displacements of each

cube in the unit cell obtained from finite element the simulations.

For the three loading cases shown in Figure 5.3, the effective strains of each unit cell were

averaged throughout the lattice, which gives rise to bulk effective strains of the lattice εlattice in a

view of continuum. With this, one can determine mechanical properties of the lattice as follow. The

effective Young’s modulus of the lattice is given by

Ez =

∑(n+1)2

i=1 Pi
Aeff εlattice,z

(5.4)

where Pi represents an applied point load, n is the number of cells per side and Aeff is an effective

area of the lattice which is defined as (nL)2. Poisson’s ratios for two orthogonal directions are

determined as

νzx = −
εlattice,x
εlattice,z

νzy = −
εlattice,y
εlattice,z

(5.5)
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Finally, the effective shear modulus is found as

Gyz =
τ

γlattice,yz
(5.6)

where

τ =

∑(n+1)2

i=1 Pi
Aeff

(5.7)

When the size scale of specimens does not greatly exceed the microstructure size, classical

elasticity may not apply. A generalized continuum theory such as Cosserat elasticity is more appro-

priate; the theory contains characteristic length scales. Cosserat theory of elasticity [17] [111], also

known as micropolar elasticity [23], integrates a local rotation of points with respect to each other

in addition to the usual translations assumed in classical elasticity.

The stress σjk (force per unit area) can be asymmetric. The resulting moment is balanced by

a couple stress mjk (a torque per unit area). The antisymmetric part of the stress is related to

rotations. σantisymjk = κejkm(rm−φm) in which κ is an elastic constant, φm is the rotation of points,

called micro-rotation, ejkm is the permutation symbol, and rk = 1
2eklmum,l is “macro" rotation

based on the antisymmetric part of the gradient of displacement ui. The constitutive equations [23]

for linear isotropic Cosserat elasticity are

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (5.8)

mij = αφk,kδij + βφi,j + γφj,i (5.9)

where δij is the Kronecker delta and εij is the microstrain tensor. In three dimensions, the quantities

λ, G, α, β, γ, κ are six independent Cosserat elastic constants. An isotropic Cosserat solid thus has

six elastic constants, whereas a classical elastic solid has two. If α, β, γ, and κ become zero, the

equations of classical elasticity are recovered. The characteristic length in torsion is `t =
√

β+γ
2G .
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Cosserat effects may be revealed via size effects in torsion and in bending. Analytical solutions

are available in the literature [26] [27] for round rods of isotropic non-chiral material. There is no

known analytical solution for square bars of chiral material. Thus, the solution for an isotropic

round bar with chiral material [26], which is exact, is used here

G = Gasy(1 + 6(`t/r)
2)

[
1− 4Ψχ/3

1−Ψχ

]
(5.10)

where χ = I1(pr)/prI0(pr), p2 = 2κ/(α+β+ γ), and I0 and I1 are modified Bessel functions of the

first kind. Technical constants include the coupling number which is N =
√

κ
2G+κ and the polar

ratio is Ψ = β+γ
α+β+γ . The ratio of Bessel terms inside the square brackets in Equation 5.10 reduces

to 1 for N = 1.

To study size effects on our lattices, torsion loading was applied by prescribing displacements in

the x and y directions (denoted as dxi and dyi, respectively) to each node i at the centers of all cubes

on the upper surface of the FEA model (i.e., the surface with positive z as the normal direction, as

shown in Figure 5.3c). To determine these displacements, an XY local coordinate system is defined

in Figure 5.3c where the X and Y axes are parallel with the x and y axes of a global coordinate

system, and the origin of the XY system is at the center of the upper face. The displacements

dxi and dyi provide a uniform small rotation η of the upper surface about the +z axis, which is

equivalent to applying torque to the lattices in the same direction. The prescribed displacements

are determined as follows. For a particular node i on the upper surface, its position vector, which

provides its location relative to the origin of the XY coordinate system, is ~ri = Xi î + Yi ĵ, where

Xi and Yi are the coordinates of the node, and î and ĵ are the usual unit vectors in the x and y

directions, respectively. The surface is subjected to a rotation ~ω = η k̂ where η is the prescribed

small rotation of the surface and k̂ is a unit vector in the z direction. Carrying out the cross product

~di = ~ω × ~ri provides the prescribed displacements for node i as

dxi = −ηYi and dyi = ηXi (5.11)
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Rigid body motion of the lattices are suppressed by imposing sufficient boundary constraints on

the opposite surface (whose normal is the negative z direction); x and y displacements on one edge

were constrained, and the z displacement was constrained at two corner nodes (see Figure 5.3c).

Note that all nodes on the upper surface of the FEA model may displace in the z direction, thus the

lattices are allowed to freely warp. In order to compute an effective shear modulus Gtorsion caused

by the prescribed displacements, the reaction forces ~Fi for each of the nodes on the upper surface

with prescribed displacements was retrieved and a net torque was obtained as

~T =

(n+1)2∑
i=1

~ri × ~Fi (5.12)

This torque is in positive z direction and we denote its magnitude by T . The effective shear modulus

for all lattice structures with different aspect ratios were then computed as

Gtorsion =
T (nL)

ηJ
(5.13)

where J is polar moment of inertia which was approximated as J = 1
2π(nL2 )4. The asymptotic shear

modulus Gasy and the characteristic length `t were determined by fitting the computed effective

shear moduli Gtorsion of lattice structures (except the 1×1×1 lattice) to Equation 5.10 in nonlinear

least-squares sense using MatLab; this fitting also provides p and the coupling number N . Here,

the polar ratio Ψ was assumed to be 1.5; size effects are insensitive to Ψ except for size approaching

zero. The radius r was taken as half the width of lattices.

Once Gasy and `t were found by fitting computed data to Equation 5.10, the relative stiffness

Ω was computed by dividing Equation 5.10 by the asymptotic shear modulus Gasy, which gives the

size effect as given in Equation 5.14.

Ω = (1 + 6(`t/r)
2)[

(1− 4Ψχ/3)

1−Ψχ
] (5.14)

The elastic constants obtained by this process are technical constants not tensorial ones. The
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reason is that in the absence of an analytical solution for torsion of a chiral square section bar, the

solution for a round bar was used. Such a simplification cannot generate size effects via classical

elasticity because classical solids do not exhibit size effects, and there is no elastic effect from

chirality. The size effects must arise from generalized continuum; for example, Cosserat effects in

the lattice.

5.3 Results and discussion

The effective Young’s modulus and Poisson’s ratio from the compression simulations and the effective

shear modulus from the pure shear simulations for all lattice structures (1×1×1 through 6×6×6),

and for seven aspect ratios are shown in Figures 5.4, 5.5 and 5.6. The objective is to find an

aspect ratio that gives rise to elastic isotropy. Note that it was necessary to assume a modulus for

rib material in order to determine mechanical properties of the lattices; the modulus of steel was

chosen for convenience. Moduli of the lattice depend on the rib material and on geometry. The ratio

of the effective Young’s modulus of the lattice to the rib modulus, the relative Young’s modulus, is

independent of the assumed rib modulus, as shown in Figure 5.4. Most of the mass in the lattice is

in the solid cubical nodules, so the usual modulus versus density plot is not appropriate here. The

design is not intended to be light weight; studies of acoustic behavior, which depends on nodule

mass, are planned. Poisson’s ratio in two orthogonal directions (i.e., νzx and νzy) is found to be

identical. As shown in Figure 5.5, when the aspect ratio is about 2, Poisson’s ratio becomes more

negative as the number of unit cells per side increases. Moreover, the effective shear modulus varies

approximately by a factor of 105.

Note that we have performed a large number of simulations with lattices having different rib

slenderness ratios, a/d. As expected, numerical values of the mechanical properties of the lattices

depend on this ratio; stiffer lattices can be designed when thicker ribs are used. For example,

when the rib slenderness ratio varies from 100 to 5, the magnitude of the effective Young’s modulus

of the lattices increases by approximately a factor of 400, and the Poisson effect was reduced by
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approximately 20 %. However, trends in the mechanical properties of the lattices (e.g., the effective

Young’s modulus, Poisson’s ratio and an effective shear modulus) remain the same. Regardless of

the rib slenderness ratio, as the number of cells per side increases, a monotonically decreasing trend

in the effective Young’s modulus is seen, which tends to converge to a constant value, which is also

observed for the effective shear modulus.

Aspect ratio, L/a [-]

0 5 10 15 20

E
ff

ec
ti

v
e 

Y
o

u
n

g
's

 m
o

d
u

lu
s,

 E
z
 [

G
P

a]

0

5

10

15

20

1x1x1

2x2x2

3x3x3

4x4x4

5x5x5

6x6x6

R
el

at
iv

e 
Y

o
u

n
g

's
 m

o
d

u
lu

s,
 E

z
/E

r
ib

 [
-]

0

0.02

0.04

0.06

0.08

0.1

Figure 5.4: The effective Young’s modulus and the relative Young’s modulus in a
principal direction versus aspect ratio.

Aspect ratio, L/a [-]

0 5 10 15 20

P
o
is

so
n
's

 r
at

io
, 
ν
 [

-]

-0.05

0

0.05

0.1

0.15

0.2

0.25

1x1x1

2x2x2

3x3x3

4x4x4

5x5x5

6x6x6
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Figure 5.6: The effective shear modulus (from pure shear) in a principal direction
versus aspect ratio.

With computed Ez, ν and Gyz above, the measure of isotropy, Ez/2Gyz(1 + ν), was determined

for all lattice structures except 1×1×1 lattices and for all aspect ratios, as shown in Figure 5.7a.

It was found that isotropy occurs when the aspect ratio is between 1.6326 and 1.6466. As seen in

Figure 5.7b, the curves for all models are tightly clustered, and the goodness of fit was R2 = 1.

Aspect ratio L/a for isotropy was about 1.64, and this is independent of the rib slenderness ratio

a/d over a range of values from 100 to 5.
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Figure 5.7: (a) The measure of isotropy vs. the aspect ratio for chiral lattice; a
value of 1 indicates elastic isotropy. (b) An expanded scale showing fitting of data

points with the least-squares 5th degree polynomial.

For three dimensional isotropic chiral lattices, the effective Young’s modulus in a principal

direction versus the number of cells per side is shown in Figure 5.8a. The relative Young’s modulus

is also plotted in this Figure. Note that the aspect ratio of these isotropic lattices was taken as 1.64;

this value is an average of computed aspect ratios of all of the lattices that result in isotropy. The

Young’s modulus monotonically decreases and tends to converge to a constant value as the number

of cells increases. A size effect in compression is anticipated in view of the Cosserat continuum in

which chiral Cosserat solids have a length scale and coupling between compression and torsion [32],

giving rise to stretch-twist coupling, as shown in Figure 5.8d. Poisson’s ratio in this continuum

view has radial dependence and size effects. A size effect in Poisson’s ratio is revealed by FEA.

Poisson’s ratio is depicted in Figure 5.8b. When n = 6, Poisson’s ratio becomes almost zero (e.g., ν

= 0.0024). Thus, negative Poisson’s ratio is expected for a sufficient number of cells. By fitting the

computed Poisson’s ratio to a power function using nonlinear least-squares, Poisson’s ratio becomes

negative when n exceeds 7, and its asymptotic value is approximately −0.1393, as shown in Figure

5.9; the goodness of fit R2 was 0.99. Note that a slow approach to asymptotic values is anticipated

in the Cosserat continuum view. Cosserat elasticity allows the same range of Poisson’s ratio [23] as
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does classical elasticity. The Cosserat analysis applies to the full range of sizes and Poisson’s ratio.

Experiments are anticipated for materials with more cells. The effective shear modulus shown in

Figure 5.8c has a similar trend compared to the effective Young’s modulus.
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Figure 5.8: Three dimensional isotropic chiral lattices versus number of cells per
side; (a) Effective Young’s modulus. (b) Poisson’s ratio. (c) Effective shear modulus

(d) Stretch-twist coupling.
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Figure 5.9: Interpolation and extrapolation of Poisson’s ratio to a power function.

Results of torsion size effect studies are depicted in Figure 5.10. For three-dimensional isotropic

chiral lattices with a/d equal to 5, Gasy = 0.861 GPa, `t = 1.55 mm, N = 1, Ψ = 1.5. The goodness

of fit was R2 = 0.99. The model with only one cell is excluded for size effect studies, because

it is better viewed as a structure. Classical elastic solids, unlike Cosserat solids, have a relative

stiffness equal to 1 independent of size. Lattices presented in this paper clearly show significant

size effects. The Cosserat characteristic length `t is comparable to the nodule spacing L = 1.64

mm. Moreover, since N was found to be 1, couple stress theory which is a special case of Cosserat

elasticity, is appropriate. Cosserat solids with N = 1 (its upper bound) can be interpreted by couple

stress theory [18] [25]; this corresponds to κ → ∞; the characteristic length in Cosserat theory is

equivalent to
√

3 times the length in couple stress theory. In the present paper, we use symbols

after Eringen [23].
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Figure 5.10: Size effects for three-dimensional isotropic chiral lattices for which
L/a = 1.64 and nodule spacing L = 1.64 mm. Points are obtained via FEA. Curve
is theoretical with Gasy = 0.861 GPa, `t = 1.55 mm, N = 1, Ψ = 1.5; the goodness

of fit, R2 = 0.99. Classical elastic solids have Ω = 1 (independent of width).

Size effects can also come from surface effects associated with incomplete cells, surface damage

or cell connectivity that ends at the surface; such surface effects produce a softening size effect

[112]. These surface effects compete with the stiffening effect of Cosserat elasticity [36]. This is of

concern for foams that are cut by a machining process. The softening associated with surface effects

can reduce apparent Cosserat parameters but cannot mimic a Cosserat effect because the effect is

opposite.

Periodic boundary conditions can simplify analyses in which strain is uniform as in the calcu-

lation of Poisson’s ratio in hexamer systems [113] [114]; also in analyses of wave motion. Because

Cosserat elasticity entails sensitivity to gradients of rotation, and the size effects of interest require

a free surface, periodic boundary conditions were not used in the analysis.

The constitutive equations for a Cosserat solid which is isotropic with respect to direction but

not with respect to inversions are as follows [32]:

σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm) + C1φr,rδkl + C2φk,l + C3φl,k (5.15)
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mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl + (C2 + C3)εkl + (C3 − C2)eklm(rm − φm) (5.16)

Elastic constants C1, C2 and C3 are associated with the effect of chirality (i.e., noncentrosym-

metry). If these constants vanish, the equations of isotropic micropolar elasticity are recovered. An

exact solution for tension / compression of a round chiral Cosserat rod is available [32]; this serves

as a guide for the analyst in seeking new effects. There is no available continuum solution for torsion

of a square chiral bar, so a finite element approach such as the one used here is appropriate. While

it is possible to obtain all six elastic constants of an isotropic Cosserat solid via experiment [35],

available analysis does not suffice to determine all nine constants of a chiral solid. Therefore the

characteristic length obtained is an effective one.

Chiral lattices may be of interest in the context of the stretch-twist coupling they provide, or

for the potential as a framework for isotropic piezoelectric solids [115] which entail Cosserat effects.

In such solids, polarization is coupled via an isotropic third rank tensor to the antisymmetric part

of the stress.

5.4 Conclusion

Three dimensional isotropic chiral lattices were developed via finite element analysis. The effec-

tive Young’s modulus, Poisson’s ratio in two orthogonal directions and the effective shear modulus

exhibit size effects. Both the effective Young’s modulus and the effective shear modulus show con-

vergence to a constant value with an increase of the cells in each side. Poisson’s ratio can be negative

with sufficient cells. Significant size effects, approaching a factor of five in torsion rigidity, occurred

in the lattices. This reveals Cosserat elasticity.
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Chapter 6

Extreme Cosserat elastic cube structure

with large magnitude of negative

Poisson’s ratio

The following chapter has been published:

C. Andrade, C. Ha, and R. Lakes, "Extreme Cosserat elastic cube structure with large magnitude

of negative Poisson’s ratio", Journal of Mechanics of Materials and Structures, 13 (1), 93-101 (2018).

Abstract A structure consisting of pivoting cubes is presented. It has zero Young’s modulus,

and zero bulk modulus. Poisson’s ratio has large negative values in all directions; the structure

exhibits anisotropy in Poisson’s ratio. The structure is compliant in tension but rigid in torsion and

bending. The Cosserat characteristic length tends to infinity.

6.1 Introduction

A 3D negative Poisson’s ratio material based on transformed open cell polyurethane foam was

reported [42] in 1987; it had a Poisson’s ratio -0.7. It is possible to approach the isotropic lower

limit -1 via structures or lattices with hinges. Negative Poisson’s ratio was analyzed in a model of
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rods, hinges and springs [116]; a value of -1 was calculated. A Poisson’s ratio of -1 can be achieved

in 2D structures containing rotating rigid units such as squares [117] connected by ideal hinges.

Negative Poisson’s ratio was also studied in 2D systems with rotating hexamers [113] [114] in the

context of thermodynamic stability.

More recent designs with bars linked by ideal pivots allow the structure to undergo arbitrarily

large volumetric strain with zero bulk modulus [118]. Negative Poisson’s ratio materials have been

called “dilational" [50] because they easily undergo volume changes but are difficult to shear.

It is possible to approach the isotropic lower limit -1 at small strain in analysis of a hierarchical

two phase composite [50] if there is sufficient contrast between constituent properties. A 2D chiral

lattice [34] exhibits a Poisson’s ratio -1 over a range of strain as shown by experiment and analysis.

In the present research, we develop a structure made of cubes connected by pivots at their

corners. Poisson’s ratio and sensitivity to gradients are studied.

6.2 Cube structure

A structure is envisaged of cubes of side length a connected by pivots at the corners; Figure 6.1.
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Figure 6.1: Cube structure, oblique view.

Views of the 3×3×3 cube structure along principal directions are shown in Figure 6.2. The rear

layers of cubes are fully hidden. Deformation results in tilting of the cubes at the pivot points.

This tilt causes void space to appear in the structure giving rise to a volume change. Transverse

expansion of the structure under tension implies a negative Poisson’s ratio.

Figure 6.2: Cube structure, principal direction view.
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6.2.1 Analysis and interpretation

Figure 6.3: Analysis of cube structure deformation using two angles.

Elastic moduli and Poisson’s ratio: two angles

We assume that the cubes are rigid and the pivots are ideal and allow frictionless rotation in

all directions. Tensile deformation of the structure freely occurs in each axial direction: Young’s

modulus E = 0. Consequently, changes in volume occur with no resistance so the bulk modulus

is zero. Shear forces in the X direction (Figure 6.2 left) on adjacent layers cause no deformation

because the cube tilt cannot accommodate such motion. Shear forces in the Y direction (Figure

6.2 center) cause no deformation because edges are in contact, forming a hinge. Consequently

the structure resists shear in all directions but allows tensile deformation, suggesting an extremal

negative Poisson’s ratio.

Strain ε depends on cube tilt angle φ, beginning at zero, as follows. Two angles are considered

for simplicity and transparency; the third angle shown in Figure 6.2 right appears small and is

neglected for the present. In Figure 6.3 consider the change in the length of a vertical line element

during deformation. Points A and B (Figure 6.2 left) are at pivoted corners; distance a is the cube

width. After deformation the vertical line from P , center of top face, intersects the bottom cube
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face at R; because tilt occurs in two orthogonal directions, the intersection is along a diagonal.

Points B, S and T , not necessarily collinear, are in a horizontal plane. The change in length is

∆L = PS − a. The corresponding strain is εyy = PS−a
a .

In triangle PQR, cosφ2 = PQ
PR = a

PR . In triangle BQT , tanφ2 = QT
BQ so QT = a

√
2
2 tan

φ
2 .

Also, PT = a + QT = a(1 +
√
2
2 tan

φ
2 ), but in triangle PST , cosφ2 = PS

PT so PS = PTcosφ2 with

PT = a+QT . Then, PS = a(1 +
√
2
2 tan

φ
2 )cosφ2 .

So the strain in terms of tilt angle is

εyy = (1 +

√
2

2
tan

φ

2
)cos

φ

2
− 1 (6.1)

If the angle is sufficiently large, the force has a line of action passing through a pivot. The force

generates no moment to cause further rotation. For εxx as seen in the XY plane, the geometry is

similar. However, viewed in the z direction, the effect of θ1 alone gives the following in the linear

regime of small angle.

εθ1xx =
1

2
tan

φ

2
(6.2)

but θ2 rotates the corresponding point on the right face center down, reducing the distance, yielding

a strain

εxx = +
1

2
√

2
tan

φ

2
(6.3)

The Poisson’s ratio is, for small angle,

νxy = −εxx
εyy

= −
( 1
2
√
2
tanφ2 )

(1 +
√
2
2 tan

φ
2 )cosφ2 − 1

(6.4)

From the definition, νyx = 1/νxy. For small angle, νxy = −1/2; νyx = −2. The structure is

therefore anisotropic even though Young’s modulus E = 0 in all directions.
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As for εzz as seen in the Y Z plane, εzz = εxx by virtue of a similar construction (neglecting tilt

in the third orthogonal direction). So νzx = −1; νxz = −1.

This analysis makes the simplifying assumption that tilt in the third direction is small compared

with tilt in the two directions considered. Tilt in all three directions is considered in the numerical

approach below.

Bending

The classical bending rigidity of a bar is MR = EI with R as the principal bending radius of

curvature, and I is the area moment of inertia. Moment M is about the y axis; the z axis is along

the bar. The rigidity depends only on Young’s modulus E not on Poisson’s ratio ν. The effect of

Poisson’s ratio is to alter the deformation field. For positive Poisson’s ratio the cross sections curve

oppositely to the principal bending curve, the familiar anticlastic curvature. A negative Poisson’s

ratio causes curvature in the same direction as the bending curve, synclastic curvature [42]. The

three-dimensional displacement field for pure bending of a linear elastic homogeneous, isotropic bar

of rectangular section is

ux = −z
2 + ν(x2 − y2)

2R
, uy = −ν xy

R
, uz =

xz

R
(6.5)

So if Young’s modulus E tends to zero, it should be easy to bend the bar with no effort regardless

of Poisson’s ratio, provided the bar obeys classical elasticity.

The cube structure, while easy to deform in tension (E = 0), is rigid in bending. To visualize

this, in the XY plane in the left image in Figure 6.2, expansion of a line along direction AB due to

bending due to a Z moment is accompanied by contraction along line cd. The pivoted cube structure

requires either expansion or contraction in all directions, so the structure is rigid to bending. Lines

AB and cd are in different planes but that does not affect the argument because the classical motion

has the same sign on the front and back.

Bending differs from axial extension in that bending entails gradients in strain and rotation.
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Classical elasticity is insensitive to gradients but Cosserat elasticity allows such sensitivity. Rigid-

ity of the structure to bending combined with a zero tensile Young’s modulus implies a Cosserat

characteristic length that tends to infinity. Again, the cubes are assumed to be rigid and the pivots

are assumed to be ideal.

Elastic moduli and Poisson’s ratio: numerical model, three angles

Figure 6.4 illustrates views of the structure along the principal directions and points on the center

of cube faces that were used to compute Poisson’s ratio via a numerical model. Moreover, θ1 and

θ2 represent angles between cube edges when the structure is viewed in the corresponding principal

directions.

(a) (b) (c)

Figure 6.4: Cube structure viewed along the principal directions. All points are
located at the center of cube faces. φ is an angle between diagonal lines of adjacent
cubes. θ1 and θ2 represent angles between cube edges when the structure is viewed
in the corresponding principal directions. For the structure shown, φ = 42.17◦, θ1 =

30◦ and θ2 = 28.96◦.

To determine the effect of motion in all three angles, the cube structure was modeled by Solid-

Works commercial CAD software. In this analysis, a cube structure with a cube side length of

10 mm and with various inclined angles, φ, of 7.07, 14.13, 21.18, 42.17, 62.74 and 82.56 degrees.
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Poisson’s ratio in the principal directions was obtained as follows. The ‘mate’ feature in SolidWorks

to was used make hinge constraints on corners. Distance was then measured using the software.

The effect is purely geometrical so there was no need to use tools such as ANSYS APDL.

To obtain Poisson’s ratio of the cube structure, strain and Poisson’s ratio were determined in

terms of the distances. First, strains in the principal directions due to the angle φ were computed,

as given in the following equations.

In xy plane, (6.6a)

εxx =
|QR,xQL,x| − 2a

2a
(6.6b)

εyy =
|PT,yPB,y| − 2a

2a
(6.6c)

In xz plane, (6.6d)

εxx =
|TR,xTL,x| − 2a

2a
(6.6e)

εzz =
|RT,zRB,z| − 2a

2a
(6.6f)

In yz plane, (6.6g)

εzz =
|NR,zRL,z| − 2a

2a
(6.6h)

εyy =
|MT,yMB,y| − 2a

2a
(6.6i)

in which a is the cube side length and |QR,xQL,x| denotes a distance between QR and QL in

the x direction in the xy plane after deformation. εxx is then equal to (|QR,xQL,x| − 2a)/2a. With

strains found in Equation 6.6, Poisson’s ratio in the principal directions are
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νxy =− εxx
εyy

= −
|QR,xQL,x| − 2a

|PT,yPB,y| − 2a
(6.7a)

νxz =− εxx
εzz

= −
|TR,xTL,x| − 2a

|RT,zRB,z| − 2a
(6.7b)

νzy =− εzz
εyy

= −
|NR,zRL,z| − 2a

|MT,yMB,y| − 2a
(6.7c)

From numerical results, it was found that εxx,num from the xy and the xz planes were identical

(i.e., εxy−planexx,num = εxz−planexx,num ). Similarly, εyy,num in the xy plane agreed exactly with one in the yz

plane, and εzz,num were the same for the xz and the yz planes (i.e., εxy−planeyy,num = εyz−planeyy,num and

εxz−planezz,num = εyz−planezz,num ). This confirms that cube structures modeled by the employed CAD software

were correctly designed and interpreted since computed strains were the same regardless of views

in different principal directions. As a result, the superscript of strains obtained numerically were

omitted in this paper as follows, unless stated otherwise.

A comparison of strains between analytical and numerical approaches was made, as shown in

Figure 6.5.
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Figure 6.5: Strains of a cube structure as a function of the angle φ.

The strain εyy between these two approaches agreed well with one another throughout the

range of φ. The strain εxx also agreed over the narrower range of strain consistent with simplifying

assumptions in that analysis including neglect of the effect of the tilt in the third orthogonal direction

and of higher nonlinearity.

As illustrated in Figures 6.4a and 6.4c, the effect of the orthogonal tilt is small when the angle

φ, is small. From this, it was expected that εxx,num and εzz,num to be similar when φ is small, and

this can be observed in Figure 6.5. In this regime (i.e., for small φ), strains are almost linear as a

function of angle. In contrast, nonlinearity occurs when φ is large. The effect of the tilt in the third

orthogonal direction can be quantified by θ1 and θ2 that represent angles between adjacent cube

edges when the structure is viewed in the corresponding principal directions. For small φ, these two

angles are similar.
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Figure 6.6: Poisson’s ratio in all the principal directions.

In summary, for small strain, the Poisson’s ratios νzx and νxz obtained by two angle analysis

and three angle numerical methods are equal with a value of -1. For other directions, the simple

analysis and numerical results agree within the appropriate small angle range.

6.3 Physical model

Physical models were made to aid visualization and to illustrate the concepts. An initial model was

made with cubes cut from polymer foam. A design was assembled digitally using Solidworks 2016.

Cubes were prepared using Solidworks in .stl (StereoLithography) format for export to a 3D printer.

The method was fused deposition method (FDM). The print resolution (i.e., the minimum size of a

stand alone feature) was 0.5 mm. These cubes, 2 cm wide, were manufactured using a Dimension
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Elite 3D printer, of Stratasys ABSplus P430 thermoplastic. Pivots can be made by 3D printing but

they are subject to considerable friction which would interfere with demonstration of the concept.

Therefore a fibrous tape was cut into a dog-bone shape. Segments were taped to adjacent cubes,

leaving the slender portion as a pivot. A 3×3×6 model was made with Z as the long direction.

The physical model was observed to be easy to stretch provided only one or two cubes on each

end were held gently and allowed to rotate. The structure expanded fully in tension under its own

weight. The model was rigid to torsion as well as to shear in different directions. The model was

also rigid to cantilever bending. In both cases, slight movement associated with slack in the pivots

was observed.

6.4 Discussion

Several negative Poisson’s ratio structures with rotating hinged elements are known. In addition to

rotating squares [117], one can have rotating rhombi [119], triangles [120], edge connected cuboids

of different size [121], and complex hinged structures [118]. Such pivoted structures, including the

present one, exhibit a hard nonlinearity when the structural elements come into contact and when

the lattice is fully extended. Even so, the geometry of hinged structures has been used to help

explain [119] the negative Poisson’s ratio of materials in which the effects arise on the molecular

scale.

For the present ideal structure with rigid cubes and frictionless pivots, Young’s modulus is zero in

tension provided the end cubes are allowed to rotate as is the case in stress control. Although tensile

deformation freely occurs, the structure is rigid in bending and torsion. Classical elasticity cannot

account for such behavior but Cosserat [17] (micropolar [23]) elasticity, which allows sensitivity to

gradients, can do so. Cosserat theory provides characteristic length parameters as elastic constants.

If the specimen size is not too much greater than the characteristic length, size effects are observed

in bending and torsion; the effective modulus in bending exceeds the true Young’s modulus in

tension. Such effects are known in a variety of foams including negative Poisson’s ratio foam [38].
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However the range of Poisson’s ratio is the same in Cosserat solids as in classical ones so coarse

cell structure is not needed to control the Poisson’s ratio [122]. The cube structure will be rigid to

bending and torsion independent of how small the cubes are in comparison with the specimen size,

provided the cubes are rigid and the pivots are ideal. This implies a characteristic length that is

infinitely large. Such singular behavior arises from the geometrical constraints in a highly idealized

structure. Similar singular behavior likely occurs in other negative Poisson’s ratio hinged structures

and in structures made using sliding elements [123]. Extremely large Cosserat effects leading to

folding and faulting can occur in highly anisotropic materials that admit couple stress [124]. Three

dimensional structures are of particular interest because in 3D, classical bending can occur either

via shear at constant volume, as in rubbery materials, or of via local volume change with constant

shape, as when Poisson’s ratio tends to -1. A material or structure that does not allow bending

cannot be classically elastic.

6.5 Conclusions

A structure of pivoting cubes is presented. It has negative Poisson’s ratio of large magnitude in

each direction and a tensile modulus of zero. It is rigid to bending, therefore it is not classically

elastic. The structure behaves as an extreme Cosserat solid.
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Chapter 7

Design, fabrication, and analysis of

lattice exhibiting energy absorption via

snap-through behavior

The following chapter has been published:

C. Ha, R. S. Lakes, and M. E. Plesha, "Design, fabrication, and analysis of lattice exhibiting energy

absorption via snap-through behavior", Materials & Design, 141, 426-437 (2018).

Abstract

In this study, an energy absorption lattice, comprised of multiple tetra-beam-plate unit cells with

negative stiffness, was designed, fabricated by selective laser sintering method, and analyzed both

numerically and experimentally. Snap-through behavior of the unit cell developed due to negative

stiffness caused by geometric nonlinearity from large deflection of the constituent elastic beams,

resulting in energy absorption. A criterion for the unit cell to achieve the snap-through behavior

was investigated numerically in terms of the beam slenderness ratio and the inclined angle. This

approach was chosen to facilitate control of energy dissipation performance and further design

space such as tuning force threshold. The unit cell with the selected geometric parameters was

then created and used to construct the energy absorption lattice. Load-displacement relationships
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of the lattices obtained from cyclic loading tests disclosed an area enclosed by two distinct loading

and unloading curves, which indicates energy dissipation. This was shown both numerically and

experimentally. Drop tests were also performed to investigate energy loss of the lattices due to an

impact. An energy absorption phenomenon was revealed by observing a reduced rebound height

when the lattice exhibited the snap-through behavior.

7.1 Introduction

Bistable mechanisms are useful for a device that is to achieve stable states in two distinct positions

without power input. Due to their notable behavior providing low power operation and prevention

of external disturbances, such mechanisms have been applied to various engineering applications,

including microelectromechanical systems (MEMS) [125] [126]. Examples are switches [127] [128]

[129] [130], valves [131], shock sensors [132] [133], relays [134], binary modular reconfigurable robots

[135] and devices for energy harvesting from vibrations [136].

Three main types of the bistable mechanism based on different design concepts have been re-

ported in the literature. Latch-lock mechanisms were studied in [137] and [138], however complex

actuation to lock and unlock was required for the mechanisms. Hinged multi-segment mechanisms

were introduced in [139], [140], and [141]; these are based on zero friction, zero clearance and zero

stiffness, which is difficult to accomplish with MEMS fabrication processes. Buckled beam or mem-

brane mechanisms having residual-compressive-stress were developed in [142], [143], and [144], yet

residual stress is cumbersome to achieve or control in bulk-fabricated structures. In addition, a

monolithic mechanically-bistable mechanism utilizing double curved beams was studied recently,

which does not rely on hinges, latches or as-fabricated internal stress (i.e., residual stress) [130].

Systems having the bistable mechanism require energy only when they are to be loaded (i.e., a

charging state). At a state of unstable equilibrium (also called as a metastable state), any minor

perturbation (e.g., loading, boundary condition, etc.) can give rise to one of the two stable states;

the transition between the two stable states is commonly referred to as a snap-through process.
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When structures snaps from their initial shape into a buckled shape, a considerable amount of en-

ergy is released from the system, revealed as a load drop (i.e., negative slope) in load-displacement

characteristics [145]. This process is caused by their negative stiffness behavior near the unstable

equilibrium position(s). In contrast to most elastic materials that tend to resist deflection or de-

formation in response to an applied load (i.e., positive stiffness or positive force to displacement

ratio), negative stiffness is, in general, understood as a reversal of the usual directional relation-

ship between force and displacement in pre-strained objects. For example, buckled flexible tubes

forming kinks contain stored energy at a state of equilibrium [52]. Experimentally, lumped systems

containing discrete buckled tubes [53] and models of single foam cells [43] were found to exhibit

negative structural stiffness.

Objects or structures with negative stiffness are usually unstable by themselves [58]. A con-

strained buckled column with the S -shaped configuration is in unstable equilibrium [54]. Snap-

through behavior from negative stiffness can be caused by pressing laterally on the column. One

can stabilize the column with a lateral constraint. Structures with negative stiffness can also be

stabilized by employing heterogeneous materials or composites. This approach can provide extreme

values of material damping [55] [58], stiffness [61], and/or thermal expansion [57] that are greater

than those of either constituent. This behavior surpasses classical bounds [62], where composite

properties cannot exceed the properties of the constituents. These bounds are based on theorems

assuming that each constituent does not entail initial stored energy. In contrast, structures with

negative stiffness initially contain stored energy; composite stability can be enhanced by viscoelastic

dissipation, if present [61]. As discussed earlier, structures with buckled flexible tubes subjected

to sinusoidal load can achieve both negative stiffness and very large increases in damping [53].

The negative slope in a Lissajous figure for a tube in the post-buckled condition indicates negative

stiffness. tan δ, representing damping, is negative since the phase angle δ between load and defor-

mation is greater than 90◦ for the post-buckled tube. For applications requiring reduction of noise

and/or vibration (e.g., sensors, hypersonic vehicles, etc.) a combination of high stiffness and high

dissipation may be of interest.
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Recently, negative stiffness behavior has been of interest to various engineering applications due

to its unique mechanical properties [63], including (i) energy harvesting/dissipation, (ii) shock/vibration

isolation and damping, and (iii) sensitivity enhancement.

(i) As a result of experiments and finite element simulations, the response of assemblies consist-

ing of topologically interlocked cube-shaped elements have showed a pronounced nonlinear response

to out-of-plane point loadings (i.e., indentation), which featured a distinct hysteresis, post-peak

softening, a negative stiffness during unloading, and localized irreversible rotations [64]. This

interlocking-based structure is capable of providing considerable energy dissipation and substan-

tial resistance to large-scale fracture propagation. 3D-printed porous elastomeric structures mod-

eled by micro-architected design were studied, which showed distinct load response with direction-

dependent behavior including negative stiffness [65]. This work revealed that cellular solids via

the micro-architected design can tailor mechanical response independently and suggested that such

ordered materials may replace stochastic foams in energy absorption applications. Negative stiffness

honeycombs comprising unit cells from curved beam structures were found to exhibit substantial

mechanical energy absorption and to achieve a recovery to their original shape even when the hon-

eycombs undergo compression beyond densification [66] [67]. Such honeycombs are of interest to

applications such as impact absorbers and protective devices. With the use of additive manufac-

turing, specifically selective laser sintering technology, the authors in [68] designed and showed that

constrained bistable structures exhibiting negative stiffness behavior can enhance system damping

and control dynamic behavior, indicating that the system is functional for applications requiring

energy absorption or vibration isolation.

(ii) An analytical study of an overall-stable system with negative stiffness element inclusions

showed that the ability of tuning purely elastic wave propagation can be greatly enhanced, and

even further tuning is possible when alterable damping is added to the system [74]; adequate con-

trol of negative stiffness element can prevent propagation of long-wavelength waves. An improve-

ment of damping ratio by several orders of magnitude was modeled for flexural waves propagating

within layered continuous/periodic structures having negative stiffness inclusions [72]. With the
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use of bistability and negative stiffness, a combination of quasi-zero-stiffness (QZS) behavior and

snap-through action that provides passive shock and vibration isolation was established [71]. This

system is useful for applications that need to protect sensitive payloads from surroundings (e.g.,

forces and accelerations) that exceed a maximum limit. A load-bearing structure with dynami-

cally controllable stiffness was developed experimentally based on a combination of active vibration

control and nonlinear negative stiffness [73]; this structure was capable of fast and useful dynamic

stiffness control regardless of the static load, and potential applications include humanoid robotic

limbs and lightweight adaptive vibration isolators.

(iii) A study of negative stiffness behavior of prismatic tensegrities revealed that instabilities

via snap-through behavior and specific negative structural stiffnesses as a result of the presence

of multiple stable states were possible when the topological relations and geometric parameters of

these structures met certain criteria in terms of three dimensionless parameters [77]. Such structures

are useful in sensitivity enhancement and energy storage/absorption, yet further research is needed

to reveal their mechanical responses. Energy dissipation due to snap-through behavior in negative

stiffness systems may be of use in ameliorating undesired vibrations and waves. Snap-through

behavior has also been used to enhance the effective piezoelectric response of structures with rib

elements [78].

Negative stiffness differs from a negative Poisson’s ratio, in which a material expands laterally

subjected to tensional load [42] [44] [46]. Poisson’s ratio, ν, is defined as the negative of the ratio

of transverse strain of a stretched or compressed object to its longitudinal strain: ν = −εtrans/εlong.

For most solids, ν is between 0.25 and 0.33. Foams with ν as small as -0.7 with enhanced resilience

[42] [43] and a planar chiral lattice with ν equal to -1 [45] have been made. For isotropic materials,

Young’s modulus, E, and shear modulus, G, are related to Poisson’s ratio, ν, by relations such as

E = 2G(1 + ν).

In this paper, a lattice that can exhibit energy absorption via snap-through behavior was de-

signed, fabricated by 3D printing via selective laser sintering (SLS) method, and analyzed in both

numerical and experimental approaches. The lattice comprised of multiple tetra-beam-plate unit
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cells incorporating elastic beams and plates. All connections were designed as fixed supports for

the purpose of 3D printing fabrication. The unit cell utilized negative stiffness from geometric non-

linearity caused by large deflection of the constituent elastic beams, leading to the snap-through

behavior. This stimulated the use of a nonlinear finite element (FE) model to study such phenomena

via the commercial finite element software ANSYS APDL 17.2. A criterion for the tetra-beam-plate

unit cell to achieve the snap-through behavior was characterized numerically as a function of two

selected geometric parameters: an inclined angle and a beam slenderness ratio. Such an approach

was chosen to facilitate control of energy absorption in the presence of geometric imperfections.

According to this criterion, geometric parameters of the unit cell for exhibiting such behavior were

determined and employed to create lattices that can absorb energy. The lattices were then developed

for FE simulations and fabricated by using the SLS method. The lattices’ capability of absorbing

energy was investigated both numerically and experimentally by analyzing those load-displacement

relationship from cyclic loading tests. Lastly, the coefficient of restitution was adopted to quantify

energy loss of the lattices due to an impact from drop tests.

7.2 Design

7.2.1 Tetra-beam-plate unit cell

The design of a tetra-beam-plate unit cell was inspired by bistability of inclined slender beams with

both ends fixed, as shown in Figure 7.1. The unit cell was comprised of four inclined beams per

side and four plates, and all connections were formulated as built-in one another. Each beam had

a constant cross section and was initially straight. Snap-through behavior of the unit cell, resulting

in energy absorption, was realized by the development of negative stiffness from the geometric

nonlinearity in the unit cell due to large deflection of the constituent beams. In general, structures

with negative stiffness are not stable by themselves. The present unit cell was designed to be

in a stable configuration prior to application of load, and to enter the unstable negative stiffness

region and the snap-through behavior upon application of sufficient load. Further, the unit cell does
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not require hinges or residual stress, which can be difficult or impossible to fabricate. Geometric

parameters defining the unit cell are given in this figure and as follows: namely, the diagonal distance

from the center of the unit cell to its corner, rt, the height of the plate, 2h, the thickness of the

plate, tw, the radius of the beam, rb, and the inclined angle, α. Note that this figure was generated

to illustrate the unit cell in scale (except corners where the plates are connected to one another)

by using ANSYS APDL with the ESHAPE option activated. The beams and the plates would

be shown as lines and planes, respectively, in ANSYS APDL without this option. The material

used for both the beams and plates was identical, and its material properties were E = 0.717 GPa,

σyield = 31.6 MPa and ν = 0.24. These values were determined by performing a tensile test for

3D-printed dumbbell-shaped test specimens made of polyamide (PA) as a parent material fabricated

via selective laser sintering (SLS) method. More explanation about these values will be given later.

The finite element (FE) model representing the tetra-beam-plate unit cell is constructed as

follows. For the beams, BEAM189 elements were used, while SHELL281 elements were used for

the plates. The BEAM189 element is a three-dimensional quadratic three-node beam element with

six degrees of freedom (DOFs) at each node consisting of translations in the x, y, and z directions

and rotations about the x, y, and z directions. This element is appropriate for analyzing slender to

moderately stubby/thick beam structures and is in accord with Timoshenko beam theory including

shear-deformation effects. Thus, the BEAM189 is suitable for linear, large rotation, and/or large-

strain nonlinear applications. The SHELL281 is a eight-node element with six DOFs at each node

consisting of: translations in the x, y and z directions and rotations about the x, y and z directions.

It is suitable for thin to moderately-thick shell structures, hence is applicable to evaluate linear,

large rotation, and/or large strain nonlinear applications. Since the beam and shell FEs have the

same nodal DOF, it is straightforward to mesh the unit cell with these elements, and there are

no issues of nodal incompatibility, such as for example when flexural FEs (having six DOFs per

node) and continuum FEs (having three DOFs per node) are meshed together. As illustrated in

Figure 7.1, each beam has been meshed with four BEAM189 elements, whereas sixteen SHELL281

elements were used for each plate; this is sufficient to capture both post-buckling and snap-through
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responses.

(a) (b)

Figure 7.1: Finite element (FE) representations of a tetra-beam-plate unit cell. (a)
Isometric view. (b) Side view. Geometric parameters of the unit cell are also shown,
which will be discussed later in detail. These figures are drawn in scale except corners

where the plates are connected to one another.

To reveal the snap-through behavior of the tetra-beam-plate unit cell, one of its central points

(where four beams merge together on the top) was subject to prescribed displacement while the

opposite point on the bottom was constrained as a fixed support. These constraints allow to control

displacement and automatically eliminate rigid body motions of the unit cell. The prescribed

displacement, d, ranged from 0 to p(h+δ) in the −z direction shown in Figure 7.1, where δ = rt tanα

and p is a multiplier that allows the prescribed displacement to achieve one of the bistable states

after experiencing the snap-through behavior (i.e., a fully deformed state). This parameter depends

on the inclined angle, α.

Qualitatively in an aspect of energy, while the beams deform toward the centerline of the unit

cell, bending energy in these beams increases monotonically and compression energy becomes nearly

its maximum at the centerline but decreases after crossing the centerline; the latter energy is similar

to a sawtooth response. If such a unit cell is modeled to experience a larger decrease rate of the

compression energy after passing the centerline than the rate of the increase of the bending energy,

negative stiffness occurs, which is a driving factor of the snap-through behavior. Moreover, due
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to this behavior, the bistable mechanism can be realized in the course of the deformation process.

From its load-displacement relationship, the unit cell is expected to obtain two distinct paths from

each of loading and unloading. These paths will form an area enclosed by themselves, and this is a

representation of energy dissipation capability of the unit cell.

7.2.2 Energy absorption lattice

An energy absorption lattice that was analyzed, fabricated, and tested in this paper was developed

by comprising multiple tetra-beam-plate unit cells. Figure 7.2 illustrates a FE representation of the

lattice with the use of the ESHAPE option in ANSYS APDL. The particular lattice shown in this

figure has three unit cells per side with three layers (i.e., 3×3×3 lattice).

The lattice was constructed as follows. A layer of the unit cells in the xy plane was first

formulated by sharing the constituent plates with one another. This layer was then stacked in the

z direction by utilizing central points of the unit cells where four beams coincide (see Figure 7.2b).

Each of these points corresponds to a node in the FE model that still has 6 DOFs (translations in

the x, y, and z directions and rotations about the x, y, and z directions). Prescribed displacement

was applied to these nodes, and the corresponding load-displacement relationship of the lattice was

analyzed to study energy loss.
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(a) (b)

Figure 7.2: Finite element (FE) representations of an energy absorption lattice with
three cells per side and with three layers (i.e., 3×3×3 lattice). (a) Isometric view. (b)

Side view.

7.3 Methods

7.3.1 Finite element simulations

To study the designed lattice consisting of multiple tetra-beam-plate unit cells, nonlinear FE models

for characterizing the bistable mechanism involving both post-buckling and snap-through behavior

were essential. Thus, the following solution controls in ANSYS APDL 17.2 were used; analysis type

was set to static (ANTYPE,0), and large-deflection effects were enabled by activating NLGEOM

(NLGEOM,1). The NLGEOM setting allows for modeling of geometric nonlinearities, stress stiff-

ening effects, and coupling between in-plane stress and transverse stiffness, if present. The number

of substeps to be taken was set to 1000 (NSUBST,1000,0,0), and automatic time stepping was

turned on (AUTOTS,1). All solution data for every substep were stored to the database (OUT-

RES,ALL,ALL). The program’s sparse direct equation solver was used for most cases along with

the Newton-Raphson option when it was needed for nonlinearities. The solver continued to perform

equilibrium iterations until a solution was found (i.e., until convergence criteria were satisfied). The

following convergence criteria were used for all simulations: L2-norms of both force and moment (F
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L2 and M L2) with a tolerance equal to 0.5 % and an infinite norm check on displacement (U INF)

with a tolerance equal to 0.5 % for the displacement convergence check. The infinite norm repeats

the single-DOF check at each DOF in the model, while the L2 norm performs the convergence check

using the square root sum of the squares of the force (and moment) imbalance for all DOFs. The

solver iterates until both the L2-norm and the infinite norm are below the selected criteria values.

Once these are satisfied, it is said that the solution is within the tolerance of the correct solution

and the simulation moves on to the next substep.

Applying prescribed displacement to the central point of the tetra-beam-plate unit cell induces

the snap-through response due to its geometric nonlinearity. The rationale of using the prescribed

displacement (i.e., displacement control) instead of prescribed load is because the complete load-

displacement response can be determined, even during the negative stiffness portion of the response.

The nonlinear solution provides both the corresponding load-displacement relationship at the central

point of the tetra-beam-plate unit cell and the maximum equivalent stress (i.e., Von Mises stress)

during the snap-through response. This information allows development of a criterion for the unit

cell to exhibit the snap-through behavior in terms of the selected geometric parameters.

7.3.2 Fabrication via 3D printing

Solid models for lattices with different numbers of layers, assembled by multiple tetra-beam-plate

unit cells, were developed by using the commercial CAD software SolidWorks R© for the purpose of

3D printing, as shown in Figure 7.3. This figure illustrates CAD representations of the tetra-beam-

plate unit cell and of the 3×3×3 lattice (i.e., a lattice structure with three cells per side and with

three layers). The aim of 3D-printed lattices was to conduct laboratory experiments (i.e., cyclic

loading tests and drop tests) for studying their capability of absorbing energy, which is discussed

later in detail.

As illustrated in Figure 7.3b, the solid model is comprised of stalks and criss-cross structures

between layers of the unit cells. The purposes of having these additional elements are to provide an

adequate space between the layers during deformation, to transmit only loads to adjacent layers, and
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not to undergo any appreciable deformations. Thus, they were designed as relatively rigid members

compared to the constituent beams of the unit cell that governed snap-through behavior to occur,

while employing the same material properties that were used for the unit cell. In contrast, the FE

models (Figure 7.2) do not need these additional elements because they do not affect performance

of the snap-through behavior of the designed lattices in FE simulations.

(a) (b)

Figure 7.3: CAD representations. (a) Tetra-beam-plate unit cell. (b) 3×3×3 lattice.
The lattice is composed of the layers of the unit cells with relatively rigid stalks and
criss-cross structures. These two components are to interface with the layer and they

do not experience any appreciable deformations.

The lattice modeled by SolidWorks R© was converted to the STL (STereoLithography) format for

the purpose of 3D printing fabrication. Among various 3D printing (i.e., additive manufacturing)

methods, a selective laser sintering (SLS), also called a laser sintering (LS), method was chosen for

fabricating the lattice due to its high dimensional accuracy [146] and no need for scaffold supports.

The latter aspect provides a great additional design space for designers to manufacture hollow

objects or complicated structures containing porosity such as the lattices designed, fabricated, and

analyzed in this paper.

The authors submitted the generated STL files to Midwest Prototyping [147]. A SLS-type 3D-

printer used here was DTM 2500PLUS providing a typical layer thickness of 0.1016 mm with a laser

STL
STL
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diameter equal to 0.254 mm. Its tolerances are ±0.127 mm for the first 25.4 mm and ± 0.0508

mm for each additional 25.4 mm [148]. A 3D-printed 3×3×3 lattice that was fabricated by the SLS

method is shown in Figure 7.4.

Figure 7.4: A photograph of a 3D-printed 3×3×3 energy absorption lattice consist-
ing of multiple tetra-beam-plate unit cells. This lattice was fabricated by the SLS
method. The parent material used for 3D printing was polyamide (PA). The lattice

is about 70 mm on a side.

The parent material used to fabricate the lattice was polyamide (PA) which is a typical material

for the SLS method. Recently, it was observed that material properties of 3D-printed materials

are different from those of parent materials [149] [150]. This observed change of parent material

properties may be due to applied high-temperature and/or high-pressure during sintering and/or

solidifying process, which is necessary for current 3D printing technologies, or unintended porosity in

the 3D-printed part. Thus, the authors believed that it was important to acquire accurate material

properties of a 3D-printed PA before conducting any experiments.
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According to ASTM D638-14 [151], we prepared several standard dumbbell-shaped test speci-

mens fabricated from PA as a parent material via the SLS method for investigating possible changes

in material properties between before and after 3D printing fabrication. Dimensions of the specimen

were 19 mm × 165 mm × 2 mm. A screw-driven test frame utilizing a Sintech 10/GL load cell

which has 10,000 lb capacity (calibrated on Sept. 30th, 2015) was used with a constant rate of

crosshead movement of 5 mm/min and data acquisition rate of 100 Hz. At room temperature, its

measured material properties were E = 0.717 GPa, σyield = 31.6 MPa and σult = 45.3 MPa, ρ =

0.962 g/cm3. Whereas σult was within a range of the provided value of the parent material, the

elastic modulus was found to be almost half of the quoted value [152]. A yield point of the parent

material was, however, not available, so a comparison was not made.

7.3.3 Experiment

Cyclic loading test

To investigate the 3D-printed lattices’ capability to absorb energy, those load-displacement relation-

ships were studied by conducting cyclic loading tests via a screw-driven test frame under displace-

ment control at room temperature. This test frame utilizes a MTS load cell (Model #: 4501009-B)

that has a load capacity of 500 N (100 lb). This load cell has a load precision of ±0.001 N and was

calibrated on Apr. 15th, 2016.

The cyclic loading tests were accomplished by applying loading and unloading in series to the

3D-printed lattices. This loading-unloading cycle was realized by manipulating the built-in test

setups intended for compression and tensile tests, respectively, available in the provided software

called TestWorks R© linked to the test frame. The software as well as the provided handset allow a

user to position a crosshead manually with either coarse or fine movements. For each 3D-printed

lattice, a preload was utilized by moving the crosshead to load the lattices to approximately 0.2

N. A constant rate of crosshead movement was 10 mm/min and a data acquisition rate was 100

Hz. Grips were not necessary because the lattices always make contact with the load cell during

both loading and unloading. Both the corresponding load and displacement carried by the lattices
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were displayed and stored in real time by the software. Once the test was finished, data including

these parameters was exported in the txt format to extract the load-displacement relationship of

the lattices.

Drop test

In addition to the cyclic loading tests, drop tests were performed to determine the 3D-printed

lattices’ capability of absorbing energy under dynamic loading (i.e., impact). At room temperature,

a steel sphere (msphere = 28.17 g and dsphere = 20 mm) was dropped onto the center of the 3D-

printed lattices at two different initial drop heights (h0 = hlow or hhigh), and a rebound height after

the impact was measured. These two different initial drop heights were chosen based on preliminary

tests to introduce two distinct rebound conditions; hlow causes a simple rebound, and hhigh causes

an impact sufficient to give rise to snap-through behavior. This led to hhigh being approximately a

factor of two times greater than hlow: hlow = 51 mm and hhigh = 119 mm. Note that this produced

impact velocities equal to 1.00 m/s and 1.53 m/s for hlow and hhigh, respectively. Thus, for a case

in which the snap-through behavior occurs during the impact (i.e., a case when h0 = hhigh), the

lattices are expected to produce a lower rebound height, as compared to a case when such behavior

does not happen (i.e., a case when h0 = hlow). This phenomenon represents an energy absorption

due to the snap-through behavior of the lattices.

The drop tests were conducted 15 times per lattice and per initial drop height. For observations

of the snap-through behavior and the rebound height due to the impact, video was recorded for each

drop test by utilizing iPhone R© 6s with 720 pixels of vertical resolution at 240 frames per second;

this rate was superior to that of a digital camera. A thin double-sided tape was applied to the

bottom of the lattice to prevent its rigid body motions after the impact; the thickness of the tape

was about 0.1 mm.

Two parameters were considered to quantify energy dissipation produced by the 3D-printed

lattices in response to the impact: the coefficient of restitution, e, and the ratio of the rebound

height to the initial drop height, hf/h0. The coefficient of restitution is defined as the relation

txt
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between the post-impact (final) relative velocity and the pre-impact (initial) relative velocity of two

colliding bodies. In our case, since the sphere was designed to rebound off a stationary target (i.e.,

the lattices), the coefficient of restitution can be simplified as follows.

e =

∣∣∣∣∣v
sphere
f − vlatticef

vlatticei − vspherei

∣∣∣∣∣ =
vspheref

vspherei

(7.1)

where vi denotes velocity prior to impact and vf denotes velocity after rebound. The case when

e = 1 represents a fully elastic collision, whereas a perfectly inelastic collision has e = 0. By energy

conservation (neglecting air resistance), vspherei =
√

2gh0 and vspheref =
√

2ghf . By applying these

to Equation 7.1, a relationship between the coefficient of restitution, e, and the ratio of the rebound

height to the initial drop height, hf/h0, can be established as follows.

e =
vspheref

vspherei

=

√
2ghf√
2gh0

=

√
hf
h0

(7.2)

7.4 Results and discussion

7.4.1 FE simulation

Tetra-beam-plate unit cell

For various inclined angles, α, and for several beam slenderness ratios, rt/2rb, load-displacement

relationships of the tetra-beam-plate unit cells (see Figure 7.1) subjected to prescribed displacement,

d, were characterized, as shown in Figure 7.5. The inclined angle was varied from 2 to 10 degrees

with an increment of 1 degree, and the beam slenderness ratio equal to 5, 10, 15, 20 and 25 were

considered. In this figure, displacement on the x-axis was normalized for comparison because each

unit cell requires a different prescribed displacement to achieve its fully deformed state that occurs

when d/dmax = 1. Note that dmax represents a required prescribed displacement to give rise to the

fully deformed state.
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Figure 7.5 demonstrates cases only when the unit cell achieved snap-through behavior, which

was revealed by a S -shaped curve in the load-displacement relationship. The unit cells with (i)

beam slenderness ratio of 5 for all inclined angles, (ii) beam slenderness ratio of 10 for α = 2◦ ∼ 7◦,

(iii) beam slenderness ratio of 15 for α = 2◦ ∼ 5◦, (iv) beam slenderness ratio of 20 for α = 2◦ ∼ 3◦,

and (v) beam slenderness ratio of 25 for α = 2◦ ∼ 3◦ did not produce the desired snap-through

behavior. Instead, the corresponding load-displacement relationships showed a monotonic increase

of load with displacement. Small inclined angles do not produce a sufficient beam deflection in the

unit cell, which fails to cause the constituent beams to buckle and hence does not result in negative

stiffness. This indicates that such unit cells were not able to absorb energy via the snap-through

behavior, thus these cases were ignored in this figure.

The maximum load magnitude was found to be inversely proportional to an increase of the beam

slenderness ratio. This is due to an increase of the beam length which makes the unit cell more

flexible. A range of the inclined angle that can give rise to the snap-through behavior, however,

becomes larger as the beam slenderness ratio increases. In addition, a larger inclined angle produced

a greater peak-to-peak load.
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Figure 7.5: Numerically obtained load-displacement relationships of tetra-beam-
plate unit cells for various inclined angles and for several beam slenderness ratios.
The unit cells were loaded by prescribed displacement. (a) Beam slenderness ratio =
10. (b) Beam slenderness ratio = 15. (c) Beam slenderness ratio = 20. (d) Beam

slenderness ratio = 25. The fully deformed unit cell occurs when d/dmax = 1.

A criterion for achieving snap-through behavior

Numerical results of the load-displacement relationships of the tetra-beam-unit cells (see Figure

7.5), were used to produce a criterion for achieving the snap-through behavior as a function of the

beam slenderness ratio, rt/2rb, and the inclined angle, α. This criterion, illustrated in Figure 7.6,

is expressed by two symbols; the hollow circles indicate the unit cells without the snap-through
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behavior, whereas the unit cells that can produce the snap-through behavior are denoted by the

solid circles. During the snap-through process, it was seen that the maximum equivalent stress

occurs when the unit cell reaches its maximum displaced position (i.e., d/dmax = 1). For a better

understanding, the factor of safety, FS = σyield/(σequiv)max, was determined, which is listed next

to the circles in this figure. Note that σyield was equal to 31.6 MPa that was found by performing

the tensile test mentioned earlier.

As depicted in Figure 7.6, a larger inclined angle gives rise to a higher (σequiv)max in the unit

cell. This is mainly because the beams with a large inclined angle require more deformation to

form the fully deformed unit cell, resulting in large bending energy within these beams. In con-

trast, (σequiv)max decreases as the beam slenderness ratio increases due to a reduction of the beam

deflection. Note that a lower factor of safety means larger equivalent stress.

Among geometric parameters defining the designed unit cell, the beam slenderness ratio and

the inclined angle (i.e., rt/2rb and α) are key design factors that give rise to the desired capacity

of energy absorption via the snap-through behavior. Tuning these two selected parameters can also

control performance of energy dissipation and further provide design freedom such as tailoring force

threshold. Thus, this criterion for the newly designed structure in this study is useful as a guideline

for researchers to predict whether a designed unit cell can exhibit a desired energy absorption

phenomenon while ensuring the structure is in an elastic regime in which one avoids yielding.
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Figure 7.6: A numerically obtained criterion for a tetra-beam-plate unit cell to
achieve snap-through behavior as a function of two selected geometric parameters.
The factor of safety, based on σyield = 31.55 MPa, is shown here, and was evaluated

when the unit cell was fully deformed (i.e., d/dmax = 1).

Energy absorption lattice under cyclic loading

In response to cyclic loading under displacement control, load-displacement relationships of lattices

made of multiple tetra-beam-plate unit cells were obtained numerically, as given in Figure 7.7.

Arrows indicate the direction of loading and unloading. According to the criterion illustrated in

Figure 7.6, the selected geometric parameters of the unit cell were rb = 0.5 mm, rt = 15 mm, h

= 2 mm, tw = 2 mm and α = 8◦, resulting in a beam slenderness ratio of 15. These parameters

were chosen by considering tolerances of the employed 3D printing method (i.e., the SLS method)

in this paper and to minimize possible imperfections caused by a fabrication process of the lattices.

In addition, the selected geometric parameters allowed the unit cell to avoid yielding at its fully
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deformed state.

As shown in Figure 7.7, the lattices showed the snap-through behavior under the cyclic loading.

As the size of the lattice increases, both the occurrence of the snap-through behavior and hysteresis

(i.e., a phase lag between loading and unloading curves) become more distinct. However, for a

1×1×1 lattice (i.e., the tetra-beam-plate unit cell), these phenomena were not captured because the

displacement control stabilizes the single cell through the negative stiffness region of reversed slope.

It was also observed that both the number of occurrence of the snap-through behavior and the

maximum load were not dependent upon the number of the unit cells per side. Instead, the number

of the snap-through occurrence increases with the number of layers of the lattices, whereas the

maximum load does not vary regardless of the size of the lattice. Ideally, for each of loading and

unloading, the number of the snap-through occurrence, Nsnap-through, should be equal to 2Nlayer,

where Nlayer denotes the number of layers in the lattice.
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Figure 7.7: Numerically obtained load-displacement relationships of lattices con-
sisting of multiple tetra-beam-plate unit cells in response to cyclic loading under
displacement control. (a) 1×1×1 lattice (i.e., the unit cell). (b) 2×2×1 lattice. (c)
2×2×2 lattice. (d) 3×3×1 lattice. (e) 3×3×2 lattice. (f) 3×3×3 lattice. Arrows indi-
cate the direction of loading and unloading. Both the occurrence of the snap-through

behavior and hysteresis were observed except for the 1×1×1 lattice.

7.4.2 Experiment

Cyclic loading test

In response to cyclic loading under displacement control, load-displacement relationships of the

3×3×1, 3×3×2 and 3×3×3 lattices that were fabricated by the SLS 3D printing method were

investigated experimentally, as shown in Figure 7.8. These 3D-printed lattices employ the same

geometric parameters as those for the numerical models. As observed in the numerical results

(shown in Figure 7.7), two distinct curves formed by each of loading and unloading (i.e., hysteresis)

were also seen experimentally. This is caused by snap-through behavior due to negative stiffness of
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the unit cell. The curves also form an area bounded by themselves, indicating that the lattices are

capable of dissipating energy.

As illustrated in Figure 7.8, the occurrence of the snap-through behavior in the load-displacement

relationships of the 3D-printed lattices was observed experimentally; such effects were also detected

in the numerical results. Ideally, Nsnap-through should be equal to 2Nlayer for each of loading and

unloading, as stated earlier. This relationship was seen in the 3×3×1 and 3×3×2 lattices. For

example, the 3×3×1 lattice exhibited the snap-through behavior twice during each of loading and

unloading: one from the upper beams and the other from the lower beams of the unit cell. This,

however, did not occur when the 3×3×3 lattice was unloaded (see Figure 7.8c); the snap-through

behavior occurred 5 times rather than 6 times. The number of the snap-through occurrence that

were observed experimentally appears to deviate from the ideal case, as the size of the lattice

increases. This is because the assumed material of the lattices is perfect (i.e., flawless, non-porous,

isotropic, perfectly elastic, and all cells and ribs exactly identical etc.) and because constraints such

as loading condition and supports are exact (e.g., no eccentric loads or supports). Nonetheless, the

load-displacement relationships of the designed lattices that were studied experimentally showed

both the occurrence of the snap-through behavior and hysteresis, representing their capability of

exhibiting energy absorption.
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Figure 7.8: Experimentally obtained load-displacement relationships of lattices
comprising multiple tetra-beam-plate unit cells in response to the cyclic loading un-
der displacement control. (a) 3×3×1 lattice. (b) 3×3×2 lattice. (c) 3×3×3 lattice.
These lattices were fabricated by the SLS method. Arrows indicate the direction of

loading and unloading.

Drop test

As a result of drop tests, the coefficient of restitution, e, and the ratio of the rebound height to

the initial drop height, hf/h0, of the 3D-printed lattices for two different initial drop heights were

measured by using Equation 7.2. Table 7.1 summarizes these quantities and the corresponding

standard deviation (i.e., uncertainty), σ. Figure 7.9 illustrates these quantities graphically.

When h0 = hlow, there was no sign of snap-through behavior regardless of the number of

layers in the lattices. In contrast, a case of h0 = hhigh resulted in both a lower rebound height

and snap-through behavior during the impact. Consequently, a small e was found when h0 =

hhigh, as compared to e when h0 = hlow. This finding verifies our hypothesis that the designed

lattices comprising multiple tetra-beam-plate unit cells can achieve energy loss via the snap-through

behavior during the impact. Moreover, the coefficient of restitution increases monotonically with

Nlayer regardless of the initial drop height.

For both the 3×3×1 and 3×3×2 lattices, a difference in the coefficient of restitution between

the two cases (i.e., h0 = hlow and h0 = hhigh) was noticeable in contrast to that of the 3×3×3

lattice, as illustrated in Figure 7.9. For a case when h0 = hhigh, it was observed that all layers of

both the 3×3×1 and 3×3×2 lattices exhibited snap-through behavior during the impact, whereas
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such behavior was seen only in a single layer of the 3×3×3 lattice near the impact location. This

explains a reason why the coefficient of restitution of the 3×3×3 lattice between the two cases did

not produce a considerable gap similar to that which appeared for the other two lattices. A higher

impact velocity would be required to activate the snap-through behavior for all layers of the 3×3×3

lattice.

Table 7.1: Experimentally measured coefficient of restitution, e, and the ratio of the
rebound height to the initial drop height, hf/h0, for two different initial drop heights:
hlow and hhigh. The corresponding standard deviation (i.e., uncertainty), σ, values

were also computed.

h0 = hlow

(no snap-through)

3×3×1

lattice

3×3×2

lattice

3×3×3

lattice

h0 = hhigh

(snap-through observed)

3×3×1

lattice

3×3×2

lattice

3×3×3

lattice

COR, e [-] 0.6 0.61 0.64 COR, e [-] 0.54 0.55 0.62

SD, σ [-] 0.03 0.03 0.04 SD, σ [-] 0.01 0.02 0.03

hf/h0 [-] 0.36 0.37 0.41 hf/h0 [-] 0.29 0.3 0.39

SD, σ [-] 0.03 0.04 0.05 SD, σ [-] 0.01 0.02 0.04
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Figure 7.9: Results of drop tests. (a) The coefficients of restitution, e. (b) The ratio
of the rebound height to the initial drop height, hf/h0. The impact was induced by
dropping a steel sphere from two different initial drop heights (hlow and hhigh) onto the
3D-printed lattices. The lattices with snap-through behavior produced lower rebound

heights, indicating those lattices can exhibits enhanced energy loss.

7.4.3 Discussion

Both numerical and experimental approaches were used to determine the load-displacement behavior

of the newly developed lattices consisting of tetra-beam-plate unit cells. These lattices displayed

energy dissipation due to hysteresis from snap-through behavior, and multiple occurrences of this

behavior depended on the number of layers of unit cells. These phenomena occur because of a

bistable mechanism facilitating negative stiffness from geometric nonlinearity due to large deflection

of the constituent elastic beams of the unit cell.

Although energy dissipation was successfully manifested in the lattices, the numerical and ex-

perimental cyclic loading tests showed a difference in load magnitude in the load-displacement

relationships. Load magnitude measured from the experiment was approximately a factor of 6

times larger than that of the numerical analysis: Fexp/Fnum ∼ 6. This difference may be explained

by several aspects as follows.
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While the numerical analysis assumed the material comprising the lattices was linear elastic,

the material for the 3D-printed PA via the SLS method was found to be viscoelastic. In a tensile

test of the 3D-printed PA specimens that was performed in this study, the specimens produced a

curved stress-strain plot, which is found in (linearly) viscoelastic materials. Moreover, considerable

damping of the specimens was measured by broadband viscoelastic spectroscopy (BVS). Its tanδ

was found to be 0.32 for bending and 0.30 for torsion at 1 Hz and at room temperature. Note

that tanδ is an index to represent viscoelastic damping; a smaller tanδ means a lower damping. For

example, at room temperature, tanδ is 5×10−4 at 1 Hz for steel, 10−3 at 1 Hz for aluminum, 0.02 at

∼ 1 Hz for wood and 0.1 at 1 Hz for polymethyl methacrylate (PMMA) [153]. Such large damping

reduces the rebound following an impact even in the absence of the snap-through behavior. Also,

tanδ varies with a frequency; the effective frequency of the impact is larger than 1 Hz. Consequently,

the measured viscoelastic properties of the 3D-printed PA contributed to absorption of the impact

in the drop tests and also made the observed snap-through behavior less abrupt than expected

theoretically. Additionally, such viscoelastic properties can give rise to pronounced differences in

load magnitude. In the cyclic loading tests that were performed in this paper, we considered only

one rate of crosshead movement (this rate can be treated as a strain rate), to investigate the load-

displacement relationship of the lattice. If one performs a cyclic loading test with different strain

rates in the context of viscoelasticity, it is possible to probe the viscoelastic effects.

The 3D printing quality involves both unintended porosity and nonzero dimensional tolerances.

Therefore the physical models differ from the numerical models. Such differences are considered to

be responsible for the differences in mechanical behavior. In the numerical analysis, all constituents

of the lattices were designed as solid, however unintended porosity was observed by microscopy in

the 3D-printed lattices, which may have lowered load magnitude. A recent study clearly showed that

mechanical properties of SLS structures can be significantly affected by a relatively high porosity

at their boundaries and that such structures are greatly inhomogeneous in terms of the degree of

porosity and density between layers [146]. In addition, the beam diameter of the unit cells comprising

the 3D-printed lattices was not consistent; it was found that d3D-printed
beam = 0.8 ± 0.02 mm. Note
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that dnumerical
beam = 2rb = 1 mm. This led to d3D-printed

beam /dnumerical
beam ∼ 0.8. In an energy view, bending

energy is one of driving factors to cause the snap-through behavior during the process of the bistable

mechanism. Note that bending energy is related to bending rigidity, which is proportional to cross

section radius to the 4th power (i.e., r4) for a cylindrical member. The dimensional inconsistency in

the beam diameter of the 3D-printed lattice gives rise to approximately 40 % difference in bending

energy, and this may have exacerbated the deviation between the numerical and experimental

results. Another possible factor giving rise to the difference in load magnitude is a possibility of

some plastic deformation with stress concentrations in the 3D-printed lattices as results of the 3D

printing quality and viscoelastic effects.

In terms of dimensions and geometry, the beam-beam and beam-shell dimensions and inter-

sections in the finite element (FE) models are extremely accurate replications of those in the SLS

fabricated structures. In particular, in the SLS fabricated structures there are no additional geo-

metric features at the intersections of beams and shells that would give rise to additional stiffness

that the fabricated structures might have compared to the FE models. Thus, the use of beam and

shell finite elements is appropriate, and these elements are ideal for the dimensions of components

for which they are used. To replace the beam and/or plate elements in the FE models with solid

finite elements would entail an increase in number of elements, nodes, and degrees of freedom by

many orders of magnitude, and would likely render most, if not all, of the models unsolvable. Fur-

thermore, using combinations of solid and flexural finite elements is fundamentally troublesome due

to the differences in nodal degrees of freedom (solid elements have only translational degrees of

freedom while flexural finite elements also have rotational degrees of freedom).

After normalizing the load and displacement plots, a comparison between the numerical and

experimental results was made, as shown in Figure 7.10. It was found that normalized peaks from

these two approaches occurred at almost the same location during cyclic loading. Slopes formed

near both d = 0 and d = dmax were also comparable. However, normalized load magnitude still

differs specifically during unloading; the magnitude from the experiments becomes zero after each

snap-through.
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To conclude, both the viscoelastic effects of the 3D-printed PA and fabrication variance from

the SLS method may have influenced the differences between FE predictions and laboratory tests

significantly. Despite these deviations, the designed lattices showed energy dissipation due to the

snap-through behavior of the unit cell. This was possible because of the presence of negative stiffness

due to geometric nonlinearity from large deflection of the constituent elastic beams.
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Figure 7.10: Comparisons of the load-displacement relationships for lattices ob-
tained by numerical simulations and experimental testings. (a) 3×3×1 lattice. (b)
3×3×2 lattice. (c) 3×3×3 lattice. Both load and displacement were normalized.

Arrows indicate the direction of loading and unloading.

7.5 Conclusions

In the present study, an energy absorption lattice consisting of multiple tetra-beam-plate unit cells
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was designed, fabricated by selective laser sintering method, and analyzed numerically and experi-

mentally. The unit cell entailed negative stiffness from the presence of geometric nonlinearity due

to large deflection of the constituent beams. This caused snap-through behavior, leading to energy

absorption. A criterion for the unit cell to exhibit the snap-through behavior was established as

a function of the beam slenderness ratio and the inclined angle. This criterion serves as a guide-

line that offers to tailor performance of energy dissipation capacity and further design space such

as controlling force threshold. According to this criterion, a set of geometric parameters that can

give rise to such behavior was determined and adopted to create the lattices. Both numerical and

experimental cyclic loading studies revealed an area enclosed by two distinct loading and unloading

curves in those load-displacement relationships, indicating energy absorption capability. Energy

loss of the lattices due to an impact, quantified in terms of the coefficient of restitution, was also

measured by conducting drop tests. The lattices exhibiting snap-through behavior produced lower

rebound heights, which demonstrates energy dissipation.
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Chapter 8

Conclusions and future work

This dissertation consists of mainly three different, separate research topics; Chapters 2 and 3

present hierarchical structures with controllable thermal expansion, Chapters 4, 5, and 6 introduce

several Cosserat structures with advanced functionalities, and Chapter 7 provide a new type of an

energy absorption lattice structure. These engineered materials can possess multi-functionalities,

which makes unique and beneficial themselves. Thus, they may be of considerable interest in various

engineering fields such as biomedical sciences, health care, aerospace, automobile, microelectrome-

chanical systems (MEMS), national defense, and so forth.

In Chapter 2, the feasibility of a thermoelastic triangular cell lattice composed of bi-material

curved ribs connected with fixed (or bonded) joints is examined to determine if zero thermal ex-

pansion is possible. This study has practical importance since common manufacturing processes

including additive manufacturing most likely require bonded (or welded) connections. Via finite

element analysis (FEA) utilizing a commercial code called called ANSYS ADPL, a lattice with

the bonded joints exerts significant positive thermal expansion, yet smaller in magnitude than that

made of the constituent material having a higher coefficient of thermal expansion (CTE). Changes in

both rib curvature and rib slenderness ratio do not influence the CTE of the lattice with the bonded

joints. For achieving zero thermal expansion, a square lattice consisting of bi-material curved ribs

connected with bonded joints is recommended. The rationale is as follows. Since the joint rotation

of each rib is accommodated by equal rotations of neighboring ribs, there is zero moment in each
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rib at each joint, although joints are bonded. This can give rise to zero net thermal expansion

provided that each rib individually has zero thermal expansion subjected to temperature changes.

Although the design of the square lattice is promising, further studies are needed to verify this with

techniques such as experiments and numerical simulations.

By extending the idea of hierarchical structures with controllable thermal expansion in another

direction, a planar chiral lattice with thermal expansion of large magnitude is presented in Chapter

3. This lattice has a Poisson’s ratio approaching -1 and is inspired by the previous study [34].

Controlling thermal expansion of the lattice is achieved by employing bi-metallic rib elements and

by varying geometry of the lattice. In response to temperature changes, these rib elements bend,

leading to rotation of nodes and strain of the lattice. An analytical solution predicting the CTE

of an individual rib element is derived by employing geometric relations and Timoshenko’s beam

theory. Experiments with a wide range of temperature variation provide a good agreement with

the analytical solution, and the resulting CTE is found to be greater in magnitude than that of

either constituent. The present lattice can also offer any desirable thermal expansion as follows.

Reducing the node radius can make expansion small. If the positive axial expansion of each rib

element is balanced by negative expansion from rib bending, zero expansion is possible. In addition,

the designed lattice can be viewed as a Cosserat solid due to its chirality. This additional freedom

associated with tunable thermal expansion may provide new design space in the context in which a

large response is needed for a small input. Future research in conjunction with FEA may investigate

further capabilities of the lattice.

The development and characterization of three-dimensional (3D) Cosserat structures with novel

multi-functional properties are provided in Chapters 4, 5, and 6. First, a 3D chiral cubic lattice is

developed in Chapter 4. This lattice is composed of multiple unit cells that can achieve stretch-twist

coupling associated with chirality. Using a commercial FEA code and a customized post-processing

developed in MATLAB, it is revealed that mechanical properties of the lattice are tailorable as a

function of geometric parameters. With a careful adjustment, the effective Young’s modulus can

be maximized while Poisson’s ratio is negative. Due to its stretch-twisting coupling associated with
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chirality, the present lattice can be viewed as a Cosserat solid because such a coupling should be

zero in the limit of a classical elastic continuum.

Chapter 5 presents a chiral 3D isotropic cubic lattice that is based on the previous study detailed

in Chapter 4. Having isotropic structures offers a simpler interpretation and practical feasibility

for real-life applications. A similar method to that described in the previous Chapter is employed

to compute mechanical properties. An elastic relation E = 2G(1 + ν) as a measure of isotropy is

utilized to design the lattice to be elastically isotropic. When the aspect ratio, defined as the ratio of

the center-to-center cube spacing to the edge length of the cube, is equal to 1.64, the lattice becomes

elastically isotropic. For a chiral 3D isotropic cubic lattice, an asymptotic value of Poisson’s ratio is

found to be approximately -0.14 by fitting the computed Poisson’s ratio to a 5th degree polynomial

using a least-squares best fit. Significant size effects, approaching a factor of five in torsion rigidity,

are also revealed according to Cosserat elasticity. That is, such a lattice exhibits variable relative

stiffness as a function of its size. This cannot be predicted by a classical theory of elasticity since a

classical solid have relative stiffness equal to 1 regardless of its size. The present lattice may be of

interest in the context in which the stretch-twisting coupling and tailorable mechanical properties

are desirable. Future research such as experiments in conjunction with 3D printing fabrication is

possible to correlate results from the present work based on FEA.

Another Cosserat structure with extreme negative Poisson’s ratio, consisting of cubes connected

by pivots at their corners, is presented in Chapter 6. This structure is unique in a sense that it

can undergo arbitrarily large volume changes while it is compliant in tension but rigid in torsion

and bending. Analytical expressions predicting strains are derived with simplifying assumptions

including neglect of the effect of the tilt in the third orthogonal direction and of higher nonlinearity.

To validate such expressions, a 3D numerical model representing the cube structure is developed

by a commercial CAD software SolidWorks, which considers tilt in all three directions. When

the tilt angles are small (i.e., in the realm of small strain), the two approaches produce a good

agreement, and linear behavior is observed. In contrast, large tilt angles give rise to geometrical

nonlinear effects, hence a deviation between the two approaches is observed. Such a deviation is
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due to the simplifying assumptions used to derive the analytical expressions which neglect the effect

of the tilt in the one of orthogonal directions. Nonetheless, for small strain, Poisson’s ratio of the

present structure is predicted well with a good agreement between the two approaches, and negative

Poisson’s ratio with large magnitude in principal directions is successfully revealed. The structure is

not classically elastic because it is rigid in bending and torsion but compliant in tension and because

it undergoes arbitrarily large volumetric change. Hence, it can be viewed as an extreme Cosserat

solid. The present study may offer insights for future research in the context of the development of

materials with unprecedented behavior beyond utilizing ideal conditions such as pivots.

The last research topic describes a 3D lattice structure capable of energy absorption, as detailed

in Chapter 7. This structure is composed of multiple tetra-beam-plate unit cells made of four elas-

tic plates and eight elastic inclined beams. This design is inspired by the concept of bistability

which is often found in microelectromechanical systems (MEMS). The mechanism for achieving

energy absorption employs negative stiffness facilitating snap-through behavior due to geometric

nonlinearities from large deflection of the constituent beams. While objects with negative stiffness

is generally considered to be instable themselves, the present structure is designed to be in a stable

configuration prior to application of load, and to enter the unstable negative stiffness region. In

addition, hinges or residual stress, which can be difficult or impossible to manufacture during fab-

rication process, are not necessary to produce snap-through response leading to energy absorption.

Employing nonlinear FE models, the tetra-beam-plate unit cell is characterized in response to cyclic

loading applied by prescribed displacement. A criterion for designing the unit cell to achieve the

desirable snap-through behavior is developed as a function of the selected geometric parameters

of the unit cell. This criterion facilitates to design a structure capable of energy absorption while

ensuring it is in an elastic regime in which one avoids yielding. A set of geometric parameters is de-

termined based on this criterion to create energy lattice structures with different sizes for nonlinear

FEA and experiments utilizing physical models fabricated by using selective laser sintering (SLS)

method. From load-displacement relationships in response to cyclic loading, these two approaches

clearly display energy dissipation via hysteresis, yet a deviation in load magnitude is observed. This
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is because the SLS method creates unexpected dimensional inconsistency and random porosity in

the physical models and because a parent material used to fabricate the physical models is viscoelas-

tic. Nonetheless, after normalizing the load-displacement curves, the resulting load magnitude from

the two approaches occur almost the same location during cyclic loading, which indicates that the

deviation is most likely caused by fabrication process. In addition, in a view of dynamic behavior,

energy loss of the structure due to impact is quantified in terms of the coefficient of restitution.

Results show that the structure can provide lower rebound heights when impact is large enough

to initiate snap-through response, which demonstrates energy dissipation. The present structure

can dissipate energy in one direction only. For future research, a structure capable of energy ab-

sorption in multi-directions is possible, which enhance its practicability and applicability to real-life

applications.

In summary, the newly designed materials presented in this dissertation provide novel mechanical

properties such as controllable thermal expansion, advanced functionalities, and energy absorption.

Various approaches including theory, FEA, and experiment have been employed systematically to

develop and characterize such behaviors. These engineered materials can offer access to previously

unoccupied material design space that is not achievable by homogeneous material solely. Hence, their

unique and tailorable mechanical properties may be beneficial to various engineering applications

such as sandwich panel cores, sensors, actuators, dampers, protective devices, and so on. Moreover,

the present materials may help open up new dimension for designing next-generation engineered

materials with multi-functionality.
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Appendix A

3D printing (additive manufacturing)

resources

Abstract Available 3D printing, also called as additive manufacturing, resources both in campus

and outside campus are introduced in this paper. Several categories of 3D printing process are briefly

explained. The practical limitations and specifications of these different 3D printing methods and

material properties used in the course of research presented in this dissertation are detailed together

with printing history and comments on 3D-printed solid models developed for research.

A.1 Introduction

Additive manufacturing (AM), referred to as 3D printing nowadays, is widely used to build three

dimensional (3D) physical models in manufacturing, educational, and home-use setting during the

past couple of years [154] [155]. One of the most pronounced advantages of 3D printing is to

allow for the manufacture of designs that could not be made through traditional manufacturing

processes. 3D printing builds 3D objects by adding layer-upon-layer of bulk material(s) and has

a broad range of bulk materials from polymers to metals. Due to its effectiveness and benefits,

3D printing technology is of considerable interest in various purposes such as fabricating end-use

products in aircraft, dental restorations, medical implants, automobiles, and even fashion products.
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In general, there are three steps for 3D printing process: modeling - printing - finishing. Each

step is explained briefly as follows.

Common to this technology is the use of computer 3D modeling software (e.g. computer-aided

design (CAD)), 3D printer, and layering material. Many academically and commercially available

CAD software such as SolidWorks R©, AutoCad R©, Pro-E R© are employed to create 3D printable

models. There are other ways to create such models via a 3D scanner, a plain digital camera

or photogrammetry software; the 3D scanner creates an electronic 3D model by digitizing real

objects, which is expected to be as easy as taking a picture. 3D printable models produced by CAD

software tend to result in reduced errors and can be corrected easily before printing, which provides

a verification phase in the design of the object.

After 3D printable models are prepared by either CAD software or other methods, they need to

be converted to a certain file format as an input to 3D printers. Commonly, a STL (STereoLithog-

raphy) file format developed by 3D SystemsTM is widely used. This file format is supported by

many other CAD packages listed above. STL files include only the surface geometry of a three-

dimensional object tessellated into multiple triangles without any representation of color, texture

or other common CAD model attributes. The STL format can be represented by either ASCII or

binary in which binary files are more common because they are more compact. STL files utilize a

raw unstructured triangulated surface with the unit normal and vertices (defined by the right-hand

rule) of the triangles using a three-dimensional Cartesian coordinate system, as shown in Figure

A.1.

Various 3D printing processes are now available. The main differences between these processes

are in the way layers are deposited to create parts and in the materials that are used. For example,

selective laser sintering (SLS) and fused deposition modeling (FDM) melt or soften the material

to produce the layers, while others cure liquid materials using different sophisticated technologies

such as stereolithography (SLA). Each method has its own advantages and drawbacks. The main

considerations in choosing a particular 3D printing process are generally speed, costs of the 3d-

printed prototype, choice and cost of the materials, color capabilities, print resolution, and easiness
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Figure A.1: The differences between CAD and STL models [156]. Two concentric
circles are shown here highlighted as a red-dotted line. This doughnut shape illustrates
a CAD model, while a series of triangles approximating this doughnut represent a STL

model.

of removing support material.

In this paper, several types of 3D printers using different 3D printing methods available both

in-campus and outside-campus are discussed. A brief description of these methods is provided in

Section A.2. In Sections A.3 and A.4, available 3D printers in campus and outside campus are

described, respectively. This paper also contains printing history and comments on 3D-printed

models developed in the course of research performed in this dissertation.

A.2 3D printing (additive manufacturing) technologies

A.2.1 Fused deposition modeling (FDM)

Fused deposition modeling (FDM) technology are also known as fused filament fabrication (FFF)

and fused layer modeling/manufacturing (FLM). This technology uses heat to liquefy a thermoplas-

tic material. The thermoplastic is then extruded in a fine bead along a path set by the build file.

Support structures are often necessary and can be physically broken off or dissolved once the build
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is complete. Note that there is no control over supports. Figure A.2 illustrates how FDM works,

and the process is as follows.

1. Pre-processing: Build-preparation software slices and positions a 3D CAD file and calculates

a path to extrude thermoplastic and any necessary support materials.

2. Production: The FDM printer heats the thermoplastic to a semi-liquid state and deposits it

in ultra-fine beads along the extrusion path. Where support or buffering is needed, the printer

deposits a removable material that acts as scaffolding.

3. Post-processing: The user physically breaks away support material or dissolves it in detergent

and water, and the part is ready to use.

Characteristics and restrictions

• Maximal build envelope: 914×610×914 mm3

• Minimum feature size: 0.178 mm

• Typical tolerance: +/-0.178 mm (can be improved through post-processing)

• Minimum layer thickness: 0.178 mm

Note: These characteristics are only indicative, as there are different types of FDM printers

available.
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Figure A.2: Explanation of fused deposition modeling (FDM) [157].

A.2.2 Stereolithography (SLA)

Stereolithography (SLA), also abbreviated as SL, is a 3D printing process utilizing a controlled laser

to build a 3D structure layer by layer. The process occurs in a vat of liquid photopolymer, cured

upon contact with the ultraviolet laser light, as shown in Figure A.3.

Stereolithography is capable to build large parts with very good accuracy, surface finishes, and

details. There is a wide range of photopolymer materials available which provide different char-

acteristics. However, stereolithography can only handle photopolymers materials, so mechanical

properties of parts are not durable or not stable over time. Further, materials are expensive and

the build process is slow. It is commonly used to produce concept models, master patterns, large

prototypes and investment casting patterns. Differently from FDM method, SLA can control loca-

tions of supports manually.

Characteristics and restrictions

• Maximal build envelope: 2100 × 700 × 800 mm3
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• Minimum feature size: 0.1 mm

• Typical tolerance: +/-0.15 mm

• Minimum layer thickness: 0.016 mm

Note: These characteristics are only indicative, as there are different types of SLA printers

available.

Figure A.3: Explanation of stereolithography (SLA) [158].

A.2.3 Selective laser sintering (SLS)

Selective laser sintering (SLS), also called laser sintering (LS), creates 3D components from powdered

materials. A CO2 laser is used to heat and fuse durable thermoplastic powders one layer at a time,

creating a solid structure, as shown in Figure A.4.

SLS can fabricate parts in standard plastics with good mechanical properties. For small objects,

SLS is cost competitive and often the cheapest solution. Further, SLS production parts and pro-

totypes provide lightweight, heat and chemical resistant solutions. As for drawbacks, SLS parts do

not carry over the same properties as their injection molded counterparts, especially in regards to

surface finish. There is no need of support materials, which may provide additional design space to
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manufacture hollow objects or complicated structure containing porosity.

Characteristics and restrictions

• Maximal build envelope: 550 × 550 × 750 mm3

• Minimum feature size: 0.15 mm

• Typical tolerance: +/-0.25 mm (can be improved through post-processing)

• Minimum layer thickness: 0.1 mm

Note: These characteristics are only indicative, as there are different types of SLS printers

available.

Figure A.4: Explanation of selective laser sintering (SLS) [159].

A.2.4 Material jetting (MJ)

Material jetting (MJ) is also known as multijet modeling, drop on demand (DOD), thermojet,

and inkjet printing. This process uses inkjet print heads to jet melted wax materials onto a build

platform. The material then cools and solidifies which allows to build layers on top of each other, as
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shown in Figure A.5. This technology can, in a single build process, print parts and assemblies made

of several materials with different mechanical and physical properties; the inkjet print head combines

several resins in specific concentrations to produce a new material called as a Digital Material that

varies in translucency, rigidity, thermal resistance and color. This enables incorporating a full range

of material properties in a single print job.

MJ requires support structures for overhangs, which is usually built in a different material. This

technology can also provide very good accuracy and surface finishes. However, a limited number of

wax-like materials is available. Due to the type of material, parts are rather fragile, and the build

process is slow. This technology is commonly used for visual, form/fit testing, medical, dental and

jewelery industry. The process is as follows.

1. Pre-processing: Build-preparation software automatically calculates the placement of pho-

topolymers and support material from a 3D CAD file.

2. Production: The MJ printer jets and instantly UV-cures tiny droplets of liquid photopolymer.

Fine layers accumulate on the build tray to create one or several precise 3D models or parts.

Where overhangs or complex shapes require support, the MJ printer jets a removable support

material.

3. Support removal: The user easily removes the support material by hand, with water or in a

solution bath. Models and parts are ready to handle and use right out of the MJ printer, with

no post-curing needed.

Characteristics and restrictions

• Maximal build envelope: 300 × 185 × 200 mm3

• Minimum feature size: 0.1 mm

• Typical tolerance: +/-0.025 mm

• Minimum layer thickness: 0.013 mm
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Note: These characteristics are only indicative, as there are different types of MJ printers avail-

able.

Figure A.5: Explanation of material jetting (MJ) [160].

A.2.5 Binder jetting (BJ)

A 3D printer performing binder jetting (BJ) distributes a layer of powder onto a build platform.

Inkjet print heads which applies a liquid bonding agent glue the particles together. The build

platform is then lowered and the next layer of powder is laid out on top. By repeating the process

of laying out power and gluing, the parts are built up in the powder bed. A Figure A.6 illustrates

the process of the BJ.

This technology does not require any support structures similar to selective laser sintering (SLS).

The built parts lie in the bed of not-bonded powder. The entire build volume can therefore be

filled with several parts, including stacking and pyramiding of parts. These are then all fabricated

together. BJ also works with almost any material that is available in powder form.

The process is fast, simple and cheap since power particles are glued together. Colored parts is
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possible by certain BJ printers along with the binding agent creating full color parts. Parts manu-

factured by this technology are basically particles bonded together. Thus, fabricated parts may be

fragile along with limited mechanical properties if not further processed.

Characteristics and restrictions

• Maximal build envelope: 4000 × 2000 × 1000 mm3

• Minimum feature size: 0.1 mm

• Typical tolerance: +/-0.13 mm

• Minimum layer thickness: 0.09 mm

• Fast build speed

• Full color parts

Note: These characteristics are only indicative, as there are different types of BJ printers avail-

able.

Figure A.6: Explanation of binder jetting (BJ) [161].
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A.2.6 Laser melting (LM)

Laser melting (LM) is also known as selective laser melting (SLM), laser curing and direct metal

laser sintering (DMLS). A 3D printer performing LM distributes a layer of metal powder onto a

build platform, which is melted by a laser (or multiple lasers). The build platform is then lowered

and the next layer of metal powder is coated on top. By recursive process of coating powder and

melting where needed, the parts are built up layer by layer in the powder bed. Figure A.7 illustrates

the process.

This technology requires support structures, which anchor parts and overhanging structures to

the build platform. This permits the heat transfer away where the laser is melting the powder,

which leads to reduction in thermal stresses and prevention against wrapping. The build volume

can be filled by several parts being built in parallel as long as they are all attached to the build

platform.

LS technology can fabricate parts in standard metals with high density (above 99%) and good

mechanical properties similar to traditional production technologies. Parts can be further processed

as any welding part. A wide range of standard metals is available. This technology is still an expen-

sive and slow process. Although tolerances and surface finishes are limited, they can be improved

through post-processing.

Characteristics and restrictions

• Maximal build envelope: 600 × 400 × 500 mm3

• Minimum feature size: 0.04 ∼ 0.2 mm

• Accuracy: +/- 0.05 ∼ 0.2 mm (+/- 0.1-0.2%)

• Minimum layer thickness: 0.03 mm

• Typical surface finish: 4 ∼ 10 microns RA

• Density: Up to 99.9%
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Note: These characteristics are only indicative, as there are different types of LM printers avail-

able.

Figure A.7: Explanation of laser melting (LM) [162].
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A.3 Campus resources

At the University of Wisconsin-Madison, 3D printing (i.e., additive manufacturing) is available in

14 different fields in 2 institutes, 4 colleges, and 2 schools at UW-Madison: TEAM Lab in College

of Engineering, Polymer Engineering Center (PEC), Wisconsin Institute for Discovery (WID), Mor-

gridge Institute for Research, Department of Art in College of Letters and Science, Department of

Mechanical Engineering in College of Engineering, Department of Physics in College of Letters and

Science, Department of Radiology in School of Medicine and Public Health, School of Human Ecol-

ogy, College library, Department of Engineering Physics in College of Engineering and Department

of Medical Physics in School of Medicine and Public Health, namely [163].

A.3.1 TEAM Lab in College of Engineering

TEAM Lab, used to be called as Student Shop, has three rapid prototyping printers: a Dimension

Elite R© and two RepRaps R©. They all perform fused deposition modeling (FDM) with Stratasys

ABSpus P430 thermoplastic [164]. Unless specified, Team Lab will print with the Dimension Elite

printer with standard resolution mode.

For a cost estimate, online submission for 3D printing requests is required at their website. The

following information should be included in the requests. Further contact information is as follows;

phone: 608-261-1112, fax: 608-261-1111, address: Engineering Centers Building Rm. B1086, 1550

Engineering Dr. Madison, WI 53706. For more details, visit https://teamlab.engr.wisc.edu/

services/3d-printing.

• Contact information

• Design in STL format∗

• Project name

• Information about responsible faculty or principal investigator

• Course number (if applicable)

https://teamlab.engr.wisc.edu/services/3d-printing
https://teamlab.engr.wisc.edu/services/3d-printing
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• Currently university funding number∗∗

• Units; tell them which unit systems have used to generate STL files (e.g., inches or millimeters)

∗ One part per STL file. Output should be binary, not ASCII. Either inches or milimeters is okay.

∗∗ A current university funding number is needed in advance 3D printing process but not required

for estimates.

Fused deposition modeling (FDM) specifications Detailed specification of the Dimension

Elite 3D printer at the Team Lab can be found online [165].

• 3D printer type: Dimension Elite

• Build envelope: 8"×8"×12" (= 203×203×305 mm)

• Print resolution: ∼0.007" (= 0.178 mm) for high resolution mode and ∼0.010" (= 0.254 mm)

for standard resolution mode

• Minimum size of a stand alone feature of .007" (= 0.1778 mm) and part of 0.014" (= 0.355

mm) for high resolution

• Minimum size of a stand alone feature of .010" (= 0.254 mm) and part of 0.020" (= 0.508

mm) for standard resolution

• Material: Stratasys ABSplus P430 (see Table A.1)

• Colors: Ivory, black, red, blue, nectarine, and yellow

• Printable support: Dissolvable (P400 SR)

Default settings

• Layer Resolution: 0.010"

• Model Interior: Sparse-High Density

• Support Fill: SMART

• Part orientation: Prioritize cost over quality
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Table A.1: Mechanical properties of Stratasys ABSplus P430 [166].

Mechanical properties Metric
Tensile strength, ultimate 33 MPa
Tensile strength, yield 31 MPa

Tensile modulus 2200 MPa
Tensile elongation at break 6 %
Tensile elongation at yield 2 %
IZOD impact, notched 106 J/m

Flexural strength 58MPa (XZ-axis); 35 MPa (ZX-axis)
Flexural modulus 2100 MPa (XZ-axis); 1650 MPa (ZX-axis)

Flexural strain at break 2 % (XZ-axis); 2 % (ZX-axis)
Coefficient of thermal expansion 8.82 x 10−5 mm/mm/◦C
Glass transition temperature Tg 108 ◦C

Costs

• Model Material: $4.64 per cubic inch.

• Support Material: $4.46 per cubic inch.

• Machine Time: $3.48 per hour.

• Base: $5.00 per base.

Technical notes

• Team Lab fabricates 3D models with prioritizing cost over quality; standard resolution is used

unless otherwise specified. The minimum wall thickness is available either 0.014" for high

resolution mode or 0.020" for standard resolution mode. This is because FDM’s extruding

nozzle needs to make at least 2 passes to build a structure, hence the minimum wall thickness

is twice thicker than print resolution. It is better to treat these wall thickness as the minimum

dimension of a model that is planned to be designed.

• ABSplus P430 is porous and viscoelastic. In practice, since FDM requires to make 2 passes

for building parts, the actual thickness is twice as a diameter of an extruding nozzle. For

example, for standard resolution the minimum dimension of a part is equal to 0.508 mm.



140

However, a measured thickness was about 0.381 mm for the standard resolution mode. This

indicates that an extruded fiber during either the first or the second pass is perhaps squeezed

due to intrinsic porosity and viscoelasticity of ABSplus P430.

Printing history

• February 09, 2016 3D chiral isotropic lattice (5×5×5 lattice) was built. The cost of this

part was $514.47, and the turnaround time was 5 days.

Comments: Quality of this large model was sufficient for testing, as shown in Figure A.8.

This model was cubical about 92 mm on a side.

Figure A.8: A photograph of a 3D-printed 5×5×5 lattice with an aspect ratio of
1.642; the aspect ratio is defined to be the ratio of the center-to-center cube spacing

to cube side length. The lattice is about 92 mm on a side.

• March 30, 2016 Corrugated tubes with four different scales and 2×2×2 3D chiral isotropic

lattice (4 copies) were sent to print. For both parts, the cost was $261.38. The turnaround

time was 50 hours.

Comments: The corrugated tubes were printed poorly because wall thickness was smaller than

printing resolution of the FDM 3D printer, so their photographs were not taken. A 2×2×2

3D chiral isotropic lattice is cubical and 42 mm on a side, as depicted in Figure A.9.
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Figure A.9: A photograph of a 3D-printed 2×2×2 lattice with an aspect ratio of
1.642. The lattice is about 42 mm on a side.

• April 20, 2016 Three different unit cells were printed using the standard (low) resolution

mode, as shown in Figure A.10. One unit cell is printed with cylindrical corrugated tube struc-

tural elements (nicknamed as C1_rev0 shown in Figure A.10a), and a second with triangular

corrugated tube elements at random orientation (nicknamed as T1_rev0 shown in Figure

A.10b), and a third with triangular corrugated tube elements with three planes of symmetry

(orthorhombic) (nicknamed as T2_rev0 shown in Figure A.10c). Overall dimensions of each

unit cell are 8 mm on a side, and all unit cells were cubic. The cost was $37.20 for two of each

model. The turnaround time was the same day when a job was requested.

Comments: Since the dimensions of these unit cells approach to the minimum resolution of

the FDM printer performing the standard resolution mode, the quality of these unit cells was

unacceptable. Non-corrugated rib segments designed to be hollow were not observed; they

were printed solid. In particular, the unit cells consisting of the triangular corrugated tube

elements were particularly bad.
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(a) (b) (c)

Figure A.10: Photographs taken by stereo microscope of three different unit
cells printed via FDM: (a) Unit cell with cylindrical corrugated tube elements
(C1_rev0). (b) Unit cell with triangular corrugated tube elements at random ori-
entation (T1_rev0). (c) Unit cell with triangular corrugated tube elements with
three planes of symmetry (T2_rev0). All unit cells are cubic and 8 mm on a side.

• May 10, 2016 Using the standard resolution, unit cells with cylindrical corrugated tubes

(C1_rev1) and with the triangular corrugated ribs with three planes of symmetry (T2_rev1)

were printed, as shown in Figures A.11a and A.11b, respectively. This time, overall dimen-

sions of these unit cells were double as compared to the unit cells shown in Figure A.10; a

new parameter is 16 mm on a side. For two of each unit cell, the cost was $64.50, and the

turnaround time was 1 day.

Comments: Despite the larger dimensions, the desired slenderness was still not achieved. After

dissection of the ribs, it was observed that cross sections of ribs of the unit cell with cylindrical

corrugated tubes were barely hollow. In contrast, the unit cell consisting of triangular corru-

gated ribs showed some promise with hollowness even though the desired slenderness was not

achieved.
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(a) (b)

Figure A.11: Photographs taken by stereo microscope of the unit cells printed via
FDM: (a) Unit cells with cylindrical corrugated tubes (C1_rev1). (b) Unit cell with
the triangular corrugated ribs with three planes of symmetry (T2_rev1). Each unit

cell is 16 mm on a side.

• July 13, 2016 Unit cell made of cylindrical corrugated tubes (C1_rev1 shown in Figure

A.11a) was revised to accommodate the minimum wall thickness of FDM with the standard

resolution mode as shown in Figure A.12; this new unit cell was nicknamed as C1_rev2. The

wall thickness was adjusted to 0.6 mm while other dimensions were kept the same. For 2

copies, the cost: was $45.29, and the turnaround time was 1 day. Color: red.

Comments: The fabricated models did not have the expected slenderness by looking at dissec-

tion of corrugations of ribs. The Team Lab informed this may be due to enclosing the space.

Within these sections, supports materials were automatically built into these sections, which

could not be physically removed or dissolved since the construction encapsulates them.
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Figure A.12: Photographs taken by stereo microscope of unit cell made of cylindri-
cal corrugated tubes (C1_rev2) fabricated by FDM with standard resolution mode.
The wall thickness for this unit cell was 0.6mm and all other dimensions remained

the same.

• July 18, 2016 The same unit cell printed on July 13, 2016 (C1_rev2) was printed but this

time with high resolution mode, as shown in Figure A.13. The cost was $50.88 for two copies

of the part, and the turnaround time was 1 day.

Comments: By observing dissection of corrugations of ribs, hollowness of ribs printed lon-

gitudinal direction seemed to be improved and was visible with naked eyes whereas similar

hollowness as the previous printed models in the transverse direction was observed. For the

ribs in the transverse direction, support materials were filled inside due to different resolu-

tions of FDM printer in printing directions. Ribs were not sufficiently slender regardless of

directions.
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Figure A.13: Photographs taken by stereo microscope of unit cell made of cylindri-
cal corrugated tubes (C1_rev2) fabricated by FDM with high resolution mode. The

wall thickness for this unit cell was 0.6mm.

• July 22, 2016 A new unit cell design consisting of square cross-section tube segments with

a four fold plate element corrugation segments (S1_rev1) was printed via FDM with high

resolution mode, as shown in Figure A.14. Since the desired slenderness was not exhibited

even for high resolution mode as observed in the previous unit cells, this unit cell was scaled

up to 28 mm on a side. For two copies of the part, the cost was $113.01, and the turnaround

time was 1 day. The color of ABSplus P430 (parent material) was red.

Comments: The expected slenderness was achieved however there are some printing defects.

Large square holes centered in the intersection of the ribs composing the top and the bottom

faces of the unit cell were created during the process. Small triangular shaped holes at each

of the corners on these same faces were also present. These defects are shown clearly in

Figure A.14b. After discussion with the lab manager, Charles Allhands, at Team Lab, these

unexpected holes were probably generated during conversion process from 3D software file to

STL format, which is necessary to print on this FDM printer. The lab manager did not know

any way to re-construct the model to eliminate these holes from the conversion process.
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(a) (b) (c)

Figure A.14: Photographs taken by stereo microscope of unit cell design consisting
of square cross-section tube segments with a four fold plate element corrugation seg-
ments (S1_rev1) fabricated via with high resolution mode. (a) Isometric view (b) A

top (or bottom) view. (c) A side view. This unit cell is 28 mm on a side.

A.3.2 Wisconsin Institute for Discovery (WID)

Wisconsin Institute for Discovery (WID) has two different types of 3d printers: FDM and SLA.

Robert Swader and George Petry are responsible for 3D printing requests. In particular, for

printing via SLA, contact Robert Swader or Ben Cox. Further information can be found at

http://prototype.wisc.edu.

Contact information

• Robert Swader

– RSwader@morgridge.org

– (608) 316-4706

• George Petry

– gpetry@morgridge.org

http://prototype.wisc.edu
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– (608) 316-4379

Fused deposition modeling (FDM)

Specifications A FDM type 3D printer at WID is identical to the one in Team Lab; the printer

is the Dimension Elite R© printer made of Stratasys [167] using ABSplus thermoplastic [166].

Costs In house (university) cost: $5 per cubic inch + $5 per hour (1" height takes about 2 to 3

hours)

Stereolithography (SLA)

Specifications

• SLA printer type is unknown

• Resolution: a wall thickness is 150 micron, possibly as low as 100 microns (= ∼0.004")

• Material: Accura 60 (it is clear and is not very flexible; see Table A.2)

Table A.2: Mechanical properties of Accura 60 [168].

Mechanical properties Metric
Tensile strength 58-68 Mpa
Tensile modulus 2.69-3.10 GPa

Elongation at break (%) 5-13 %
Flexural strength 87-101 MPa
Flexural modulus 2,700-3,000 MPa

Impact Strengh (Notched Izod) 15-25 J/m

Heat deflection temperature 53-55 ◦C at 455 kPa
48-50 ◦C at 1820 kPa

hardness, Shore D 86

Coefficient of thermal expansion 71-131 µm-◦C for 0-40 ◦C
153 µm-◦C for 75-140 ◦C

Glass transition (Tg) 58 ◦C
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Costs In house (university) cost: $5 per cubic inch + $20 per hour (1" height takes about 2 to 3

hours).

Technical notes

• Support structures need to be removed after fabrication. The thickness of these support

structure was similar to a diameter of non-corrugated portion of the tubes (∼ 0.9 mm).

Support material is the same as that of a structure.

• 3D chiral isotropic lattices (shown in Figure A.8) were said to be very difficult to make with

SLA method because it would be impossible to clean out all the supports.

• For unit cells either made of cylindrical tubes or of triangular corrugated ribs with 8 mm on

a side, the first copy would cost ∼$25, and its duplicate would cost additional $5.

Printing history

• October 28, 2014 At 12:30 PM, Prof. Lakes, Prof. Plesha, and I took a tour to WID for

SLA and FDM methods. The tour was was led by Blair Martin and Thomas Mackie who is

the chair of the department that manages the 3D printers.

• November 6, 2015 A 1×1×1 chiral unit cell was printed by both FDM and SLA. The esti-

mated cost was ∼$200 for FDM and ∼$300 for SLA but the first printing was complimentary.

The unit cell was printed for one of each printing method.

Comments: Unit cell printed by SLA showed superior resolution than one built by FDM.

Support material was hard to be taken out for both prototypes, because ribs connecting cubes

were weak; only quarter of cross section of the ribs was designed to be bonded to the cubes.

• May 3, 2016 Unit cell composed of cylindrical corrugated tubes with 8 mm on a side

(C1_rev0) was printed by SLA with high resolution option. The estimated cost was $15 ∼

$20 per unit cell and $5 for additional duplicates. One copy was printed, and the turnaround

time was 1 day.
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Comments: For this unit cell, Robert Swader had about 100 supports in the model and took

about 20 minutes to move them around to have no support structures inside unit cell. The

thickness of the support structures was comparable to the diameter of the non-corrugated

portion of ribs. Some ribs were not printed completely; the gap was generated because Robert

removed the support structures near these ribs. The reason why he removed the support

structures was that he won’t be able to remove them without breaking the structure after

printing.

• July 13, 2016 Zach Rueger (colleague in the lab) and I had a discussion with Robert Swader

about the unit cell with cylindrical corrugated tube elements (C1_rev0). Since a corrugated

portion of ribs is closed structure, it is impossible to take support structures or left-over

material out from inside corrugations; such a structure will be filled by liquid resin. A hole

or a drain may be a feasible solution to remove the resin by either pressurized air or water,

however it is still challenging to remove them completely because the unit cell is comparably

small and the resin is viscous.

A.3.3 Polymer Engineering Center (PEC) in Department of Mechanical Engi-

neering

Full descriptions are available at http://pec.engr.wisc.edu/SLS-printing.html.

Location

ME 1042 Laboratory, Mechanical Engineering Building, 1513 University Ave, Madison, WI 53706.

Contact information

Neil Doll; email: ndoll@wisc.edu

Selective laser sintering (SLS)

http://pec.engr.wisc.edu/SLS-printing.html
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Specifications (for Nylon 12)

• 3D printer type: DTM Sinterstation 2500 Laser Sintering printer built by 3D Systems

• Materials are limited to powder form items

• Machine increments in 0.004" (= 0.1016 mm) for each new layer of powder

• Wall thickness: 0.030" (= 0.762 mm)

• tolerances: +/-0.015" (= +/-0.381 mm)

• Maximum printing volume: 14" × 12" × 12"

• Material: Nylon 12 laser sintering material (Pa650); see Table A.3

Table A.3: Mechanical properties of Nylon 12 (Pa650).

Mechanical properties Metric

Ultimate tensile strength 48 MPa

Tensile modulus 1,700 MPa

Flexural modulus 1,500 MPa

Elongation at break (%) 24 %

IZOD impact strength (unnotched) 440 J/m

IZOD impact strength (notched) 220 J/m

Notes

• SLS method prints without support structures; no scaffolds is needed.

• Avoid thick volumes in geometry (>0.5"); shrinkage, warpage and peeling effects might be

more pronounced on these.

• When designing, consider the mechanics of the process and leave space to empty non-sintered

powder out of the finished part.
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A.3.4 Material Science and Engineering

Contact information

Chris Kailhofer (chris.kailhofer@wisc.edu)

Fused deposition modeling

Specifications

• 3D printer type: Makerbot filament-style-printers. For more information about this printer,

visit http://www.makerbot.com/

• Build volume: 25.2 L × 19.9 W × 15.0 H in centimeters (= 9.9 L × 7.8 W × 5.9 H in inches)

• Layer thickness: 0.1 mm (= 100 microns = 0.069 in)

• Nozzle diameter: 0.4 mm (= 0.015 in)

• Two available options for material selection.

Materials

• ABS

– Impact (Un-notched IZOD): 5.7 ft-lb/in (std); 6.2 ft-lb/in (max)

– Compressive Strength: 1100 psi (std); 7100 psi (max)

– Tensile Strength: 4936 psi or 34 MPa(std); 5532 psi (max)

– Flexural Strength: 5344 psi (std); 8646 psi (max)

• PLA (polyactic acid; polyactide)

– Impact (Un-notched IZOD): 1.8 ft-lb/in (std); 4.1 ft-lb/in (max)

– Compressive Strength: 2600 psi (std); 13600 psi (max)

– Tensile Strength: 6783 psi or 47 MPa (std); 9531 psi (max)

– Flexural Strength: 8970 psi (std); 13731 psi (max)

http://www.makerbot.com/
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Costs Costs: about $50/kg (the first job is free).

Notes The Makerbot printer performing FDM had hard time to print a 2×2×2 3D chiral isotropic

lattice; nozzles continue to malfunction. A 2×2×2 3D chiral isotropic lattice 3D-printed by PLA

was lighter than one fabricated by Team Lab and printing resolution seems to be comparable, as

given in Figure A.15.

Figure A.15: A photograph of a 3D-printed 2×2×2 lattice with an aspect ratio
of 1.642 which was printed via Makerbot with PLA material. This is an identical

structure to one shown in Figure A.9.
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A.4 Commercial resources

This section contains several commercial resources for 3D printing. They are usually expensive to

fabricate models compared to those at the university. However, various 3D printing technologies

including material jetting (MJ) and binder jetting (BJ) are available, which provides superior print

resolutions compared to FDM method. In addition, a wide range of bulk materials from flexible

materials like elastomer to powdered materials such as steel powder is available.

A.4.1 Midwest Prototyping

Midwest Prototyping is a local company near Madison, WI. It takes about 40 minute drive from

Engineering Research Building, 1500 Engineering Drive in Madison. This company provides the

best quality and a quick turnaround time by far. Staffs are also kind and willing to help. (Zach and

I had a tour on May 26, 2016 at 1PM). STL files need to be submitted online via company’s website

(https://www.midwestproto.com/ftp-upload). Usual turnaround is less than 3-4 business days.

Parts are shipped via UPS ground.

Location

Address: 10949 Blackhawk Dr. Blue Mounds, WI 53517.

Website: https://www.midwestproto.com

Contact information

• Mike Roosa (Business & Application development)

– mike.roosa@midwestproto.com

– Office: 608-437-1400

– Cell: 608-445-9266

https://www.midwestproto.com/ftp-upload
https://www.midwestproto.com
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– Fax: 608-437-1409

• Alfredo Jijon (Prototype specialist)

– alfredo@midwestproto.com

– Office: 608-437-1400

– Fax: 608-437-1409

• Laura Mason (Project manager)

– laura.mason@midwestproto.com

– Office: 608-437-1400

– Fax: 608-437-1409

Available 3D printers

The company possesses various types of 3D printers that perform different AM technologies as

follows.

• Stereolithography (SLA)

• Selective laser sintering (SLS)

• Fused deposition modeling (FDM)

• Material jetting via Polyjet/Objet

• Binder jetting via Z-Corp

• Continuous liquid interface production (CLIP)

Cast urethane services and CNC machining are also available. The following sections include spec-

ifications as well as bulk material properties for 3D printing methods that are listed above. For

more details, visit https://www.midwestproto.com

https://www.midwestproto.com
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Stereolithography (SLA) A 3D printer performing SLA is suitable for highly accurate compo-

nents for use in design verification and presentation models. A variety of materials that simulate

many common thermoplastics is available. Such materials can provide great finishing, clearness and

high toughness. Further, they can be used for high heat and fluid applications.

Specifications

• 3D printer type: iPro 8000 (See Table A.4 for build specifications).

• Tolerances: +/- 0.005" (= +/- 0.127 mm) for the first inch and +/- 0.0015" (= +/- 0.0381

mm) for each additional inch.

• Available bulk materials: Accura R© 25, Accura R© 60, Accura R© Xtreme, Accura R© Xtreme

White 200, Accura R© Bluestone, Somos R© 8120, Somos R© PerFORM (See Table A.5 for bulk

material properties).

Table A.4: SLA build specifications [169].

Build Envelope [mm]

X Y Z Accura R© 25 Accura R© 60
Accura R©

Xtreme

Accura R©

XtremeWhite

200

Accura R©

Bluestone

Somos

8120

635 736.6 533.4 X X X

508 508 609.6 X X X X

254 254 254 X X X X X

127 127 254 HR HR HR HR HR

HR: Designates High Resolution, available only on the 127 mm × 127 mm × 254 mm build envelope
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Table A.5: Available bulk materials and material properties for SLA [170].

Accura 25 Accura 60 Accura Xtreme
Accura Xtreme

White 200

Accura

Bluestone
Somos 8120

Somos

PerFORM

Appearance Off-white Clear Grey White Opaque blue
Semi-

transparent
White

Notable for

- Durability

- Master patterns

- Functional

prototypes

- Clarity and

transparency

- Visualization

models

- Stiffness

- Durability

- Functional

prototypes

- Impact

resistance

- Durability

- Break

resistance

- Detail fidelity

- Exceptional

stiffness

- High humidity

resistance

- High temp

resistance

- Flexibility

- Snap-fits

- Impact

strength

- Exceptional

stiffness

- High humidity

resistance

- High temp

resistance

Simulates or

comparable to
Polypropylene Polycarbonate

ABS

Polypropylene
ABS Ceramic Polyethylene Ceramic

Tensile Ultimate

Strength

(ASTM D648)

38 MPa 58-68 MPa 38-44 MPa 45-50 MPa 66-68 MPa 26 MPa 68 MPa

Tensile Modulus

(ASTM D648)
1.59-1.66 GPa 2.67-3.10 GPa 1.79-1.98 GPa 2.30-2.63 GPa 7.60-11.7 GPa 276-703 MPa 10.5 GPa

Elongation

at break,

εbreak

0.13-0.20 0.05-0.13 0.14-0.22 0.07-0.20 0.014-0.024 0.27 0.011

Flexural

Ultimate

Strength

(ASTM D790)

55-58 MPa 87-101 MPa 52-71 MPa 75-79 MPa 127-154 MPa 26 MPa 120 MPa

Flexural

Modulus

(ASTM D790)

1.38-1.66 GPa 2.70-3.00 GPa 1.52-2.07 GPa 2.35-2.55 GPa 8.3-9.8 GPa 0.69 GPa 10 GPa

Impact Strength

(IZOD)

(ASTM D256)

19-24 J/m 15-25 J/m 35-52 J/m 55-66 J/m 13-17 J/m 59 J/m 17 J/m

Heat Deflection

Temperature

at 0.45 MPa

(ASTM D648)

58-63 ◦C 53-55 ◦C 62 ◦C 47 ◦C 65-66◦C 54 ◦C 132 ◦C

Selective laser sintering (SLS) The SLS-type 3D printer has been employed to fabricate a

variety of parts used in agricultural environments, off road vehicles, functional parts in lab equip-

ment, race cars and aircrafts. The final components are thus ideal for use in harsh environments

and demanding applications. For build specification of the SLS-type 3D printer, please see Table A.6.
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Table A.6: SLS build specifications [148].

Printer
Build Envelope [mm] Typical Layer

Thickness [mm]

Available Powders

X Y Z PA GF Alulon

DTM 2500PLUS 381 330.5 457.2 0.1016 X X X

sPro 60 HS-HD 381 330.2 457.2 0.1016 X X X

EOS P760 711.2 381 584.2 0.1016 X

Specifications

• 3D printer type: unknown

• Available powders: Polyamide (also called as PA, base nylon or nylon 12), glass filled (GF),

Alulon (blend of nylon and aluminum powder) (See Table A.7 for bulk material properties).

• Tolerances: +/- .005" for the first inch and +/- .002" for each additional inch.

• Typical layer thickness: 0.004" (= 0.1016 mm)

• Laser diameter: 0.01" (= 0.254 mm)
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Table A.7: Available bulk materials and material properties for SLS [171].

Polyamide (PA) Glass Filled (GF) Alulon

Appearance White Light grey Metallic grey

Notable for

- Good chemical resistance

- USP Class VI complaint

- Low moisture absorption

- Temperature resistance

- Functional parts

- Structural integrity

- Functional parts

- Structural integrity

- Feels like aluminum

- Good machinability

Simulates or

comparable to
Nylon 12 30% glass-filled nylon

Blend of nylon and

aluminum powder

Tensile Ultimate

Modulus (ASTM D638)
43 MPa 26 MPa 39.2 MPa

Tensile Modulus

(ASTM D638)
1.59 GPa 4.07 GPa 3 GPa

Elongation at break, εbreak 0.14 0.014 0.025

Flexural Ultimate

Strength (ASTM D790)
48 MPa 37 MPa n/a

Flexural Modulus

(ASTM D790)
1.39 GPa 3.11 GPa n/a

Impact Strength (IZOD)

(ASTM D256)
32 J/m 41 J/m n/a

Heat Deflection

Temperature at 0.45 MPa

(ASTM D648)

180 ◦C 179 ◦C 175 ◦C

Notes

• The most popular material is the base nylon (PA), a bright white strong and flexible material.

It can be drilled and tapped easily and will accept thread forming screws and heat staked

inserts.

Printing history

• July 20, 2016 Unit cell consisting of cylindrical corrugated tubes C1_rev3 (Figure A.16a)

and one made of triangular corrugated ribs with three fold plate elements T2_rev1 (Figure

A.16b) were fabricated with finish level one which included removal of excess powder and light

bead blasting. Overall dimensions of both unit cells were 16 mm on a side. For either unit
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cell, the desired slenderness was achieved and no dimensional distortion was observed. These

unit cells were sent to print on July 20, 2016, and the turnaround time was 6 days (received

on July 26, 2016). One copy of each unit cell was printed, and the cost was $35. Materials

used to fabricate was PA 2200.

Comments: These were by far the highest quality models of all printing methods. Expected

slenderness was achieved and hollowness was observed. Deformation of unit cell T2_rev1 was

visible by naked eyes.

(a) (b) (c)

Figure A.16: Photographs taken by stereo microscope. (a) Unit cell consisting of
cylindrical corrugated ribs (C1_rev3). (b) Unit cell made of triangular ribs with three
fold plate elements (T2_rev1). (c) A closed up view of the triangular rib of unit cell

T2_rev1. Size of both unit cells are 16 mm on a side.

• August 29, 2016 - Two unit cells with different lattice parameters were submitted to 3d-

printed. One of which had a side length of 14 mm (S1_rev2) as shown in Figure A.17 and

the other that had a side length of 8 mm (S1_rev3) as shown Figure A.18. Both of these

unit cells were composed of square ribs with four fold plate element corrugations. Polyamide

(nylon 12) was used as a parent material, and finish level 1 was employed. Three copies of

each unit cell were printed for $48 and were arrived in the lab on September 1, 2016.

Comments: Both received models had evident defects in their structures. The plate elements

in the corrugations for both unit cells , which were parallel to the top and the bottom faces,
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were all incomplete, as shown in Figures A.17b and A.18b. This was caused by their need to be

self supported during the printing process, which they were not because of their orientation.

All of plate elements would be supported during the printing process and would result in

a successful part, if they were rotated by 45◦. In addition, for the unit cell of 8 mm side

length (S1_rev3), ribs were not 3d-printed with an acceptable resolution. The plate elements

were nearly indistinguishable because the size of this unit cell was too small for the practical

capabilities of the SLS printer. In despite of aforementioned printing defects, the unit cell

with 14 mm side length (S1_rev2) were of acceptable resolution.

(a) (b)

Figure A.17: Photographs taken by stereo microscope of the unit cell consisting of
square ribs with four fold plate elements corrugation (S1_rev2). Overall dimensions

were 14 mm on a side. (a) Top (or bottom) surface and (b) Side surface.
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(a) (b)

Figure A.18: Photographs taken by stereo microscope of the unit cell consisting of
square ribs with four fold plate elements corrugation (S1_rev3). Overall dimensions

were 8 mm on a side (a) Top (or bottom) surface and (b) Side surface.

• September 6, 2016 - A revised unit cell with square ribs and four fold plate element corru-

gations rotated 45◦ about their longitudinal axes (S1_rev4) as compared to S1_rev3 shown

in Figure A.18 were 3d-printed. This unit cell shares the same ribs with S1_rev3, thus its

overall dimension is 14 mm on a side. Three copies of each unit cell was fabricated with finish

level 1 for $48 and was arrived in the lab on Sep. 14, 2016. Polyamide (nylon 12) was used as

a parent material.

Comments: As shown in Figure A.19, the corrugated segments were all totally complete. No

printing defects were observed, and the expected slenderness was achieved.
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(a) (b)

(c) (d)

Figure A.19: Photographs taken by stereo microscope of a revised unit cell with
square ribs and four fold plate element corrugation rotated 45◦ about their longitudi-
nal axes (S1_rev4). Overall dimensions were 14 mm on a side. (a) Top (or bottom)
surface, (b) Side surface, (c) A close-up view of joints, (d) A close-up view of open

portion (i.e., corrugations).

• September 22, 2016 - The previously created unit cell composed of triangular corrugation

ribs with three plans of symmetry (T2_rev1 shown in Figure A.16b) was revised to have side

length of 14 mm and 3d-printed for comparison to unit cell S1_rev4 shown in Figure A.19.

Three copies of each were fabricated with finish level 1 for $36. Polyamide (nylon 12) was
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used as a parent material. These specimens were received on September 28, 2016.

Comments: As shown in Figure A.20, the final products were in excellent condition. No

printing defects were visible, and the desired slenderness was achieved.

Figure A.20: Photographs taken by stereo microscope of unit cell consisting of
triangular ribs with three corrugations where ribs are oriented to have three planes

of symmetry (T2_rev2). Overall dimensions were 14 mm on a side.

• April 19, 2017 - 3×3×1, 3×3×2, and 3×3×3 energy absorption lattice structures presented

in Chapter 7 were fabricated for the purpose of correlation analysis between finite element

analysis and cyclic loading experiments. Two copies of each structure with finish level one

were priced at $522. Polyamide (nylon 12) was used as a parent material. These specimens

were received on April 30, 2017.

Comments: Figure A.21 shows a photograph of a 3×3×3 energy absorption lattice structure.

The final product disclosed adequate slenderness giving rise to the desired snap-through be-

havior, hence hysteresis in a load-displacement relationship subjected to cyclic loading was

seen experimentally. As a result, energy absorption phenomenon was successfully observed.
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Figure A.21: A Photograph of a 3×3×3 energy absorption lattice structure which
is also shown in Figure 7.4. This structure is approximately 70 mm on a side.

• November 15, 2017 - 2×2×2 and 3×3×3 cubic lattice structures with negative stiffness

were fabricated to conduct cyclic loading experiments for future research. These structures are

expected to absorb energy similar to the previously developed structures shown in Figure A.21

but has a cubic symmetry, hence energy absorption in three principal directions is achievable.

Two copies of each structure with finish level one were priced at $366. Polyamide (nylon 12)

was used as a parent material. These specimens were received on November 22, 2017.

Comments: Figure A.22 shows a photograph of a 3×3×3 cubic lattice structure with negative

stiffness. The expected slenderness was achieved. Cyclic loading tests showed hysteresis in its

load-displacement relationship.
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(a) (b)

Figure A.22: A photograph of 3×3×3 negative stiffness lattice structure with a side
length of approximately 80 mm. (a) Isometric view. (b) Side view.

• January 30, 2018 - 2×2×6 and 3×3×9 negative stiffness cubic lattice structures were fabri-

cated for the purpose of wave experiments for future research, as shown in Figures A.23 and

A.24. Two copies of each structure with finish level one were priced at $264. Polyamide (nylon

12) was used as a parent material. These specimens were received on February 8, 2017.

Comments: The expected slenderness was achieved.
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(a) (b)

Figure A.23: A photograph of 2×2×6 negative stiffness lattice structure. Overall
dimensions are 48.50×48.50×138.35 mm. (a) Isometric view. (b) Side view.
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(a) (b)

Figure A.24: A photograph of 3×3×9 negative stiffness lattice structure. Overall
dimensions are 70.97×70.97×205.74 mm. (a) Isometric view. (b) Side view.

Fused deposition modeling (FDM) Fused deposition modeling (FDM) utilizes thermoelastic

extrusion to build parts layer by layer. Parts fabricated via FDM are suitable from unique proto-

types to production parts.

Specifications

• 3D printer type: Stratasys FORTUS 400mc
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• Available materials: ULTEM 9085, Polycarbonate (PC), ABBS-M30 (See Table A.8 for bulk

material properties)

• Build envelope: 16" × 14" × 16" (= 355 × 254 × 254 mm)

• Layer thickness will vary between 0.005" - 0.013" (= 0.127 mm - 0.3302 mm), dependent on

material selection.

• Minimum size of part: 0.01" - 0.026" (= 0.254 mm - 0.6604 mm), assuming FDM needs to

make 2 passes to make a structure.

• Tolerances: parts are produced within an accuracy of +/- .005 inch or +/-.0015 inch per inch,

whichever is greater.

Notes

• Some designs sometimes require support structures during printing, easily removed during

post-process.

• Part geometry, wall thickness, and build orientation can have an effect on tolerances.

Table A.8: Available bulk materials and material properties for FDM [172].

ULTEM 9085 Polycarbonate (PC) ABS-M30

Available colors Tan White

White

Dark gray

Black

Notable for

- High heat and

chemical resistance

- FST (flame, smoke, toxicity)

certified Thermoplastic

- Ideal for commercial

transportation applications

- High tensile and

flexural strength

- Ideal for demanding jobs,

including tool, metal bending

and composite work

- Feature Definition and

Surface Appeal

- Ideal for conceptual modeling

and end-use parts

- Higher impact and tensile

strength than traditional ABS

- Production grade thermoplastic

Properties n/a n/a n/a
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Polyjet/Objet (material jetting) This 3D printer, which performs material jetting (MJ) tech-

nology, offers a diverse range of materials and is an excellent option for realistic, high-resolution

models and prototypes, short-run injection molds and master patterns for urethane casting. MJ

utilizes multiple print nozzles jetting one or more liquid photopolymers onto a build platform. The

jetted photopolymer are cured by UV light passes and solidified layer by layer. This process is

repeated until the model is complete. Materials of different colors and/or durometers can be de-

posited in the same part if desired to simulate overmolded parts.

Specifications

• Available materials: TangoBlack FLX973, TangoGray FLX950, VeroClear RGD810 (See Table

A.9 for bulk material properties).

• Maximum build envelope of 11.57" × 7.55" × 5.85" (= 29.38 × 19.18 × 14.86 in centimeters)

• High resolution layer thickness will vary between 0.0006" - 0.0011" (= 0.01524 mm - 0.002794

mm), dependent on material selection.

• Tolerances: parts are produced with a resolution of less than 0.002" (= 0.0508 mm) and an

accuracy of +/- 0.004" (= +/- 0.1016 mm)for the first inch and +/- 0.0015" (= +/- 0.0381)

for each additional inch.

Notes

• Wax-like structures are built to support the model during printing, easily removed during

post-process.

• Part geometry, wall thickness, and build orientation can have an effect on tolerances.
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Table A.9: Available bulk materials and material properties for Polyjet [173].

TangoBlack FLX973 TangoGray FLX950 VeroClear RGD810

Appearance Black Gray Clear

Notable for Flexible, elastomer-like Flexible, elastomer-like Rigid, fine details

Tensile Ultimate

Modulus (ASTM D638)
0.8-2.4 MPa 3-5 MPa 49.99-65.15 MPa

Tensile Modulus

(ASTM D638)
n/a n/a 2-3 GPa

Elongation at break, εbreak 0.45-0.55 0.45-0.55 0.10-0.25

Flexural Ultimate

Strength (ASTM D790)
n/a n/a 75-110 MPa

Flexural Modulus

(ASTM D790)
n/a n/a 2.2-3.2 GPa

Impact Strength (IZOD)

(ASTM D256)
n/a n/a 20-30 J/m

Heat Deflection

Temperature at 0.45 MPa

(ASTM D648)

n/a n/a 45-50 ◦C

Glass Transition

temperature (Tg)
n/a n/a 52-54 ◦C

Shore

hardness
60-62 73-77 83-86

Water

absorption

(ASTM D570)

n/a n/a 1.1-1.5 %

Printing history

• July 20, 2016 The same triangular unit cell printed by FDM previously (T2_rev1 shown in

Figure A.11b) was 3d-printed via material jetting method with finish level one which included
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removal of supports and light beading blasting. A parent material was Veroblue, and one copy

of this unit cell was fabricated for $70. The part was received on July 26, 2016.

Comments: Print resolution was superficial and a fabricated model was flexible. However,

the model was dimensionally inconsistent, as shown in Figure A.25. Most of the faces were

not square and many of the ribs were warped. These shrinkage and distortion seemed to be

caused by the curing process.

Figure A.25: A photograph of the unit cell consisting of triangular ribs with three
fold plate elements corrugations where ribs are oriented to have three planes of sym-
metry (T2_rev1) was printed by material jetting method. Overall dimensions were
16 mm on a side. Superficial print resolution was observed, however dimensionally

inconsistent was found due to shrinkage/distortion during the curing process.

Z Corp (binder jetting) Z Corp uses 5 color printheads (CYMK and clear) to deposit small

droplets of color binder to solidify a powder bed. The powdered material, often referred to as

plaster, starch, or gypsum powder, has a granular finish and is brittle out of the machine. After

printing, the parts are cleaned of any powder, coated in super glue to add strength, and sprayed

with a clear lacquer to protect and smooth the surface. Parts created by binder jetting are most
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often used for visual display models and not for functional prototypes.

Specifications

• Max build size: 15" × 10" × 8" (= 381 mm × 254 mm × 203.2 mm)

• Resolution: 600 × 540 dpi (equivalent to 0.042 mm; the author is not sure about this)

• Layer thickness: 0.004" (= 0.1016 mm)

• Printheads: 5 (CYMK and clear)

Material information

• Color: 24 bit color

• Material: Visijet PXL

• Finish: Granular or Sandstone

• Coating: Matte or Gloss

Design recommendations

• Minimum wall thickness: 0.080" (= 2.032 mm)

• Minimum standalone features: 0.040" (= 1.1016 mm)

• Minimum detail: 0.020" (= 0.508 mm)

• Clearances: 0.016" (= 0.4064 mm)

• File type: PLY, VRML, COLOR STL

Finishing and post-processing The Midwest Prototyping provides finishing and post-processing

with cost; these are recommended for prototypes printed via SLA in particular, because SLA re-

quires to have supports during printing which need to be removed during post processing.

SLA finish levels
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Finishing level: process inclusions

Level 1 Supports removed, support faces sanded and lightly bead blasted

Level 2 Supports removed, support faces sanded and entire part bead blasted

Level 2+ Sanded to 180 grit - blending all accessible layer lines (sand marks will still be

present), and entire part bead blasted

Level 3 Sand to 320 removing all accessible layer lines so it’s ready to prime/paint

Level 4 Sanded to 600 Wet **Required when parts are to be plated or to enhance trans-

parency (Accura 60)**

SLS finish levels

Finishing level: process inclusions

Level 1 Excess powder removed, lightly bead blasted.

Level 2 Excess powder removed, lightly bead blasted, and sealed to make the product wa-

tertight.

Level 3 Excess powder removed, lightly bead blasted, sealed and sanded to promote a

smoother appearance

Tumbling Parts can be tumbled for a smooth surface finish

Dying Various colors available

Paint/cosmetic options

Process Offered: level availability

Primer Available at any finish level

Paint (Gloss or Matte) Available at any finish level

Clear Coat Available at any finish level

Soft Touch Available at any finish level
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Texture Available at any finish level

Dye Available at any finish level

Optical Clear Level 4 Finish Required

Vacuum Metalizing Level 4 Finish Required

A.4.2 EIGERlab

This labratory was referred by one of representatives (Mike Roosa) at Midwest Prototyping. De-

tailed information can be found at http://www.eigerlab.org.

Location

EIGERlab has two offices as follows.

1. Northern Illinois University (NIU) EIGERlab CoWorking Space - NIU-Rockford: 8500 E.

State St., Rockford, IL 61108

2. NIU EIGERlab Center for Product Development: 5299 Zenith Parkway, Loves Park, IL 61111

Contact information

Office: 815-965-3522

Fax: 815-316-6345

A.4.3 Stratasys Direct

Stratasys Direct is a sub-company of Stratasys that is a leading company who builds various types

of 3D printers with different technologies including FDM, SLS and Polyjet. Free online quote service

is available at http://www.stratasysdirect.com.

Location

28309 Ave Crocker, Valencia, CA 91355

http://www.eigerlab.org
http://www.stratasysdirect.com
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Contact information

Toll-free: 1-888-311-1017

info@stratasysdirect.com

Notes

• Online quote for 5×5×5 3D chiral lattices via FDM was $1080 (about twice expensive than

that quoted by Team Lab).

A.4.4 Online resources

Recently, 3D printing becomes popular for various purposes including fabricating prototypes for

production and research. There are many online 3D printing companies available. By uploading

STL files (sometimes CAD files), quotations are available at no cost. As mentioned before, the cost

for printing is expensive as compared to in-campus resources.

• Midwest Prototyping https://www.midwestproto.com

• EIGERlab http://www.eigerlab.org

• 3D printing price check http://3Dprintingpricecheck.com

• The UPS store https://madison-wi-3391.theupsstorelocal.com/products-services/new-3D-printing

• Ponoko http://www.ponoko.com/3D-printing

• Shapeways http://www.shapeways.com

• Xcentric https://www.xcentricmold.com/rapid-prototyping.php

• Stratasys direct manufacturing https://www.stratasysdirect.com

• Additively https://www.additively.com

• Xometry https://www.xometry.com

https://www.midwestproto.com
http://www.eigerlab.org
http://3Dprintingpricecheck.com
https://madison-wi-3391.theupsstorelocal.com/products-services/new-3D-printing
http://www.ponoko.com/3D-printing
http://www.shapeways.com
https://www.xcentricmold.com/rapid-prototyping.php
https://www.stratasysdirect.com
https://www.additively.com
https://www.xometry.com
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Appendix B

Tensile properties of 3D-printed test

specimens

Abstract This paper presents a comparison of material properties between parent (prior to 3D

printing fabrication) and (after) 3D-printed materials. Per ASTM D638-14, tentile tests were con-

ducted for test specimens prepared by two different 3D printing processes: selective laser sintering

(SLS) and material jetting (MJ), namely. Polyamide was a parent material for SLS-fabricated

specimens, while test specimens prepared by MJ adopted VeroClear RGD810 as a parent material.

Overall, significant differences in material properties between the parent and 3D-printed materials

were seen. The elastic moduli for both the SLS-fabricated and MJ-fabricated specimens were al-

most a factor of two lower than that of the corresponding parent materials provided by a reference.

In addition, the SLS-fabricated specimens experienced a higher elongation at break than that of

the parent material, whereas an elongation at break similar to the reference was measured for the

MJ-fabricated specimens. A difference in the ultimate tensile strength between the parent materials

and test specimens was found to be minimal regardless of the two 3D printing methods. Poisson’s

ratio was measured to be 0.24 for both test specimens, and viscoelastic damping for these specimens

was measured via broadband viscoelastic spectroscopy. These two quantities were not provided by

the reference, so comparisons were not made.
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B.1 Introduction

Nowadays, 3D printing, also called additive manufacturing, has been adopted to create a variety

of complicated 3D microstructures such as microsensors, medical devices, or micro-optical systems

[174]. This is due to its applicability and advantages compared to traditional manufacturing pro-

cesses. In the course of my research presented in this dissertation, 3D printing has been utilized

to fabricate several micro/smart-structures in order to conduct various experiments for validating

results obtained from either theory or finite element analysis (FEA).

There is a wide range of parent materials (prior to 3D printing fabrication) from polymers

to metals available for 3D printing prototyping. Although these parent material properties are

available in the literature, there is very little material property information available for (after)

3D-printed materials [150]. In addition, there is a high chance that parent material properties may

be transformed randomly due to applied temperature and/or pressure during sintering or solidifying

processes which are necessary for 3D printing technology. For example, selective laser sintering (SLS)

utilizes a high-temperature laser to sinter layers of fine powders selectively, and material jetting (MJ)

uses inkjet print heads to jet melted wax-like materials which cool and solidify themselves.

Therefore, it is reasonable to argue that material properties of the 3D-printed materials need

to be known before any structures fabricated by 3D printing are to be analyzed. In this study,

3D-printed test specimens fabricated by either SLS or MJ were prepared to conduct tensile tests

according to ASTM-D638-14 [151]. Tensile properties such as a tensile strength, modulus of elastic-

ity, yield strength, Poisson’s ratio, and viscoelastic damping were measured. Finally, a comparison

of material properties between the parent and the 3D-printed materials was developed.
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B.2 Methods

B.2.1 Test methods

Tensile tests in this study have followed ASTM D638-14 [151]; this test method is standard test

method for tensile properties of plastics.

A testing machine was a screw-driven test frame (model: MTS Sintech 10-GL) utilizing a load

cell (model #: 27-00079) with 10,000 lb capacity. This load cell has a load precision of ±0.01 lb

of an indicated load; digital noise is about less than one thousandth of pound-force. Both the test

frame and the load cell were calibrated on September 30th in 2015.

A constant rate of a crosshead movement, simulating a constant strain rate, was employed for all

tensile tests, which was achieved by controlling velocity to the movable member with respect to the

stationary member via the provided software (called TestWorks R©) linked to the test frame. The

software as well as the provided handset also allow the user to position the crosshead manually with

coarse and fine movements. For test specimens fabricated by material jetting (MJ), the constant

rate of the crosshead movement was 50 mm/min, while 5 mm/min constant rate was applied to test

specimens 3D-printed by selective laser sintering (SLS).

The test specimen was held by grips composed of a fixed member and a movable member

attached to the crosshead. These grips are self-aligning type in such a manner that they will move

freely into alignment once any load is applied so that the longitudinal axis of the test specimen

will align with the direction of the crosshead through the center line of the grip assembly. Possible

slippage relative to the grips was prevented by grip surfaces that are serrated with a pattern.

Both total tensile load and the corresponding displacement carried by the test specimen were

displayed and stored in real time by the software. Once the tests were completed, data including

both the load and the displacement was exported as a file in a form of txt format.

txt
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B.2.2 Test specimen fabrication

3D-printed test specimens fabricated by either selective laser sintering (SLS) or material jetting (MJ)

employed a standard dumbbell shape, conforming to the dimensions according to ASTM D638-14

[151], as shown in Figure B.1. These specimens are considered as rigid or semi-rigid plastics per

this standard.

These test specimens were modeled by SolidWorks R©, and the corresponding STL files were

generated and submitted to Midwest Prototyping (located in Blue Mounds, WI [147]) for 3D printing

fabrication; detailed information of this company can be found in Appendix A. Parent material for

SLS-fabricated specimens was polyamide (PA), while VeroClear RGD810 was used for MJ-prepared

specimens.

Three test specimens were 3D-printed by SLS; they are modeled based on the Type I specifica-

tions according to ASTM D638-14. These dimensions are listed in Table B.1.

Unlike aforementioned SLS-fabricated test specimens, only two test specimens that followed the

Type III specifications were prepared by MJ. The rationale is that most micro/smart-structures in

my research have been fabricated via SLS. Hence, it is reasonable to allocate available resources for

a study of structures fabricated by SLS instead of that prepared by MJ.

For measuring Poisson’s ratio ν, square beam test specimens for each 3D printing method were

prepared. Dimensions of the square beam were 10 mm × 10 mm × 50 mm. Digital images were

taken when these specimens subjected to 2 % strain. For easy measurements, all test specimens

were marked on edges.

Loss tangent tanδ representing damping caused by viscoelastic effects was measured by broad-

band viscoelastic spectroscopy (BVS). Circular rods for each 3D printing method were prepared,

and they had the diameter of 0.5 mm with the length of 30 mm. Details of BVS measurement can

be found in Ref. [38].

STL
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Figure B.1: Drawing of the test specimen per ASTM D638-14 [151].

Table B.1: Test specimen dimensions.

Type I [mm] Type III [mm]

W - Width of narrow section 13 19

L - Length of narrow section 57 57

WO - Width overall, min 19 29

LO - Length overall, min 165 246

G - Gage length 50 50

D - Distance between grips 115 115

R - Radius of fillet 76 76

T - Thickness 2 7

B.2.3 Calculations

Tensile Strength

The tensile strength can be calculated by dividing the maximum load sustained by a specimen by

its original cross-sectional area in the gage length segment of the specimen.

σult =
Pmax

Aorig
(B.1)

where Pmax is the maximum load carried by the specimen and Aorig = WT .
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Modulus of elasticity

The modulus of elasticity E, also called Young’s modulus, can be determined by dividing the dif-

ference in stress corresponding to any segment on the initial straight line of a stress-strain curve by

the corresponding difference in strain. The original cross-sectional area in the gage length segment

of a specimen was used for calculating Young’s modulus. It is most likely to observe some curvature

instead of the straight line, since test specimens fabricated by 3D printing utilizes polymers as their

parent materials that are known to contain viscoelastic behavior. Thus, in order to obtain the

modulus of elasticity, a linear fitting was applied to the initial curve of the load extension curve

with the goodness of fit R2 at least equal to 0.995.

Poisson’s ratio

By definition, Poisson’s ratio ν is the ratio of transverse contraction strain to longitudinal extension

strain in the direction of the applied load as follows.

ν = − εtransverse
εlongitudinal

(B.2)

B.3 Results

Measured tensile properties of 3D-printed test specimens made of either polyamide (PA) via selective

laser sintering (SLS) or VeroClear RGD810 via material jetting (MJ) are listed in Table B.2. Note

that these values are averaged over results from either three test specimens fabricated by SLS or

two test specimens prepared by MJ. Parent material property values are also given in parentheses

for a comparison in this table.

In general, considerable differences in material properties between the parent and 3D-printed

materials were observed. For both 3D-printed test specimens prepared by either SLS or MJ, the

measured moduli of elasticity E were found to be almost half of that of the corresponding parent

materials. While elongation at break εbreak for test specimens fabricated by MJ was found to be
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within the range of the provided value of the parent material, test specimens prepared by SLS

obtained much higher value of εbreak. However, the measured ultimate tensile strength σult of both

specimens were similar with that of the parent materials, regardless of 3D printing methods.

Poisson’s ratio was computed to be 0.24 ± 0.0084 for both 3D-printed test specimens fabricated

via SLS and via MJ. This value is rather low for polymers; Poisson’s ratio of typical polymers is

approximately equal to 0.3.

In Table B.1, tanδ for each test specimen fabricated by either SLS or MJ is given. High tanδ

means high damping. For example, at room temperature tanδ is 0.0005 at 1 Hz for steel, 0.001 at 1

Hz for aluminum, 0.02 at ∼ 1 Hz for wood and 0.1 at 1 Hz for polymethyl methacrylate (PMMA)

[153]. Measured tanδ at 1 Hz for the test specimen prepared by SLS was 0.32 and 0.30 for bending

and torsion tests, respectively. Similar values were observed for the test specimen fabricated by MJ:

0.33 from bending and 0.32 from torsion at 1 Hz. These values represent moderate damping and

are consistent with the curvature of the stress-strain plot in the small strain region, as shown in

Figure B.2.

Table B.2: Measured tensile properties of 3D-printed test specimens. Parent mate-
rial property values are given in parentheses for comparison [171].

Tensile tests per ASTM D638-14
Simple

compression test
BVS test

E [GPa] σyield [MPa] εyield [-] σult [MPa] εult [-] εbreak [-] ν [-]
tanδ

@ 1 Hz

Specimen

via SLS

(PA)

0.717

(1.59)

31.55

(unknown)

0.044

(unknown)

45.26

(43)

0.19

(unknown)

0.21

(0.14)

0.24

(unknown)

0.32 (bending)

0.30 (torsion)

Specimen

via MJ

(VeroClear

RGD810)

0.819

(2-3)

39.07

(unknown)

0.048

(unknown)

66.49

(49.99-65.15)

0.11

(unknown)

0.14

(0.10-0.25)

0.24

(unknown)

0.33 (bending)

0.32 (torsion)

Figure B.2 shows stress-strain curves of 3D-printed test specimens fabricated by 3D printing.

Viscoelastic damping effect, represented by tanδ, can be seen in these figures. In general, all test

specimens 3D-printed by SLS experienced noticeable plastic deformation before fracture as do ductile

materials, as shown in Figure B.2a. On the other hand, test specimens prepared by MJ behaved
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like brittle materials since they were fractured after very small plastic deformation, as depicted in

Figure B.2b.

As shown in Figure B.2b, one of MJ-fabricated test specimens, denoted as Test 1 in this figure,

showed a bump in the plastic region. This was because a smooth surface of this specimen which

resulted in a slippage between itself and grips of a test frame. Although σult and εbreak were affected

by this slippage for this test specimen, values of E, σyield and εyield were still meaningful values

since these tensile properties were measured within elastic regime prior to the bump. In contrast,

the other test specimen was fractured without strain-gardening and necking regions; the ultimate

strength and the breaking strength occurred at the same time. This was because the specimen

broke at grips rather than within the desired gage length .
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Figure B.2: Stress-strain curves for selected 3D-printed test specimens: (a) Selective
laser sintering (SLS) method. (b) Material jetting (MJ) method.

B.4 Conclusions

Tensile properties of 3D-printed test specimens fabricated via either selective laser sintering (SLS)

or material jetting (MJ) were measured by conducting tensile tests according to ASTM D638-14.
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A parent material was polyamide for SLS-fabricated specimens and VeroClear RGD810 for MJ-

fabricated specimens. In general, significant differences in material properties between the parent

and 3D-printed materials were observed. Regardless of 3D printing methods, the elastic moduli

of 3D-printed test specimens were about half of the provided value of the corresponding parent

materials. However, the ultimate tensile strength was found to be similar with that of the parent

materials. While the elongation at break for test specimens fabricated by MJ was within the window

of the provided values, test specimens 3D-printed by SLS experienced much higher elongation at

break. Moreover, the Poisson’s ratio of 0.24 and viscoelastic damping of approximately 0.3 were

measured for all test specimens independent of 3D printing methods.
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