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Abstract

The monodromy of a family of varieties is a measure of how homology classes vary.
Surprisingly, many familiar ideas in number theory, such as Galois representations and
Cohen-Lenstra heuristics, are closely linked to the monodromy of specific families. In
general, we expect the monodromy of a family to be “big”, i.e. aslarge as possible subject
to any geometrical or algebraic constraints arising from the family. In this thesis I study
the monodromy of Hurwitz spaces of G-covers, moduli spaces for branched covers of the
projective line with Galois group G. I show that if G is center-free and has trivial Schur
multiplier the mod ¢ monodromy will be big as long as the number of branch points
of a curve in the family is chosen to be sufficiently large. Along the way the necessary
algebraic results, including a generalized equivariant Witt’s lemma, are presented. The
proof relies on a characterization of the connected components of Hurwitz Spaces due to
Ellenberg, Venkatesh, and Westerland that generalizes an older result of Conway-Parker
and Fried-Volklein. Connections to current results on monodromy of cyclic covers are

also discussed.
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Chapter 1

Introduction

1.1 Monodromy

Let X — S be a proper family of complex Riemann surfaces with S an irreducible
manifold. Given a point s € S, the fundamental group (S, s) acts linearly on the

homology, Hi(Xs,Z), of the fiber X,. There is an associated monodromy map
p:m(S,s) = GL(H(Xs,Z))

whose image is called the monodromy group of the family.

Intuitively, given a loop v € 7 (5, s), the monodromy action takes hold of a homology
class of X, and “moves” it along the fibers of the points of v in X. We will also be
interested in the mod ¢-monodromy of p given by composing with the natural Z/(Z

quotient,

pe:m(S,s) = GL(H\(Xs, Z/lZ)).

We are interested in situations where the monodromy group is big relative to any con-
straints. As the most simple example, the monodromy group has to preserve the natural

symplectic intersection form on Hy(Xj,Z) so,

im p C Sp(H1(Xs, Z))



where Sp(X,,Z) is the subgroup of GL(H,(Xs,Z/(Z)) preserving the intersection pair-
ing.

As an explicit example of a big monodromy group, for g > 1, let S = M, be the
moduli space of genus g curves, and X = C, to be the universal curve lying over M,.
Then there is a monodromy action m;(M,) — Sp(2g,Z). The fundamental group of M,
is well known to be the mapping class group I'y of genus g surfaces, and the image of
this representation is known to be surjective [18, Section 6.3].

However, we will not use big to necessarily mean that the image of monodromy
surjects onto the symplectic group. In particular, big could imply that the monodromy
lies in a finite index subgroup of the symplectic group or in the mod ¢ case contains
a commutator subgroup of a group containing its image. In this thesis we establish
big monodromy for families of surfaces that are regular covers of P'(C) with a fixed
number of branch points and have a specified deck group. Before stating our problem
and results, we provide examples of big monodromy computations and applications of

these computations

1.2 Examples of Monodromy

1.2.1 Hyperelliptic Monodromy

Recall the definition of configuration space.

Definition 1.2.1. The configuration space on n points, Conf, (C), is the set of unordered

tuples of points in A1(C).



Concretely we can realize Conf,,(C) as an open subset of A'(C)". Indeed,
Cont,(C) = {(b1, -+ ,bu)|bi # bj,1 <i,5 <n}/S,.

where the symmetric group S,, acts by permuting the coordinates.
In the context of monodromy, we will take S = Conf,(C) and X to be the fam-
ily of hyperelliptic curves whose fiber over a specific configuration {by,---,b,} is the

normalization of the affine curve
V= (b)) (o~ b)

It is well known (and will be discussed further in Chapter 2) that m;(Conf, (C)) = Br,,

where Br,, is the braid group on n-strands. Hence the natural monodromy representation,
Br,, — Sp(2¢,2)

is a symplectic representation of the braid group.

Computing the image of monodromy in this case is a well studied problem. A’Campo
2], shows that the monodromy group is a finite index subgroup of Sp(2¢, Z) contained in
the level 2 congruence subgroup and containing the level 4 congruence subgroup. In this
case, big monodromy implies that the monodromy group is a finite index subgroup of
the symplectic group. Achter-Pries [4], Hall [23], and Yu [41] all independently showed
that the mod /-monodromy group is the full symplectic group for £ > 2. Their work was
more general and applied to families of curves not just defined over C.

The hyperelliptic monodromy results described above have a natural application in
number theory through the Cohen-Lenstra Heuristics that we now quickly describe.

For D € N, let Sp be the set of quadratic imaginary fields of discriminant less than

D. The Cohen-Lenstra conjectures [11] predict that the average number of surjections



from the class group of a quadratic imaginary field to a finite abelian ¢-group A is 1, i.e.

L Siesy 1Buri(Ci L)
im =1

The Cohen-Lenstra conjecture is mostly open and there are only known and partial
results in the case where A = Z /37 and A = Z/47Z [12, 40].

Friedman and Washington [20] formulated an analgous version of the Cohen-Lenstra
conjecture for function fields. Let F, be a finite field with (¢,!) = 1 and for n odd let
Un(F,) be the set of monic polynomials of degree n. Then for a fixed f(x) € U,(F,), the
hyperelliptic curve H; with affine model y* = f(z) is ramified at co and the class group
of F,(t)(+/f) can be identified with Jac(H ;). Then the Friedman-Washington conjecture

states that for a finite abelian ¢ group A,

e, [Swiac(Hy), 4)
111

=1
n—oo,n:odd ’Un (Fq)l

There is a version for n-even as well that we omit. In the work of Achter [3], and
in unpublished work of Yu [41], (see also the notes of Ellenberg [15]) equidistribution
results are exploited to show that big monodromy of the hyperelliptic family provides
Cohen-Lenstra type results in the case when n is fixed but ¢ is allowed to grow. In

particular they prove

Sy, SwiGacH, (F,), 4)
q—00,q%¥1mod ¢ ‘Un (Fq)’

=1.

The original Friedman-Washington conjecture is still open however. We refer the reader

to the work of Ellenberg, Venkatesh, and Westerland [16] for more information.



1.2.2 Cyclic Covers and Thin Groups

We now consider the case of general cyclic covers of P!(C) rather than just hyperelliptic
covers. Again take S = Conf,(C) and X to be the family of hyperelliptic curves whose

fiber over a specific configuration {by,- - ,b,} is the normalization of the affine curve
y'=(x—b1) - (x —by)

where d > 2.
In this case, the monodromy group can not be the full symplectic group. Each fiber

has an action of Z/dZ coming from the deck group

{(@,y) = (v.¢u) 1 1 < i < d}.

In particular the deck group acts on the homology of a fiber and the monodromy group
is forced to lie in the subgroup of Sp(2¢,Z) that commutes with the Z/dZ action. The
monodromy group is forced to be a subgroup of the symplectic centralizer of Z/dZ.

Motivated by big monodromy in the hyperelliptic case, it is reasonable to ask whether
the monodromy group is an arithmetic subgroup of the symplectic centralizer, or alter-
natively of finite index. Alternatively, we can ask whether the monodromy group can
ever be thin, i.e. Zariski dense in the symplectic centralizer but of finite index.

Building on work of Deligne and Mostow, McMullen [32] shows that when d = 4 and
n = 18 the monodromy group is indeed thin, providing one of the first examples of a
thin group. However when m > 2d recent work of Venkataramana [37, 38] shows that
the monodromy group is indeed an arithmetic subgroup.

Venkataramana’s result implies that the mod ¢-monodromy group is the full sym-

plectic centralizer for ¢ sufficiently large. In particular we can hope that we might be



able to detect thin-ness by looking mod ¢. However this is not possible due to a result
of Vaserstein and Weisfeiler [31]. They show that that for a connected algebraic group
G any finitely-generated Zariski-dense subgroup of G will surject onto G(Z/pZ) for p

sufficiently large.

1.3 Monodromy of Hurwitz Spaces

In this report, the families of interest will be Hurwitz spaces, moduli spaces of regular
covers of P*(C). Fix a center-free group G, a choice of conjugacy classes C := (Cy,- -+ ,Cy),

and a tuple of integers m := (my, - - ,my). More specifically

Definition 1.3.1. A cover of type (G,C,m), will be given by tuple (Ey,--- , Ey, f) where
e Fach E; C C is a subset of size m,;.
o f:m(PL—UE:) — G is a surjection.
e f maps a loop around each point of E; to C;.

Each such surjection gives rise to a G cover of P!(C) with specified ramification at the
E =J E; lying in |JCk. The space of all such covers is the Hurwitz space of connected
G-covers and is denoted by CHurém. The examples given above of hyperelliptic covers
and more general cyclic covers are specific instances of Hurwitz spaces.

For a fixed isomorphism class of (G,C, m) covers denoted C, there is an associated
point [C] € CHurém. As described in the introduction and explicitly described in section

2.3 there is an associated mod /-monodromy representation,

P+ 1 (CHWS, 1, [C)) = Sp(HL(C, Z/12))



for a prime [. Denote the associated monodromy group by M,(G).

The Fy vector space V;, = H(C,Z/{Z) carries an symplectic intersection form, and
a natural action of G. As in the case of cyclic covers discussed in the previous section,
the monodromy group, M,(G), must preserve the form and commute with the action of
G, so My(G) C Csp(v,)(G), the symplectic centralizer of G.

In the mod ¢ case the symplectic centralizer is finite, so finite index is not an effective
way to define the word big. Instead, we take big to mean that the monodromy group
contains the commutator subgroup of the symplectic centralizer. We prove the following

result.

Theorem (Theorem 5.4.2). Fix a center-free group G with Ho(G,7Z) = 0 and a prime

01 2|G|. If min; m; sufficiently large, CHWCG,m has big monodromy,
[Copv) (G, Cspvp (G)], C Mi(G)

As described in section 3.1, the symplectic centralizer decomposes as a product of
general linear, symplectic, unitary and orthogonal groups. Hence requiring the mon-
odromy group to contain the commutator is analogous to having a subgroup of the
general linear group containing the special linear group. This is certainly an adequate
notion of a big subgroup.

The rough strategy to prove Theorem 5.4.2 is as follows. The monodromy group
M,(G) naturally acts on certain G-invariant subspaces of Hy(C,Z/{(Z). These subspaces
correspond to covers of C' in a natural way and using results from [17], we will be able
to compute the number of orbits of M,(G) on these subspaces. Subsequently. theorems
about transitivity from finite group theory, and projective geometry, will demonstrate

that M,(G) is big in a natural way.



Note that this approach greatly differs from the methods used in several of the results
cited (for example [23, 30]) in previous sections to compute big monodromy. In most
of these cases, monodromy is shown to be a large subgroup of the symplectic group
by demonstrating the existence of enough transvections. We provide an example in
Chapter 4 which emulates such an argument, but the proof of the main theorem uses
purely global topological results.

The thesis is broken into four sections. Chapter 2 provides background on Hurwitz
spaces and the associated monodromy representations. In Chapter 3, the necessary
algebraic tools for the proof of Theorem 5.4.2 are provided. Chapter 4 gives an explicit
computation for a specific case of dihedral monodromy by constructing explicit mapping
classes acting on a dihedral cover of P!(C). The final chapter provides a full proof of the

main theorem.



Chapter 2

Topological Properties of Hurwitz

Spaces

2.1 Introduction

Informally, Hurwitz spaces parametrizes isomorphism classes of covers of the projective
line P! (C) with prescribed extra information. This could include data about ramification,
degree, or automorphisms (as we our primarily concerned with in this thesis). Hurwitz
spaces have a rich history dating back to work of Clebsch, Hurwitz and Liiroth in the
1880’s. The study of the topological properties of Hurwitz spaces has been applied with
great success to combinatorial group theory, the connectedness of the moduli space of
curves M, [21], the inverse Galois problem [19], and as described in the introduction to
the Cohen-Lenstra conjectures [16].

In this section, we provide an introduction to the theory of Hurwitz spaces from a
group theoretic point of view. First we introduce the definition of the braid group and
its action on Nielsen classes of a group. This is followed up be an explicit definition
of Hurwitz spaces and their monodromy action on the homology of a curve. Finally
we describe results of Conway-Parker-Fried, and Ellenberg-Venkatesh-Westerland on

counting the components of Hurwitz spaces.
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The interested reader is pointed to [35], [16], [36] for more information on the con-

structions in this chapter.

2.2 Construction of Hurwitz Spaces

2.2.1 Braid Groups and Fundamental Groups

In this section we provide a quick summary of many standard facts on mapping class
groups of surfaces, braid groups, and configuration spaces. The interested reader is

directed to [18] for more information on these topics.

Definition 2.2.1. Let S be a surface with boundary 0S. The Mapping Class Group of
S, denoted Mod(S) is defined to the group of isotopy classes of orientalion preserving

homeomorphisms of S that are the identity on 95, In other words,
Mod(S) = Homeo™ (S, 0S)/Homeoy(S, 0S)

Fix a decomposition of projective space P'(C) = A!'(C) U {oo}. In addition choose a
set of points b = {py,--- ,p,} C A}(C).

Instead of the whole mapping class group of P'(C), we will be interested in under-
standing the mapping classes of P!(C) — b fixing co which we denote by 3,. A general
homeomorphism of P!(C) —b can send a neighborhood of one of the punctures contained
in A'(C) to a neighborhood around oo. Treating co as a puncture, 3, can be identified
with the index n + 1 subgroup of mod (P'(C) — b U 0o) that fixes co. Through stereo-
graphic projection through oo, 3, can also be identified with the mapping class group
of the n-times punctured plane, Mod(A!'(C) — b). We can explicitly find a presentation

of £, by studying it’s connection to Artin’s Braid Group.
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Definition 2.2.2. Artin’s braid group on n strands, is given in terms of generators and

relations as
B’/’n = <0'1, s ,O'n,1|0'i0'j = 0,0, Zf |’l — j‘ Z 2, otherwise ;110041 = UiO'i+1O'Z'>

The braid group can be identified with the compactly supported mapping classes
of A'(C) — b or alternatively the mapping classes of the closed disk D? with n punc-
tures, also denoted b, fixing the boundary of the disk. As shown in Figure 2.2.1 under
this isomorphism the action of o; is a Dehn Twist which acts by a 180° rotation in a

neighborhood of p;, p;+1 not containing any other of the points py,--- , p,.

Figure 1: The Dehn Twist action of ~;.

By taking a small open disc U around oo € P!(C), we can fix a homeomorphism
from D? —b — P}(C) — b — U by mapping the boundary of D? dD?, to OU. This gives
rise to a map from Br,, — £,.

The kernel of this map is generated by the Dehn Twist around a circle in D? near
0D?. The subgroup generated by this Dehn twist is the center of B, and in terms of

generators is explictily given by A% = (0105 -+ 0,_1)". In particular

B, = Br, /(A?).
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We refer the reader to [18, Chapter 9] for more details on this isomorphism.
Having established a presentation for (3,,, we now introduce the action of /3, on the
free group. Choose a set of pairwise non-intersecting loops v;,1 < ¢ < n based at oo

such that ~; winds around p; once. Then a presentation for the fundamental group of

P!(C) — b is given by,

T (PH(C) —b,00) = (11, Yalm1 - 70 = 1)

So in particular 71 (P*(C) — b, 00) is isomorphic to a free group. In general the choice of
{7:} is not unique but any other choice of loops {7/} is related to ~; by a diffeomorphism
fixing oo.

Since the action of 3, fixes oo, it induces an action on 71 (P!(C) — b, )
By — Aut(m (P*(C) — b, 00)),
often referred to as the braiding action on the free group. By explicitly analyzing the

action of each o; this action can explicitly be described on ~; by,

® 0,7 = YVit+1

-1

® T, Yi+1 = ; Vi+17i-

See [39, Theorem 10.13] for a proof.

Since (3, is a quotient of Br,,, we can lift this action to Br,,
Br,, — Aut(rm (P'(C) — b, 0))

Each braid permutes the points {p1,--- ,p,}, with the generator o; transposing p;, p; 11

and leaving the rest of the points fixed. This gives rise to a homomorphism,

Br,, — S5,
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the kernel of this map is often referred to as the pure braid group.

2.2.2 Braid Groups and Configuration Spaces

In addition to being identified as a mapping class group, the braid group also has a

realization as a fundamental group of configuration space.

Definition 2.2.3. The configuration space on n points Conf, (C) is the set of unordered

tuples of distinct points in A'(C).
Concretely we can realize Conf,,(C) as an open subset of A'(C)™.
COan(C> = {(bl, cee ,bn)|bl 7£ bj, bi,bj c Al((C), 1 S Z,j S n})/Sn

where the symmetric group S,, acts by permuting the coordinates.
Intuitively, a loop in Conf,(C) is a continuous motion of a set of points that can be
realized through a mapping class. So it is not surprising that the fundamental group of

configuration space is given by the braid group.

Theorem 2.2.4 ([18, Section 9.1.1]). Let ¢ € Conf,(C) be an unordered tuple of points,
then

m1(Conf,(C),c) = Br,

2.2.3 Nielsen Classes and Hurwitz Spaces

In this section we define an action of the braid group on a set that will naturally give
rise to a conver of configuration space parametrizing branched covers of P'(C).

For a fixed n and group G, the set of Nielsen classes of G is,

En(G) ={g= (g1~ ,9n) €G"|g1---gn=1,(g1,- -, 9n) = G}.
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In the notation of the previous sections, assume b is an ordered tuple of n dis-
tinct points in A'(C). Let Surj(m; (P'(C) — b, 00), G) denote the set of surjections from
71 (P} (C) — b, 00) — G. Since each such surjection is specified by the images of the gen-
erators 71, - ,Vn, there is a natural bijection between Surj(m (P'(C) — b, ), G) and
E.(G).

The action of Br,, on 7, (P!(C)—b, 0o) described above induces an action on Surj(r; (P!(C)—
b, c0), ). Namely given o € Br,, and ¢ € Surj(m(P}(C) —b, 00),G), 0-¢ = ¢poo. This

translates into a braiding action on E,(G), given on the generators by

oi - (91,7 1 Gis Giv1s " Gn) = (g1, ,9i+1>97;_+119i9i+1 “ )

The braid action specified above naturally gives rise to a topological cover of configura-
tion space whose fibers are Nielsen Classes. By the theory of covering spaces and G-sets,

there is a topological space Churg, with a map
Churg ,, — Conf,,(C)

where the fiber over a point (py,---,p,) can be identified with FE, (G) and the action of
m1(Bn, g) on the fiber of g is isomorphic to its action on E,(G).

We can also describe the points of Churg , as isomorphism classes of branched con-
nected covers of P!(C). We say that a Riemann Surface C' is specified by the data of

(G,b, f,x,«q) if
e b C AY(C) is a set of n distinct points in the interior of A'(C).
e (' is connected and p : C' — P}(C) is a covering map branched only at b.

e X is a point above oc.
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e a: G — Aut(f) is a specified isomorphism inducing a transitive action of G on

each fiber.

We say that a surface C" with data (G, b, f',x’,a’) is isomorphic to C' is there is a
homeomorphism from p : C'— C’ such that f'fop = f, f(x) =y and foa(g) =a'(g)o f
for all g € G.

A given (G, b, f,x,a) cover C specifies a surjection ¢¢ : m (P'(C) — b,00) — G.
Indeed since the action of G is transitive on f~!(c0), every point of f~!(co) can be
identified with an element of G. So given v € 7 (P*(C) — b, 00) the ¢c(vy) = (1)
where 7 is a lift of v starting at x and we identify the end point with an element of G.
If C' = C then it is easy to check that ¢c = ¢¢r.

On the other hand given a Nielsen Class g € E,,(G) or the corresponding surjection
dg : T (PY(C) — b,00) — G, standard covering space theory gives the existence of a
connected regular cover f : C' — P!(C) — b, a basepoint x € C' with f(x) = co and a
transitive action of G on the fiber f~1(0o). The latter action arises from the action of
G on the coset space of m (P*(C) — b, 00)/ ker ¢g.

Thus we see the points of Churg, above b € Conf,(C) parametrize isomorphism
classes of connected regular covers of P!(C) — b up to isomorphism in the manner
specified above. We refer to such Churg, as the Hurwitz space parametrizing covers of
type (G,n).

We can generalize the above construction to track additional data. In addition to
fixing G, fix a tuple of conjugacy classes C = (Cy,--- ,C,), where C; C G,1 <i < n, and

a tuple of positive integers m = (my, - -+ ,my,) € N*. Let |m| = my + - - - + m,,.
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The set of Nielsen classes of type (G,C, m) is
En(G,C)={g= (91, gm)|g1 " Gjm| = 1, {91, *+ , gm|) = G, and m; of g; lie in C;}.
For a given set of |m| points b C A1(C), let
Surj®(m (P*(C) — b, 00), G) C Surj(m (P'(C) — b, 00), G)

denote the set of surjections 71 (P'(C)—b, 00) — G ensuring that loops around m; of the
branch points land in C;. As in the case of E,(G), there is a natural bijection between
Surj®(m (P'(C) — b, 00), G) and En(G,C).
The action of the Braid group on Nielsen classes preserves Ey,(G,C). As mentioned
above, Surj’(m; (P*(C) — b, 00), G) and Em(G,C) are in fact isomorphic as Brjy| sets.
In addition there is an analogous Hurwitz space space along with a map to configu-
ration space

CHurgvm — Confjm|(C)

where the fiber above any point E is the set Eyn,(G,C). As above, the fiber can be

identified with covers of type (G, E, f,x, «)
e E=(F, - ,E,) C AYC) is a set of size my + - -- +m,, with |E;| = m,;.

f:C — PY(C) is a covering map branched only at the points of E.

e X is a point above oo.
e a: G — Aut(f) is a specified isomorphism acting transitively on a fiber.

e The monodromy of a loop around a point in E; lands in C;
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In general we will say that the Hurwitz space CHurCQm parametrizes covers of type
(G,C,m). Now that the basic definitions are in place throughout the rest of this chapter

we will focus on topological aspects of CHurg,m.

2.3 Hurwitz Monodromy Action

In this section we continue exploring the implications of the action of the braid group
on the Nielsen classes Fpy,(G,C) and define the monodromy action on the homology of
a curve.

A priori CHurgm is not connected for a given choice of (G,C,m). By definition
CHur%vm will only be connected if the action of Brjm| on En(G,C) is transitive. If the
action is not transtive, let Stabg,  (g) be the stabilizer of some g € En(G,C). This
stabilizer can be identified with the fundamental group (based at g) of the connected
component of CHurgﬂl containing g identified as a point in the fiber of E € Confy,(C).
This fundamental group is often referred to as the Hurwitz Monodromy group. We will
say more about the connected components of CHurg’m in the next section. However to
simplify exposition, for the rest of this section we assume that CHurgvm is connected. In
other words assume Stabg,  (g) = Wl(CHurch, g). Alternatively, fixing a surface C' (up

>~

to isomorphism) corresponding to g as described in the previous section, Stabg,  (g)
1 (CHurg 1, [C]).

Moving away from combinatorial arguments back to topology, recall from Section
2.2.3 that ﬂl(CHurCG’m,C’) C Br,, can be identified with mapping classes fixing the
surjection P*(C) — G specified by ¢g. By a universal lifting lemma [24], every such

mapping class lifts to a mapping class of C' preserving the specified basepoint x € C'
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and this lift is unique.

This gives rise to the monodromy action
m (CHW ,, [C]) — Homeo™ (C, x).
We are primarily concerned with the induced action on homology;,
ﬂl(CHurCG,m, [C]) — GL(H.(C,Z)).

or on cohomology

m (CHWE ,, [C]) = GL(H'(C, Z)).

We will return to this monodromy action in the next chapter.

Remark. In this chapter we have taken a very topological approach to constructing
the monodromy representation. One can also construct Hurwitz varieties as moduli
spaces (with a variety structure) of (G,C,m) covers. In the case when G is center-free
the resulting variety is a fine moduli space for (G,C,m) covers. In this case, CHurém
admits a cover by a universal curve where the fiber over a point [C] € CHwr, , is the
curve C. The monodromy action of this family is more akin to the monodromy action
defined in the introduction however it will agree with the monodromy action presented

in this section. We refer the reader to [36] for more information.

2.4 Connectedness Results

We finish this chapter with a description of results about connected components of
Hurwitz Spaces. As has been explained above,in general CHuréjm does not need to be
connected and the connected components of CHurCG’m correspond to orbits of Brjy, on

En(G). In particular, if the action is transitive then CHurg’m is connected.
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Computing the number of connected components of Hurwitz spaces CHurg?m is a
well studied problem with roots in work Clebsch, Liiroth and Hurwitz [26]. In the case
of G = S, and C = (C;) where C; is the conjugacy class of transpositions, they showed
that Churgmn was connected for any choice of n. Conway and Parke in an appendix of
a paper by Fried and Vélklein ([19]) show that CHurgym is connected in the case when
the Schur Multiplier Ho(G,7Z) is trivial, C = (G — {e}) and n is chosen sufficiently large.

In [17], Ellenberg, Venkatesh and Westerland give a method to compute the con-
nected components of CHurCG,m. This is a previously unpublished result of Fried. Given
a choice of C as above, x € UC; and y € G such that x,y commute, define the universal
commutator (r,y) € Hy(G,7Z) as the image of the map ¢, : Hy(Z* Z) — Ho(G,Z)
induced by the map ¢ : Z> — G : (m,n) — x™y". Define H,(G,C) to be the quotient
of Hy(G,7Z)/Qc where Q¢ is the subgroup generated by all such universal commutators.

Then [17] proves

Theorem 2.4.1 (Ellenberg-Venkatesh-Westerland, Fried). For min; m; sufficiently large,
there is a bijection

7T0(OHUT'%7m) — HQ(G, C)

In the case of the symmetric group, the quotient above is trivial (the Schur multiplier
is generated by commutators) recovering the results mentioned above. In general if
Hy(G,Z) is trivial, we can expect CHurg,m to be connected. The theorem gives an
effective way to compute the number of components of CHurCG’Jn by finding appropriate

quotients of Schur multipliers.
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Chapter 3

The Algebra of Monodromy

In this chapter we present several of the algebraic tools that will be needed for the proof
of Theorem 5.4.2. This includes an explicit computation of the symplectic centralizer of
a symplectic representation, a discussion on transitive subgroups of linear groups, and
a characterization of certain subgroups of products of linear groups.

Many of the group theoretic ideas (though not the exact results) in the second section
have been used in various other contexts related to monodromy groups and inverse Galois
problems. We try to point our connections with the existing literature whenever possible.

This chapter is self contained and may be used as a reference for the rest of the thesis.

3.1 Centralizers of Group Actions

3.1.1 Alternating Forms

Let G be an arbitrary group and ¢ a prime such that ¢ { 2|G|. In this section and
the next, we classify the possibilities for the set of matrices that commute with an
arbritrary homogenous G-representation that also preserves a symplectic form. Let W

be an irreducible F;[G] module, equipped with a nondegenerate G-invariant form b.



21

Definition 3.1.1. A nondegenerate G-invariant form b is an e-form if

b(z,y) = eb(y, x),

where € = +1. In the case where ¢ = 1, we say b is symmetric and when € = —1, b is

alternating.

Let the space of G-invariant bilinear forms be denoted by Bil® and the space of
e-forms be denoted by Bil®. Hence, Bil{ = (Sym?W)¢ and similarly Bil®, = (Alt?W)C.

Since W is irreducible, Schur’s lemma implies that Endg (W) is a division ring over
F, and hence a finite field. Let D := Endg(W) and so we can view W as a vector space
D. Define d := [D : Fy], so that D is a degree d extension of Fy, D = Fya.

Denote the map from W — WV that sends 2 € W to b(z,-) by b. There is an
adjoint involution on Endg, (W) induced by b, namely for any A € Endg, (W), we define

ip(A) € Endg, (W) to be the endomorphism satisfying
b(Az,y) = b(x,i,(A)y).
for all x,y € W. We also define the symplectic group of isometries of b,
Sp(W,b) = {A € GL(W) : b(Ax, Ay) = b(x,y) for all x,y € W}.

Notice that A € Sp(W, b) is equivalent to i,(A) = A~L If AY : WY — WV is the map

between duals induced by W we can explicitly compute
i(A) =b"1o AV ob.

Lemma 3.1.2. The involution i, preserves Endg(W).
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Proof. Let A € Endg(W) so that Ag = gA for all ¢ € G. Then taking the adjoint of
both sides we see that i;,(g)ip(A) = iy(A)ip(g) but since b is G-invariant, i,(g) = g~

This implies that i,(A) commutes with the action of G giving the result. O

Lemma 3.1.3. Let the fized field of iy, on D be denoted K. There is a bijection K = Bil?
and in particular, Bil® —{0} is a torsor for K*. Given h in Bil° there is a d € Endg(W)

such that

In addition, h € Bilf, iff d € K.

Proof. We begin by providing a bijection from K to BilEG. Given k € K, consider the

non-degenerate form by = b(k-,-). This is an e-form since

b(ky,x) = eb(x, ky)
= eb(ip(k)z,y)

= eb(kx,y).

Since k commutes with G, b, is also G-equivariant. This defines a map of F, vector
spaces, ¢ : K — BﬂEG given by ¢(k) = bg. Since b is non-degenerate, this map is
necessarily injective.

Let h be another e-form. Notice that b2 o h : W — W is a G-invariant map, So
b=' o h = d for some d € Endg(W). This implies that h(-,-) = b(d-,-). A computation
similar to the above shows that d € K, implying the surjectivity of ¢.

]

Two forms h, g € Bil® are considered G-equivalent if there is a d € Endg (W) such

that g(z,y) = h(dz,dy) = h(in(d)dz,y).
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Lemma 3.1.4. One of the following two possibilities must occur.

e iy acts trivially on Ende(W), Bil® = Bil and there are two classes of G-invariant

bilinear forms up to G-equivalence.

e iy, acts nontrivially on Endg(W), Bil® = (Sym*W)¢ @ (AIPW)S and there is a

unique class of bilinear epsilon forms up to G-equivalence.

Proof. First, assume that ¢, acts trivially on D. Then D = K and every G-invariant
bilinear form is an e-form by lemma 2.2. Any form equivalent to b must be of the form
b(d?,-), with d € Endg(W). Since D is a finite field, [D* : (D*)?] = 2. Hence every
G-invariant is equivalent to either b(az,y) or b(x,y) for a a non-square in Endg(W). So
there are two classes of non-equivalent Bil® forms.

If i, acts non-trivially, then [D : K] = 2 and since dim Bil® = dim K, we see that
Bil” = (Sym?W)¢ @ (Alt>W)¢ where dim(Sym?W)¢ = dim(Alt?W)% = [D : K]/2. As
before, any form equivalent to b must be of the form b(iy(d)d-, ). The map D — K : d —
ip(d)d is surjective since it is just the norm map. So there is a unique class of bilinear

epsilon forms up to G-equivalence. O]

If the first case occurs, then we say W is type 1. If the second case occurs, we say
W is type 2.

Remark 1. Note that if W is absolutely irreducible over F, if and only if Endg (W) = F,.

In this case we must have that D = K and we must be in case 1, so either dim(Sym?*W)%

or dim(Alt*IW)¢ is one.
This theorem is related to the Frobenius-Schur theory for characterizing irreducible

real representations. A similar phenomenon happens with real representation. Indeed,
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let W be an irreducible R self-dual representation of a group G, as above,
EndeW = (W @ W% = (W* @ W*) = (Sym*W)°¢ @ (Alt*W)°

Furthermore, if x is the character of the representation, then x must be real valued, and
in particular W is isomorphic to WV. We can consider ¢clW = W®C, the complexification
of W.

Then one of the following occurs,

e Endg(W) = R : One of Sym*W or Alt?W has dimension 1. This is analogous to

part a of the theorem.

e Endg(W) = C : In this case, cW =V @V with V 2 V. As in lemma 3.1.4, either
dim(Sym?W)¢ or dim(Alt?IW)% is two or dim(Sym?W)¢ = dim(Alt*W)¢ = 1.
(We can actually realize all the bilinear forms on W as the real/complex parts of

a Hermitian form on cV.)

e EndgW = Z : This case has no analogy in the finite field setting. In this case,
W =V @V with V 2 V. Either dim(Sym*W)¢ = 3,dim(Alt*W)¢ = 1 or

dim(Sym?W)¢ = 1, dim(Alt*W)¢ = 3.

3.1.2 Equivariant Witt’s Lemma

Now we work more generally, though we still assume ¢ 1 2|G|. Let V' be a homogenous
IF,[G] representation with isotypic component W so there is an isomorphism (though not
a canonical isomorphism!) V = W*. We also assume that V carries a non-degenerate

alternating form h. We are interested in understanding the symplectic centralizer,

Csp(vy)(G) = Sp(V, h) N Endg(V),
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the isometries of h that commute with the action of G. After choosing an isomorphism
V = Wk by Schur’s lemma, we can identify Endg (V) with My (D).

Note that D := Endg(W) acts on Homg (W, V') by precomposition, d - ¢ = 1 o d.
Since D is a field, this endows Homg (W, V') with a k& dimensional vector space structure
over D.

Given a G-equivariant isomorphism b : W — WV, which is equivalent to the choice

of a G-equivariant bilinear form define a map hy, as follows

hy : Home (W, V) x Homg(W, V) = Endg(W)

ho(,7)=b"" o1V ohou.
Lemma 3.1.5. defines a sesquilinear form on Homg(W, V), i.e.
hu (i + 7, e8) = dip(€) (0, B) + in(€) (7, B)
for d,e € Endg(W) and ¢, 7,5 € Homg(W, V).
Proof. Let v, 7,3 € Homg(W, V) be arbitrary maps and let d,e € Endg(W). Then

ho(dp +7,e8) =b"toe  oBohyofo(dp+T)
:b_loevobo(b_lorvoizbozﬁod—l—b_loﬂvoﬁboT)

= diy(e)h(1), B) + iy(e) (T, B)

There is a map

i: Endg(V) — Endp(Homg (W, V))
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given by
i(A)) = Ao,

This is a D equivariant map since
i(A)d- ) =Aod-v=d- AW).

This map is clearly injective and I claim it is also surjective. By definition, the size of
the left hand side is |D|** since Endg(V) 2 M (D). The size of the right hand side is
the size of an endomorphism ring of a dimension k vector space over D which is also
|D|¥. So every D-endomorphism of Homg (W, V) arises as an ambient G-endomorphism

of V.

Lemma 3.1.6. Let Isom(hy) C Endp(Homg(W,V)) denote the isometries of the form

hp.

Isom(izb) = Copvn) (G).

Proof. From the discussion above, we can identify Isom(h;) C Endg(V). Now, A €
Endg (V) is contained in Isom(hy) iff hy(A o), Ao 7) = hy(1h, 7). By non-degeneracy of
hy, this is true iff A=Y 0 AY o ho A = id which is equivalent to A being an isometry for h,

in other words A € Sp(V, h). O

Being able to identify the symplectic centralizer with a group of isometries is a
powerful too to explicitly compute it. We can now prove the main theorem of this

section.

Theorem 3.1.7. 1. If (AIPW)% =0, k must be even, hy is an alternating form and

Cgp(w)(G) = Sp(k‘, D)
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2. If (AIPW)E 4 0 and W is type 1, hy is a symmetric form and Cspvpy (G) =
O(k, D).

3. If (AIPW)E # 0 and W is type 2, hy is a Hermitian form and Cgpy,)(G) =

U(k, D).

Proof. Since h is an alternating form, note that hY = —h and more generally if b is an

e-form, b¥ = eb~t. So

ib<ﬁb<w77)) = bil o (bilwv oho 7_)\/ ob
Zb_loTvthowo(b_l)Vob
:Eb_IOTVohvo¢

= _EBb(Ta w>

Case 1: (AIt?W)% = 0. In this case, b is necessarily a symmetric form and W is
necessarily type 1 so the previous computation implies that ilb(T, ) = ib(ﬁb(lp,T)) =
—;Lb(w, 7). Hence hy is a non-degenerate alternating form.

Case 2: (AIt’W)E # 0 and W is type 1. In this case, b is necessarily an
alternating form, i.e. € = —1, and W is is type 1. The above computation implies that
ho(T, 1) = iy (hy(10, 7)) = hy(¢, 7). Hence hy is a non-degenerate symmetric form.

Case 3: (AIt’W)Y # 0 and W is type 2. Since W is type 2, i is a non-trivial

involution. Choose b to be a symmetric form, so hy (v, 7) = —iy(hy(T,9)). O

The action of Cspv,)(G) on V, gives rise to a natural action of Csyv,) (G) on Injg (W™, V),
the set of G-equivariant injective homomorphisms, for any » < k£ by post-composition.

Given such an injection f, let f*h be the pullback bilinear form on W, i.e. f*h(x,y) =
h(f(@), f(y))-
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Corollary 3.1.8 (Equivariant Witt’s Lemma). Choose r < k and let f,g € Inj(W",V)

such that f*h = g*h. Then, there exists A € Cgp,)(G) such that Ao f = g.

Proof. Let f;, g; be the restriction of f, g respectively to the i-th component of WT.
Since f*h = g*h, we see that hy(f;, fi) = o (gi, gj). This implies that the r-dimensional
subspaces of Endg (W, V) given by (f1,---, f) and (g1, - ¢g.) are isometric. Hence by
the previous theorem and Witt’s lemma [6, Section 20|, there exists an isometry of hy,
such that A o f; = g;. The result follows by using Lemma 2.5 to identify the isometries

of ilb with CSp(W)(G)- ]

Corollary 3.1.9. The number of orbits of Csy,)(G) on Injo(W™, V) is |(AIEW™)Y| for

r<n/2.

3.1.3 Symplectic centralizers of representations

In this section we again generalize. Again, let G' be a group and let Irr,(G) denote the
isomorphism classes of irreducible representations of G over F, where ¢ 1 2|G|. Denote
the associated G-module to p € Irry(G) by W,. By Schur’s lemma D, := Endg(W,) is
a finite field extension of [, so by is a finite field. Let V be a representation of G and

denote the multiplicity of W, in V' by k,. Then we can decompose V' as
V= 69pEIrlNz(G)VP

where V, is the isotypic component for W, so V, = W,f ?. In addition, assume that there

is a non-degenerate G-equivariant alternating form h : V' x V — F,. Our goal in this

section is to harness the results from the last section to explicitly compute Cspv,)(G).
Since h is nondegenerate and G-invariant, it induces an G-module isomorphism from

V to VV. When V,, is self dual h restricted to V, is non-degenerate.
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If V, is not self-dual i.e. V, 22 V,v, the module V,®V,v appears as a factor of V. Also
h restricted to V, @ V,v is non-degenerate and V,,, V,v are maximal isotypic subspaces of
the direct sum. This follows from the fact that for ¢» € Irr(G), ¢ # p¥ we necessarily
have that V, L V,v. Indeed the map V, — VY : x — h(z-,-) is G-equivariant and so
must be zero.

When V, = V,v we will use the notation M, :=V, @& V,v. Let D C Irr(G) denote the
set of self dual isotypic components. Then V' decomposes as

v=pv,e pH M,

peD p€lrr(G)—D

Each operator commuting with G' must preserve each V,. Pairwise orthogonality of the
isotypic components implies

Csp(v) (G) = H Cspv,) (G) % H Csp(ar,) (G)

peD pelrr(G)—D

where Sp(V,, h) is the subgroup of End¢(V,) that preserve the restriction of h to V;

Sp(M,, h) is defined analogously.

Theorem 3.1.10.

(

Sp(k,, D,) (AlEW,)E =0

Copv)(G) = § O(k,, D,)  (Sym*W,)¢ =0

Uk,,D,) otherwise

\

and

OSP(Mp) (G) = GL(kpv Dp)

Proof. We first compute the groups Cspar,)(G). Since each element of Cgyar,) (G) must

necessarily preserve V, and V,v it must be a block diagonal matrix diag(A, B) where
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A, B are invertible and A € Endg(V,), B € Endg(V,+). The requirement that this
endomorphism also preserve h is equivalent to [B] = ([A]”) ™ with respect to a basis of V,
and a dual basis of V,v. Recall that D, = Endg(W,) is a field, so after choosing a basis we
can identify Endg(V,) = Maty, (D). Under this identification Cgsp(ar,)(G) = GL(k,, D).

The result now follows from Theorem 2.4. O

3.2 Transitivity Results

In this section we review some of the standard properties of classical groups of Lie type.

Throughout the following, let F := Fy and let I'(n, F) denote one of
{GL(n,F),Sp(n,F),U(n,F),O(n,F)|n > 5,1 > 3}.

In this range of n, £ all the groups above are pairwise non-isomorphic. In the orthogonal
case, we do not distinguish between the groups O™ (n,F) and O~ (n,F), and all the results
we state will be true for both cases.

Here are some key properties we exploit, again with our assumption on n, ¢. Proofs

of all the results stated can be found in [22].

Commutators. In all cases the commutator of I', denoted I" is perfect, i.e., [[V,I'] = T".
Note that I'/T” will be a cyclic subgroup as it is a subgroup of F*
Generation by Elements of order /. In all cases, I is generated by elements of
order /. In particular in each case I is generated by transvections. Recall that 7 € T" is
a transvection if there is a hyperplane W C F" such that tau|y = idy and 7o —v € W
for all v € V. We explicitly describe these generating sets now.

When I' = Sp or I' = U, h be the form preserved by I', then for any v € V and

a € Fy, 7,.(2) := x + ah(x,v)v fixes v+ and is contained in T.
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When I' = GL, I'" = SL is generated by elementary matrices, i.e. matrices with 1’s
on the diagonal and a single non-zero entry off the diagonal. Each elementary matrix
is a transvection fixing the hyperplane spanned by the columns having only a 1 on the
diagonal.

Finally, when I' = O, I" is generated by transvections known as Siegel transforma-
tions. The definition of this class of transformations is a bit involved so we refer the

reader to the discussion in [22].

Central quotients and Simplicity Define the projective group PI' := I'/Z(T'). In
general, Z(I'") = I"N Z(T") and PI" := I"/(Z(I")) are simple. From the above, PI" =
[PT, PT'] and PT'/PT” is cyclic.

We also have the following lemma,

Lemma 3.2.1. Let I" be one of the classical groups, and I the derived subgroup. Then

Cer(PIY) is trivial.

Proof. Let t € Cpr(PIY) and t € T be any lift of . Let ;1,72 € I be arbitrary. By

assumption, ytvy; 't~t € Z(I"). In particular,

(172, 8] = 2 s the (e, €]

= [, t][1e,t] € Z(I").

So the map v — [v,t] is a homomorphism I — Z(I"). Since IV = [I,I"] we see the
image of this map must be trivial, so in particular, [¢,~] is trivial for all ¢ € I'. However

such an element of I' is necessarily contained in Z(I") so the result follows. O

In addition to the basic properties of the classical groups mentioned above, we will

need some results on these groups as permutations groups. As a starting example of



32

the type of transitivity results we employ, consider the following result dependent on
the classification of finite simple groups. Any 6 transitive permutation group must be
S, or A,. More generality, the two transitive and four transitive groups have also been
classified [9]. Analogous to the permutation group case, one can ask for a classification
of subgroups of affine groups that act singly or doubly transitively on lines, or higher di-
mensional subspaces. The Cameron and Kantor theorem [10] classifies all two-transitive
subgroups of the semi-linear groups. Hering [25] went on to classify all subgroups acting
transitively on lines. An older result, due to Perin, classifies subgroups acting transitively

on subspaces with dimensional at least three.

Theorem 3.2.2 (Perin [33, Theorem 1]).

Let n > 3 and ¢ odd. Suppose that H C GL(n,F) acts transitively on the three dimen-

sional subspaces of GL(n,Fym). Then SL(n,Fm) C H.

The rank of a transitive permutation group is the number of orbits of the stabilizer
of a point. Each of the classical linear groups preserving a form, aka the symplectic,
orthogonal and unitary groups, are all rank 3 on the set of isotropic lines. Indeed
the orbits of the stabilizer of an isotropic line are given by the line, isotropic lines
perpendicular to the line, and isotropic lines not perpendicular to the line. In [33],
Perin characterizes such rank 3 subgroups of symplectic and unitary groups which was
later followed by a classification of such rank 3 subgroups of orthogonal groups in odd
characteristic by Kantor and Liebler [27]. The following theorem is a restatement of

their result that will be used heavily in the proof of the main monodromy result.

Theorem 3.2.3 ([33, Theorem 4], [27, Theorem 1.3]).
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Let n > 5 and ¢ odd. Let T" be one of Un,Fep), O(n,Fu), or Sp(n,Fp). If H C T acts

as a rank 3 permutation group on isotropic lines, then I C H.

Remark 2. In their paper [29], Liebeck, Praeger and Saxl, provide (among many other
results) a generalization of the Cameron-Kantor theorem and a classification of sub-
groups of symplectic groups acting transitively on lines and hyperbolic planes in even
and odd characteristic. Abhyankar has used the Cameron-Kantor to solve carious cases
of the inverse Galois problem for classical groups. We refer the reader to their paper
[29] along with a survey paper of Abhyankar [1] for more information on these types of

transitivity results.

Theorem 3.2.4. Let V' be a vector space of dimension n over F := ¥z, for £ # 2 and

with n > 5. Let I' denote one of
Sp(n,F), Un,F), On,F), GL(n,F).

For any H C T such that H has the same set of orbits on Inj(F", V) as I for all

r € {1,2,3}, we have that I" C H.

Proof. It ' = GL(V') then by Theorem 3.2.2 and the assumption with = 3 we see that
SL(V) C H. If we can show that H having the same number of orbits as T" on Inj(F*, V)
for r = 1 and r = 2 implies that H is rank 3 on the set of isotropic lines of V' then the
result then follows from Theorem 3.2.3 in all other cases.

So, assume let u,v € F" be isotropic vectors spanning independent lines and let I’
be the underlying isometry group of some form hA. The orbit of v under the stabilizer of
w in I, denoted T',, are all isotropic vectors w such that h(u,v) = h(u,w) and u,w are

independent. In particular the injections from F? — F™ that map the basis elements to
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u,v and u,w respectively are in the same orbit of I',. Since H has the same orbits on

injections as I', this implies that v is in the same orbit as w. O

3.3 Subgroups of Products of Groups

We will need the following theorems about subgroups of products of groups.

Lemma 3.3.1 (Goursat’s Lemma). Let Gy, G be groups, and let H be a subgroup of
G1 x Go. Let Hy and K, respectively be the image and kernel of the projection onto
the second factor py : H — Go, and likewise let Hy, Ky the image and kernel of the
projection onto the first factor py : H — G1. Then K; is a normal subgroup of Hy, and
K is a normal subgroup of Hy. There is an isomorphism ¢ : Hy /Ky — Hy/Ks and H

is the pullback of the graph ¢ under the projection Hy X Hy — Hy/K; X Ho/Ks.

The following result about below is a variant of the well-known Hall’s Lemma. Many
versions of this lemma have previously appeared in diverse settings related to monodromy

computations before including [14, Dunfield-Thurston], [34, Ribet], and [5, Allcock-Hall].

Theorem 3.3.2. Suppose that T'y,--- [, is a set of finite non-abelian groups such that
each T, := [y, Ty] is simple non-abelian.
Let HC 'y x -+ x 'y such that the projection of H onto I'; X T'; contains T, x T,

forall1 <i,j<n. ThenT) x---T7 C H.

Proof. Let p;,p;; denote the projection maps onto I'; and I'; x I'; respectively. Set
N :=[H, H] and note that

NCT)x---T.

It suffices to show that N =1 x --- x I'.
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First note that since I", is simple non-abelian, I} is perfect, i.e. [I},T%] = I',. Now
I x 1“;- = [ x F;.,F; X F;] C [pi;(H),pij(H)] C T} x F;

80 pij(N) = [pi; (H), pi (H)] = Iy x I,

We now induct on n. The result is clear for n = 2. Denote the kernel of p,, : N — T,
by N;. By Goursat’s lemma, N; is a normal subgroup of the projection of N onto
I} x--- x I _,. By the inductive hypothesis this projection is surjective. Now, because
pin(N) = T, x T, we also have that I, = p;(N;) for 1 < ¢ < n — 1. Every normal
subgroup of a product of simple groups that surjects onto each factor is necessary the
whole product. Since each I'; is simple we can conclude Ny = I} x ---I" ;. Hence by

Goursat’s lemma, N,, the kernel of the projection onto I} x .-+ x I, must be I'.

Hence we can conclude that N =17 x ---T". O

In the case where the product consists of two different groups we can prove a sharper
result. We say that a subgroup H of a product og groups G x G is diagonally embedded
if H is the graph of an isomorphism H; — H, with Hy, Hy the projections of H to G1, G

respectively.

Theorem 3.3.3. Suppose that 'y and I's are groups satisfying the conditions of the
previous theorem. In addition assume Cr,(I%}) is trivial.
Let H C T'y x I'y such that the projection of H onto I'y contains I} and that the

projection of H onto I'y contains I'y. Then
o [fI" 2T then Iy xI'y C H.

o [f I = T, then either Iy x I'y C H or H is a diagonally embedded subgroup of

Fl X FQ.
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Proof. Let H; be the projection of H onto I'y, Hs the projection of H onto I'y, and N,
N the respective kernels. Then by Goursat’s lemma H; /Ny = Hy/Ns. For i = 1,2, I,
is simple by assumption and so N; NI is either I", or trival.

If T, N Ny = Iy then Hy/Ny is abelian. So H;/N; must also be abelian and since
M CH, Ty CNy. Sol'y xT', C H.

Now assume N, NTY is trivial. This implies that Ny commutes with I'y, which by
assumption implies Ny is trivial. Hence H;/N; = H,. However, since Hs is non-abelian,
Il ¢ Ny and so Ny NTY is trivial. By similar reasoning as for Ny, NV; is trivial and so
we can conclude H; = H, and that H is a diagonally embedded subgroup.

If we additionally assume that I} 2¢ I';, then H; and H, will have non-isomorphic

composition factors since I}, [} are simple. This is a contradiction. The result follows.

O
Finally we will need the following lemma.
Lemma 3.3.4. Let T'; for 1 < i <n be a collection of groups such that
o Z(I}) = Z([y) NT;

o There is a subset U; C I'; that generates I'; such that the order of every element of

Ui is a prime { with (¢, Z(1;)) =1 for all i.

Let T’ = H?:l [';, and let let p; : I' — T'; be the projection map onto I';.
Assume that H C T such that I, C p;(H). In addition if ¢ : I' — PT is the natural

quotient map, then assume that [[;_, PT; C ¢(H). Then [\, T, C H

Proof. Since [[;_,PI", C ¢(H) we see that [[_, I} ¢ HZ(T'). Choose an element

(t1,--- ,tn) € [, Ui. We can find (hy,--- ,h,) € H and (21, -+ ,2,) € [[2, Z(I})
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such that

(t1, - ytn) = (h1z1, -+, hnzn).

Now choose k so that & = 1mod ¢ and |Z(T';)||k for each i. Raising each side to the k-th

power we see that ¢; = h¥ which implies that (¢;,--- ,t,) € H. This gives the result. [

Unfolding the previous lemma, one if its implications is that if H C GL(n,F) and

image of H in PGL(m,F) contains PSL(n, F) then SL(n,F) C H.
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Chapter 4

Explicit Dihedral Monodromy

Before providing a proof of the main theorem, Theorem 5.4.2, we first discuss a mon-
odromy computation of an explicit family of dihedral covers of P!(C). The computation
done in this chapter will give us a chance to exercise the algebraic tools appearing in

Chapter 3. The techniques in this chapter are motivated by the paper of Looijenga [30].

4.1 Introduction and Topological Construction

Take G' = Ds, the dihedral group of size 10 with the presentation

2 1>.

Ds = (r,0|m® =c*or =70

Let C = (C,) where C,, the conjugacy class of o, is the unique conjugacy class of
involutions. Let m = (6), so we will insist that our cover has 6 branch points. We
denote the branch points by D = {by, by, -+ ,bs} and choose a cover of f : C — P(C)

corresponding to a surjection.

T (PY(C) — D, 0) = G.

In the following, we provide a topological construction of C, describe the represen-
tation theory of G acting on H;(C,Fy) and explicitly compute the Hurwitz monodromy

of C.
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By basic properties of covering maps C' is an unramified cover of its quotient by
7, denoted by C’. In turn, C” is a double cover of P!(C) with the same branch locus
as C'. The restriction of o gives the hyperelliptic involution on C’. Furthermore C’ is
topologically constructed from C' by cutting along an embedded curve, and pasting 5
different copies of C’ together along this embedded curve. This construction is explicitly

depicted in Figure 4.1.

ﬂ

DN e

ZN

b by b3 by b5 bg

Figure 2: Explicit construction of a Ds cover.
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As can be seen by the above picture or a quick computation using the Riemann-
Hurwitz formula, C' is a genus 6 curve and C’ is a genus 2 hyperelliptic curve. The
action of Dy is also explicitly shown, namely 7 rotates the figure counter-clockwise by

an angle of 27/5 and ¢ performs a rotation around a fixed arm.

4.2 Homology of the Cover
Denote the G representation derived from the Galois action on the homology of C' by
pc: G — GL(H(C,Z)).

Over Z, D5 has two one dimensional representations, namely the trivial representa-
tion peiv and a sign representation pgg, coming from the restriction of the sign repre-
sentation when Ds is viewed as a permutation group on the vertices of a pentagon. It
also has a unique four dimensional representation on the trace 0 hyperplane of Z°. This
representation, denoted p4, is irreducible over Q. However, py ® Q(\/g) splits into the
sum of two two-dimensional irreducible representations, p, and p3. Over a finite field Iy,

the behavior of py ® F, depends on the splitting of £ in Q(v/5). By quadratic reciprocity,

Py @ Ty if £ =2,3 mod 5 the representation remains irreducible
ps @ Fy=

P2 QF, ®p3®F, if £ =1,4 mod 5 the representation splits
By Theorem 5.2.1 we can explicitly decompose p¢ in terms of the representations in

the previous paragraph, specifically,

Pc = 4psign SP) P4 S5, P4. (41)
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Without invoking Theorem 5.2.1 we can explicitly compute this representation in
terms of an explicit homology basis on C. In Figure 4.2, a basis for H;(C,Z) is given by

the simple curves

0417"'0557617"' 755751752

Figure 3: Homology basis for C.

The action of G on this basis is explicitly given by,

7(®%) = it1 mod 5, T(Bi) = Bit1 mod 5
7(61) = 61, 7(02) = 09
o(og) = —o,0(8;) = —p;

0'(51> = —51,0'((52) = —52
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Now G acts on the subspaces generated by (o, -+, a5) and (f1,- -+ , B5) by its standard
permutation representation. Thus the sign representation in 4.2 expression is generated
by

S = <a1_|_...+a5751—|—-"+B5751752>‘

Note that we can also identify S as the T-invariants of homology, S = H{(C,Z)".

A basis for the subrepresentation isomorphic to ps @ p4 is given by,
W .= W1 D W2

where

Wi = (o — g, a — a3, (i3 — (g, g — Qi)

and
Wy = <51 — B2, B2 — B3, B3 — Ba, fa — ﬁ5>-

Note that W; = W, under the map that sends o; — a1 — 5 — Biv1.

Hence we see that

H\(C,Z/0Z) = S & W) & W, (4.2)

4.3 The Hurwitz Monodromy group

As discussed in the previous chapter, there is a monodromy action
E Wl(Chur%&(G), [C]) = Sp(H1(C, Z))).

Where 71<Chur%57(6), [C]) can be identified with mapping classes of P'(C) — D that fix

00. We will denote the reduction of p mod ¢ by

pe ﬂl(Chur%Sﬁ(G), [C]) = Sp(H\(C,Z/7)).
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To make the exposition easier we will ignore basepoints.
To compute the monodromy group in this case, we will demonstrate an explicit set
of generators. The image of p;, denoted M,, must be contained in Csyu,(c,z))(G). We

have a decomposition,

Csprr(0.2)(G) = Csp(s)(G) @ Cspw (G)

where Sp(SS) is the restriction of the the G-equivariant symplectic isometries to S, and
analogously for Sp(IV).
It is straight-forward to see that Alt?p, = Alt?p, = Alt’ps = 0 and Sym?p, = 2.
Hence by Theorem 3.1.10, Cgp(s)(Ds5) = Sp(4,F,) and
Sp(2,Fy2) if =2,3 mod 5

Cspw)(Ds) =
Sp(2,F,) x Sp(2,F,) if £=1,4 mod 5

Of course, Sp(2,Fy2) = SL(2,F2) and Sp(2,F,) = SL(2,Fy).

We point out a set of curves on C' which are especially important. Let ~; be a a
curve that wraps around the ¢ — 1 and ¢ 4+ 1 handles and goes through the center genus.
The curve 7 is illustrated in Figure 4.3.

Now we single out three specific mapping classes of C,

e T, which is a Dehn twist in the union of curves o, --- , as.
e T which is a Dehn twist in the union of curves 3y, -, 5.
e T, which is a Dehn twist in the union of curves vy, - ,7s.

Because of their symmetric nature, each one of these mapping classes can be seen to

commute with the action of G' and in fact descends to a mapping class action of P'(C)
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Figure 4: The curve v; on C.

preserving oo. Hence all three of these mapping classes lie in the image of p,. In the
case of T, and T}, these mapping classes correspond to lifts of braids permuting branch
points in P(C).

The action of these mapping classes on the explicit basis of W is given for T, and

T,B as

Ta(Oéi - 04i+1) = O — Qq41,

To(Bi — Biv1) = Bi — Biv1 + a4 — iy,
Ts(oy — 1) = o — i1 + Bi — Biva,

TB(@' - ﬁz‘ﬂ) = — 5z’+1-

Since the curves 7; are disjoint from the o, it is easy to see that the restriction of 7 to

W, is trivial. What is a bit more surprising is that T, |y, =2 — 7 — 7.

Combining all the previous computations together, we finish this chapter with a
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theorem showing that in this specific case we have big monodromy.
Theorem 4.3.1. If¢ = 2,3 mod 5, then M,, = Csyu,(c,2))(Ds) = Sp(4,Fr) @ Sp(2, Fp2).

Remark. From Sage[13] computations, it seems that we still have big monodromy

when ¢ = 1,4 mod 5.

Proof. Throughout this proof, we identify the elements of G with their image in Sp(H; (C, Fy)).
Since C" = C/(r) we can identify S = H,(C,Z)", with H,(C’,Z). Hence, the natural

projection of M, to Csps)(G) can be identified with the image of the monodromy action,
Churz/gzﬁ — Sp(Hl(C”, Z/EZ))

which is surjective by the results on the monodromy of hyperelliptic curves mentioned in
the introduction. Hence M), surjects onto Csys)(G) under the natural projection map.

Now we compute the projection of M, in Csps)(W). Denote the image of this
projection by (M,,)w. Because £ 2 2,3 mod 5, we know that dim Sym*W = dim W ®¢

W* = [Endg(W) : F,] = 2. Clearly,
or+r ) =F+7Yo

so 7+ 7! € Endg(W). In particular [Fo[r + 771 : F,] = 2 so we see that Endg(W) =
Fo[r + 771].
This gives an explicit way to realize the action of Ty, 7T, and T, on W as matrices

in Cspw)(G) = SL(2,Fy[r + 77']). We can see that they correspond to the matrices

11 10 1 2—7—771

01 11 0 1
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I claim that these three matrices generate SL(2,Fy2). Firstly note that,

~1
S=B"'A4"" =
1 0

and

1 0
AS™! =

2—7—771 1

In particular we can conclude that (M, )y contains all elementary matrices,

(4

10 1 a
, ,aEIF[T—i-T’l].

a 1 01

It is well known that the special linear group is generated by elementary matrices these
elementary matrices so in particular, (M,,)w = Cspw)(G)
Let ¢ : Copw)(G) = Cspw)(G)/Z(Cspwy(G)) be the natural quotient map. By the

above ¢(M,,) surjects onto each component of
PSp(4,F,) x PSL(2,F?).

and so by Theorem 3.3.3, PSp(4, F,) x PSL(2,F?) C ¢(im p) since both factors are simple

groups. Hence, by Lemma 3.3.4, we can conclude that Sp(4,F,) x SL(2,F%) C M,,. O
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Chapter 5

Transitivity and Big Monodromy

5.1 Problem Statement

Fix a center-free group G, a tuple of conjugacy classes C = (Cy, - -- ,Ci) and a multidis-
criminant m = (my, - -+ ,my). As described in Section 2.2.3, there is a topological space
CHurg’m whose points parametrizes surfaces C' of type (G,C,m). We fix such a C' and
identify the point associated to C'in CHurgvm with [C]. Assume that that f : ¢ — P!(C)
is the associated covering map and E is the ramification locus of f.

As described in section 2.3, if CHurCG’m is connected, or alternatively if Hy(G,Z) is

trivial there is an associated monodromy action. We assume that Hy(G,Z) = 0.

Definition 5.1.1. For ¢ a prime, there is an associated mod ¢ monodromy map
i+ T (CHuIG 1, [C]) — GL(Hy(C,Z/(Z)).
Denote the image of this representation by My(G)

The F, vector space V, := Hy(C,Z/{Z) carries a symplectic intersection form, and a
natural action of G. Since the action of the monodromy group arises through oriented
homeomorphisms of C', the elements of M,(G) must preserve the symplectic intersection
form guaranteeing that M,(G) C Sp(H'(C,Z/(Z)). In addition, since the monodromy

representation arises from lifts of homeomorphisms of P*(C) preserving f, M,(G) must
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commute with the action of G on H,(C,Z/lZ) and so
M(G) € Cspy (G),

where Cspv,)(G), the symplectic centralizer of G is the subgroup of Sp(V;) commuting
with the action of G.

The goal of the rest of this chapter is to prove the following big monodromy result.

Theorem (Theorem 5.4.2). For (1 2|G| and min; m; sufficiently large,
[Csp(v) (G): Coprp) (G)] © Me(G)

Here is a rough sketch of the proof. First we describe how V, decomposes in terms
of irreducible representations for G. Using results from Section 3.1, we will be able to
explicitly compute Cgspv,)(G). This decomposition along with the Equivariant Witt’s
Lemma allows us to explicitly compute the number of orbits of Cgpv,)(G) on the set
of G-equivariant injections from a fixed G-module W to V,. This set of injections will
naturally arise as a fiber of a cover of CHurCGm and the number of orbits of M,(G) on
it will correspond to the connected components of a Hurwitz space. We can then apply
Theorem 2.4.1 to count the precise number of orbits. Finally we will conclude the proof
by using the transitivity results and charecterization of subgroups of products of groups
given in Section 3.2.

Throughout the rest of the chapter assume that ¢ { 2|G/|.

5.2 Galois Action on Homology

We begin the proof of this theorem by understanding the representation theory of V;, as

a G-module. Let Irr/(G) denote the set of irreducible representations of G over F,. For
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p € Irry(G) we let the associated G-module be W,,.

Since /¢ { |G| we can decompose V; into isotypic G-representations,
Ve= 69pEImrg(G)V;)

where each V), is the isotypic component for p, V, = Wf ? for some k,. By the following

theorem this decomposition is independent of C' and just depends on its type (G,C,m).

Theorem 5.2.1 ([7]). Let x be the character of G acting on V. Then

X = 2Xtriv + (|E] — 2)Xreg — ZXP
peE

where
® Yiriv 1S the character of the trivial G-representation, pi

® Xreg 1S the character of the reqular G-representation, preg

® X, is the character of the representation induced from the trivial representation of

the subgroup (g,) where g, is the monodromy of a loop around the branch point p

When applying connectedness results like 2.4.1, we will need to be able to choose m
to be sufficiently large and be guaranteed that the multiplicity of p in V; also increases.

The following lemma guarantees this.

Lemma 5.2.2. If min; m; s sufficiently large, then each nontrivial k, can be made

arbitrarily large. In addition the trivial representation will never occur.

Proof. Let the multiplicity of an irreducible representation p in a representation

be denoted by m(v,p). First we show that m(preg, p) is greater than or equal to
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the m(Ind&ptriw p) for g arbitrary. Treating W, as a module for D,, by the Artin-
Wedderburn theorem, the former multiplicity is dimp, W,. Schur’s lemma implies that

the latter multiplicity is
m(Indf) puiv, p) = dim Home (W, Ind{}, pusiv) / dimg, D,.
Applying Frobenius Reciprocity,

dim Homg (W), Ind<i> Poriv) = dim HomG(Resg> 0y Piriv)
= dim Hom(pyiv, Resgo p)

= lel]F f) Wém

By definition dp(g) = p(g)d for all d € D, so I/Vp<g> is a D, submodule of W, and
furthermore dimg, Wég>/ dimg, D, = dimp, W,)<9>. Hence the statement on multiplicities
follows since dimp, W,§9> < dimp, W,,.

Now by Theorem 5.2.1 we know for p # pi.iv

(’E| - Z)m(prega p) > Z m(Indg>ptriva ,0)

peE

and using the above computation, we can rewrite this as

p

> (dimp, W, — dimp, W) — 2(dimp, W,) > 0.

peE

To show that k, grows with minm;, it suffices to show that at least one of the
dimp, W, — dimp, I/Vp<g”> > 0. This is clear since G is generated by the g, and p is a
non-trivial irreducible representation.

Finally, the G-invariants V,%, correspond to those homology classes that descend to

PY(C). Since H,(P'(C),Z/(Z) is trivial, V& = 0. O
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Let

v=Ppv,e P M,

peD p€lrry(G)—D

be a decomposition of V; into irreducible G representations, where as in the notation of
3.1.3, D represents the set of self-dual irreducible representations of V.
We have an induced decomposition of the symplectic centralizer.
Cspv) (G) = [ ] Copv (G) x Cspt,) (G) (5.1)
pED pElrr(G)—D
Theorem 3.1.10 implies that each Csyv,)(G), Cspar,) (G) is isomorphic to I'(k,, D,) where
I" is one of GL, Sp, U, or O. Each Csyv,)(G), Csp(ar,)(G) can also naturally be viewed as

a group of isometries of a G-invariant form on Inj(W,)”, V,).

5.3 Covers Corresponding to Subspaces

Let W be a fixed F,[G] module. Specifying an unramified cover ¢’ — C with Galois
group W is equivalent to giving a surjection V;, — W. Dualizing, such surjections are in
bijection with injections WY — VY. Furthermore requiring the composition ¢’ — C' —
P(C) to be Galois is the same as requiring that the action of G preserves this injection,
or alternatively the surjection. Hence, if W is a Fy[G]| module, the set of covers of C'
with Galois group W, which are Galois over P!(C) with Galois group G x W, are in
bijection with Inj,(WV,V,), where we have composed with the isomorphism V,Y — V}
arising from the symplectic form.

We are interested in understanding the space of all such covers. Since ¢! — C
is unramified, the branch points of the cover C’ — P!(C) are the same as that of

C — PY(C). Let the associated surjection, f’: m(P(C) — E,00) — G x W. Hence in
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the notation of section 2.2.3, C" is a cover of type (G x W,C’,;m) where C’ is a tuple of

conjugacy classes. We now determine C’ explicitly.

Lemma 5.3.1. Fixz a conjugacy class C C G. Let k be the order of an element of ¢ € C

and let pp(x) = 21 + 2872 + ... + 1. Then the set of elements
{(c,w) :ce C,w € kerp(c)}

forms a conjugacy class of G x W and is precisely the set of elements lying over C that

have order k.

Proof. Take g € G,c € C,w,v € W with p(c)w = 0. Then

(9,0)(c,w)(g,v) " = (geg™", v+ gw — geg~'v).

By assumption

plgeg ") (1 = geg™")v = 0 and p(geg™")gw = gp(c)w = 0.

Now take d with gcg™! = d and assume p(d)w’ = 0. We need to find (g,v) such
that (g,v)(c,w)(g,v)™" = (d,w’), so by the computation above, it suffices to solve the
equation

(1—gcgd v+ gw=uw'
for some v. Now this implies that (1 — d)v = w' + gw € ker p(d). Since the order of d is
k which is coprime to the characterstic of F, we see that (1 — d) is invertible on ker p(d).

Hence we can find such a v. O
Denote such a conjugacy class corresponding to C by Cyy.

Lemma 5.3.2. C' = (C{,--- ,C;) where C; = (C;)w.
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Proof. Let e € E; be a branch point and let v € m(P*(C), 00) be a small loop around
e. Assume that f(v) = ¢ € C;. The composition of f with the natural projection
G X W — G gives f. Hence f'(v) = (¢, w) for some w € W. Since C" — C' is unramified,
the order of the inertia subgroup at e for C' and C” must be the same. This implies that
the order of ¢ and the order of (¢, w) agree. This is equivalent to the condition that

p(c)w = 0. O

The space of all such G x W covers with monodromy in C’, is just CHurglxwym. There
is a natural map 7 : CHurgkwym — CHurCQm mapping the point representing C’; [C’] to
the point representing C', [C]. Since CHurgKW’m and CHuram both admit étale maps

to Confjm,(C), we see that 7 is étale by the cancellation property of étale morphisms.

c’ T c
CHurg,yyy, — CHurg

|

Confy (C)
By the discussion above, the fiber 771([C]) is identified with Inj,(W", V}). Since T is

étale, the associated monodromy action of ﬂl(CHurCG’m, [C]) on 771([C]) agrees with the
action of M,(G) on Inj,(WV,V;). Hence the number of orbits of M,(G) on Inj,(W",V;)
will agree with the number of orbits of M;(G) on the fiber tau='([C]). This latter

quantity is just |7TO(CHurgKW7m)], the number of connected components of CHuré,, Wom-

Lemma 5.3.3. Let W be a vector space over F, with an action of G. Then
Hy(G % W) = (AlPW)©.

Proof. Let Hy = Ho(G x W). We will use the Hochschild-Serre Spectral sequence. The
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terms on the second page are EZ, = H,(G, H,W). We also have the filtration
0C FoHy C F1Hy C FoHy = Hy

with successive quotients G;Hy = F;Hy/F;_1Hy = E25

r2—r"

Now
GoHy = B35y = E3 g = Hy(G) =0
so GoHy = 0 and FyHy, = [1H,. For 7,5 > 0, by Theorem A.1.18 in [28], £ =
E2, = H,(G,H,(W)) = 0, since Hy(W) is a Fy vector space and (¢,|G|) = 1. In
particular we see that G1Hy = Ey =0 implying that FoHy = F1Hy = FyH,. Hence
H, = FyHy = E5.

Now Ef, = Ho(G, Hy(W)) = Hy(W)g. From the definition of the differential
Egz = E[2)72/im (E221 - Eg,Q) = Eg,z-

Furthermore after the third page, the images of all differentials are 0, so, Egy =
E§,/im (B3, — Ej,). Clearly E3 is divisible by primes dividing |G|, and Ej, has
exponent ¢, so Ej, — Ej, has image 0.

Concluding we see that
HQ(G X W) = E((ioQ = HQ(W)G

Now Theorem 6.4.c of [8] identifies Hy(W) with Alt*W. Since invariants and co-

invariants are isomorphic for I, representations of G,

Hy(G x W) = (Alt*W)©°.
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The final theorem of this section gives an explicit way to count the orbits of M,(G)

on Inj (WY, V7).

Theorem 5.3.4. Let W be a F,[G] module vector such that Injo(W,V;) is nonempty.
If min; m; is sufficiently large, then the number of orbits of My(G) on Injo(W,V,) is

[(AIPW)E|.

Proof. By the above discussion the number of orbits of My(G) on Inj.(W, V) is given

by ]WO(CHurgMW’m)L We can combine Theorem 2.4.1 and Lemma 5.3.3 to see that
[0 (CHW G, 4y )| = (AI?W)/Qcr (5.2)
Hence we need to just show that )¢/, the image of the induced map
Hy(Z) — Ha({z,y)) — (AI*W)°

is trivial for every x € C' and y commuting with z.

By lemma 5.3.1, z is necessarily of the form (g, w) with ¢ € G and w € kerp(g). The
order of (g, w) is just the order of g. Hence the subgroup (z,y) is annihilated by |G|
and so is Hy((z,y)). Since (Alt*W)¢ is an f-group, Hy({z,%)) is also annihilated by /.

This implies that Q¢ trivial since ¢ is coprime to |G|.

5.4 Proof of the Main Monodromy Theorem

We are finally in a position to give a proof of the main theorem. In the decomposi-

tion, 5.1, let M,(G), denote the image of the monodromy group M,(G) projected onto

Csp(v,) (G).
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Lemma 5.4.1. Assume min; m; is large enough. Then Cgpy,)(G) C My(G),.

Proof. First consider the case when p € D, the set of self-dual irreducible representa-
tions of G. By Theorem 5.3.4, the number of orbits of M(G), on Injo(WF,V,) is just
|(A1t2Wlf)G|. By lemma 3.1.9 the latter is just the number of orbits of Cgyy,)(G) on
Inj, (W}, V). The result then follows in this case by Theorem 3.2.4. If p € Irr(G) — D
then Cgyy,)(G) is a general linear group. By Theorem 5.3.4 the number of orbits of
My(G) on Injo(W?,V,) is |(A1t2W5’)G|. When W, is not self dual, this quantity is 1.
Hence M,(G), acts transitively on the three dimensional subspaces of V, and so by

Theorem 3.2.2 the result follows. O

Using the group theoretic tools from section 3.3 we can now prove the main theorem.

Let ¢ : Cspvy)(G) = PCspv,) (G) be the quotient by the center described in 3.2.

Theorem 5.4.2. Let G be a group with trivial Schur multiplier and ¢ a prime such that

01 2|G|. For min; m; large enough, (G,C,m) has big monodromy, i.e.

Cspvn (@) =[] Contvi (@) x [I = Cospas) (@) € My(G)

peD pelrr(G)—D

Proof. Since min; m; is being chosen large enough, the previous lemma implies that
Csp(v,)(G)" C My(G),. Also, by Lemma 5.2.2 by choosing min; m; large enough, we can
guarantee that each k, > 5.

Now choose two non-isomorphic representations p, p’ € Irr,(G). Let M,(G), » be the

image of the projection
MZ(G) — CSp(Vp)(G) X CSp(Vp/)(G)-
and let ¢(M,(G)),» be the image of the projection,

gb(Mg(G)) — PCSp(Vp)(G) X Posp(vp,)(G).
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I claim that PCSp(Vp)(G)/XPOSp(Vp/)(G>/ C qb(Mg(G))MI. By Lemma 3.2.1, '] = CSp(Vp)(G)
and [y = C’Sp(vp,)(G) satisfy the assumptions of Theorem 3.3.3 applied to the subgroup
P(M(G)).

Thus there are two possible cases.

e Case 1 CSp(Vp)(G> %\_ﬁ CSp(Vp/)(G) and PCSp(Vp)(G), ’;7—'2 PCSp(Vp/)(G)/: In this case

PCsp(w,)(G)' X PCsp(v,,)(G)' C ¢(Me(G))p,pr-

e Case 2 Cg,1,)(G) = Csp(vp,)(G) and PCspv,)(G)" = PCsp(vp,)(G)i For this case,
we have to rule out ¢(M,(G)),,» being a diagonally embedded subgroup of PCgy(v,,) (G) X
PCsp(v,,)(G). Since p % p’, Theorem 5.3.4 implies that the number of orbits of

My(G), on Injo(W, ® W,, H'(C,F,)) is given by

(AW, @ W,)%] = [(ALE2W,)C||(AL*TW,) .

By Corollary 3.1.9 this also counts the number of orbits of Cs,(v,,)(G) @ Csp(v ) (G)

on Injo(W, & W, Vp).

If ¢(M(G)),,» were diagonally embedded in PCspv,)(G) x PCgyv ) (G), it would

necessarily have more orbits on the lines of the vector space

We elaborate on this now. Since Cspv,)(G) = Csp(v,)(G), and since k,, ky > 5,
we can set k =k, = ky, F:= D, = Dy and G = Cgpv;,)(G) = Cspv,)(G).
Abstractly as F* vector spaces, Inj.(W,,V,) = Inj.(W,,V,) and we set V to be
this common vector space. Let H be the image of ¢(M,(G)) in G x G identified

with OSp(Vp)(G) X Osp(vp,)(G).
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Since PG /PG’ = PCspv,)(G) /PCspv,)(G)" is cyclic the projection of H onto each
component of PG x PG, denoted H; and H, respectively, are identical subgroups
of PG containing PG’. So in particular, choosing an isomorphism v : H; — Ho,

the elements of H are all of the form (v, (~)) with v € H;.

Now consider the line v spanned by some (v,v) € V' x V. The orbit of v under H
is forced to be lines spanned by elements of the form (yv,(v)v). In particular,
no line spanned by a vector of the form (v,w) with w # v can be in the orbit of

v. The full orbit of G x G certainly has such an element.
We can now use Theorem 3.3.2 to establish that:

[[PCs0) (@) x [] PCspias,)(G) C 6(Mi(G))

peD p€lrr(G)—D

Finally we can conclude the result using Lemma 3.3.4. [
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