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Abstract

The monodromy of a family of varieties is a measure of how homology classes vary.

Surprisingly, many familiar ideas in number theory, such as Galois representations and

Cohen-Lenstra heuristics, are closely linked to the monodromy of specific families. In

general, we expect the monodromy of a family to be “big”, i.e. as large as possible subject

to any geometrical or algebraic constraints arising from the family. In this thesis I study

the monodromy of Hurwitz spaces of G-covers, moduli spaces for branched covers of the

projective line with Galois group G. I show that if G is center-free and has trivial Schur

multiplier the mod ` monodromy will be big as long as the number of branch points

of a curve in the family is chosen to be sufficiently large. Along the way the necessary

algebraic results, including a generalized equivariant Witt’s lemma, are presented. The

proof relies on a characterization of the connected components of Hurwitz Spaces due to

Ellenberg, Venkatesh, and Westerland that generalizes an older result of Conway-Parker

and Fried-Völklein. Connections to current results on monodromy of cyclic covers are

also discussed.
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Chapter 1

Introduction

1.1 Monodromy

Let X → S be a proper family of complex Riemann surfaces with S an irreducible

manifold. Given a point s ∈ S, the fundamental group π1(S, s) acts linearly on the

homology, H1(Xs,Z), of the fiber Xs. There is an associated monodromy map

ρ : π1(S, s)→ GL(H1(Xs,Z))

whose image is called the monodromy group of the family.

Intuitively, given a loop γ ∈ π1(S, s), the monodromy action takes hold of a homology

class of Xs, and “moves” it along the fibers of the points of γ in X. We will also be

interested in the mod `-monodromy of ρ given by composing with the natural Z/`Z

quotient,

ρ` : π1(S, s)→ GL(H1(Xs,Z/`Z)).

We are interested in situations where the monodromy group is big relative to any con-

straints. As the most simple example, the monodromy group has to preserve the natural

symplectic intersection form on H1(Xs,Z) so,

im ρ ⊂ Sp(H1(Xs,Z))
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where Sp(Xs,Z) is the subgroup of GL(H1(Xs,Z/`Z)) preserving the intersection pair-

ing.

As an explicit example of a big monodromy group, for g > 1, let S = Mg be the

moduli space of genus g curves, and X = Cg to be the universal curve lying over Mg.

Then there is a monodromy action π1(Mg)→ Sp(2g,Z). The fundamental group of Mg

is well known to be the mapping class group Γg of genus g surfaces, and the image of

this representation is known to be surjective [18, Section 6.3].

However, we will not use big to necessarily mean that the image of monodromy

surjects onto the symplectic group. In particular, big could imply that the monodromy

lies in a finite index subgroup of the symplectic group or in the mod ` case contains

a commutator subgroup of a group containing its image. In this thesis we establish

big monodromy for families of surfaces that are regular covers of P1(C) with a fixed

number of branch points and have a specified deck group. Before stating our problem

and results, we provide examples of big monodromy computations and applications of

these computations

1.2 Examples of Monodromy

1.2.1 Hyperelliptic Monodromy

Recall the definition of configuration space.

Definition 1.2.1. The configuration space on n points, Confn(C), is the set of unordered

tuples of points in A1(C).
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Concretely we can realize Confn(C) as an open subset of A1(C)n. Indeed,

Confn(C) = {(b1, · · · , bn)|bi 6= bj, 1 ≤ i, j ≤ n}/Sn.

where the symmetric group Sn acts by permuting the coordinates.

In the context of monodromy, we will take S = Confn(C) and X to be the fam-

ily of hyperelliptic curves whose fiber over a specific configuration {b1, · · · , bn} is the

normalization of the affine curve

y2 = (x− b1) · · · (x− bn)

It is well known (and will be discussed further in Chapter 2) that π1(Confn(C)) ∼= Brn,

where Brn is the braid group on n-strands. Hence the natural monodromy representation,

Brn → Sp(2g,Z)

is a symplectic representation of the braid group.

Computing the image of monodromy in this case is a well studied problem. A’Campo

[2], shows that the monodromy group is a finite index subgroup of Sp(2g,Z) contained in

the level 2 congruence subgroup and containing the level 4 congruence subgroup. In this

case, big monodromy implies that the monodromy group is a finite index subgroup of

the symplectic group. Achter-Pries [4], Hall [23], and Yu [41] all independently showed

that the mod `-monodromy group is the full symplectic group for ` > 2. Their work was

more general and applied to families of curves not just defined over C.

The hyperelliptic monodromy results described above have a natural application in

number theory through the Cohen-Lenstra Heuristics that we now quickly describe.

For D ∈ N, let SD be the set of quadratic imaginary fields of discriminant less than

D. The Cohen-Lenstra conjectures [11] predict that the average number of surjections
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from the class group of a quadratic imaginary field to a finite abelian `-group A is 1, i.e.

lim
D→∞

∑
K∈SD |Surj(CK , L)|

|SD|
= 1

The Cohen-Lenstra conjecture is mostly open and there are only known and partial

results in the case where A = Z/3Z and A = Z/4Z [12, 40].

Friedman and Washington [20] formulated an analgous version of the Cohen-Lenstra

conjecture for function fields. Let Fq be a finite field with (q, l) = 1 and for n odd let

Un(Fq) be the set of monic polynomials of degree n. Then for a fixed f(x) ∈ Un(Fq), the

hyperelliptic curve Hf with affine model y2 = f(x) is ramified at ∞ and the class group

of Fq(t)(
√
f) can be identified with Jac(Hf ). Then the Friedman-Washington conjecture

states that for a finite abelian ` group A,

lim
n→∞,n:odd

∑
f∈Un |Surj(Jac(Hf ), A)|

|Un(Fq)|
= 1

There is a version for n-even as well that we omit. In the work of Achter [3], and

in unpublished work of Yu [41], (see also the notes of Ellenberg [15]) equidistribution

results are exploited to show that big monodromy of the hyperelliptic family provides

Cohen-Lenstra type results in the case when n is fixed but q is allowed to grow. In

particular they prove

lim
q→∞,q 6∼=1mod `

∑
f∈Un |Surj(JacHf (Fq), A)|

|Un(Fq)|
= 1.

The original Friedman-Washington conjecture is still open however. We refer the reader

to the work of Ellenberg, Venkatesh, and Westerland [16] for more information.
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1.2.2 Cyclic Covers and Thin Groups

We now consider the case of general cyclic covers of P1(C) rather than just hyperelliptic

covers. Again take S = Confn(C) and X to be the family of hyperelliptic curves whose

fiber over a specific configuration {b1, · · · , bn} is the normalization of the affine curve

yd = (x− b1) · · · (x− bn)

where d > 2.

In this case, the monodromy group can not be the full symplectic group. Each fiber

has an action of Z/dZ coming from the deck group

{(x, y)→ (x, ζ idy) : 1 ≤ i ≤ d}.

In particular the deck group acts on the homology of a fiber and the monodromy group

is forced to lie in the subgroup of Sp(2g,Z) that commutes with the Z/dZ action. The

monodromy group is forced to be a subgroup of the symplectic centralizer of Z/dZ.

Motivated by big monodromy in the hyperelliptic case, it is reasonable to ask whether

the monodromy group is an arithmetic subgroup of the symplectic centralizer, or alter-

natively of finite index. Alternatively, we can ask whether the monodromy group can

ever be thin, i.e. Zariski dense in the symplectic centralizer but of finite index.

Building on work of Deligne and Mostow, McMullen [32] shows that when d = 4 and

n = 18 the monodromy group is indeed thin, providing one of the first examples of a

thin group. However when m ≥ 2d recent work of Venkataramana [37, 38] shows that

the monodromy group is indeed an arithmetic subgroup.

Venkataramana’s result implies that the mod `-monodromy group is the full sym-

plectic centralizer for ` sufficiently large. In particular we can hope that we might be
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able to detect thin-ness by looking mod `. However this is not possible due to a result

of Vaserstein and Weisfeiler [31]. They show that that for a connected algebraic group

G any finitely-generated Zariski-dense subgroup of G will surject onto G(Z/pZ) for p

sufficiently large.

1.3 Monodromy of Hurwitz Spaces

In this report, the families of interest will be Hurwitz spaces, moduli spaces of regular

covers of P1(C). Fix a center-free group G, a choice of conjugacy classes C := (C1, · · · , Ck),

and a tuple of integers m := (m1, · · · ,mk). More specifically

Definition 1.3.1. A cover of type (G, C,m), will be given by tuple (E1, · · · , Ek, f) where

• Each Ei ⊂ C is a subset of size mi.

• f : π1(P1
C −

⋃
Ei) � G is a surjection.

• f maps a loop around each point of Ei to Ci.

Each such surjection gives rise to a G cover of P1(C) with specified ramification at the

E =
⋃
Ei lying in

⋃
Ck. The space of all such covers is the Hurwitz space of connected

G-covers and is denoted by CHurCG,m. The examples given above of hyperelliptic covers

and more general cyclic covers are specific instances of Hurwitz spaces.

For a fixed isomorphism class of (G, C,m) covers denoted C, there is an associated

point [C] ∈ CHurCG,m. As described in the introduction and explicitly described in section

2.3 there is an associated mod `-monodromy representation,

ρcG,m : π1(CHurCG,m, [C])→ Sp(H1(C,Z/`Z))
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for a prime l. Denote the associated monodromy group by M`(G).

The F` vector space V` = H1(C,Z/`Z) carries an symplectic intersection form, and

a natural action of G. As in the case of cyclic covers discussed in the previous section,

the monodromy group, M`(G), must preserve the form and commute with the action of

G, so M`(G) ⊂ CSp(V`)(G), the symplectic centralizer of G.

In the mod ` case the symplectic centralizer is finite, so finite index is not an effective

way to define the word big. Instead, we take big to mean that the monodromy group

contains the commutator subgroup of the symplectic centralizer. We prove the following

result.

Theorem (Theorem 5.4.2). Fix a center-free group G with H2(G,Z) = 0 and a prime

` - 2|G|. If minimi sufficiently large, CHurCG,m has big monodromy,

[CSp(V`)(G), CSp(V`)(G)],⊂M`(G)

As described in section 3.1, the symplectic centralizer decomposes as a product of

general linear, symplectic, unitary and orthogonal groups. Hence requiring the mon-

odromy group to contain the commutator is analogous to having a subgroup of the

general linear group containing the special linear group. This is certainly an adequate

notion of a big subgroup.

The rough strategy to prove Theorem 5.4.2 is as follows. The monodromy group

M`(G) naturally acts on certain G-invariant subspaces of H1(C,Z/`Z). These subspaces

correspond to covers of C in a natural way and using results from [17], we will be able

to compute the number of orbits of M`(G) on these subspaces. Subsequently. theorems

about transitivity from finite group theory, and projective geometry, will demonstrate

that M`(G) is big in a natural way.
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Note that this approach greatly differs from the methods used in several of the results

cited (for example [23, 30]) in previous sections to compute big monodromy. In most

of these cases, monodromy is shown to be a large subgroup of the symplectic group

by demonstrating the existence of enough transvections. We provide an example in

Chapter 4 which emulates such an argument, but the proof of the main theorem uses

purely global topological results.

The thesis is broken into four sections. Chapter 2 provides background on Hurwitz

spaces and the associated monodromy representations. In Chapter 3, the necessary

algebraic tools for the proof of Theorem 5.4.2 are provided. Chapter 4 gives an explicit

computation for a specific case of dihedral monodromy by constructing explicit mapping

classes acting on a dihedral cover of P1(C). The final chapter provides a full proof of the

main theorem.
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Chapter 2

Topological Properties of Hurwitz

Spaces

2.1 Introduction

Informally, Hurwitz spaces parametrizes isomorphism classes of covers of the projective

line P1(C) with prescribed extra information. This could include data about ramification,

degree, or automorphisms (as we our primarily concerned with in this thesis). Hurwitz

spaces have a rich history dating back to work of Clebsch, Hurwitz and Lüroth in the

1880’s. The study of the topological properties of Hurwitz spaces has been applied with

great success to combinatorial group theory, the connectedness of the moduli space of

curves Mg [21], the inverse Galois problem [19], and as described in the introduction to

the Cohen-Lenstra conjectures [16].

In this section, we provide an introduction to the theory of Hurwitz spaces from a

group theoretic point of view. First we introduce the definition of the braid group and

its action on Nielsen classes of a group. This is followed up be an explicit definition

of Hurwitz spaces and their monodromy action on the homology of a curve. Finally

we describe results of Conway-Parker-Fried, and Ellenberg-Venkatesh-Westerland on

counting the components of Hurwitz spaces.
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The interested reader is pointed to [35], [16], [36] for more information on the con-

structions in this chapter.

2.2 Construction of Hurwitz Spaces

2.2.1 Braid Groups and Fundamental Groups

In this section we provide a quick summary of many standard facts on mapping class

groups of surfaces, braid groups, and configuration spaces. The interested reader is

directed to [18] for more information on these topics.

Definition 2.2.1. Let S be a surface with boundary ∂S. The Mapping Class Group of

S, denoted Mod(S) is defined to the group of isotopy classes of orientation preserving

homeomorphisms of S that are the identity on ∂S, In other words,

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S)

Fix a decomposition of projective space P1(C) = A1(C)∪ {∞}. In addition choose a

set of points b = {p1, · · · , pn} ⊂ A1(C).

Instead of the whole mapping class group of P1(C), we will be interested in under-

standing the mapping classes of P1(C)− b fixing ∞ which we denote by βn. A general

homeomorphism of P1(C)−b can send a neighborhood of one of the punctures contained

in A1(C) to a neighborhood around ∞. Treating ∞ as a puncture, βn can be identified

with the index n + 1 subgroup of mod (P1(C)− b ∪∞) that fixes ∞. Through stereo-

graphic projection through ∞, βn can also be identified with the mapping class group

of the n-times punctured plane, Mod(A1(C)− b). We can explicitly find a presentation

of βn by studying it’s connection to Artin’s Braid Group.
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Definition 2.2.2. Artin’s braid group on n strands, is given in terms of generators and

relations as

Brn = 〈σ1, · · · , σn−1|σiσj = σjσi, if |i− j| ≥ 2, otherwise σi+1σiσi+1 = σiσi+1σi〉

The braid group can be identified with the compactly supported mapping classes

of A1(C) − b or alternatively the mapping classes of the closed disk D2 with n punc-

tures, also denoted b, fixing the boundary of the disk. As shown in Figure 2.2.1 under

this isomorphism the action of σi is a Dehn Twist which acts by a 180◦ rotation in a

neighborhood of pi, pi+1 not containing any other of the points p1, · · · , pn.

Figure 1: The Dehn Twist action of γi.

By taking a small open disc U around ∞ ∈ P1(C), we can fix a homeomorphism

from D2−b→ P1(C)−b−U by mapping the boundary of D2, ∂D2, to ∂U . This gives

rise to a map from Brn → βn.

The kernel of this map is generated by the Dehn Twist around a circle in D2 near

∂D2. The subgroup generated by this Dehn twist is the center of Bn and in terms of

generators is explictily given by ∆2 = (σ1σ2 · · ·σn−1)n. In particular

βn ∼= Brn/〈∆2〉.
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We refer the reader to [18, Chapter 9] for more details on this isomorphism.

Having established a presentation for βn, we now introduce the action of βn on the

free group. Choose a set of pairwise non-intersecting loops γi, 1 ≤ i ≤ n based at ∞

such that γi winds around pi once. Then a presentation for the fundamental group of

P1(C)− b is given by,

π1(P1(C)− b,∞) = 〈γ1, · · · γn|γ1 · · · γn = 1〉

So in particular π1(P1(C)−b,∞) is isomorphic to a free group. In general the choice of

{γi} is not unique but any other choice of loops {γ′i} is related to γi by a diffeomorphism

fixing ∞.

Since the action of βn fixes ∞, it induces an action on π1(P1(C)− b,∞)

βn → Aut(π1(P1(C)− b,∞)),

often referred to as the braiding action on the free group. By explicitly analyzing the

action of each σi this action can explicitly be described on γi by,

• σi · γi = γi+1

• σi · γi+1 = γ−1
i γi+1γi.

See [39, Theorem 10.13] for a proof.

Since βn is a quotient of Brn, we can lift this action to Brn,

Brn → Aut(π1(P1(C)− b,∞))

Each braid permutes the points {p1, · · · , pn}, with the generator σi transposing pi, pi+1

and leaving the rest of the points fixed. This gives rise to a homomorphism,

Brn → Sn
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the kernel of this map is often referred to as the pure braid group.

2.2.2 Braid Groups and Configuration Spaces

In addition to being identified as a mapping class group, the braid group also has a

realization as a fundamental group of configuration space.

Definition 2.2.3. The configuration space on n points Confn(C) is the set of unordered

tuples of distinct points in A1(C).

Concretely we can realize Confn(C) as an open subset of A1(C)n.

Confn(C) = {(b1, · · · , bn)|bi 6= bj, bi, bj ∈ A1(C), 1 ≤ i, j ≤ n})/Sn.

where the symmetric group Sn acts by permuting the coordinates.

Intuitively, a loop in Confn(C) is a continuous motion of a set of points that can be

realized through a mapping class. So it is not surprising that the fundamental group of

configuration space is given by the braid group.

Theorem 2.2.4 ([18, Section 9.1.1]). Let c ∈ Confn(C) be an unordered tuple of points,

then

π1(Confn(C), c) ∼= Brn

2.2.3 Nielsen Classes and Hurwitz Spaces

In this section we define an action of the braid group on a set that will naturally give

rise to a conver of configuration space parametrizing branched covers of P1(C).

For a fixed n and group G, the set of Nielsen classes of G is,

En(G) = {g = (g1, · · · , gn) ∈ Gn|g1 · · · gn = 1, 〈g1, · · · , gn〉 = G}.
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In the notation of the previous sections, assume b is an ordered tuple of n dis-

tinct points in A1(C). Let Surj(π1(P1(C)− b,∞), G) denote the set of surjections from

π1(P1(C)−b,∞)→ G. Since each such surjection is specified by the images of the gen-

erators γ1, · · · , γn, there is a natural bijection between Surj(π1(P1(C) − b,∞), G) and

En(G).

The action of Brn on π1(P1(C)−b,∞) described above induces an action on Surj(π1(P1(C)−

b,∞), G). Namely given σ ∈ Brn, and φ ∈ Surj(π1(P1(C)−b,∞), G), σ ·φ = φ◦σ. This

translates into a braiding action on En(G), given on the generators by

σi · (g1, · · · , gi, gi+1, · · · gn) = (g1, · · · , gi+1, g
−1
i+1gigi+1 · · · gn)

The braid action specified above naturally gives rise to a topological cover of configura-

tion space whose fibers are Nielsen Classes. By the theory of covering spaces and G-sets,

there is a topological space ChurG,n with a map

ChurG,n → Confn(C)

where the fiber over a point (p1, · · · , pn) can be identified with En(G) and the action of

π1(Bn,g) on the fiber of g is isomorphic to its action on En(G).

We can also describe the points of ChurG,n as isomorphism classes of branched con-

nected covers of P1(C). We say that a Riemann Surface C is specified by the data of

(G,b, f,x, α) if

• b ⊂ A1(C) is a set of n distinct points in the interior of A1(C).

• C is connected and p : C → P1(C) is a covering map branched only at b.

• x is a point above ∞.
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• α : G → Aut(f) is a specified isomorphism inducing a transitive action of G on

each fiber.

We say that a surface C ′ with data (G,b, f ′,x′, α′) is isomorphic to C is there is a

homeomorphism from ρ : C → C ′ such that f ′ ◦ρ = f , f(x) = y and f ◦α(g) = α′(g)◦f

for all g ∈ G.

A given (G,b, f,x, α) cover C specifies a surjection φC : π1(P1(C) − b,∞) → G.

Indeed since the action of G is transitive on f−1(∞), every point of f−1(∞) can be

identified with an element of G. So given γ ∈ π1(P1(C) → b,∞) the φC(γ) = γ̃(1)

where γ̃ is a lift of γ starting at x and we identify the end point with an element of G.

If C ∼= C ′ then it is easy to check that φC = φC′ .

On the other hand given a Nielsen Class g ∈ En(G) or the corresponding surjection

φg : π1(P1(C) − b,∞) → G, standard covering space theory gives the existence of a

connected regular cover f : C → P1(C) − b, a basepoint x ∈ C with f(x) = ∞ and a

transitive action of G on the fiber f−1(∞). The latter action arises from the action of

G on the coset space of π1(P1(C)− b,∞)/ kerφg.

Thus we see the points of ChurG,n above b ∈ Confn(C) parametrize isomorphism

classes of connected regular covers of P1(C) − b up to isomorphism in the manner

specified above. We refer to such ChurG,n as the Hurwitz space parametrizing covers of

type (G, n).

We can generalize the above construction to track additional data. In addition to

fixing G, fix a tuple of conjugacy classes C = (C1, · · · , Cn), where Ci ⊂ G, 1 ≤ i ≤ n, and

a tuple of positive integers m = (m1, · · · ,mn) ∈ Nn. Let |m| = m1 + · · ·+mn.
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The set of Nielsen classes of type (G, C,m) is

Em(G, C) = {g = (g1, · · · , g|m|)|g1 · · · g|m| = 1, 〈g1, · · · , g|m|〉 = G, and mj of gi lie in Cj}.

For a given set of |m| points b ⊂ A1(C), let

SurjC(π1(P1(C)− b,∞), G) ⊂ Surj(π1(P1(C)− b,∞), G)

denote the set of surjections π1(P1(C)−b,∞)→ G ensuring that loops around mj of the

branch points land in Cj. As in the case of En(G), there is a natural bijection between

SurjC(π1(P1(C)− b,∞), G) and Em(G, C).

The action of the Braid group on Nielsen classes preserves Em(G, C). As mentioned

above, SurjC(π1(P1(C)− b,∞), G) and Em(G, C) are in fact isomorphic as Br|m| sets.

In addition there is an analogous Hurwitz space space along with a map to configu-

ration space

CHurCG,m → Conf|m|(C)

where the fiber above any point E is the set Em(G, C). As above, the fiber can be

identified with covers of type (G,E, f,x, α)

• E = (E1, · · · , En) ⊂ A1(C) is a set of size m1 + · · ·+mn with |Ei| = mi.

• f : C → P1(C) is a covering map branched only at the points of E.

• x is a point above ∞.

• α : G→ Aut(f) is a specified isomorphism acting transitively on a fiber.

• The monodromy of a loop around a point in Ei lands in Ci
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In general we will say that the Hurwitz space CHurCG,m parametrizes covers of type

(G, C,m). Now that the basic definitions are in place throughout the rest of this chapter

we will focus on topological aspects of CHurCG,m.

2.3 Hurwitz Monodromy Action

In this section we continue exploring the implications of the action of the braid group

on the Nielsen classes Em(G, C) and define the monodromy action on the homology of

a curve.

A priori CHurCG,m is not connected for a given choice of (G, C,m). By definition

CHurCG,m will only be connected if the action of Br|m| on Em(G, C) is transitive. If the

action is not transtive, let StabBr|m|(g) be the stabilizer of some g ∈ Em(G, C). This

stabilizer can be identified with the fundamental group (based at g) of the connected

component of CHurCG,m containing g identified as a point in the fiber of E ∈ Confm(C).

This fundamental group is often referred to as the Hurwitz Monodromy group. We will

say more about the connected components of CHurCG,m in the next section. However to

simplify exposition, for the rest of this section we assume that CHurCG,m is connected. In

other words assume StabBr|m|(g) ∼= π1(CHurCG,m,g). Alternatively, fixing a surface C (up

to isomorphism) corresponding to g as described in the previous section, StabBrm(g) ∼=

π1(CHurCG,m, [C]).

Moving away from combinatorial arguments back to topology, recall from Section

2.2.3 that π1(CHurCG,m, C) ⊂ Brm can be identified with mapping classes fixing the

surjection P1(C) → G specified by φg. By a universal lifting lemma [24], every such

mapping class lifts to a mapping class of C preserving the specified basepoint x ∈ C
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and this lift is unique.

This gives rise to the monodromy action

π1(CHurCG,m, [C])→ Homeo+(C,x).

We are primarily concerned with the induced action on homology,

π1(CHurCG,m, [C])→ GL(H1(C,Z)).

or on cohomology

π1(CHurCG,m, [C])→ GL(H1(C,Z)).

We will return to this monodromy action in the next chapter.

Remark. In this chapter we have taken a very topological approach to constructing

the monodromy representation. One can also construct Hurwitz varieties as moduli

spaces (with a variety structure) of (G, C,m) covers. In the case when G is center-free

the resulting variety is a fine moduli space for (G, C,m) covers. In this case, CHurCG,m

admits a cover by a universal curve where the fiber over a point [C] ∈ CHurCG,m is the

curve C. The monodromy action of this family is more akin to the monodromy action

defined in the introduction however it will agree with the monodromy action presented

in this section. We refer the reader to [36] for more information.

2.4 Connectedness Results

We finish this chapter with a description of results about connected components of

Hurwitz Spaces. As has been explained above,in general CHurCG,m does not need to be

connected and the connected components of CHurCG,m correspond to orbits of Br|m| on

Em(G). In particular, if the action is transitive then CHurCG,m is connected.
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Computing the number of connected components of Hurwitz spaces CHurCG,m is a

well studied problem with roots in work Clebsch, Lüroth and Hurwitz [26]. In the case

of G = Sn and C = (C1) where C1 is the conjugacy class of transpositions, they showed

that ChurCSn,n was connected for any choice of n. Conway and Parke in an appendix of

a paper by Fried and Völklein ([19]) show that CHurCG,m is connected in the case when

the Schur Multiplier H2(G,Z) is trivial, C = (G−{e}) and n is chosen sufficiently large.

In [17], Ellenberg, Venkatesh and Westerland give a method to compute the con-

nected components of CHurCG,m. This is a previously unpublished result of Fried. Given

a choice of C as above, x ∈ ∪Ci and y ∈ G such that x, y commute, define the universal

commutator 〈x, y〉 ∈ H2(G,Z) as the image of the map φ∗ : H2(Z2,Z) → H2(G,Z)

induced by the map φ : Z2 → G : (m,n) → xmyn. Define H2(G, C) to be the quotient

of H2(G,Z)/QC where QC is the subgroup generated by all such universal commutators.

Then [17] proves

Theorem 2.4.1 (Ellenberg-Venkatesh-Westerland, Fried). For minimi sufficiently large,

there is a bijection

π0(CHurCG,m)→ H2(G, C).

In the case of the symmetric group, the quotient above is trivial (the Schur multiplier

is generated by commutators) recovering the results mentioned above. In general if

H2(G,Z) is trivial, we can expect CHurCG,m to be connected. The theorem gives an

effective way to compute the number of components of CHurCG,m by finding appropriate

quotients of Schur multipliers.
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Chapter 3

The Algebra of Monodromy

In this chapter we present several of the algebraic tools that will be needed for the proof

of Theorem 5.4.2. This includes an explicit computation of the symplectic centralizer of

a symplectic representation, a discussion on transitive subgroups of linear groups, and

a characterization of certain subgroups of products of linear groups.

Many of the group theoretic ideas (though not the exact results) in the second section

have been used in various other contexts related to monodromy groups and inverse Galois

problems. We try to point our connections with the existing literature whenever possible.

This chapter is self contained and may be used as a reference for the rest of the thesis.

3.1 Centralizers of Group Actions

3.1.1 Alternating Forms

Let G be an arbitrary group and ` a prime such that ` - 2|G|. In this section and

the next, we classify the possibilities for the set of matrices that commute with an

arbritrary homogenous G-representation that also preserves a symplectic form. Let W

be an irreducible F`[G] module, equipped with a nondegenerate G-invariant form b.
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Definition 3.1.1. A nondegenerate G-invariant form b is an ε-form if

b(x, y) = εb(y, x),

where ε = ±1. In the case where ε = 1, we say b is symmetric and when ε = −1, b is

alternating.

Let the space of G-invariant bilinear forms be denoted by BilG and the space of

ε-forms be denoted by BilGε . Hence, BilG1 = (Sym2W )G and similarly BilG−1 = (Alt2W )G.

Since W is irreducible, Schur’s lemma implies that EndG(W ) is a division ring over

F` and hence a finite field. Let D := EndG(W ) and so we can view W as a vector space

D. Define d := [D : F`], so that D is a degree d extension of F`, D ∼= F`d .

Denote the map from W → W∨ that sends x ∈ W to b(x, ·) by b̃. There is an

adjoint involution on EndF`(W ) induced by b, namely for any A ∈ EndF`(W ), we define

ib(A) ∈ EndF`(W ) to be the endomorphism satisfying

b(Ax, y) = b(x, ib(A)y).

for all x, y ∈ W. We also define the symplectic group of isometries of b,

Sp(W, b) = {A ∈ GL(W ) : b(Ax,Ay) = b(x, y) for all x, y ∈ W}.

Notice that A ∈ Sp(W, b) is equivalent to ib(A) = A−1. If A∨ : W∨ → W∨ is the map

between duals induced by W we can explicitly compute

ib(A) = b̃−1 ◦ A∨ ◦ b̃.

Lemma 3.1.2. The involution ib preserves EndG(W ).
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Proof. Let A ∈ EndG(W ) so that Ag = gA for all g ∈ G. Then taking the adjoint of

both sides we see that ib(g)ib(A) = ib(A)ib(g) but since b is G-invariant, ib(g) = g−1.

This implies that ib(A) commutes with the action of G giving the result.

Lemma 3.1.3. Let the fixed field of ib on D be denoted K. There is a bijection K ∼= BilGε

and in particular, BilGε −{0} is a torsor for K∗. Given h in BilG there is a d ∈ EndG(W )

such that

b(·, ·) = h(d·, ·).

In addition, h ∈ BilGε , iff d ∈ K.

Proof. We begin by providing a bijection from K to BilGε . Given k ∈ K, consider the

non-degenerate form bk = b(k·, ·). This is an ε-form since

b(ky, x) = εb(x, ky)

= εb(ib(k)x, y)

= εb(kx, y).

Since k commutes with G, bk is also G-equivariant. This defines a map of F` vector

spaces, φ : K → BilGε given by φ(k) = bk. Since b is non-degenerate, this map is

necessarily injective.

Let h be another ε-form. Notice that b̃−1 ◦ h̃ : W → W is a G-invariant map, so

b̃−1 ◦ h̃ = d for some d ∈ EndG(W ). This implies that h(·, ·) = b(d·, ·). A computation

similar to the above shows that d ∈ K, implying the surjectivity of φ.

Two forms h, g ∈ BilG are considered G-equivalent if there is a d ∈ EndG(W ) such

that g(x, y) = h(dx, dy) = h(ih(d)dx, y).
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Lemma 3.1.4. One of the following two possibilities must occur.

• ib acts trivially on EndG(W ), BilG ∼= BilGε and there are two classes of G-invariant

bilinear forms up to G-equivalence.

• ib acts nontrivially on EndG(W ), BilG = (Sym2W )G ⊕ (Alt2W )G and there is a

unique class of bilinear epsilon forms up to G-equivalence.

Proof. First, assume that ib acts trivially on D. Then D = K and every G-invariant

bilinear form is an ε-form by lemma 2.2. Any form equivalent to b must be of the form

b(d2·, ·), with d ∈ EndG(W ). Since D is a finite field, [D∗ : (D∗)2] = 2. Hence every

G-invariant is equivalent to either b(ax, y) or b(x, y) for a a non-square in EndG(W ). So

there are two classes of non-equivalent BilG forms.

If ib acts non-trivially, then [D : K] = 2 and since dim BilGε = dimK, we see that

BilG = (Sym2W )G ⊕ (Alt2W )G where dim(Sym2W )G = dim(Alt2W )G = [D : K]/2. As

before, any form equivalent to b must be of the form b(ib(d)d·, ·). The map D → K : d→

ib(d)d is surjective since it is just the norm map. So there is a unique class of bilinear

epsilon forms up to G-equivalence.

If the first case occurs, then we say W is type 1. If the second case occurs, we say

W is type 2.

Remark 1. Note that if W is absolutely irreducible over F` if and only if EndG(W ) = F`.

In this case we must have that D = K and we must be in case 1, so either dim(Sym2W )G

or dim(Alt2W )G is one.

This theorem is related to the Frobenius-Schur theory for characterizing irreducible

real representations. A similar phenomenon happens with real representation. Indeed,
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let W be an irreducible R self-dual representation of a group G, as above,

EndGW ∼= (W ⊗W ∗)G ∼= (W ∗ ⊗W ∗) ∼= (Sym2W )G ⊗ (Alt2W )G

Furthermore, if χ is the character of the representation, then χ must be real valued, and

in particular W is isomorphic to W∨. We can consider cW = W⊗C, the complexification

of W.

Then one of the following occurs,

• EndG(W ) = R : One of Sym2W or Alt2W has dimension 1. This is analogous to

part a of the theorem.

• EndG(W ) = C : In this case, cW = V ⊕ V̄ with V 6∼= V̄ . As in lemma 3.1.4, either

dim(Sym2W )G or dim(Alt2W )G is two or dim(Sym2W )G = dim(Alt2W )G = 1.

(We can actually realize all the bilinear forms on W as the real/complex parts of

a Hermitian form on cW.)

• EndGW = Z : This case has no analogy in the finite field setting. In this case,

cW = V ⊕ V̄ with V ∼= V̄ . Either dim(Sym2W )G = 3, dim(Alt2W )G = 1 or

dim(Sym2W )G = 1, dim(Alt2W )G = 3.

3.1.2 Equivariant Witt’s Lemma

Now we work more generally, though we still assume ` - 2|G|. Let V be a homogenous

F`[G] representation with isotypic component W so there is an isomorphism (though not

a canonical isomorphism!) V ∼= W k. We also assume that V carries a non-degenerate

alternating form h. We are interested in understanding the symplectic centralizer,

CSp(V`)(G) = Sp(V, h) ∩ EndG(V ),
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the isometries of h that commute with the action of G. After choosing an isomorphism

V ∼= W k, by Schur’s lemma, we can identify EndG(V ) with Mk(D).

Note that D := EndG(W ) acts on HomG(W,V ) by precomposition, d · ψ = ψ ◦ d.

Since D is a field, this endows HomG(W,V ) with a k dimensional vector space structure

over D.

Given a G-equivariant isomorphism b : W → W∨, which is equivalent to the choice

of a G-equivariant bilinear form define a map h̃b as follows

h̃b : HomG(W,V )× HomG(W,V )→ EndG(W )

by

h̃b(ψ, τ) = b−1 ◦ τ∨ ◦ h ◦ ψ.

Lemma 3.1.5. h̃b defines a sesquilinear form on HomG(W,V ), i.e.

h̃b(dψ + τ, eβ) = dib(e)h̃b(ψ, β) + ib(e)h̃b(τ, β)

for d, e ∈ EndG(W ) and ψ, τ, β ∈ HomG(W,V ).

Proof. Let ψ, τ, β ∈ HomG(W,V ) be arbitrary maps and let d, e ∈ EndG(W ). Then

h̃b(dψ + τ, eβ) = b−1 ◦ e∨ ◦ β ◦ h̃b ◦ β ◦ (dψ + τ)

= b−1 ◦ e∨ ◦ b ◦ (b−1 ◦ τ∨ ◦ h̃b ◦ ψ ◦ d+ b−1 ◦ β∨ ◦ h̃b ◦ τ)

= dib(e)h̃b(ψ, β) + ib(e)h̃b(τ, β)

There is a map

i : EndG(V )→ EndD(HomG(W,V ))
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given by

i(A)ψ = A ◦ ψ.

This is a D equivariant map since

i(A)(d · ψ) = A ◦ d · ψ = d · A(ψ).

This map is clearly injective and I claim it is also surjective. By definition, the size of

the left hand side is |D|k2 since EndG(V ) ∼= Mk(D). The size of the right hand side is

the size of an endomorphism ring of a dimension k vector space over D which is also

|D|k2 . So every D-endomorphism of HomG(W,V ) arises as an ambient G-endomorphism

of V.

Lemma 3.1.6. Let Isom(h̃b) ⊂ EndD(HomG(W,V )) denote the isometries of the form

h̃b.

Isom(h̃b) = CSp(V,h)(G).

Proof. From the discussion above, we can identify Isom(h̃b) ⊂ EndG(V ). Now, A ∈

EndG(V ) is contained in Isom(h̃b) iff h̃b(A ◦ ψ,A ◦ τ) = h̃b(ψ, τ). By non-degeneracy of

h̃b this is true iff h−1 ◦A∨ ◦ h ◦A = id which is equivalent to A being an isometry for h,

in other words A ∈ Sp(V, h).

Being able to identify the symplectic centralizer with a group of isometries is a

powerful too to explicitly compute it. We can now prove the main theorem of this

section.

Theorem 3.1.7. 1. If (Alt2W )G = 0, k must be even, h̃b is an alternating form and

CSp(V`)(G) ∼= Sp(k,D).
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2. If (Alt2W )G 6= 0 and W is type 1, h̃b is a symmetric form and CSp(V`)(G) ∼=

O(k,D).

3. If (Alt2W )G 6= 0 and W is type 2, h̃b is a Hermitian form and CSp(V`)(G) ∼=

U(k,D).

Proof. Since h is an alternating form, note that h∨ = −h and more generally if b is an

ε-form, b∨ = εb−1. So

ib(h̃b(ψ, τ)) = b−1 ◦ (b−1ψ∨ ◦ h ◦ τ)∨ ◦ b

= b−1 ◦ τ∨ ◦ h∨ ◦ ψ ◦ (b−1)∨ ◦ b

= εb−1 ◦ τ∨ ◦ h∨ ◦ ψ

= −εh̃b(τ, ψ)

Case 1: (Alt2W )G = 0. In this case, b is necessarily a symmetric form and W is

necessarily type 1 so the previous computation implies that h̃b(τ, ψ) = ib(h̃b(ψ, τ)) =

−h̃b(ψ, τ). Hence h̃b is a non-degenerate alternating form.

Case 2: (Alt2W )G 6= 0 and W is type 1. In this case, b is necessarily an

alternating form, i.e. ε = −1, and W is is type 1. The above computation implies that

h̃b(τ, ψ) = ib(h̃b(ψ, τ)) = h̃b(ψ, τ). Hence h̃b is a non-degenerate symmetric form.

Case 3: (Alt2W )G 6= 0 and W is type 2. Since W is type 2, ib is a non-trivial

involution. Choose b to be a symmetric form, so h̃b(ψ, τ) = −ib(h̃b(τ, ψ)).

The action of CSp(V`)(G) on V , gives rise to a natural action of CSp(V`)(G) on InjG(W r, V ),

the set of G-equivariant injective homomorphisms, for any r ≤ k by post-composition.

Given such an injection f , let f ∗h be the pullback bilinear form on W , i.e. f ∗h(x, y) =

h(f(x), f(y)).
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Corollary 3.1.8 (Equivariant Witt’s Lemma). Choose r ≤ k and let f, g ∈ InjG(W r, V )

such that f ∗h = g∗h. Then, there exists A ∈ CSp(V`)(G) such that A ◦ f = g.

Proof. Let fi, gi be the restriction of f, g respectively to the i-th component of W r.

Since f ∗h = g∗h, we see that h̃b(fi, fj) = h̃b(gi, gj). This implies that the r-dimensional

subspaces of EndG(W,V ) given by 〈f1, · · · , fr〉 and 〈g1, · · · gr〉 are isometric. Hence by

the previous theorem and Witt’s lemma [6, Section 20], there exists an isometry of h̃b

such that A ◦ fi = gi. The result follows by using Lemma 2.5 to identify the isometries

of h̃b with CSp(V`)(G).

Corollary 3.1.9. The number of orbits of CSp(V`)(G) on InjG(W r, V ) is |(Alt2W r)G| for

r < n/2.

3.1.3 Symplectic centralizers of representations

In this section we again generalize. Again, let G be a group and let Irr`(G) denote the

isomorphism classes of irreducible representations of G over F` where ` - 2|G|. Denote

the associated G-module to ρ ∈ Irr`(G) by Wρ. By Schur’s lemma Dρ := EndG(Wρ) is

a finite field extension of F` so by is a finite field. Let V be a representation of G and

denote the multiplicity of Wρ in V by kρ. Then we can decompose V as

V ∼= ⊕ρ∈Irr`(G)
Vρ

where Vρ is the isotypic component for Wp so Vρ ∼= W
kρ
ρ . In addition, assume that there

is a non-degenerate G-equivariant alternating form h : V × V → F`. Our goal in this

section is to harness the results from the last section to explicitly compute CSp(V`)(G).

Since h is nondegenerate and G-invariant, it induces an G-module isomorphism from

V to V ∨. When Vρ is self dual h restricted to Vρ is non-degenerate.
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If Vρ is not self-dual i.e. Vρ 6∼= Vρ∨ , the module Vρ⊕Vρ∨ appears as a factor of V . Also

h restricted to Vρ⊕Vρ∨ is non-degenerate and Vρ, Vρ∨ are maximal isotypic subspaces of

the direct sum. This follows from the fact that for ψ ∈ Irr(G), ψ 6= ρ∨ we necessarily

have that Vψ ⊥ Vρ∨ . Indeed the map Vψ → V ∨ρ : x → h(x·, ·) is G-equivariant and so

must be zero.

When Vρ ∼= Vρ∨ we will use the notation Mρ := Vρ ⊕ Vρ∨ . Let D ⊂ Irr(G) denote the

set of self dual isotypic components. Then V decomposes as

V =
⊕
ρ∈D

Vρ ⊕
⊕

ρ∈Irr(G)−D

Mρ

Each operator commuting with G must preserve each Vρ. Pairwise orthogonality of the

isotypic components implies

CSp(V`)(G) =
∏
ρ∈D

CSp(Vρ)(G)×
∏

ρ∈Irr(G)−D

CSp(Mρ)(G)

where Sp(Vρ, h) is the subgroup of EndG(Vρ) that preserve the restriction of h to Vρ;

Sp(Mρ, h) is defined analogously.

Theorem 3.1.10.

CSp(Vρ)(G) ∼=



Sp(kρ, Dρ) (Alt2Wρ)
G = 0

O(kρ, Dρ) (Sym2Wρ)
G = 0

U(kρ, Dρ) otherwise

and

CSp(Mρ)(G) ∼= GL(kρ, Dρ)

Proof. We first compute the groups CSp(Mρ)(G). Since each element of CSp(Mρ)(G) must

necessarily preserve Vρ and Vρ∨ it must be a block diagonal matrix diag(A,B) where
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A,B are invertible and A ∈ EndG(Vρ), B ∈ EndG(Vρ∗). The requirement that this

endomorphism also preserve h is equivalent to [B] = ([A]T )−1 with respect to a basis of Vρ

and a dual basis of Vρ∨ . Recall that Dρ = EndG(Wρ) is a field, so after choosing a basis we

can identify EndG(Vρ) ∼= Matkρ(D). Under this identification CSp(Mρ)(G) ∼= GL(kρ, D).

The result now follows from Theorem 2.4.

3.2 Transitivity Results

In this section we review some of the standard properties of classical groups of Lie type.

Throughout the following, let F := F`k and let Γ(n,F) denote one of

{GL(n,F), Sp(n,F),U(n,F),O(n,F)|n ≥ 5, l ≥ 3}.

In this range of n, ` all the groups above are pairwise non-isomorphic. In the orthogonal

case, we do not distinguish between the groups O+(n,F) and O−(n,F), and all the results

we state will be true for both cases.

Here are some key properties we exploit, again with our assumption on n, `. Proofs

of all the results stated can be found in [22].

Commutators. In all cases the commutator of Γ, denoted Γ′ is perfect, i.e., [Γ′,Γ′] = Γ′.

Note that Γ/Γ′ will be a cyclic subgroup as it is a subgroup of F∗

Generation by Elements of order `. In all cases, Γ′ is generated by elements of

order `. In particular in each case Γ′ is generated by transvections. Recall that τ ∈ Γ is

a transvection if there is a hyperplane W ⊂ Fn such that tau|W = idW and τv − v ∈ W

for all v ∈ V. We explicitly describe these generating sets now.

When Γ = Sp or Γ = U, h be the form preserved by Γ, then for any v ∈ V and

a ∈ F`, τa,v(x) := x+ ah(x, v)v fixes v⊥ and is contained in Γ.
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When Γ = GL, Γ′ = SL is generated by elementary matrices, i.e. matrices with 1’s

on the diagonal and a single non-zero entry off the diagonal. Each elementary matrix

is a transvection fixing the hyperplane spanned by the columns having only a 1 on the

diagonal.

Finally, when Γ = O, Γ′ is generated by transvections known as Siegel transforma-

tions. The definition of this class of transformations is a bit involved so we refer the

reader to the discussion in [22].

Central quotients and Simplicity Define the projective group PΓ := Γ/Z(Γ). In

general, Z(Γ′) = Γ′ ∩ Z(Γ) and PΓ′ := Γ′/(Z(Γ′)) are simple. From the above, PΓ′ =

[PΓ,PΓ] and PΓ/PΓ′ is cyclic.

We also have the following lemma,

Lemma 3.2.1. Let Γ be one of the classical groups, and Γ′ the derived subgroup. Then

CPΓ(PΓ′) is trivial.

Proof. Let t̄ ∈ CPΓ(PΓ′) and t ∈ Γ be any lift of t̄. Let γ1, γ2 ∈ Γ′ be arbitrary. By

assumption, γ1tγ
−1
1 t−1 ∈ Z(Γ′). In particular,

[γ1γ2, t] = γ−1
2 [γ1, t]γ2[γ2, t]

= [γ1, t][γ2, t] ∈ Z(Γ′).

So the map γ → [γ, t] is a homomorphism Γ′ → Z(Γ′). Since Γ′ = [Γ′,Γ′] we see the

image of this map must be trivial, so in particular, [t, γ] is trivial for all t ∈ Γ′. However

such an element of Γ is necessarily contained in Z(Γ) so the result follows.

In addition to the basic properties of the classical groups mentioned above, we will

need some results on these groups as permutations groups. As a starting example of
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the type of transitivity results we employ, consider the following result dependent on

the classification of finite simple groups. Any 6 transitive permutation group must be

Sn or An. More generality, the two transitive and four transitive groups have also been

classified [9]. Analogous to the permutation group case, one can ask for a classification

of subgroups of affine groups that act singly or doubly transitively on lines, or higher di-

mensional subspaces. The Cameron and Kantor theorem [10] classifies all two-transitive

subgroups of the semi-linear groups. Hering [25] went on to classify all subgroups acting

transitively on lines. An older result, due to Perin, classifies subgroups acting transitively

on subspaces with dimensional at least three.

Theorem 3.2.2 (Perin [33, Theorem 1]).

Let n ≥ 3 and ` odd. Suppose that H ⊂ GL(n,F) acts transitively on the three dimen-

sional subspaces of GL(n,F`m). Then SL(n,F`m) ⊂ H.

The rank of a transitive permutation group is the number of orbits of the stabilizer

of a point. Each of the classical linear groups preserving a form, aka the symplectic,

orthogonal and unitary groups, are all rank 3 on the set of isotropic lines. Indeed

the orbits of the stabilizer of an isotropic line are given by the line, isotropic lines

perpendicular to the line, and isotropic lines not perpendicular to the line. In [33],

Perin characterizes such rank 3 subgroups of symplectic and unitary groups which was

later followed by a classification of such rank 3 subgroups of orthogonal groups in odd

characteristic by Kantor and Liebler [27]. The following theorem is a restatement of

their result that will be used heavily in the proof of the main monodromy result.

Theorem 3.2.3 ([33, Theorem 4], [27, Theorem 1.3]).
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Let n ≥ 5 and ` odd. Let Γ be one of U(n,F`k),O(n,F`k), or Sp(n,F`k). If H ⊂ Γ acts

as a rank 3 permutation group on isotropic lines, then Γ′ ⊂ H.

Remark 2. In their paper [29], Liebeck, Praeger and Saxl, provide (among many other

results) a generalization of the Cameron-Kantor theorem and a classification of sub-

groups of symplectic groups acting transitively on lines and hyperbolic planes in even

and odd characteristic. Abhyankar has used the Cameron-Kantor to solve carious cases

of the inverse Galois problem for classical groups. We refer the reader to their paper

[29] along with a survey paper of Abhyankar [1] for more information on these types of

transitivity results.

Theorem 3.2.4. Let V be a vector space of dimension n over F := Flf , for ` 6= 2 and

with n ≥ 5. Let Γ denote one of

Sp(n,F),U(n,F),O(n,F),GL(n,F).

For any H ⊂ Γ such that H has the same set of orbits on Inj(Fr, V ) as Γ for all

r ∈ {1, 2, 3}, we have that Γ′ ⊂ H.

Proof. If Γ = GL(V ) then by Theorem 3.2.2 and the assumption with r = 3 we see that

SL(V ) ⊂ H. If we can show that H having the same number of orbits as Γ on Inj(Fk, V )

for r = 1 and r = 2 implies that H is rank 3 on the set of isotropic lines of V then the

result then follows from Theorem 3.2.3 in all other cases.

So, assume let u, v ∈ Fn be isotropic vectors spanning independent lines and let Γ

be the underlying isometry group of some form h. The orbit of v under the stabilizer of

u in Γ, denoted Γu, are all isotropic vectors w such that h(u, v) = h(u,w) and u,w are

independent. In particular the injections from F2 → Fn that map the basis elements to
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u, v and u,w respectively are in the same orbit of Γu. Since H has the same orbits on

injections as Γ, this implies that v is in the same orbit as w.

3.3 Subgroups of Products of Groups

We will need the following theorems about subgroups of products of groups.

Lemma 3.3.1 (Goursat’s Lemma). Let G1, G2 be groups, and let H be a subgroup of

G1 × G2. Let H2 and K1 respectively be the image and kernel of the projection onto

the second factor p2 : H → G2, and likewise let H1, K2 the image and kernel of the

projection onto the first factor p1 : H → G1. Then K1 is a normal subgroup of H1, and

K2 is a normal subgroup of H2. There is an isomorphism φ : H1/K1 → H2/K2 and H

is the pullback of the graph φ under the projection H1 ×H2 → H1/K1 ×H2/K2.

The following result about below is a variant of the well-known Hall’s Lemma. Many

versions of this lemma have previously appeared in diverse settings related to monodromy

computations before including [14, Dunfield-Thurston], [34, Ribet], and [5, Allcock-Hall].

Theorem 3.3.2. Suppose that Γ1, · · · ,Γn is a set of finite non-abelian groups such that

each Γ′i := [Γi,Γi] is simple non-abelian.

Let H ⊂ Γ1 × · · · × Γn such that the projection of H onto Γi × Γj contains Γ′i × Γ′j

for all 1 ≤ i, j ≤ n. Then Γ′1 × · · ·Γ′n ⊂ H.

Proof. Let pi, pij denote the projection maps onto Γi and Γi × Γj respectively. Set

N := [H,H] and note that

N ⊂ Γ′1 × · · ·Γ′n.

It suffices to show that N = Γ′1 × · · · × Γ′n.
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First note that since Γ′i is simple non-abelian, Γ′i is perfect, i.e. [Γ′i,Γ
′
i] = Γ′i. Now

Γ′i × Γ′j = [Γ′i × Γ′j,Γ
′
i × Γ′j] ⊂ [pij(H), pij(H)] ⊂ Γ′i × Γ′j

so pij(N) = [pij(H), pij(H)] = Γ′i × Γ′j.

We now induct on n. The result is clear for n = 2. Denote the kernel of pn : N → Γn

by N1. By Goursat’s lemma, N1 is a normal subgroup of the projection of N onto

Γ′1× · · · × Γ′n−1. By the inductive hypothesis this projection is surjective. Now, because

pin(N) = Γ′i × Γ′n, we also have that Γ′i = pi(N1) for 1 ≤ i ≤ n − 1. Every normal

subgroup of a product of simple groups that surjects onto each factor is necessary the

whole product. Since each Γ′i is simple we can conclude N1 = Γ′1 × · · ·Γ′n−1. Hence by

Goursat’s lemma, N2, the kernel of the projection onto Γ′1 × · · · × Γ′n−1 must be Γ′n.

Hence we can conclude that N = Γ′1 × · · ·Γ′n.

In the case where the product consists of two different groups we can prove a sharper

result. We say that a subgroup H of a product og groups G1×G2 is diagonally embedded

if H is the graph of an isomorphism H1 → H2 with H1, H2 the projections of H to G1, G2

respectively.

Theorem 3.3.3. Suppose that Γ1 and Γ2 are groups satisfying the conditions of the

previous theorem. In addition assume CΓi(Γ
′
i) is trivial.

Let H ⊂ Γ1 × Γ2 such that the projection of H onto Γ1 contains Γ′1 and that the

projection of H onto Γ2 contains Γ′2. Then

• If Γ′1 6∼= Γ′2 then Γ′1 × Γ′2 ⊂ H.

• If Γ′1
∼= Γ′2 then either Γ′1 × Γ′2 ⊂ H or H is a diagonally embedded subgroup of

Γ1 × Γ2.
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Proof. Let H1 be the projection of H onto Γ1, H2 the projection of H onto Γ2, and N2,

N1 the respective kernels. Then by Goursat’s lemma H1/N1
∼= H2/N2. For i = 1, 2, Γ′i

is simple by assumption and so Ni ∩ Γ′i is either Γ′i or trival.

If Γ′2 ∩ N2 = Γ′2 then H2/N2 is abelian. So H1/N1 must also be abelian and since

Γ′1 ⊂ H1, Γ′1 ⊂ N1. So Γ′1 × Γ′2 ⊂ H.

Now assume N2 ∩ Γ′2 is trivial. This implies that N2 commutes with Γ′2 which by

assumption implies N2 is trivial. Hence H1/N1
∼= H2. However, since H2 is non-abelian,

Γ′1 6⊂ N1 and so N1 ∩ Γ′1 is trivial. By similar reasoning as for N2, N1 is trivial and so

we can conclude H1
∼= H2 and that H is a diagonally embedded subgroup.

If we additionally assume that Γ′1 6∼= Γ′2, then H1 and H2 will have non-isomorphic

composition factors since Γ′1,Γ
′
2 are simple. This is a contradiction. The result follows.

Finally we will need the following lemma.

Lemma 3.3.4. Let Γi for 1 ≤ i ≤ n be a collection of groups such that

• Z(Γ′i) = Z(Γi) ∩ Γ′i

• There is a subset Ui ⊂ Γ′i that generates Γ′i such that the order of every element of

Ui is a prime ` with (`, Z(Γi)) = 1 for all i.

Let Γ =
∏n

i=1 Γi, and let let ρi : Γ→ Γi be the projection map onto Γi.

Assume that H ⊂ Γ such that Γ′i ⊂ ρi(H). In addition if φ : Γ → PΓ is the natural

quotient map, then assume that
∏n

i=1 PΓ′i ⊂ φ(H). Then
∏n

i=1 Γ′i ⊂ H

Proof. Since
∏n

i=1 PΓ′i ⊂ φ(H) we see that
∏n

i=1 Γ′i ⊂ HZ(Γ). Choose an element

(t1, · · · , tn) ∈
∏n

i=1 Ui. We can find (h1, · · · , hn) ∈ H and (z1, · · · , zn) ∈
∏n

i=1 Z(Γi)
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such that

(t1, · · · , tn) = (h1z1, · · · , hnzn).

Now choose k so that k ∼= 1mod ` and |Z(Γi)||k for each i. Raising each side to the k-th

power we see that ti = hki which implies that (t1, · · · , tn) ∈ H. This gives the result.

Unfolding the previous lemma, one if its implications is that if H ⊂ GL(n,F) and

image of H in PGL(m,F) contains PSL(n,F) then SL(n,F) ⊂ H.
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Chapter 4

Explicit Dihedral Monodromy

Before providing a proof of the main theorem, Theorem 5.4.2, we first discuss a mon-

odromy computation of an explicit family of dihedral covers of P1(C). The computation

done in this chapter will give us a chance to exercise the algebraic tools appearing in

Chapter 3. The techniques in this chapter are motivated by the paper of Looijenga [30].

4.1 Introduction and Topological Construction

Take G = D5, the dihedral group of size 10 with the presentation

D5 = 〈τ, σ|τ 5 = σ2στ = τ−1σ〉.

Let C = (Cσ) where Cσ, the conjugacy class of σ, is the unique conjugacy class of

involutions. Let m = (6), so we will insist that our cover has 6 branch points. We

denote the branch points by D = {b1, b2, · · · , b6} and choose a cover of f : C → P1(C)

corresponding to a surjection.

π1(P1(C)−D,∞)→ G.

In the following, we provide a topological construction of C, describe the represen-

tation theory of G acting on H1(C,F`) and explicitly compute the Hurwitz monodromy

of C.
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By basic properties of covering maps C is an unramified cover of its quotient by

τ , denoted by C ′. In turn, C ′ is a double cover of P1(C) with the same branch locus

as C. The restriction of σ gives the hyperelliptic involution on C ′. Furthermore C ′ is

topologically constructed from C by cutting along an embedded curve, and pasting 5

different copies of C ′ together along this embedded curve. This construction is explicitly

depicted in Figure 4.1.

Figure 2: Explicit construction of a D5 cover.
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As can be seen by the above picture or a quick computation using the Riemann-

Hurwitz formula, C is a genus 6 curve and C ′ is a genus 2 hyperelliptic curve. The

action of D5 is also explicitly shown, namely τ rotates the figure counter-clockwise by

an angle of 2π/5 and σ performs a rotation around a fixed arm.

4.2 Homology of the Cover

Denote the G representation derived from the Galois action on the homology of C by

ρC : G→ GL(H1(C,Z)).

Over Z, D5 has two one dimensional representations, namely the trivial representa-

tion ρtriv and a sign representation ρsign coming from the restriction of the sign repre-

sentation when D5 is viewed as a permutation group on the vertices of a pentagon. It

also has a unique four dimensional representation on the trace 0 hyperplane of Z5. This

representation, denoted ρ4, is irreducible over Q. However, ρ4 ⊗ Q(
√

5) splits into the

sum of two two-dimensional irreducible representations, ρ2 and ρ3. Over a finite field F`,

the behavior of ρ4⊗F` depends on the splitting of ` in Q(
√

5). By quadratic reciprocity,

ρ4 ⊗ F` =


ρ4 ⊗ F` if ` = 2, 3 mod 5 the representation remains irreducible

ρ2 ⊗ F` ⊕ ρ3 ⊗ F` if ` = 1, 4 mod 5 the representation splits

By Theorem 5.2.1 we can explicitly decompose ρC in terms of the representations in

the previous paragraph, specifically,

ρC ∼= 4ρsign ⊕ ρ4 ⊕ ρ4. (4.1)
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Without invoking Theorem 5.2.1 we can explicitly compute this representation in

terms of an explicit homology basis on C. In Figure 4.2, a basis for H1(C,Z) is given by

the simple curves

α1, · · ·α5, β1, · · · , β5, δ1, δ2.

Figure 3: Homology basis for C.

The action of G on this basis is explicitly given by,

τ(αi) = αi+1 mod 5, τ(βi) = βi+1 mod 5

τ(δ1) = δ1, τ(δ2) = δ2

σ(αi) = −α1, σ(βi) = −βi

σ(δ1) = −δ1, σ(δ2) = −δ2
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Now G acts on the subspaces generated by 〈α1, · · · , α5〉 and 〈β1, · · · , β5〉 by its standard

permutation representation. Thus the sign representation in 4.2 expression is generated

by

S := 〈α1 + · · ·+ α5, β1 + · · ·+ β5, δ1, δ2〉.

Note that we can also identify S as the τ -invariants of homology, S = H1(C,Z)τ .

A basis for the subrepresentation isomorphic to ρ4 ⊕ ρ4 is given by,

W := W1 ⊕W2

where

W1 := 〈α1 − α2, α2 − α3, α3 − α4, α4 − α5〉

and

W2 := 〈β1 − β2, β2 − β3, β3 − β4, β4 − β5〉.

Note that W1
∼= W2 under the map that sends αi − αi+1 → βi − βi+1.

Hence we see that

H1(C,Z/`Z) ∼= S ⊕W1 ⊕W2. (4.2)

4.3 The Hurwitz Monodromy group

As discussed in the previous chapter, there is a monodromy action

ρ : π1(ChurCD5,(6), [C])→ Sp(H1(C,Z))).

Where π1(ChurCD5,(6), [C]) can be identified with mapping classes of P1(C) −D that fix

∞. We will denote the reduction of ρ mod ` by

ρ` : π1(ChurCD5,(6), [C])→ Sp(H1(C,Z/`Z)).
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To make the exposition easier we will ignore basepoints.

To compute the monodromy group in this case, we will demonstrate an explicit set

of generators. The image of ρ`, denoted Mρ` must be contained in CSp(H1(C,Z))(G). We

have a decomposition,

CSp(H1(C,Z))(G) = CSp(S)(G)⊕ CSp(W )(G)

where Sp(S) is the restriction of the the G-equivariant symplectic isometries to S, and

analogously for Sp(W ).

It is straight-forward to see that Alt2ρ4 = Alt2ρ2 = Alt2ρ3 = 0 and Sym2ρ4 = 2.

Hence by Theorem 3.1.10, CSp(S)(D5) = Sp(4,F`) and

CSp(W )(D5) =


Sp(2,F`2) if ` = 2, 3 mod 5

Sp(2,F`)× Sp(2,F`) if ` = 1, 4 mod 5

Of course, Sp(2,F`2) ∼= SL(2,F`2) and Sp(2,F`) ∼= SL(2,F`).

We point out a set of curves on C which are especially important. Let γi be a a

curve that wraps around the i− 1 and i+ 1 handles and goes through the center genus.

The curve γ1 is illustrated in Figure 4.3.

Now we single out three specific mapping classes of C,

• Tα which is a Dehn twist in the union of curves α1, · · · , α5.

• Tβ which is a Dehn twist in the union of curves β1, · · · , β5.

• Tγ which is a Dehn twist in the union of curves γ1, · · · , γ5.

Because of their symmetric nature, each one of these mapping classes can be seen to

commute with the action of G and in fact descends to a mapping class action of P1(C)
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Figure 4: The curve γ1 on C.

preserving ∞. Hence all three of these mapping classes lie in the image of ρ`. In the

case of Tα and Tβ, these mapping classes correspond to lifts of braids permuting branch

points in P1(C).

The action of these mapping classes on the explicit basis of W is given for Tα and

Tβ as

Tα(αi − αi+1) = αi − αi+1,

Tα(βi − βi+1) = βi − βi+1 + αi − αi+1,

Tβ(αi − αi+1) = αi − αi+1 + βi − βi+1,

Tβ(βi − βi+1) = βi − βi+1.

Since the curves γi are disjoint from the αi, it is easy to see that the restriction of Tγ to

W1 is trivial. What is a bit more surprising is that Tγ|W2 = 2− τ − τ−1.

Combining all the previous computations together, we finish this chapter with a
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theorem showing that in this specific case we have big monodromy.

Theorem 4.3.1. If ` ∼= 2, 3 mod 5, then Mρ` = CSp(H1(C,Z))(D5) = Sp(4,F`)⊕Sp(2,F`2).

Remark. From Sage[13] computations, it seems that we still have big monodromy

when ` ∼= 1, 4 mod 5.

Proof. Throughout this proof, we identify the elements ofG with their image in Sp(H1(C,F`)).

Since C ′ = C/〈τ〉 we can identify S = H1(C,Z)τ , with H1(C ′,Z). Hence, the natural

projection of Mρ` to CSp(S)(G) can be identified with the image of the monodromy action,

ChurZ/2Z,6 → Sp(H1(C ′,Z/`Z))

which is surjective by the results on the monodromy of hyperelliptic curves mentioned in

the introduction. Hence Mρ` surjects onto CSp(S)(G) under the natural projection map.

Now we compute the projection of Mρ` in CSp(S)(W ). Denote the image of this

projection by (Mρ`)W . Because ` ∼= 2, 3 mod 5, we know that dim Sym2W = dimW ⊗G

W ∗ = [EndG(W ) : F`] = 2. Clearly,

σ(τ + τ−1) = (τ + τ−1)σ

so τ + τ−1 ∈ EndG(W ). In particular [F`[τ + τ−1] : F`] = 2 so we see that EndG(W ) =

F`[τ + τ−1].

This gives an explicit way to realize the action of Tα, Tβ, and Tγ on W as matrices

in CSp(W )(G) = SL(2,F`[τ + τ−1]). We can see that they correspond to the matrices

A =

1 1

0 1

 ,B =

1 0

1 1

 ,G =

1 2− τ − τ−1

0 1

 .
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I claim that these three matrices generate SL(2,F`2). Firstly note that,

S = B−1AA−1 =

0 −1

1 0


and

AS−1 =

 1 0

2− τ − τ−1 1

 .

In particular we can conclude that (Mρ`)W contains all elementary matrices,1 0

a 1

 ,

1 a

0 1

 , a ∈ F[τ + τ−1].

It is well known that the special linear group is generated by elementary matrices these

elementary matrices so in particular, (Mρ`)W = CSp(W )(G)

Let φ : CSp(W )(G)→ CSp(W )(G)/Z(CSp(W )(G)) be the natural quotient map. By the

above φ(Mρ`) surjects onto each component of

PSp(4,F`)× PSL(2,F2
`).

and so by Theorem 3.3.3, PSp(4,F`)×PSL(2,F2
`) ⊂ φ(im ρ) since both factors are simple

groups. Hence, by Lemma 3.3.4, we can conclude that Sp(4,F`)× SL(2,F2
`) ⊂Mρ` .
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Chapter 5

Transitivity and Big Monodromy

5.1 Problem Statement

Fix a center-free group G, a tuple of conjugacy classes C = (C1, · · · , Ck) and a multidis-

criminant m = (m1, · · · ,mk). As described in Section 2.2.3, there is a topological space

CHurCG,m whose points parametrizes surfaces C of type (G, C,m). We fix such a C and

identify the point associated to C in CHurCG,m with [C]. Assume that that f : C → P1(C)

is the associated covering map and E is the ramification locus of f .

As described in section 2.3, if CHurCG,m is connected, or alternatively if H2(G,Z) is

trivial there is an associated monodromy action. We assume that H2(G,Z) = 0.

Definition 5.1.1. For ` a prime, there is an associated mod ` monodromy map

ρcG,m : π1(CHurCG,m, [C])→ GL(H1(C,Z/`Z)).

Denote the image of this representation by M`(G)

The F` vector space V` := H1(C,Z/`Z) carries a symplectic intersection form, and a

natural action of G. Since the action of the monodromy group arises through oriented

homeomorphisms of C, the elements of M`(G) must preserve the symplectic intersection

form guaranteeing that M`(G) ⊂ Sp(H1(C,Z/`Z)). In addition, since the monodromy

representation arises from lifts of homeomorphisms of P1(C) preserving f, M`(G) must



48

commute with the action of G on H1(C,Z/`Z) and so

M`(G) ⊂ CSp(V`)(G),

where CSp(V`)(G), the symplectic centralizer of G is the subgroup of Sp(V`) commuting

with the action of G.

The goal of the rest of this chapter is to prove the following big monodromy result.

Theorem (Theorem 5.4.2). For ` - 2|G| and minimi sufficiently large,

[CSp(V`)(G), CSp(V`)(G)] ⊂M`(G)

Here is a rough sketch of the proof. First we describe how V` decomposes in terms

of irreducible representations for G. Using results from Section 3.1, we will be able to

explicitly compute CSp(V`)(G). This decomposition along with the Equivariant Witt’s

Lemma allows us to explicitly compute the number of orbits of CSp(V`)(G) on the set

of G-equivariant injections from a fixed G-module W to V`. This set of injections will

naturally arise as a fiber of a cover of CHurCG,m and the number of orbits of M`(G) on

it will correspond to the connected components of a Hurwitz space. We can then apply

Theorem 2.4.1 to count the precise number of orbits. Finally we will conclude the proof

by using the transitivity results and charecterization of subgroups of products of groups

given in Section 3.2.

Throughout the rest of the chapter assume that ` - 2|G|.

5.2 Galois Action on Homology

We begin the proof of this theorem by understanding the representation theory of V` as

a G-module. Let Irr`(G) denote the set of irreducible representations of G over F`. For
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ρ ∈ Irr`(G) we let the associated G-module be Wρ.

Since ` - |G| we can decompose V` into isotypic G-representations,

V` = ⊕ρ∈Irr`(G)Vρ

where each Vρ is the isotypic component for ρ, Vρ ∼= W
kρ
ρ for some kρ. By the following

theorem this decomposition is independent of C and just depends on its type (G, C,m).

Theorem 5.2.1 ([7]). Let χ be the character of G acting on V`. Then

χ = 2χtriv + (|E| − 2)χreg −
∑
p∈E

χp

where

• χtriv is the character of the trivial G-representation, ρtriv

• χreg is the character of the regular G-representation, ρreg

• χp is the character of the representation induced from the trivial representation of

the subgroup 〈gp〉 where gp is the monodromy of a loop around the branch point p

When applying connectedness results like 2.4.1, we will need to be able to choose m

to be sufficiently large and be guaranteed that the multiplicity of ρ in V` also increases.

The following lemma guarantees this.

Lemma 5.2.2. If minimi is sufficiently large, then each nontrivial kρ can be made

arbitrarily large. In addition the trivial representation will never occur.

Proof. Let the multiplicity of an irreducible representation ρ in a representation ψ

be denoted by m(ψ, ρ). First we show that m(ρreg, ρ) is greater than or equal to
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the m(IndG〈g〉ρtriv, ρ) for g arbitrary. Treating Wρ as a module for Dρ, by the Artin-

Wedderburn theorem, the former multiplicity is dimDρWρ. Schur’s lemma implies that

the latter multiplicity is

m(IndG〈g〉ρtriv, ρ) = dim HomG(Wρ, IndG〈g〉ρtriv)/ dimF` Dρ.

Applying Frobenius Reciprocity,

dim HomG(Wρ, IndG〈g〉ρtriv) = dim HomG(ResG〈g〉ρ, ρtriv)

= dim Hom(ρtriv,ResG〈g〉ρ)

= dimF`W
〈g〉
ρ

By definition dρ(g) = ρ(g)d for all d ∈ Dρ so W
〈g〉
ρ is a Dρ submodule of Wρ and

furthermore dimF`W
〈g〉
ρ / dimF` Dρ = dimDρW

〈g〉
ρ . Hence the statement on multiplicities

follows since dimDρW
〈g〉
ρ ≤ dimDρWρ.

Now by Theorem 5.2.1 we know for ρ 6= ρtriv

(|E| − 2)m(ρreg, ρ) ≥
∑
p∈E

m(IndG〈g〉ρtriv, ρ)

and using the above computation, we can rewrite this as

∑
p∈E

(dimDρWρ − dimDρW
〈gp〉
ρ )− 2(dimDρWρ) ≥ 0.

To show that kρ grows with minmi, it suffices to show that at least one of the

dimDρWρ − dimDρW
〈gp〉
ρ > 0. This is clear since G is generated by the gρ and ρ is a

non-trivial irreducible representation.

Finally, the G-invariants V G
` , correspond to those homology classes that descend to

P1(C). Since H1(P1(C),Z/`Z) is trivial, V G
` = 0.
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Let

V =
⊕
ρ∈D

Vρ ⊕
⊕

ρ∈Irr`(G)−D

Mρ

be a decomposition of V` into irreducible G representations, where as in the notation of

3.1.3, D represents the set of self-dual irreducible representations of V`.

We have an induced decomposition of the symplectic centralizer.

CSp(V`)(G) =
∏
ρ∈D

CSp(Vρ)(G)×
∏

ρ∈Irr(G)−D

CSp(Mρ)(G) (5.1)

Theorem 3.1.10 implies that each CSp(Vρ)(G), CSp(Mρ)(G) is isomorphic to Γ(kρ, Dρ) where

Γ is one of GL, Sp,U, or O. Each CSp(Vρ)(G), CSp(Mρ)(G) can also naturally be viewed as

a group of isometries of a G-invariant form on InjG(W
kρ
ρ , Vρ).

5.3 Covers Corresponding to Subspaces

Let W be a fixed F`[G] module. Specifying an unramified cover C ′ → C with Galois

group W is equivalent to giving a surjection V` � W . Dualizing, such surjections are in

bijection with injections W∨ ↪→ V ∨` . Furthermore requiring the composition C ′ → C →

P1(C) to be Galois is the same as requiring that the action of G preserves this injection,

or alternatively the surjection. Hence, if W is a F`[G] module, the set of covers of C

with Galois group W , which are Galois over P1(C) with Galois group G nW , are in

bijection with InjG(W∨, V`), where we have composed with the isomorphism V ∨` → V`

arising from the symplectic form.

We are interested in understanding the space of all such covers. Since C ′ → C

is unramified, the branch points of the cover C ′ → P1(C) are the same as that of

C → P1(C). Let the associated surjection, f ′ : π1(P1(C) − E,∞) → G nW. Hence in
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the notation of section 2.2.3, C ′ is a cover of type (GnW, C ′,m) where C ′ is a tuple of

conjugacy classes. We now determine C ′ explicitly.

Lemma 5.3.1. Fix a conjugacy class C ⊂ G. Let k be the order of an element of c ∈ C

and let pk(x) = xk−1 + xk−2 + · · ·+ 1. Then the set of elements

{(c, w) : c ∈ C,w ∈ ker p(c)}

forms a conjugacy class of GnW and is precisely the set of elements lying over C that

have order k.

Proof. Take g ∈ G, c ∈ C,w, v ∈ W with p(c)w = 0. Then

(g, v)(c, w)(g, v)−1 = (gcg−1, v + gw − gcg−1v).

By assumption

p(gcg−1)(1− gcg−1)v = 0 and p(gcg−1)gw = gp(c)w = 0.

Now take d with gcg−1 = d and assume p(d)w′ = 0. We need to find (g, v) such

that (g, v)(c, w)(g, v)−1 = (d, w′), so by the computation above, it suffices to solve the

equation

(1− gcg′)v + gw = w′

for some v. Now this implies that (1− d)v = w′ + gw ∈ ker p(d). Since the order of d is

k which is coprime to the characterstic of F` we see that (1− d) is invertible on ker p(d).

Hence we can find such a v.

Denote such a conjugacy class corresponding to C by CW .

Lemma 5.3.2. C ′ = (C ′1, · · · , C ′k) where C ′i = (Ci)W .
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Proof. Let e ∈ Ei be a branch point and let γ ∈ π1(P1(C),∞) be a small loop around

e. Assume that f(γ) = c ∈ Ci. The composition of f ′ with the natural projection

GnW → G gives f . Hence f ′(γ) = (c, w) for some w ∈ W. Since C ′ → C is unramified,

the order of the inertia subgroup at e for C and C ′ must be the same. This implies that

the order of c and the order of (c, w) agree. This is equivalent to the condition that

p(c)w = 0.

The space of all such GnW covers with monodromy in C ′, is just CHurC
′

GnW,m. There

is a natural map τ : CHurC
′

GnW,m → CHurCG,m mapping the point representing C ′, [C ′] to

the point representing C, [C]. Since CHurC
′

GnW,m and CHurCG,m both admit étale maps

to Conf|m|(C), we see that τ is étale by the cancellation property of étale morphisms.

CHurC
′

GnW,m
τ //

��

CHurCG,m

ww

Confm(C)

By the discussion above, the fiber τ−1([C]) is identified with InjG(W∨, V`). Since τ is

étale, the associated monodromy action of π1(CHurCG,m, [C]) on τ−1([C]) agrees with the

action of M`(G) on InjG(W∨, V`). Hence the number of orbits of M`(G) on InjG(W∨, V`)

will agree with the number of orbits of M`(G) on the fiber tau−1([C]). This latter

quantity is just |π0(CHurC
′

GnW,m)|, the number of connected components of CHurC
′

GnW,m.

Lemma 5.3.3. Let W be a vector space over F` with an action of G. Then

H2(GnW ) =
(
Alt2W

)G
.

Proof. Let H2 = H2(GnW ). We will use the Hochschild-Serre Spectral sequence. The
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terms on the second page are E2
r,s = Hr(G,HsW ). We also have the filtration

0 ⊂ F0H2 ⊂ F1H2 ⊂ F2H2 = H2

with successive quotients GiH2 = FiH2/Fi−1H2 = E∞r,2−r.

Now

G2H2 = E∞2,0 = E2
2,0 = H2(G) = 0

so G2H2 = 0 and F2H2 = F1H2. For r, s > 0, by Theorem A.1.18 in [28], E∞r,s =

E2
r,s = Hr(G,Hs(W )) = 0, since Hs(W ) is a F` vector space and (`, |G|) = 1. In

particular we see that G1H2 = E∞1,1 = 0 implying that F2H2 = F1H2 = F0H2. Hence

H2 = F0H2 = E∞0,2.

Now E2
0,2 = H0(G,H2(W )) = H2(W )G. From the definition of the differential

E3
0,2 = E2

0,2/im (E2
2,1 → E2

0,2) = E2
0,2.

Furthermore after the third page, the images of all differentials are 0, so, E∞0,2 =

E3
0,2/im (E3

3,0 → E3
0,2). Clearly E3

3,0 is divisible by primes dividing |G|, and E2
0,2 has

exponent `, so E3
3,0 → E3

0,2 has image 0.

Concluding we see that

H2(GnW ) ∼= E∞0,2 = H2(W )G.

Now Theorem 6.4.c of [8] identifies H2(W ) with Alt2W. Since invariants and co-

invariants are isomorphic for F` representations of G,

H2(GnW ) ∼= (Alt2W )G.
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The final theorem of this section gives an explicit way to count the orbits of M`(G)

on InjG(W∨, V`).

Theorem 5.3.4. Let W be a F`[G] module vector such that InjG(W,V`) is nonempty.

If minimi is sufficiently large, then the number of orbits of M`(G) on InjG(W,V`) is

|(Alt2W )G|.

Proof. By the above discussion the number of orbits of M`(G) on InjG(W,V`) is given

by |π0(CHurC
′

GnW,m)|. We can combine Theorem 2.4.1 and Lemma 5.3.3 to see that

|π0(CHurC
′

GnW,m)| = (Alt2W )G/QC′ (5.2)

Hence we need to just show that QC′ , the image of the induced map

H2(Z2)→ H2(〈x, y〉) ↪→ (Alt2W )G

is trivial for every x ∈ C ′ and y commuting with x.

By lemma 5.3.1, x is necessarily of the form (g, w) with g ∈ G and w ∈ ker p(g). The

order of (g, w) is just the order of g. Hence the subgroup 〈x, y〉 is annihilated by |G|

and so is H2(〈x, y〉). Since (Alt2W )G is an `-group, H2(〈x, y〉) is also annihilated by `.

This implies that QC trivial since ` is coprime to |G|.

5.4 Proof of the Main Monodromy Theorem

We are finally in a position to give a proof of the main theorem. In the decomposi-

tion, 5.1, let M`(G)ρ denote the image of the monodromy group M`(G) projected onto

CSp(Vρ)(G).
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Lemma 5.4.1. Assume minimi is large enough. Then CSp(Vρ)(G)′ ⊂M`(G)ρ.

Proof. First consider the case when ρ ∈ D, the set of self-dual irreducible representa-

tions of G. By Theorem 5.3.4, the number of orbits of M`(G)ρ on InjG(W k
ρ , Vρ) is just

|(Alt2W k
ρ )G|. By lemma 3.1.9 the latter is just the number of orbits of CSp(Vρ)(G) on

InjG(W k
ρ , V ). The result then follows in this case by Theorem 3.2.4. If ρ ∈ Irr(G) − D

then CSp(Vρ)(G) is a general linear group. By Theorem 5.3.4 the number of orbits of

M`(G) on InjG(W 3
ρ , Vρ) is |(Alt2W 3

ρ )G|. When Wρ is not self dual, this quantity is 1.

Hence M`(G)ρ acts transitively on the three dimensional subspaces of Vρ and so by

Theorem 3.2.2 the result follows.

Using the group theoretic tools from section 3.3 we can now prove the main theorem.

Let φ : CSp(V`)(G)→ PCSp(V`)(G) be the quotient by the center described in 3.2.

Theorem 5.4.2. Let G be a group with trivial Schur multiplier and ` a prime such that

` - 2|G|. For minimi large enough, (G, C,m) has big monodromy, i.e.

CSp(V`)(G)′ =
∏
ρ∈D

CSp(Vρ)(G)′ ×
∏

ρ∈Irr(G)−D

CSp(Mρ)(G)′ ⊂M`(G)

Proof. Since minimi is being chosen large enough, the previous lemma implies that

CSp(Vρ)(G)′ ⊂ M`(G)ρ. Also, by Lemma 5.2.2 by choosing minimi large enough, we can

guarantee that each kp ≥ 5.

Now choose two non-isomorphic representations ρ, ρ′ ∈ Irr`(G). Let M`(G)ρ,ρ′ be the

image of the projection

M`(G)→ CSp(Vρ)(G)× CSp(Vρ′ )
(G).

and let φ(M`(G))ρ,ρ′ be the image of the projection,

φ(M`(G))→ PCSp(Vρ)(G)× PCSp(Vρ′ )
(G).
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I claim that PCSp(Vρ)(G)′×PCSp(Vρ′ )
(G)′ ⊂ φ(M`(G))ρ,ρ′ . By Lemma 3.2.1, Γ1 = CSp(Vρ)(G)

and Γ2 = CSp(Vρ′ )
(G) satisfy the assumptions of Theorem 3.3.3 applied to the subgroup

φ(M`(G)).

Thus there are two possible cases.

• Case 1 CSp(Vρ)(G) 6∼= CSp(Vρ′ )
(G) and PCSp(Vρ)(G)′ 6∼= PCSp(Vρ′ )

(G)′: In this case

PCSp(Vρ)(G)′ × PCSp(Vρ′ )
(G)′ ⊂ φ(M`(G))ρ,ρ′ .

• Case 2 CSp(Vρ)(G) ∼= CSp(Vρ′ )
(G) and PCSp(Vρ)(G)′ ∼= PCSp(Vρ′ )

(G): For this case,

we have to rule out φ(M`(G))ρ,ρ′ being a diagonally embedded subgroup of PCSp(Vρ)(G)×

PCSp(Vρ′ )
(G). Since ρ 6∼= ρ′, Theorem 5.3.4 implies that the number of orbits of

M`(G)ρ,ρ′ on InjG(Wρ ⊕Wρ′ , H
1(C,F`)) is given by

|(Alt2Wρ ⊕Wρ′)
G| = |(Alt2Wρ)

G||(Alt2Wρ′)
G|.

By Corollary 3.1.9 this also counts the number of orbits of CSp(Vρ)(G)⊕CSp(Vρ′ )
(G)

on InjG(Wρ ⊕Wρ′ , V`).

If φ(M`(G))ρ,ρ′ were diagonally embedded in PCSp(Vρ)(G)× PCSp(Vρ′ )
(G), it would

necessarily have more orbits on the lines of the vector space

InjG(Wρ ⊕Wρ′ , V`).

We elaborate on this now. Since CSp(Vρ)(G) ∼= CSp(Vρ′ )
(G), and since kρ, kρ′ ≥ 5,

we can set k := kρ = kρ′ , F := Dρ = Dρ′ and G := CSp(Vρ)(G) ∼= CSp(Vρ′ )
(G).

Abstractly as Fk vector spaces, InjG(Wρ, Vρ) ∼= InjG(Wρ′ , Vρ′) and we set V to be

this common vector space. Let H be the image of φ(M`(G)) in G × G identified

with CSp(Vρ)(G)× CSp(Vρ′ )
(G).
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Since PG/PG′ ∼= PCSp(Vρ)(G)/PCSp(Vρ)(G)′ is cyclic the projection of H onto each

component of PG× PG, denoted H1 and H2 respectively, are identical subgroups

of PG containing PG′. So in particular, choosing an isomorphism ψ : H1 → H2,

the elements of H are all of the form (γ, ψ(γ)) with γ ∈ H1.

Now consider the line v spanned by some (v, v) ∈ V × V. The orbit of v under H

is forced to be lines spanned by elements of the form (γv, ψ(γ)v). In particular,

no line spanned by a vector of the form (v, w) with w 6= v can be in the orbit of

v. The full orbit of G×G certainly has such an element.

We can now use Theorem 3.3.2 to establish that:

∏
ρ∈D

PCSp(Vρ)(G)′ ×
∏

ρ∈Irr(G)−D

PCSp(Mρ)(G)′ ⊂ φ(M`(G))

Finally we can conclude the result using Lemma 3.3.4.
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