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Abstract

Finite element method (FEM) is a well-established technique for numerical analysis. Mesh-
ing is a critical step in FEM and is estimated to take over 80% of the overall analysis time
for complex engineering designs. A mesh must meet several requirements; one of the
critical requirements is that all elements of the mesh must be tangle-free (convex). Tan-
gled (non-convex) elements, i.e. elements with negative Jacobian determinant, can lead
to erroneous results in the FEM. Further, generating high-quality tangle-free meshes for
complex geometries is often impossible.

Apart from mesh generation, tangled meshes can occur during mesh optimization, large
deformation simulations, mesh morphing, shape optimization, finite element simulations
involving large motion of the computational domain such as fluid flow analysis large de-
formation, metal forming, fluid-structure interaction, crash analysis, to name a few Hence
there is a need to explore analysis methods that can directly handle such tangled meshes.
Moreover, such analysis methods can simplify meshing of complex geometries.

The objective of this thesis is to extend the standard finite element formulation to
allow the use of tangled meshes. In particular, I propose and explore the applications
of Tangled Finite Element Method (TFEM). TFEM extends FEM through two concepts.
First, the ambiguity of the field in the tangled region is resolved through a careful (re-)def-
inition of the field. Second, a field compatibility constraint is imposed for all the tangled
elements. When these two are incorporated, accurate results and optimal convergence rate
can be achieved using TFEM, while requiring minimal changes to the existing FEM frame-
work. Moreover, TFEM reduces to classical FEM for untangled meshes. Three variations
of TFEM are presented: oriented-TFEM (o-TFEM), isoparametric TFEM (i-TFEM),
and accelerated isoparametric TFEM (a-TFEM). TFEM has been applied to variety of
element types such as 4-node quadrilateral, 9-node quadrilateral, 6-node triangular ele-
ments in two-dimensions and 8-node hexahedral element in three-dimensions. Moreover,
with TFEM, tangled meshes have been employed for solving 2D and 3D elliptic problems
(elastostatics, Poisson), hyperbolic (elastodynamics including damping) and eigen (free
vibration) problems with linear material behavior as well as nonlinear elasticity problems
with non-linear and near-incompressible material behavior. Numerous real-world tangled
meshes are considered to demonstrate the robustness of the method.
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Chapter 1

Introduction

Finite element method (FEM) [69, 185] is a ubiquitous choice for solving a variety of engi-

neering problems [6]. Despite its well-established mathematical principles and numerous

computer implementations, there are fundamental challenges that need to be addressed.

One such challenge is the generation of high-quality meshes for complex geometries, which

can be excessively time-consuming, accounting for over 80% of the overall analysis time

[70]. The underlying reasons are due to the stringent topological and geometric constraints

imposed on the mesh [104, 185, 149]:

1. Tangle-free: The elements must be tangle-free (convex), ensuring validity of the

finite element results.

2. Mesh Quality: The elements should be of high quality; see [85, 150] for details

on mesh quality metrics. While FEM generally favors high-quality elements, some

specific applications may benefit from low-quality elements.

3. Geometric Conformance: The mesh must accurately conform to the underlying

geometry. Higher fidelity to the actual geometry ensures more reliable and accurate

FEM results.

4. Topological Validity: The mesh must be topologically valid and well-structured.

For instance:
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(a) Hanging (spurious) nodes must not be present.

(b) Elements can only be connected to neighboring elements via their boundaries,

e.g. the vertex of one triangle cannot be attached to the edge of another.

(c) When two neighboring elements are connected at a common boundary their

respective node numberings for the boundary are opposite.

(d) Each boundary of an element must be connected to at most one other element.

5. User Inputs: : The mesh should follow user-defined inputs, such as element type,

element size, growth rate, and other relevant parameters.

Addressing these constraints during the meshing process is important to ensure accurate

and efficient solution using FEM. However, generating meshes which satisfy all the above

requirements is challenging.

The first requirement necessitates that the Jacobian determinant remains positive

throughout the mesh. In other words, tangled or negative-Jacobian elements are not

allowed. The meshes that satisfy the topology requirements but contain tangled elements

are referred to as ‘tangled meshes’.

Fig. 1.1a and Fig. 1.1b illustrate examples of tangled meshes with 4-node quadrilateral

and 8-node hexahedral elements, respectively. In these examples, the tangled elements are

highlighted in red; observe that the tangled elements are non-convex.
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78
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(b)

Figure 1.1: (a) Tangled mesh with 4-node quadrilateral elements; the mesh has been
generated using the algorithm presented in [146]. (b) Tangled mesh with 8-node hexahedral
elements; the mesh has been provided in [103]. Highlighted elements are tangled (negative
Jacobian elements).

Presently, the use of tangled meshes is strongly and unanimously rejected by the FEM

community. If a mesh contains even a single tangled element, it is considered invalid or

unacceptable for FEM. To quote [17]: “Because tangled meshes generate physically invalid

solutions, it is imperative that such meshes are untangled”. Indeed, as will be confirmed

in the subsequent section, FEM yields erroneous results on a tangled mesh.

Unfortunately, mesh generators often struggle to produce tangle-free meshes [127, 20].

In an attempt to satisfy other mesh requirements (constraints 2-5 mentioned earlier), many

mesh generators end up producing tangled meshes [159, 101, 108, 101, 48, 102, 59, 98, 81,

93, 117, 67]. The issue is particularly severe with 3D hexahedral meshes, as expressed in

[127], stating, “maintaining the inversion-free (tangle-free) property of hex-mesh poses a

great challenge”.

This thesis aims to revisit the first requirement and demonstrate that this requirement

is not necessary. In other words, a mesh containing tangled elements but fulfilling the

other validity conditions (requirements 2-5 outlined earlier) could be considered acceptable

for use in FEM, provided that appropriate modifications are made to the finite element
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formulation and implementations. By reevaluating this aspect, the research seeks to offer

insights into effectively incorporating tangled meshes into FEM simulations, potentially

easing the burden of mesh generation and enabling more practical and efficient engineering

analyses.

1.1 FEM and Tangled Elements

In this section, evidence is presented to demonstrate the current unacceptability of tangled

meshes in FEM.

Consider a thermal conduction problem over a unit square domain [0,1]2 with a ther-

mal conductivity of 1. The boundary conditions are as shown in Fig. 1.2a: the left-hand

side is set to a temperature of u = 0, a thermal flux of 1 is applied on the right-hand

side, and the top and bottom edges are insulated. The exact solution to this problem is

u(x, y) = x.

u = 0 q = 1Δu = 0

(a)

xp = 0.5 - d
p yp = 0.5 - d

(b)

Figure 1.2: (a) Domain with boundary conditions. (b) Mesh.

A simple mesh is constructed using 4 elements as shown in Fig. 1.2b. The position of

central node p is determined by the parameter d as shown in Fig. 1.2b; d = 0 indicating a

perfect mesh. In Fig. 1.3, the relative nodal error is plotted with respect to d. For d ≤ 0.3,

all the elements are convex (tangle-free), and FEM provides machine precision accuracy.

However, for d > 0.3, the element on the bottom left (shown in red in Fig. 1.3) becomes

tangled and FEM error increases by an order of 1014.
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Figure 1.3: Relative error in FEM solution with respect to d.

Not surprisingly, commercial finite element solvers display errors or warnings, and

terminate the simulation if tangled elements are encountered. For example, Fig. 1.4 illus-

trates ANSYS Mechanical (APDL) refusing to accept a 2D non-convex region as a valid

shape for the 4-node quadrilateral element.

Figure 1.4: ANSYS displays an error prohibiting the construction of non-convex element.
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1.2 Other Sources of Tangled Elements

The finite element mesh requirements extend beyond the mesh generation process. For

example, to meet element quality requirements, meshes are generally passed through a

quality optimizer. Various smoothing techniques, such as those presented in [87, 178, 1],

aim to enhance mesh quality without altering the mesh connectivity. On the other hand,

methods like edge flipping and re-parameterization, as discussed in [136, 161, 54], modify

the mesh connectivity to improve quality.

However, modifying the mesh using these techniques can inadvertently introduce tan-

gled elements into the mesh. To address this issue, there has been the development of

quality optimizers that simultaneously enhance mesh quality and untangle the mesh; see

[68, 1, 82, 178, 144, 103, 83, 105, 47] for examples of such optimizers.

In addition to mesh generation and optimization, tangled meshes frequently occur dur-

ing numerous scenarios such as mesh morphing [154], shape optimization [111], and finite

element simulations involving large motion of the computational domain, for instance,

large deformation analysis. In such situations, in spite of starting with an ideal tangle-free

mesh, the mesh can become tangled. Some of these situations are discussed next.

1.2.1 Mesh Morphing

An example where mesh tangling often occurs is during mesh morphing. The motivation

behind mesh morphing stems from the need to perform FEA over multiple similar geome-

tries; for example in design exploration of a car [145, 26]. Mesh morphing enables the

reusability of an existing mesh for analyzing structures with multiple similar geometries,

eliminating the need to generate a new mesh for each geometry [154]. This process in-

volves transforming or morphing the initial mesh to conform to the new geometry. Since

mesh generation is expensive, mesh morphing is widely employed to analyze structures

with similar geometries [77, 18, 23, 171]. An advantage of mesh morphing lies in the

one-to-one correspondence between mesh nodes before and after the morphing process,

reducing the likelihood of computational errors [154]. Fig. 1.5 depicts an example of the
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mesh morphing process. The initial domain is illustrated in Fig. 1.5a, with the initial

mesh in Fig. 1.5b. The inner boundary is now rotated in a counterclockwise direction; the

new mesh is obtained by morphing the previous mesh as illustrated in Fig. 1.5c. Observe

that some quadrilateral elements (shown in red) are tangled. Thus, mesh tangling can oc-

cur depending on the amount of morphing being performed. In addition, element quality

can be adversely affected, and may require a pass through a quality optimizer. This, as

previously stated, has its own issues with regards to tangling.

(a) (b) (c)

Figure 1.5: (a) Domain (b) Initial mesh containing Q9 elements (c) Morphed mesh.

1.2.2 Shape Optimization

Shape optimization involves determining the optimal shape of the structure by moving the

boundary [166, 62]. At every step of optimization process, the geometry changes and the

analysis model needs to be updated. Techniques such as remeshing, mesh morphing are

commonly employed to obtain the mesh corresponding to the new geometry [145, 26, 46].

However, remeshing is computationally expensive [78] and can lead to sudden variation

in the objective function, impeding smooth convergence to an optimal shape [34, 79]. On

the other hand, the use of mesh morphing for large boundary variation can create tangled

elements [28, 84, 3, 2, 31, 75]. Limiting the extent of boundary variations, while mitigat-

ing tangling issues, may constrain the allowed shape variations that would otherwise be

permitted by the shape variable [75]. Moreover, the mesh is often passed through mesh

optimizer to improve the quality which circles back to the previously described problem.



8

1.2.3 Large Deformation Simulations

Other sources of tangled meshes include FE analyses that involve large motion of the

computational domain, such as large deformation analysis [153, 91, 167], fluid flow anal-

ysis [170], metal forming [64], fluid-structure interaction [65], and crash analysis [14]. In

these applications, the finite element mesh is updated in an iterative process. In these

applications, the occurrence of tangled meshes necessitates remeshing in order to proceed.

Remeshing often leads to errors in the solution fields that are projected onto a new mesh;

the prediction and control of these errors is yet another challenge [172].

In summary, tangling is unavoidable in modern FEA. The researchers have proposed

various solutions to address this challenge, which will be discussed in the following section.

1.3 Current Solutions to Handle Tangled Meshes

The approaches to tackle tangled meshes can be divided in two main categories: (a)

strategies to eliminate/avoid tangled elements, (b) development of numerical methods

that can handle tangled elements.

1.3.1 Strategies to Avoid Tangled Meshes

Given the complexity of satisfying all the mesh requirements, certain mesh generation

methods [61, 95, 110, 148] prioritize the tangle-free requirement above the other require-

ments (2-5 mentioned earlier). However, this prioritization may lead to geometric non-

conformance, lower quality elements, and/or irregular topological structures, which are

not advisable for FEA. Despite this prioritization and employing smoothing techniques

to enhance mesh quality, generating a completely tangle-free mesh is not always feasible

[127, 55, 122].

Mesh untangling

Numerous untangling algorithms have also been developed challenges [68, 178, 156, 155,

147, 165, 142, 143, 103, 1]. However, untangling is not always guaranteed, as reported
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in multiple instances where no tangle-free solution is possible [103, 1, 178, 140]. As

emphasized in [140], “… it is probably impossible to untangle the mesh under these hard

constraints.” In fact, certain topological structures may not have an untangled mesh

solution [103, 149]. Moreover, there are no known a priori tests to determine if a mesh

can be untangled [86]. Finally, untangling can be expensive, and can pose challenges in

mapping simulation data.

Meshfree methods

Computational mechanics community has actively worked towards developing methods to

avoid meshing altogether through meshless or meshfree methods [114]. Examples of these

methods include element-free Galerkin [16, 114], partition of unity based hp-cloud [57],

generalized finite element method (GFEM) [15], to name of few.

Meshfree methods are characterized by the use of nodes without the mesh connectiv-

ity. These nodes are used to construct the function approximation (or shape functions).

Typically an easy-to-generate background mesh is created for numerical treatment. This

background mesh can be any grid that can be automatically generated, such as triangular

grid, without the need to ensure high-quality elements.

In contrast to FEM, which relies on the same mesh for both integration and function

approximation, meshfree methods decouple these aspects, allowing for a simpler back-

ground mesh.

Despite their advantages, meshfree methods do face certain challenges that limit their

widespread application. One major challenge involves numerical integration. Since the

regions of integration do not necessarily coincide with the integration mesh, controlling

the error of numerical integration becomes particularly challenging.

1.3.2 Numerical Methods for Tangled Elements

An alternative approach to address tangled elements involves developing non-traditional

FEM methods that can effectively handle such elements. An advantage of developing
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such analysis methods is that they enable mesh generators to focus on other constraints

(constraints 2-5 listed earlier), leading to improved quality elements in critical regions of

the mesh.

In the realm of computer graphics, the method of invertible finite elements [76, 157]

has been proposed to handle tangled elements. However, it is primarily focused on visual

correctness rather than accurate analysis.

In the context of finite element/finite volume methods, several approaches have been

explored to directly handle tangled elements.

Signed volume in CFD

Here, during the stiffness matrix computation in standard FEM and equivalently in the

finite volume method, the sign of Jacobian is not retained; instead, the absolute value

is employed to ensure the element volume remains positive. It was suggested in [118]

that retaining the sign of the Jacobian is sufficient to produce reasonable results over

the negative Jacobian (i.e. negative volume) elements in the context of the finite volume

method. Specifically, the author considered node-centered edge-based discretization over

triangle meshes, and showed that by explicitly accounting for signed-volume, one can

handle negative Jacobian elements, without a loss in accuracy. Additionally, it was shown

that zero and negative-volume elements can be useful for applications such as discontinuity

capturing, singularity resolutions, hanging nodes, and overset grids.

In the context of FEM, we refer this method as ‘signed FEM’ to indicate that the

sign of Jacobian is retained. It produces accurate results in certain problems such as the

thermal conduction example discussed earlier. However, it will lead to erroneous and/or

non-physical solutions in other scenarios.

To illustrate, let us consider a plane strain elasticity problem involving a long hollow

cylinder with internal radius a = 1 and external radius b = 4; as depicted in Fig. 1.6a. A

uniform pressure p = 1 is applied to the inner surface (r = a). The material properties

are specified with Poisson’s ratio ν = 0.3 and Young’s modulus E = 2.6. Due to the
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axisymmetric nature of the problem, only a quarter of the cylinder is modeled. The

analytical solution is [162]:

u = p(1 + ν)a2b2

E(b2 − a2)
(1
r
+ r(1 − 2ν)

b2
)er

A 4-node tangled quadrilateral mesh, shown in Fig. 1.6b, is constructed.

a
p

b

(a)

r = 1, θ = 0o r = 4, θ = 0o

r = 1 
θ = 90o

r = 4 
θ = 90o

(r, 
θ + Δθ) 

(r, θ) 

(r + Δr, θ) 

(r + 0.2Δr,
 θ + 0.7Δθ) 

(r + Δr, θ + Δθ) 

(b)

Figure 1.6: (a) Cross-section of the pressurized cylinder (b) Tangled mesh.

Fig. 1.7 illustrate the displacement field over the deformed mesh obtained via signed

FEM. As one can observe, erroneous results are produced with signed FEM. Therefore,

most commercial FEA solvers employ the absolute value of Jacobian, i.e., not signed

Jacobian, for the stiffness matrix computation.
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Figure 1.7: Deformed configuration for pressurized cylinder using signed FEM.

Non-traditional finite element methods for non-convex elements

Non-traditional methods which can potentially be used to handle certain non-convex el-

ements include unsymmetric finite element [138, 137], smoothed finite element (SFEM)

[96], polygonal finite element methods (PFEM) [51, 109, 33, 139], virtual element method

(VEM) [13, 53, 124, 32, 123]. These methods represent an ongoing effort in the computa-

tional mechanics community to push the boundaries of FEM and extend its capabilities

to tackle meshing issues. The method proposed in this thesis belongs to this category.

Unsymmetric FEM

Unsymmetric finite elements (referred to here as “UFEM”) are characterized by the use

of two sets of shape functions, compatibility enforcing and completeness enforcing, to

mitigate the effect of mesh distortion [138, 137, 179, 27, 183, 107]. They have been

demonstrated to handle negative Jacobian quadrilateral elements in 2D elasticity prob-

lems. However, they have not yet been applied to 3D negative Jacobian elements where

the meshing issue is more severe. Moreover, as the name suggests, they lead to asymmetric

stiffness matrices. This restricts their applicability to real-world large-scale problems due

to the limited availability of robust and efficient solvers.

Smoothed FEM (SFEM)

The SFEM is a family of methods, such as cell-based SFEM [96], node-based SFEM [40],
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edge-based SFEM [97], etc., relying on gradient smoothing technique [96, 29]. Since SFEM

does not involve parametric mapping [96], it is less sensitive to distortion of elements

and reduces the mesh generation burden. However, the process of numerical integration

involves calculating the position of the Gaussian point and the value of the shape function

on each smoothed domain surface, which makes the computational efficiency much lower

than FEM [184]. Hence, it has been applied particularly to 2D and 3D simplex meshes,

with a limited application to non-convex elements, especially in 3D [175].

Polygonal FEM (PFEM) and Virtual Element Method (VEM)

Methods such as PFEM and VEM are specifically developed for polygonal/polyhedral

meshes. However, conventional shape functions in PFEM, such as Wachspress shape

functions [50] and shape functions from the Mean Value coordinates [52], are limited to

convex elements with planar faces. Some other shape functions used in PFEM can be used

to interpolate over the non-concave element. However, the effectiveness of those shape

functions in terms of simplicity, accuracy, and/or computational cost is not as good as the

standard FEM [115]. Moreover, PFEM basis functions are non-polynomials (e.g. rational)

and thus require high order numerical quadrature rules, which will greatly increase the

computational cost [160, 19, 175]. On the other hand, VEM does not require explicit

definitions and avoids numerical integration difficulty encountered in the conventional

PFEM. The potential of these methods can be exploited further with the use of polytope

meshes.

Polyhedral Meshes

The use of polyhedral meshes provides some flexibility in mesh generation, which can be

leveraged by the use of methods such as PFEM, VEM, and nSFEM (a variation of SFEM).

However, each method has its own criteria for “good” elements, and certain meshes may

not meet these requirements, leading to reduced accuracy or even non-convergence [152,

4]. Generating suitable polyhedral meshes remains an active area of research [45, 99, 56,

7, 119]. Moreover, they may not entirely avoid tangled elements, especially in scenarios

such as large deformation simulations and mesh morphing.
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Overall, these methods attempt to partly relax one or more meshing constraints (dis-

cussed at the beginning of the chapter). For instance, the unsymmetric FEM attempts to

relax the constraints related to tangling (constraint 1) and mesh distortion (constraint 2).

Similarly, methods such as SFEM, and VEM attempt to offer flexibility in element shapes

(constraints 1 and 2) [80, 180, 25] and allow hanging nodes (constraint 4) [74, 72, 112].

These are summarized in Table 1.1.

While the non-traditional methods provide promising solutions, meshing (tangling)

challenges persist. There is a gap between the meshing requirements and meshing capa-

bilities. For instance, practical meshes generated from state-of-the-art mesh generation

algorithms, often contain ‘penetrating’ tangled elements (discussed in the next chapter),

which are not addressed by these approaches. Bridging the gap between meshing capabil-

ities and analysis requirements remains an open challenge.

Moreover, it is difficult to integrate proposed non-traditional methods with existing

FEM framework, making them less practical. There is a need for a method that can

handle tangled meshes while still leveraging the advantages of existing FEM tools.

In this thesis, I propose a new framework, namely, tangled finite element methods

(TFEM), which specifically addresses tangled elements (constraint 1) by modifying the

traditional FEM approach. It reduces to standard FEM for non-tangled meshes and

can effectively handle real-world tangled meshes. A comparison of TFEM against other

methods discussed above is presented in the Table 1.1.
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Table 1.1: Comparison of non-traditional methods for non-convex elements.

UFEM SFEM PFEM VEM TFEM

Handles penetrating elements *
Uses FEM basis functions
Reduces to std. FEM
for tangle-free meshes
Symmetric stiffness matrix

Addresses meshing constraint # (1, 2) (1, 2, 4) (1, 4) (1, 2†, 4) (1)
Handles polyhedral elements

(*Accelerated isoparametric TFEM, to be discussed, handles penetrating elements.)
(† Certain requirements must be met for ‘good’ elements; however more flexible in

comparison to the standard FEM.)

1.4 Proposed Method

The thesis proposes a family of tangled finite element methods (TFEM), to effectively

handle the meshes generated by existing mesh generators. TFEM uses the same basis

functions as standard FEM, and extends FEM through two key concepts: (1) resolving the

ambiguity of the field in the tangled region with a careful re-definition, and (2) imposing

a field compatibility constraint for all tangled elements. By incorporating these concepts,

TFEM achieves accurate results and optimal convergence rates, requiring minimal changes

to the existing FEM framework.

Three variations of TFEM are proposed: oriented TFEM (o-TFEM), isoparametric

TFEM (i-TFEM), and accelerated-isoparametric TFEM (a-TFEM). Each variation differs

in the stiffness matrix computation. Among these, a-TFEM stands out, and is the recom-

mended method, as it effectively handles real-world tangled meshes, including penetrating

elements, with minimal computational overhead. A brief comparison of the methods is

presented in Table 1.2. Each of these methods is discussed in detail in the subsequent

chapters.
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Table 1.2: Comparison of three variations of Tangled Finite Element Method.

o-TFEM i-TFEM a-TFEM
(oriented
TFEM)

(isoparametric
TFEM)

(accelerated
i-TFEM)

Publications [129] [130, 133] [131, 134, 132]
Thesis Chapter 3 4 5, 6, 7, 8

Stiffness matrix K K0 +KS +KN K̂concave
Std FEMK with
signed Jacobian

Nature of K Symmetric Symmetric Symmetric
Indefinite Positive definite Indefinite

Compatibility constraint Needed Needed Needed
Handles penetrating element
Accurate for element with:
(a) Straight edges or
planar surfaces
(b) Curved edges or
non-planar surfaces
Cause of inaccuracy Area approxima-

tion
Area approxima-
tion

N/A

Optimal convergence
Implementation Difficult Easy Easiest
Speed Slow Fast Fastest

1.5 Publications

The following journal articles (published or under review) are part of this thesis:

1. Reference [129]: Bhagyashree Prabhune, Sridhara Saketh, and Krishnan Suresh.

“Tangled finite element method for handling concave elements in quadrilateral meshes.”

International Journal for Numerical Methods in Engineering 123.7 (2022): 1576-

1605.

The article is covered in chapter 3.

2. Reference [130]: Bhagyashree Prabhune and Krishnan Suresh. “A computationally

efficient isoparametric tangled finite element method for handling inverted quadri-
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lateral and hexahedral elements.” Computer Methods in Applied Mechanics and En-

gineering405 (2023): 115897.

The article is covered in chapter 4.

3. Reference [131]: Bhagyashree Prabhune and Krishnan Suresh. “An isoparametric

tangled finite element method for handling higher-order elements with negative Ja-

cobian.” Computational Mechanics (2023): 1-18.

The article is covered in chapter 5.

4. Reference [134]: Bhagyashree Prabhune and Krishnan Suresh. “On why mesh un-

tangling may not be required.” under review, Engineering With Computers.

The article is covered in chapter 6.

5. Reference [132]: Bhagyashree Prabhune and Krishnan Suresh. “Free and Forced Vi-

bration Analysis over Meshes with Tangled (Non-Convex) Elements.” under review,

Journal of Sound and Vibrations.

The article is covered in chapter 8.

6. Reference [133]: Bhagyashree Prabhune and Krishnan Suresh. “Isoparametric Tan-

gled Finite Element Method for Nonlinear Elasticity.” in preparation, arXiv preprint

arXiv:2303.10799.

The article is covered in chapter 7.

The following journal articles were published during my Ph.D. study, but are not part

of this thesis:

7. Bhagyashree Prabhune and Krishnan Suresh. “A fast matrix-free elasto-plastic

solver for predicting residual stresses in additive manufacturing.” Computer-Aided

Design 123 (2020): 102829.

8. Tej Kumar, Saketh Sridhara, Bhagyashree Prabhune, and Krishnan Suresh. “Spec-

tral decomposition for graded multi-scale topology optimization.” Computer Methods

in Applied Mechanics and Engineering 377 (2021): 113670.
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Chapter 2

Proposed Method

It has been shown in the previous chapter that the standard FEM leads to erroneous

results for the tangled elements. In this chapter, we discuss the underlying reasons for

this and propose the basic tenets of the proposed tangled finite element method (TFEM).

2.1 Parametric Mapping for Tangled Elements

To begin with, let us consider a 4-node bilinear quadrilateral element as shown in Fig. 2.1a.

This element is located in the physical space (x, y). To facilitate the numerical integration,

the finite element method usually employs a standard parametric space (ξ, η); see Fig. 2.1b.

Let φ be the mapping from parametric space to the physical space of the element.

Given the coordinates of the four nodes (xi, yi) of a quad element, recall that the

parametric mapping is defined via the standard bilinear shape functions N i(ξ, η) [185]:

x(ξ, η) =
4

∑
i=1

N i(ξ, η)xi; y(ξ, η) =
4

∑
i=1

N i(ξ, η)yi (2.1)

For the particular concave element in Fig. 2.1a this reduces to:

x (ξ, η) = (1 + ξ)(5 − 3η)
16

; y (ξ, η) = (5 − 3ξ)(1 + η)
16

(2.2)

There are several implications of this mapping.
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Figure 2.1: (a) Physical space of the concave Q4 element. (b) Parametric space of the
concave element. Parametric space can be divided into positive and negative Jacobian
regions. Mapping of these regions to physical space results. (c) Concave element with
overlapping region.

First, note that the determinant of the Jacobian associated with this mapping is given

by:

∣J ∣ =

RRRRRRRRRRRRRRR

x,ξ y,ξ

x,η y,η

RRRRRRRRRRRRRRR

= 2 − 3ξ − 3η
32

. (2.3)

Therefore, ∣J ∣ vanishes on the line 3ξ+3η = 2, dividing the parametric space into a positive

∣J ∣ region and a negative ∣J ∣ region as illustrated in Fig. 2.1b. The positive and negative

Jacobian regions are denoted as J+ and J− respectively. Thus, the determinant of the

Jacobian changes sign within the element. Although ∣J ∣ = 0 corresponds to a straight line

in the parametric space, the corresponding curve in the physical space is quadratic (see

Fig. 2.1b and 2.1c).

Second, all points in J− map to points outside the element. For example, the point

a (ξ = 2/3, η = 2/3) in the parametric space maps to the point p (x = 5/16, y = 5/16) that

is outside the concave element as depicted in Fig. 2.1b.

Third, for every point a in the J−, there is a corresponding point b in J+ that maps to

the same physical point. As illustrated in Fig. 2.1b parametric points a (ξ = 2/3, η = 2/3)

and b (ξ = 0, η = 0) map to the same physical point p (x = 5/16, y = 5/16). Since two
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different points in the parametric space map to the same physical point, the mapping is

non-invertible. In other words, the element overlaps with itself, creating a folded region

F as illustrated in Fig. 2.1c.

Definition: Given these observations, we define a positive (negative) component

C+(C−) as the set of points in the physical space that map from J+ (J−) region of the

parametric space.

Now, consider a two-element mesh with one tangled element (E1) as shown in Fig. 2.2a.

-
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Figure 2.2: (a) 2-D domain discretized into two bilinear quads. (b) Positive and negative
∣J ∣ regions of the concave element. (c) Convex element of the mesh. (d) Final physical
space.

Observe that E1 can be expressed as the difference between the two components (see

Fig. 2.2b):

E1 = C+1 −C−1 (2.4)

Further, it can be observed from Fig. 2.2b that

C+1 ∩C−1 = C−1 (2.5)

since C−1 is the subset of C+1 . On the other hand, the convex element E2 has only the
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positive component (see Fig. 2.2c):

E2 = C+2 ; C−2 = ∅. (2.6)

Finally, since the folded region C−1 lies outside the concave element, it overlaps with

the neighboring convex element as illustrated in Fig. 2.2d. In this case, we have only

one neighboring element. But in general, the folded region can overlap with multiple

neighboring elements as illustrated in the next section.

In summary, for a concave bilinear quad element, (1) ∣J ∣ takes both positive and

negative values, (2) all points in the negative ∣J ∣ space map to points outside the physical

element, (3) the parametric mapping is non-invertible, and (4) a mathematical fold exists

in the physical space which makes the element not only self-intersect, but also intersect

with the neighboring element(s). FEM does not account for the non-invertible mapping

and the folded region and hence, provides inaccurate solutions over the tangled mesh.

2.2 Types of Tangled Elements

Next, we discuss the types of tangled (non-convex) element configurations. Since 2D

elements exhibit limited types of tangling, we consider the example of a three-dimensional

8-node hexahedral (H8) element.

Consider the tangled H8 element in the physical space (x, y, z) in Fig. 2.1a, and the

parametric mapping φ from the (ξ, η, ζ) space in Fig. 2.3b to the tangled element. Here

too, due to the non-convex nature of the element, one can show that the parametric space

can be divided into positive and negative regions, denoted by J+ and J− respectively.

The corresponding physical regions are referred to as positive (C+) and negative (C−)

components respectively; see Fig. 2.3c. Furthermore, for a point a in J− that maps to

a point p in the physical space, there is a corresponding point b in J+ that maps to the

same point p; such physical points lie outside the element. In other words, the element

folds onto itself, leading to an overlapping region, or a fold F (see Fig. 2.3c), similar to



22

the 2D example considered earlier.
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Figure 2.3: (a) Physical space of the tangled H8 element. (b) Parametric space of the
tangled element, that can be divided into positive and negative Jacobian regions. Corre-
sponding physical space with positive and negative components. (c) Tangled element with
the overlapping region.

Similar to the 2D example, here too, the negative component C− is entirely contained

within the positive component C+. As a result, the overlapping region can be expressed

as F = C+∩C− = C−. In other words, the entire J− region maps to the overlapping region,

which lies outside the physical boundary of the element.

However, in many real-world meshes, the negative component C− is not entirely con-

tained lie within the positive component C+. We refer to such elements as ‘penetrating-

tangled elements’. Figure 2.4a illustrates a penetrating element along with the correspond-

ing parametric space in Fig. 2.4b. One can show that for this element, only a part of J−

region, shown in yellow in Fig. 2.4c maps to an overlapping region within C+ that lies

outside the element, while the remainder J−, shown in red in Fig. 2.4c, maps to a region

physically within the element.



23

1

3
4

8

5

6

2

7

(a)

J - 

J + 
ξ

η

ζ

(b)

J - 

J + 

J - 

ξ

η

ζ

(c)
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Furthermore, there are cases where elements have disconnected J− regions; Fig. 2.5

illustrates one such penetrating element. However, no special treatment is needed for such

elements.
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Figure 2.5: (a) Penetrating element with disconnected J− regions, (c) its parametric space;
J− shown in yellow color.

Penetrating elements are frequently encountered in real-world meshes, and the pro-

posed TFEM formulation is capable of handling such tangled elements. The case where

J− spans the entire parametric space, i.e., a fully inverted element, is not considered in this

thesis, the method to handle such fully inverted triangular and tetrahedral elements is pro-

vided in [42, 41]. Further, the default case where J− is null corresponds to the non-tangled

case, and TFEM reduces to standard FEM. In summary, three cases are possible:

1. The Jacobian determinant is positive at all Gaussian points (non-tangled element).

2. The Jacobian determinant is negative at some of the Gaussian points, and for each

of these points, there is a corresponding point with a positive Jacobian determinant
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(non-penetrating tangled elements as in Fig. 2.3a).

3. The Jacobian determinant is negative at some of the Gaussian points, and for some

of these points, a corresponding point with a positive Jacobian determinant does not

exist (penetrating tangled elements as in Fig. 2.4c).

Finally, it is also common for the overlapping region to be shared by multiple non-

tangled elements as illustrated in Fig. 2.6. In this case, three non-tangled elements E2,

E3, and E4 intersect with the overlapping region of the tangled element E1. However,

no special treatment is needed, i.e., we only need to consider the parametric space of the

tangled element.

x

y

z

E4

E3

E2

E1

Figure 2.6: Overlapping region shared by multiple non-tangled elements.

2.3 TFEM Concept

In this section, we discuss the main concepts of TFEM to handle tangled elements. To

aid the discussion, we consider the 2D quadrilateral element depicted in Fig. 2.1a.

The main idea in TFEM is to treat the positive and negative Jacobian regions (J+ and

J−) separately since the two independent mappings

φ±∶J± → C±

are both invertible. Moreover, since a point within an element can belong to two different

parametric regions, the notion of shape functions at a physical point needs to be clarified.

We, therefore, propose the following definitions.

Definition: For a tangled element Ej , let N j(ξ) be the standard shape functions
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(i.e., bilinear Lagrange shape functions for Q4 element) defined over the parametric space.

Now, let N±
j be the restriction of N j to J±, i.e.,

N±
j (x) ∶=N j(φ−1± (x)) (2.7)

For a 4-node quadrilateral element, N+
j are the four shape functions of element Ej

evaluated at point p corresponding to the component C+j , while N−
j are the four shape

functions evaluated at point p corresponding to the component C−j .

For example, in Fig. 2.1b, N+
1(p), where p = (x = 5/16, y = 5/16), are the shape

functions of element E1 evaluated at b(ξ = 0, η = 0) whereasN−
1(p) are the shape functions

of element E1 evaluated at a(ξ = 2/3, η = 2/3).

For a non-tangled (convex) element Ej , N+
j (p) are the four shape functions of element

Ej evaluated at point p, while N−
j (p) are assumed to be zero since the component C−j

does not exist.

Definition: The corresponding displacement fields over C±j are defined as:

u±j (x) ∶=N±
j (x)ûj (2.8)

where ûj is the displacement vector for jth element.

2.3.1 Field Continuity in a Tangled Mesh

Given these definitions, we now examine the field at the re-entrant corner of the tangled

element.

First, consider a two-element mesh where both the elements are convex (tangle-free)

as shown in Fig. 2.7. When two non-tangled (convex) elements share a common node (e.g.

node 5 in Fig. 2.7), the shared node can be mapped to only one parametric point of each

element. Hence displacement continuity is automatically ensured.
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Figure 2.7: Field continuity for non-tangled element.

However, for the mesh containing a concave element as shown in Fig. 2.8, the shared

node corresponds to a total of three points in the parametric space, instead of just two.
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To elaborate, consider the re-entrant node 5 in Fig. 2.8. Node 5 corresponds to the

physical location t (x = 0.25, y = 0.25). Considering the parametric mapping for the

convex element E2, point t is mapped to point (-1, 1) in the parametric space. On the

other hand, if we consider the parametric mapping for the concave element E1, we observe

that point t corresponds to two points in the parametric space: (1, 1) and (-1/3, -1/3).

Thus, considering all three parametric points, the field at point t is:

(a) u(t) =N2(−1,1)û2

(b) u(t) =N1(1,1)û1 =N−
1(t)û1

(c) u(t) =N1(−1/3,−1/3)û1 =N+
1(t)û1

Here, (a) = (b) due to the inherent property of inter-element displacement continuity.

However, (b) = (c) is not automatically ensured. Hence additional constraint is required

to ensure field compatibility in the presence of tangled elements. The equation (b) = (c)
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can be written as,

N−
1(t)û1 =N+

1(t)û1 (2.9)

Eq. 2.9 is referred to here as the compatibility condition that must be applied for all

tangled elements in the mesh. This constraint is incorporated in the TFEM formulation

(discussed in the next chapters).

To elaborate Eq. 2.9 further, let us expand the shape function and displacement vectors

for element E1:

N1 = [N1
1 N2

1 N3
1 N4

1 ], û1 = [u1 u2 u5 u4]

Note that the subscript denotes the element number while the subscript denotes the

node number (local node number for shape functions and global node number for displace-

ments). Accordingly, Eq. (b) can be expanded as

u(t) =N−
1(t)û1 = N3+

1 (t)u5,

while Eq. (c) can be expanded as

u(t) =N+
1(t)û1 = N1+

1 (t)u1 +N2+
1 (t)u2 +N4+

1 (t)u4 +N3+
1 (t)u5.

We impose (b) = (c), resulting in

N1+
1 (t)u1 +N2+

1 (t)u2 +N4+
1 (t)u4 + (N3+

1 (t) − 1)u5 = 0 (2.10)

This constraint is imposed for every tangled element.

The concepts discussed in this chapter (piece-wise invertible mapping, resulting field

definitions, and the compatibility constraint) form the basis of TFEM formulation and will

be employed in all the three variations of TFEM, discussed in the subsequent chapters.



29

Chapter 3

Oriented Tangled Finite Element

Method

3.1 Oriented-TFEM Framework for Tangled Elements

We discuss the formulation of oriented TFEM (o-TFEM) for the Poisson problem.

3.1.1 Standard FEM Formulation

The weak form for the Poisson problem is:

Find u ∈H1
0(Ω)

∫
Ω

(∇v)⊺D (∇u)dΩ = ∫
Ω

vb dΩ (3.1)

∀v ∈H1
0(Ω)

where, Ω ⊂ Rn, n = 1,2,3 is a domain and D is a constitutive matrix. To solve the above

problem over a finite element mesh, recall that the field at any point within a mesh element

Ej is approximated using shape functions as follows:

uh(p) =N j(p)ûj (3.2)

where, N j is a sparse row vector of length equal to the total number of degrees of freedom,
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with only m non-zero entries representing the shape functions associated with the m nodes

of the element Ej . Similarly, ûj is a sparse row-vector of the same length, and the non-zero

entries are the unknown nodal degrees of freedom associated with Ej .

In the Galerkin formulation [185], this leads to:

⎡⎢⎢⎢⎢⎣
∫
Ω

⎛
⎝
∇∑

j

N j
⎞
⎠

⊺

D (∇∑
k

Nk)dΩ
⎤⎥⎥⎥⎥⎦
û = ∫

Ω

⎛
⎝∑j

N j
⎞
⎠

⊺

fdΩ (3.3)

Upon numerical integration, this yields a linear system of equations:

K0û = f0 (3.4)

where û represent unknown nodal degrees of freedom, and

K0 = ∏
Assemble

∫
Ej

∇N⊺
jD∇N jdΩ, (3.5)

f0 = ∏
Assemble

∫
Ej

N⊺
j fdΩ. (3.6)

For the tangled mesh, this formulation leads to erroneous results (shown later in the

numerical experiments).

3.1.2 o-TFEM Field Definition

As noted in the previous chapter, any point in the tangled region can be interpreted

as belonging to: (a) different parametric regions of the same element, and (b) multiple

elements. Thus, the field is ambiguous in the tangled/folded region. Hence, it is important

to resolve this ambiguity. In TFEM, the field in the tangled region is explicitly defined so

that it is no longer ambiguous.

In o-TFEM, the field at any point p is defined as the oriented sum of the field values
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from all components the point belongs to:

uh(p) ≡ ∑
j∣p∈C+j

N+
j (p)ûj − ∑

j∣p∈C−j

N−
j (p)ûj (3.7)

We refer to Eq. 3.7 as the unambiguity condition, i.e., given the nodal values, the field

is now unambiguously defined everywhere. This will be used later to derive the o-TFEM

stiffness matrix. Observe that the first term on RHS of Eq. 3.7 corresponds to C+j , and

the second to C−j . This field definition is inspired from the work of Danczyk and Suresh

[41, 42, 168].

2

34

1

5

E1

E2

p

Figure 3.1: 2-element mesh.

For the two-element mesh considered earlier (see Fig. 3.1), any point p within the

folded region belongs to three components C+1 , C−1 , and C+2 . Accordingly, the field p is

defined using Eq. 3.7 as:

uh(p) =N+
1(p)û1 −N−

1(p)û1 +N+
2(p)û2 (3.8)

In the next section, we will show that this condition, together with the compatibility

condition, captures constant strain fields.

3.1.3 Theoretical Properties of o-TFEM

Recalling that in classical FEM, the field must satisfy three conditions for convergence

[185]:

1. Continuity: The field must be continuous within the element, and across element
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boundaries.

2. Rigid body: The element must be strain free under rigid body (constant field) con-

ditions.

3. Constant strain: One must be able to reproduce constant strain conditions exactly.

We show here that these three conditions are precisely met in o-TFEM.

Continuity

To establish continuity, we consider the field at a few points belonging to different regions

of the tangled mesh in Fig. 3.2. For points such as p and o (see Fig. 3.2), that are not in

the fold, the field can be computed as in classic FEM (see Eq. 3.2):

uh(p) =N+
2(p)û2 (3.9)

uh(o) =N+
1(o)û1 (3.10)

where û2, for example, are the four nodal solutions for element E2 (after eliminating

entries with zero values). From the continuity of the shape functions, it follows that the

field is also continuous at these points.

2

34

1

5

E1

E2

q

p

r

s
t
o

Figure 3.2: Various points within tangled mesh.

On the other hand, for points such as q that belong to multiple components C+1 , C
−
1
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and C+2 , the field is computed from Eq. 3.7 as follows:

uh(q) = (N+
1(q) −N−

1(q)) û1 +N+
2(q)û2 (3.11)

Once again it is clear that the field is continuous within the fold. Next consider a point r

located on the curved edge (corresponding to ∣J ∣ = 0) of the fold. This is a special case of

Eq. 3.11 in that:

uh(r) = lim
q→r
(N+

1(q) −N−
1(q)) û1 +N+

2(q)û2 (3.12)

Recall that, since point r lies on the ∣J ∣ = 0 curve in the physical space, it maps to a unique

point in the parametric space, i.e., N+
1(r) =N−

1(r). Thus:

uh(r) =N+
2(r)û2 (3.13)

The exact same expression is obtained using Eq. 3.9 in the limit as p→ r, establishing the

continuity of the field across the curved edge of the fold.

Next, consider a point s in Fig. 3.2 on the straight edge of the fold. The field at point

s can be obtained by evaluating the expression Eq. 3.11 in the limit as q → s. By the

definition of FEM shape functions, N−
1(s) =N+

2(s). Therefore the field at point s can be

written as:

uh(s) =N+
1(s)û1 (3.14)

Once again, this is the same expression obtained from Eq. 3.10 in the limit as o → s,

establishing the continuity of the field across the straight edge of the fold. Thus the field

defined by Eq. 3.7 is continuous within a tangled mesh.

Rigid body

Now consider a special case where the field is a constant, i.e., u = c. To ensure that one

can capture such constant fields exactly, we must prove that for any point q located inside

the folded region uh(q) = c.
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From Eq. 3.11, since û1 = {c, c, c, c}⊺, û2 = {c, c, c, c}⊺, N+
1(q) = {N1+

1 (q), N2+
1 (q),

N3+
1 (q), N4+

1 (q)}, etc. we have (after eliminating entries with zero values):

uh(q) = (
4

∑
i=1

(N i+
1 (q) −N i−

1 (q) +N i+
2 (q))) c (3.15)

This can be re-grouped as:

uh(q) = (
4

∑
i=1

N i+
1 (q) −

4

∑
i=1

N i−
1 (q) +

4

∑
i=1

N i+
2 (q)) c

By the partition of unity property of shape functions, each summation equals to 1, i.e.,

uh(q) = (1 − 1 + 1)c = c

Thus the field defined by Eq. 3.7 can capture a constant field exactly.

Constant strain

Without the loss of generality, consider a constant strain field u = x. The x-coordinates of

the nodes of element E1 are denoted by x̂1 = {x1, x2, x5, x4}
⊺ and that for element E2 by

x̂2 = {x2, x3, x4, x5}
⊺. Note that here, the node numbers are denoted using superscripts

while element numbers are denoted using subscripts. Assume that field at all vertices

except the concave vertex is exactly equal to the x-coordinate at that point. From the

compatibility condition (Eq. 2.9), it immediately follows that u5 = x5. Hence, we have

û1 = x̂1 and û2 = x̂2.

Further, consider any point q inside the fold. From Eq. 3.11, we have

uh(q) = (N+
1(q) −N−

1(q)) x̂1 +N+
2(q)x̂2 (3.16)

From the isoparametric mapping of x (see Eq. 2.1), it follows that

uh(q) =N+
1(q)x̂1 −N−

1(q)x̂1 +N+
2(q)x̂2 = xq − xq + xq (3.17)
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Thus, the field at any point q is the fold is uh(q) = xq. Hence, the field defined by Eq. 3.7

along with compatibility condition (Eq. 2.9) can exactly capture a constant strain field.

3.1.4 o-TFEM Assembly

Having established the theoretical properties of o-TFEM, we will now proceed to derive

the underlying linear system of equations. In particular, to derive the stiffness matrix,

we substitute the unambiguous definition of the field defined per Eq. 3.7 in the Galerkin

formulation of Eq. 3.1 leading to:

Kθ = ∫
Ω

⎡⎢⎢⎢⎢⎣
∇∑

j

(N+
j −N−

j )
⎤⎥⎥⎥⎥⎦

⊺

D [∇∑
k

(N+
k −N

−
k)]dΩ (3.18)

Regrouping:

Kθ = ∫
Ω

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
∇∑

j

(N+
j −N−

j )
⎞
⎠

⊺

D
⎛
⎝
∇∑

j

(N+
j −N−

j )
⎞
⎠

+
⎛
⎝
∇∑

j

(N+
j −N−

j )
⎞
⎠

⊺

D
⎛
⎝
∇∑

k≠j

(N+
k −N

−
k)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
dΩ (3.19)

Further, the first term of Eq. 3.19 can be expanded as

∑
j
∫
C+j

∇N+
j
⊺
D∇N+

j dΩ +∑
j
∫
C−j

∇N−
j
⊺
D∇N−

j dΩ −

∑
j
∫

C+j ∩C
−

j

(∇N+
j
⊺
D∇N−

j +∇N−
j
⊺
D∇N+

j )dΩ (3.20)

Observe that the first term of Eq. 3.20 involves integration over C+j with integrand

containing ∇N+
j terms. Similarly, the second term of Eq. 3.20 involves integration over

C−j with integrand containing ∇N−
j terms. These two terms together form the standard

stiffness matrix K0 as discussed later in Section 3.1.5. On the other hand, the third term

of Eq. 3.20 involves integration over C+j ∩C−j , i.e., over the fold, and the integrand involves

both the terms ∇N+
j and ∇N−

j . It captures the coupling between the components of the
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same element. We refer to the third term as KS , where the superscript S alludes to

self-intersection.

Next, the second term in Eq. 3.19 captures the coupling between components of dif-

ferent elements, and can be expanded as

KN = ∑
j
∑
k≠j

⎛
⎝ ∫
C+j ∩C

+

k

∇N+
j
⊺
D∇N+

kdΩ − ∫
C−j ∩C

+

k

∇N−
j
⊺
D∇N+

kdΩ −

∫
C+j ∩C

−

k

∇N+
j
⊺
D∇N−

kdΩ + ∫
C−j ∩C

−

k

∇N−
j
⊺
D∇N−

kdΩ
⎞
⎠

whereN alludes to intersection between neighbors. Recall that C−k = ∅ for convex elements.

In such cases, the terms involving C−k vanish.

In summary, Eq. 3.18 can be written as:

Kθ =K0 +KS +KN (3.21)

where,

K0 = ∏
Assemble

⎛
⎜⎜
⎝
∫
C+j

∇N+
j
⊺
D∇N+

j dΩ + ∫
C−j

∇N−
j
⊺
D∇N−

j dΩ

⎞
⎟⎟
⎠

(3.22)

KS = ∏
Assemble

⎛
⎜⎜
⎝
− ∫
C+j ∩C

−

j

∇N+
j
⊺
D∇N−

j dΩ − ∫
C+j ∩C

−

j

∇N−
j
⊺
D∇N+

j dΩ

⎞
⎟⎟
⎠

(3.23)

KN = ∏
Assemble

⎛
⎝ ∫
C+j ∩C

+

k

∇N+
j
⊺
D∇N+

kdΩ − ∫
C−j ∩C

+

k

∇N−
j
⊺
D∇N+

kdΩ

− ∫
C+j ∩C

−

k

∇N+
j
⊺
D∇N−

kdΩ + ∫
C−j ∩C

−

k

∇N−
j
⊺
D∇N−

kdΩ
⎞
⎠

(3.24)

Similarly, substituting Eq. 3.7 on the right-hand side of the Galerkin formulation of Eq. 3.1,
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we get

f θ = ∫
Ω

⎛
⎝∑j
(N+

j −N−
j )
⎞
⎠

⊺

fdΩ = ∏
Assemble

∫
C+j

N+
j
⊺
fdΩ − ∫

C−j

N−
j
⊺
fdΩ (3.25)

Finally, the compatibility condition defined in Eq. 2.9 when imposed at the re-entrant

vertices of all the concave elements, will lead to a set constraint equations:

C⊺û = 0 (3.26)

where the number of rows in C⊺ is equal to the number of concave vertices. In summary,

in o-TFEM we must solve the following linear system of equations:

⎡⎢⎢⎢⎢⎢⎣

Kθ C

C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

û

µ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f θ

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (3.27)

Note that the matrix on the left-hand side of Eq. 3.27 is not necessarily positive definite.

Further, after solving Eq. 3.27, we obtain the unknown degrees of freedom û, along with the

Lagrange multipliers µ. The Lagrange multipliers arise due to the finite set of constraint

equations, and have no role in the field interpolation. Consequently, they are not used

further in this work.

3.1.5 Implementation

In the previous section, we considered a two-element mesh patch to explain the theory

behind o-TFEM. In this section, we discuss the implementation of o-TFEM, using a more

complex four-element patch in Fig. 3.3, where the fold overlaps with multiple neighboring

elements.
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Figure 3.3: A 4-element tangled mesh with element E1 being concave.

Geometric Processing

The first step in the implementation of o-TFEM is the detection of concave elements.

This amounts to computing and checking the four interior angles of every quad element.

Thus, in Fig. 3.3, element E1 is concave. Given a concave element Ej , the next step is

to decompose its parametric space into two parts, corresponding to the two components

C+j and C−j ; see Eq. 2.4. This decomposition can be carried out easily as follows. Let

the element be defined by vertices [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]. Given the bilinear

mapping, the Jacobian is given by

J =
⎡⎢⎢⎢⎢⎢⎣

x,ξ y,ξ

x,η y,η

⎤⎥⎥⎥⎥⎥⎦
= 1

4

⎡⎢⎢⎢⎢⎢⎣

η − 1 1 − η 1 + η −(1 + η)

ξ − 1 −(1 + ξ) 1 + ξ 1 − ξ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4

y1 y2 y3 y4

⎤⎥⎥⎥⎥⎥⎦

T

The determinant simplifies to:

∣J ∣ = det(J) = c0 + c1ξ + c2η (3.28)
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where,

c0 = [(x1 − x3) (y2 − y4) − (x2 − x4) (y1 − y3)]/8

c1 = [(x3 − x4) (y1 − y2) − (x1 − x2) (y3 − y4)] /8

c2 = [(x2 − x3) (y1 − y4) − (x1 − x4) (y2 − y3)] /8

We conclude that ∣J ∣ = 0 is a straight line in the parametric space, defined by the constants

c0, c1 and c2. Thus, the parametric space is decomposed into two parts on opposite sides

of the ∣J ∣ = 0 line.

Next, we consider all elements Ek that share the re-entrant vertex with Ej . For

example, in Fig. 3.3 three elements E2, E3 and E4 share the re-entrant vertex 9 with

element E1. Therefore, elements E2, E3 and E4 intersect with different parts of the

fold. Consider, for example, the intersection of element E4 with the fold. Observe that

boundary of the intersection is made up of three edges: two of them are straight lines

in the physical space, while the third is a curve obtained by mapping the ∣J ∣ = 0 line.

Thus for every neighboring element Ek intersecting the fold with Ej , we determine the

boundary of the intersection region. This intersection region must be triangulated for

numerical integration.

Triangulating the folded region

To triangulate the folded region, the ∣J ∣ = 0 curve has to be approximated by a finite

number of line segments. A sufficient number of segments is needed to ensure that all

quadrature points lie within the fold. To illustrate, let the ∣J ∣ = 0 curve (highlighted) be

approximated by four line segments, and the polygonal fold triangulated, as in Fig. 3.4a.

Observe that the integration points for some of the triangles lie outside the folded region,

as seen in Fig. 3.4c. This will lead to negative Jacobians and potentially, singularities,

and therefore erroneous results.
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(a) (b) (c)

Figure 3.4: Approximation of ∣J ∣ = 0 curve using four segments: (a) Triangulation of the
folded region, (b) Zoomed-in view of region of interest (c) Integration points marked which
lie outside the fold are marked with a circle.

To avoid these issues, a sufficient number of segments must be used to ensure that all

the integration points lie within the folded region. We adopt a simple iterative scheme

by doubling the number of segments until all the integration points lie within the folded

region. For example, with 128 segments, it is easy to confirm for this case that all the

integration points lie within the folded region. One may also employ an adaptive procedure

to sub-divide the segments. Note that the triangulation is used for numerical integration,

and does not contribute to the degrees of freedom in o-TFEM.

Computing KS

Now consider computing KS matrix in Eq. 3.23. KS is comprised of contributions from

all concave elements within a mesh. A typical contribution kS
j from a concave element Ej

is:

kS
j = − ∫

C+j ∩C
−

j

(∇N+
j
⊺
D∇N−

j +∇N−
j
⊺
D∇N+

j )dΩ

Given the triangulation discussed previously, we have:

kS
j = ∑

triangles

− ∫
triangle

(∇N+
j
⊺
D∇N−

j +∇N−
j
⊺
D∇N+

j )dxdy

The sub-matrices kS
j from each concave element are then assembled to form KS .
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Computing KN

Next, consider computing KN matrix in Eq. 3.24 where the superscript N refers to overlap

between neighboring elements. KN is comprised of contributions from pairs of neighboring

elements within a mesh, where one or both of the elements are concave. A typical sub-

matrix kN
jk due to an overlap of neighboring elements Ej and Ek is given by:

kN
jk = ∫

C+j ∩C
+

k

∇N+
j
⊺
D∇N+

kdΩ − ∫
C−j ∩C

+

k

∇N−
j
⊺
D∇N+

kdΩ

− ∫
C+j ∩C

−

k

∇N+
j
⊺
D∇N−

kdΩ + ∫
C−j ∩C

−

k

∇N−
j
⊺
D∇N−

kdΩ

Observe that not all terms need to be considered depending on the concavity of the two

elements. For example, if element Ek is convex, then the third and fourth term can be

disregarded since C−k does not exist.

Computing K0

We will now consider computing K0 in Eq. 3.22, where K0 is comprised of contributions

from all elements within a mesh. A typical contribution k0
j from element Ej is given by:

k0
j = ∫

C−j

∇N−
j
⊺
D∇N−

j dΩ + ∫
C+j

∇N+
j
⊺
D∇N+

j dΩ

If C−j = ∅, this reduces to standard numerical integration over the parametric space. On

the other hand, when C−j ≠ ∅, we must exploit the triangulation of the fold C−j and C+j as

discussed earlier, and illustrated again in Fig. 3.5a.

The triangulation for C+j consists of two parts: the triangulation over the fold, and the

triangulation over the non-folded region as in Fig. 3.5b. Note that these two triangulations

need not be conforming since they are used primarily for integration.
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(a) (b)

Figure 3.5: Triangulation of the (a) C−j region and (b) C+j region.

Computing f θ

Finally, the forcing term f θ is computed similar to classical FEM with two modifications

– integration takes place over each component, accounting for the orientation of the com-

ponent. The latter is accomplished by subtracting the contribution from the negatively

oriented component C−j before assembling.

f θ = ∏
Assemble

∫
C+j

N+
j
⊺
fdΩ − ∫

C−j

N−
j
⊺
fdΩ

Similar to K0 computation, the integration over C+j and C−j regions can be performed by

employing the triangulation in Fig. 3.5.

3.2 Numerical Experiments

In this section, we demonstrate o-TFEM by solving the Poisson problem and static linear

elasticity (plane stress) problem over various tangled meshes. Numerical experiments are

conducted under the following conditions:

• The implementation is in MATLAB R2020b, on a standard Windows 10 desktop

with Intel(R) Core(TM) i9-9820X CPU running at 3.3 GHz with 16 GB memory.

• The number of quadrature points for convex quadrilateral elements is 16.
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• Triangulation of the folded region is performed by employing MATLAB’s inbuilt

mesher - generateMesh. The number of quadrature points for triangles is 4.

The questions being investigated through the experiments are:

• Accuracy: How does the accuracy of o-TFEM compare against that of the FEM?

Does the accuracy of o-TFEM and FEM depend on the extent of tangling? To

measure accuracy, we consider the L2 and/or energy errors; the L2 error is defined

as:

∣∣u − uh∣∣L2(Ω) =
¿
ÁÁÀ∫

Ω

(u − uh)2 dΩ (3.29)

and the energy norm is defined as:

∣∣eh∣∣E(Ω) = ∣∣u − uh∣∣E(Ω) =
¿
ÁÁÀ∫

Ω

(∇u −∇uh)⊺ (∇u −∇uh)dΩ (3.30)

where u and uh are the exact and computed solutions respectively.

• Condition Number: The condition number is a measure of how close a matrix is

to being singular [66]; it is desirable to have a condition number close to unity. We

employ MATLAB’s built-in function condest to compute the condition number.

• Convergence: Here we investigate if o-TFEM converges as the element size is

decreased.

• Computational Cost: Finally, we investigate the computational overhead of o-

TFEM for a sample problem.

3.2.1 Patch Test: Two Element Mesh

In the first experiment, we consider a square domain Ω ∈ (0,1)2. It is divided into two

quads, one of which is concave as in Fig. 3.6. In this case, the folded region is shared by

a single neighboring element. To vary the extent of tangling, the position of vertex 5 is

defined as in Fig. 3.6, where d ∈ (0,0.5). Larger the value of d, greater is the extent of

tangling.
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1(0,0) 

4 (0,1) 

2 (1,0) 

5 (0.5 - d,  0.5 - d)

 3 (1,1) 

Figure 3.6: Two element tangled mesh.

Laplace problem

First, the Laplace problem is solved over the tangled mesh. The field u = x is considered

as the exact solution; the corresponding Dirichlet boundary condition is applied on the

left edge, and the Neumann conditions on the remaining three edges.

Fig. 3.7 illustrates the L2 errors in FEM and o-TFEM, for varying extent of tangling.

As one can observe, o-TFEM leads to machine precision accuracy for all the values of d,

while FEM is erroneous.

For d = 0.5, the quadrilateral element becomes degenerate (zero-area). Even in this

case, o-TFEM provides accurate results while FEM gives invalid results. Finally, for d = 0,

both elements are convex; o-TFEM reduces to FEM, and machine precision accuracy is

obtained.
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Figure 3.7: Comparison of o-TFEM and FEM for two-element mesh for Poisson problem:
(a) L2 error vs. d, (b) condition number vs. d.

Plane stress elasticity

As a second test, plane stress elastostatics problem is solved with Young’s modulus E = 1,

Poisson’s ratio ν = 0.3. Consider two random linear displacement fields:

u(x, y) = 0.549x + 0.264y + 0.34, v(x, y) = 0.486x + 0.351y − 0.62.

The boundary conditions corresponding to the above fields were applied on the square

geometry as in the previous example, i.e., Dirichlet boundary conditions on the left edge,

and Neumann (traction) boundary conditions on the remaining edges. Fig. 3.8a compares

L2 error norm for o-TFEM and FEM. As with the previous example, o-TFEM achieves

machine precision accuracy while classic FEM fails for the tangled mesh.
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Figure 3.8: Comparison of o-TFEM and FEM for two-element mesh for plane stress prob-
lem: (a) L2 error vs. d, (b) condition number vs. d.

3.2.2 Patch Test: Four Element Mesh

Next, we consider a square domain Ω ∈ (0,1)2 which is discretized into 4 quadrilateral

elements, one of which is concave as in Fig. 3.9. The folded region is shared by three

neighboring convex elements. To introduce asymmetry, we move vertex 9 along an arc of

a circle as illustrated, where α varies from 15○ to 75○, and radius r = 0.125
√
2.

9

1(0,0) 5(0.5,0) 2(1,0)

6(1,0.5)

3(1,1)7(0.5,1)4(0, 1)

8(0,0.5)

 (r cos α,  r sin α)

Figure 3.9: Tangled mesh with four elements.

Laplace problem

To validate o-TFEM, the Laplace problem is solved over the tangled mesh. Consider a

linear field u = 0.579x + 0.246y − 0.374 as the exact solution. The corresponding Dirichlet

condition is imposed on the left edge, while the Neumann conditions are imposed on the
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remaining three edges. Fig. 3.10a illustrates the L2 errors in FEM and o-TFEM, while

Fig. 3.10b compares the condition numbers.
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Figure 3.10: Comparison of o-TFEM and FEM for four-element mesh for Laplace equation:
(a) Error vs. α (b) Condition number vs. α

Plane stress elasticity

Next, the plane stress elastostatics problem is solved with random displacement fields,

elastic constants, and boundary conditions as in the two-element example considered ear-

lier. Fig. 3.11 compares L2 error norm and condition number of o-TFEM and FEM. As

with the previous example, o-TFEM achieves machine precision accuracy while classic

FEM fails for the tangled mesh.
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Figure 3.11: Comparison of o-TFEM and FEM for four-element mesh for the plane stress
problem: (a) Error vs. α (b) Condition number vs. α

3.2.3 Convergence Test

While the previous experiments confirmed that o-TFEM satisfies various patch tests, we

now investigate the convergence of o-TFEM when the exact solution lies outside the span

of the finite element space. We consider an example from [158] where the Poisson problem

is considered with boundary conditions and a heat source are such that the exact solution

is u = (1 − x2)(1 − y2). The domain is a unit square with Dirichlet boundary conditions.

Various meshes are constructed by using the two-element mesh (see Fig. 3.6) with d = 0.4 as

the basic repeating unit. Fig. 3.12 illustrates a few sample meshes used for the convergence

study; the basic units are scaled to conform to the unit square domain.

h = 0.5, Number of DOFs = 13 h = 0.25, Number of DOFs = 41  h = 0.125, Number of DOFs = 145

Figure 3.12: Meshes used for convergence study.

The L2 and energy norm errors for FEM and o-TFEM, as a function of mesh size

(h), are illustrated in Fig. 3.13a. The convergence rates for the o-TFEM L2 and energy
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norm errors are 2 and 1 respectively which is consistent with expectations for second-order

elliptic PDEs with linearly complete approximations [158]. Note that the results may differ

as the quality of quadrilaterals changes. Fig. 3.13b shows an increase in condition number

for both FEM and o-TFEM as the mesh size is reduced; this is to be expected.

- 0 . 5 - 1 . 0 - 1 . 5 - 2 . 0 - 2 . 5 - 3 . 0
- 8

- 7

- 6

- 5

- 4

- 3

- 2

- 1

log
 (E

rro
r n

orm
)

l o g  ( h )

o - T F E M  ( 2 ,  L 2 )  

o - T F E M  ( 1 . 0 3 ,  E n e r g y )  

F E M  ( E n e r g y )  

F E M  ( L 2 )  

(a)

- 0 . 5 - 1 . 0 - 1 . 5 - 2 . 0 - 2 . 5 - 3 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Co
ndi

tio
n N

um
ber

l o g  ( h )

 F E M
 o - T F E M

(b)

Figure 3.13: L2 and energy norms errors as a function of mesh size h for the meshes in
Fig. 3.12. (b) Condition number vs. h

3.2.4 Application: Mesh Morphing

(0,0) (1,0)

(1,1)(0,1)

(a) (b)

Figure 3.14: Mesh morphing application: (a) Domain with a void, and (b) initial quad
mesh.

To illustrate potential applications, we consider mesh morphing with tangling. Mesh

morphing is essentially a mesh update where the topology is maintained while the mesh
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nodes are re-located according to a specified rule [154]. It enables rapid simulation of

geometric configurations. As an example, consider a domain with a ‘plus’ shaped void at

the center as in Fig. 3.14a, with the initial mesh as in Fig. 3.14b.

The inner void is now rotated in a counterclockwise direction by an angle β, and the

mesh is morphed as follows. Nodes except the outer boundary nodes are rotated about

the center such that the angle of rotation exponentially increases from 0○ to β as nodes get

closer to the void. Fig. 3.15 illustrates the morphed mesh for β = 70○. Observe that some

of the quads (shown in red) are concave, i.e., the mesh is tangled. In our experiment, the

angle β was varied from 0○ to 89○. If β is increased further (90○ ≤ β ≤ 97○), some of the

concave elements become too thin, significantly increasing the computational cost. For

β > 97○, the elements get twisted, and such twisted elements are not considered here.

Figure 3.15: A tangled morphed mesh.

We carry out two experiments, both solving the Poisson problem, for this example.

First, we apply Dirichlet boundary conditions corresponding to u(x, y) = 0.579x+0.246y−

0.374 over the entire boundary, with f(x, y) = 0. The L2 errors for various values of

β are illustrated in Fig 3.16a. For β < 60○, i.e., when there is no tangling, both FEM

and o-TFEM are able to capture the field exactly. However, for β > 50○, FEM error

grows rapidly, while o-TFEM error remains close to machine precision. The two condition

numbers are illustrated (see Fig. 3.16b).

Next, we set f(x, y) = 1 and zero Dirichlet condition is applied on the entire boundary.
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Figure 3.16: Comparison of o-TFEM and FEM for four-element mesh: (a) L2 error vs. β,
(b) condition number vs. β.

Fig. 3.17 illustrates the post-processed results for β = 0○, 40○, and 70○.
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Figure 3.17: Post-processed solution using o-TFEM for β = (a) 0○, (b) 40○, and (c) 70○.

3.2.5 Real-world Tangled Mesh: Aircraft Model

We now consider an example where tangling occurs in practice. The mesh in Fig. 3.18a

was generated using the quad mesher proposed in [146]; it can be observed that one quad

element (among a total of around 600 elements) is concave, and the folded region is shared

by two neighboring elements. Here we solve a Poisson problem with f(x, y) = 10, with the

boundary conditions in Fig. 3.18a. Since this problem has no analytical solution, it was
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first solved using a very fine quadrilateral mesh with over 14000 elements, and the resulting

field was used as the reference solution. The problem was then solved over the tangled

quad mesh using FEM and o-TFEM. At the re-entrant vertex, the relative error in the o-

TFEM solution was 0.55% while the FEM error was 4.24%. The o-TFEM post-processed

solution is illustrated in Fig. 3.18b.

(a)

400

300

200

100

0

(b)

Figure 3.18: (a) Mesh for an aircraft model, with one concave element.(b) o-TFEM solution
to a Poisson problem.

FEM took 0.37 seconds to solve the problem (albeit incorrectly), while o-TFEM re-

quires around 1.4 seconds (post-processing was not included in either case). The o-TFEM

time can potentially be reduced by: (1) by developing more efficient integration techniques,

(2) reducing the number of triangles in the non-fold region, and (3) parallelization.

3.3 Summary

In this chapter, we established the central tenets of o-TFEM: field unambiguity condition

and compatibility constraint. We demonstrated that the o-TFEM field satisfies three con-

ditions required for convergence: (a) continuity within and across the element boundary,

as well as, the field exactly captures (b) rigid body and (c) constant strain conditions.

TFEM can be considered as an extension of FEM since it reduces to the standard FEM

for untangled meshes.
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We demonstrated that o-TFEM passes the numerical patch test and provides an opti-

mal convergence rate. Applications of o-TFEM in mesh morphing and a tangled aircraft

model have been explored.

3.3.1 Limitations

The major drawback of the o-TFEM formulation is that one must integrate over the fold

to compute the correction terms. For example, in Eq. 3.21, KS term is given by

KS = − ∫
C+1 ∩C

−

1

∇N+
1
⊺
D∇N−

1dΩ.

This entails integration over C+1 ∩C−1 , i.e., over the tangled region. This makes o-TFEM

cumbersome to implement and computationally expensive. Moreover, care must be taken

to avoid integration points very close to the ∣J ∣ = 0 curve [129].
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Chapter 4

Isoparametric Tangled Finite

Element Method

4.1 Isoparametric TFEM (i-TFEM) Formulation

In this chapter, an isoparametric TFEM (i-TFEM) formulation is proposed that eliminates

some of the drawbacks of the oriented-TFEM discussed in the previous chapter.

4.1.1 Field Definition in i-TFEM

2

34

1

5

E1

E2

p

t

Figure 4.1: Two-element tangled mesh.

For the two-element mesh in Fig. 4.1, let the coordinates of the nodes of element E1

be denoted by x̂1 = (x1,x2,x5,x4) and, for E2, by x̂2 = (x2,x3,x4,x5). In isoparametric

mapping, recall that the spatial interpolation is the same as the field interpolation. Thus,
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for any point p inside the fold, by definition, xp =N+
1(p)x̂1 =N−

1(p)x̂1.

Further, since the formulation must reproduce a constant strain field, when u = x, i.e.,

uh(p) =N+
1(p)û1 =N−

1(p)û1. (4.1)

In other words, in an isoparametric formulation, the field value at any point within the

fold must be the same independent of whether the positive or negative shape functions

are used. This is an important result that we exploit to simplify the formulation.

As p → t (see Fig. 4.1), we have N−
1(t)û1 = u5; therefore, Eq. 4.1 can be rewritten in

the form:

uh(p) = N1+
1 (p)u1 +N2+

1 (p)u2 +N4+
1 (p)u4 +N3+

1 (p)u5 = u5. (4.2)

Note that superscript and subscript indicate the node number and element number re-

spectively. Observe that Eq. 4.2 is exactly the compatibility condition (Eq. 2.10). Thus,

Eq. 4.1 is a generalization of the compatibility condition.

Now recall that the field at p within a fold is defined in o-TFEM to be (see Eq. 3.8)

uh(p) =N+
1(p)û1 −N−

1(p)û1 +N+
2(p)û2. (4.3)

Simplifying, we have:

uh(p) =N+
2(p)û2. (4.4)

Thus, in an isoparametric element, the field at any point in the fold is simply the field

defined by considering only the neighboring element E2. Therefore, in i-TFEM, one can

treat the fold as being part of the element E2. Consequently, the mesh can be divided just

into two parts: E2 and Ê1 as shown in Fig. 4.2. The contribution of E2 to the stiffness

matrix is given by the standard expression (the superscript ‘+’ is dropped henceforth from

the shape functions for brevity):

k0
2 = ∫

E2

(∇N2
⊺D∇N2)dΩ. (4.5)
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This is the same as classical FEM, and standard Gauss quadrature schemes can be adopted.

Next, consider the contribution of Ê1 to the stiffness matrix. Note that the field in Ê1 is

given by:

uh(p) =N+
1(p)û1. (4.6)

Therefore the stiffness matrix is given by (the superscript ‘+’ is dropped henceforth from

the shape functions for brevity):

k̂1 = ∫
Ê1

(∇N1
⊺D∇N1)dΩ. (4.7)
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(b)
(c)

E1
= +

Figure 4.2: Parts contributing to the field definition.

Observe that Ê1 is not the same as E1. Though both have the same physical boundary,

they represent different regions of parametric space. Specifically, E1 represents the entire

parametric space while Ê1 represents only a subset of the positive ∣J ∣ region as illustrated

in Fig. 4.3a. Hence standard Gauss quadrature scheme for quadrilateral elements cannot

be used to evaluate k̂1. Instead, we triangulate the concave region as in Fig. 4.3b for

integration purposes; the integration is discussed in detail in the next subsection. More-

over, note that Ê1 corresponds to the invertible subset of the parametric space of the

concave element. Thus, in i-TFEM, we only integrate over the fully invertible region of

the parametric space.
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Figure 4.3: (a) Parametric space. (b) Triangulation of Ê1

4.1.2 Computing k̂

A mesh may contain several concave elements; a typical contribution of the element stiff-

ness matrix k̂ due to a concave element Ê is given by:

k̂ = ∫
Ê

(∇N⊺D∇N)dΩ.

To evaluate the above expression, the above region Ê is triangulated as illustrated in

Fig. 4.4, i.e.,:

k̂ = ∑
triangles

∫
triangle

(∇N⊺D∇N)dxdy.

Then each triangle t is mapped to a standard triangle in (γ, ζ) space (see Fig. 4.4). Let

∣J t∣ be the Jacobian associated with this triangle mapping. Thus, we have:

k̂ = ∑
t

1

∫
0

1−γ

∫
0

(∇N⊺D∇N) ∣J t∣dγdζ.
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Figure 4.4: Numerical integration scheme based on triangulation of the concave element.

Consider a quadrature point (γq, ζq) of the standard triangle with weight wq as shown

in Fig. 4.4. The corresponding point (xq, yq) in the physical space is shown in Fig. 4.4.

Let (ξq, ηq) be the coordinates in the quadrilateral parametric space. This point is numer-

ically determined via Newton-Raphson algorithm. We compute the Jacobian matrix (Jq)

associated with the quadrilateral parametric mapping at these quadrature points. Let

Bq = (Jq)−1∇ξηN(ξq, ηq). (4.8)

Summing the contribution from all triangles results in:

k̂ = ∑
t
∑
q

(Bq)⊺D (Bq) ∣J t∣wq. (4.9)

Similarly, the forcing term f̂ can be computed by integrating over Ê.

4.1.3 Global Assembly

One can now assemble the individual global stiffness matrices as follows:

K0
convex = ∏

Assemble−convex

k0
j , (4.10)
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K̂concave = ∏
Assemble−concave

k̂j . (4.11)

The final global stiffness matrix for i-TFEM is then given by:

Kiso =K0
convex + K̂concave. (4.12)

Similarly the forcing term is given by:

f iso = f0
convex + f̂ concave (4.13)

where,

f0
convex = ∏

Assemble−convex

f0
j (4.14)

and

f̂ concave = ∏
Assemble−concave

f̂ j . (4.15)

Finally, we solve the following linear system of equations:

⎡⎢⎢⎢⎢⎢⎣

Kiso C

C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

û

µ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f iso

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (4.16)

where the compatibility matrix C remains unchanged.

Observe that if the mesh does not contain any concave elements, only the terms corre-

sponding to the convex elements i.e. K0
convex and f0

convex, remain. Thus, i-TFEM reduces

to the standard FEM for meshes without concave elements.

4.1.4 i-TFEM versus o-TFEM

The main difference between o-TFEM and i-TFEM is the following. In o-TFEM, one

must integrate over the tangled region and over the concave region illustrated in Fig. 4.5a

(see Fig. 3.5 in Section 3.1.5). However, in i-TFEM, we only need to integrate over the

concave region (see Fig. 4.5b).
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(a) (b)

Figure 4.5: (a) o-TFEM involves integrating over the tangled region and concave region.
(b) i-TFEM involves integrating only over the concave region.

In o-TFEM, to integrate over the fold, it is triangulated as shown in Fig. 4.5a. Further,

in order to triangulate the fold, ∣J ∣ = 0 curve is approximated with a sufficiently large

number of segments. To illustrate, let the ∣J ∣ = 0 curve (highlighted) be approximated by

four line segments, and the polygonal fold triangulated, as in Fig. 4.5a. Observe that the

integration points for some of the triangles lie outside the folded region. This will lead to

singularities and therefore erroneous results. Hence, sufficiently large number of segments

are employed to approximate ∣J ∣ = 0 curve leading to a large number of triangles. Thus,

integrating over the fold is computationally expensive and programmatically complex.

On the other hand, in i-TFEM, a small number of triangles can be employed to inte-

grate over Êj as shown in Fig. 4.5b, making i-TFEM computationally more efficient. This

is demonstrated in Section 4.

4.2 Numerical Experiments

In this section, we demonstrate i-TFEM using numerical experiments. Elastostatics prob-

lems are solved over various tangled meshes. Numerical experiments are conducted under

the following conditions:

• The implementation is in MATLAB R2021b, on a standard Windows 10 desktop

with Intel(R) Core(TM) i9-9820X CPU running at 3.3 GHz with 16 GB memory.

• The number of quadrature points for convex quadrilateral elements is 4, while 8
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quadrature points are used for convex hexahedral elements unless otherwise stated.

• In 2D, the triangulation of a concave element is performed by employing MATLAB’s

inbuilt mesher - generateMesh. The number of quadrature points for triangles is

3. In 3D, tetrahedralization of concave elements is performed using Tetgen [63].

The bounding surfaces are triangulated using generateMesh, and serve as input to

Tetgen. The surface mesh-size is set to a relative size of ht = 0.05, where ht is

defined as the maximum allowable edge length of a surface triangle. The number of

quadrature points for tetrahedrons is chosen to be 4.

The questions being investigated through the experiments are:

• Accuracy: How does the accuracy of i-TFEM compare against that of the FEM?

Note that o-TFEM accuracy will match that of i-TFEM (but will be more expensive).

To measure accuracy, we consider both the L2 error norm as defined in Eq. 3.29,

and the energy error norm defined as:

∣∣eh∣∣E(Ω) =
¿
ÁÁÀ∫

Ω

(ε − εh)⊺D (ε − εh)dΩ (4.17)

where ε and εh are the exact and computed strain fields respectively.

• Condition Number: How does the condition number of i-TFEM compare against

FEM and o-TFEM? The condition number is a measure of a matrix’s invertibility

[66]; it is desirable to have a condition number close to unity. To compute the 1-norm

condition number, we employ MATLAB’s built-in function condest.

• Computational Cost: Is i-TFEM computationally more efficient than o-TFEM?

MATLAB’s built-in cputime function is employed to measure the computational

cost.

• Convergence: What is the convergence rate of i-TFEM and FEM as the element

size decreases?
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4.2.1 2D Patch Tests

Two element mesh

In the first experiment, we solve the elastostatics problem with linear exact solution dis-

cussed in Section 3.2.1 using i-TFEM. The mesh employed for the problem is provided

here for the sake of completeness.

1(0,0) 

4 (0,1) 

2 (1,0) 

5 (0.5 - d,  0.5 - d)

 3 (1,1) 

Figure 4.6: Two element mesh with implicit tangling.

Fig. 4.7a compares the L2 errors in FEM and i-TFEM, for varying degrees of tangling.

i-TFEM achieves machine precision accuracy while classic FEM fails when the mesh gets

tangled (o-TFEM will match the accuracy of i-TFEM but is harder to implement). On the

other hand, the condition number of i-TFEM is lower than that of o-TFEM as illustrated

in Fig. 4.7b. This is because, in i-TFEM, we avoid integration over the regions close of

∣J ∣ = 0 curve. The CPU time for FEM is 0.0111 seconds whereas, it is 0.0225s and 0.6120s

for i-TFEM and o-TFEM respectively.



63

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

1 0 - 1 5

1 0 - 1 0

1 0 - 5

1 0 0
  E

rro
r in

 L 2
 no

rm

d

 F E M    i - T F E M  

(a)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0  F E M
 i - T F E M
 g - T F E M

Co
ndi

tio
n N

um
ber

d
(b)

Figure 4.7: Comparison of i-TFEM and FEM for two-element mesh: (a) L2 error vs. d,
(b) condition number vs. d. Here, the legend ‘g-TFEM’ is ‘o-TFEM’.

Four element mesh

Next, we solve the same elastostatics problem as above over the 4-element mesh as con-

sidered in Section 3.2.2 using i-TFEM. The domain and mesh is described here again.

We consider a square domain Ω = (0,1) × (0,1) which is discretized into four quadri-

lateral elements, one of which is concave as in Fig. 4.8. The folded region is shared by

three neighboring convex elements. To introduce asymmetry, we move vertex 9 along an

arc of a circle as illustrated, where α varies from 15○ to 75○, and radius r = 0.125
√
2.

9

1(0,0) 5(0.5,0) 2(1,0)

6(1,0.5)

3(1,1)7(0.5,1)4(0, 1)

8(0,0.5)

 (r cos α,  r sin α)

Figure 4.8: Tangled mesh with four elements; one of the elements is concave.

Fig. 4.9a illustrates the L2 errors in FEM and i-TFEM, while Fig. 4.9b compares the

condition numbers. As with the previous example, i-TFEM achieves machine precision

accuracy while classic FEM fails. In terms of the condition number, i-TFEM again fares
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better than FEM and o-TFEM as illustrated in Fig. 4.9b. Finally, FEM requires 0.0180s

while i-TFEM and o-TFEM require 0.0237 and 2.2424s receptively. Thus, i-TFEM out-

performs o-TFEM in terms of speed and condition number.
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Figure 4.9: Comparison of i-TFEM and FEM for four-element mesh: (a) Error vs. α (b)
Condition number vs. α.

4.2.2 Cantilever Beam with Parabolic Loading

Consider a cantilever beam of length L = 48m, height H = 12m, and a unit thickness

subjected to a parabolic traction P = 1000N on the right edge; see Fig 4.10a. Assuming

plane stress, the analytical solution is given by [162]:

u1 =
Py

6EI
[(6L − 3x)x + (2 + ν)(y2 − H2

4
)]

u2 = −
P

6EI
[(L − x)3νy2 + (4 + 5ν) H

2x

4
+ (3L − x)x2]

where I =H3/12, E = 3 × 107 kPa and ν = 0.3.
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L
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(b)

Figure 4.10: (a) Cantilever with parabolic loading and (b) mesh with concave elements.

To solve this problem using finite elements, the domain is discretized to form a tan-

gled mesh as shown in Fig. 4.10b and the boundary conditions are applied as shown in

Fig. 4.10a. Here, the basic repeating unit is a 2-element mesh (Fig. 4.6) with d = 0.4.

To evaluate the performance of FEM and i-TFEM, the error in the vertical displace-

ment measured along y = 0 is plotted in Fig. 4.11; while Fig. 4.12 compares the stresses

obtained using FEM and i-TFEM. Here, the stresses are measured at the element center

along x = 23.05. We observe that i-TFEM is more accurate than FEM, even when the

exact solutions lie outside the span of the finite element space.
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Figure 4.11: Error in u2.
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Figure 4.12: (a) σxx and (b) τxy

Convergence

To study the convergence for the cantilever beam problem, various meshes are constructed

as shown in Fig. 4.13. The basic repeating unit is the two-element mesh (see Fig. 4.6)

with d = 0.4.

(a) (b)

(c) (d)

Figure 4.13: Sample meshes for convergence study with number of nodes equal to (a) 43
(b) 88 (c) 149 (d) 319.

The L2 and energy norm errors for FEM and i-TFEM, as a function of the number

of nodes, are illustrated in Fig. 4.14. For i-TFEM, the L2 and energy norm convergence

rates are 2.03 and 1.03 respectively, i.e., they are optimal.
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Figure 4.14: (a) L2 and (b) energy norms errors as a function of the number of nodes for
cantilever problem.

Effect of element distortion

In the previous experiments, the extent of tangling was fixed with d = 0.4. In this exper-

iment, we study the effect of tangling on the computed solutions by varying d from 0 to

0.49. In particular, we compute σxx at the point B (located at the bottom left corner of

the cantilever) and the vertical displacement u2 at point C (located on the right edge);

see Fig. 4.10a.

When d = 0, all quadrilaterals reduce to triangles and error is due to element distortion;

i-TFEM reduces to FEM in this case. As d is increased, tangling increases and FEM error

increases. On the other hand, i-TFEM error (mainly due to distortion) decreases as d

increases, as illustrated in Fig. 4.15a and Fig. 4.15b.
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Figure 4.15: (a) σxx at point B and (b) u2 at point C.

4.2.3 Pressurized Cylinder

Consider a long hollow cylinder with internal radius a = 1 and external radius b = 4; see

Fig. 4.16a. A uniform pressure p = 1 is applied to the inner surface (r = a) and the cylinder

deforms in plane strain. Let Poisson’s ratio, ν = 0.3 and Young’s modulus, E = 2.6. Due

to the axisymmetric nature of the problem, only a quarter of the cylinder is modeled. The

analytical solution is as follows [162]:

u = p(1 + ν)a2b2

E(b2 − a2)
(1
r
+ r(1 − 2ν)

b2
)er

A typical mesh, shown in Fig. 4.16b, is constructed by using the two-element mesh as the

basic repeating unit.
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Figure 4.16: (a) Cross-section of the pressurized cylinder (b) A typical mesh with concave
elements.

To study the convergence behavior, various meshes are constructed as shown in Fig. 4.17.

(a) (b) (c)

Figure 4.17: Sample meshes for convergence study. Number of nodes and the number of
concave elements are (a) 77, 32 (b) 163, 72 (c) 281, 128 respectively.

Fig. 4.18a confirms that i-TFEM leads to an optimal convergence rate as opposed to

FEM. Next, we compare the CPU time for FEM, i-TFEM, and o-TFEM for various mesh

sizes. Fig. 4.18b shows that i-TFEM is much faster compared to the o-TFEM. FEM is

the fastest, but inaccurate. Note that for the meshes considered for this study (Fig. 4.17),

there are equal number of concave and convex elements. However, in practical scenarios,

this is rarely the case since the number of concave elements will be much smaller compared

to the convex elements [103, 178]. Therefore, the additional cost incurred by i-TFEM will

be minimal.
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Figure 4.18: (a) L2 error norm as a function of number of nodes and (b) CPU time as a
function of number of concave elements in mesh for pressurized cylinder problem.

4.3 Summary

In this chapter, an isoparametric tangled finite element method (i-TFEM) is presented to

handle such inverted elements, specifically, inverted quadrilateral and hexahedral elements.

i-TFEM exploits special properties of isoparametric elements to render the implementation

simpler and computationally efficient. Compared to the standard isoparametric FEM, i-

TFEM has the following features.

1. The proposed i-TFEM framework replaces the full-invertibility requirement of the

standard FEM with piece-wise invertibility by (a) modifying the elemental stiffness

matrices corresponding to the concave elements and (b) incorporating the compati-

bility condition.

2. i-TFEM reduces to the standard FEM for untangled meshes and can be easily

adapted within existing FEM solvers.

3. i-TFEM passes the patch test and its convergence rate is found to be optimal even

in the presence of severely tangled elements.
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The accuracy and effectiveness of i-TFEM have been demonstrated through several 2D

and 3D examples.

4.3.1 Limitations

We now consider the implementation of the i-TFEM framework in 3D. Consider a canonical

8-node hexahedral element in Fig. 4.19a. If node 6 is moved diagonally towards node 4,

as shown in Fig. 4.19b, it can become concave, i.e., tangled.

1

2

3

78

5

4 6

(a)

1

2

34

6

78

5

(b)

Figure 4.19: (a) Regular (untangled) hex element. (b) Tangled hex element.

Different views of the corresponding tangled region are shown in Fig. 4.20. Observe

that the tangled region is much more complex in 3D. Since i-TFEM avoids integration

over such complex tangled regions, it has a pronounced advantage over o-TFEM in 3D.

Figure 4.20: The boundary of the tangled (negative ∣J ∣) region.

The standard elemental stiffness matrices for convex 3D elements k0
j are computed as

in 2D. For a concave element, the stiffness matrix k̂j is computed by tetrahedralizing the

region Êj as shown in Fig. 4.21. The contribution of each tetrahedron to k̂j is computed

by generalizing the procedure discussed in Section 4.1.2.
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Figure 4.21: Different views of tetrahedralized concave element.

However, unlike in 2D, Êj is not a polyhedron. In general, the bounding surfaces are

non-planar since there are four points that define each surface. Thus, they need to be

approximated using triangulation. Finer surface triangulation results in better approxi-

mation as illustrated next.

Consider a cubic domain Ω = (0,2)×(0,2)×(0,2). The domain is discretized into eight

hexahedral elements as shown in Fig. 4.22a. For the regular (untangled) mesh, the central

node is located at (1,1,1). In order to demonstrate i-TFEM, the central node is moved so

that one element becomes concave as shown in Fig. 4.22b. Note that the concave element

has only one re-entrant vertex. To vary the extent of tangling, the position of the central

node is given as: (1,1,1) − d × (1,0.95,0.98) where the parameter d ∈ (0,0.9). For d = 0,

the mesh is the regular grid as shown in Fig. 4.22a.

central
 node

(a) (b)

Figure 4.22: Eight-element (a) regular grid (b) tangled mesh with a concave hex element.
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The material parameters are E = 1, and ν = 0.3. Let the exact displacement field u be

u1 = 0.579x + 0.246y + 0.482z − 0.374, u2 = 0.486x + 0.351y + 0.947z − 0.62,

u3 = 0.512x + 0.746y + 0.548z − 0.48

The corresponding Dirichlet boundary conditions are applied on the left surface, while

Neumann conditions are applied on the remaining surfaces.

As shown in Fig. 4.23a, i-TFEM is significantly more accurate than FEM. Recall that

the accuracy of i-TFEM in 3D depends on how well the bounding surfaces of the concave

element are approximated via surface triangulations. To study the effect of surface-mesh

size on the i-TFEM accuracy, we consider three mesh sizes: ht = 0.035,0.007, and 0.005.

Here, ht indicates the maximum edge length of triangles. Finer surface triangulation

results in better accuracy of i-TFEM solution as illustrated in Fig. 4.23a. For ht = 0.005,

i-TFEM is 1010 times more accurate than FEM. Fig. 4.23b compares the condition number

for FEM and i-TFEM (for all values of ht).
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Figure 4.23: Comparison of i-TFEM and FEM for eight-element hex mesh: (a) L2 error
vs. d, (b) condition number vs. d.

Moreover, the current framework cannot directly handle penetrating elements such as

the one shown in Fig. 4.24.
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Figure 4.24: (a) Penetrating hexahedral element.

Such elements commonly occur in the practical meshes. For instance, some of the

elements in the tangled mesh shown in Fig. 4.25 are penetrating.

Figure 4.25: (a) Connecting rod mesh [103]; elements in red color are inverted. Some of
the elements are penetrating.

To summarize, major limitations of the method are: (1) since error can be introduced

due to element triangulation, accuracy can be affected. (2) penetrating elements cannot

be handled.
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Chapter 5

Accelerated Isoparametric TFEM

5.1 Accelerated i-TFEM Formulation

In this chapter, an accelerated isoparametric TFEM (a-TFEM) formulation is proposed

that eliminates the drawbacks of the earlier formulations (namely, o-TFEM and i-TFEM).

The proposed a-TFEM has particular advantage in handling elements with curved edges/non-

planar faces. Here, we discuss the formulation of a-TFEM using the higher order 9-node

quadrilateral (Q9) element. The formulation is further extended for the 6-node triangular

elements.

5.1.1 Proposed Method

Consider the two-element mesh shown in Fig. 5.1a (the central nodes for the two Q9

elements are not shown to avoid clutter). The positive and negative components of the

tangled element E1 are shown in Fig. 5.1b. On the other hand, the non-tangled element

E2 has only one positive component (see Fig. 5.1c): E2 = C+2 while C−2 = ∅. Further, the

fold F1 illustrated in Fig. 5.1d overlaps with E2 as well.
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Figure 5.1: (a) 2-D domain discretized into two 9-node quadrilateral elements (central
nodes are not shown to avoid clutter). (b) Positive and negative components of the
tangled element. (c) Non-tangled element of the mesh. (d) Fold overlaps with neighbor.

Since any point x in the fold belongs to three components C+1 , C−1 , and C+2 , one can

define three fields u+1 (x), u−1 (x) and u+2(x). To resolve this ambiguity and to ensure field

continuity, a piecewise compatibility constraint is enforced over the fold [130]:

u+1(x) − u−1(x) = 0, ∀x ∈ F1. (5.1)

Introducing the notation [[⋅]] = (⋅)+ − (⋅)−, the above constraint can be written as:

[[u1]] = 0, in F1. (5.2)

We will now consider solving the Poisson problem over the two-element mesh. Recall

that the standard potential energy for the Poisson problem is given by:

Π = ∫
E1

(1
2
(∇u1)⊺D (∇u1) − u1b)dΩ + ∫

E2

(1
2
(∇u2)⊺D (∇u2) − u2b)dΩ − ∑

j∈1,2
∫

∂Eq
j

ujqdS

(5.3)

whereD is the material constitutive matrix, b is the source term, and q is the boundary flux
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over the boundary ∂Eq
j . We will assume that the field u satisfies the Dirichlet boundary

condition uj = udj over the boundary ∂Ed
j . The above formulation (used in standard FEM)

leads to erroneous results over the tangled mesh (later demonstrated in Section 5). On

the other hand, in a-TFEM, positive and negative components are handled separately.

To motivate the concept, observe that the total area of the two-element mesh is given

by:

A = (A+1 −A−1) +A+2 (5.4)

where,

A+1 = ∫
C+1

dΩ, A−1 = ∫
C−1

dΩ, and A+2 = ∫
C+2

dΩ. (5.5)

Observe that all the areas A+1 , A−1 , and A+2 are positive in value, but the area of the

negative component is subtracted from the area of the positive component.

In the same vein, we propose a modified energy functional where the positive and neg-

ative components are treated separately and the contribution of the negative component

is subtracted. Moreover, the compatibility constraint (Eq. 5.2) is incorporated as follows:

Π̃ = ∫
C+1

(1
2
(∇u+1)

⊺
D (∇u+1) − u+1b)dΩ − ∫

C−1

(1
2
(∇u−1)

⊺
D (∇u−1) − u−1b)dΩ

+∫
C+2

(1
2
(∇u+2)

⊺
D (∇u+2) − u+2b)dΩ − ∑

j∈1,2
∫

∂Eq
j

ujqdS + ∫
F1

λ1 [[u1]]dΩ. (5.6)

Observe that: (1) the first three terms involve integration over the components C+1 , C−1 ,

and C+2 respectively, (2) the contribution from the component C−1 is subtracted since it is

a negative component, (3) the fourth term is the standard boundary flux and, (4) the last

term incorporates the compatibility constraint over the folds F1 via Lagrange multiplier

field λ1 (the use of Lagrange multipliers to impose constraints is common in several finite

element formulations [44, 126, 164, 49, 120, 5]).

The potential energy (Eq. 5.6) can be easily generalized for a mesh containing M

elements, identified by the set I = {1, . . . ,M}. Each element Ej has an associated positive
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C+j component (and a negative component C−j if the element is tangled). The tangled

elements are identified by the index Itangled. The energy functional can therefore be written

as:

Π̃ = ∑
j∈I
∫
C+j

(1
2
(∇u+j )

⊺
D (∇u+j ) − u+j b)dΩ − ∑

j∈Itangled
∫
C−j

(1
2
(∇u−j )

⊺
D (∇u−j ) − u−j b)dΩ

−∑
j∈I
∫

∂Eq
j

ujqdS + ∑
j∈Itangled

∫
Fj

λj [[uj]]dΩ. (5.7)

5.1.2 Weak Form

Taking the variation with respect to the two fields u and λ, we arrive at the following

weak form:

Find u ∈H1 and λ ∈ L2 such that

a(δu, u) + b(δu, λ) = f(δu), ∀δu ∈H1
0 (5.8a)

b(δλ, u) = 0, ∀δλ ∈ L2 (5.8b)

where,

a(δu, u) = ∑
j∈I
∫
C+j

(∇δu+j )
⊺
D∇u+j dΩ − ∑

j∈Itangled
∫
C−j

(∇δu−j )
⊺
D∇u−j dΩ

b(δu, λ) = ∑
j∈Itangled

∫
Fj

[[δuj]]λj dΩ (5.9)

f(δu) = ∑
j∈I
∫
C+j

δu+j bdΩ − ∑
j∈Itangled

∫
C−j

δu−j bdΩ +∑
j∈I
∫

∂Eq
j

δujqdS. (5.10)

We now approximate the primary field u and the Lagrange multiplier field λ as follows:

uj ≈N jûj , λj ≈Nλλ̂. (5.11)
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Adopting a (Bubnov-) Galerkin method leads to the following system of equations:

⎡⎢⎢⎢⎢⎢⎣

K C

C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

û

λ̂

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(5.12)

where the stiffness matrix is given by:

K =∏
j∈I
∫
C+j

(∇N+
j
⊺
D∇N+

j )dΩ − ∏
j∈Itangled

∫
C−j

(∇N−
j
⊺
D∇N−

j )dΩ, (5.13)

the forcing term is given by:

f =∏
j∈I
∫
C+j

N⊺
j b dΩ − ∏

j∈Itangled
∫
C−j

N−
j
⊺
b dΩ +∏

j∈I
∫

∂Eq
j

N⊺
j q dS, (5.14)

and, the constraint matrix by:

C = ∏
j∈Itangled

∫
Fj

[[N j]]⊺NλdΩ = ∏
j∈Itangled

∫
Fj

(N+
j −N−

j )
⊺
NλdΩ. (5.15)

Observe that the Lagrange multiplier field only needs to be square integrable since its

gradient does not appear in the formulation.

5.2 Implementation

We now discuss the implementation of the proposed methodology.

5.2.1 Computing the Stiffness Matrix

Consider the two-element mesh shown in Fig. 5.1. Recall that the stiffness matrix is given

by:

K = ∫
C+1

(∇N+
1
⊺
D∇N+

1)dΩ − ∫
C−1

(∇N−
1
⊺
D∇N−

1)dΩ + ∫
C+2

(∇N+
2
⊺
D∇N+

2)dΩ (5.16)
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Since C+2 = E2, the last term is simply the standard element stiffness matrix for that

element, and can be computed numerically via standard Gauss integration, i.e.,

k2 =
1

∫
−1

1

∫
−1

(J−1∇ξN2)
⊺
D (J−1∇ξN2) ∣J ∣dξ1dξ2. (5.17)

On the other hand, the first two terms in Eq. 5.16 are associated with the tangled

element E1. Recall that C+1 (C−1 ) gets mapped to the J+ (J−) region of the parametric

space (see chapter 2). Accordingly, the differential area for the positive component is given

by:

dΩ = dx1dx2 = ∣J ∣dξ1dξ2 (5.18)

On the other hand, the differential area for the negative component is given by:

dΩ = dx1dx2 = −∣J ∣dξ1dξ2 (5.19)

Observe that since the Jacobian determinant ∣J ∣ is negative, a minus sign ensures that the

area remains positive.

Accordingly, the first two terms of Eq. 5.16 become:

∫
C+1

(∇N+
1
⊺
D∇N+

1)dΩ = ∫
J+

(J−1∇ξN
+
1)
⊺
D (J−1∇ξN

+
1) ∣J ∣dξ1dξ2 (5.20)

and

∫
C−1

(∇N−
1
⊺
D∇N−

1)dΩ = −∫
J−

(J−1∇ξN
−
1)
⊺
D (J−1∇ξN

−
1) ∣J ∣dξ1dξ2 (5.21)

When these two terms are grouped together, they represent the entire parametric space of

the tangled element which enables us to use the standard Gauss integration; albeit, with

the sign of the Jacobian determinant included, i.e., one should not use the absolute value
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of the Jacobian determinant but its signed value.

k1 =
1

∫
−1

1

∫
−1

(J−1∇ξN1)
⊺
D (J−1∇ξN1) ∣J ∣dξ1dξ2. (5.22)

Thus, to obtain the elemental stiffness matrix in a-TFEM, the standard Gauss integration

can be employed for both regular and tangled elements, but the sign of the Jacobian must

be retained. If all the Gauss points lie in the positive Jacobian region, then standard

FEM is valid and there is no need for additional constraints. In many finite element

implementations, the absolute value of the Jacobian determinant is used, but this will

lead to erroneous results. In addition, the constraint matrix must be included as discussed

next.

5.2.2 Constraint Enforcement

Next, consider the constraint matrix C in Eq. 7.22. For the two-element mesh (Fig. 7.4a),

the non-zero entries of the kth column of C are given by

Ck = ∫
F1

[[N1 (p)]]⊺ (Nλ)k (p) dΩ (5.23)

where p denotes a point within the fold and (Nλ)k is the kth entry of Nλ. This entails

integrating over the fold, and can be done by triangulating the fold and evaluating the

integrand at quadrature points for each triangle; see [129]. However, this is cumbersome

and computationally expensive. To overcome this, an alternate method based on point

collocation [185, 121] is employed here. The point collocation method leads to algebraic

equations that arise in several finite element formulations [88, 89, 90, 169, 174], and will

be discussed next.

Consider the 2-element mesh in Fig. 7.4a with one tangled element. Recall that the

piecewise compatibility constraint (Eq. 7.9) implies that for any point p inside the fold:

[[N1 (p)]] û1 = 0 i.e., (N+
1 (p) −N−

1 (p)) û1 = 0 (5.24)
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Consider three noncollinear points (p1, p2, and p3) located in the folded region (see

Fig. 5.2).

Fold F1

Figure 5.2: Three noncollinear points within the fold.

One can evaluate [[N1 (⋅)]] at these points in order to construct a matrix C such that

the non-zero entries of the kth column of C are given by

Ck = [[N1 (pk)]]
⊺ (5.25)

From Eq. 5.24

C
⊺
û = 0. (5.26)

While the two matrices C and C are different, observe the similarities: (a) their columns

are linearly independent, i.e., rank(C) = rank(C) = nλ (= 3 in this case), and (b) they

both satisfy the piecewise compatibility constraints.

We, therefore, replace the C matrix in Eq. 3.27 with C to obtain a different set of

Lagrange multipliers λ̄. This is acceptable since λ itself is not of importance here. Thus

the integration over the fold can be completely avoided.

In short, for Q9 elements, the number of constraint equations is equal to 3 × degree(s)

of freedom per node; these are constructed by evaluating Eq. 5.25 at three sample points

lying in the fold. For 2D scalar (Poisson) and 2D vector (elasticity) problems, the number

of constraint equations required is 3 and 6 respectively.
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5.3 Numerical Experiments

In this section, a-TFEM is demonstrated by solving 2D Poisson and elastostatics problems

over various tangled meshes. Numerical experiments are conducted under the following

conditions:

• The implementation is in MATLAB R2022a, on a standard Windows 10 desktop

with Intel(R) Core(TM) i9-9820X CPU running at 3.3 GHz with 16 GB memory.

• Standard quadrature (3 × 3) is employed for all the elements.

• In standard FEM, the absolute value of Jacobian determinant is employed (to be

consistent with commercial FEM systems such as ANSYS).

To study the rate of convergence, we define the L2 error norm as

∣∣u −uh∣∣L2(Ω) =
⎡⎢⎢⎢⎢⎣
∫
Ω

∣u −uh∣2 dΩ
⎤⎥⎥⎥⎥⎦

0.5

(5.27)

and the energy error norm as

eh = ∣∣∇u −∇uh∣∣E(Ω) =
⎡⎢⎢⎢⎢⎣
∫
Ω

(∇u −∇uh)⊺D (∇u −∇uh) dΩ
⎤⎥⎥⎥⎥⎦

0.5

(5.28)

where u is the reference solution and uh is the solution under consideration.

5.3.1 Patch Test: Poisson Problem

Consider a square domain Ω = (0,1)×(0,1) which is discretized into four Q9 quadrilateral

elements. Since we will be carrying out a patch test, Q9 elements with straight edges are

considered since regular Q9 elements with curved edges (i.e., even without tangling) will

not satisfy the patch test [36, 185]. The element at the bottom left corner is tangled as in

Fig. 5.3. The folded region is shared by three neighboring non-tangled elements. We pose
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a Poisson problem where the exact field is given by:

u(x1, x2) = x21 − x22 + 3x1 + 7x2 − 6

The corresponding Dirichlet boundary conditions are imposed on all boundary edges.

(0,0)

(1,1)

A (0.5-d, 0.5- d)

(0.5,0) (1,0)

(1,0.5)

(0,1) (0.5,1)

(0,0.5)

Figure 5.3: Tangled mesh with four elements; one of the elements is tangled.

To vary the extent of tangling, the position of node A is varied by the parameter d,

where d = 0 corresponds to a regular mesh (4 square elements). Fig. 5.4a compares the

L2 errors in FEM and a-TFEM by varying d. Observe that for d > 0.25, the Jacobian

determinant becomes negative at one or more quadrature points; consequently, FEM fails

to provide accurate results. On the other hand, a-TFEM achieves machine precision

accuracy even under extreme tangling. Fig. 5.4b shows that a-TFEM and FEM exhibit

comparable condition numbers.
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Figure 5.4: Comparison of a-TFEM and FEM for four-element mesh: (a) L2 error vs. d,
(b) condition number vs. d.

5.3.2 Patch Test: Elasticity Problem

Next, we consider a cantilever subject to the loading shown in Fig. 5.5 [185]. The material

parameters are: Young’s modulus = 1000 and Poisson’s ratio = 0.3; the exact displace-

ments are quadratic fields [185].

F = 15 

2

O (0,0) x1

x2

A (10,1)

10

B (10,0)

Figure 5.5: Cantilever bending problem.

The plane stress problem is solved over a tangled mesh shown in Fig. 5.6, where, once

again, the degree of tangling is controlled by a parameter d.

Q

P

R

xR = (0.5+ d)(xP -  xQ) + xQ

Figure 5.6: Tangled mesh with ten elements; five of the elements are tangled.
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Fig. 5.7a and 5.7b illustrate the errors in the vertical and horizontal displacements

at points A and B respectively, using FEM and a-TFEM. As in the previous example,

a-TFEM achieves machine precision accuracy while classic FEM fails.
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Figure 5.7: Comparison of a-TFEM and FEM for cantilever problem: (a) Error in vertical
displacement at point A vs. d (b) Error in horizontal displacement at point B vs. d.

Fig. 5.8 shows that FEM and a-TFEM exhibit comparable condition numbers.
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Figure 5.8: Condition number of FEM and a-TFEM for cantilever problem.



87

5.3.3 Cantilever with Parabolic Loading: Q9 Elements

Next, we consider a plane stress cantilever problem with a parabolic vertical load P (per

unit length). The load is distributed over right edge of the cantilever and P = 1000, L = 48

and H = 12; see Fig. 5.9a. The material parameters are: Young’s modulus = 3 × 107 and

Poisson’s ratio = 0.3. The boundary conditions are applied as shown in Fig. 5.9a. The

exact solution lies outside the FEM space and is given as [162].

u1 =
Px2
6EI

[(6L − 3x1)x1 + (2 + ν)(x22 −
H2

4
)]

u2 = −
P

6EI
[(L − x1)3νx22 + (4 + 5ν)

H2x1
4
+ (3L − x1)x21]

where I = H3/12. Example of a regular mesh containing elements with curved edges is

shown in Fig. 5.9b.

B (0,-6)
P

HO (0,0) x1

x2

C (48,0)

L

(a)
(b)

Figure 5.9: (a) Cantilever with parabolic loading and (b) the regular mesh.

To study the convergence for the cantilever beam problem, various tangled meshes are

constructed as shown in Fig. 5.10.

(a) (b)

Figure 5.10: Sample tangled meshes for convergence study with element size h equal to
(a) 6 (b) 3.

Fig. 5.11a and Fig. 5.11b plot the L2 and energy error norm with respect to mesh size h

for the regular mesh and tangled mesh (solved using FEM and a-TFEM) containing curved
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elements. Observe that the convergence rates over tangled mesh obtained via a-TFEM

and over the regular mesh are similar.
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Figure 5.11: (a) L2 and (b) energy norm errors as a function of the element size h for can-
tilever problem with curved Q9 elements. Convergence rates are provided in parenthesis.

5.3.4 Cantilever with Parabolic Loading: Quadratic Triangular (T6) El-

ements

Next, we consider the mesh with quadratic triangular elements. An example of a regular

mesh and a tangled mesh containing elements with curved edges is shown in Fig. 5.12.

(a) (b)

Figure 5.12: (a) Regular and (b) tangled meshes containing T6 elements with curved sides;
h = 6.

To study the convergence properties of a-TFEM, the cantilever problem with parabolic

loading previously discussed in Section 5.3.3 is solved over the regular and tangled mesh

using a-TFEM and FEM. Fig. 5.13a and Fig. 5.13b plot the L2 and energy error norms

vs mesh size h. Once again, the convergence rate of a-TFEM over the tangled mesh is
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similar to that of FEM over the regular mesh.
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Figure 5.13: (a) L2 and (b) energy norm errors as a function of the element size h for
cantilever problem with T6 elements. The convergence rates are provided in the brackets.

5.3.5 Application: Mesh Morphing with Q9 Elements

Consider mesh morphing where the mesh is updated under geometric changes by simply

moving the mesh nodes according to a specified rule [154] (rather than regenerating the

mesh which can change the underlying mesh topology). As an example, consider the

domain in Fig. 5.14a, with the initial mesh as illustrated in Fig. 5.14b.

(a) (b)

Figure 5.14: (a) Domain and (b) Initial mesh containing Q9 elements.

The inner boundary is now rotated in a counterclockwise direction by an angle β, and

the mesh is morphed as follows. All nodes except the outer boundary nodes are rotated
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about the center such that the angle of rotation exponentially increase from 0○ to β as

nodes get closer to the void. Fig. 5.15 illustrates the morphed mesh for β = 70○. Observe

that some quads (shown in red) are tangled, i.e., the mesh is tangled.

Figure 5.15: Morphed mesh for β = 70○.

We solve the Poisson problem using a-TFEM with the zero (homogeneous) Dirichlet

condition applied on the entire boundary and the source term set to b(x1, x2) = 1. Fig. 5.16

illustrates the post-processed results for β = 0○, 40○, and 70○.

0.0300.000 0.0200.0150.0100.005 0.025

β = 0o β = 40o β = 70o

Figure 5.16: Post-processed solution using a-TFEM for morphed meshes.

5.3.6 Real-world Scenario: Disc with T6 Elements

Consider the T6 mesh illustrated earlier in Fig. 5.17 where two (out of 295) elements,

shown in red color, are tangled. Though it is possible to untangle this mesh [155], a-
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TFEM completely eliminates the need for untangling. Here, we compare the results for

tangled and untangled meshes.

Figure 5.17: Tangled mesh with 6-node triangular elements; the mesh has been provided
by the authors of [155]. Highlighted elements are tangled (negative Jacobian elements).

An elastostatics plane stress problem is set up with the following boundary conditions:

homogeneous Dirichlet boundary condition is applied on the outer boundary while a coun-

terclockwise torque = 1×109 is applied on the innermost circular boundary. The problem

is solved using a-TFEM over the tangled mesh with material parameters E = 2 × 1011

and Poisson’s ratio = 0.3. Fig. 5.18a and Fig. 5.18b illustrate the displacement field for

the tangled mesh (using a-TFEM) untangled mesh. a-TFEM required 1.200 milliseconds

while FEM required 1.199 milliseconds to solve the problem.
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Figure 5.18: (a) Displacement field obtained using a-TFEM (c) Displacement field using
untangled mesh. Both meshes were provided by the authors of [155].

5.3.7 Pressurized Cylinder: Need for Constraints

Recall that a-TFEM requires enforcement of the constraint equations. We emphasize the

importance of constraints through an illustrative example considered in Chapter 1. It is

repeated here for the sake of completeness.

Consider a long hollow cylinder with internal radius a = 1 and external radius b = 4;

see Fig. 5.19a. A uniform pressure p = 1 is applied to the inner surface (r = a) and the

cylinder deforms in plane strain. Let the Poisson’s ratio, ν = 0.3 and Young’s modulus,

E = 2.6. Due to the axisymmetric nature of the problem, only a quarter of the cylinder is

modeled. The analytical solution is as follows [162]:

u = p(1 + ν)a2b2

E(b2 − a2)
(1
r
+ r(1 − 2ν)

b2
)er

A typical 4-node quadrilateral mesh, shown in Fig. 5.19b, is constructed by using the

two-element mesh as the basic repeating unit.
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(a)

r = 1, θ = 0o r = 4, θ = 0o

r = 1 
θ = 90o

r = 4 
θ = 90o

(r, 
θ + Δθ) 

(r, θ) 

(r + Δr, θ) 

(r + 0.2Δr,
 θ + 0.7Δθ) 

(r + Δr, θ + Δθ) 

(b)

Figure 5.19: (a) Cross-section of the pressurized cylinder (b) A typical mesh with tangled
elements.

Fig. 5.20a and Fig. 5.20b respectively illustrate the radial stress distribution obtained

with and without compatibility constraints. Similarly, Fig. 5.21a and Fig. 5.21b respec-

tively show the displacement field obtained with and without incorporating the compat-

ibility constraints. The solutions are plotted over the undeformed mesh. The results

produced by the two methods are quite different; the one without constraints leads to

unacceptable results; Fig. 5.22 illustrates the deformed mesh. Thus, erroneous or even

nonsensical results may be produced in the absence of constraint equations.

Radial
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Stress
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11.023

-10.000

-5.000

5.000

0.000

(b)

Figure 5.20: Radial stress distribution for the pressurized cylinder problem (a) with and
(b) without the compatibility constraints plotted over underformed mesh.
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Figure 5.21: Displacement field for the pressurized cylinder problem (a) with and (b)
without the compatibility constraints plotted over un-deformed mesh.
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Figure 5.22: Deformed configuration for the pressurized cylinder problem without the
compatibility constraints.



95

Chapter 6

Tangled Hexahedral Elements

using Accelerated-TFEM

In this chapter, we delve into the application of a-TFEM to efficiently handle tangled

hexahedral meshes. While the hexahedral element is preferred over the tetrahedral element

for its solution efficiency [9], generating high-quality hexahedral meshes for complex objects

remains challenging. As stated in [140], “Generating high quality conformal hexahedral

meshes in arbitrary 3D domains is one of the most challenging open problems in mesh

generation.”

Hex mesh algorithms can be broadly classified into two types, namely the indirect

method and the direct method, each with its own set of strengths and limitations [184,

127]. Indirect methods first generate a transitional mesh, such as a tetrahedral mesh, and

then combine or cut the transitional mesh to obtain hexahedral/hex-dominant meshes.

Examples of such methods include octree-based approaches, grid-based methods [110, 182,

100, 55, 181]. The most common hex-dominated meshing methods [125] have transitional

elements, such as pyramid elements, that can lead to calculation errors in regions with

high gradients. The octree method is a popular hex-mesh generation technique and can

create a high-quality hexahedral mesh within the solution domain. However, it results in

poor-quality irregular elements at the boundary, which is fatal in simulation. Attempts
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have been made to incorporate fully automatic grid-based methods [110, 182, 100, 55,

181] into professional software such as CUBIT [38] and Distene SAS [39]. However, these

methods face similar challenges as octree method and are generally considered inferior in

terms of mesh quality [127].

On the other hand, direct methods, such as sweeping, polycube approaches, produce

high quality mesh and are commonly employed in the commercial software systems [127,

106] such as CUBIT [38], ICEM CFD [163]. However, they often require significant user in-

teraction. For instance, in sweeping method, heavy user interaction is required to simplify

and decompose complex geometries until they become suitable for meshing. Polycube

mapping has emerged as a highly active research topic in recent years. However, the

quality of elements is highly dependent on user interactions; at times creating tangled

elements [184]. Methods such as [159] produce boundary conforming meshes; however

require manual interaction and do not guarantee to produce tangle-free meshes.

In short, automatic high-quality tangle-free hex mesh generation is still elusive. The

attempt here is to relax the tangle-free requirement to ease the burden on mesh generators

with the help of a-TFEM. Penetrating tangled elements, which often occur in practical

meshes, can be easily handled using a-TFEM as discussed next.

6.1 a-TFEM for Hex Element

Until now, we considered 2D elements where the negative component is completely con-

tained within the positive component. An equivalent 3D example of such an element is

shown in Fig. 6.1.
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Figure 6.1: (a) Physical space of the tangled H8 element. (b) Parametric space of the
tangled element, that can be divided into positive and negative Jacobian regions. Corre-
sponding physical space with positive and negative components. (c) Tangled element with
the overlapping region.

Penetrating elements are frequently encountered in real-world meshes, and the pro-

posed a-TFEM formulation is capable of handling such tangled elements.

Recall that, in such elements the negative component C− is not entirely contained lie

within the positive component C+. Figure 2.4a illustrates a penetrating element along

with the corresponding parametric space in Fig. 2.4b. One can show that for this element,

only a part of J− region, shown in yellow in Fig. 2.4c maps to an overlapping region within

C+ that lies outside the element, while the remainder J−, shown in red in Fig. 2.4c, maps

to a region physically within the element. Visualizing these physical regions is hard but

fortunately not necessary. We only need to understand the differences in the parametric

space; methods to distinguish such cases are discussed later.



98

1

3
4

8

5

6

2

7

(a)

ξ1

ξ2

ξ3

J - 

J + 

(b)

ξ1

ξ2

ξ3

J - 

J + 

J - 

(c)

Figure 6.2: (a) Penetrating element (b) its parametric space; J− region is shown in yellow
color (c) J− region which does not map to the fold is shown in red color.

Furthermore, there are cases where elements have disconnected J− regions; Fig. 2.5

illustrates one such penetrating element. However, no special treatment is needed for such

elements.

65
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ξ3

J - 

J + J - 

(b)

Figure 6.3: (a) Penetrating element with disconnected J− regions, (c) its parametric space;
J− shown in yellow color.

The difference between penetrating and non-penetrating elements is only relevant to

Section 6.1.1.

The same 2D formulation of a-TFEM in the previous chapter is applicable here. It

is provided here for the sake of completeness. For a generic mesh with elements indexed

by the set I = {1, . . . ,m}, and the tangled elements by the set Itangled ⊂ I, the following

system is solved :

Kû +Cλ̂ = f (6.1a)

C⊺û = 0 (6.1b)
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where the stiffness matrix is given by:

K =∏
j∈I
∫
C+j

(∇N+
j
⊺
D∇N+

j )dΩ − ∏
j∈Itangled

∫
C−j

(∇N−
j
⊺
D∇N−

j )dΩ, (6.2)

the forcing term by:

f =∏
j∈I
∫
C+j

N+
j
⊺
b dΩ − ∏

j∈Itangled
∫
C−j

N−
j
⊺
b dΩ + ∏

j∈I
∫
∂Et

j

N⊺
j t dS (6.3)

and the constraint matrix by:

C = ∏
j∈Itangled

∫
C−j

(N+
j −N−

j )
⊺
NλdΩ. (6.4)

In Eq. 6.4, the choice of Nλ and computation of the integral is discussed next.

6.1.1 Computing the Constraint Matrix

Now consider a simple domain Ω that is discretized into two elements shown in Fig. 6.4a,

where one of the elements (E1) is tangled. For simplicity, we will assume this is a non-

penetrating tangled element, but the discussion applies to the penetrating case as well,

unless otherwise noted. The positive and negative components of E1 are shown in Fig. 6.4b.

These components overlap with each other; the overlapping region (fold) is denoted as F1.

Element E2 is not tangled and has only one positive component (see Fig. 6.4c), i.e.,

E2 = C+2 while C−2 = ∅. However, the components C−1 and C+1 overlap with E2 as well, i.e.,

the overlapping region of the tangled element (F1) now intersects with E2.
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Figure 6.4: (a) 3-D domain discretized into two 8-node hexahedral elements. (b) Positive
and negative components of the tangled element. (c) Non-tangled element of the mesh.
(d) Overlapping region intersects with the neighboring convex element.

For the two-element mesh in Fig. 6.4a, compatibility constraint becomes:

∫
F1

δλ1 ⋅ (u+1 −u−1) dΩ = 0 ∀ δλ1 ∈ L2, (6.5)

This can be expressed in matrix form as

C⊺û = 0 where C = ∫
C−1

(N+
1 −N−

1)
⊺
NλdΩ (6.6)

In order to compute the constraint matrix C, it is necessary to determine Nλ, i.e.

the shape functions for the Lagrange multiplier field. In the mixed system described by

Eq. 6.1, the secondary variable λ is obtained from a finite element space that is smaller

than that for u. Therefore, in the case of 8-node hexahedral elements, where the primary

field u is approximated using standard (tri)linear functions, we choose Nλ as constant

functions. Consequently, for the 2-element mesh depicted in Fig. 6.4, we can express the
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constraint matrix defined in Eq. 6.6 as

C = ∫
F1

(N+
1 −N−

1)
⊺
dΩ. (6.7)

Direct integration over the tangled region F1 to compute C is computationally expen-

sive and cumbersome [129]. Instead, we evaluate the integrand at a sample point p ∈ F1,

i.e., evaluate the C as

C = (N+
1(p) −N−

1(p))
⊺
. (6.8)

This results in three constraint equations (for the 3D elasticity field u).

Recall that any point p within the fold can be mapped to two parametric points a and

b belonging to J− and J+ regions respectively. The constraint can thus be stated as:

C = (N1(b) −N1(a))⊺ (6.9)

The methodology for determining the two parametric points a and b is described below.

First, we focus on finding point a. For a tangled element Ej , a list L of Gauss points

with negative Jacobian is generated. For a point a ∈ L, the corresponding point p in the

physical space can be obtained via:

p =N j(a)x̂j (6.10)

where x̂j is the position vector for the nodes of the element Ej .

For non-penetrating tangled elements such as Fig. 6.1b, the point p corresponding to

every a ∈ L lies within the fold. However, for penetrating elements (shown in Fig. 6.3a),

this is not always the case, i.e., the point p may not necessarily reside within the fold. To

determine this, we check if p lies outside the physical boundary of the element. If a ray

extending from p intersects the element’s boundary an even number of times, it indicates

that p lies outside the element, i.e., it resides within the folded region. Conversely, if the

ray intersects the boundary an odd number of times, p does not lie within the fold. In
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this case, we consider another point in L and repeat the process. If all the points in L

have been exhausted, we create a new list L with successively increasing number of Gauss

points, until a point a corresponding to a fold point p is found. In practice, we found

that 73 was sufficient for all examples considered. Note that these Gauss points are used

to determine a fold point, and not for stiffness matrix computation.

Having obtained a point p within the folded region of the physical space, we can now

determine the corresponding parametric point b in J+ using the Newton-Raphson (N-R)

method. An initial guess point for b is chosen as a corner vertex of the parametric space

that has a positive Jacobian and is located farthest from a. Once b ∈ J+ is obtained, the

constraint matrix can be readily computed using Eq. 6.9.

6.1.2 Fold Shared by Multiple Elements

When the fold is shared by multiple elements, such as in Fig. 6.5, where the folded region

of E1 is shared by the elements E2, E3 and E4, observe that the total volume is given by:

∫
E1+E2+E3+E4

dΩ = ∫
C+1

dΩ + ∫
C+2

dΩ + ∫
C+3

dΩ + ∫
C+4

dΩ − ∫
C−1

dΩ (6.11)

i.e., the integral over the negative component must be subtracted once. Furthermore, the

field compatibility equation is as before:

u+1 −u−1 = 0 in F1 (6.12)

Consequently, the elemental stiffness matrices, forcing vectors, and constraint matrix

are computed as before: (1) standard stiffness matrices ki , i = 1, . . . ,4 are computed

for all elements using standard Gauss integration while retaining the sign of the Jacobian

(the forcing vectors are computed similarly), and (2) the constraint matrix is computed by

evaluating Eq. 6.8 at a point within the fold F1, employing the method described above.

No additional treatment is needed.



103

x1

x2

x3

E4

E3

E2

E1

Figure 6.5: Overlapping region shared by multiple non-tangled elements.

6.2 Numerical Experiments

In this section, the proposed 3D a-TFEM is demonstrated by solving benchmark linear and

nonlinear elasticity problems using various synthetically generated and real-world tangled

meshes. Numerical experiments are conducted under the following conditions:

• Standard Gaussian quadrature (2×2×2) is employed for all the hexahedral elements.

• In standard FEM, the absolute value of the Jacobian determinant is employed (to

be consistent with commercial FEM systems such as ANSYS). Without the absolute

value, and without the constraint, standard FEM can lead to non-nonsensical results

[130], or result in non-convergence (see Section 7.4.3).

• Homogeneous isotropic material is assumed, unless otherwise mentioned.

The accuracy of numerical solutions is assessed using the following measures of error in

the computed displacement field. The relative L2 norm error is defined as

∣∣uref −u∣∣L2(Ω)

∣∣uref∣∣L2(Ω)

=

⎡⎢⎢⎢⎢⎢⎢⎣

∫
Ω

∣uref −u∣2 dΩ

∫
Ω

∣uref∣2 dΩ

⎤⎥⎥⎥⎥⎥⎥⎦

0.5

(6.13)

and the relative error in energy norm as:

eE =

⎡⎢⎢⎢⎢⎢⎢⎣

∫
Ω

(∇uref −∇u)⊺D (∇uref −∇u) dΩ

∫
Ω

(∇uref)⊺D (∇uref) dΩ

⎤⎥⎥⎥⎥⎥⎥⎦

0.5

(6.14)
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where uref is the reference solution and u is the solution under consideration.

6.2.1 Synthetic Meshes

We consider here synthetically-generated regular (non-tangled) and tangled meshes. Specif-

ically, consider a cubic domain Ω = (−1,1)3 that is first discretized using 3 × 3 × 3, i.e., 27

cubic elements as shown in Fig. 6.6a, i.e., each element side is of length 2/3. To create a

tangled mesh, we modify the mesh in two steps:

1. We convert each element of the regular mesh into a 2-element unit, as depicted in

Fig. 6.6b, resulting in 54 elements. Positions of the new re-entrant nodes (nodes 9

and 10) are given as

x
(9)
3 = x(1)3 , x

(9)
i = x(1)i + (0.5 − d) si, i = 1,2 (6.15a)

x
(10)
3 = x(5)3 , x

(10)
i = x(5)i + (0.6 − d) si, i = 1,2 (6.15b)

where si is the element size in ith direction and the parameter d controls the extent

of tangling (discussed later).

2. We then move the node B (highlighted in red in Fig. 6.6a), using the same parameter

d, as follows:

xB
d = x

(B) − d × [4.2s1 1.75s2 0.7s3]⊺. (6.16a)

The value of the parameter d is varied from 0 to 0.47. The front view of a resulting tangled

mesh for d = 0.4 is illustrated in Fig. 6.6c.



105

x1

x2

x3

B

(a)
1

4

2

3

5 6

7
8

9

10

1

4

2

5 6

7
8

3

(b)

B

x1

x2

(c)

Figure 6.6: (a) Regular mesh (with 27 elements). (b) Non-tangled element converted to
tangled element (c) Front view of the tangled mesh.

The tangled mesh (Fig. 6.6c) has 54 elements; out of which 31 elements are tangled.

Fig. 6.7 illustrates some of the tangled elements. These elements are non-convex with

non-planar faces. Moreover, some of the tangled elements (e.g. see Fig. 6.7b, 6.7c,

6.7e) exhibit penetration. Since the mesh (Fig. 6.6c) contains tangled elements of various

configurations, it can be employed to rigorously test the effectiveness of a-TFEM.
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Figure 6.7: Some of the tangled elements present in the mesh shown in Fig. 6.6c.
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Displacement patch test

For the patch test, an arbitrary linear field is chosen as the exact (reference) solution:

u1 = 0.579x1 + 0.246x2 + 0.482x3 − 0.374 (6.17a)

u2 = 0.486x1 + 0.351x2 + 0.947x3 − 0.620 (6.17b)

u3 = 0.512x1 + 0.746x2 + 0.548x3 − 0.480. (6.17c)

Corresponding to this field, Dirichlet conditions are applied to the left face of the mesh

in Fig.6.6c, while Neumann condition are applied to the remaining faces. The problem

is solved over the tangled meshes by varying d using standard FEM and a-TFEM (the

non-tangled mesh in Fig. 6.6a is not used for this experiment).

To compare the two methods, the L2 and energy error norms are plotted in Fig. 6.8a

and Fig. 6.8b respectively. Observe that, both FEM and a-TFEM provide machine pre-

cision accuracy for 0 ≤ d ≤ 0.15, as the Jacobian at all the Gauss points remains positive

(indicating that the mesh is not tangled and a-TFEM reduces to FEM). However, for

d ≥ 0.2, the Jacobian determinant becomes negative at one or more Gauss points, leading

to a significant error in FEM. In contrast, a-TFEM consistently achieves machine precision

accuracy for all values of d. In other words, a-TFEM successfully passes this patch test

over the tangled mesh, while standard FEM does not.
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Figure 6.8: Patch test for FEM and a-TFEM: (a) L2 error norm and (b) energy error
norm.

Strain energy convergence: Cubic cantilever

In this experiment, we analyze a-TFEM for its convergence characteristic with regard to

the strain energy. We consider a cubic cantilever (see Fig. 6.9) subjected to a uniform

pressure p = 1 on its upper face [116], and fixed over the face x1 = 0. The material is

assumed to be linear elastic, with Young’s modulus E = 1 and Poisson’s ratio ν = 0.25.

The exact solution to the problem is unknown. However, a reference solution is re-

ported in [116], obtained using standard FEM with a very fine mesh consisting of 30,204

nodes and 20,675 ten-node tetrahedral elements. The reference strain energy is 0.9486,

and the vertical deflection of 3.3912 at point A, located at (1, 1, 0).

p
A(1, 1, 0)

x1

x2

x3

Figure 6.9: Cubic cantilever subjected to uniform pressure.

We solve this problem using both standard FEM and a-TFEM on tangled and non-
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tangled meshes of various sizes. Regular and tangled meshes are constructed by repeating

the units described previously (Fig. 6.6a for regular mesh and Fig. 6.6c for tangled mesh).

The regular and tangled repeating units (containing 27 and 54 elements respectively) are

stacked in a nr ×nr ×nr configuration, where nr denotes the number of repeating units in

each direction; nr is varied from 1 to 8 to study the convergence characteristics. For the

tangled case, the extent of tangling was fixed by setting d = 0.4.

Fig. 6.10a shows the strain energy convergence for a-TFEM in comparison with FEM

over tangled and regular (non-tangled) mesh. It is evident that the strain energy obtained

using a-TFEM converges to the reference solution, unlike FEM over the tangled mesh.

Similarly, Fig. 6.10b illustrates the convergence of the tip deflection at point A(1, 1,

0) obtained using the a-TFEM and FEM. Once again, observe that a-TFEM converges to

the reference solution for the tangled meshes, while FEM fails to do so.
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Figure 6.10: Convergence of (a) strain energy and (b) vertical displacement at point A for
the cubic cantilever problem.

In the above convergence study, the extent of tangling was fixed with d = 0.4. Here,

we study the effect of tangling on the computed solutions by varying d from 0 to 0.47

for a fixed mesh size, with nr = 3. As seen in the previous experiment, as d increases,

tangling increases and FEM deviates from the expected results, as opposed to a-TFEM

(see Fig. 6.11).
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Figure 6.11: Effect of tangling on (a) strain energy and (b) vertical displacement at point
A for the cubic cantilever problem.

Convergence study: Beam under torsion

Next, we study the performance of a-TFEM for a cantilever beam loaded in torsion [53].

The domain for this problem is (−1,1) × (−1,1) × (0,10); the material is linear isotropic

with Young’s modulus E = 25 and Poisson’s ratio ν = 0.3. Dirichlet boundary conditions

are applied to the faces at x3 = 0 and x3 = 10. The expressions for the stresses are [8]:

σ11 = σ22 = σ12 = σ33 = 0

σ31 =
8Eβ

π2 (1 + ν)

∞

∑
n=1

(−1)n

(2n − 1)2 cosh [(2n − 1)π/2]
cos [(2n − 1)πx1/2] sinh [(2n − 1)πx2/2]

σ(23) =
Eβ

2 (1 + ν)
(2x1)+

Eβ

2 (1 + ν)
(
∞

∑
n=1

16(−1)n

π2 (2n − 1)2 cosh [(2n − 1)π/2]
sin [(2n − 1)πx1/2] cosh [(2n − 1)πx2/2])

(6.18)
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and displacements, up to rigid body motion, are given by

u1 = −βx2x3, u2 = βx3x1,

u3 = β (x1x2 +
∞

∑
n=1

32(−1)n

π3 (2n − 1)3 cosh [(2n − 1)π/2]
sin [(2n − 1)πx1/2] sinh [(2n − 1)πx2/2]) .

(6.19)

Here β = 0.1 is the twist per unit length which is proportional to the applied torque.

As in the previous examples, we create a tangled mesh (d = 0.4) and a regular mesh

using their respective repeating units. In this particular problem, we stack repeating units

in a configuration of nr×nr×5nr. To visualize the deformation and the stress field resulting

from the torsional load, we present representative a-TFEM results for the tangled mesh

with nr = 4 in Fig. 6.12.

0.024

2.264

0.500

1.000

1.500

von-Mises stress

x1

x3

x2

Figure 6.12: Deformed configuration of the beam under torsion.

We study the convergence characteristics of a-TFEM by employing displacement L2

error norm defined in Eq. 6.13. In addition, an error measure for the stress field (eσ) is

employed and defined as (to be consistent with [53]):

eσ =
∣∣σref −σ∣∣L2(Ω)

∣∣σref∣∣L2(Ω)

. (6.20)

As evident from the convergence plots in Fig. 6.13, we have close to second-order con-

vergence in displacements and first-order convergence in stresses, similar to the regular

meshes. On the other hand, FEM over tangled mesh fails to converge.
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Figure 6.13: Convergence of (a) displacement error and (b) stress error for the torsion
problem.

6.2.2 Real-world Meshes

In this section, the performance of a-TFEM is evaluated over real-world tangled meshes

generated by the state-of-the-art mesh-generating algorithms.

Connecting rod

We now consider a connecting rod mesh (mesh data obtained from [103]) illustrated in

Fig. 6.14a. Out of the total 11316 hexahedral elements of the mesh, 16 elements are tan-

gled; some are highlighted in Fig. 6.14a. Though it is possible to untangle this mesh [103],

a-TFEM completely eliminates the need for untangling. Here, we compare the results for

tangled and untangled meshes.

A linear quasi-static elasticity problem is set up as shown in Fig. 6.14a: an axial load

of P = 300N is applied on one end, while the other end is fixed. The material properties

are as follows: Young’s modulus E = 2.05 × 107 and Poisson’s ratio ν = 0.28.
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Figure 6.14: (a) Connecting rod mesh [103] with boundary conditions; elements in red
color are tangled. (b) von-Mises stress field for tangled mesh using a-TFEM; (b) von-
Mises stress field for untangled mesh.

Fig. 6.14b and Fig. 6.14c illustrate the von-Mises stress field for the tangled mesh (using

a-TFEM) and untangled mesh respectively. The total computational time was 10.47s for

the tangled mesh using a-TFEM, and 10.16 for untangled mesh, i.e., the overhead due to

a-TFEM was found to be minimal.

Synthetic solution

We now consider additional real-world tangled meshes. To evaluate the performance of

a-TFEM, the following synthetic solution is used:

u = [ζ31ζ2ζ23 + 2ζ21ζ32ζ23 + 0.5 sin(2πζ1); ζ21ζ
3
2ζ3 + 2ζ21ζ22ζ33 ; ζ1ζ

2
2ζ

3
3 + 2ζ31ζ22ζ23]

⊺ /100

(6.21)

where ζi are computed by dividing each component xi by its corresponding length-scale

Li, i.e., ζi = xi/Li. Given the analytical solution, stresses can be computed as σij = Cijklεij

where εij = 0.5(ui,j + uj,i) and Cijkl is the elasticity tensor. The appropriate body force b

can thus be computed by employing the equilibrium equation: σij,j+bi = 0. The problem is

solved using this body force with the material properties, E = 400/3, ν = 1/3. The dirichlet

boundary condition is imposed over the entire boundary. The resultant displacement fields

are shown in Fig. 6.15 for various tangled meshes obtained from [101, 159, 102, 12] and
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hexalab repository [22]. As one can observe, despite numerous tangling elements, the L2

error is within the acceptable/nominal range. Note that, in the meshing literature, the

‘scaled Jacobian’ [85] computed at the nodes is used, and is therefore reported in Fig. 6.15

as well.
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Figure 6.15: Displacement plots obtained via a-TFEM for the practically occurring tangled
meshes. The red elements in the inset are tangled.

Next, we compare the real-world tangled meshes with their corresponding untangled

meshes provided in [103]. The problem with the synthetic solution (Eq. 6.21) described

above is solved using the two methods: a-TFEM for tangled meshes and standard FEM

for untangled meshes. The results, presented in Table 6.1, reveal that the L2 error norm

obtained via a-TFEM over tangled meshes is comparable with that obtained over the

corresponding untangled meshes. Moreover, the time required to handle tangled elements
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is minimal. This suggests that a-TFEM can provide solutions with comparable accuracy

over tangled meshes, thus eliminating the need for mesh untangling.

Table 6.1: Comparison of solutions over tangled and untangled meshes provided in [103].

Model Min. Scaled Jacobian Relative L2 error Time (seconds)
Tangled Untangled Tangled Untangled Tangled Untangled

cap -0.94 0.11 4.23 ×10−2 4.36 ×10−2 4.73 4.13
block -0.70 0.25 1.58 ×10−2 1.58×10−2 2.02 1.87
bust -0.60 0.11 3.71×10−2 3.93×10−2 5.15 5.11
linking rod -0.39 0.55 2.13×10−3 2.12×10−3 10.46 10.17
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Chapter 7

Nonlinear Elasticity using

Isoparametric-TFEM and

Accelerated-TFEM

In this chapter, i-TFEM and a-TFEM formulation is derived for solving nonlinear elasticity

problems.

7.1 Nonlinear Elasticity

Consider a body occupying a domain Ω ∈ R2 subject to a body force b, traction T over

the boundary ∂ΩT , and Dirichlet boundary conditions u = ud over the boundary ∂Ωd; the

material is assumed to be hyper-elastic undergoing a finite deformation u. The domain

is divided into M elements Ej , identified by the set I = {1, . . .M}. We employ the total

Lagrangian formulation [141] in this chapter, where the potential energy can be written

as:

Π(u) = ∑
j∈I
∫
Ej

Ψ (F (uj))dV −∑
j∈I
∫
Ej

uj ⋅ bdV −∑
j∈I
∫

∂ET
j

uj ⋅ T dS (7.1)

where F is the deformation gradient, Ψ is the strain energy density. Further, using the

standard (Bubnov-) Galerkin variational formulation, one arrives at the residual equation
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[141]:

R(û) = 0 (7.2)

This is typically solved iteratively via the Newton-Raphson algorithm [141]:

K(ûn)∆ûn+1 = −R(ûn). (7.3)

where K is the tangent matrix and ∆ûn is the incremental displacement vector at nth

Newton iteration. When the mesh is of high-quality and not tangled, one obtains accurate

solutions to such problems.

However, as is well known, when the mesh is tangled, i.e., if the mesh contains inverted

elements, the solution becomes erroneous. To illustrate, consider Cook’s membrane prob-

lem [37] illustrated in Fig. 7.1a. The left edge of the tapered cantilever is fixed while a

uniformly distributed load p = 5 is applied on the right edge. We pose a geometrically

nonlinear plane-strain problem with Lamé parameters µ = 50 and λ = 100. Fig. 7.1b

illustrates a quadrilateral mesh with one concave element that we use for this experiment.

44

16

48
A

p

(a) (b)

Figure 7.1: (a) Cook’s membrane problem. (b) Tangled mesh with one concave element.

We vary the extent of tangling by moving the re-entrant vertex D along the diagonal

BC as shown in Fig. 7.2a. When the parameter d = 0, the point D lies half-way between B

and C, and when 0 < d < 0.5, the point D moves towards B, i.e., the element gets tangled.

The large-deformation problem is solved using the normal procedure as described above,
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with 10 load steps. The tip displacement is compared against the expected value (using a

high quality non-tangled mesh). When d > 0.1, a negative ∣J ∣ value is encountered at one

or more Gauss points, and Fig. 7.2b illustrates the resulting erroneous solution.
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Figure 7.2: (a) Zoomed-in view of the tangled element. (b) Relative error in tip displace-
ment versus d for FEM.

7.2 Isoparametric TFEM for Nonlinear Elasticity

The objective of this section is to propose an iso-parametric tangled finite element method

(i-TFEM), as a simple extension to classic FEM, for solving large deformation problems

over tangled meshes. As a background, we briefly review the critical i-TFEM concepts

proposed in [129] for linear problems.

7.2.1 Revisiting Isoparametric-TFEM

Consider the standard isoparametric mapping from (ξ1, ξ2) space in Fig. 7.3a to a concave

element in the physical space (x1, x2) in Fig. 7.3b. Observe that the element folds onto

itself. Further, the parametric space can be divided into positive (J+) and negative (J−)

Jacobian regions and the parametric mapping φ is not fully invertible.

The main idea in i-TFEM is that the positive and negative parametric regions are

treated separately, thus relaxing the constraint of full invertibility to piecewise invertibility.

In particular, the physical space corresponding to the positive (negative) parametric region
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J+ (J−) is termed as positive (negative) component and is denoted by C+ (C−). Observe

the piecewise mapping

φ±∶J± → C±

is invertible i.e. bijective (see Fig. 7.3c).
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Figure 7.3: (a) Parametric space of the concave element. Parametric space can be divided
into positive and negative Jacobian regions. (b) Physical space of the concave Q9 element.
(c) Positive and negative components

Let N j(ξ) be the standard bilinear Lagrange shape functions defined over the para-

metric space of element Ej . Let N±
j be the restriction of N j to J±, i.e.,

N±
j (x) ∶=N j(φ−1± (x)) (7.4)

The corresponding field is then given by

u±j (x) =N±
j (x)ûj (7.5)

Now consider the two-element tangled patch in Fig. 7.4a. The positive and negative

components (C+1 and C−1 ) of the concave element E1 are shown in Fig. 7.4b. On the other

hand, the convex element E2 has only one positive component (see Fig. 7.4c): E2 = C+2
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while C−2 = ∅. Further, the fold F1 illustrated in Fig. 7.4d overlaps with E2 as well.
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Figure 7.4: (a) 2-D domain discretized into two bilinear quads. (b) Positive and negative
components of the concave element. (c) Convex element of the mesh. (d) Final physical
space has an overlapping region (fold).

Thus, for any point x ∈ F1, all the three components overlap, and three fields u+1 (x),

u−1 (x) and u+2(x) can be defined.

Thus, the field is clearly ambiguous within the fold. Removing the ambiguity in the

field definition is the first step in i-TFEM [130, 129, 42]. In particular, in i-TFEM, we

define the field at a point x within a fold as:

u(x) ∶= u+2(x), ∀x ∈ F1 (7.6)

The underlying reasons are discussed in [130], but briefly, this is necessary for field con-

tinuity and to capture constant strain fields. In other words, for iso-parametric elements,

the tangled region can be considered as being part of just the convex element E2. This

naturally leads to a division of the mesh into two parts: E2 and Ê1 as illustrated in Fig. 7.5.

Note that Ê1 does not include the folded region whereas E1 does (this is elaborated further

below).
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E1
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E2  

E1
= +

Figure 7.5: Parts contributing to the field definition.

Thus, the field u over the two-element patch is defined as:

u(x)∣Ê1
=N+

1(x)û1 and u(x)∣E2 =N
+
2(x)û2 (7.7)

However, an additional constraint is needed to ensure the continuity of the field across

their common boundary. In particular, by approaching the re-entrant corner, from Êj and

E2, one can show that field continuity across the entire boundary is satisfied if and only

if (see [130]):

u+1(x) −u−1(x) = 0, x ∈ F1 (7.8)

This not only makes the field continuous, it also and forces the contribution of the concave

element to be zero in the folded region.

Introducing the notation [[⋅]] = (⋅)+ − (⋅)−, the above constraint can be written as:

[[u1]] = 0, in F1 (7.9)

In summary, for any pair of overlapping elements E1 and E2 (1) we decompose them into

fully invertible regions Ê1 and E2, and (2) the constraint (Eq. 7.9) is enforced.

7.2.2 i-TFEM Variational Formulation for Nonlinear Elasticity

We now consider the implications of these concepts in non-linear elasticity. Our objective

is to generalize the residual in Eq. 7.2 and the iteration in Eq. 7.3, to account for tangling.
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Towards this end, we modify the potential energy functional as follows:

Π̃ = ∑
j∈Iconvex

∫
Ej

(Ψ (uj) −uj ⋅ b)dV + ∑
j∈Iconcave

∫
Êj

(Ψ (uj) −uj ⋅ b)dV −∑
j∈I
∫

∂ET
j

uj ⋅ T dS

+ ∑
j∈Iconcave

∫
Fj

λj ⋅ [[uj]]dV

(7.10)

where the concave and convex elements are indexed as Iconcave and Iconvex respectively,

and the constraints in Eq. 7.9 are included via Lagrange multipliers λ.

We now set the variation of the potential energy with respect to u and λ to zero:

δu,λΠ̃ = 0. (7.11)

This leads to the following weak form where ∀δu ∈H1
0 and ∀δλ ∈ L2, i.e., we seek u ∈H1

and λ ∈ L2 such that:

⎡⎢⎢⎢⎢⎢⎢⎣

∑
j∈Iconvex

∫
Ej

(P ∶
∂δuj

∂X
− δuj ⋅ b)dV + ∑

j∈Iconcave
∫
Êj

(P ∶
∂δuj

∂X
− δuj ⋅ b)dV −∑

j∈I
∫

∂ET
j

δuj ⋅ T dS

+∑
j∈I
∫
Fj

λj ⋅ [[δuj]]dV
⎤⎥⎥⎥⎥⎥⎦
+ ∫
Fj

δλj ⋅ [[uj]]dV = 0

(7.12)

where P is the first Piola-Kirchhoff stress tensor. Next, we approximate the fields using

the standard (Bubnov-) Galerkin formulation:

uj =N jûj , λj =Nλ
j λ̂j (7.13)

This leads to:

δû⊺R̃ + δλ̂⊺C⊺û = 0 (7.14)

Here, δû⊺R̃ represents the terms in the square bracket of Eq. 7.12. Observe from Eq.
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7.12, that the residual R̃ can be expressed as:

R̃ (û, λ̂) =Ru (û) +Cλ̂ = 0 (7.15)

where Ru involves only the primary field u and requires integrating over both the convex

and concave elements:

Ru =Ru
convex + R̂

u
concave (7.16)

As one can easily deduce, the computation of Ru
convex is as in standard FEM. However, the

integration over the concave elements must be carried out over the subset of parametric

space; see Fig. 7.6. This is discussed in detail in the next subsection.

Next, to solve Eq. 7.15 through iterations, we consider the first order Taylor series:

Ru (ûn) + ∂Ru

∂û
∣
n

∆ûn+1 +Cλ̂
n +C∆λ̂

n+1 = 0 (7.17)

i.e.,

Kt∆û +C∆λ̂ = −(Ru +Cλ̂) (7.18)

where

Kt =Kt
convex + K̂

t
concave (7.19)

Here, Kt
convex and K̂

t
concave are tangent matrices corresponding to convex and concave

elements respectively. Further, from Eq. 7.14, we have

C⊺∆û = 0 (7.20)

From Eq. 7.18 and Eq. 7.20 we have the final set of linear equations one must solve

iteratively:
⎡⎢⎢⎢⎢⎢⎣

Kt C

C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆ûn+1

∆λ̂
n+1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−(Ru +Cλ̂)

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (7.21)

If the mesh does not contain any tangled elements, then Kt = Kt
convex, and C does not
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exist, i.e., i-TFEM reduces to standard FEM.

7.2.3 Implementation Details

We now discuss the implementation considering a two-element mesh.

Computation of residual vector and stiffness matrix

As mentioned earlier, to compute Ru
convex in Eq. 7.16, standard FEM procedures with

Gauss quadrature can be used. However, to compute Ru
concave, only the fully invertible

subset Ê1 is to be considered.

Observe that Ê1 is not the same as E1. Though both have the same physical boundary,

they represent different regions of parametric space. Specifically, E1 represents the entire

parametric space, while Ê1 represents only the L-shaped subset of the positive ∣J ∣ region

as illustrated in Fig. 7.6. In other words, Ê1 corresponds to a fully invertible subset of the

parametric space of the concave element.
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Figure 7.6: (a) Parametric space. (b) Ê1

Therefore, standard Gauss quadrature cannot be employed; instead, Ê1 is triangulated

as illustrated in Fig. 7.7. The triangulation is used merely for the purpose of integration

and does not lead to additional degrees of freedom in i-TFEM.
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Figure 7.7: Triangulation of Ê1

Similarly, to compute Kt
convex, standard FEM procedures can be used. However, to

compute Kt
concave, the triangulation in Fig. 7.7 must be used.

Constraint enforcement

Finally, to compute the constraint matrix C, note that the interpolation of the Lagrange

multiplier λ needs to be only square integrable since its gradient does not appear in the

formulation. For Q4 elements, the primary field u is approximated using standard bilinear

functions while Nλ are constant functions. Thus, the finite dimensional approximation

for the Lagrange multiplier λ comes from an FE space that is smaller than that for u.

Accordingly, we can write the constraint matrix defined in Equation 7.15 as

C = ∫
F1

(N+
1 −N−

1)
⊺
dV. (7.22)

Direct integration over the tangled region F1 to compute C is computationally expen-

sive and cumbersome [129]. Instead, we evaluate the integrand at a sample point x ∈ F1,

say the concave vertex, i.e., evaluate the C as

C = (N+
1(p) −N−

1(p))
⊺ = [[N1(p)]] . (7.23)

where p is the re-entrant vertex. Thus, the constraints can be applied directly as a set of

algebraic equations. Since u is a vector field, each concave element entails two constraint

equations. This is consistent, for example, with the algebraic constraints implemented in

[129, 135, 130].
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7.3 Numerical Experiments

In this section, i-TFEM is demonstrated using plane strain nonlinear elasticity problems

over various tangled meshes. Numerical experiments are conducted under the following

conditions:

• The implementation is in MATLAB R2022a, on a standard Windows 10 desktop

with Intel(R) Core(TM) i9-9820X CPU running at 3.3 GHz with 16 GB memory.

• The number of quadrature points for convex quadrilateral elements is four.

• The triangulation of a concave element (see Fig. 7.7) is performed by employing

MATLAB’s inbuilt mesher - generateMesh. The number of quadrature points for

triangles is 4.

• The load is applied incrementally in 10 steps. The stopping criteria for Newton

Raphson is ∣∣∆û∣∣ < 10−9.

Through the experiments, we investigate the following:

• Cook’s problem, single concave element: For Cook’s membrane problem [37],

the error in tip displacement due to the presence of a single concave element is

reported as the severity of tangling is increased.

• Cook’s problem, multiple concave elements: For Cook’s membrane problem,

with numerous tangled elements: (a) The displacement at a prescribed location is

reported for each load step. (b) Deformed configurations for tangled and regular

meshes are also compared. (c) Convergence of the tip displacement as a function of

mesh size is studied and compared against standard FEM. (d) Finally, the conver-

gence rate is evaluated.

• Punch problem, material non-linearity: For the punch problem [43], we include

material non-linearity and study the convergence characteristics of i-TFEM.
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• Punch problem, multiple overlap: For the punch problem [43], mesh with mul-

tiple overlap is considered.

• Thin beam problem: The performance of i-TFEM in bending dominated response

is evaluated with neo-Hookean material model.

• Aircraft model: An example of a tangled mesh is presented to evaluate i-TFEM

in practical scenarios.

7.3.1 2D Cook’s Membrane: Single Concave Element

To begin with, we solve Cook’s membrane problem over the mesh with one concave element

illustrated earlier in Fig. 7.1b. Recall that the extent of tangling is controlled by the

parameter d. For d > 0.1, a sharp increase in FEM error was observed, as illustrated in

Fig. 7.8. On the other hand, using i-TFEM, the error, in fact, decreases (slightly) for

d > 0.1; see Fig. 7.8.
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Figure 7.8: Relative error in tip displacement versus d for FEM and i-TFEM.

7.3.2 2D Cook’s Membrane: Multiple Concave Elements

Next, we consider a regular mesh illustrated in Fig. 7.9a and a highly tangled mesh in

Fig. 7.9b where every other element is concave.
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(a) (b)

Figure 7.9: Initial configuration for (a) Regular mesh. (b) tangled mesh with N = 3 ≡ 8×8
for the Cook’s membrane problem.

The Cook’s membrane problem is solved over the regular mesh using standard FEM,

and over the tangled mesh using i-TFEM. The vertical displacement at the top right corner

point A (see Fig. 7.1a) for every load step is reported in Fig. 7.10. One can observe a close

agreement between the two.
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Figure 7.10: Vertical displacement versus the load step for Cook’s membrane problem.

The deformed configuration for regular and tangled meshes after the last load step are

reported in Fig. 7.11a and Fig. 7.11b, respectively.
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Figure 7.11: Deformed configuration for (a) Regular mesh and (b) Tangled mesh using
i-TFEM for Cook’s membrane problem.

To study convergence, the number of elements is controlled by a mesh-index N , where

the number of elements in the regular mesh is 2N × 2N . Fig. 7.9a illustrates the regular

mesh when N = 3, and Fig. 7.9b, the corresponding tangled mesh. We now compare the

solutions from three different methods: standard FEM over regular mesh, standard FEM

over tangled mesh, and i-TFEM over tangled mesh. The vertical displacements at point

A for all three are plotted as a function of N in Fig. 7.12. Observe that FEM over a

regular mesh and i-TFEM over the tangled mesh converge to the same displacement. On

the other hand, FEM over a tangled mesh leads to erroneous results.
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Figure 7.12: Convergence study for Cook’s membrane problem.

To study the rate of convergence, we define the H1 seminorm of the displacement error

as

eh = ∣∣∇u −∇uh∣∣ =
⎡⎢⎢⎢⎢⎣
∫
Ω

∣∇u −∇uh∣2 dΩ
⎤⎥⎥⎥⎥⎦

0.5

(7.24)

where u is the reference solution from a fine mesh with N = 7, and uh is the solution

under consideration. Fig. 7.13a illustrates the error vs. mesh size (h) on a log-log scale

over the non-tangled mesh as well as over the tangled mesh using FEM and i-TFEM. One

can observe a near-optimal convergence rate for i-TFEM. Next, the effect of mesh size

on the condition number of the matrix in Eq. 7.21 is studied. Fig. 7.13b shows that the

condition number for tangled meshes increases with mesh size at a rate similar to that of

a regular mesh.
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Figure 7.13: (a)H1 seminorm error versus mesh size and (b) condition number versus mesh
size for Cook’s problem. The convergence rates are provided in the brackets.

7.3.3 Punch Problem: Material Nonlinearity

Next, we consider a punch problem [173, 94, 43, 73] with geometric and material non-

linearities. Specifically, compressible isotropic generalized neo-Hookean material model is

considered where the strain energy density is given by [186, 21]:

ΨGNH (u) =
µ

2
(J−2/3F trb − 3) + K

2
(JF − 1)2 (7.25)

where JF = detF and b = FF ⊺ is the left Cauchy-Green deformation tensor while µ =

500 and K = 1700 are the material parameters (equivalent to shear and bulk moduli

respectively in the small strain limit). A rectangular block is subject to a vertical load p

(per unit length) uniformly distributed over the top left half of the block where p = 1000

and H = 1; see Fig. 7.14 [43]. The top and left sides of the block are fixed in the horizontal

direction, while the bottom is fixed in the vertical direction.
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Figure 7.14: Initial configuration of the punch problem with mesh size N = 2 ≡ 8 × 4 and
the tangled mesh.

Fig. 7.15 captures the vertical displacement of point A (located at the top left corner)

for every load step. The results for the regular mesh and tangled mesh (using i-TFEM)

match well. For both meshes, the solution converged in about 5 Newton iterations for

each load step.
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Figure 7.15: Vertical displacement versus the load step for the punch problem.

Fig. 7.16a and Fig. 7.16b illustrate the deformed configurations for the regular mesh

and tangled meshes respectively, after the final load step.
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Figure 7.16: Deformed configuration for (a) regular mesh via FEM and (b) tangled mesh
via i-TFEM for the punch problem.

To study the convergence, we use the mesh index N where the number of elements in

the regular mesh is 2N+1 × 2N . The regular and tangled meshes with N = 2 are shown

in Fig. 7.26. A convergence study was then carried out as N was varied. The vertical

displacement uy at point A for the two methods is plotted against the mesh index N in

Fig. 7.17. One can observe that the two methods converge to the same solution while

standard FEM over the tangled mesh converges to an incorrect solution.
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Figure 7.17: Convergence study for the punch problem.

Finally, Fig. 7.18a illustrates the H1 seminorm error over the tangled mesh using

FEM and i-TFEM as well as over the regular mesh. The reference solution is obtained

with N = 8. Once again, i-TFEM exhibits a convergence rate for the H1 seminorm error

(Fig. 7.18a) and the condition number (Fig. 7.18b) similar to that obtained with a non-

tangled mesh.
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Figure 7.18: (a) H1 seminorm error versus mesh size and (b) condition number versus
mesh size for the punch problem. The convergence rates are provided in the brackets.

Multiple overlaps

Thus far, the fold was shared by only one neighboring convex element. However, in prac-

tice, the fold may be shared by multiple convex elements as illustrated in Fig. 7.19. In this

case, three convex elements E2, E3 and E4 share the folded region F1. However this does

not change the methodology, i.e., the tangent matrices and constraint matrix are com-

puted as before (1) the tangent matrix Kt
convex and residual vector Ru

convex corresponding

to the convex elements are computed using the three convex elements, (2) while K̂
t
concave

and R̂
u
concave are computed using the parametric space associated with Ê1, and (3) the

constraint matrix is computed using the entire fold F1.

E2

E3
E4

E1

Figure 7.19: Four-element patch with one element concave.

Here, we consider a tangled mesh (see Fig. 7.20a) where the basic repeating unit is the

patch shown in Fig. 2.6. The problem described in Fig. 7.26 is used as a case study. The
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final deformed configuration obtained via i-TFEM is shown in Fig. 7.20b.
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Figure 7.20: (a) N = 3 tangled mesh (b) Final deformed shape obtained via i-TFEM.

Next, to study the convergence, we use the mesh indexN where the number of elements

is 2N+1 × 2N . Fig. 7.21a illustrates the H1 seminorm error over the tangled mesh using

FEM and i-TFEM as well as over the regular mesh. The reference solution is obtained with

N = 8. Once again, i-TFEM exhibits an optimal convergence rate (Fig. 7.21a). Moreover,

the condition number for i-TFEM is comparable to FEM (Fig. 7.21b).
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Figure 7.21: (a) H1 seminorm error versus mesh size and (b) condition number versus
mesh size for the punch problem with the four-element patch as the repeating unit. The
convergence rates are provided in the brackets.

7.3.4 Thin Beam

In this example, a beam undergoing large deflections is considered [94, 173, 43]. Specifi-

cally, a beam (see Fig. 7.22a) with a length-to-height ratio L/H = 100 is fixed at the left
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end and subjected to a vertical load F = 0.1 at the right end. The material parameters of

the Neo-Hookean model (Eq. 7.25) are K = 16000 and µ = 6000. The regular and tangled

meshes are shown in Fig. 7.22a and Fig. 7.22b, respectively.

F

L = 10

H = 0.1

(a)

F

(b)

Figure 7.22: (a) Thin beam geometry and boundary conditions with regular mesh and (b)
the corresponding tangled mesh. The repeating unit for the tangled mesh is zoomed in.

The number of elements in the mesh is governed by the mesh index N . For the regular

mesh, the number of elements in the horizontal direction is given as (10×2N) while in the

vertical direction, the number of elements is given by 2N The regular mesh in Fig 23 a

corresponds to N = 0. To obtain the corresponding tangled mesh, each element is divided

into a concave and a convex element. Hence the total number of elements in the tangled

mesh is 2 × (10 × 2N) × 2N . The final deformed configuration of the beam obtained via

i-TFEM over the tangled mesh with N = 3 is shown in Fig. 7.23.

1.2620

0.9461

0.6308

0.3154

0.0000

Vertical 
Displacement

Figure 7.23: Final deformed shape using i-TFEM with N = 3 tangled mesh.

To study the convergence, the vertical displacement at the top right corner of the beam

is considered. Fig. 7.24 plots the convergence of the regular mesh as well as the tangled
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mesh with FEM and i-TFEM. It can be seen that with i-TFEM, the solution converges

to the same value as that obtained using the regular mesh.
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Figure 7.24: Convergence study for thin beam bending problem.

7.3.5 Application: Aircraft Model

An example of a practical tangling problem is shown in Figure 7.25a, where the quadri-

lateral mesh for an aircraft model was created using the quad mesher proposed in [146].

One quad element (out of 600) was found to be concave, for this particular model. The

material parameters of the St. Venant-Kirchhoff model considered are E = 20 and ν = 0.3.

Symmetric (traction) boundary conditions are applied as illustrated in Fig. 7.25a; the re-

maining boundary segments are subjected to homogenous Dirichlet boundary conditions.

The problem was solved using i-TFEM and FEM. While FEM required 1.85 seconds to

solve the problem, i-TFEM required 2.13 seconds.

To compare the accuracy of FEM and i-TFEM, the reference solution was obtained by

solving the same problem over a very fine quadrilateral mesh with nearly 10,000 elements.

The problem was then solved over the tangled quad mesh shown in Fig. 7.25a using FEM

and i-TFEM. The i-TFEM solution at the re-entrant vertex had a relative error of 0.018%,

while the error for FEM was 0.11%. The i-TFEM post-processed solution is illustrated in

Fig. 7.25b.
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Figure 7.25: (a) Mesh for an aircraft model, with one concave element. (b) i-TFEM
solution.

7.4 Accelerated TFEM for Nonlinear Elasticity

7.4.1 Formulation

The proposed a-TFEM can be easily generalized to finite elasticity problems with geomet-

ric and material non-linearities. We employ the total Lagrangian formulation to model

the deformation; a detailed discussion can be found in [186, 21]. In standard FEM, the

structural equilibrium can be captured via the residual force vector R as

R(û) = f int − f ext = 0, (7.26)

where f ext is the external nodal load vector and f int is the internal nodal load.

However, in a-TFEM, the constraint matrix C must be incorporated into the equilib-

rium equation (Eq. 7.26) via the Lagrange multipliers λ̂ as follows:

R̂(û) +Cλ̂ = 0 (7.27)

C⊺û = 0 (7.28)
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Here, R̂ are computed in the same manner as R in the standard FEM, but including the

sign of the Jacobian determinant.

Since the problem is nonlinear, the Newton-Raphson method is employed to obtain the

displacement and Lagrange multiplier incrementally. The incremental displacements ∆ûn

and Lagrange multipliers ∆λ̂
n are obtained in i-TFEM by solving (see [131] for details):

⎡⎢⎢⎢⎢⎢⎣

K̂t C

C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆ûn

∆λ̂
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−(R̂ +Cλ̂
n)

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (7.29)

where, K̂t is the standard tangent stiffness matrix defined as

K̂t = ∂R̂(ûn−1)/∂û. (7.30)

The constraint matrix C can be obtained by evaluating the algebraic equations as de-

scribed in the previous chapters (for instance, see Section 6.1.1 for hexahedral elements)..

The displacements and Lagrange multipliers at nth Newton-Raphson iteration are updated

via:

ûn =∆ûn + ûn−1; λ̂
n =∆λ̂

n + λ̂n−1
.

When the mesh is not tangled, a-TFEM reduces to the standard FEM. Thus, Eq. 7.29

reduces to:

K̂t∆ûn = −R̂. (7.31)

7.4.2 Q9 Element: Punch Problem

To evaluate the performance of a-TFEM in the presence of geometric and material non-

linearities, we consider the punch problem [173, 94, 43, 73]. A rectangular block is subject

to a vertical load p (per unit length) uniformly distributed over the top left half of the

block where p = 1000 and H = 1; see Fig. 7.26 [43]. The top and left sides of the block are

fixed in the horizontal direction, while the bottom is fixed in the vertical direction. The

domain is meshed using Q9 elements with curved edges. The mesh size is governed by the
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index N where the number of elements in the regular mesh is 2N+1 × 2N . The regular and

tangled meshes with N = 2 are shown in Fig. 7.26. Observe the elements in both meshes

have curved edges.

H 

p 

H 

H 

A

Figure 7.26: Initial configuration of the punch problem with mesh size N = 2 ≡ 8 × 4 and
the tangled Q9 mesh.

The problem is solved over these meshes (using a-TFEM and FEM) assuming plane

strain condition and hyperelastic material model. Specifically, we employ the compressible

isotropic generalized neo-Hookean material model where the strain energy density is given

by [186, 21]:

ΨGNH (u) =
µ

2
(J−2/3F trb − 3) + K

2
(JF − 1)2 . (7.32)

Here, µ = 500 and K = 1700 are the material parameters. Deformed configurations for

untangled and tangled obtained (via a-TFEM) meshes are shown in Fig. 7.27.
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Figure 7.27: Deformed configuration for (a) regular mesh via FEM and (b) tangled mesh
via a-TFEM for the punch problem.

Further, a convergence study was then carried out as N was varied. The vertical

displacement u2 at the top-left corner point A for the two methods is plotted against the
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mesh index N in Fig. 7.28. One can observe that the solutions obtained by FEM over

the regular mesh and a-TFEM over the tangled mesh converge to the same solution while

standard FEM over the tangled mesh converges to an incorrect solution.
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Figure 7.28: Convergence study for the punch problem with Q9 elements.

7.4.3 Hexahedral element: 3D Large Deformation Analysis

To evaluate the performance of a-TFEM in the presence of geometric and material nonlin-

earities, we consider the cantilever beam problem [116] occupying the domain (−10,10) ×

(−1,1)×(0,2), subjected to a uniformly distributed vertical load p = 8000 applied in 5 load

steps. The material is assumed to be hyperelastic; specifically, we employ the compressible

isotropic generalized neo-Hookean material model where the strain energy density is given

by Eq. 7.32, where the material parameters are µ = 1.154× 107 and K = 2.5× 107. Regular

and tangled meshes (d = 0.4) are created by stacking the respective repeating units shown

in Fig. 6.6 in the 10N ×N ×N arrangement. The deformed configuration for tangled mesh

with N = 1 obtained via a-TFEM is shown in Fig. 7.29a. A convergence study is then

carried out by varying N . The vertical displacement u2 at the top-right corner point A

for the two methods is plotted against the mesh index N in Fig. 7.29b. For the tangled

mesh, similar to the linear elasticity problems presented earlier, a-TFEM converges to the

expected solution while standard FEM converges to an incorrect solution.
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Figure 7.29: (a) Deformed configuration of the cantilever beam with tangled mesh using
a-TFEM. (b) Convergence study.
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Chapter 8

Free and Forced Vibration

Analysis Using Accelerated-TFEM

8.1 a-TFEM for Elastodynamics

8.1.1 Weak Formulation

Now consider an elastodynamics problem over a domain Ω that is discretized into m

elements, some of which may be tangled (see Fig. 7.4). The body is subjected to body

forces b and tractions t on ∂Ωt. Assume that the field u satisfies Dirichlet boundary

conditions uj = ud
j over ∂Ωd.

Ω

t

Figure 8.1: Domain Ω with boundary conditions and arbitrary mesh. Elements in red are
tangled.

Let the elements be indexed by the set I = {1, . . . ,m}. Based on the principle of virtual

work, recall the weak form of the governing equation for elastodynamics problems:
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Find displacement u ∈H1 such that

b(δu, ρü) + a(δu,u) = f(δu), ∀δu ∈H1
0 (8.1)

where, b(δu, ρü) = ∑
j∈I
∫
Ej

δuj ⋅ ρüj dΩ (8.1a)

a(δu,u) = ∑
j∈I
∫
Ej

ε (δuj) ∶ σ (uj) dΩ (8.1b)

f(δu) = ∑
j∈I
∫
Ej

δuj ⋅ b dΩ +∑
j∈I
∫
∂Et

j

δuj ⋅ t dS (8.1c)

where ρ is the mass density and ü is the acceleration. Assuming linear elastic material, the

stress tensor σ is computed using the elasticity tensor D and strain tensor ε as σ =Dε.

When the mesh is tangled, the standard weak form will lead to erroneous results

(demonstrated later in Section 5). To resolve this, two modifications are made. Analogous

to computing the area as in Eq. 5.4, integrals over negative components are subtracted to

avoid double-counting. For example, for the two-element tangled mesh in Fig. 7.4a, the

first term of the weak form is expressed as:

b(δu, ρü) = ∫
C+1

δu+1 ⋅ ρü+1dΩ + ∫
C+2

δu+2 ⋅ ρü+2dΩ − ∫
C−1

δu−1 ⋅ ρü−1dΩ (8.2)

This applies to all tangled elements, and to all integral terms.

Next, consider the field compatibility constraint. The Lagrange multiplier method [44,

126, 164, 49, 120, 5] is employed to enforce this constraint over every tangled element. For

example, for the two-element mesh, following condition is required:

∫
F1

δλ1 ⋅ [[u1]] dΩ = 0 ∀ δλ1 ∈ L2, (8.3)

Moreover, Eq. 8.1 must be suitably modified as follows:

b(δu, ρü) + a(δu,u) + ∫
F1

[[δu1]] ⋅λ1 dΩ = f(δu), ∀δu ∈H1
0 .
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These concepts can now be generalized to an arbitrary mesh. Let the tangled elements

be identified by the index Itangled ⊂ I. The weak form in a-TFEM can then be expressed

as follows:

Find u ∈H1 and λ ∈ L2 such that

b(δu, ρü) + a(δu,u) + ∑
j∈Itangled

∫
Fj

[[δuj]] ⋅λj dΩ = f(δu), ∀δu ∈H1
0 (8.4a)

∑
j∈Itangled

∫
Fj

δλj ⋅ [[uj]] dΩ = 0, ∀δλ ∈ L2 (8.4b)

where,

b(δu, ρü) = ∑
j∈I
∫
C+j

δu+j ⋅ ρü+j dΩ − ∑
j∈Itangled

∫
C−j

δu−j ⋅ ρü−j dΩ (8.5a)

a(δu,u) = ∑
j∈I
∫
C+j

ε (δu+j ) ∶ σ (u+j )dΩ − ∑
j∈Itangled

∫
C−j

ε (δu−j ) ∶ σ (u−j )dΩ (8.5b)

f(δu) = ∑
j∈I
∫
C+j

δu+j ⋅ bdΩ − ∑
j∈Itangled

∫
C−j

δu−j ⋅ bdΩ +∑
j∈I
∫
∂Et

j

δuj ⋅ tdS (8.5c)

8.1.2 Finite Element Approximation

The primary field u and the Lagrange multiplier field λ are approximated as follows:

uj ≈N jdj , λj ≈Nλ
j λ̂j (8.6)

Adopting the (Bubnov-) Galerkin framework, Eq. 8.4 leads to the following system of

equations:

Md̈ +Kd +Cλ̂ = f (8.7a)

C⊺d = 0 (8.7b)
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where the mass matrix is given by:

M =∏
j∈I
∫
C+j

(N+
j
⊺
ρN+

j )dΩ − ∏
j∈Itangled

∫
C−j

(N−
j
⊺
ρN−

j )dΩ, (8.8)

the stiffness matrix is given by:

K =∏
j∈I
∫
C+j

(∇N+
j
⊺
D∇N+

j )dΩ − ∏
j∈Itangled

∫
C−j

(∇N−
j
⊺
D∇N−

j )dΩ, (8.9)

the forcing term is given by:

f =∏
j∈I
∫
C+j

N⊺
j b dΩ − ∏

j∈Itangled
∫
C−j

N−
j
⊺
b dΩ +∏

j∈I
∫
∂Et

j

N⊺
j t dS, (8.10)

and the constraint matrix by:

C = ∏
j∈Itangled

∫
Fj

[[N j]]⊺NλdΩ = ∏
j∈Itangled

∫
Fj

(N+
j −N−

j )
⊺
NλdΩ. (8.11)

In Eq. 7.22, the choice of Nλ depends on the choice of N , i.e., the type of element (Q4,

Q9, H8, etc.). Further, observe that the expressions in Eq. 8.8 through Eq. 7.22 entail

integration over non-convex regions (C+j , C−j , and Fj), associated with tangled elements.

Fortunately, this can be circumvented, as discussed in the previous chapters.

One can incorporate damping with a damping matrix G and the velocity vector ḋ as:

Md̈ +Gḋ +Kd +Cλ̂ = f (8.12a)

C⊺d = 0 (8.12b)

In this work, for simplicity, Rayleigh damping is assumed, i.e., G = α1M + α2K, where

α1 and α2 are the Rayleigh damping coefficients.
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8.1.3 Forced Vibration

Many schemes [24, 10, 71] can be used to solve Eq. 8.12. In this work, the Newmark

method (with implicit time integration) [71, 113] is adopted. Specifically, Eq. 8.12 at time

t +∆t is expressed as:

Md̈t+∆t +Gḋt+∆t +Kdt+∆t +Cλt+∆t = f t+∆t (8.13a)

C⊺dt+∆t = 0 (8.13b)

The displacement and velocity vectors are updated as [185, 69]:

dt+∆t = q0 + (β∆t2) d̈t+∆t where, q0 = dt +∆tḋt +
(∆t)2

2
(1 − 2β) d̈t (8.14a)

and ḋt+∆t = q1 + (γ∆t) d̈t+∆t where, q1 = ḋt +∆t (1 − γ) d̈t (8.14b)

where the Newmark paramters β and γ are set to β = 0.25 and γ = 0.5 [185, 69, 35, 60].

Substituting Eq. 8.14 in Eq. 8.13:

⎡⎢⎢⎢⎢⎢⎣

M + (γ∆t)G + (β∆t2)K C

(β∆t2)C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d̈t+∆t

λ̂t+∆t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f t+∆t −Kq0 −Mq1

−C⊺q0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (8.15)

that must be solved at each time step. Observe that when the mesh does not contain any

tangled elements, Eq. 8.15 reduces to (standard FEM):

[M + (γ∆t)G + (β∆t2)K] d̈t+∆t = f t+∆t −Kq0 −Mq1 (8.16)

Here, the expressions for M , K and f (Eq. 8.8 to Eq. 8.10) also reduce to that of the

standard FEM.



147

8.1.4 Free Vibration

If no damping or forcing terms exist, Eq. 8.12 reduces to:

Md̈ +Kd +Cλ̂ = 0 (8.17a)

C⊺d = 0 (8.17b)

In free vibration analysis, d (x, t) can be expressed as d (x, t) = d̄ (x) sin (ωt), where ω is

the frequency and d̄ is the eigenvector. Thus, Eq. 8.17 reduces to:

−ω2Md̄ +Kd̄ +Cλ̂ = 0 (8.18a)

C⊺d̄ = 0 (8.18b)

Thus, one must solve the following Eigen system:

⎡⎢⎢⎢⎢⎢⎣

K C

C⊺ 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d̄

λ̂

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= ω2

⎡⎢⎢⎢⎢⎢⎣

M 0

0 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d̄

λ̂

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (8.19)

The system can be reduced by using the singular value decomposition [60] of C⊺:

C⊺ = UΣV ⊺ (8.20)

The matrix V can be written as:

V ⊺ = {V n×r,V n×(n−r)}
⊺ (8.21)

where r is the rank of C⊺, namely the number of rows of C⊺. Performing coordinate

transformation (that satisfies the constraint),

d̄ = V n×(n−r)d̂ (8.22)
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Eq. 8.18 can be written as:

K̂d̂ = ω2M̂d̂ (8.23)

where, K̂(n−r)×(n−r) = V ⊺(n−r)×nKn×nV n×(n−r) and M̂ (n−r)×(n−r) = V ⊺(n−r)×nMn×nV n×(n−r)

are the dimension reduced stiffness and mass matrices respectively.

8.2 Numerical Experiments

The use of tangled meshes for free and forced vibration analysis is verified using the

proposed a-TFEM framework. Numerical experiments are conducted under the following

conditions:

• The implementation is in MATLAB R2022a, on a standard Windows 10 desktop

with Intel(R) Core(TM) i9-9820X CPU running at 3.3 GHz with 16 GB memory.

• The standard Gaussian quadrature is employed for all elements; that is, 2×2 for Q4,

3 × 3 for Q9, and 2 × 2 × 2 for H8.

• In standard FEM, the absolute value of Jacobian determinant is employed (to be

consistent with commercial FEM systems such as ANSYS). Without the absolute

value, and without the constraint, standard FEM can lead to nonsensical results

[131].

8.2.1 Cantilever Problem

Consider the cantilever beam in Fig. 8.2 with dimensions L = 20, h = 1, and b = 1. The

material properties are: Young’s modulus E = 1000, Poisson’s ratio ν = 0.25, and mass

density ρ = 0.016308. This problem is discussed in [123], and is investigated here using

Q4, Q9, and H8 tangled elements.
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L

A

b

h

Figure 8.2: A cantilever beam problem.

2D cantilever: Mesh construction

The beam is first modeled as a plane stress problem. Let us consider tangled and non-

tangled (regular) meshes for both 4-node (Q4) and 9-node (Q9) elements. The number of

elements is controlled by a mesh-index N , where the number of elements in the regular

mesh is 20N ×N . The corresponding tangled mesh is created by replacing each element

by a pair of elements (one of them being tangled) as illustrated in Fig. 8.4.

Fig. 8.3 illustrates a regular Q4 mesh when N = 2, and Fig. 8.4, the corresponding

tangled mesh. The repeating units for both meshes are shown on the right-hand side of

each figure. For the tangled mesh, the position of the re-entrant vertex R can be varied

using the parameter d ∈ (0,0.5) where d = 1/3 in Fig. 8.4.

 

Figure 8.3: Regular Q4 mesh with N = 2

x1
R  = (0.5+d) (x1

P- x1
Q)  + x1

Q 
 

x2
R  = (0.5+1.05d) (x2

P- x2
Q)  + x1

Q

P

Q

R

Figure 8.4: Tangled Q4 mesh with N = 2.

The repeating units for regular and tangled Q9 meshes are illustrated in Fig. 8.5a

and Fig. 8.5b respectively. Note the interior edges have a slight curvature. The extent of

tangling is once again controlled by d.
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(a) (b)

Figure 8.5: Q9 repeating unit for (a) regular (b) tangled meshes.

2D cantilever: Convergence of natural frequencies

Let us now compare the natural frequencies of the cantilever computed from three differ-

ent methods: standard FEM over regular mesh, standard FEM over tangled mesh, and

a-TFEM over tangled mesh. Using the Q4 elements, for all three methods, the first and

second natural frequencies are plotted as a function of N in Fig. 8.6a and Fig. 8.6b re-

spectively. Observe that FEM over a regular mesh and a-TFEM over the tangled mesh

converge to the same value. On the other hand, FEM over a tangled mesh converges to

an incorrect solution.
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Figure 8.6: Convergence of (a) first and (b) second natural frequency of the cantilever
computed with Q4 tangled elements.

Fig. 8.7 shows similar plots using Q9 elements. Here the error in standard FEM over

tangled meshes is even more pronounced.
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Figure 8.7: Convergence of (a) first and (b) second natural frequency of the cantilever
computed with Q9 tangled elements.

2D cantilever: Forced vibrations

In this example, the same cantilever beam is subjected to a transient loading f(t) =

sin (πt/T ) for 0 ≤ t ≤ T where T is the natural period of the cantilever (see Fig. 8.8). The

load is applied at the top right corner of the beam (point A in Fig. 8.2).

1.0

0.0

0.5

0 21

f (
t)

Normalized time ( t / T )

Figure 8.8: Transient loading for cantilever beam.

This problem is first solved using a tangled mesh with Q4 elements. Four different

mesh sizes are considered: N = 2,3,4, and 8. The vertical displacement of the cantilever

tip vA is plotted with respect to time as normalized/dimensionless parameters vAEI/L3

and t/T respectively in Fig. 8.9, where I = bh3/12 is the second moment of inertia. The

reference solution is obtained using a regular Q9 mesh of size 160 × 8 (N = 8). As one

can observe, a-TFEM converges to the reference solution as the mesh discretization is
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increased.
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Figure 8.9: Convergence for the tangled Q4 meshes using a-TFEM.

Next, for the mesh size of N = 8, let us compare the solutions obtained by the three

methods: FEM and a-TFEM using the tangled mesh and FEM using untangled mesh. The

normalized tip displacements obtained using the three methods are plotted in Fig. 8.10a

for Q4 elements, and Fig. 8.10b for Q9 elements. Observe that the response obtained

using a-TFEM (over the tangled mesh) matches with that obtained over the regular mesh.

However, FEM over the tangled mesh leads to incorrect results.
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Figure 8.10: Comparison of a-TFEM and FEM solutions with N = 8 mesh using (a) Q4
and (b) Q9 elements.
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2D cantilever beam: Degree of tangling

In the above study, the extent of tangling was fixed with d = 0.4. Next, let us study the

effect of tangling parameter d for a fixed mesh size N = 2. Fig. 8.11a plots the a-TFEM

solution for various values of d. Observe that as the tangling increases (i.e. as d increases),

the a-TFEM solution approaches the result obtained by the corresponding regular mesh.

To compare the performance of FEM and a-TFEM, the maximum value of normalized

tip displacement is plotted for d ∈ [0,0.499] in Fig. 8.11b. Observe that for d < 0.2,

a-TFEM solution matches FEM solution for the tangled mesh. The Jacobian at all the

Gauss points are positive and a-TFEM reduces to the standard FEM. For d ≥ 0.2, Jacobian

is negative at one or more Gauss points. As d ∈ [0.2,0.499] increases, a-TFEM results

approach the results obtained by employing the regular mesh. On the other hand, FEM

solutions increasingly move farther away from those obtained using regular mesh.
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Figure 8.11: Solutions obtained using Q4 mesh with mesh index N = 2 to study the effect
of varying the extent of tangling.

3D cantilever: Mesh construction

Next, the 3D cantilever is discretized using regular and tangled meshes. A regular mesh

with 60 × 3 × 3 elements is shown in Fig. 8.12.
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f (t)

Figure 8.12: Regular H8 mesh with N = 1

The regular repeating unit consists of 3 × 3 × 3 elements as shown in Fig. 8.13a. The

tangled repeating unit is constructed by modifying the non-tangled unit in two steps:

1. Each element of the regular mesh is converted into a 2-element unit, as depicted in

Fig. 8.13b, resulting in 54 elements. Positions of the new re-entrant nodes (nodes 9

and 10) are given as

x
(9)
3 = x(1)3 , x

(9)
i = x(1)i + (0.5 − d) si, i = 1,2 (8.24a)

x
(10)
3 = x(5)3 , x

(10)
i = x(5)i + (0.6 − d) si, i = 1,2 (8.24b)

where si is the element size in ith direction and the parameter d controls the extent

of tangling (discussed later).

2. Then the node B (highlighted in red in Fig. 8.13a) is moved, using the same param-

eter d, towards the left-hand side.

x
(B)
d = x(B) − d × [1.75s1 1.75s2 0.7s3]⊺. (8.25a)

The value of the parameter d can be varied from 0 to 0.48. The front view of a resulting

tangled mesh for d = 0.4 is illustrated in Fig. 8.13c.
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Figure 8.13: (a) Regular mesh (b) Non-tangled element converted to tangled element (c)
Front view of the tangled mesh.

The tangled mesh unit (Fig. 8.13c) has 54 elements; out of which 28 elements are

tangled. Fig. 8.14 illustrates some of the tangled elements. These elements are non-convex

with non-planar faces.
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Figure 8.14: Some tangled elements present in the mesh shown in Fig. 8.13c

3D cantilever: Forced vibration

A forced vibration analysis of the 3D cantilever beam is performed as described in sec-

tion 8.2.1. To discretize the domain, N number of cubic repeating units described above
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are arranged in the configuration of (20N ×N ×N).

This problem is solved using the tangled meshes with N = 1 to 3 and d = 0.4. The

response of the cantilever using a-TFEM is depicted in Fig. 8.15a. The normalized vertical

displacement of the cantilever tip vAEI/L3 is plotted with respect to normalized time t/T .

The reference solution is obtained by considering a regular (non-tangled) mesh with 67,500

elements. Next, for mesh with N = 2, Fig. 8.15b compares the solutions obtained by the

three methods: FEM and a-TFEM using the tangled mesh and FEM using untangled

mesh. Similar convergence and trends as in the 2D problem can be observed.
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Figure 8.15: (a) Convergence for tangled hexahedral (H8) meshes using a-TFEM (b)
Comparison of a-TFEM and FEM solutions obtained using hexahedral meshes with the
size N = 2 .

3D cantilever: Degree of tangling

In the above study, the extent of tangling was fixed with d = 0.4. Here, the effect of tangling

on the computed solutions is studied by varying d from change 0 to 0.48 for a fixed mesh

size, with N = 2. Once again, as d increases, the a-TFEM solution approaches the reference

solution as illustrated in Fig. 8.16a. Next, the maximum normalized displacement obtained

using a-TFEM (over tangled mesh) and FEM (obtained over regular and tangled mesh) is

plotted in Fig. 8.16b. As seen in the 2D example, FEM deviates from the expected results

with an increase in d, as opposed to a-TFEM.
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Figure 8.16: Solutions with hexahedral (H8) N = 2 mesh to study the effect of varying the
extent of tangling.

8.2.2 Spherical Shell with Damping

Next, the damping of a spherical shell subjected to a concentrated load is investigated

as illustrated in Fig. 8.17. The problem has been previously investigated in [92]. The

geometric parameters of the shell are as follows: inner radius = 12, thickness = 0.1, and

outer chord radius c = 2.29. A concentrated load f(t) = cos(0.05t) is applied at the apex

while the outer surface is fixed along the thickness. Rayleigh damping coefficients are

α1 = 0.005, α2 = 0.272 while other material parameters are E = 1.0, ν = 0.3, and ρ = 1.0.

f (t)

c

Figure 8.17: Spherical shell geometry

Due to axisymmetric nature of the shell, it is modeled in 2D as shown in Fig. 8.18. The

mesh for this example is constructed by using the 4-element mesh as the basic repeating

unit, as in Fig. 8.18. The extent of tangling can be varied by the parameter d ∈ [0,0.5].

For d = 0, a regular mesh is obtained. As d increases, one out of the four elements gets

tangled. In this experiment, tangled mesh is constructed with d = 0.475 and has 40×4 Q9
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elements.
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Figure 8.18: Spherical shell with Q9 elements with straight edges.

The apex (point A in Fig. 8.18) displacement with respect to time is plotted in Fig. 8.19.

Once again, the solution obtained using a-TFEM with the tangled mesh closely matches

the solution obtained using the regular mesh.
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Figure 8.19: Transient responses of the spherical shell subjected to a harmonic loading.

8.2.3 3D Real-world Tangled Meshes: Free Vibration

Finally, real-world tangled meshes illustrated in Fig. 8.20 (provided in [103]) are consid-

ered. Tangled elements are highlighted in red color in Fig. 8.20a. Although it is feasible

to untangle these meshes [103], the use of a-TFEM eliminates the need for untangling.
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(a) (b)

Figure 8.20: Tangled mesh of (a) linking rod and (b) block provided by [103]. Tangled
elements are highlighted in red.

For free vibration analysis, the following material properties are considered: E = 2.05×

107, ν = 0.28, and ρ = 0.016308. For the linking rod, the inner surface of the smaller hole

is fixed, while the bottom face is fixed for the block. The first mode deformation obtained

by employing a-TFEM is visualized in Fig. 8.21.

(a)
(b)

Figure 8.21: The first mode deformation for (a) linking rod and (b) block; obtained using
a-TFEM.

Table 8.1 compares the first four natural frequencies obtained via a-TFEM using the

tangled mesh with those obtained using the untangled mesh. It can be observed that

the natural frequencies obtained from both methods are comparable, and the additional

computational time required for a-TFEM is minimal. The time required to untangle the

mesh is not included.
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Table 8.1: Comparison of solutions over tangled and untangled meshes provided in [103].

Model [103] Mesh ∣J ∣min
No. of Tangled Natural frequency (Hz) Time

Hexahedra 1 2 3 4 (s)

linking rod tangled -0.39 8/11316 6.37 15.54 28.82 68.99 17.17
untangled 0.55 0/11316 6.36 15.53 28.79 68.91 17.14

block tangled -0.70 10/2520 1542 1544 5604 6539 3.55
untangled 0.25 0/2520 1547 1548 5584 6731 3.52
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Chapter 9

Conclusion

9.1 Contributions of the Thesis

Tangled meshes are conventionally considered unacceptable in FEM due to the erroneous

results they produce. However, generating tangle-free meshes for complex geometries is

often impossible, leading to the occurrence of tangled (non-convex) elements with negative

Jacobian determinants. Consequently, many untangling methods have been proposed;

however, untangling is not always achievable.

This thesis challenges the conventional view on tangled elements in FEM by exploring

their potential inclusion in the simulations, thereby alleviating meshing and untangling

challenges. To address this, a novel approach named the Tangled Finite Element Method

(TFEM) is introduced. TFEM hinges on two fundamental principles: redefining the field

in the tangled region to eliminate ambiguity and enforcing field compatibility for all tangled

elements. By incorporating these principles, TFEM achieves accurate results and optimal

convergence rates while requiring minimal changes to the existing FEM framework.

The thesis introduces three variations of TFEM: oriented TFEM (o-TFEM), isopara-

metric TFEM (i-TFEM), and accelerated-isoparametric TFEM (a-TFEM), each with dis-

tinct approaches to stiffness matrix computation. Among these, a-TFEM stands out as

the recommended method, adeptly managing real-world tangled meshes, including cases

involving self-penetrating elements, with minimal computational overhead.
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Applicability of TFEM spans various element types, encompassing 4-node quadrilat-

eral, higher-order elements like the 9-node quadrilateral and 6-node triangular, as well as

3D 8-node hexahedral elements. The method has been successfully employed to solve 2D

and 3D linear and nonlinear elasticity, Poisson equations, and both free and forced vi-

bration problems using tangled meshes. Several real-world tangled meshes are considered

which further underlines the robustness and efficiency of TFEM.

The thesis demonstrates that TFEM effectively relaxes the tangle-free mesh constraint

and obviates the necessity for untangling, opening a new paradigm in mesh generation.

The implications on mesh generators are two-fold: firstly, they can focus on other meshing

requirements, particularly geometric conformity for more reliable FEM results, without

worrying about tangling. Secondly, the thesis demonstrates that tangled meshes, with the

use of TFEM, can deliver comparable accuracy to their untangled counterparts. Since

mesh quality metrics reflect the solution accuracy, the thesis challenges the traditional

practice of assigning the lowest quality parameter values to the tangled elements. This

thesis suggests that quality parameters can be independent of whether the element is

tangled or not.

In essence, this thesis reevaluates the necessity of tangle-free meshes and demonstrates

that tangled meshes are indeed suitable for FEM analysis with minimal modifications

to the existing finite element formulation. TFEM emerges as a viable solution to han-

dle tangled meshes, potentially simplifying mesh generation complexities and enabling

more practical and efficient engineering analyses. With TFEM, formerly unacceptable

tangled meshes can now be deemed acceptable, and mesh generators can leverage their

existing algorithms without grappling with the creation of negative Jacobian elements.

This shift liberates mesh generators to concentrate on geometric conformance, topological

constraints, and other aspects of mesh quality, transforming the meshing landscape.
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9.2 Future Work

While the thesis lays out the framework for TFEM and its variations, there remain promis-

ing opportunities and scope for improvement. Following are some research topics.

9.2.1 Mesh Quality for Tangled Elements

Numerous mesh quality indicators have been developed to assess distortion, skewness,

and other factors. The goal of a good quality indicator is to provide insights into the

accuracy of numerical methods [151]. Since it is generally assumed that higher mesh

quality leads to improved accuracy in FEM solutions, mesh generators and optimizers

strive to maximize mesh quality. One of the most common quality indicators is the scaled

Jacobian [85]. Tangled elements are deemed to be invalid, and/or assigned a quality of

zero [85]. However, using TFEM, tangled meshes can provide comparable or even superior

accuracy compared to regular meshes. This challenges the conventional definition of mesh

quality indicators.

Typical plots of error (L2 norm error in displacement and stress) as a function of the

minimum Jacobian within the mesh are shown in Fig. 9.1 (see [134] for details). This

particular plot is obtained for the 3D torsion problem described in Chapter 6 [134]. As

one can observe, accuracy improves as we move away from zero Jacobian, whether in the

positive or negative direction.
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Figure 9.1: Plot of (a) displacement error and (b) stress error vs minimum Jacobian.

This suggests that one must reevaluate mesh quality indicators to accommodate tan-

gled elements. One potential indicator, for instance, could be the absolute value of the

Jacobian instead of the signed value. In other words, we can eliminate the tangle-free

constraint on mesh generators. Further research is needed since these findings are specific

to the problem and mesh considered.

9.2.2 Application to Extreme Deformation

The thesis presents the TFEM framework for solving nonlinear elasticity problems based

on the total Lagrangian formulation where the initial mesh is tangled. In practice, tan-

gling can occur during FE simulations, even when the initial mesh is tangle-free. This

is particularly prevalent in updated Lagrangian or ALE simulations involving large/ex-

treme mesh movement. To address tangling challenge and prevent premature termination

of simulations, a possible solution is to consider transitioning to TFEM when tangling

occurs. By doing so, remeshing efforts can be minimized, leading to more efficient and

uninterrupted simulations.
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9.2.3 Extension to Isogeometric Analysis

There are promising opportunities beyond FEM, especially in isogeometric analysis (IGA).

IGA can be considered as a is a numerical method for solving boundary value problems

[70, 11]. In contrast to FEM, IGA is tightly integrated with the geometry, often leading

to more accurate results, especially for curved geometries. Parameterization in IGA is

equivalent to mesh generation in FEM [177] and is perhaps the most critical step since it

affects all aspects of IGA [128, 176]. Parameterization means to find a mapping from a

unit square (in parametric space) to the given domain.

The primary constraint for IGA to be effective is that the parameterization must be

injective (invertible) [177]. In other words, the determinant of the Jacobian associated

with the mapping must be positive. Fig. 9.2 illustrates a mapping that is invalid [58].

Similar to FEM, such invalid parameterization leads to erroneous results in IGA.

Parametric Space

ξ2

ξ1

Desired domain

x1

x2

Non-injective 

Physical Space

Figure 9.2: Parametric mapping from a unit square onto a computational domain.

Finding a suitable parameterization that is both injective and uniform is one of the

main challenges in IGA. To quote a recent publication [30] “ (parameterization) is difficult

and usually involves manual interaction, and has significantly hindered the development

and application of IGA”.

Given that TFEM has shown promising results in handling tangled elements in FEM,

it is worth exploring its extension to IGA. Developing such an approach could signifi-

cantly improve the efficiency and applicability of IGA, especially in dealing with complex

geometries.
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