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Abstract   

 Component mode synthesis is a branch of dynamic substructuring in which the subcomponents of 

an assembled structure are represented by the projection of the physical system onto a reduced basis 

consisting of the generalized modes for each subcomponent.  These reduced models are used to compute 

the dynamics of a built-up structure.  Linear component mode synthesis has been used for decades in 

order to predict the response of an assembly by combining several subcomponent models.  These 

subcomponent models take many forms, as such, component mode synthesis techniques typically differ in 

which types of component modes are chosen to represent the dynamics of each subcomponent.  Many 

component mode forms have been developed in order to reduce the complexity of the system away from 

the interface of subcomponents, and preserve the motion and forces at the connection between them.  

Traditionally, component mode synthesis techniques connect the linear dynamics of subcomponents by 

imposing compatibility at a selection of interface degrees of freedom.  As such, these techniques are well 

suited for predicting the linear response of a linear system.  This dissertation extends linear component 

mode synthesis techniques using nonlinear subcomponent models and has contributed to this research 

field in two ways.   

 The first contribution is a novel technique to identify and quantify the modal nonlinear dynamics 

of a structure.  This dissertation provides a methodology for developing a model of the nonlinear 

dynamics for weakly nonlinear subcomponents.  In a weakly nonlinear structure, the mode shapes of the 

structure are not dependant on amplitude and there is negligible coupling between any given pair of 

modes.  Experimental evidence has shown that bolted assemblies often contain weak nonlinearities where 

the damping and frequency of a single harmonic are dependent on vibration amplitude.  This dissertation 

uses a weakly nonlinear framework to represent a structure as a series of weakly nonlinear modes, where 

each mode can be treated as a single degree of freedom oscillator which include the nonlinear dynamics 

of the mode.  This dissertation provides a methodology to identify these nonlinear modal models from 
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experimental measurements.  This allows a substructure model to be reduced by its linear modes, but still 

accounts for the nonlinearity that may be present due to internal joints. 

 The second contribution is the use of these nonlinear modal models to generate dynamic 

substructuring predictions.  This dissertation uses the Transmission Simulator method to perform 

experimental substructuring predictions.  The method allows the interface between two subcomponents to 

be contained in an experimental model, which helps to preserve the boundary conditions of the joint.  

This dissertation utilizes weakly nonlinear modal models to represent this experimental subcomponent 

containing the nonlinear joint dynamics.  Linear and nonlinear subcomponent models are then assembled 

using a primal formulation to impose compatibility at the interface between components and predict the 

nonlinear response of the assembled structure.  This technique is readily applied to two simulated 

experimental systems.  For each system investigated, the nonlinear modal models were used to obtain 

highly accurate substructuring predictions for assembled structures.  Because all of these examples are 

completed on numerical models of the system, they do not account for experimental error or noise that 

would be present in a physical experiment.  However, the simulations do prove that substructuring is a 

viable prediction method as long as the structure remains in the micro-slip regime 

    The accuracy of the simulated experimental substructuring examples led to the extension of this 

technique using physical hardware.  The proposed nonlinear modal modeling framework is finally applied 

to using experimental measurements on a laboratory structure.  Nonlinear modal models are extracted 

from experimental measurements and used to predict the response of a modified assembly.  These 

predictions are compared to a truth test performed on the modified structure and proved to be 

extraordinarily accurate.  This is the first application of the proposed techniques to experimental 

hardware.  This confirmed, that by using the Transmission Simulator method, the nonlinearities of a 

weakly nonlinear system can be modeled at the subcomponent level and then used to compute nonlinear 

response predictions of an assembled structure. 
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Abbreviations and Nomenclature 

Abbreviations 

 BRB Brake-Reuss Beam 

 CB Craig-Bampton  

 CMS Component Mode Synthesis 

 CMIF Complex Modal Indicator Function 

 CPB Cylinder-Plate-Beam 

 DOF Degree of Freedom 

 FBS Frequency Based Substructuring 

 FFT Fast Fourier Transform 

 FRF Frequency Response Function 

 MAC  Modal Assurance Criterion 

 MCFS Modal Constraints for Fixture and Subsystem 

 NOMAD Nonlinear Mechanics and Dynamics 

 NLROM Nonlinear Reduced Order Model 

 RFS Restoring Force Surface 

 SDOF Single Degree of Freedom 

 SMAC Synthesize Modes and Correlate 

 TS Transmission Simulator 

 

Nomenclature 

  Boolean constraint matrix B

 B  modal constraint matrix 

  quadratic and cubic damping coefficients  1 2,c c

  dissipation D

  general joint force jF

  Smallwood model joint force RF

 sF  Iwan joint slip force 
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  FRF matrix H

  identity matrix I

  Iwan joint low level stiffness 0K

  Smallwood model low amplitude stiffness RK

  Iwan joint stiffness TK

  Iwan joint high level stiffness K

  quadratic and cubic stiffness coefficients  1 2,k k

  synthesizing matrix L

  mass, damping and stiffness matrices , ,M C K

 , ,M C K  synthesized mass, damping and stiffness matrices 

  subcomponent modal displacement, velocity, and acceleration , ,q q q 

  Smallwood model power-law dissipation factor r

  joint displacement u

  weighting vector w

  physical displacement, velocity, and acceleration x, x, x  

   Iwan joint stiffness ratio factor 

   viscous damping ratio 

  assembled modal displacement, velocity, and acceleration ,  

 ( )   kernel for joint characterization 

   Iwan joint power-law dissipation factor 

  mode shape matrix 

 max  maximum slider state for macro-slip 

 Ψ  SMAC filter weighting vector 

 ( )r t  Hilbert envelope 

 ( )i t  Hilbert unwrapped phase 

 n  natural frequency 

 d  damped natural frequency 
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1 Introduction  

1.1 Motivation 

 It is commonplace for complicated engineering structures to consist of smaller subcomponents 

designed by individual engineers or different companies who are each responsible for the design and 

analysis of separate subcomponents.  This individual component approach allows a design engineer to 

truly focus on a specific piece of hardware and on the essential details to complete a time critical project.  

This approach is essential for the design of complicated systems as it would be impossible for one person 

or team to master the entire system and find the time to design each part.  While a design engineer may be 

responsible for the detailed design of an individual part, it is also important that the engineer understand 

the role of their component in an assembly-level response.  Predicting the assembly-level response can be 

quite difficult when the design of neighboring components is handled by an outside vendor as these 

components may have unknown material properties or complicated geometry.  One method to account for 

these neighboring subcomponents is to predict the assembled structure's response using experimental-

analytical substructuring. 

 Experimental-analytical substructuring allows one to connect an experimental model of one 

subcomponent to an analytically derived model, created in a finite element program, for a neighboring 

subcomponent.  This process can decrease the cost of analysis as more expensive simulations and tests on 

large assemblies can be avoided when the dynamic model of the full system can be assembled via a series 

of finite element or test based models on smaller, simpler subcomponents. 

 Substructuring is a natural form of reduced order modeling since the subcomponent models that 

are used (both, experimental and analytical) are typically reduced to include only the most critical 

features.  These reduced subcomponents are coupled to predict the response for the assembled structure.  

While one could name countless examples where experimental-analytical substructuring would be 

beneficial, this section shall focus on the following example in order to simplify the discussion.  This 
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example can be observed in the aircraft engine industry where the manufacturing and design of the aft 

engine casing may be completed by an outside vendor.  In this example, the structure is divided into two 

subcomponents as shown in Fig. 1. 

Subcomponent B

Front Casing

(FEM Model)

Subcomponent A

Aft Casing

(Experimental Model)

 

Figure 1. Substructuring Schematic 
 

 Subcomponent B is the front casing of a jet engine assembly, containing the fan and compressor 

module.  This can be represented by a finite element model created by a design engineer or hardware 

owner.  Subcomponent A is the aft casing for the same jet engine assembly, which contains the combustor 

and turbine modules.  These casings may be owned by different design teams, but the overall motion of 

the jet engine is very important to assure that alignment is maintained as the engine is loaded 

dynamically.  Engine alignment and straightness is essential to the performance of a jet engine as it can 

have a direct impact on the blade tip clearances between the rotating blades and the engine casing.  By 

using experimental-analytical substructuring, it is possible to determine what resonances might exist and 

whether the resulting response levels will be too large causing an individual casing structure to fail.  Here, 

the aft casing could be represented by an experimental model provided by a modal test engineer.  

Experimental-analytical substructuring can be used to couple this experimental model to a high-fidelity 

finite element model of the front case and generate a prediction of the assembled system response.  This 

could allow the engineer designing the front casing to make adjustments to the front casing model and 
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understand the effects of those changes on the assembled structure.  Figure 2 shows an example jet engine 

casing configuration. 

Aft Casing

Front Casing

 

Figure 2. FJ44-1AP Jet Engine at AirVenture Oshkosh 
 

 Interfaces in built-up structures are responsible for a large portion of the damping in the assembly 

[1, 2].  Friction in these jointed surfaces is often a large source of nonlinear damping in structures.  Recent 

works [3, 4] have shown that linear models in jointed structures can overpredict response levels by a 

factor of 2-3.  Many of these jointed structures are weakly nonlinear, meaning the modes of the structure 

remain uncoupled and the corresponding mode shapes do not change significantly at higher amplitudes.  

As seen in Fig. 2, the assembled engine casing contains several joints, between the front and aft casings 

and with the bolted on engine accessories.  In this work these nonlinearities are defined using nonlinear 

modal models, meaning that the nonlinearity of the system is described on a mode-by-mode basis.  This 

method is only applicable to weakly nonlinear structures in the absence of closely spaced natural 

frequencies.    

 Current experimental-analytical substructuring techniques are an effective tool for predicting the 

linear response of an assembled system but do not account for the nonlinearity introduced by the joints 

between subcomponents.  In this dissertation, a novel approach is developed to include joint nonlinearities 

in experimental-analytical substructuring predictions.  This begins by using current experimental-
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analytical substructuring tools to predict linear system response.  The subcomponent hardware is then 

probed experimentally to identify reduced nonlinear models to represent each subcomponent.  These 

nonlinear subcomponent models enable one to predict the nonlinear system level response of the built-up 

structure.  Novel contributions to this thesis include: 

 Experimental evidence that the modal Iwan nonlinear framework is applicable to realistic joints, 

as shown on two example systems in Chapter 3 

 The first simulation of experimental-analytical modal substructuring using a nonlinear modal 

model framework.  These results demonstrate that nonlinear substructuring techniques work for a 

system whose discrete joints are modeled as Iwan elements.  This content is discussed in  

Chapter 4 

 Highly accurate experimental-analytical substructuring predictions using test and finite element 

derived models.  This shows that it is feasible to test a laboratory structure accurately enough to 

perform substructuring and obtain high-quality predictions, as discussed in Chapter 5  

Dynamic substructuring techniques and nonlinear subcomponent models will be used extensively 

in this dissertation.  To lay the foundation for this, traditional component mode synthesis theory and 

techniques are reviewed in detail in Section 1.2.  While the benefits of interface loading techniques are 

reviewed in Section 1.3.  Finally, a brief review of nonlinear joint models and nonlinear substructuring is 

presented in Sections 1.4 and 1.5. 

1.2 Background - Traditional Component Mode Synthesis 

 Experimental dynamic substructuring methods can be grouped into two categories. The first, 

Frequency-Based Substructuring (FBS), operates on the frequency response functions (FRFs) of the 

subcomponents to predict the response (i.e. the FRFs) of the assembled system.  These FBS methods are 

sometimes referred to as impedance coupling [5-7], or admittance modeling [8, 9].  The second category 

operates on the subcomponent equations of motion and is often called Modal Substructuring or 
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Component Mode Synthesis (CMS) [10-12].   A recent review of both FBS and CMS methods was 

presented by de Klerk et al. in [13].  CMS is generally understood as a connection of subcomponents 

based on the projection of the physical system onto a reduced basis consisting of the generalized modes of 

the subcomponents.   

 In the literature, most methods of CMS differ in which types of component modes are chosen to 

reduce each subcomponent.  One popular dynamic substructuring techniques uses a selection of fixed-

interface degrees of freedom and a statically determined solution on the interior of the subcomponent. 

This was first presented by Hurty [14, 15] and later Craig-Bampton improved the technique in [16] using 

a different method of computing the model.  Other reduction methods quickly populated the field 

including the Guyan static condensation methods [17].  A few component mode representations use the 

free-interface modes and attachment modes of a subcomponent [18, 19].  When these modes are used in 

CMS, it is considered the Craig-Chang method [18, 20].  Note, the dual Craig-Bampton method [21] uses 

these same free-interface modes and differs only in the way which constraints are enforced between 

subcomponents.  These methods all reduce the system away from the interface but augment the basis in 

order to preserve loads and dynamics at the interface. 

 The Craig-Bampton method [16] retains every node at the interfaces between subcomponents.  In 

structures with large interfaces this can be quite cumbersome.  Craig and Chang first proposed interface 

reduction in [22].  Castanier et al. looked at using characteristics constraint modes to further reduce each 

component in [23] with good success.  They reduced the interface by performing a secondary eigenvalue 

analysis on the interface partition of the assembled Craig-Bampton matrices.  Recently, Hong et al. [24] 

proposed an alternative method that performs this secondary eigenvalue analysis at the subcomponent 

level before synthesizing the system.  The Transmission Simulator (TS) method [25-28] is another 

method of interface reduction, that is primarily designed for experimental applications.  In the TS method 

the interface of the subcomponent is mass-loaded to preserve the forces that the interface would observe 

in an assembled structure.  This is another methodology to obtain a proper basis that preserves 
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information at the interface.  The TS method and other mass-loading techniques are discussed in further 

detail in Chapter 1.3.  

 Typically, the easiest modal basis to obtain for an experimental subcomponent are the free 

boundary modes of the structure.  These free boundary modes can be obtained by testing a structure in a 

free state, often suspended by bungee cords.  To complete component mode synthesis using the free 

boundary modes each component is represented using modal parameters (i.e. natural frequencies, 

damping ratios, and mode shapes) and by using the modal transformation to relate physical displacement, 

,  to modal displacement, q , written as, x

 
x q

 (1) 

 Each subcomponent is written as a set of uncoupled equations of motion in modal coordinates, q , 

written for subcomponent A as,  

 
22 T

A A A A A A A A A          I q q q 
    F

 (2) 

The equations of motion for each system can be concatenated into a block matrix form to create an 

uncoupled set of equations of motions. 

  (3) 
2

2

2

2

T
A A AA A A A A A

T
B B B B B BB B B

  

  

                                                   

0 0I q q q

I q q q0 0

 
 

 
 

 
 

0

0




F

F




 Both subcomponents, A  and B , are uncoupled as there are no coupling terms in any of the 

system matrices.  To synthesize these subcomponents, the interface motion can be constrained using a 

constraint equation in the form of 

  (4)  A

B

 
 

 

x
0

x
B

where B  is typically a Boolean matrix that relates the motion between two degrees of freedom on 

differing subcomponents.  In essence, the shared degrees of freedom between the two subcomponents are 

set equal to each other.  For example, if point Ax  from Subcomponent A, and Bx  from Subcomponent B 
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have the same motion the  constraint matrix would be equal to B  1 1  as this satisfies the constraint 

that .  This holds true if both Subcomponents A and B only contain a single degree of 

freedom.  A similar constraint equation can be written for substructures containing multiple degrees of 

freedom to construct a complete constraint matrix, . 

0A Bx x 

B

 To complete modal substructuring, these constraints are cast into the modal domain by using the 

modal transformation from Eqn. (1).  The first two terms of this new constraint matrix can be gathered to 

formulate a modal constraint matrix, B . 

  A BA A

B B

 
 
  B

   
   

   

0 q q
B 0

0 q q




 (5) 

 The next step is to generate a transformation matrix that will transform the set of unconstrained 

modal coordinates, q , from Eqn. (3) to some set of synthesized coordinates, η , that enforce the 

constraints from Eqn. (5).  To simplify matters, a new set of coordinates is defined that always satisfies 

these constraints as follows 

 Lη  (6) q

Substituting this into the modal constraint equation yields, 

 0BL  (7) η

where, for any arbitrary  the transformation matrix, , must reside in the nullspace of η L B . 

 ( )nullL  B  (8) 

 This transformation is then applied to the modal equations of motion, Eqn. (3), to generate the 

equations of motion of the assembly as predicted by substructuring. 

  (9) T TMη Cη η L Φ F  K

 A

B

 
  

 
T I

M L L
I

0

0

 (10) 
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 2

2

A A

B B

 

 

    
    

T
0

C L L
0







 (11) 

 
2

2

A

B





    
    

T
0

K L L
0







 (12) 

 A

B

 
  
 

0
x η

0




L  (13) 

 The eigenvalue problem can be solved for these synthesized equations of motion, which results in 

predictions for the natural frequencies, damping ratios and mode shapes of the  built-up assembly.  These 

predictions can be used to determine if a system resonance may cause premature failure for a 

subcomponent under a specific operating condition.  With these predictions one can estimate the built-up 

system response without ever having to create an analytical model for the experimental subcomponent.  In 

the example of the jet engine casing assembly, the front casing design engineer can now predict the 

assembly response for the entire jet engine casing, by combining his finite element model for the front 

casing with an experimental dynamic model for the aft casing. 

1.3 Background - Transmission Simulator Method 

 As mentioned in Section 1.2, most CMS techniques differ based on the component modes used to 

describe individual subcomponents.  It is imperative that the component modes of the individual 

subcomponents form an adequate basis for the motion of the coupled assembly (Ch. 17, [29]).  If this is 

not the case, the subcomponent models will have a difficult time predicting the motion of the assembly 

and may even lead to erroneous substructuring predictions.  Numerous methods have been proposed to 

achieve said modal basis.  These include the traditional Craig-Bampton [16] and free-interface methods 

[10, 30] as discussed in Chapter 1.2.  Not all of these can be used in an experimental context.  For 

example, the constraint modes required by the Craig-Bampton method are practically impossible to 

measure experimentally. 
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 One method that is more obtainable, from an experimental viewpoint, is to mass-load the 

interface by attaching masses to the test article at the interface degrees of freedom (DOF).  Mass-loading 

the interface provides many advantages.  When a subcomponent is tested separate from an assembly, 

there are no forces exerted on the interface DOF.  This is the location where the structure will eventually 

be connected to another component.  Hence, the modal basis (called free modes because the boundaries 

and interface are free) all involve zero loading at the interface.  Because of this fact, each subcomponent 

is required to retain a large number of component modes to accurately predict the motion of the assembly.  

When masses are attached to the interface they exert forces at the interface in all of the component modes.  

In addition, it reduces the resonant frequencies, possibly bringing more of the modes down into the 

testable bandwidth.  The idea of mass-loading the interface was first approached by Goldenberg and 

Shapiro [31].  Later, this was expanded by Kanda et al. in [32] where the masses were instrumented to 

estimate their dynamics and then the effects of these masses were removed from the system.  This created 

an experimentally derived model that captured the interface effects due to the mass-loading.  Chandler 

and Tinker successfully studied these mass additive methods analytically in [33] on a spacecraft 

application. 

 Despite the success of [31-33], the addition of this mass comes with some difficulties.  Designing 

a mass that is large enough to have the desired interface loading while also being rigid in the frequency 

band of interest can be difficult.  Adding this mass may also create a need for increased instrumentation 

as the rotations and translations of the added mass need to be measured.  Also, when a mass is used to 

load an interface experimentally, the dynamic effects of the mass on the subcomponent must be removed 

prior to predicting the response of the built-up assembly.  This removal process is known as substructure 

uncoupling [34] which is a less commonly used technique.  Substructure uncoupling has been 

documented when it was used to remove rigid masses from a structure [9, 32, 35], Sjovall and 

Abrahamson further investigated these uncoupling procedures in [36].  They presented a FBS approach 

that makes use of the responses away from the connection point to address this.   
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 Recently, Allen et al. have proposed a method termed the Transmission Simulator (TS) Method 

[25-28].  Their work builds upon past experience removing the effects of a mass-loading fixture, but does 

so in the modal domain instead of using the frequency response functions.  In this method the 

transmission simulator is a fixture that mass-loads the interface between two subcomponents.  A modal 

test is performed on a subcomponent with the transmission simulator attached which simulates the forces 

that would be located at the interface in the built-up structure.  The effects of this fixture are then 

subtracted in the substructuring process leaving an experimental model for the original subcomponent but 

including the dynamics due to loading the interface.  Predictions produced with the TS method were 

shown to give more accurate results for the system studied in [26].  This method was also demonstrated 

further by Rohe, as discussed in [37] on a few industrial structures.  

 As such, the scheme presented in Fig. 3 is an improvement over the scheme of Fig. 1 that uses 

only free modes of the front and aft casings.  In Fig. 3, the experimental aft casing model benefits from a 

more realistic interface condition caused by the mass loading produced by the TS.  Note that the TS must 

be subtracted before finalizing an assembly-level prediction.     

 

Subcomponent D

Front Casting

(FEM Model)

Subcomponent C

Aft Casing and 
Transmission Simulator

(Experimental Model)

Subcomponent A

Transmission Simulator

(FEM Model)

+ -

 

Figure 3. Transmission Simulator Substructuring Schematic 
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 When obtaining an experimental model for Subcomponent C the transmission simulator is 

already attached.  A finite element model of the front casing, Subcomponent D, is to be added to the 

system, while a negative copy of the transmission simulator will be removed.  The DOF for all three 

subcomponents are concatenated into the block matrix equations of motion from Eqn. (3). 
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 The transmission simulator method not only modifies the equations of motion but the constraint 

equations as well.  Instead of applying strict enforcements of the physical constraints, as in Eqn. (4), the 

constraints are softened and satisfied in a least-squares sense.  This is done by premultiplying the 

constraints by the pseudo-inverse of the transmission simulator mode shapes partitioned to the interface 

degrees of freedoms.  This constrains the motion of the transmission simulator onto the orthogonal 

projection of the experimental system.  This method is termed the Modal Constraints for Fixture and 

Subsystem (MCFS) [26], or simply Modal Constraints.  The MCFS method brings the traditional CMS 

constraints, Eqn. (5), into the following softened form. 
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 One problem that may arise when subtracting the effects of the transmission simulator occurs 

when the model of the fixture is not perfect.  This could be due to modal truncation or discrepancies 

between the transmission simulator hardware and model.  In some cases, errors in the subtraction can lead 

to negative mass or stiffness in the resulting predictions.  Efforts have been made to diagnose and correct 

these negative mass and stiffness issues [27, 38].  
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 The TS method is the primary substructuring technique used in this dissertation. Multiple 

examples of this method are highlighted including a small wind turbine in Chapter 2.2 and an assembly 

where a cylinder is connected to a round plate on one end through bolted connection in Chapter 2.3.  In 

prior works and in Chapter 2, these methods have been established only for linear systems.  This 

dissertation will extend these concepts to nonlinear systems.  In order to accomplish this task, a method 

for modeling a nonlinear subcomponent and identifying such a nonlinear model from measurements is 

essential. 

1.4 Background - Joint Models 

 In order to assemble two substructures they must in some way be connected, often through the 

use of bolted joints.  Joints have long been known to be a significant, if not the most significant, source of 

damping in built up assemblies [1, 2].  They are also frequently the source of nonlinearity in what would 

otherwise be a linear structure.  However, even when joints behave linearly, their linear stiffness and 

damping properties are difficult to predict.  Hence, when updating a finite element model a significant 

portion of the effort is focused on the joints.   

 Researchers have put significant effort into the modeling of joints between subcomponents.  

Often the motion of the joint is described by the slipping of the jointed surfaces.  Slip can be better 

understood by breaking the slip phenomena into two regimes: micro-slip and macro-slip [39].  Micro-slip 

occurs when the stiffness of the joint remains intact while small slip displacements occur throughout the 

contact patch causing frictional energy dissipation.  In contrast, macro-slip occurs when the stiffness of 

the joint is compromised.  When this happens larger slip displacements are possible as discussed in [39].   

There have been many attempts to create models that accurately describe these joint dynamics. In 

particular, these models seek to replicate the amplitude dependent changes in dissipation and stiffness that 

have been reported in various experiments and contact mechanics simulations. 

 Many of the models developed are based on Coulomb friction laws as discussed by Gaul [40] and 

Berger [41].  The Dohner model was presented in [42] which explored the construction of one-
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dimensional joint models using cubic polynomial representations.  Smallwood recognized a power law 

relationship of dissipation in the micro-slip regime and developed models to account for this in [43].  In 

that work, Smallwood coupled a Ramberg-Osgood plasticity model [44] with assumed Masing behavior 

[45] to develop a model that exhibits dissipation in the form of, 
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where  is the dissipation, is a joint-force that separates the region of near-linear behavior 

from micro-slip, 

D RF

R
K  is the low-amplitude stiffness of the joint, and 0f  is the applied force on the 

joint model.  The constant  is of particular interest as it relates to the power law dissipation 

slope which Smallwood hoped to capture with his model. 

r

 Another popular joint model that is used to simulate friction contains a spring in series with a 

Coulomb friction damper, which is referred to as a Jenkins element [39].  Iwan used a distribution of 

Jenkins elements in parallel, see Fig. 4, to model the hysteresis-type behavior of materials [46]. 

x(t, ϕ1)

x(t, ϕ2)

x(t, ϕ3)



F

x(t, ϕ4)

 

Figure 4. Iwan Element Schematic 
 

 In past efforts, Segalman and his colleagues at Sandia National Laboratories, pursued a multi-

year project in which models for mechanical joints were derived and calibrated to match experimental 
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force-dissipation measurements [47, 48].  The results showed that the joint parameters can be determined 

experimentally and implemented numerically into models to replicate the response including the effects 

of the joints.  This greatly increases the cost of the response predictions so model reduction strategies 

were explored.   

 The 4-parameter Iwan model [48] establishes a power law dissipation relationship in the micro-

slip regime, similar to that of the Smallwood model, while also adjusting for macro-slip load levels.  This 

model includes several key characteristics of a joint's dynamic response including the joint slip force 

( sF ), the joint stiffness ( ), and power law energy dissipation factors TK ( , )  .  The dissipation per 

cycle is modeled by a 4-parameter Iwan model, and is written as, 
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where max  is the displacement at which the sliders shown in Fig. 4 all slip.  The four parameters 

that are used for the Iwan model can be obtained by relating the stiffness and dissipation to the 

force across the joint model, see Fig. 5. 
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Figure 5. Visual aide for Iwan parameter definitions [39] 
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 Physical joint models are practical for structures that have only a few discrete joints, however this 

becomes cumbersome when modeling a built-up structure with many joints.  This means that in 

complicated structures one must characterize hundreds of parameters, which can be quite complicated and 

costly.  As seen in Fig. 2, the jet engine casing is assembled through many bolted interfaces as each 

module is bolted to the assembly axially.  Each of these discrete joints is a potential source of nonlinearity 

and each interface can have hundreds of bolts. To define the physical parameters for each of these joints 

would be costly and time consuming.   

 Recent research endeavors have suggested that instead of modeling each joint separately, one can 

model a complicated structure with a set of uncoupled modes each of which contains a nonlinear dynamic 

model.  Segalman recently proposed to model each mode of a structure as an independent single degree of 

freedom system with an Iwan joint to represent the joint dynamics [49].  A rigorous theoretical foundation 

for models with uncoupled modes such as this was developed by Eriten et al. [50], who showed that 

energy transfer between modes can be negligible in the presence of weak nonlinearity unless their 

frequencies are close.  Using this framework, the nonlinearity of each mode can be modeled individually.  

Segalman has applied this modal Iwan model approach to a simple spring mass system [51].  Following 

Segalman's approach each mode of the structure can be fit as a nonlinear model.  In the jet engine 

example, instead of fitting hundreds of physical joints, one could parameterize just a few nonlinear modal 

joint models to describe the nonlinear behavior of the structure. 

 In [52], Allen and Deaner expanded the 4-parameter modal Iwan model by adding a viscous 

damper and linear spring in parallel with the Iwan element, see Fig. 6.  This viscous damper accounts for 

the linear material damping that dominates each mode at very small amplitudes.  Recently, Lacayo et al. 

began to more thoroughly explore the extent to which this modal approximation is accurate [53, 54].   
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Figure 6. Schematic of SDOF model used for each modal degree of freedom 
 

 Allen and Deaner used two tools, the Hilbert transform algorithm developed by Sumali et al. [52, 

55] and the Zeroed Early-Time FFT (ZEFFT) algorithm by Mayes and Allen [56], to characterize each 

mode of a structure.  The ZEFFT algorithm is a simple time-frequency decomposition comparable to the 

short time Fourier transform, or wavelet transform, that allows one to quickly interrogate each mode to 

detect those modes that exhibit nonlinearity. 

 Once each mode has been screened and nonlinear modes have been identified, a Hilbert transform 

analysis can be used to extract the instantaneous frequency and damping of each single-harmonic in the 

signal.  This analysis is only applicable to single-harmonic signals and so the measurement is often band-

pass filtered to isolate a single-harmonic.  Other researchers have instead employed empirical mode 

decomposition or other variants [50, 57, 58], but these algorithms are far from straightforward to use and 

are sometimes ineffective at separating close frequencies so they were not pursued in this work.   

 Once a single-harmonic signal has been obtained, the Hilbert transform can be computed.  The 

signal is then smoothed by fitting a spline to the amplitude and phase as a function of time.  These single-

harmonic amplitude and phase fits can be related to the instantaneous frequency and damping of the time 

signal.  Sapsis et al. [59] recently presented another interesting alternative, in which the local maxima of 

the velocity and displacement were fit to a spline function and then energy measures were derived to 

extract the instantaneous stiffness and damping.  
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 This dissertation continues the works of Segalman, Allen, and Deaner using Iwan models in the 

modal framework.  Additional modal models are identified and utilized using methods such as the 

restoring force surface methods presented in [60] and summarized in [61].  It is assumed that tested 

structures are weakly nonlinear and the modes of each structure remain uncoupled.  The ability to detect, 

characterize, and model modal nonlinearities is critical to the success of this research. 

1.5 Background - Nonlinear Substructuring 

 Dynamic substructuring involves enforcing compatibility and equilibrium constraints at the 

interface between subcomponents.  The extension of this synthesis to nonlinear systems is trivial, 

however the challenge comes in determining the best model form of the nonlinear subcomponents.  The 

model form presented in the previous section is only one of many possibilities that might be used to 

model a nonlinear subcomponent.  This section reviews related literature on other forms that have been 

used to compute substructuring predictions.  A few works [62-64] have extended linear frequency based 

substructuring into the nonlinear realm using the harmonic balance method.  The harmonic balance 

method is used to compute an effective mass, stiffness and damping for each subcomponent.  These 

subcomponent models are assembled using an iterative procedure to predict the nonlinear response of the 

assembly. More recently, Krack explored descriptions of individual subcomponents with nonlinear 

normal modes in [65].  Krack explores many examples of systems where one mode is dominant and 

nonlinear while others can be treated as linear.  These nonlinear subcomponents are analyzed using the 

"single nonlinear mode method" of Szemplinska-Stupnicka [66] in which only one mode of the system is 

dominant and nonlinear.  They recommend to investigate the nonlinearity of the mode shapes for the 

subcomponent.  If the mode shapes do not change with vibration amplitude, it is reasonable to neglect any 

nonlinear coupling terms.  In essence, this method provides similar findings to the weakly nonlinear 

assumptions explored in Section 1.4. 

 Recently, in [67], Kuether et al. developed an approach to couple two geometrically nonlinear 

simply supported beams.  In their work, the component modes of the system were Craig-Bampton 
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nonlinear reduced order models (CB-NLROMS).  These reduced order models retained coupled nonlinear 

forcing terms in each subcomponent. 

 Chong and Imregun used variable modal parameters to couple multiple nonlinear substructures, 

focusing on weakly nonlinear structures in [68-70].  They assume that the mode shape of a single 

important mode changes with amplitude and all other modes can be assumed to remain linear.  In [70], 

Chong and Imregun begin with a set of assembled equations using a coupled stiffness matrix, , while CK

A  and B  represents the linear natural frequencies of their respective subcomponents. 
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The eigenvectors and values for this coupled system are calculated.  A modal amplitude for the nonlinear 

jth mode of interest, ,  is assumed for the coupled system.  Subcomponent modal amplitudes are then 

computed using the mode shapes and the assumed modal amplitude of the coupled system. 

jP

    coupled   η P
i ii

 (19) 

 The subcomponent frequencies and mode shapes from Eqn. 18 are then updated based on the 

computed subcomponent modal amplitude.  In this case, the nonlinearity at the subcomponent level is 

already understood.  The eigenvectors and eigenvalues of the updated, coupled equations of motion can 

now be found.  This process is repeated until the assumed modal amplitude is satisfied.  In contrast, this 

dissertation focuses on weakly nonlinear modes where the mode shapes are not amplitude dependent, 

such as those described as weak nonlinearities in Section 1.4.  This dissertation uses this weakly nonlinear 

modal framework to formulate reduced models for each subcomponent in a substructuring problem. 

1.6 Scope of the Dissertation 

This dissertation extends the traditional transmission simulator method to include nonlinear 

subcomponents and enables the prediction of nonlinear system response.  This approach requires a 
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technique to identify and validate nonlinear modal models from experiments on realistic jointed 

structures.  These nonlinear modal models capture the amplitude dependent stiffness and damping 

introduced by joints within an experimental subcomponent.  Figure 7 shows an overview of the research 

presented in this dissertation to generate accurate nonlinear substructuring predictions for jointed 

structures.  The steps boxed in the dashed red line are novel contributions to this research area as previous 

works only contain linear predictions. 

Experimental-Analytical 
Substructuring

Linear Modal Testing
(Low Forcing Level)

Nonlinear Modal Testing
(High Forcing Level)

Develop Nonlinear Modal 
Models from Measurement

Assemble via 
Transmission Simulator 

Method

Linear 
Response Prediction

Nonlinear 
Response Prediction

Assemble via 
Transmission Simulator 

Method

 
Figure 7. Overview of research presented in dissertation 

 
 Starting in Chapter 2, multiple examples of the Transmission Simulator method are completed on 

assumed linear assemblies.  The methods used in Chapter 2 were first developed by Allen et al. in [25-28] 

and are applied in this dissertation on two jointed structures.  First, this method is demonstrated on the 

Society of Engineering Mechanics dynamic substructuring test bed, the Ampair 600 Wind Turbine [71-

73].  The second system in this study is a cylinder with an internal mass packed in foam that is connected 

to a plate via a continuous interface [74, 75], referred to as the Cylinder-Plate-Beam system.  This 

continuous interface can be particularly challenging to standard CMS techniques and greatly benefits 

from the strengths of the transmission simulator method.  It is important to understand how well linear 

substructuring techniques work, and know their limitations, before investigating any nonlinear 

substructuring practices.  This provides a backdrop to the nonlinear problem and allows for an 

understanding of the accuracy of current linear prediction methods. 

 In Chapter 3, the proposed process of identifying the nonlinear behavior in a jointed structure is 

presented. This section focuses on two examples; an assembly of catalytic converters [3] and the 

Cylinder-Plate-Beam system discussed in Chapter 2. The catalytic converters are modeled using a set of 
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weakly nonlinear modes.  These modes are assumed to remain uncoupled and the modal nonlinearity of 

each mode is described using a 4-parameter modal Iwan model [3].  This is the first rigorous investigation 

of this approach on a true industrial system.   

 The first foray into simulated nonlinear modal substructuring is discussed in Chapter 4.  This is 

first completed on a spring-mass system.  Next, this approach is used to investigate a numerical model of 

the Brake-Reuss Beam [76] using the same nonlinear modal framework to predict the motion of the built-

up structure.  Both of these examples are completed on numerical models of the system and do not 

account for experimental error or noise that will be present in a real experiment, but the second example 

does include modal truncation.  However, the simulations do prove that substructuring can work as long 

as the structure remains in the micro-slip regime, and show that a substructure can be modeled effectively 

using uncoupled nonlinear modal models. 

  Chapter 5 extends this technique by applying the proposed nonlinear modal substructuring 

approach to actual hardware, in this case the Brake-Reuss Beam [76].  The experimental system is tested 

rigorously to obtain information about the subcomponent nonlinearity.  Then, using the same nonlinear 

modal framework, nonlinear modal models for the structure are derived from test data.  Finally, these 

nonlinear subcomponent models are used to obtain predictions for a modified assembly.  These 

predictions are compared to a truth test performed on the modified system.  Chapter 6 makes concluding 

remarks regarding the work presented in this dissertation and Chapter 7 briefly discuses ideas for future 

work in this research area. 
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2 Linear Transmission Simulator Method 

2.1 Introduction 

 As discussed in Chapter 1.3, the Transmission Simulator (TS) method is a promising new method 

for experimental-analytical substructuring.  The TS method is very relevant to industrial design problems.  

This chapter focuses on two examples of the linear Transmission Simulator method.  The first example is 

on a small wind turbine, the Ampair 600 Wind Turbine [72], and is discussed in Chapter 2.2.  The goal of 

this example is to construct predictions for the response of a three-bladed rotor assembly using the results 

from a single-blade-and-hub experiment.  The second system studied in this chapter is a cylinder with an 

internal mass packed in foam that is connected to a plate via a continuous interface, referred to as the 

Cylinder-Plate-Beam system.  This example is discussed in Chapter 2.3. 

 It is important to validate and understand the current capabilities of this technique on realistic 

systems and see how accurate they are compared to a truth test of the assembled structure.  These 

assumed linear case studies are the first step in completing the primary goal of the completed thesis.  In 

order to develop quality nonlinear substructuring predictions, the limitations and capabilities of the linear 

substructuring must be understood.   

2.2 Ampair 600 Wind Turbine Test Bed 

 The objective for this example is to generate a linear model for the dynamics of the hub and three 

blade assembly, pictured in Fig. 8 from the Ampair 600 Wind Turbine using the Transmission Simulator 

method.  This model will be compared to a “truth model” that was derived from a modal test of the 

pictured assembly.  The Ampair 600 Wind Turbine system is the benchmark system for the dynamic 

substructuring committee through the Society of Engineering Mechanics [72] and thus it was a practical 

choice for this example. 



   22

 

Figure 8. Experimental Set-up for Built-Up Three-Blade-and-Hub Assembly 
 

 To begin, a single-blade-and-hub assembly is tested to generate a subcomponent model.  This 

subcomponent model is then replicated and rotated twice.  By enforcing constraints, these subcomponent 

models can be used to develop predictions for the built-up assembly.  Here, the hub acts as the 

transmission simulator, which is ideal as no additional hardware needs to be built in order to provide a 

fixture for the system.  Figure 9 shows the substructuring schematic being used for this example.  Three 

single-blade-and-hub subcomponents are coupled together, with two negative copies of the hub in order 

to develop accurate predictions. 

 
Figure 9. Transmission Simulator Ampair 600 Wind Turbine Substructuring Schematic 
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2.2.1 Experimental Set-up  

 Previous tests containing these structures in similar configurations [71, 72, 77]  show that the 

highest frequencies of interest would occur below 175 Hz.  Therefore, the test range was set to 200 Hz for 

the truth model to allow the modes of interest (and a few higher) to be captured.  For each test, a PCB 

086C05 impact hammer was used to excite each structure's elastic modes.  In an attempt to minimize 

nonlinearities in the system, the output of the hammer was amplified allowing extremely soft taps to be 

used during testing.  The auto spectrum of this input was monitored during testing to ensure quality data 

was gathered. After completing the testing, modes were extracted from the experimental data using the 

Synthesize Modes And Correlate (SMAC) algorithm [78]. 

 Tests were performed on two different structures in order to create both a full-assembly “truth” 

model and a subcomponent, or substructure, model.  The first structure tested was the full-assembly, the 

hub connected to all three blades.  Hardware assets were used from Sandia National Laboratories with the 

serial numbers for Blades A, B, and C being SNL009, SNL008, and SNL007, respectively.  The second 

structure tested, the "substructure", was the turbine hub assembly with just Blade A connected.  

 Each third of the turbine was given its own Cartesian coordinate system with the x-direction 

along the blade, y-direction perpendicular to x-direction in the rotation plane, and z-direction along the 

axis of rotation.  The origin of these coordinates systems was defined at a common point on the center of 

the hub.  Figure 10  shows these coordinate systems as they are aligned with each blade. 
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Figure 10. Built-Up Wind Turbine Prediction Coordinate Systems 
 

 The built-up assembly was instrumented with 36 single axis accelerometers as well as 3 triaxial 

accelerometers.  The primary blade, Blade A, was instrumented based on previous testing [71, 72, 77] 

such that all mode shapes up to the third out-of-plane bending mode would be independent.  This primary 

blade was instrumented more heavily than the secondary blades as this instrumentation would remain in 

place during subcomponent testing. Accelerometer locations and directions are depicted in Fig. 11. 

 Two uniaxial accelerometers were placed at four locations along the leading edge of each blade. 

These accelerometers were oriented in the local y and z-directions for each blade’s coordinate system. 

Accelerometers were also placed along the trailing edge of the blade but mainly oriented in the z-direction 

with one accelerometer placed in the y-direction at the trailing edge root of each blade. 

 The transmission simulator, rotor hub, was instrumented with three triaxial accelerometers with a 

higher sensitivity.  This higher sensitivity was required because hub motion tended to be very small 

compared to the light flexible blades.  These triaxial accelerometers were placed on the branch extending 
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from the hub associated with each blade.  Additionally, one high sensitivity uniaxial accelerometer was 

placed on the Blade A sector of the hub pointed in the y-direction   

 Blocks were used to align the accelerometers in the local blade displacement coordinate systems 

with accelerometers on the blade face pointing in the z-direction and those on the trailing and leading 

edge in the y-direction.  These wood blocks were taken into account when analytically constructing rigid 

body modes for the different assemblies.  

 

 

Figure 11. Instrumentation Placement 
 

 The built-up assembly was suspended from a rig on an optical table using bungee cords to 

simulate a free-free condition as seen in Fig. 8.  Previous work showed the lowest elastic mode to occur at 

about 20 Hz.  In an effort to minimize error due to the boundary conditions, the bungee cords provided a 

rigid body bounce mode around 2 Hz.  This achieved a desired ratio between the elastic and rigid mode 

frequencies in order to minimize error due to boundary conditions as discussed in [79]. 
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2.2.2 Truth Assembly Results 

 The suspended structure was excited at several drive points in the usual attempt to find the best 

location to excite each individual mode.  Measurements were gathered from impact forces applied on the 

blades and on the rotor hub to fully understand the system.  The drive points on the rotor hub provided the 

highest quality results, not because they excited the modes the most, but because they excited the modes 

well enough and produced FRFs with the most linear characteristics.  To create a truth model for the 

built-up assembly, the measured response from the best driving point was used to calculate the modal 

parameters for each elastic mode.   

 Analytical rigid body mode shapes were calculated using the moments of inertia and center of 

gravity detailed in [71].  With the larger number of accelerometers, and positioning blocks, it was decided 

that the mass of this instrumentation was not negligible in the calculation of the mass properties, as such, 

the mass of these objects was accounted for when calculating the mass properties of the system.  These 

updated mass properties are listed in Table 1. 

Table 1. Mass properties for built-up assembly 
 Entire Rotor

Mass 6.29 kg 
cgx 0.00 m 
cgy 0.00 m 
cgz  -0.0673 m 
Ixx 0.221 kg-m2 
Iyy 0.224 kg-m2 
Izz 0.441 kg-m2 

 

 The analytically generated rigid body modes were combined with nine elastic modes extracted 

from impact testing, see Table 2.  Light hammer excitations were used in an attempt to avoid 

nonlinearities due to the jointed connection and only excite a linear response in the system.  Complex 

modal indicator functions (CMIFs) are shown for each of the drive points in Fig. 12.  No single excitation 

point was used as a reference for all the modes.  Red circles in the figure indicate which modes were 
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selected from each reference.  This truth test is only one realization of truth, since there is variability in 

individual blades as well as the clearances in the hub brackets holding the blades in place. 

Table 2. Extracted and analytically calculated modal parameters for the build up assembly 

Mode Frequency [Hz] Damping Ratio ζ [%] Description of Motion Reference/Source 

1 0.00 1.00% x direction translation Analytical 
2 0.00 1.00% y direction translation Analytical 
3 0.00 1.00% z direction translation Analytical 
4 0.00 1.00% rotation about x Analytical 
5 0.00 1.00% rotation about y Analytical 
6 0.00 1.00% rotation about z Analytical 
7 20.56 1.00% 1st Bending, 3 Blades in Phase 1Z 
8 27.78 0.98% 1st Bending, Blade C out of Phase 1Z 
9 29.03 0.87% 1st Bending, Blade B out of Phase 1Z 

10 61.10 1.71% Edge-wise Mode, Blade C out of phase 4Y 
11 64.29 1.27% Edge-wise Mode, Blade B out of phase 4Y 
12 70.68 1.11% 2nd Bending, 3 Blades in Phase 1Z 
13 99.40 1.48% 2nd Bending, Blade C out of Phase 3Z 
14 102.95 1.08% 2nd Bending, Blade B out of Phase 3Z 
15 155.00 1.33% 3rd Bending, 3 Blades in Phase 1Z 

 

 

Figure 12. CMIFs for Truth Model (Blue) and Drive Point Measurements (Black) 
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2.2.3 Subcomponent Test Results 

 The next measurement to be completed was the single-blade-and-hub subcomponent test.  Blades 

B and C were removed from the hub leaving only Blade A connected.  The accelerometers on Blade A 

were not removed to preserve their location relative to the hub-and-three-bladed testing.  Blade A was 

also not disassembled from the hub in order to preserve the joint connection from the assembly level truth 

test.  Measurements were taken up to 200 Hz in order to capture up to the first three out-of-plane bending 

modes.  The test set-up for the subassembly system can be seen in Fig. 13.  

 

Figure 13. Experimental Set-up for Single-Blade-and-Hub Subassembly 
 

 Mass properties of the substructure were calculated using geometry and assumed symmetry 

properties of the hub-and-three-bladed system. Analytical rigid body modes were again calculated using 

the mass properties of the system, see Table 3. 
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Table 3. Mass properties for subassembly 
 Entire Rotor

Mass 4.52 kg 
c  0.0756 gx m 
cgy 0  .0000 m
cgz  -0.0632 m 
Ixx 0. 20252 kg-m
Iyy 0.0972 kg-m2

Izz 0.1414 kg-m2

 

The subsystem was similarly tested at s ints in order to determine the excitation 

assembly 
Mode Frequency [Hz] Damping Ratio ζ [%] Description of Motion Reference/Source 

 everal drive po

locations that provided the best measurement for  each of the subsystem’s elastic modes.  The six 

analytically generated rigid body modes were combined with five elastic modes extracted from the impact 

tests, see Table 4.  Again, each elastic mode was selected from the strongest responding drive point.  

CMIFs for those selected drive points can be seen in Fig. 14.  Hammer strikes in the z-direction were 

found to easily excite bending and torsional modes while a y-direction strike was required to excite the 

blade in edgewise motion.  The modes extracted from each reference are circled in red. 

Table 4. Extracted and analytically calculated modal parameters for the sub

1 0.00 1.00% x direction translation Analytical 
2 0.00 1.00% y direction translation Analytical 
3 0.00 1.00% z direction translation Analytical 
4 0.00 1.00% Rotation about x Analytical 
5 0.00 1.00% Rotation about y Analytical 
6 0.00 1.00% Rotation about z Analytical 
7 29.84 0.91% 1st Bending 3Z 
8 86.75 0.92% 2nd Bending 3Z 
9 149.82 1.51% Edgewise n Motio 3Z 
10 178.25 2.62% 1st Torsion 4Y 
11 195.10 1.30% 3rd Bending 3Z 
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Figure 14. CMIFs for Subcomponent Model (Blue) and Drive Point Measurements (Black) 

2.2.4 Substructuring Methodology  

 The transmission simulator method was utilized in order to assemble the three subcomponent 

systems into an assembled structure.  Three copies of the experimental subcomponent model were rotated 

and added together linking the rotated degrees of freedom associated with the triaxial accelerometers 

located on the rotor hub (transmission simulator).  Two analytical copies of the transmission simulator 

were subtracted in order to achieve accurate substructuring predictions.  

 The same rotor hub was used as a transmission simulator in a past experiment and was found to 

have a first elastic natural frequency above 1200 Hz [71].  This first elastic mode is far beyond the scope 

of the current test so only the rigid body modes of the transmission simulator were used to couple the 

systems.  

 For the following calculations, the subscript  represents the first blade, Blade A, with A B , and 

, representing the second and third blade respectively; the subscript TS  represents the transmission 

simulator (rotor hub).  The modal parameters 

C

  and ζ  represent the natural frequencies and damping 
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ratios of their respective subsystems and Φ  represents the associated mode shapes.  The subcomponent 

modal degrees of freedom are denoted by vectors q .  The modal system of equations for this structure 

takes form by stacking the three subassemblies with two negative copies of the transmission simulator as 

shown in Eqn. (20).  
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 The constraints for this system are the connection points on the transmission simulator.  These are 

nodal locations 1, 2, and 3 from Fig. 11.  When coupling the three subassemblies together Node 1 from 

the Blade A subassembly must be linked to Node 3 from the Blade B subassembly and Node 2 from the 

Blade C subassembly respectively.  
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Φ

0 0

Using the methodology detailed in Chapter 1.2, substructuring predictions for the built-up structure were 

generated by enforcing constrains to connect the individual subcomponents. 

2.2.5 Substructuring Predictions 

 The linear substructuring predictions were compared to the measured linear results as displayed 

in Table 5.  Because some modes of the system were found to be closely spaced these modes had to be 

correlated based on their Modal Assurance Criterion (MAC) values [80].  This identification was 

important when looking at the 8th and 9th substructured modes as well as the 13th and 14th
.  These modes 
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could be identified by MAC values as well as visual representation the MAC values and modal parameter 

comparisons can be seen in Table 5.  

Table 5. Substructuring Predictions for the Ampair 600 Wind Turbine 

Truth 
Mode 

Frequency 
[Hz] 

Damping 
Ratio ζ 

[%] 

Predicted 
Mode 

Predicted 
Frequency 

[Hz] 

Frequency 
Error [%] 

Predicted 
Damping 

Damping 
Error 

MAC 

7 20.56 1.00% 7 23.49 14.26% 0.73% -27.19% .9912 
8 27.78 0.98% 9 28.33 2.00% 0.86% -12.07% .7655 
9 29.03 0.87% 8 28.03 -3.44% 0.85% -1.88% .8808 

10 61.10 1.71% 10 66.53 8.91% 0.71% -58.31% .9422 
11 64.29 1.27% 11 66.67 3.72% 0.71% -44.03% .9787 
12 70.68 1.11% 12 77.33 9.41% 0.84% -23.71% .9402 
13 99.40 1.48% 14 96.30 -1.75% 1.00% -32.17% .8618 
14 102.95 1.08% 13 97.66 -6.45% 0.99% -8.82% .8849 
15 155.00 1.33% 15 167.26 7.91% 1.29% -3.05% .7850 

 

 By inspection of Table 5, some trends can be identified.  The predictions for first, second, and 

third in-phase out-of-plane bending modes (7, 12 and 15) are too high in frequency.  Three of the four 

anti-symmetric out of plane bending modes (9, 13 and 14) are low in frequency.  The edgewise modes (10 

and 11) are high in frequency.  These frequencies errors establish a baseline for a linear substructuring 

prediction. 

 The substructured damping ratios errors are also displayed in Table 5.  Some modes (9 and 15) 

are quite close in damping while others haves errors as high as 58% .  The correlation of modes between 

the substructured and truth models could be determined either by MAC as seen in Fig. 15 or visual 

comparison as seen in Figs. 16 and 17.   Figure 16 contains the bending modes in an isometric view while 

Fig. 17 shows the edgewise modes in the xy-plane.  These error levels are slightly elevated for a typical 

linear substructuring prediction and possible error sources are discussed in Section 2.2.6. 
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Figure 15. MAC between Truth and Substructuring Predictions 
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Figure 16. Bending mode shape comparisons (Blue - Substructuring Prediction, Green - Truth 
Test, Dashed - Undeformed) 
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Mode 10 Mode 11

 

Figure . Edgewise mode shape comparison (Blue - Substructuring Prediction, Green - Truth Test, 
Dashed - Undeformed) 

2.2.6 Possible Sources of Error 

 There were errors of up to 15% in natural frequency, 59% in damping and MAC values as low as 

0.7655.   Several issues could lead to these errors that could be investigated further with additional study.  

Some important experimental checks and possible error sources will be mentioned in this section.  Modal 

truncation errors are known to exist but they are not addressed in this exercise. 

 Previous work [81] has shown that the most important mode shapes to obtain accurately are the 

rigid body mode shapes.  When analytically adding rigid body modes to the experimental data, a check 

can be performed to ensure the analytically derived rigid body modes are a good match of the system that 

was tested.  In this case, the derived rigid body mode FRF is overlaid with a with the driving point FRF 

taken from experimental data.  Rigid body modes are often hard to extract, but the masslines of these rigid 

body modes can be compared in such a plot.  Figure 18 shows a massline comparison for this 

substructure.  After the rigid body frequency, around 1-2 Hz, the massline magnitude should be similar 

between the analytical and measured FRFs.  If this is not true, the mass properties used to calculate the 

rigid body modes may be off and could be adjusted to get a better model of the system. 
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Figure 18. Rigid body massline comparison (Blue - Measured Data, Green - Analytical Model) 
 

 Additional best practices were followed when setting up and performing the experiments.  

Hammer calibration lab reports showed up to 15% variation for hammer measurement sensitivity.  To 

mitigate this large error source, the hammer sensitivity was adjusted using a large block of known mass 

with a high sensitivity accelerometer attached.  The hammer sensitivity was adjusted and checked to 

within accelerometer specified accuracy.  

 The accelerometers used on the rotor hub and Blade A were not removed between the testing of 

the truth assembly and single-blade-and-hub system.  Therefore, they are in the same position from test to 

test.  Blades B and C were instrumented individually for the truth test.  Small discrepancies were found in 

the placement of the accelerometers on Blades B and C when compared to those of Blade A.  These 

deviations on the order of one-eighth of an inch could lead to errors when results from Blade A are 

rotated and assumed to be in the same locations but in the Blade B and C coordinate systems.  An 

additional substructuring exercise was completed using the six degrees of freedom of the center of mass 

of the hub as the connection degrees of freedom to abate these measurement discrepancies.  This method 

led to a small change in natural frequency (less than 2%).  
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 This example was completed assuming the transmission simulator was completely rigid and 

therefore only the rigid body modes of the transmission simulator were used.  The flanges were mounted 

on a shaft that extends into a mechanism within the hub.  This mechanism was potted, but it was observed 

that small amounts of flexibility may still be present in the flanges of the hub.  Ignoring this flexibility 

means the transmission simulator model was too stiff and may have led to the increased natural 

frequencies as seen in modes that strain this potting. 

2.2.7 Ampair Wind Turbine Remarks 

 This example used results from a modal test of a single-blade-and-hub substructure to create 

predications for an assembled structure. This substructure was rotated and linked together generating 

three blades and three hubs (transmission simulators), thus two of the hubs were analytically removed.  

The results of this substructuring study were then compared to a truth experiment conducted on the full 

hub-and-three-bladed assembly.  The rigid body modes for these cases were constructed from mass 

properties. 

 After substructuring, all elastic modes could be correlated to the truth model either through 

MACs or using visual shapes.  The worst frequency error was about 15% in the first mode.  The damping 

ratios were the most difficult to predict with error as high as 55%. MAC values ranged from 0.77 to 0.99.  

This example used multiple fully experimental substructures, for the three-blade-and-hub subassemblies, 

and coupled them together along with negative copies of the rigid transmission simulator.   The next 

example couples an experimental substructure to a finite element model of the transmission simulator, 

including elastic motion. 
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2.3 Cylinder-Plate-Beam System 

2.3.1 Introduction 

 This section contains another example using the Transmission Simulator method from Chapter 

1.3.  This example involves the Cylinder-Plate-Beam (CPB) system which consists of a cylinder packed 

with pressed foam that houses an internal mass.  At one end of the cylinder, a plate and beam are attached 

to the system to simulate the rest of a structure of interest.  The cylinder, plate, and beam are made of 

6061 T6 aluminum.   The cross section of a solid model for this system is shown in Fig. 19.  

 

Figure 19. Solid Model of Cylinder-Plate-Beam System 
 

 The goal of this study is to estimate a model for the dynamics of the foam and the internal mass.  

These internals are extremely challenging to model because the foam's material properties are poorly 

defined and depend nonlinearly on the preload.  In addition, the contact conditions between the foam and 

the rest of the structure are not known. 

 For this example, the full CPB system is considered Substructure C and is tested in order to 

deduce an experimental model for the internals components.  Both the transmission simulator and Craig-

Mayes methods can easily be applied using a finite element model of the transmission simulator, 

Substructure A, (consisting of the beam, plate and cylinder) leaving an experimental model for the foam 

and internal mass.  To validate this model of the internals, a design modification has been added to the 

system.  This design modification consists of a beam, plate, and cylinder external system but with a mass 

attached near the end of the beam. This simulates a situation in which the substructure model would be 
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used to predict the response after the other substructures have been modified.  A validation test was 

completed to check the accuracy of the substructuring predictions.  Figure 20 shows the different 

subcomponents being used in this substructuring example. 

 

Figure 20. Dynamic Substructuring Schematic for the CPB System 
 

2.3.2 Experiment 

 A modal test was completed for both the CPB system and the mass-loaded truth assembly.  The 

system was instrumented with 18 triaxial accelerometers with sensitivities of 100 mV/g.  Fifteen of these 

accelerometers were placed on the external side of the hardware (twelve on the can at three axial stations 

with four equally spaced around the circumference at each station and three on the beam).  The remaining 

three triaxial accelerometers were placed on the internal mass, which is packed between the blocks of 

foam.  Figure 21 shows the experimental set up for the CPB system with and without the added mass. 
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Figure 21. Cylinder-Plate-Beam System Experimental Set-up 
 

 The external accelerometers were configured as shown in Fig. 22.  These were placed to capture 

the motion of the CPB system up to 1000 Hertz based on previous experience [75]. 

 

Figure 22. Cylinder-Plate-Beam System Instrumentation Set-up 
 

 A series of low level forcing tests were completed in order to avoid any nonlinearities in the 

system.  For each mode, the driving point location at which the system responded most strongly was used 

to extract the modal parameters using the SMAC algorithm [78].  These driving points are listed in Table 

6 in the column labeled "Reference".  The information from the linear test on the baseline CPB system is 

shown in Table 6.  Note, the rigid body modes were generated analytically but were checked and 

compared to the mass lines of the measured frequency response functions. 
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Table 6. Cylinder-Plate-Beam System low forcing level test results 

Mode Frequency [Hz] 
Damping 
Ratio [%] 

Reference Description 

1 1 1 NA Rigid translation in X 

2 1 1 NA Rigid translation in Y 

3 1 1 NA Rigid translation in Z 

4 1 1 NA Rigid rotation about X 

5 1 1 NA Rigid rotation about Y 

6 1 1 NA Rigid rotation about Z 

7 116 0.27 5003X+ 1st bending in the X-Direction 

8 153 0.15 5002Z+ 1st bending in the Z-Direction 

9 276 2.37 5002Z+ Internals rotation about Y plus translation in Z 

10 282 2.08 5003X+ Internals translation in X and Z 

11 300 2.26 5002Z+ Off-axis rotation of the internals about Y  

12 455 0.32 301Y- Axial mode, internals and nose out of phase 

13 589 2.09 301Y- Internals rotation about Z 

14 634 1.96 5002Z+ Internals rotation about X 

15 691 1.28 301Y- Axial mode, internals and nose in phase 

16 742 1.19 3003X_ Suspected foam mode mostly in X 

17 761 1.13 3002Z_ Suspected foam mode mostly in Z 

18 831 1.00 5002X+ 1st Axial torsional mode 

19 914 0.79 3002Z+ (2,0) ovaling on-axis 

20 964 0.22 5003X+ 2nd Bending in the X-Direction 

2.3.3 Transmission Simulator Model 

 A finite element model of the cylinder-plate-beam was constructed and is shown in Fig. 23. The 

three-dimensional solid structure was modeled by brick type higher order 20-node solid elements with 

quadratic displacement behavior.  The CPB finite element model is comprised of a beam, plate, washer, 

cylinder and ring, see Fig. 23.  The model was constructed as a single linear structure by merging the 

adjacent nodes at the contact points between each component.  The element properties of all of the 

components except the washers are set as 6061 T6 Aluminum, with the material properties listed in Table 

7.   Fifteen nodes were selected as the sensor positions and the mesh was constructed such that these 

corresponded precisely to the actual accelerometer locations. 
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Figure 23. Configuration of CPB for Finite Element Mode: 1 - Beam, 2 - Plate, 3 - Washers, 4 - 
Cylinder, 5 - Ring 

 
 To validate the FE model, the natural frequencies of the Cylinder-Plate-Beam system were 

examined.  Table 8 shows the first eleven elastic frequencies of CPB model with the retaining ring on the 

far left removed.  These were compared to the measured natural frequencies of the actual hardware, from 

a test that was performed before the foam and retaining ring had been installed [75]. 

Table 7. Cylinder-Plate-Beam System low forcing level test results 
Component Material Properties 

Beam 6061 T6 Aluminum E = 1.0 x 107
 psi, ν = 0.33, ρ = 0.09775 lb/in3   

Plate 6061 T6 Aluminum E = 1.0 x 107
 psi, ν = 0.33, ρ = 0.09775 lb/in3   

Washer Steel E = 1.0 x 107
 psi, ν = 0.29, ρ = 0.28000 lb/in3   

Cylinder 6061 T6 Aluminum E = 1.0 x 107
 psi, ν = 0.33, ρ = 0.09775 lb/in3   

Ring 6061 T6 Aluminum E = 1.0 x 107
 psi, ν = 0.33, ρ = 0.09775 lb/in3   

 
Table 8. Elastic modal frequencies of the Cylinder-Plate-Beam 
Mode Test Frequency [Hz] FEM Frequency [Hz] Error [%] 

1 134.2 133.83 -0.28 

2 171.2 171.30 0.06 

3 430.0 435.15 1.20 

4 511.2 497.42 -2.70 

5 975.7 954.60 -2.16 

6 1027 1038.14 1.08 

7 1312 1301.33 -0.81 

8 1528 1535.62 0.50 

9 1637 1589.17 -2.92 

10 1801 1846.45 2.52 

11 1833 1859.75 1.46 
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 The additional mass attached at the end of the beam was modeled with 20 node hex elements.  

The nodes in this mesh did not naturally align with those in the beam mesh, so the two substructures were 

connected using the multi-point constraint method. 

 

Figure 24. Cylinder-Plate-Beam FEM Model with Additional Mass 
 

2.3.4 Substructuring Methodology 

 Recall from Fig. 20, the first step in this experimental-analytical substructuring prediction process 

is to generate an experimental model of the foam and internal mass (Subsystem B).  This model can then 

be coupled with the finite element model containing the additional mass (Subsystem D) mentioned in 

Chapter 2.3.3.   This process is done through two means.  

 The first is the standard transmission simulator method which was used to complete the previous 

example on the Ampair 600 Wind Turbine.  In this case, the metal cylinder, plate, and beam act as the 

transmission simulator and thus all accelerometers placed on these objects are considered connection 

degrees of freedom.  The system modal equations of motion can be written in terms of the subscripts C 

(the experimental system), D (the mass loaded finite element model), and TS (the finite element model of 

the transmission simulator). 
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The softened constraints equation can be formulated in a similar means to that of the Ampair 600 Wind 

Turbine example, 
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With these equations of motion and constraints substructured prediction of the dynamics of the validation 

assembly can be computed using the methodology detailed in Chapter 1.2. 

 The second means of generating a substructured prediction is by following the Craig-Mayes 

method.  This method is described in detail by Mayes in [82] and was used on the CPB system in [74]. 

The Craig-Mayes formulation is a methodology to generate a Craig-Bampton representation for the 

experimental subcomponent model. The resulting form resembles the dynamics of Subsystem C (the 

experiment) minus Subsystem A (the transmission simulator). The resulting formulation can be easily 

coupled with a Craig-Bampton finite element model of Subsystem D to estimate the dynamics of the 

modified structure. 

2.3.5 Substructuring Predictions  

 To complete these substructuring predictions the first 20 free modes up to 970 Hz were used to 

model Subsystem C.  A finite element model of the transmission simulator, the CBP structure without 

internals, was used to remove the effects of the transmission simulator.  From the finite element model of 

the transmission simulator, ten free normal modes up to 805 Hz were retained with an arbitrarily assigned 
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damping ratio of 0.5 percent.  Subsequently, the dynamics of the modified CBP structure (i.e. with the 

mass attached, Subsystem D) were added to predict the dynamical behavior of the truth hardware 

assembly.  The predictions are compared to experimental measurements from the truth hardware to 

evaluate the substructuring accuracy. 

 From the FE model of the modified CBP, Subsystem D, 13 free normal modes up to 858  Hz 

were retained and an arbitrary damping ratio of 0.5 percent was assigned.  All three structures 

(experimental system C, transmission simulator A and modified CBP structure D) were connected using 

modal constraints at the 45 exterior measurement degrees of freedom.  Table 9 shows the prediction 

obtained by the traditional TS method compared to the truth experiment E. 

Table 9. Frequencies, damping ratios and MAC values for the Traditional TS Method 
Mode fexperiment fprediction ferror ζexperiment ζprediction ζerror MAC 

[-] [Hz] [Hz] [%] [-] [-] [%] [-] 
7 88.33 86.59 -1.96 0.00196 0.00215 9.38 0.9803 

8 115.80 115.06 -0.64 0.00163 0.00207 26.83 0.9929 
9 275.97 276.11 0.05 0.02468 0.02466 -0.10 0.9006 

10 283.32 283.24 -0.03 0.02151 0.02168 0.80 0.9995 

11 301.40 301.77 0.12 0.02327 0.0229 -1.61 0.9957 
12 346.25 349.76 1.01 0.00291 0.00359 23.47 0.9867 

13 584.71 583.2 -0.26 0.02119 0.02135 -0.77 0.9963 

14 635.16 634.89 -0.04 0.02037 0.01897 -6.87 0.9948 
- NA 670.72 NA NA 0.00504 NA NA 

15 688.92 690.36 0.21 0.01515 0.01363 -10.03 0.932 

- NA 717.45 NA NA 0.00537 NA NA 
16 758.36 NA NA 0.01131 NA NA NA 

17 769.71 770.99 0.17 0.01191 0.01201 0.84 0.8827 
 

 The modes are well predicted up to the 14th mode at 635 Hz, with relative frequency errors 

between -1.96% and 1.01%, relative damping errors between -6.87% and 26.83% and MAC values 

between 0.9006 and 0.9995. 

 By visualizing the predicted mode shapes with a wire frame model built of the sensor nodes, the 

modes predicted at 670.72 Hz and at 717.45 Hz could be identified as non-physical, so-called spurious 

modes.  In this case, the traditional TS Method is not able to predict the 16th mode of the truth 

experiment at 758.36 Hz with the number of modes retained from the transmission simulator and from the 
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modified CBP structure.  The MAC values between the predicted and true experimental modes are shown 

in Fig. 25, and these values were used to complete the pairing in Table 9. 

 

Figure 25. MAC of Traditional TS Predictions versus Truth Test 
 

 To complete substructuring with the Craig-Mayes formulation the FE model of the modified CBP 

was transformed to Craig-Bampton coordinates.  Eight fixed-interface normal modes up to 1898 Hz were 

retained during the transformation.  Here, the 45 exterior measurement degrees of freedom were 

considered as the interface and held fixed.  The Craig-Mayes representation resulting from the experiment  

(Subsystem C) and the transmission simulator (Subsystem A) was connected to the Craig-Bampton 

representation of the modified CBP structure by primal assembly at the 45 exterior measurement degrees 

of freedom.  Table 10  shows the prediction obtained by the Craig-Mayes method compared to the truth 

experiment. 

Table 10. Frequencies, damping ratios and MAC values for the Craig-Mayes TS Method 
Mode fexperiment fprediction ferror ζexperiment ζprediction ζerror MAC 

[-] [Hz] [Hz] [%] [-] [-] [%] [-] 
7 88.33 89.58 1.42 0.00196 0.00208 5.84 0.9861 

8 115.8 115.25 -0.47 0.00163 0.00204 25.14 0.9975 

9 275.97 275.83 -0.05 0.02468 0.02459 -0.36 0.8886 
10 283.32 282.61 -0.25 0.02151 0.02156 0.23 0.9986 
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11 301.4 301.48 0.03 0.02327 0.02284 -1.84 0.9966 
12 346.25 350.61 1.26 0.00291 0.00343 17.96 0.9897 

13 584.71 583.64 -0.18 0.02119 0.02141 1.05 0.9971 

14 635.16 634.85 -0.05 0.02037 0.019 -6.69 0.9961 
- NA 679.99 NA NA 0.00491 NA NA 

15 688.92 691.85 0.43 0.01515 0.01351 10.83 0.9075 

- NA 707.57 NA NA 0.00574 NA NA 
16 758.36 NA NA 0.01131 NA NA NA 

17 769.71 760.69 -1.17 0.01191 0.01125 -5.54 0.8308 
 

 The modes are well predicted up to the 14th mode at 635 Hz, with the relative frequency 

errors ranging from -0.47% to 1.42%, relative damping errors between -6.69% and 25.14% and 

the MAC values ranging from 0.8886 to 0.9986.  Both methods provided nearly identical results.    

2.4 Remarks 

 Though the Ampair example presented in Chapter 2.2 and the Cylinder-Plate-Beam example 

presented in Chapter 2.3 seem very similar, there are some key differences.  The Ampair example 

consisted of three subsystems coupled together and was completed by removing multiple transmission 

simulators.   In theory multiple transmission simulators could be used, each connecting and replicating the 

conditions from different subsystem joints.   The CPB system was more traditional as the example 

removed the analytical transmission simulator and then added a design modification back into the system.  

Here, unlike the Ampair system, the transmission simulator was not considered rigid but included elastic 

modes as well.  Although it is ideal for the TS to be rigid in the frequency bandwidth of interest, 

sometimes it is not possible for the elastic modes to be designed out of the testing bandwidth.  The 

resulting predictions were quite accurate.  The elastic modes retained in the second example seemed to be 

essential and improved the linear substructuring results, while in the first example this elastic motion was 

ignored and had slightly higher levels of error.  With the linear TS substructuring capability understood, 

the next step is to understand what nonlinearities may exist in a system experimentally and then determine 

how those nonlinearities can be represented in a subcomponent model. 
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3 Nonlinear Modal Modeling 

3.1 Introduction 

 As discussed in Chapter 1.4, this dissertation investigates nonlinear modal models and their 

ability to represent the nonlinear dynamics of jointed structures.  Chapter 3 addresses this challenge by 

testing structures with weakly nonlinear joints and using a recently proposed framework to model the 

structure as a collection of uncoupled, weakly nonlinear modes or oscillators.  Working with uncoupled, 

weakly nonlinear modes allows these nonlinear joint models to be applied to substructuring predictions.  

A set of tools is presented that can be used to characterize the nonlinearity in each mode due to the joints 

in the system. 

 The approach used here is similar to that which was first used by Deaner et al. in [52] to 

characterize a beam with a bolted joint.  However, this work presents a new means of interpreting the 

dissipation in the modal Iwan model that allows one to more clearly see how the damping ratio changes 

with response amplitude while still allowing power law behavior to be identified.  Specifically, while 

previous works [48, 52] characterized the damping in an Iwan model using the energy dissipation per 

cycle versus velocity amplitude (or force), this work shows that superior information can be obtained by 

computing the effective damping ratio and displaying it versus log velocity amplitude.  Once the damping 

and stiffness versus amplitude are known, it is possible that the modal Iwan model will not always be the 

most suited model to reproduce these behaviors.  Other models, such as cubic stiffness and damping, may 

be more suitable in some cases. 

 This work also builds on the previous works by exploring whether these tools and the modal Iwan 

modeling framework are effective for a real industrial structure.  This structure includes several joints, 

with bolts tightened to the recommended specifications and with complicated, three-dimensional modal 

deformations.  The effect of the input location is explored in more detail here, presenting strong evidence 

that the modal Iwan model is valid for a wide range of inputs.  
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 It should be noted that other frameworks have been proposed for modeling structures with joints.  

Of particular note, is the harmonic balance approach employed in [83] and the associated methods 

reviewed there and in related works [84].  The harmonic balance approach can be very computationally 

efficient, especially when seeking to simulate stepped-sine measurements or nonlinear frequency 

responses.  However, some of those gains may be lost when the joint is modeled by an Iwan model with 

many slider elements, and harmonic balance is, of course, not as useful when impulsive loads are of 

interest. 

 This chapter focuses on two examples of experimental nonlinear behavior, screening and modal 

model development.  The first example consists of a pair of bolted catalytic converters.  This system is 

discussed in Chapter 3.2 where experimental measurements are used to fit 4-parameter Iwan modal 

models.  These tools are applied, for the first time, to measurements from an assembly of automotive 

exhaust system components that contains two interfaces with realistic geometry, gaskets, and bolt torques.  

The second example is on the Cylinder-Plate-Beam system, discussed previously in Chapter 2.3, and the 

nonlinear identification of the CPB system is discussed in Chapter 3.3.  These measurements are fit to 

both the 4-parameter modal Iwan models and a Restoring Force Surface model containing cubic stiffness 

and damping.  Understanding and measuring these nonlinear modal models is critical to creating a high 

quality system level substructuring prediction including the nonlinear joint dynamics. 

3.2 Coupled Catalytic Converter System 

3.2.1 Nonlinear Model Characterization - Theory 

 The first system presented in this chapter is an assembly of automobile catalytic converters.  The 

goal of this example is to show how one can define 4-parameter Iwan modal models to match measured 

data from an industrial system.  This case study begins with a discussion of some of the theory used to 

generate these Iwan modal models.  In order to develop a nonlinear model for a structure, one must first 

find a means of detecting nonlinearity in measured experimental data.  In this work this is done in a two 
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step process.  First, the data is analyzed using the zeroed early-time fast Fourier transform (ZEFFT) [56] 

to determine which modes exhibit nonlinear behavior.  The ZEFFT applies the following window w(t) to 

the time history x(t), and then the FFT is computed for various truncation times tn. 
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t t
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t t
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 (24) 

This analysis is quick and simple to perform and by comparing the spectra, FFT(w(t)x(t)), for various 

truncation times one can discern the type of the nonlinearity by observing how the frequency and shape of 

the curves change as more and more time signal is zeroed out. 

 After completing this initial screening process, each mode is isolated to quantify how its 

frequency and damping change with amplitude.  A linear modal test is performed (with the structure 

excited at very low amplitude) and the mass normalized mode shapes are extracted from a curve fit to the 

measurements using standard techniques [85].  In previous works [86], a laser vibrometer was used so 

each response measurement was independent of all others and had to be processed separately.  When the 

structure of interest is sufficiently massive, as is the structure used in this work, one can use 

accelerometers without adding significant mass or damping (from the cables).  As mentioned previously, 

each mode is assumed to be independent and to be manifest with approximately the same mode shape as 

in the linear system, so all measurements should be related to one modal response, so the following 

equation can be solved in a least squares sense to obtain the modal amplitude. 

 
( ) ( )r r t tΦ q x 

 (25) 

where  is the rth mass-normalized mode vector, is the corresponding modal acceleration 

response and  is a vector of accelerations that were measured due to one impact with an instrumented 

hammer.  This method allows multiple hammer strikes to be compared even from different driving point 

locations.  This mode shapes of the structure are assumed to be real and constant which limits this method 

to weakly nonlinear structures. 

rΦ ( )r tq

( )tx
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 The next step in the screening process is to quantify the change in damping with vibration 

amplitude.  As mentioned previously, the Hilbert transform algorithm detailed in [52, 55]  is used.  First, 

an 8th order band-pass filter is used to isolate a single harmonic (mode) in the response.  Then, the Hilbert 

transform of the mono-component signal is computed and an 8th order polynomial is fit to the time 

varying amplitude and phase.  In essence, this approach fits the modal response, , to the following 

functional form, where 

( )q t

( )r t  and ( )i t  are 8th order polynomials in time and are, respectively, the real 

and imaginary parts of the time varying response model  

  (26) 
( ) i ( )( ) r it tq t e 

To achieve this, the analytic signal, , is constructed as ( )Q t

  ( ) ( ) i ( )Q t q t H q t   
 (27) 

where H() denotes the Hilbert transform.  The real part, ( )r t , is fit to the log of the amplitude of the 

analytic signal, ( ) log ( )r t Q t   , and the imaginary part is fit to its unwrapped phase, 

 ( ) arg ( )i t Q t   . 

 The phase of the analytic signal gives the oscillation frequency, so the damped natural frequency 

was defined as its derivative in [52], 

 ( ) i
d

d
t

dt

   (28) 

which one can readily show gives the desired result for a linear time invariant system. It is convenient to 

convert the response model from acceleration to velocity for the analysis that follow.  The desired 

velocity response model can be written in a similar form, where the hats denote that this model pertains to 

velocity rather than acceleration. 

  (29) 
ˆ ˆ( ) i ( )( ) r it tq t e 
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This can be readily differentiated to obtain the following, 

 
ˆ ˆ( ) i ( )ˆˆ ( )( )

( ) i r itir d td t
q t e

dt dt
     

 
 t

 (30) 

It is not trivial to relate the velocity and acceleration response models precisely, but if one recognizes that 

damping is small so that, 

 
ˆ ˆˆ ( ) ( )( )

ˆi i ii ir
d

d t d td t
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dt dt dt
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 
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t

 (31) 

then one can approximate the acceleration as follows. 

  (32) 
ˆ ˆ( ) i ( )ˆ( ) i ( ) r it t

dq t t e  

 This reveals that one can take ˆ ˆ( ) i ( ) ( ) i ( )r i r it t t     

( )d t

 and estimate the velocity response 

model by simply dividing the acceleration response model by  , exactly as is done for a linear 

response.  Hence, the amplitude of the velocity response will be approximated by the following. 
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  (33) 

 If the damping is high, then the approximation in the equation above will introduce some 

inaccuracy and a more elaborate approach must be developed.  However, in the author's experience the 

decay envelope estimated by the Hilbert transform always exhibits some spurious oscillation, even after 

smoothing with the polynomial fit, so this approach does not introduce significant uncertainty. 

 As was done in [52], each mode will be modeled with a single degree of freedom system with a 

spring, damper, and with the nonlinear joint model represented by the force exerted by the joint as shown 

in Fig. 26. 
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Figure 26. Schematic of SDOF model used for each modal degree of freedom 
 

The force in the joint is given by the following, 

 
0

( ) ( ) ( ,)(j u t x t dF t )  


    (34) 

where  is the force in the joint, u  is joint displacement, jF   is a kernel that characterizes the joint and 

x  is a continuum of state variables that evolve as show below 
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 The form of the kernel, (), is discussed in detail in [48] and can be defined by four parameters, 

[ ,  ,  ,  ]s TF K    ; where sF  is the joint force required to begin macro-slip,  is the stiffness in the 

joint, 

TK

  is related to the exponent in a power law relationship between damping and amplitude in the 

micro-slip regime and   defines the shape of the dissipation curve near the transition from micro to 

macro-slip.  When this joint model is used in a modal framework, these four parameters define the 

nonlinear characteristics of each mode in the system and can be obtained from experimental 

measurements as outlined in [52].   is defined by the change in stiffness as shown in Eqn. (TK 36) where 

n  is the natural frequency when the joint is completely stuck and n  is the shift in natural frequency 

when the joint is in macro-slip.  

  (36)  22
TK n n n    
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The measurements presented in this work are entirely from the linear or micro-slip regimes, so 

only those aspects of the modal Iwan model will be reviewed here.  At very low amplitudes the nonlinear 

element acts like a linear spring with no additional damping and the linear viscous damper dominates.  In 

the micro-slip regime the damping becomes nonlinear and the energy dissipated per cycle, DMicro, by in 

the single degree of system in Fig. 26 was shown in [52] to have the following form. 
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where R  is a function of  and sF ,  KT   and was defined in [52].  The second term is the dissipation of a 

linear viscous damper with damping ratio 
v .  This linear dissipation term is easily derived by 

recognizing that the power dissipated by a linear viscous damper is given by the product of the modal 

velocity and the modal damping force, 2( )q t (v nq t)    and then the term on the right above is readily 

obtained by assuming that  is harmonic, ( )q t  ( )q t ( ) sin dQ t t  , and integrating the power dissipated 

over one cycle. 

One can readily use the response model that was fit to the measurements to estimate the energy 

dissipated by each modal degree of freedom per cycle.  First, note that, although the kinetic energy is 

oscillatory, its amplitude, here denoted KE, is equal to the total energy in the system and is simply, 
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since the modal mass is unity.  The amplitude of the kinetic energy decays slowly (i.e. with the decay 

envelope of the signal) so the energy dissipated per cycle is readily approximated as the slope of the 

kinetic energy versus time multiplied by the oscillation period.  Hence, 
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 In [52],  this experimentally measured dissipation was fit to the form given by Eqn. (37) to 

estimate the parameters of the Iwan model, one of the most important being the exponent,  , of the 

dissipation versus amplitude.  This exponent was estimated by fitting a line to the log dissipation versus 

log amplitude curve estimated from the Hilbert transform.  However, it was subsequently noted that the 

dissipation versus amplitude curves were difficult to interrogate because, as shown in Eqn. (

3 

37), the 

dissipation increases with the square of velocity amplitude even for a linear system, so the plot shows a 

slope of two even for a linear system.  This is remedied by computing the effective linear damping ratio 

from the measured dissipation curve.  Specifically, using the term on the right in Eqn. (37) as a guide,  the 

measured damping ratio is defined as 

 
2( )

2 ( )
meas

D
t

Q t






 (40) 

If the system is linear and the damping is purely viscous, then one can obtain a line with 

2( ) / 1meas v vt    .  The Iwan joint then produces the following damping ratio. 
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Hence, one can readily estimate the power law exponent and the constant  from the damping ratio 

measured using Eqn. (

AIwan

40). 

3.2.2 Experimental System - Coupled Catalytic Converters 

 The proposed approach was applied to a system consisting of a two aft catalytic converters for a 

Buick LaCrosse (Part Number: 82071258), joined to a thick metal plate as seen in Fig. 27.  This same 

system has also been used to develop linear substructuring techniques, as reported in [86].  The converters 

were joined to the plate using the same metal gaskets (Part Number: 20893953) that are used in the actual 

vehicle and assembled with four bolts.  The bolts in this assembly were tightened to the recommended 45 
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N-m torque.  The frequency range of interest in these tests was selected to be from 0 to 500 Hertz, which 

would encompass many of the low frequency modes of the exhaust system.  

 

Figure 27. Photographs of the Catalytic Converter System 
 

 The dynamic response of the coupled system was measured using accelerometers placed at seven 

locations on the center plate and three locations on both converters. A modal test was completed with low 

level excitation using an impact hammer striking at multiple driving point locations.  For each location, a 

series of five hammer strikes were averaged to minimize noise.  Figure 28 shows the layout of these 

accelerometer and driving point locations for later reference. 
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Figure 28. Matlab Generated Visualization of Catalytic Converter System 

 
 The measurements acquired in the linear modal tests were used to construct a composite 

frequency response function (FRF) for each driving point.  These composite FRFs are shown in Fig. 29 

providing a good indication of which modes are important in the system for each of the driving points.  

Here, one can observe that modes 1, 2, 3, 4 and 6 are dominated by z-direction motion while mode 5 is 

more easily excited from the x-direction.  After further investigation, the author found modes 3 and 4 to 

be localized modes where only the heat shields moved significantly.  Those modes are disregarded for 

this study as they do not contribute much to the nonlinear dynamics of the assembly.  Linear models for 

these modes could be readily added to the model if desired. 
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Figure 29. Composite FRF from Various Drive Points for Coupled Catalytic Converter System 

 
 Table 11 contains a list of the natural frequencies and damping ratios extracted for each of the 

modes using the Algorithm of Mode Isolation (AMI), a linear modal parameter identification algorithm 

that is detailed in [87].  The modes in this frequency range were found to include three bending modes, 

one torsional mode, and the two modes mentioned previously that are localized to the heat shields.  

Table 11: Linear (low amplitude) modal parameters 

Modal 
Index 

Natural 
Frequency 

[Hz] 

Damping 
Ratio 

Deflection Type 

1 113.70 0.0030 Bending in Y-direction 
2 175.42 0.0043 Bending in X-direction 
3 243.41 0.0005 Localized Heat Shield Mode 
4 247.38 0.0004 Localized Heat Shield Mode 
5 262.71 0.0044 1st Torsion 
6 348.68 0.0045 2nd Bending in Y-direction 

 

 Mode shapes for the global modes are shown in Figures 30-33. Here, one can visualize the first 

mode as a bending mode of the system with the catalytic converters out of phase with one another.  In the 

second mode the converters are in phase as the plate rotates.  The fifth mode is a torsional mode as the 



   58

plate and converters twist about the z-directional axis.  The sixth mode is a second bending mode causing 

the plate to rotate about the other planar x-direction axis. 
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Figure 30. 1st Mode Visualization 
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Figure 31. 2nd Mode Visualization 
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Figure 32. 5th Mode Visualization 
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Figure 33. 6th Mode Visualization 

3.2.3 Initial Screening –  ZEFFT 

 The assembly was first probed using the ZEFFT algorithm, as discussed previously, to deduce 

whether any modes might behave nonlinearly.  The structure was excited in the z-direction at point 204, 

see Fig. 28, with an impulsive force with a peak of 500 Newtons, and the response of Point 303-z was 

processed with the ZEFFT algorithm.  Figure 34 shows the ZEFFT spectra of the assembly at point 303 in 

the z-direction;  Fig. 34a shows the spectrum over the whole frequency range of interest; as is usually the 

case for structures with weak joint nonlinearities such as this, one must zoom in near each harmonic peak 

to discern any information about the nonlinearity.  Fig. 34b shows an enhanced view of the ZEFFT near 

the first harmonic.  The legends give the time tn, from Eqn. (24), in milliseconds, at which the zeroed 

region ended for each curve.  The resulting family of spectra show how nonlinear distortions increase as 

more of the early time (and hence higher amplitude and more nonlinear) parts of the time response are 

removed from the time history [56]. 
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Figure 34. (a) Full ZEFFT spectra (b) Magnified View of ZEFFT spectra near 1st Resonance 
 

 The peak in the FFT occurs at a slightly lower frequency in the unzeroed response (denoted “0” 

in the legend) compared to that when the nonlinear portion of the response has been zeroed out (e.g. 

“1757 ms” in the legend), revealing that enough nonlinearity is present to cause about a 1.0 Hz (0.8%) 

shift in frequency.  This also identifies the stiffness nonlinearity as a softening nonlinearity.  While this 

frequency shift shows that the stiffness nonlinearity is quite small, this mode exhibited much more 

significant nonlinearity in damping, as will be elaborated subsequently.  It is also worth noting that the 

shape of the distorted spectrum in the early times in Fig. 34 is similar to what has been seen in other tests 

and simulations of structures with bolted joints [56, 88]. 

 A similar analysis was performed on the second mode revealing a shift in the natural frequency of 

0.4 Hz (0.2%) over the same range of input force.  The ZEFFT near the second resonance at point 303 in 

the z-direction (see Fig. 28), obtained by exciting in the x-direction at point 204 with a peak force of 545 

Newtons, is shown in Fig. 35.  The magnified view in Fig. 35b also includes a second set of dashed lines 

that will be explained subsequently.  Notice that the ZEFFT does not show any strong evidence of 

nonlinearity.  To check whether the response was indeed linear, the response at a lower amplitude was fit 

to a linear mode using the AMI algorithm and that fit was then extrapolated to earlier times to show how 
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the spectrum should have appeared if the mode behaved linearly over this time span. This linear 

extrapolation is shown on in Fig. 35b with dashed lines, each corresponding to the same value of tn as the 

solid lines from the ZEFFT algorithm. As discussed in [56], extrapolations such as these can often help 

when it is difficult to detect or make sense of a certain nonlinearity.  These results show that the first two 

modes of the system do exhibit nonlinearity, but the first mode is more strongly excited and shows 

stronger nonlinearity. 
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Figure 35. (a) Full ZEFFT spectra (b) Magnified View of ZEFFT spectra near 2nd Resonance 

 
 The response near the 5th and 6th modes was also examined as shown in Fig. 36, and while they 

seem to show traces of nonlinearity, it was negligible in these measurements compared to the first two 

harmonics.  The forcing amplitude rolls off quickly with increasing frequency, so either these modes are 

less susceptible to the nonlinearity induced by the joint or else the forcing is simply not adequate to excite 

nonlinearity in these modes.  Based on the results of the ZEFFT analysis, the 1st and 2nd modes were 

treated as nonlinear and the 5th and 6th were treated as linear.  
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Figure 36. (a) ZEFFT spectra near 5th Resonance (b) ZEFFT spectra near 6th Resonance 

3.2.4 Nonlinear Parameter Identification 

 After this initial screening with the ZEFFTs, the first two modes were characterized in more 

detail using the Hilbert transform approach discussed previously.  Excitations were applied at several 

different points and at various amplitudes and then for each excitation the response at all of the 

accelerometers was used in Eqn. (25) to obtain a least squares estimate the modal amplitude q1(t).  Figure 

37 shows the FFT of an experimental signal both from the modal filter and the band-pass filter.  This 

band-pass filtered signal was the signal used when applying the Hilbert transform. 

0 50 100 150 200 250 300
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Frequency [Hz]

F
F

T
 A

c
c

e
l.

FFT of Filter Response - for First Mode

 

 

Modal Filter Signal

Bandpass Filtered Signal

 

Figure 37. FFT of Filtered Signals 
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 Using the Hilbert transform, this signal was fit over a chosen time window based on the Hilbert 

amplitude and phase envelopes.  As can be seen in Fig. 38 the signal often loses some early time data due 

to Hilbert transform end effects but the fit amplitude and phase construct a quality representation of the 

filtered modal acceleration.    
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Figure 38. Filtered Modal Acceleration and Hilbert Fit of Signal 
 

 These Hilbert fits were then processed as outlined in Chapter 3.2.1 and the resulting measured 

damping meas(t) was plotted against the velocity amplitude, ( )Q t , as shown in Fig. 39.  Polynomials 

were fit to the analytic Hilbert signal, and while this dramatically reduces noise in the estimated damping, 

the smoothness of the polynomial fit can also make a spurious measurement appear to be physically 

meaningful.  However, the spurious waviness at the lowest amplitudes is an artifact of the Hilbert 

transform and should be ignored.  At higher amplitudes all of the curves agree remarkably well.  All of 
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the lines of the same colors were taken from the same excitation point but at different force levels.  At the 

point where the curves show the most scatter, which is near an amplitude of 0.020 m/s, the damping ratio 

ranges from 0.0035 to 0.0037.  This represents a variation of about 7% of the average value.  The various 

excitations at different forcing levels and locations all reveal a similar modal damping versus amplitude 

relationship, especially at high amplitudes where the damping is not constant but shows a power law 

dependence on amplitude.  Each excitation point excites a different combination of the modes, and hence 

the force across the joint would be different.  Nevertheless, these results show that these complicating 

factors can be ignored and that this mode can be treated as single degree-of-freedom nonlinear system that 

is uncoupled from the other modes. 

 Furthermore, the damping at high amplitudes is more than twice that at low amplitudes, so if this 

nonlinearity is not accounted for one might over predict the response of the structure by more than a 

factor of two.  Additional impulses with even higher forces were applied using a heavy (non-

instrumented) rubber mallet and the modal response curves extracted also agreed well with those shown.  

However, even with those large input forces it was difficult to obtain an estimate of the modal response at 

much higher amplitudes than those shown, presumably because of edge effects in the Hilbert transform 

and because the increased damping causes the response to decay more quickly. 
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Figure 39. Damping ratio versus acceleration amplitude for 1st mode (Multiple Hammer Strikes) 

 
 This analysis was repeated for the second mode as well.  Figure 40 shows the measured damping 

versus amplitude for several different hammer strikes.  The Hilbert transform only produced useful data 

over a relatively small amplitude range for this mode, yet it still shows the damping behavior that is 

characteristic of an Iwan model in microslip, with the damping increasing with amplitude according to a 

power law relationship.   
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Figure 40. Damping ratio versus acceleration amplitude for 2nd mode (Multiple Hammer Strikes) 
 

 A summary of the observed frequency and damping nonlinearities is shown in Table 12.  In 

contrast, the 5th and 6th modes were not excited enough to exhibit nonlinearity and will be modeled as 

linear. 

Table 12: Summary of results for catalytic converter system NA = not applicable (linear mode) 

Modal 
Index 

Natural 
Frequency 

[Hz] 

% Shift in 
Peak 

Frequency

Linear 
Damping 

Ratio 

Maximum 
Damping 

Ratio 

% Shift 
in 

Damping 
1 113.70 0.8% 0.0030 0.0072 125.00% 
2 175.42 0.2% 0.0043 0.0066 46.67% 
5 262.71 NA 0.0044 NA NA 
6 348.68 NA 0.0045 NA NA 

 

 The parameters of a modal Iwan model are estimated from the measurements for the first two 

elastic modes.  There was no obvious evidence of macro-slip in the experimental test; therefore, the slip 

force can be assumed to be greater than any of the excitations applied experimentally. 
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  (42) S dpF φ F

 The joint stiffness is related to the minimum and maximum stiffness that the mode has when the 

joint goes, respectively, from slipping completely to being perfectly locked.  This parameter can be 

estimated based on the peak frequency shift observed using the ZEFFT algorithm.  However, because 

macro-slip was not observed, one cannot know whether the frequency would shift further if even larger 

forces were applied.   

 The  -value can be calculated directly using the slope of the damping versus amplitude curve 

from Figs. 39 and 40.  The  -value was difficult to estimate from Figs. 39 and 40 because the nonlinear 

Iwan damping was only dominant over part of the measurement.  To address this, the linear damping ratio 

was subtracted from the instantaneous damping in Figs. 39 and 40 to isolate the nonlinear portion of the 

damping.  This was then relatively easy to fit to a power law relationship as shown in Figure 41.  For the 

first mode, the  -value was found to be 0.280   .   
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Figure 41. Damping Ratio versus acceleration amplitude for 1st mode  after subtracting linear 

viscous damping of v=0.003. 
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 In principle the parameter   can be found from the y-intercept of the dissipation versus 

amplitude curve, but in this case this would not be reliable since 
SF  and  were not known precisely.  

Instead 

TK

  was assumed to be unity and then varied to see whether the results were sensitive to that 

assumption.  These Iwan parameters can then be used to simulate the response of the mode in question to 

the measured impulse and then to compare the observed damping versus amplitude curves.  Alternatively, 

one can use the approximate expressions derived in [ ]. 48

 These concepts were used to estimate starting values for the parameters and then they were varied 

until the damping versus amplitude curve of the modal Iwan model, found by integrating the equation of 

motion with a Newmark algorithm [89], matched what was measured experimentally.  The unknown 

parameters 
SF  and  were varied until the damping and frequency relationships agreed with 

experimental measurements.  Figure   shows the damping versus amplitude and Fig.  shows the 

frequency versus velocity amplitude of the modal Iwan model for the first mode.  In this comparison, only 

a single hammer impact was used, and the measured impact force was applied to the modal-Iwan model 

to obtain a time domain simulation from which the damping versus amplitude and frequency versus time 

were extracted and which are labeled “Model” in Figs.  and .  The simulation to generate these plots 

was completed using a forcing time history from a strike at location 204

TK

42 43

42 43

z1, see Fig. . 39

 Recall,  is calculated as a function of the natural frequency and the frequency shift using Eqn. 

(

TK

36).  It is interesting to note that the Hilbert transform of the simulated response clearly levels off at 

about 10-4 m/s but even for this noise free simulated data the damping estimated by the Hilbert transform 

eventually shows spurious curvature below 10-6 m/s.  This was found to be caused by edge effects in the 

Hilbert transform.  The experimentally measured damping shows a strong spurious decrease below 10-3 

m/s. 
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Figure 42. Damping Ratio versus Velocity Amplitude - 1st Mode 
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Figure 43. Frequency versus Velocity Amplitude - 1st Mode 
 

 A similar procedure was used for the 2nd mode resulting in the comparisons shown in Figs. 44 and 

45 .  For this simulation the excitation at point 304x1, see Fig. 40, was used to generate a response. 
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Figure 44. Damping Ratio versus Velocity Amplitude - 2nd Mode 
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Figure 45. Frequency versus Velocity Amplitude - 2nd Mode 
 

Table 13 shows the parameters that were used in simulations of the first two modes.  
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Table 13: Iwan model parameters for catalytic converter system  

Parameter 
Simulation 

Case 
1st Mode 

Simulation 
Case 

2nd Mode 

sF  (N) 1200 1000 

nf  (Hz) 40 41 

TK  (N/m) 295930 501058 

  0.7 0.7 
  -0.280 -0.400 

Linear damping, Linear 
v 0.00305 0.0043 

 

  The nf  values here are much larger than those observed using the ZEFFT algorithm. The 

amount of energy dissipated in the joint depends on how much load it carries.  Hence, for the joint to 

cause the damping to change by a factor of two as was observed, it must carry significant load and the 

system experiences a large change in stiffness if the joints slips completely.  Even then, this value is 

reasonable, since the frequency of the first mode would change quite dramatically if the bolts were not 

present.  Indeed, in [52] the joint stiffness in a beam structure was estimated by loosening the bolts until 

they barely held the parts together and measuring the structure’s natural frequencies. 

 The simulated response of these mode is shown in Figs. 46 and 47 and excellent agreement was 

found with the measured modal response. The damping decays the signal at a similar rate and the 

frequency remains lined up throughout the decay even as it changes.  
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Figure 46. 1st Mode Acceleration Response (Experimental and Iwan Simulation) 
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Figure 47. 2nd Resonance Modal Acceleration Response (Experimental and Iwan Simulation) 
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 The two responses that were shown in Fig. 46 and 47 were from two different forces that excite 

each mode into the nonlinear regime, one could easily apply this procedure to a single force time history 

and add up all of the modal contributions to see the full response as was done in [52].  This comparison 

does not add any additional insight because the two modes combine in a complicated way so it was not 

shown.  

3.2.5 Catalytic Converter Example Remarks 

 This work explored the applicability of a modal Iwan model to the first few modes of an 

assembly structure consisting of actual production exhaust components.  The results showed that the 

ZEFFT was useful in screening modes to determine which modes were most affected by joint 

nonlinearity.  Then, a Hilbert transform analysis was used to quantify the change in damping with 

response amplitude and then to estimate the parameters of a nonlinear model for each mode.  Using these 

tools, the procedure was relatively fast and could be readily extended to structures with many more 

modes.  All of the modes of the assembly studied were either linear or well described by a modal Iwan 

model with a viscous damper in parallel to capture low level material damping.  It is encouraging that the 

modal Iwan framework appears to be capable of describing all of these lower modes of this structure, and 

it was relatively easy to characterize the structure mode-by-mode in this manner.  It would have been 

much more challenging to model each joint as a discrete nonlinearity and then to update a model for the 

entire structure to try to obtain the behavior that was observed in the measurements, and the resulting 

model would be more expensive to integrate.  The next example is on a system containing many more 

linear and weakly nonlinear modes. 
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3.3 Cylinder-Plate-Beam System 

3.3.1 Introduction 

 As seen in previous example, a large class of structural dynamic system responses are weakly 

nonlinear in stiffness (a few percent modal frequency change) and significantly nonlinear in damping 

(hundreds of percent damping ratio change) as a function of amplitude of vibration.  Such systems will 

typically be linear at low level excitation.  At higher levels of excitation the resonant frequencies typically 

decrease slightly and the apparent damping can increase significantly.  In [3] damping was observed to 

increase by a factor of three.  Linear models used to simulate the response may over-predict the nonlinear 

response by tens to hundreds of percent.   

 This section will explore another weakly nonlinear system the Cylinder-Plate-Beam (CPB) 

system discussed previously in Chapter 2.3 and pictured in Fig. 19.  Consider a frequency response 

function (FRF) from the hardware used in this work due to a high level and a low level impact as shown 

in Fig. 48.  The test at low force levels produces an FRF whose peak response is a factor of two larger 

than that from a test at high amplitudes.  Occasionally the resonant frequency will go up slightly and the 

apparent damping will go down with an increase in the amplitude.  It is desired to be able to simulate both 

softening and stiffening behavior.  As mentioned previously, Segalman [51] explored the possibility of 

utilizing a modal Iwan approach to capture spatially distributed nonlinear energy dissipation with a one 

degree-of-freedom (DOF) analytical model.  Segalman showed that a 3DOF system could be modeled as 

three uncoupled modes using the 4-parameter modal Iwan model.  Deaner [88] extended this concept 

showing that the first several modes of a beam could be modeled as uncoupled and governed by 

uncoupled nonlinear SDOF systems when he used the modal Iwan model in parallel with a discrete 

damper. 
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Figure 48. Drive Point FRF magnitude - low level versus high level impact force 
 

 The approach used in this example utilizes a weakly nonlinear modal model framework.  One 

assumption for this approach is that superposition of the modal responses can be multiplied by the mode 

shape matrix to estimate the response at physical DOF.  Inherent in this approach is the assumption that 

the mode shapes do not change with response amplitude, and that the modal DOF do not interact.  This 

approach begins with the standard modal model using a linear spring and damper for each modal mass.  

The spring and damper are identified in a standard low level modal impact test.  It was assumed that 

nonlinear elements can be connected in parallel with the standard linear elements.  A high level impact 

test on the nonlinear structure provides data for fitting the nonlinear parameters of each model type.  Two 

different nonlinear elements are examined in this section:  1.  a 4-parameter Iwan element in parallel with 

a linear stiffness and damper; and 2. cubic polynomials of stiffness and damping as a function of modal 

response amplitude.  After the elements were identified, a simulated high level structural response was 

completed to compare with measured data.  A key portion of the success of this approach comes from a 

modal filter that can filter out all the modal responses of the structure except the single mode of interest.  

The single DOF modal filtered response is used to identify the nonlinear parameters.  The Iwan model 

require that the Hilbert Transform of the modal response be computed as a step in the identification 



   77

process.  The cubic stiffness/damping model does not have this requirement as it does not rely on the 

instantaneous damping or frequency but uses the filtered measurement directly in a least squares sense. 

3.3.2 Experimental Set-up 

 The experimental set-up used in this work is the same as that shown in Chapter 2.3.2. This 

hardware is shown in Fig. 21 with the instrumentation layout shown in Fig. 22.  The only difference in 

set-up is that this configuration has no washers in between the plate and the cylinder in this system.  This 

was found to create more nonlinearity in this system, most likely due to the increased contact area.  The 

lack of these washers and reassembling of the system has caused the linear frequencies to shift slightly 

compared to their measured values from Chapter 2.3.2. 

 Two series of hammer impact tests were conducted on the hardware described above.  The first  

minimized the nonlinear response by applying low level inputs with peak forces of approximately 23 

Newtons at the three locations shown in Table 14.  These input degrees of freedom can be observed on 

Fig. 22 form Chapter 2.3.2.  This data was used to extract parameters for the linear modal model of the 

hardware.  The second set of tests excited nonlinearities with inputs at these same locations but with much 

higher peak forces: 180 and 400 Newton for the radial and axial hits, respectively.  The 400 Newton strike 

was not used for the radial inputs because this force level caused the response to exceed the measurement 

range of the drive point accelerometers.  The high level data was used to first identify which modes were 

nonlinear and secondly to extract parameters for the nonlinear models. 

Table 14: Excitation Information 

Input 
DOF 

Description 
Low Level 
Peak Force 

[N] 

High Level 
Peak Force 

[N] 
301Y- Axial input at tip of beam 23 400 
5002R- Radial input at aft end of can in the stiff direction of the 

beam 
23 180 

5003R- Radial input at aft end of can in the soft direction of the 
beam 

23 180 
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3.3.3 Preliminary Modal Results 

 The Synthesize Modes And Correlate (SMAC) program by Mayes and Hensley [78] was used to 

extract two sets of modal parameters from the low and high level impact data using a real modes 

approximation in Table 15.  Rigid body mode shapes were calculated from solid model mass properties. 

Table 15: Linear Modal Parameters - Modes in Green were considered nonlinear 

Low Level High Level 
Mode nf  

(Hz) 

  
(%) 

nf  

(Hz) 

  
(%) 

fn  

(%) 


(%)

Reference Shape Description 

7 119 0.36 116 0.95 -3 167 5003R- 1st beam bend in X 
8 160 0.21 158 0.60 -1 190 5002R- 1st beam bend in Z 
9 276 2.46 273 3.60 -1 46 5002R- Torsion of internal mass 
10 282 2.10 280 1.92 -1 -9 5003R- Translation in X of internal mass 
11 302 2.34 298 2.40 -1 3 5002R- Internal mass off-axis twist  
12 503 0.67 491 1.23 -3 84 301Y- Axial mode of beam Y 
13 592 2.02 570 2.91 -4 44 301Y- Rotation of internal mass about Z 
14 635 2.00 630 2.27 -1 14 5002R- Rotation of internal mass about X 
15 699 1.26 692 1.44 -1 14 301Y- Axial mode of internal mass Y 
16 734 1.27 732 1.38 0 9 5003R- Foam mode X 
17 759 1.13 758 1.16 0 3 5002R- Foam mode Z 

 

 The low level modal parameters were used to create the linear modal model used in the later 

sections of this report.  The high level modal parameters were used to determine which modes should be 

modeled as nonlinear.  Since damping values extracted from measured data can have 10% uncertainty, the 

heuristic used in this work was that any mode with a damping shift of greater than 30% was declared 

nonlinear.  Modes 7-9, 12, and 13 were thus selected to be modeled as nonlinear. 

3.3.4 Signal Processing  

 To develop a nonlinear modal model, the proposed approach requires the structural response be 

separated into the individual modal responses.  This requires some type of filter that can transform 

multiple sensor measurements into modal coordinates.  Once these modal responses are calculated, 

further processing is required to aid nonlinear parameter identification. The following sections detail this 

two-step procedure.   
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  A modal filters was used to transform measurements in physical coordinates to modal responses 

were exercised.  A modal filter is desired such that:  

 T
iΨ x q  (43) 

where  is the iiq th modal DOF, column vector x  contains measured responses, and Ψ  is the vector of 

weights transforming the measured responses to the modal response.  The SMAC modal filter [90] 

operates directly on the FRFs.  If one operates on Eqn. (43) in the frequency domain and divides by the 

input force, then 

 
i

T
x qΨ H H  (44) 

where xH  is now a vector of measured FRFs and  is an analytically calculated single DOF (SDOF) 

FRF with frequency and damping as extracted from the high level impact data.  Columns for every 

frequency line are added to 

iqH

xH  and   
iqH creating a matrix of xH  and a vector of the analytical FRF 

.  Transposing and isolating the modal filter on the left side yields 
iqH

 
i

TT
x q

Ψ H H  (45) 

where the superscript + represents the pseudo-inverse.  Hence, the SMAC modal filter is obtained with the 

measured FRFs and an analytical SDOF FRF constructed using the extracted frequency and damping 

from the high level linear modal parameter extraction.  This is different from the spatial filter applied in 

the Catalytic Converter example which made use of the linear mode shapes rather than the measured 

FRFs of the system. 

 Once a single degree of freedom is obtained for each nonlinear mode, damping and frequency are 

quantified as a function of response amplitude.  The procedure for accomplishing this closely follows the 

work from [52, 91].  In this work, the Hilbert Transform is computed and a cubic polynomial is fit to the 

time varying amplitude and phase.  This follows the same mathematics as Eqns. (26-33). 
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 The nonlinear stiffness and damping from the Hilbert Transform for of each mode can now be 

evaluated based on changes in damping ratio and frequency with respect to time.  The instantaneous 

damping and frequency can be plotted against velocity and displacement amplitude to bring these 

parameters into a response based form rather than time based. 

 It is essential to reduce the signal to a single degree of freedom before completing the above 

process else the envelope and instantaneous phase will be distorted by interference of other modes.  In 

order to assist the modal filter in eliminating unwanted frequency content, a band-pass filter is applied to 

the modal response.  A forward-backward filter was utilized for this supplemental filter which maintained 

the timing of the original response signal.  A brief sensitivity study was completed to investigate the 

influences of various passbands on each mode.  In this study, passbands were varied from ±10% of the 

natural frequency to as high as ±50%.  For each passband and modal response, the time-varying damping 

and natural frequency were plotted versus time to determine the consequences of narrower/wider 

passbands.  The objective was to determine a passband for each mode that successfully eliminated 

unwanted frequency content without distorting the measured damping.  For this structure a 50% passband 

was used for all modes which was robust for every mode when using the SMAC modal filter.  The 

passband used in this example is not universal and might need modification for a different system or 

loading case. 

3.3.5 Nonlinear Models 

3.3.5.1 Modal Iwan Model 

 As discussed in [52] and earlier in Chapter 3.2.1 each mode can be modeled with a single degree 

of freedom system as a modal coordinate.  Each modal degree of freedom will be linked to ground with a 

linear spring and damper.  In order to capture the nonlinearity in each mode, a 4-parameter Iwan element 

is added in parallel with the linear spring and damper.  Recall the SDOF system diagram from Fig. 26. 
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 Similar to the catalytic converters, in this example the author only obtained measurements in the 

linear and micro-slip regimes of response.  Thus some of the parameters became more difficult to 

estimate.  The stiffness in the joint, , is defined as the change in stiffness as shown in Eqn. (TK 36). 

 The parameter χ can be determined directly from the damping ratio versus velocity amplitude 

curve. The value of χ defines the power law exponent on the dissipation versus velocity amplitude curve.  

The linear damping is subtracted prior to fitting χ  just as was the case for the Catalytic Converter 

example.  As discussed in Chapter 3.2.1 the damping ratio is fit to the form of:  

 1
( ) ztq C q

    (46) 

where  is calculated as the intercept of the power law fit from  ztC

In [48], Segalman defines dissipation in a similar form:    

 3
Dissipation R q

   (47) 

In Ginsberg’s text [12], the relationship between damping ratio and dissipation can be used to solve for 

the coefficient R. 

 2
3 2

2
zt d n

d n

Dissipation
R C

m q


  
 


  


 (48) 

 Based on additional 4-parameter Iwan model definition from [48] one can solve for the remaining 

unknown parameters   and sF  using an assumed  along with extracted values for χ and TK R . Using 

these 4-parameters the joint force can now be calculated and integrated. The identification procedure 

described above was performed on the nonlinear modes and the results are provided in the table below.   

Table 16: Iwan Parameters for Identified Nonlinear Modes 

Mode     sF  TK  ,n linf  ,n lin  

7 -0.65 0 245 2.10E+05 119 0.0036 
8 -0.31 0 39 2.91E+05 160 0.0021 
9 -0.22 0 51 9.92E+05 276 0.0246 
12 -0.77 0 52 9.69E+05 503 0.0067 
13 -0.79 0 108 2.24E+06 592 0.0202  
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3.3.5.2 Restoring Force Surface 

 This method has been extensively researched and refined with several permutations.  Reference 

[61] contains an extensive synopsis of the past variances and applications of the Restoring Force Surface 

(RFS) method.  Similar to the Iwan model, the version of the RFS model structure adopted for this work 

is shown in Fig. 49 where the linear elements are in parallel with the nonlinear ones.   

 

Figure 49. Schematic of SDOF for RFS modal coordinate 
 

 

 The foundation of RFS is in the Newtonian equation of motion: 

 ( , )r q F q q F   (49) 

where  represents the damping and stiffness forces (called the restoring forces) and F  is the 

excitation force.  Assuming the acceleration and excitation force are measured, then at every time instant, 

the restoring force is also known.    is written in the following form: 

( , )rF q q

rF

 3( , ) c c c k k k     F q q q q q q q q q q     3
0 1 2 0 1 2r

 (50) 
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where , , , and  are constants.  Since  and  are already known from the low level modal 

tests, Eqn. (

1c 2c 1k 2k 0c 0k

50) is rearranged to, 

 

1

23 3
0 0

1

2

c

c
c k

k

k

 
 
         
 
 

q q q q q q F q q q      (51) 

or  

  (52)    
1

2

1

2

c

c

k

k

 
 
  
 
 
 

P U

 Recall that  P  and  U are processed measurements and that there is a row for each time 

sample.  The best results were obtained by taking the Fourier transform of each column of  P  and 

 U giving, 

   
1

2

1

2

c

c

k

k

 

 
 
  
 
 
 

P U  (53) 

 

Note that in order to yield real coefficients,  P  must be reconfigured to, 

  
( )

( )

real

imaginary





 
  
 

P
P

P
 (54) 

and  U  must be similarly restructured. Pre-multiplying  U  by the pseudo-inverse of  P results in 

the least squares estimate for nonlinear restoring force coefficients , , , and .  1c 2c 1k 2k
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 Quality results were obtained by applying a weighting matrix to Eqn. (53) near resonances.  If the 

weighted bandwidth is taken to be ±5% of the frequency of the resonance, this method gave better 

parameters than the time domain results from Eqn. (52).    

    
1

2

1

2

c

c

k

k

 

 
 
  
 
 
 

W P W U  (55) 

where  is the block diagonal weighting matrix. For the Restoring Force Surface results in this work 

this weighted frequency domain approach was utilized with a weight of 100 applied to the narrow 

resonance bands and 1 elsewhere. 

W

 Note that acceleration, velocity, and displacement must all be known (estimated or measured).  

For this work, acceleration was obtained from the modal filtered measured accelerations and the other two 

states were estimated by integrating in the frequency domain.  The first step was to band-pass filter the 

modal acceleration as described in Chapter 3.3.4.  The velocity and displacement in the frequency domain 

were then calculated by dividing this acceleration by i  and 2 , respectively, followed by band-pass 

filtering using the same filter that was applied to the modal acceleration.   

 The identification procedure described above was performed on the five nonlinear modes, and the 

resulting coefficients are provided in Table 17.   

 

Table 17: Restoring Force Surface Coefficients for Identified Nonlinear Modes 

Mode c2 c1 c0 k2 k1 k0 
7 -1.36E+03 367 5 1.69E+13 -1.5E+09 5.56E+05
8 -3.77E+03 579 4 1.52E+13 -1.8E+09 1.01E+06
9 -1.94E+05 6.63E+03 85 6.14E+14 -1.5E+10 3.01E+06
12 -5.35E+02 299 42 1.49E+14 -1.9E+10 1.00E+07
13 -3.24E+04 3.33E+03 150 4.42E+15 -1.6E+11 1.38E+07
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3.3.6 Results and Observations 

 This section compares the results of each of the nonlinear modal models to the actual nonlinear 

experimental measurements.  First, a discussion of the simulations used to create the analytical modal 

responses for linear and nonlinear modes is presented followed by a comparison to measured data in 

physical coordinates.  Discussions of features of each method will conclude this section. 

 The two pseudo-modal models with 17 modes were excited with simulated modal forces 

corresponding to the measured high level impacts from the three different locations.  The modal responses 

were extended to the physical DOF using the linear mode shape matrix extracted from low level modal 

tests.  These responses were compared against the measured high level data in the plots below.  Note that 

the line labeled “Linear” is the response of a linear model that used the low level linear parameters from 

Table 15 for all 17 modes.   

 A representative sample of results are presented.  Figure 50 compares the linear model response 

with the measured data by considering the primary singular value of the complex mode indicator function 

(CMIF).  The CMIF compresses all the responses from all three force impacts into one plot.  This plot 

illustrates that the linear model over-predicts the response from a high level impact; the three main modes 

of the system (7, 8, and 12) are over-predicted by almost 100%.  Additionally, the linear model is slightly 

too stiff. 



   86

100 200 300 400 500 600 700 800
0

5000

10000

15000

Frequency [Hz]

C
M

IF

Multi-reference CMIF, Low-Level Linear Model vs Measured Data

 

 

Measured
Linear

 

Figure 50. Multi-reference CMIF, linear model prediction versus measured data, max singular 
value only 

 
 Figure 51 shows the primary singular value of the multi-reference CMIF of the high level 

measured data and the corresponding predictions of both nonlinear models.  All models are able to predict 

the high level test data better than the linear model.  Note that for declared linear modes, both model 

results overlay, an expected result since both pseudo-modal models were the same for the linear modes. 
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Figure 51. Multi-reference CMIF, nonlinear model versus measured data 
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 The time history plots of Figs. 52-55 reinforce the results from Fig. 51.  The drive point response 

to the axial input is dominated by mode 12.  Both models were able to accurately replicate the measured 

data. 
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Figure 52. Axial drive point response, Iwan versus measured 
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Figure 53. Axial drive point response, RFS versus measured 
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 The Iwan and RFS models comparably predicted the drive point response from the radial input in 

Figs. 54 and 55.  Neither achieved the proper amplitude of the initial acceleration spike, but they simulate 

the rest of the time history well.   
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Figure 54. Radial drive point response, Iwan versus measured 
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Figure 55. Radial drive point response, RFS versus measured 
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 Although not readily apparent from the figures, it is important to note the significant role of the 

Hilbert transform in the Iwan model parameterization.  While an extremely valuable and versatile tool 

that provides great qualitative insight into the frequency and damping variation, it can also have adverse 

effects depending on the characteristics of the data.  In the presence of step changes in signal amplitude or 

frequency, the envelope and instantaneous phase produced by the Hilbert transform will have some 

overshoot and settling time characteristics [92].  Given that this work utilized impact data which has a 

large step-like change in amplitude, the envelopes and instantaneous phases extracted from the Hilbert 

Transform of the measured data were distorted during the initial portion of the response.  These errors 

consequently influenced the polynomial fits for the envelope and instantaneous phase upon which the 

model depends. 

 Another aspect worth mentioning is the interplay of the Hilbert transform and the quality of the 

modal filter.  In addition to the transient effects mentioned above, any non-targeted modal peaks that are 

not adequately attenuated in the modally-filtered response can produce ripples throughout the entire 

envelope.  These ripples influence the polynomial fits to the Hilbert transform and hence the nonlinear 

parameters of the Iwan model.  In extreme cases when the modal filter cannot eliminate a nearby mode 

(e.g. mode 9), the envelope and instantaneous frequency (and hence the nonlinear parameters) are 

distorted by the non-suppressed mode.  This phenomenon can contribute to an inaccurate prediction.  The 

RFS method can also suffer from non-targeted poorly attenuated modal peaks in the modally-filtered 

response, but does not rely on the Hilbert Transform, which eliminates effects from the Hilbert distortions 

as well as the extra steps of calculating and fitting the Hilbert Transform.  In addition, the RFS model 

loses the connection that the Iwan model attempts to keep with the physics of the frictional interface. 

 Both modeling methods provided satisfactory nonlinear simulations with enough user interaction.  

For these studies, the Iwan model and the RFS frequency fit model gave similar satisfying simulation 

results.  Six parameters were chosen for each mode for each method to put them on equal footing; 
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however, the Iwan model never reaches micro-slip so is truly only using 4 of the 6 parameters.  A Palmov 

model [93] may be more appropriate for this comparison.  

3.4 Remarks 

 The tools in this chapter present a methodology to screen and find nonlinearities in experimental 

measurements.  This screening process selected a subset of modes on an experimental system that 

displayed traces of nonlinear behavior.  In the first example, an assembly of catalytic converters was 

tested and a 4-parameter modal Iwan model was used to represent this observed nonlinear behavior with 

extremely accurate results.  On the catalytic converter system only two modes of the system were treated 

as nonlinear.  In contrast, the second example on the Cylinder-Plate-Beam system contained five 

nonlinear an six linear modes.  Again, a 4-parameter modal Iwan model was used to describe the 

nonlinearity in this system.  Additionally, a simpler model  was defined representing the nonlinear 

behavior with cubic stiffness and damping terms added to each modal equation of motion.  This 

polynomial model also provided a highly accurate result and bypassed some complications that can arise 

when using the Hilbert Transform.  Despite this advantage, the polynomial model loses the physical 

meaning of parameters established by the modal Iwan model.  Both models provided suitable results to 

use in a dynamic substructuring prediction.  In the remainder of this dissertation, Chapters 4 and 5, 4-

parameter modal Iwan models are used to capture the nonlinear behavior of simulated and experimental 

systems.  These nonlinear modal models can be used to describe the nonlinear dynamics of an individual 

subcomponent.  These subcomponent models will be used in a component mode synthesis prediction, in 

order to evaluate how the nonlinear dynamics described in a subcomponent can be used to describe the 

nonlinearities present in assembled structure.   

 



   91

4 Nonlinear Modal Substructuring: Simulated Experiments 

4.1 Introduction 

 This chapter has been submitted as an article to the Journal of Mechanical Systems and Signal 

Processing [94].  This chapter utilizes the nonlinear modal model identification techniques, as described 

in  Chapter 3,  on simulated experimental measurements in order to define a subcomponent model and to 

perform nonlinear substructuring predictions.  This chapter remains unchanged from the original journal 

submission.  As such, some of the content in this chapter is repeated from previous chapters, such as the 

methodology for fitting a 4-parameter modal Iwan model discussed again in Chapter 4.4.1.   

 Experimental-analytical substructuring allows one to couple an experimentally derived model of 

one subcomponent with a finite element model of a different subcomponent.  This can be particularity 

useful when one substructure would be difficult to model; rather than create a finite element model for 

that component, one can simply perform an experiment to identify a model that captures its dynamics.  

There are countless compelling industrial applications where experimental-analytical substructuring 

would be beneficial and most contain interfaces with bolted joints.  Interfaces in built-up structures are 

responsible for a large portion of the damping in the assembly, with bolted joints being the most common 

source of nonlinearity [1, 2].  Many of these jointed structures are weakly nonlinear, meaning that the 

mode shapes of the structure do not change significantly as amplitude increases.  This work presents an 

extension of modal substructuring for this class of structure and validates the methodology through 

simulations.  A companion paper applies this methodology to experimental measurements from a real 

structure. 

 There are several methods of experimental-analytical substructuring.  In [13] de Klerk et al. 

provide an excellent review of several methods and their history.  In essence, substructuring is a process 

of enforcing constraints at interfaces and assuring that the sum of the reaction forces at an interface is 

zero.  This constraint enforcement is applicable regardless of whether the subcomponents of the structure 
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are linear or nonlinear.  In this work, the transmission simulator method [26, 38, 95] was used to generate 

dynamic substructuring predictions.  This method uses an experimental system that includes a fixture (or 

transmission simulator) as one subcomponent.  This fixture is meant to simulate the boundary conditions 

of the subcomponent of interest in the assembly.   

 Recent works have shown that bolted interfaces can cause the damping in a system to increase by 

a factor of two or more [3, 82, 96], while the effective natural frequency tends to change relatively little.  

Furthermore, under the conditions outlined in [50] (simplistically that the joint forces and their harmonics 

are distinct from each modal frequency), the modes of the structure tend to remain uncoupled so that the 

structure can be modeled accurately using a collection of uncoupled, weakly-nonlinear oscillators [52, 

97].  This was confirmed in [3] for an assembly of automotive exhaust components, by exciting the 

structure at multiple locations and various force levels (in the micro-slip regime).  A second investigation, 

on a cylindrical structure with bolted joints and nonlinear contact between foam and an internal structure, 

also highlighted the usefulness of this approach [98].   More recently, Krack explored descriptions of 

individual subcomponents with nonlinear normal modes in [65].  Krack explores many examples of 

systems where one mode is dominant and nonlinear while others can be treated as linear.  While Krack’s 

work focused on a general nonlinear modal modeling framework, which is applicable for a wide range of 

nonlinear models, this work explores the use of a modal Iwan model to define the nonlinear dynamics of 

each substructure.  A modal Iwan model accurately captures the power-law dependence of damping on 

amplitude that is frequently observed in experimental measurements as seen in [52, 99-101].   

 This is not the first work to propose substructuring of nonlinear subcomponents, although 

relatively little has been published on this topic.  A few works  [62-64] have extended linear frequency 

based substructuring into the nonlinear realm using the harmonic balance method.  Chong and Imregun 

[70] used variable modal parameters to couple multiple nonlinear substructures focusing on weakly 

nonlinear structures.  Chong and Imregun used describing functions to specify how the frequency and 

shape of a mode change with amplitude, however they seem to confuse the tangent stiffness of the system 
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with the effective stiffness of a single-term harmonic balance model.  They employed an iterative 

approach which was used to solve for the amplitude dependant modal properties of the built-up structure 

in the frequency domain by updating the equations of motion for each subcomponent.  This work also 

focuses on weakly nonlinear structures, and seeks to obtain predictions across a range of vibration 

amplitudes, yet modal substructuring is performed in the time domain. 

 In [26], Allen, Mayes and Bergman presented the transmission simulator (TS) method, one of the 

features of which is its ability to capture the linear stiffness and damping of the joints between 

subcomponents.  This work extends the TS method to include nonlinearities in subcomponent models.  To 

create a nonlinear model of each subcomponent, this work proposes to use uncoupled single degree-of-

freedom (SDOF) oscillators to represent each weakly nonlinear mode in the structure.  These 

subcomponents are then assembled using a primal formulation [13].  Specifically, the set of nonlinear 

oscillators are assembled using standard finite element assembly techniques.  The assembled equation of 

motion and its Jacobian are then used in a Newmark integration routine to predict the transient response 

of the assembled structure.  The transmission simulator method is especially useful here because it allows 

one to capture the nonlinearity generated by a bolted joint within a single experimental substructure.  This 

will make it possible to capture the nonlinearities in the system on the subcomponent level and then 

assemble the subcomponent models to observe how the nonlinear joint forces affect the fully assembled 

structure. 

  This chapter is organized as follows;  Section 4.2 outlines the approach used,  and Section 4.3 

validates the proposed techniques on a simple spring-mass system.  First, modal models are derived from 

simulated transient measurements from a 3DOF system.  These modal models are then used to predict the 

response when the 3DOF system is assembled to a linear 2DOF system.  Section 4.4 explores the 

application to a more complicated structure, modeled using finite elements, i.e. the Brake-Reuss Beam 

[76].  A quasi-static simulation [53] of a Brake-Reuss Beam finite element model is used to obtain a 

nonlinear modal model for each mode of the beam.  Then, using the transmission simulator method, a 
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linear model of the TS is removed from the system and a modified half-beam structure is added in order 

to generate predications for a modified Brake-Reuss Beam.  This is the first time this methodology has 

been attempted on a realistic geometry.  Conclusions and remarks from both cases are then presented in 

Section 4.5. 

4.2 Theoretical Development 

 In the most general case, the equation of motion for substructure A can be written as follows,  

    
Joints

, ,
1

,
AN

A A A A A A A A A A A
J n J n n

n

f t


   M x C x K x f x f    (56) 

where MA, CA and KA are the  linear mass, damping and stiffness matrices and the nth scalar joint 

force, 

NN 

, ,A A A
J n nf x  depends on the displacement across the joint, which is typical simply the difference 

of two displacements, , in the system and on its internal slider states Ax A
n .  The constant vector ,

A
J nf  

maps each scalar joint force ,
A

J nf  to the points to which the joint is attached.  For example, in the first 

study that will be discussed later, shown in Fig. 56, the first Iwan joint is between DOF 1 and ground so 

 T1 0 0,1
A

J f  and the third Iwan  joint is connected between DOF 2 and 3, so  T,3 0 1 1A
J  f .  In 

addition, the displacement across the joint is simply  2 3 0 1 1x x   Ax .  

 When each mode of the substructure is represented as a modal Iwan model, the matrices M, C 

and K would be diagonal and the nth joint force would depend on only one modal displacement, q , as 

shown, 

  
 

\ \ 2
, \ , \

TT

,1, 1, ,2, 2,

(2 ) [ ( ) ]

( ) ( )

T
A A A lin A A lin A A NL A A A

NL A NL A A NL A AF q F q

      

   

,

,

I q q q F f

F

 



  (57) 

In the modal domain  now contains a vector of modal forces that are dependant on a single modal 

degree of freedom, thus at the substructure level the modes remain uncoupled. 

NL A,F
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 A primal formulation [13] is employed to couple the substructures.  Without loss of generality, 

consider the case where substructure A will be joined to substructure B.  The substructures can be coupled 

by writing constraint equations of the following form,  

 0
A

B

 
 

 

x
B

x
 (58) 

and then eliminating the redundant degrees of freedom using 

  (59) 
A

B

 
 

 

x
Lq

x

 
 nullL B

 (60) 

to obtain a set of independent (or unconstrained [12]) coordinates, q.  The equations of motion 

for the coupled system then become the following in terms of the coordinates q, 
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 (61) 

where  

 T 0ˆ
0

A

B

 
  

 

M
M L L

M
 (62) 

and similarly for  and .  Further details can be found in [Ĉ K̂ 13] or ([12], Chapter 9). 

 In order to simulate the response of the assembly, an unconditionally stable Newmark algorithm 

[89] is used (e.g. with mathematical factors N = 0.25 and  = 0.5).  This procedure was first developed 

by Simmermacher as reported in [99].  A Newton iteration loop is used to adjust the displacement of the 

joint (and the internal slider states) so that the joint force is in dynamic equilibrium at each time step.  

Specifically, if the displacement at the jth time step is denoted qj, then the residual is defined as, 
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 (63) 

In order to map the instantaneous joint stiffness, the joint force maps, ,
A

J nf , are assembled into a 

global vector, 

 ,
,

,

A
A BJ n

global n global n B,
J n

  
   
   

0f
f f

f0


   (64) 

Then, the Jacobian is written as, 
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where ,
A
J nk

 is the instantaneous joint stiffness for the nth joint.  The estimate of the acceleration, 

displacement and velocity at the jth time step are updated as follows. For the first iteration the same 

procedure is used, only with . 
0j r
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 (66) 

 

Note that T ,
A

J n 

 

f
L

0
 L and , and similarly for substructure B, are simply constant 

matrices that map each joint force onto the appropriate degrees of freedom in the assembled system.  

These matrices, and the assembled system matrices ,  and  are calculated in advance and only the 

joint forces and stiffnesses need to be updated in each iteration. 

 T

T , ,
A A
J n J n

 

  

f f 0
L

0 0

M̂ Ĉ K̂
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4.2.1 Iwan Joint 

 The preceding discussion is valid for a variety of joint models.  In this work the Iwan model is 

used, so each joint can be characterized by four parameters sF , , TK   and   [48].  The first two 

parameters describe, respectively, the force at which the joint slips completely (macro-slip) and the 

stiffness of the joint when all sliders are stuck.  The model exhibits energy dissipation per cycle, D, that 

depends on magnitude of the displacement x  in a power-law fashion as 

 
3

D R x


 (67) 

where R is a constant.  By analogy with a linear system, the effective damping ratio   of an SDOF 

system with mass m and with an Iwan joint in parallel with a spring of stiffness  is the following, 0K

  2
/ d nD m x     (68) 

where  and  2
0 /n TK K m   21d n    .  These relationships together with a Hilbert transform 

are used to fit an Iwan model to simulated measurements of each substructure.  For further details, see [3, 

52]. 

4.3 Spring-Mass System Application 

The proposed approach was applied to the system depicted in Fig. 56. 
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Figure 56. Schematic of the discrete system used to validate the proposed substructuring 

procedure. (top-left) Substructure A, (bottom-right) Substructure B.  Mass and stiffness 
proportional damping was added to simulate material damping (dashpots not shown). 

 
 Substructure A consists of three masses connected by linear springs of stiffness k in parallel with 

Iwan elements with the parameters shown in Table 18.  The other system parameters are m=10 kg, k=5 

N/m, CA=0.002(MA+KA),  and CB=0.002KB.  The goal is to simulate a test on Substructure A to 

determine modal Iwan models for each mode of that substructure, and then to utilize modal substructuring 

to predict the response of the assembly when the masses are joined as indicated in Fig. 56 with x3=x4. 

Table 18. Parameters of Iwan Joints in Substructure A 
Iwan Joint FS KT   
x1 – ground 10 N 5 N/m -0.5 0.1 

x1 – x2 1 N 4 N/m -0.2 0.01 

x2 – x3 100 N 3 N/m -0.8 1 

4.3.1 Estimating Modal Iwan Models for Substructure A 

 The linear mode shapes  1 2 3φ φ φ  of Substructure A were assumed to be known (e.g. having 

been measured from a low-amplitude linear test).  Note that in such a test each Iwan joint acts as linear 

spring with stiffness .  Then, to identify a nonlinear model for Substructure A, an experiment was 

simulated in which a half-sine impulse with a 0.1 second long period and amplitude of 100 Newtons was 

TK
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applied to mass 3.  The Newmark routine was used to determine the transient response and then the 

response of each mode was estimated using .  Note that the mode matrix used in this calculation 

corresponds to the linear, low amplitude modes that include the stiffness of the joints.  The FFT, 

Q

1q φ x

r()=FFT(qr(t)), of each modal response is shown in Figure 57.   A weak nonlinearity, as is typical of a 

structure with bolted joints, is visible near each peak.  Each mode only shows frequency content near its 

peak, suggesting that the modes are not interacting significantly. 
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Figure 57. Fast Fourier Transform of the modal response of substructure A.   

 

 The simulated measurements were then post processed using the procedure outlined in [100] to 

identify modal Iwan parameters for each mode.  Briefly, each mode’s response was band-pass filtered and 

a smoothed Hilbert transform was used to estimate the instantaneous phase and amplitude as a function of 

time.  The derivative of the phase gives the damped natural frequency, d n  , as a function of time, 

and the derivative of the amplitude gives (t)n(t), from which the damping can be determined.  Then the 
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frequency and damping were plotted versus amplitude and used to determine the modal Iwan parameters.  

To assure that the power-law behavior was accurately captured, the low-level material damping 0 was 

subtracted from the estimated damping by visually inspecting the damping versus amplitude curve.  Then, 

a line of the following form 

 
  1

r rQ R Q
 


 (69) 

where R and  are constants, was fit to the log damping versus log amplitude using least squares.  Note, 

macro-slip was not observed in any of these simulations (and must be avoided for the modal Iwan model 

to retain its validity).  Hence, the joint stiffness cannot be measured and so it was simply assumed to be 

such that the frequency of each mode shifts by 0.05 Hz in macro-slip.  This and the linear natural 

frequency were then used to find KT, and then these values were used to solve for a value of FS and  

such that the power law strength, R, in the Iwan model was equal to that obtained from the curve fit.  In 

essence, the model used is equivalent to a Palmov model [102], since macro-slip is never activated.  In all 

cases the modal Iwan model was found to fit the measured modal response very well, as illustrated for the 

first mode in Fig. 58.  The modal Iwan parameters obtained for each mode are shown in Table 19. 

 The modal Iwan model is a SDOF model that could be integrated in response to an applied load 

(mapped onto the mode of interest) to compute the transient response.  For example, the 100 Newton half-

sine pulse used to derive the parameters for the first mode was applied to its modal Iwan model and the 

transient response was computed using the Newmark integrator.  The transient response thus computed is 

compared to the measured modal response q1(t) in Fig. 59.  While the computed and “measured” 

responses do eventually go out of phase due to small frequency errors, the simulation captures the 

amplitude and frequency of the measured response very well over the entire range of response amplitude.  

Thus, this modal Iwan model can be used with confidence. 
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Figure 58. (blue) Damping ratio and natural frequency estimated using the Hilbert transform, and 
(black) those of a modal Iwan model fit to the measurements. (red dash-dot) Curve fit using eq. 
(69) to the damping ratio vs. amplitude, which was used to estimate the modal Iwan parameters. 
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Figure 59. (blue) True transient response of Mode 1, q1(t), due to the half-sine impulse . (green 

dash-dot) Estimated modal response computed using the modal Iwan model and the modal 

force . 
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 The same procedure was repeated for the second and third modes and the resulting modal Iwan 

parameters are shown in Table 19.  For reference, the true natural frequencies and damping ratios of the 

linearized system are fn0,true=[0.0686, 0.185, 0.269] Hz and 0,true=[0.00255, 0.001532, 0.001548].  The 

identification procedure has estimated the frequencies quite accurately, but there are errors of up to 25% 
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in some of the damping ratios.  While these errors could have been reduced by integrating longer time 

histories and using a finer time step to improve the accuracy of the Newmark integrator, this level of error 

is probably to be expected in a real experiment so further improvement was not sought. 

Table 19. Parameters of modal Iwan models of substructure A, estimated from simulated 
measurements.  The parameters in parenthesis are not fully relevant since the modal Iwan model 

is only valid if the response is low enough to avoid macro-slip. 
Modal Iwan Models 

(Substructure A) 
(FS) (KT)   fn0 0 

Mode 1 0.886  0.171 –0.023 0.0519 0.0683 0.0032 

Mode 2 17.7  0.629 –0.641 0.132 0.184 0.00161 

Mode 3 0.508  0.959 –0.564 0.000833 0.268 0.00172 

4.3.2   Substructuring Predictions 

 The substructures were assembled and the low-amplitude, linearized modal properties were 

calculated by solving an eigenvalue problem with the assembled mass and stiffness matrices including the 

linearized joint stiffnesses.  The damping ratios were then calculated using the light damping 

approximation [12] (preserving the classical real modes) and are compared with the true values in Table 

20.  Because these modal properties were computed with the joints linearized, they include only the linear 

viscous damping that was used to represent the material damping and thus there is no effect from friction 

in the joints.  The results show that the frequencies were accurately estimated, but the damping ratios 

show errors that are of a similar level as the errors in the estimates of the modal damping ratios of 

Substructure A. 

Table 20. Linear natural frequencies and damping ratios of the assembly predicted by 
substructuring. 
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 The response of the assembly to a 100 Newton input was then computed, and the responses x1(t) 

and x5(t) are shown in Fig. 60.  The substructuring predictions agree very well with the true transient 

response, both in frequency and damping.   
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Figure 60. Transient response of the 4DOF assembly to a 100 N impulse.  (solid lines) True 

response, (dashed lines) Substructuring prediction, using the modal Iwan model for Substructure 
A, (blue) x1(t), (green) x5(t). The panes on the left and right show a magnified view near the 

beginning and end of the response. 
 

 Further insight can be gained by considering the FFT of the response, projected onto each 

linearized mode of the assembly, as shown in Fig. 61.  This shows that the substructuring predictions 

contain the correct frequency content for each mode, including small distortions which cause the modal 

responses to show slight coupling.  The modal responses shown were estimated by multiplying the 

responses with the inverse of the linear, low-amplitude mode shape matrix. 
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Figure 61. FFT of the transient response of the 4DOF assembly to a 100 Newton impulse.  (solid 

lines) True response of each mode, estimated using  with the linear (low amplitude) 

modes, (dashed lines) Substructuring prediction, obtained using a modal Iwan model for each 
mode of  Substructure A. 

 

1
0
q φ x

 Most previous research, and industry practice, is based on a linear approximation.  Hence, it is 

also informative to consider how much the predictions shown above improve upon a linear 

approximation.  An example of such a comparison is shown in Fig. 62, for an impulsive input with a 500 

Newton amplitude.  The linear approximation greatly overestimates the amplitude of the vibration, 

producing a response whose root mean square (RMS) value is a factor of two larger (+99% error) than the 

true RMS response.  Of course, the level of error incurred by using a linear model depends on the strength 

of the forcing.  For the 100 Newton impulsive input mentioned previously the linear model is in error by 

only 38%.  At higher load levels the errors would be even larger. 
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Figure 62. Transient response, x5(t), of the 4DOF assembly to a 500 N impulse.  (solid blue) 

Nonlinear substructuring prediction, (dashed red) Response predicted by linear substructuring. 

4.4 Brake-Reuss Beam Application 

 The proposed nonlinear modal substructuring approach provided excellent results for the spring-

mass system discussed in Section 4.3. Next, the authors investigated how well these predictions 

performed for a more realistic geometry.  The system of interest for this section is the Brake-Reuss Beam 

[76], which consists of a pair of 304 stainless steel half-beams bolted at the center with a lap joint.  

 Figure 63 shows the subcomponents used in this substructuring example.  Substructure C is the 

standard Brake-Reuss Beam.  Substructure A is the transmission simulator for these predictions and is 

simply half of the Brake-Reuss Beam system.  The goal of this study is to create a model of the half-beam 

subcomponent, Substructure B.  This model should include the nonlinear dynamics due to the joint and 

the loading at the interface.   
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Substructure A – Transmission Simulator

Substructure D – Modified Half-Beam

Substructure E – Modified Beam (E=B+D)

Substructure C – Standard Brake-Reuss Beam

Substructure B – Half-Beam Model (B=C-A)

 
Figure 63. Substructure overview 

 
 To complete this task,  the transmission simulator method was used to remove the dynamics of 

Substructure A from Substructure C.  In order to validate this experimental-analytical model a modified 

half-beam, Substructure D, was then attached to the system using a primal formulation [13].  This new 

modified Brake-Reuss Beam, Substructure E, was then compared to a truth model constructed from the 

same finite element program.  Utilizing finite element models for each substructure allowed the authors to 

explore several scenarios including sensor selection, modal retention, and prediction quality all in the 

absence of experimental error. 

4.4.1 Substructure C - Standard Brake Reuss Beam Model & Identification 
 
 In order to simulate substructuring for this system, a finite element model of Substructure C was 

developed.  This model was derived from a model used by Gross et al. in [103].  A solid mesh of the 

Brake-Reuss Beam system using 22,000 elements is shown in Fig. 64.  The half beams of the system were 

modeled and meshed separately at this stage.  A Craig-Bampton (CB) model was extracted from the FEM 

program retaining 30 fixed interface modes and the 6 interface nodes (36 interface degrees of freedom).   

These interface nodes are at virtual node locations between the two half beams, see Fig. 65. 
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Figure 64. Finite element mesh for Brake-Reuss Beam substructure C 
 

 In order to connect the two half beams, the joint surfaces were connected to the interface node 

using rigid bar elements (e.g. RBE3 in Nastran).  These spider-like connections are shown in Fig. 65.  

Linear springs were added between the pairs of virtual nodes except in the axial direction.  Instead of 

using linear springs, the DOFs in the axial direction were coupled using a 4-parameter Iwan element.  

 

Figure 65. Finite element joint surface spider-patch 
 

In order to assure that the finite element model was a good representation of a real structure, the 

finite element model and discrete Iwan elements were updated to best match an experimental benchmark 
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[104], a

Joint # F  K  

s is discussed further in Appendix A.  The Iwan parameters for the three discrete joints are given 

in Table 21. It is worth noting that, while one could connect each pair of the nodes at the joint surface 

with a nonlinear element, this would be contrary to the idea of using an Iwan element.  The Iwan element 

internally contains a parallel array of slider elements that are tuned to represent the stiffness and damping 

of an entire joint.  Then, to obtain the linearized, low-amplitude modes the discrete Iwan elements were 

replaced by springs with the joint’s low amplitude stiffness, 0K , and the eigenvalue problem was solved 

to obtain the natural frequencies and mode shapes for Substructure C.   

Table 21: System C Discrete Iwan Parameters 

s T     

1 25 2,200,000 -0.35 0.0500 
2 10 1,840,000 -0.90 0.0500 
3 25 2,200,000 -0.35 0.0500 

 

  In order to simulate experiment odal substructurin his simulated "measurements" 

were needed from which a SDOF nonlinear ld b ate ach mode.  In [53] Allen, 

ac o

al m g for t  model, 

model cou e estim d for e

L ay , and Brake presented an adaptation of the quasi-static algorithm of [105] that statically loads a 

structure in the shape of a mode to excite one mode of interest.  The study in [53] showed that this 

algorithm accurately estimates the behavior of each mode of a typical structure in a small fraction of the 

time required to perform a dynamic simulation.  The authors used this quasi-static algorithm to obtain the 

modal damping vs. amplitude and frequency vs. amplitude curves that are needed to estimate the 

parameters of each modal Iwan model. Each modal model was defined by four parameters, 

[ ,  ,  ,  ]s TF K    as well as the low level linear damping ratio, 0  and the stiffness in macro-slip, K .  

To best fit the dissipation parameter,  , of the micro-slip range of the amplitude dependant 

 slope of this curve equal to 1damping curve was fit by setting the   . The joint stiffness, , is TK

dependent on

ul

 the frequency shift observed once the structure is in macro-slip, this can be found directly 

using the frequency versus amplitude curve from the quasi-static solution, as it provides a sim ated 

measurement in the micro and macro-slip regimes. 
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  (70) 
2 2

0 0 0( )T shiftK K K       

 The slip force sF  can be set manually in order to achieve the onset of macro-slip to best match the 

uasi-static data. principle, the paramete In r   q can be found from the y-intercept of the dissipation 

versus amplitude curve. Figure 66 contains an example for the first elastic mode.  For this mode the 

nonlinear modal model is optimized to fit the micro-slip region in both damping and frequency.  This 

model doesn't fit well as the system enters into macro-slip, but here we only intend to model the system in 

the micro-slip regime, so this is not significant to the predictions presented later. 
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Figure 66. Quasi-Static results and Iwan parameter model fit 
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  Table 22 con ubstructure C. The 

Table 22: Substructure C Numerical FEM Parameters 

Modal 
Index 

Natural 
Frequency 

Linear  

Nonlinear 

tains the modal Iwan parameters for the four elastic modes of S

numerical model of Substructure C comprises these four nonlinear elastic modes in combination with two 

rigid modes. 

Damping 
Ratio 

or Fs KT 
[Hz] 

    

1 171.26 0.0010 No r 38  3.24 -0.22 1 nlinea 105 2963 9
2 5 389 908040 2.01 -0.7108 78.28 0.0010 Nonlinear 
3 1195.20 0.0010 Nonlinear 225 9  8  ,289,100 .3752 -0.3066 
4 1616.10 0.0010 Nonlinear 2,250 8  3  2,326,000 3.959 -0.7081 

4.4.2 Subst A an and od Ha

ure, D, were extracted from 

the sam

 ructure d D: St ard and M ified lf-Beam  

The transmission simulator, A, and the modified half-beam substruct

e finite element mesh as Substructure C. The first is a simple half-beam from the Brake-Reuss 

Beam system. This substructure will act as the transmission simulator, so modal constraints will be used 

to couple the negative copy of this substructure to the same degrees of freedom on Substructure C.  Figure 

67 shows the finite element mesh for the transmission simulator.  

 

Figure 67. FEM of Substructure A 
Recall from Fig. 63, the transmission simulator will be replaced with the modified half-beam in 

order to evaluate the substructure models. Figure 68 displays the FEM mesh of the modified half-beam. 

The 0.75 kg mass was connected to the beam using high stiffness springs between each pair of adjoining 

nodes, simulating glue that would be used in an experiment. 
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Figure 68. FEM of Substructure D 
 

To verify that Substructures A and D are sufficiently different so that the substructuring problem 

is not trivial, their linear natural frequencies were compared and the results are shown in Table 23.  Each 

natural frequency shifts by at least 13% (more than one hundred times the width of the peak in the FRF), 

so the change is judged to be adequate to provide an interesting case study. Material damping of 0.1% 

was used for each mode in the transmission simulator and modified half-beam. 

Table 23: Modified System Frequency Shifts from Linear FEM Model 
Modal 
Index 

Substructure A 
[Hz] 

Substructure D 
[Hz] 

% 
Change 

Substructure C
[Hz] 

Substructure E 
[Hz] 

% 
Change 

1 623.37 539.12 -13.52% 171.26 151.83 -11.35% 
2 1438.72 1134.38 -21.15% 578.28 578.28 -10.85% 
3 3033.48 2295.71 -24.32% 1195.20 1195.20 -15.71% 
4 4562.07 3930.13 -13.85% 1616.10 1616.10 -6.04% 

4.4.3 Nonlinear Modal Substructuring Results 
 
  Next, the dynamic substructuring equation, Eqn. (61), was used to generate predictions of the 

modified assembly.  In contrast to an experiment where the number of sensors is limited, with the 

numerical model of Substructure C, it was possible to retain as many nodes as desired in the simulation.  

The authors selected a reduced set to simulate a detailed yet realistic experiment.  Figure 69 shows the 

retained nodes used in the simulated experimental substructuring. 

 

Figure 69. FEM with sensor set location for simulated experiments 
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  The number of modes in each substructure was varied to gain insight into how sensitive the linear 

substructuring predictions were to the particular modes used for each substructure.  Table 24 shows the 

errors in the linear natural frequencies for several of the combinations evaluated.  A few important 

observations may be made. Cases #4 and #7 show that the error increases significantly if the 4th mode of 

Substructure A is not included. Cases #9-#11 can be compared to Cae #3 and to observe that additional 

modes in Substructure C do not improve the quality of the prediction significantly.  

Table 24: Mode Convergence Study 

Case 
# Modes 

in C 
# Modes 

in A 
# Modes 

in D 

RMS 
Frequency % 

Error 

RMS 
Damping % 

Error 

1 6 6 6 0.911 % 3.585 % 

2 6 5 6 0.930 % 3.412 % 

3 6 4 6 0.798 %  3.342 %  

4 6 3 6 5.261 % 3.362 % 

5 6 5 5 0.813 % 3.556 % 

6 6 4 4 0.749 % 3.345 % 

7 6 3 3 4.682 % 3.576 % 

8 6 2 2 5.702 % 2.325 % 

9 7 4 6 0.798 % 3.343 % 

10 8 4 6 0.798 % 3.343 % 

11 9 4 6 0.797 % 3.345 % 
 

  The predictions shown in the remainder of this paper are those using the number of modes in 

Case #3.  Table 25 shows the linear frequencies that this substructuring model predicts for the first four 

elastic modes.  For this substructuring example, 6 modes (2 rigid and 4 elastic) were used in each of 

Substructures C and D; while only 4 modes (2 rigid and 2 elastic) were used for the transmission 

simulator.  In a continuation of this work the authors plan to extend this work to an actual experimental 

system.  With the number of modes selected for the simulated experimental substructuring the frequencies 

are reasonably accurate, suggesting that modal truncation will not be too severe if at least four elastic 

modes can be measured.  

  Each subcomponent (Substructures C, A and D) was assumed to have material damping of 0.1%. 

In theory, Substructure E should also exhibit material damping behavior in the linear regime of 0.1%.  
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The substructured predictions for damping are shown in Table 25.  The same damping ratios were 

obtained using a state-space form (i.e. see [12], Ch. 10).  In essence Substructure C is being modeled as if 

it has material damping, but using an equivalent viscous damping matrix, so it should not be too 

surprising that the predicted damping for Substructure E does not match what one would obtain from a 

material damping model.  In order to avoid focusing on the linear damping when simulating the dynamic 

response of the FEM later in this work, the damping ratio predicted by substructuring is used in the 

simulations that follow.  This allows the comparison to focus on the nonlinear contribution to the 

response. 

Table 25: Numerical Linear Substructuring Predictions 

Elastic 
Mode # 

Full FEM 
Frequency 

[Hz] 

Substr. Prediction 
Frequency 

[Hz] 

Natural 
Frequency
% Error 

Assembly 
Material 

Damping Ratio

Substr. 
Prediction 
Damping 
Ratio 

Damping 
Ratio 
% Error 

1 151.83 148.57 ‐2.39%  0.001 0.000869 ‐13.10% 

2 515.55 515.37 ‐1.00%  0.001 0.000975 ‐2.54% 

3 1007.37 1037.12 1.72%  0.001 0.001003 0.28% 

4 1518.52 1519.61 0.72%  0.001 0.000991 ‐0.81% 

 

  Now that linear substructuring predictions have been obtained, the nonlinear forces can be added 

to the assembled equations of motion and a Newmark integrator can be used to predict the nonlinear 

response of the system.  First, the beam was loaded using an impulsive load distributed on the entire 

structure in the shape of the jth mode in the form of: 

 
A jextF M

 (71) 

where is a scalar amplitude for the forcing, M  is the mass matrix of the synthesized system, and A j  is 

the jth mode shape vector.  This limits the excitation to mainly the jth mode of the assembled structure. 

The response was then decomposed into the contribution of each mode using a modal filter.  A truth FEM 

was constructed using the same CB model of Substructure C with the transmission simulator, A, replaced 

with the modified half-beam, D.  Note that the parameters of the three discrete Iwan joints were not 
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altered when A was replaced with D as the discrete joint properties are supposed to be unaffected by the 

modifications seen in E.  The time history from this modal loading case is shown in Fig. 70.  The 

substructuring prediction matches the full truth FEM simulation remarkably well.  
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Figure 70. Comparison of true response and substructuring prediction when an impulse is applied 
that would excite only the 1st Elastic mode of the assembly 

 
  A linear prediction of the response to this same force was also simulated using the parameters 

from Table 25.  The maximum modal acceleration amplitude for the first elastic mode due to this modal 

loading was 83 (kg)1/2 m/s2, while the second mode was 0.08 (kg)1/2 m/s2.  As such, the modal loading was 

successful at only exciting the first mode. Figure 71 shows the time history of the linear prediction and 

nonlinear prediction for loading case from Eqn. (71).  The improvement gained by using a nonlinear 

prediction is highlighted by observing the difference between these two predictions.  Both predictions 

contain an accurate response early in time but as time advances the linear model does not account for the 

increased damping due to nonlinearity and quickly over estimates the response.  This leads to a large 

disparity in amplitude even after just half a second. 
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Figure 71. 1st Elastic mode: modal acceleration time history  
 

  An impulsive load in the shape of the second elastic mode was also used to excite the numerical 

model.  The time history for this modal loading is shown in Fig. 72.  Again, the substructured prediction 

matched the finite element simulation extraordinarily. This means that the subcomponent nonlinear modal 

model can be used with good confidence to describe the system nonlinearity. 
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Figure 72. Comparison of true response and substructuring prediction when an impulse is applied 
that would excite only the 2nd Elastic mode of the assembly 
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  In addition to the time histories, the response predicted by substructuring can be compared to the 

full finite element simulation by way of the amplitude dependent frequency and damping ratio, as shown 

in Fig. 73.  The frequency is normalized to the linear natural frequency to make the trends visually 

comparable despite the difference in the linear natural frequencies.  Both the frequency and damping 

correlate well between the prediction and the FEM simulation for the 1st elastic mode.  In these amplitude 

dependent curves, small frequency changes are observable (less than 1% shift) but large changes in 

damping can be seen at high amplitude.  As seen in the first mode, the damping ratio increases by a factor 

of 3.5. 
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Figure 73. Amplitude dependent frequency and damping under modal loading - 1st elastic mode 
 

  Using a similar process, the second mode was also found to show clear evidence of nonlinearity, 

although less than the first mode. The damping ratio of the second mode changed by a little less than a 

factor of two and the frequency shifted by less than half a percent.  This reveals that the second mode acts 

more linearly than the first mode.  It is interesting to note that this was true for the standard Brake-Reuss 

Beam, Substructure C, as seen in Table 22, where the first mode had a  -value of -0.23 and the second 

mode had a  -value of  -0.71.  In a linear system a 1   , closer to the value found for the 2nd bending 

mode. Overall, the nonlinear simulated experimental substructuring prediction is an excellent estimate of 

the truth model under modal loadings.  
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  Next, a simulated impulsive load was applied near the center of the beam to excite multiple 

modes simultaneously.  The response of both the Craig-Bampton reduced FEM truth model and 

substructured system was found due to the same forcing.  This reveals how accurate the substructured 

model might be when an arbitrary force that excites multiple modes is applied.  The time histories, once 

again projected onto the first and second elastic modes, are shown in Figs. 74 and 75.  Both modes match 

the full truth FEM simulation remarkably well with the first elastic mode fitting slightly better than the 

second.  The frequency for both modes is off slightly, but this is to be expected considering the frequency 

error present in Table 25.  This suggests that it is still acceptable to treat each mode of Substructure E as 

uncoupled even though several modes are simultaneously excited in the response. 

0 1 2 3 4 5 6

-80

-60

-40

-20

0

20

40

60

80

Time [s]

M
o

d
al

 A
cc

el
er

at
io

n
 [

 (
kg

)
1/

2  m
/s

2  ]

 

 

 

 

 

 

NL Substructuring

FEM Truth Model

 

Figure 74. Comparison of true response and substructuring prediction, projected onto the 1st 
elastic mode, when an impulse is applied at midpoint of beam 
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Figure 75. Comparison of true response and substructuring prediction, projected onto the 2nd 
elastic mode, when an impulse is applied at midpoint of beam 

 
  To obtain another view of the nonlinear effects these signals can be compared in the frequency 

domain by observing the drive point FRF for each time signal, as shown in Fig. 76.  The peaks created by 

the nonlinear substructuring prediction and the full FEM simulation correlate well.  The same small 

nonlinear distortion is visible in both the substructuring prediction and the truth model.  Both have the 

same shape expect that one is shifted to the left meaning the only major source of error is due to a 

frequency shift in the linear substructuring prediction.  This reveals that both the substructured prediction 

and the truth model contain the same nonlinearity but differ by a small shift in linear response. 
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Figure 76. FFT of modal acceleration for 1st (top) and 2nd (bottom) elastic modes 
 

  Ultimately, predictions of physical response on the structure are desired.  Figure 77 shows the 

physical response at the drive point location when the same impulse is applied at the midpoint of the 

beam.  The nonlinear substructuring response is a highly accurate prediction of the full finite element 

model simulation.  A linear substructuring prediction was also completed using the parameters from 

Table 25 under the same impulsive loading.  The three time signals can be compared by calculating a root 
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mean squared (RMS) value for each signal.  The truth model has an RMS value of 11.01 m/s2 while the 

nonlinear substructuring prediction has a RMS value of 13.50 m/s2.  In contrast, the linear model has a 

RMS value of 19.20 m/s2.  The nonlinear substructuring model is clearly much more accurate than the 

linear model. 
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Figure 77. Driving Point Acceleration due to Impulsive Load 

  While the simple spring-mass model showed that modal substructuring can work with Iwan-type 

nonlinearities, in that example every mode of each substructure was presumed to be measured.  This case 

has shown that modal substructuring can provide reasonably accurate predictions of the system-level 

response even when the modes of each substructure are truncated. It appears that this type of analysis 

should be feasible even if only the first few elastic modes of each substructure can be experimentally 

obtained. 

4.5 Remarks 

 This work has proposed to model a nonlinear substructure with strong damping nonlinearities 

(and weak stiffness nonlinearity), due to friction at bolted interfaces, using a nonlinear modal framework.  

The linear modes are assumed to be preserved and to diagonalize the system, so that each mode’s 
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response depends only on its displacement, velocity, and on the slider states used to capture its 

nonlinearity.  These nonlinear modal models were then assembled using standard techniques and the 

equations of motion of the assembly were integrated using a Newmark integration algorithm. 

 This method was demonstrated by estimating a modal Iwan model for each mode of a 3DOF 

spring-mass system from simulated transient response measurements due to an impulsive load.  Then 

these modal Iwan models were used to create a nonlinear model for the substructure that was assembled 

to a linear 2DOF system.  The proposed approach was used to integrate the assembled equations subject 

to various impulsive loadings, producing estimates of the response that were found to be quite accurate.  

The accuracy seemed to be primarily limited by the accuracy with which the modal Iwan model could be 

fit to the simulated measurements.  

  The approach was also used to generate simulated experimental-analytical substructuring 

predictions for a more realistic structure, the Brake-Reuss Beam.  In this example, each substructure was 

modeled with a small set of modes, allowing this approach to be tested when modal truncation was 

significant.  One reason this is possible is because the transmission simulator mass-loads the interface 

improving the modal basis of the subcomponents.  If free-free modes were used for each substructure 

many higher frequency modes would be required.  In any event, because the intent of this work is to 

capture the joint nonlinearity in subcomponent test free-free modes were not really an option for this 

structure.  The predictions for both examples were found to be highly accurate, especially when compared 

to a standard linear model.  A companion paper will further develop this methodology by applying it to 

actual experimental test data from the Brake-Reuss Beam. 
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5 Nonlinear Modal Substructuring: Experimental Demonstration 

5.1 Introduction 

 This chapter has been submitted as an article to the Journal of Mechanical Systems and Signal 

Processing [106].  This chapter utilizes the nonlinear component mode synthesis techniques, as described 

in Chapter 4.2 in order to predict the response of a modified nonlinear assembly.  Instead of using 

simulated experiments, see Chapter 4, this work extends these techniques by using nonlinear 

subcomponent models derived from experimental measurements.  This chapter remains unchanged from 

it's original journal submission.  As such, some of the content in this chapter is repeated from previous 

chapters, mainly the theory presented in Chapter 5.2.    

 Dynamic substructuring is a method that allows the dynamics of two individual subcomponents 

to be synthesized in order to predict the response of a built-up structure.  A comprehensive review of 

dynamic substructuring procedures is discussed in [13].  Experimental-analytical substructuring is a 

special class  of dynamic substructuring in which different subcomponents of the system are described by 

experimental and analytical models.  This allows the results of an experimental model to be coupled to 

that of a high-fidelity finite element model.  This is often useful in industry when one of the components 

is made by an outside vendor or has a difficult geometry to model.  The transmission simulator method 

(TS) [26, 38, 95] is a technique of experimental-analytical substructuring where the experimental 

subcomponent is mass-loaded with a fixture, or transmission simulator.  This fixture is meant to simulate 

the boundary conditions of the subcomponent of interest in the next level assembly by mass-loading the 

interface.   

 When assembling a complicated structure with physical hardware, it is highly likely that bolted 

joints will be used to in some capacity.  The frictional interface of these bolted joint regions generate a 

large portion of the damping in the built-up assembly and this damping usually changes nonlinearly with 

excitation amplitude [1, 2].  Jointed structures are often weakly nonlinear; as such, the modes of the 
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structure remain uncoupled and the mode shapes do not change with higher response or forcing 

amplitude.  Weakly nonlinear subcomponents have been investigated and were found to often have large 

increases in damping at higher amplitudes with relativity small shifts in frequency [52].  This was shown 

recently on an industrial system, a bolted pair of catalytic converters [3], and on a complicated cylindrical 

structure with a continuous interface [98].   In those articles, each mode of a system was treated as an 

uncoupled nonlinear single degree of freedom oscillator.   

 This article uses the same weakly nonlinear framework and represents the mass-loaded 

experimental componenet with a combination of linear and nonlinear modes.  Previous studies using the 

transmission simulator method on experimental hardware [37, 73, 74] were completed to capture the 

linear stiffness and damping of the joint.  However, in those prior studies the joint nonlinearities caused 

by high amplitude response were ignored as the systems were tested solely at low forcing levels, which 

did not illicit these nonlinearities.  The transmission simulator method allows one to contain the bolted 

joint dynamics in an individual experimental subcomponent.  By using a nonlinear model for this 

experimental subcomponent, the nonlinear dynamics due to the joint are added into the built-up assembly 

prediction. 

 This work proposes to use nonlinear modal models to represent the mass-loaded experimental 

subcomponent in an experimental-analytical substructuring prediction.  This will be the first application 

of these nonlinear modal substructuring techniques using measurements from real hardware.  The system 

of interest will be a simple beam structure, the Brake-Reuss Beam [76].  A simulated experimental 

substructuring prediction of this system was completed in [94].  That study showed that it was possible to 

obtain an accurate prediction of the response of this system using the transmission simulator method even 

if only the first few modes could be measured.  Previously, nonlinear substructuring has mainly dealt with 

numerical models as presented in [67, 68] but a few attempts with physical set-ups have seen success in 

the past [69].  The proposed method differs in solution type and its capability to treat multiple modes as 
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nonlinear in each subcomponent model.  Additional review of nonlinear modal models and substructuring 

techniques was presented in Part I of this work, [94]. 

 The chapter is organized as follows. Section 5.2 outlines the approach used for substructuring and 

experimental nonlinear behavior identification.  In Section 5.3, the substructuring process for the Brake-

Reuss Beam is reviewed and nonlinear modal models for the baseline Brake-Reuss Beam are identified 

from measured data.  The measurements consist of the response of the structure to high level impact tests, 

and the measurements are post processed to obtain the amplitude dependent stiffness and damping 

relationships.  Nonlinear modal models are then developed using those amplitude dependent relationships.  

These nonlinear modal models are used to describe subcomponent dynamics and enable the prediction of 

a nonlinear system level response.  This prediction is discussed in detail in Section 5.4, where the results 

of the substructuring method are compared to measurements from a truth test.  Section 5.5 presents some 

remarks about this new technique and conclusions on this topic.  

5.2 Background and Theory 

 To establish the theoretical foundation for the method used here, two items are reviewed.  First, 

the nonlinear substructuring methodology proposed in [94] is reviewed briefly.  This explains how 

multiple substructures can be coupled including nonlinear joint forces to obtain an assembled prediction.  

Next, the nonlinear modal model identification process from [3] is reviewed.  In this work, a 4-parameter 

modal Iwan model represents the nonlinear forces in each subcomponent. 

5.2.1 Nonlinear Component Mode Synthesis 

 This section begins with a discussion on linear dynamic substructuring using the transmission 

simulator method, then the nonlinear forces are incorporated into the problem as described later.  

Traditional substructuring is reviewed in [12] and [13], but an overview is provided here for convenience.  

For a general linear system, each substructure can be written as, 
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C C C C C C C  M x C x K x F 

 (72) 

where, , , and  are the mass, damping, and stiffness matrices of Substructure C. This work 

implements modal substructuring, as such, this equation of motion is cast into modal domain by using a 

modal transformation where the physical displacements, ,  on Substructure C are related to the mode 

shapes and modal coordinates, , of the substructure. This transformation is completed by using the 

linear mode shape matrix, , 

CM CC CK

Cx

Cq

CΦ

 
C C Cx Φ q

 (73) 

 After making this substitution and premultiplying by the transposed mode shape matrix, the 

equations of motion for the substructure leads to the modal equations of motion presented in Eqn. (74). 

  (74) 

\ \ 2
, \ , \(2 ) [ ( ) ] T

C C C n C C n C C C C      I q q q Φ F 

 The transmission simulator method begins by writing the modal equations of motion for each 

substructure in block diagonal form as shown in Eqn. (75).  Note that as shown, Substructure C and D are 

positive and Substructure A is negative in the block diagonal.  This is the typical transmission simulator 

scenario where one is adding two substructures together and removing the effects of the transmission 

simulator from the system. 

\
, \

\
, \

\
, \

\ 2
, \

\ 2
, \

\ 2
, \

(2 ) 0 0

0 (2 ) 0

0 0 ( 2 )

( ) 0 0

0 ( ) 0

0 0 ( )

C C C n C

D D D n D

A A A n A A

T
n C C C C

T
n D D D D

T
n A A A A

 
 

 






      
           

            
    
         

       

I 0 0 q q

0 I 0 q q

0 0 I q q

q Φ F

q Φ F

q Φ F

 
 
 




C

D

   (75) 

 Note that each subcomponent in the equations above is uncoupled from the other components. 

Additionally, each mode of each substructure is uncoupled from the other modes. In order to complete the 
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dynamic substructuring process, constraints must be enforced between the individual substructures which 

can be written as follows, 

 

C

D

A

 
   
  

x

xB 0

x  (76) 

 These constraints tie physical degrees of freedom on different substructures to enforce 

displacement compatibility at the interface between substructures.  Here, B , is a Boolean matrix that 

defines this compatibility. These constraints can be cast into the modal domain as shown in Eqn. (77), 

where the two leading matrices can be combined into one matrix, B , 
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A new assembled set of coordinates,  , is then defined.  This is accomplished by finding a 

transformation matrix, , that resides in the nullspace of L B . 

 q Lη  (78) 

 BLη 0  (79) 

 ( )nullL B  (80) 

 This transformation matrix can now be applied to the modal equations of motion, Eqn. (75), to 

synthesize the system, where, 

 C
T

D

A

 
   
  

I 0 0

M L 0 I 0 L

0 0 -I

 (81) 

and similar transformations are made for C  and K , 
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 As mentioned previously, we presume that the nonlinearity in each subcomponent can be 

captured on a mode-by-mode basis.  Thus, the equations of motion for such a substructure could be 

modified from Eqn. (75), and written as, 
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 (83) 

where, , , , ,( ,NL n C n C n CF q  , is a force describing the joint nonlinearity of the nth mode and depends only 

on that mode's amplitude.  This nonlinear force could take many forms but in this work it is represented 

by a 4-parameter modal Iwan model where each mode of the subcomponent is still treated as uncoupled.  

This limits this methodology to substructuring with weakly nonlinear substructures.  As first discussed in 

[94], these joint forcing terms can be added to the synthesized equations through the same transformation 

matrix. 
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 Also note that the nonlinear forces themselves depend on the substructure DOF , Cq Dq  and , 

which are related to η  via Eqn.(

Aq

78).  Each modal DOF remains uncoupled and hence the response of the 

substructure can be found by integrating each SDOF modal equation of motion independent of the others. 

However, when assembling the substructures these nonlinear forces are spread to all assembled degrees of 

freedom via  and thus the assembled modal DOF are no longer uncoupled in the built-up system.  In 

[

TL

94], the authors discussed specifically how to implement these equations, using a 4-parameter modal 

Iwan model for each mode and using a Newmark algorithm to find the transient response of the assembly.  

The same process is used here but the nonlinear subcomponent model is now defined by experimental 

measurements. 
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5.2.2 Nonlinear Modal Model Identification 

 This section contains a review of the proposed process for experimental detection and 

characterization of nonlinear modal behavior.  The goal of this section is to highlight each step of the 

process and give insight into the different tools used when investigate the nonlinear modal behavior in an 

experimental system.  A more rigorous explanation for many of these tools is contained in [3].  

 To begin identifying the nonlinear modal models, the structure is excited with an impulsive load 

at high and low force levels. The low force level measurement is used to find linear modal parameters as 

is the common practice in industrial applications.  Next, the high load level data is used to screen each 

mode for nonlinear behavior.  Often, in weakly nonlinear structures, very small frequency shifts are 

observed but, large changes in damping are seen as amplitude increases. These differences are apparent 

when one compares the modal parameters extracted from a high forcing level impact test with those from 

a low forcing level.  Additionally, comparing the frequency response function of the measured signals can 

provide insight as to how the response of the system changes at high and low amplitudes.  All 

measurements are related to each modal response, thus the following equation can be solved in a least 

squares sense to obtain the modal amplitudes from the acceleration measurements, 

 ( ) ( )t tΦq x   (85) 

where  is the mass-normalized mode shape matrix,  represents the corresponding modal 

responses, and  is a vector of accelerations that were measured during a single-impact hammer test.  

This method allows multiple hammer strikes to be compared even from different driving point locations 

to assure that the modal response is independent of the driving point location and the force level. 

Φ ( )tq

( )tx

 Each mode can be represented as a single degree-of-freedom (SDOF) system as shown in Fig. 78.  

This SDOF system contains a modal mass which is tied to ground with a linear spring and damper.  Also, 

a nonlinear element representing the joint force is also connected to this mass, which can be used to 

capture the nonlinear behavior of this mode's response.  This nonlinear element could take many forms, 
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but for this work a 4-parameter Iwan element is used to represent this nonlinear joint force.  The original 

equation of motion can now be written as was described in Eqn. (83). 

 

Figure 78. Schematic of SDOF model used for each modal degree of freedom 
 

 The next step in the proposed process is to quantify the change in frequency and damping with 

amplitude.  This is accomplished using the Hilbert transform algorithm as detailed in [52, 55].  This 

approach redefines the modal response, , in the following analytic functional form, ( )q t

  (86) 
( ) i ( )( ) r it tq t e 

where ( )r t  and ( )i t  are a series of splines in time and are, respectively, the real and imaginary parts 

of the time varying response model.  The damped natural frequency can be related to the phase of the 

analytic signal as was discussed in [52].  Obtaining the damping ratio is covered in detail [3].  The 

damping ratio relates to both the amplitude and phase of the analytic signal.  Based on the derivations 

mentioned, the modal parameters can be obtained as shown in Eqn. (87).  In addition to describing the 

nonlinear characteristics of the mode, these parameters also allow for the conversion of modal 

acceleration to modal velocity and displacement. 

 ( ) ( ) ( )i r
d

d d
t t

dt dtn t
      (87) 

 As mentioned previously, each mode will be modeled with a single degree of freedom system 

with a spring, damper, and nonlinear joint force which is represented as a 4-parameter Iwan model. This 

joint force can be written in the following form, 
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 
0

( ) ( ) ( ,)(j u t x t dF t )  


    (88) 

where  is the force in the joint, u  is joint displacement, jF   is a kernel that characterizes the joint, and 

x  is a continuum of state variables that evolve as, 
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 The form of the kernel, ( )  , is discussed in detail in [48] and can be defined by four 

parameters, [ ,  ,  ,  ]s TF K   ,  where sF  is the joint force required to begin macro-slip,  is the 

stiffness in the joint, 

TK

  is related to the exponent in the power-law relationship between damping, and 

amplitude in the micro-slip regime and   defines the shape of the dissipation curve near the transition 

from micro to macro-slip.  When this joint model is used in a modal framework, these four parameters 

define the nonlinear characteristics of each mode in the system and can be obtained from experimental 

measurements as outlined in [3, 52].  This identification process is shown for the Brake-Reuss Beam 

example in Section 5.3.  

5.3 Experimental System - Brake-Reuss Beam System 

 The proposed nonlinear substructuring theory provided promising results using simulated 

experimental models in [94].  In this chapter, the authors validate these theories using experimental 

models derived from experimental measurements.  The system of interest for this study is the Brake-

Reuss Beam [76] which consists of a pair of 304 stainless steel half-beams bolted at the center with a lap 

joint.  Figure 96 shows the experimental set-up for the Brake-Reuss Beam system. 
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Figure 79. Brake-Reuss Beam Experimental Set-up 
 

 Figure 63 shows the three subcomponents and the built-up, modified structure.  Substructure C is 

the standard Brake-Reuss Beam that is represented by an experimental model.  Substructure A will be the 

transmission simulator for these predictions and is simply the right half of the Brake-Reuss Beam system. 

Substructure D is a design modification; a half-beam with a mass attached to the end.  Both Substructures 

A and D are modeled as FEM models.  The details of which are presented in [94].  Finally, the assembly 

of interest is the modified Brake-Reuss Beam represented by Substructure E.  The goal is to predict the 

dynamics of a modified Brake-Reuss Beam in which the right beam is replaced with a modified structure.  

This simulates an industrial application where a design modification is made to one part of the assembly 

such that its dynamics are changed considerably.  
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Figure 80. Substructure Overview 
 

  This section steps through the process of measuring and defining a nonlinear component model 

for Substructure C.  This experimental model will comprise of a combination of linear and nonlinear 

modal models.  These modal models are derived from measurements of the bolted assembly shown in 

Fig. 96.  The bolts in this assembly were tightened to 10 N-m torque as recommended in [107]. This 

system has been studied by several groups at the Nonlinear Mechanics and Dynamics (NOMAD) Institute 

hosted by Sandia National Labs [104, 108].  The beam studied in this work consists of beam halves 1A 

and 1B from the 2015 NOMAD Institute. 

 Based on previous experiments [104], the frequency range of interest was obsered to be 0-2000 

Hz, where the first few bending modes could be readily obtained.  The system was instrumented with 15 

low sensitivity (5 mV/g) accelerometers, 13 of these sensors are in the primary direction of interest with 2 

off-axis sensors for troubleshooting.  Using low level hammer hits on the accelerometer at point A in Fig. 

96, the modal parameters of the first four bending modes were extracted from the test specimen.  Figure 

28 shows the measured bending modes at the measurement points in the y-direction. 
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Figure 81. Measured Bending mode shapes of Brake-Reuss Beam, Substructure C 

 
 Table 11 contains a list of the natural frequencies and damping ratios extracted for each of the 

modes using the Algorithm of Mode Isolation (AMI), a linear modal parameter identification algorithm 

that is detailed in [87].  These parameters establish a linear model of the first four bending modes.  Next, 

the structure was tested at higher impact levels in order to screen  the system for nonlinear behavior. 

Table 26: Linear (low amplitude) modal parameters of Substructure C 
Elastic 
Mode 
Index 

Natural 
Frequency 

[Hz] 

Damping 
Ratio 

Deflection 
Type 

1 172.70 0.00095 1st Bending 
2 583.26 0.00143 2nd Bending 
3 1179.99 0.00376 3rd Bending 
4 1645.43 0.00814 4th Bending 

  

 The assembly was probed by striking the beam with a impact hammer several times, at various 

load levels and at various drive points, to deduce whether any modes might behave nonlinearly.  By 

comparing the frequency response function (FRF) for each of these hammer strikes, nonlinear trends in 

the modal behavior can be observed.  Figure 82 shows an example FRF comparison for the 1st bending 

mode.  In a linear system all of these curves would overlay as the amplitude of the force and response 
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would be linearly scaled.  Due to the nonlinearities in the Brake-Reuss Beam assembly, increasing the 

impulsive force results in a slight decrease in the resonant frequency and an increase in the modal 

damping observed by the decreasing FRF amplitude.  These changes are similar to what has been 

observed in the past when a nonlinear modal model was well suited to fit the response [3]. 
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Figure 82. Frequency response function near Mode 1 of Substructure C for various impact for 
levels 

 
 While this frequency shift shows that the stiffness nonlinearity is quite small, this mode exhibited 

much more significant nonlinearity in damping.  A similar analysis was performed on the second elastic 

mode which also revealed a measurable shift in the natural frequency of over the same range of input 

force.  The third and fourth elastic modes showed much smaller traces of nonlinearity. Hence, it was 

decided to use linear models for the third and fourth bending modes.  A summary of the observed 

frequency and damping nonlinearities is shown in Table 12.   The trends from this table are used solely to 

screen modes and make sure the results from individually fit nonlinear modal models are reasonable. 
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Table 27: Summary of Nonlinearity Screening Results for Brake-Reuss Beam Substructure C,   NA 
= not applicable (linear mode) 1 

Elastic 
Mode 

Natural 
Frequency 

[Hz] 

% Shift in 
Peak 

Frequency

Linear 
Damping 

Ratio* 

Maximum 
Damping 

Ratio* 

% Shift 
in 

Damping 
1 172.70 -3.81% 0.00095 0.01060 +1015% 
2 583.26 -1.28% 0.00143 0.00625 +337% 
3 1179.99 NA 0.00376 NA NA 
4 1645.43 NA 0.00814 NA NA 

 

 Now that the first two modes have been identified as nonlinear, their corresponding amplitude 

dependent stiffness and damping need to be obtained.   A spatial filter was first applied to each of the 

measured data sets in order to isolate each mode as described in Eqn. (85).  This results in a SDOF 

response for each mode of each test run completed.  It is important to properly filter the signals into a 

single harmonic response because any contamination from closely spaced modes can cause major 

distortions when the stiffness and damping are fit versus amplitude. 

 Next, the Hilbert transform was used to obtain an expression in the form of Eqn. (86) for each 

single-harmonic response.  In order to achieve a higher quality fit of frequency and damping, a band-pass 

filter was applied to the modally filtered signal to ensure the signal was a single harmonic.  The envelope 

and phase of this mirrored signal was then fit to splines with 30 knots. 

 Using the relationships from Eqn. (87), the fit envelope and phase can be related to the damping 

and stiffness of the signal.  Observing the damping and stiffness versus amplitude yields a relationship 

from which nonlinear modal model parameters can be formulated.  Figures 83 and 84 show an example of 

this process for the 1st bending mode of the system, where the damped natural frequency and damping 

ratio are plotted versus time (as returned by the Hilbert transform algorithm) and amplitude (obtained 

using the amplitude of the signal versus time from the Hilbert transform), respectively.  

                                                 

 

1 Damping Ratios obtained from Half Power Bandwidth of highest and lowest force level strikes 
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 Note that later in time (lower in amplitude) a frequency is seen near 172.7 Hertz which is the 

linear frequency from modal testing in Table 11.   Early in the time signal (when the modal amplitude is 

high) the frequency gets as low as 169 Hz, or about a 2% shift in frequency, which is close to what was 

observed by testing at multiple forcing levels as shown in Fig. 82.  Similar comparisons can be seen in the 

linear damping ratio, which matches the measurement present in Table 11.  The nonlinear damping ratio 

reaches levels much higher than those observed in the simple FRF screening process, most likely due to 

the half-power bandwidth assumption being used on a nonlinear data set.  But this is not surprising since 

the simple FRF screening process is not expected to accurately estimate the damping because it assumes 

that the half power bandwidth method extends to a nonlinear system. 
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Figure 83.  Damped natural frequency and damping ratio for the first mode of Substructure C 
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Figure 84. Amplitude dependent stiffness and damping curves for the first mode of the Brake-
Reuss Beam, Substructure C 

 
 The results shown in Figs. 83 and 84 were extracted from only one of the excitation amplitudes at 

which tests were performed.  The spectra at various load levels are shown in Fig. 82.  To ensure that the 

modes were adequately uncoupled, testing was also conducted from differing drive point locations.  For 

each impact test, a pair of stiffness and damping curves were generated.  This ensemble of damped 

natural frequency and damping ratio curves for each nonlinear mode can be overlaid to see how 

repeatable these amplitude dependent measurements are.  These overlaid curves were used to extract 

modal Iwan model parameters as shown in Fig. 85. 

 The modal Iwan model is defined by four parameters, [ ,  ,  ,  ]s TF K   .  To fit the dissipation 

parameter,  , of the Iwan modal model, these amplitude dependent damping curves were fit in a least 

squares sense.  In this figure, the total modal damping in the mode, extracted by the Hilbert transform, is 

given by the blue curves.  Next, the linear contribution was removed from these curves revealing the 

nonlinear part of the damping in red (i.e. the part that is not linear and viscous).  At low amplitudes this 

can be very noisy, but at higher amplitudes a distinct trend is clear on this log-log scale.  The dissipation 

parameter,  , is then fit to this distinct high amplitude potion of the nonlinear damping curve by setting 

the slope of this curve equal to 1  .  This Iwan fit is shown in black.  Finally, to ensure the total modal 
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damping is well simulated, the linear portion of the damping is added back to the Iwan fit to obtain the 

total modal damping, shown in green. 
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 Figure 85.  Measured Modal Damping for Mode 1 of Substructure C 
 

 The other modal Iwan parameters are more ambiguous, but were selected using engineering 

judgment and previous testing history.  There was no clear evidence of macro-slip in the experimental 

test; therefore, the slip force can be assumed to be greater than any of the excitations applied 

experimentally. 

  (90) S dpF φ F

 The joint stiffness, , is dependent on the frequency shift observed once the structure is in 

macro-slip.  Because macro-slip wasn’t achieved in these tests, this parameter can’t be readily estimated.  

This beam was previously tested by Bonney et al. [

TK

104] and their tests included higher amplitude impacts 
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where the macro-slip frequency for the first mode was observed to be 130 Hz.  This was used to estimate 

 using : TK

  (91) 2
0 0 0(T shiftK K K        2)

 In principle, the parameter   can be found from the y-intercept of the dissipation versus 

amplitude curve. In this case, this would not be reliable since sF  and  are not known precisely.  

Instead, 

TK

  was assumed to be zero (corresponding to a case where the power law term in the Iwan model 

is much larger than the macro-slip term) and then varied to see whether the results were sensitive to that 

assumption.  

 These concepts were used to estimate starting values for the parameters and then they were varied 

until the frequency and damping versus amplitude relationships of the modal Iwan model (found by 

integrating the SDOF equation of motion with the Newmark algorithm [89]) correlated well with what 

was measured experimentally.  Table 13 shows the final parameters that were used in order to model the 

first and second elastic modes. 

Table 28: Modal Iwan parameters identified for the Brake-Reuss Beam, Substructure C  

Parameter 
1st Bending

Mode 
2nd Bending 

Mode 

sF   137.72 152.14 

TK   484,680 2,668,200 

  0.26159 0.29688 
  -0.049947 -0.41637 

 

  The accuracy of the mode defined by these parameters was initially checked by simulating a 

SDOF modal response to modal force for each mode and comparing the results to the corresponding 

measured modal filtered signal.  These responses can be compared via their amplitude dependent stiffness 

and damping for each mode.  These curves were extracted from the simulated response using the Hilbert 

transform as described previously.  Figures 86 and 87 show the comparison between the measured and 

simulated response of each mode.  The model obtains good correlation throughout the amplitude range of 
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interest.  A similar process was followed for the second bending mode leading to another nonlinear modal 

model.  All of these figures show an excellent agreement between the model and measured data.  
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Figure 86.  Measured and simulated modal frequency for elastic modes 1 and 2 of Substructure C 
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Figure 87.  Measured and simulated modal damping for elastic modes 1 and 2 of Substructure C 
 

 Figure 88 shows the FFT of the modal acceleration for the simulated response.  Enhanced views 

in Fig. 89 show how well the nonlinear prediction matches the true measurement, especially when 

compared to that of a linear model.  The nonlinear modal model is even able to capture the distortion near 

the peak in the frequency response function, which is present in the first mode as visible in Fig. 89. 
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Figure 88. FFT of modal acceleration of Substructure C 
 

 These results show that, whether the response is observed in the time or frequency domains, the 

nonlinear modal model produces an excellent approximation to the measured response.  In the next 

section this nonlinear modal model will be coupled as described in Eqn. (84) to predict the response of the 

system when the transmission simulator is replaced with a modified substructure 
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Figure 89. FFT of modal acceleration enhanced view of elastic modes 1 (top) and 2 (bottom) of 
Substructure C  

5.4 Nonlinear Substructuring Results 

 To begin the experimental-analytical substructuring process, a linear substructuring prediction 

was first completed.  The nonlinear forces for each mode were replaced with linear springs corresponding 

to the completely stuck state, using the low-level stiffness of the system, K  (see Eqn. (0 91)).  For this 

example, six modes each were retained for Substructures C and D, with only four modes in Substructure 
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A, as was the case in [94].  The predictions of the modal parameters of the first four elastic modes of the 

assembly are compared with those from the truth test in Table 29.  This shows how accurately the linear 

modal parameters of the assembly are estimated using the transmission simulator method with this set of 

modes for each component. 

Table 29: Experimental-Analytical Linear Substructuring Predictions 

Mode # 

Linear 
Truth Test 
Frequency 

[Hz] 

Substr. 
Prediction 
Frequency 

[Hz] 

% Error
Truth 
  

Substr. 
Prediction 

  
% Error MAC 

1 150.80 153.13 1.54%  0.00194 0.00186 ‐3.98% 0.999 

2 513.69 515.69 0.39%  0.00174 0.00141 ‐18.84% 0.991 

3 994.68 983.23 ‐1.15% 0.00321 0.00339 5.72% 0.980 

4 1507.53 1515.92 0.56%  0.00458 0.00668 45.99% 0.962 

 

 In Table 29, the frequency errors are less than 2%.  However, one should recall that in the 

nonlinear testing described in Sec. 5.3 the natural frequencies were only seen to change by 1-3%.  Hence, 

the changes in the natural frequencies due to nonlinearity are not likely to be significant relative to the 

frequency error that is obtained due to modal truncation.  On the other hand, it may be possible to 

correctly capture the change in each mode frequency with amplitude.  The substructuring process has 

even larger errors when predicting the linear damping ratios of each mode.  However, as observed in the 

screening process, the damping may change by a factor of 2-10 with amplitude and those changes could 

certainly be significant relative to the error in the prediction of the linear damping. 

 The MAC values show that the modes correlate between the truth test and the substructured 

predictions very well.  Figure 90 shows the modes shapes of the first two elastic modes.  For each of these 

modes, the prediction matches the experiment very well.  Predicted modes are shown using the stuck 

case, , for the linear substructure and the undeformed structure is shown as reference. K0
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Figure 90. Predicted mode shapes of the modified assembly, Substructure E 
 

 The nonlinear forces were then added to the assembled equations of motion and a Newmark 

integrator was used to predict the nonlinear response to 500 Newton impulsive loading at the end of the 

beam.  Figure 91 compares the response predicted by substructuring with the measured response of the 

truth model in the frequency domain.  The "Linear Measured" curve is a driving point FRF measurement 

for a low level test case and aims to capture a linear response.  The curve shown in red and labeled "500N 

Measurement" is the measured drive point frequency response due to a high amplitude impulsive loading.  

The difference between these two measured curves (green and red) gives an indication of the importance 

of the nonlinearity in the response of the assembled system..  The "Linear Substructuring Prediction", in 

black, is a FRF constructed using the linear modal parameters (see Table 29) found by linear 

substructuring.  Therefore, the shift between the green and black curves illustrates the error in the linear 

substructuring predictions.   

 When the nonlinear forces are included in the substructuring prediction, by using a Newmark 

integrator to simulate Eqn. (84), the impact of the nonlinear modal models becomes clear.  Using the 

linear mode shape matrix, the prediction of the modal coordinate response can be transformed into the 

physical domain and compared to the measured response.  This comparison is completed first by 

observing the driving point frequency response function.  The blue curve represents this nonlinear 
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substructuring prediction.  It is interesting to note that the difference between the blue and the black 

curves, which represents the difference between a linear an nonlinear substructuring prediction, is very 

similar to the difference between the green and red curves, which represent the difference between the 

measured linear and nonlinear response.  The frequency of the nonlinear resonant peak is still off by about 

1.5%, which is close to the linear frequency error from Table 29, but the shape of the peak and damping 

levels are much closer to the measured result.  This is remarkable as the nonlinear models were fit at a 

substructure level, yet the predictions at the assembled level capture the measured nonlinearity accurately.  

Similar results were observed for the second bending mode. 
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Figure 91. Frequency Domain Comparison: 1st Bending Mode  
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Figure 92. Frequency Domain Comparison: 2nd Bending Mode 
 

 Figure 93 shows the drive point acceleration obtained using linear substructuring, the nonlinear 

substructuring prediction and the measured result.  As was the case with the individual modes, all three 

models correlate well very early in time. However, the linear model contains insufficient damping and 

becomes inaccurate later in time.  The nonlinear prediction has the correct amplitude over the entire time 

window.  The RMS value for the experimental measurement is 35.28 m/s2, while the nonlinear prediction 

has a RMS value of 34.33 m/s2.  In contrast, the linear modal vastly overpredicts this physical response 

with an RMS value of 52.56 m/s2.  One would significantly under predict the fatigue life of the structure 

if the linear model were used. 
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Figure 93. Drive point acceleration for 500N impulsive load with linear model 
 

 The predictions are also compared on a mode-by-mode basis.  In Fig. 94, the time history of the 

modal acceleration for the first mode of the modified Brake-Reuss Beam, Substructure E, is shown.  Early 

in time, the linear model, the nonlinear prediction, and the measured data match fairly well.  However, the 

linear model neglects the nonlinear contribution to the modal damping and thus it overestimates the 

amplitude quickly, by a factor of 5 late in the time history.  In contrast, the nonlinear prediction tracks the 

measured, modally filtered result very well.  
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Figure 94. 1st Elastic mode: Modal acceleration time history 
 

 Figure 95 shows the amplitude dependent properties of the first and second bending modes of the 

assembly, Substructure E, obtained using the Hilbert transform.  In the damping curve for the first 

bending mode, at an amplitude of about (0.040 kg1/2 m/s), the response from the substructuring prediction 

starts to diverge and under predict the damping when compared to the measured data.  This could be due 

to an error in how the modal Iwan models were fit for Substructure C, but similar effects at high 

amplitudes have been observed in works by Lacayo et al.  [54] so it was suspected this could indicate that 

modal coupling becomes important at these higher load levels. 

 Recall from Section 5.3, that these models were fit in a least squares sense over several different 

impulsive loading cases.  These loading cases in general were much smaller than the 500 Newtons 

impulsive force being applied in this case.  Higher force level hits on a substructure may have led to a 

model that appropriately fits the damping over a larger range of forcing amplitudes.  Another possibility 

is that the system is reaching the onset of macro-slip.  Previous studies have shown that nonlinear modal 

models are accurate only until the onset of macro-slip [54].  If one of the joints is in macro-slip then the 
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basic assumptions made in the derivation for this method are violated and one would expect erroneous 

results.  Note that for mode 2 the damping seems to match the measured value in the micro-slip region 

and that the offset in the low level damping region is likely due to inaccuracy in the prediction of the 

linear damping ratio for this mode. 
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Figure 95. 1st and 2nd Elastic Mode: Amplitude Dependent Stiffness and Damping 
 

5.5 Remarks 

 This work utilized uncoupled nonlinear modal models to represent a substructure in a dynamic 

substructuring problem.  This was first discussed in [94] using simulated experiments.  In this work, true 

experimental measurement from the Brake-Reuss Beam were used to generate a nonlinear model for one 

of the subcomponents.  These individual components, were then coupled using the Transmission 
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Simulator method in order to generate a nonlinear model for the assembly.  Even though the individual 

subcomponents are modeled by a set uncoupled, nonlinear single-degree-of-freedom modes, the 

substructuring process spreads the nonlinearity from the subcomponent modes into the appropriate modes 

of the assembled system.   

 The experimental-analytical substructuring predictions obtained here were very promising.  

Linear frequency errors were low (less than 2%) but damping errors were larger (less than 20%).  

However, the nonlinearity due to the bolted joint caused the damping to change by factors of 2-10; 

therefore, even though there were relatively large errors in the linear damping ratio predicted by 

substructuring the effects of the damping nonlinearity were still captured with reasonable accuracy.  The 

nonlinear substructuring results were quite favorable and showed that the substructuring process is quite 

effective for this system, whose nonlinearity is dominated by micro-slip.  The accuracy of the 

substructured prediction appears to be tied to the accuracy of the modal model used to describe the 

nonlinear behavior of the structure subcomponents.   

 In this work the modal model identified for Substructure C predicted the response of the modified 

structure, Substructure E, over a wide range of amplitude, although at the largest amplitudes some 

discrepancies were seen, which have the same character as the discrepancies due to modal coupling that 

were observed in [53, 54].  Future works should seek to develop a means of modeling this modal 

coupling, but considering its simplicity, the procedure presented here provides a significant improvement 

over linear substructuring with only a modest increase in complexity. 
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6 Conclusions 

 Traditionally, dynamic substructuring techniques connect the linear dynamics of subcomponents 

by enforcing compatibility at a selection of interface degrees of freedom.  This dissertation extends this 

idea using nonlinear subcomponent models and has contributed to this research field in several ways.  

First, a novel technique to identify and quantify the modal nonlinear dynamics of a structure was 

developed.  Second, simulated substructuring predictions were obtained on two test systems to verify how 

accurately the nonlinear subcomponent models could be used to describe the nonlinear dynamics of an 

assembly truth model.  Finally, these methods were applied to experimental data from physical hardware 

and this technique was validated on an experimental structure, the Brake-Reuss Beam [76].  These 

contributions are discussed in further detail below. 

6.1 Nonlinear Modal Modeling Techniques 

 This dissertation provides a methodology for developing a model of the nonlinear dynamics for 

weakly nonlinear structures.   Experimental evidence has shown that bolted assemblies often contain 

weak nonlinearities.  Recent works have shown that bolted interfaces can cause the energy dissipation in a 

system to increase by a factor of two or greater [3, 82, 96] while the effective natural frequency tends to 

change relatively little.  As discussed in [106], if the joint forces and their harmonics are distinct from 

each modal frequency, the modes of the structure tend to remain uncoupled so that the structure can be 

modeled accurately using a collection of uncoupled, weakly-nonlinear oscillators [52, 97].   

 In Chapter 3, nonlinear modal models were developed and validated using physical hardware 

measurements.  Two physical systems were tested to validate this modal modeling approach.  First, an 

industrial system of bolted catalytic converters was studied and modal testing was performed.  Second, a 

system consisting of a cylinder attached to a plate via a continuous interface, known as the Cylinder-

Plate-Beam, was investigated using similar techniques. 
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   The systems were tested at various forcing amplitudes to screen the hardware for nonlinear 

behavior.  Screening was completed by comparing the frequency response function at different 

amplitudes in conjunction with the Zeroed Early-Time Fast Fourier Transform [56].  After selecting a set 

of nonlinear target modes, a spatial filter was applied to the acceleration measurements in order to provide 

a single degree of freedom (SDOF) response for each harmonic in the measurement.  The Hilbert 

transform [55] was applied to each SDOF response in order to obtain amplitude dependent frequency and 

damping relationships for each mode of the tested structure.  A variation of Segalman's 4-parameter Iwan 

model [48, 52] was fit to each of the identified nonlinear modes in both systems.  The 4-parameter modal 

Iwan model was able to accurately represent the nonlinear behavior exhibited by weakly nonlinear modes 

measured from both test structures.  Both structures showed high levels of accuracy with an appropriate 

4-parameter Iwan model.   

 Simplified nonlinear modal model forms were obtained for the Cylinder-Plate-Beam system.  

Specifically, cubic polynomial stiffness and damping terms were obtained using Restoring Force Surface 

[61] techniques on experimental measurements.  The accuracy of these models was comparable to that of 

the 4-parameter Iwan model.  While the parameters for this simplified model are easier to obtain, they do 

not contain any physical significance and are used as mathematical factors to represent the nonlinear 

dynamics.  These examples illustrate that weakly nonlinear structures can be measured accurately enough 

to obtain repeatable nonlinear measurements on a mode-by-mode basis and that the modal models were 

shown to be an accurate representation of the measured motion of the system. 

6.2 Simulated Experimental Nonlinear Modal Substructuring 

 This dissertation uses the Transmission Simulator method [26, 38, 95] extensively to perform  

experimental substructuring predictions.  The accuracy and limitations of this method on a linear system 

were investigated in Chapter 2, while in Chapter 4 a nonlinear modal modeling framework was used to 

extend these methods to include nonlinear subcomponent models derived from simulated experiments.  
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These subcomponent models were assembled using a primal formulation [13] to enforce compatibility at 

the interface between components.  

 This technique is first demonstrated on a spring-mass system which consists of two 

subcomponents.  The first is a three degree of freedom system with physical Iwan joints used to model the 

nonlinear dynamics of the subcomponent, while the second subcomponent is a linear two degree of 

freedom system.  The nonlinear modal modeling techniques described in Chapter 3 were applied to the 

nonlinear subcomponent in order to develop a nonlinear modal model for each harmonic of the system.  

This nonlinear subcomponent model was coupled with a linear model of the second subcomponent and 

compared to a truth simulation.  The quality of the nonlinear prediction was remarkably accurate, 

especially when compared to that of a standard linear model.  

 With the success of the spring-mass system, another simulated experimental model was 

investigated.  A finite element model of a simple bolted beam structure, the Brake-Reuss Beam (BRB) 

[76], was developed in order to test these methods on a more realistic structure.  Nonlinear modal models 

were developed from simulated results of the BRB model.  These nonlinear modal models were used to 

obtain highly accurate substructuring predictions for a modified structure.  Both of these examples were 

completed on numerical models of the system and do not account for experimental error or noise that 

would be present in a physical experiment.  However, the simulations do prove that substructuring is a 

useful prediction method as long as the structure remains in the micro-slip regime.  In the spring-mass 

example, every mode of each subcomponent was known. In contrast, the Brake-Reuss Beam example 

showed that this methodology is applicable even when severe modal truncation is present, such as in 

physical experiments.   

6.3 Experimental-Analytical Nonlinear Modal Substructuring 

  The accuracy of the simulated experimental substructuring examples led to the extension of this 

technique using physical hardware. In Chapter 5, the nonlinear modal modeling framework was used to 

create experimentally derived modal Iwan models for each nonlinear mode in the standard Brake-Reuss 
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Beam.  Testing was completed in the micro-slip regime of joint slipping and verified that each 

subcomponent was weakly nonlinear in nature.  The Transmission Simulator method [26] was used to 

predict the nonlinear response of a modified Brake-Reuss Beam structure.  These predictions are 

compared to a truth test performed on the modified system.  This is the first application of the proposed 

techniques to experimental hardware and the predicted results were extremely accurate.  The nonlinear 

prediction provided nearly identical root mean squared acceleration, while a standard linear model greatly 

over predicted the response.  This confirmed, that by using the Transmission Simulator method, the 

nonlinearities of a weakly nonlinear system can be modeled by uncoupled nonlinear modes at the 

subcomponent level and then used to compute nonlinear response predictions of an assembled structure.  
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7 Future Work 

 The nonlinear modal modeling framework and substructuring prediction techniques presented in 

this work may lend themselves to additional investigation.  As mentioned extensively in Chapter 3, the 

proposed  nonlinear modal modeling approach only applies to assumed weakly nonlinear structures.  This 

assumption requires the modes of the structure to remain uncoupled regardless of amplitude.  Lacayo et 

al. [53, 54] have begun to research this topic using numerical models of bolted beam structures.  Future 

works should seek to develop a means of modeling this modal coupling as continued research in this topic 

would help to understand the limitations of this assumption.  In particular, understanding the limit of this 

weakly nonlinear assumption in tested structures can be investigated further. 

 In order to explore these limitations experimentally, a method to obtain quality measurements at 

significantly higher modal amplitudes is required.  Mayes et al. [109] have begun work using a harmonic 

excitation that accounts for the nonlinear change in frequency.  This harmonic excitation allows one to 

obtain information about the modal amplitude of each harmonic at much higher levels.  Further work 

developing techniques to excite a weakly nonlinear system at high modal amplitudes would benefit this 

research in multiple ways.  This would allow the limitations of the weakly nonlinear assumption to be 

bounded, while also providing higher amplitude data to increase the applicable range of the developed 

nonlinear modal models. 

 Another area of additional research involves the modal modeling techniques presented in Chapter 

3.  On the Cylinder-Plate-Beam system, the nonlinear dynamics of the structure were represented by both 

a 4-parameter modal Iwan model and a cubic polynomial stiffness and damping model.  These two 

techniques could be connected more thoroughly.  A new Restoring Force Surface based model could be 

developed preserving the power-law dissipation relationship established by the Iwan model.  Additional 

studies should be completed to determine the most accurate type of modal model to be used for each 

structure.  The preferred model form could depend on factors such as, structural geometry, mode shape, 
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and nonlinear behavior type.  Ultimately, additional understanding of these nonlinear modal models and 

the assumptions they require is imperative to further developing a predictive joint model using these 

modal modeling techniques. 
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Appendix A: Update of the Brake-Reuss Beam Finite Element Model 

 This appendix shows how the Brake-Reuss Beam finite element model was updated to match 

experimental measurements. The intent was to update the FEM model so that is it reasonably accurate 

when compared to the real physical system, so that it could be used with confidence to simulate 

substructuring. To do so, testing was completed on a Brake-Reuss Beam system with the instrumentation 

shown in Fig. 96. 

x

y
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Figure 96. Brake-Reuss Beam experimental set-up 
 

 A linear test was completed and comparison of the test and model linear natural frequencies is 

shown in Table 30.  These linear frequencies were used to update the linear springs and modulus of 

elasticity for the FEM. The model matches very well with frequency errors under 2% and MAC values 

above 0.98 for all the modes of interest.  

Table 30: System C Experimental Parameters 

Elastic  
Modal Index 

Experimental Natural 
Frequency 

[Hz] 

FEM Natural 
Frequency 

[Hz] 

Frequency 
% Error 

MAC 

1 172.70 172.09 -0.35% 0.9994 
2 583.26 578.53 -0.81% 0.9975 
3 1180.10 1195.20 1.28% 0.9962 
4 1645.40 1616.10 -1.78% 0.9897 
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 Figure 97 shows a comparison for the first two elastic modes between the FEM model and the 

experimentally extracted mode shapes. The mode shapes are similar as expected based on the MAC 

values present in Table 30. 
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Figure 97. FEM and Experimental Mode Shapes 
 

  Testing at higher forcing levels allowed the authors to extract amplitude dependent measurements 

of frequency and damping.  These were obtained using the procedure outlined in [3].  In the FEM model, 

discrete Iwan elements were used to connect the two half beam structures.  Using the quasi-static 

algorithm from [53] and [105]  these Iwan elements were updated to ensure that the nonlinear damping 

and frequency for the FEM truth model were similar to those observed from the laboratory measurements. 

Figure 98 shows the results of this quasi-static simulation for the first elastic mode of substructure C 

compared with experimental results of the system.  The system was tested at several drive locations and 

several forcing levels similar to the testing from [3].  Similar comparisons were made for the second 
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elastic mode to ensure the modal Iwan parameters selected for the three joints in Substructure C were 

feasible compared to the real experimental hardware. 
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Figure 98. Quasi-Static results for amplitude dependent damping and frequency  
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Appendix B: Publications of PhD work 

Journal Papers 

 Roettgen, D. R. and Allen, M. S., "Nonlinear characterization of a bolted, industrial structure using a 

modal framework," Mechanical Systems and Signal Processing, Vol. 84, Part B, Pages 152-170. 

dx.doi.org/10.1016/j.ymssp.2015.11.010 [3] 

 Allen, M. S., Roettgen, D. R., Kammer, D. C. and Mayes, R. L. " Modal Substructuring using modal 

Iwan models Part I: Simulated Experiments," Mechanical Systems and Signal Processing, 

(Submitted) [94] 

 Allen, M. S., Roettgen, D. R., Kammer, D. C., and Mayes, R. L. " Modal Substructuring using modal 

Iwan models Part II: Experimental Demonstration," Mechanical Systems and Signal Processing, (In 

Preparation) [106]  

Conference Papers 

 Roettgen, D. R., Allen, M. S., Kammer, D. C., and Mayes,  R. L.  " Substructruing of a nonlinear 

beam using a modal Iwan framework. Part II: Nonlinear Modal Substructuring," 35th International 

Modal Analysis Conference, January 30-February 2, 2017. 

 Roettgen, D. R., Allen, M. S., Kammer, D. C., and Mayes,  R. L.  " Substructruing of a nonlinear 

beam using a modal Iwan framework. Part I: Nonlinear Modal Model Identification," 35th 

International Modal Analysis Conference, January 30-February 2, 2017. 

 Cooper, S. B., et. al. "Effect of Far-Field Structure on Joint Properties", 35th International Modal 

Analysis Conference, January 30-February 2, 2017. 

 Mayes, R. L., Pacini, B. R., and Roettgen, D. R., " A Modal Model to Simulate Typical Structural 

Dynamic Nonlinearity," 34th International Modal Analysis Conference, January 25-28, 2016 

 Allen, M. S., Roettgen, D. R., Kammer, D. C., and Mayes, R. L., "Experimental Modal 

Substructuring with Nonlinear Modal Iwan Models to Capture Nonlinear Subcomponent Damping" 

34th International Modal Analysis Conference, January 25-28, 2016.  
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 Roettgen, D. R., Seeger, B., Tai, W.C. et al, "A Comparison of Reduced Order Modeling Techniques 

Used in Dynamic Substructuring," 34th International Modal Analysis Conference, January 25-28, 

2016. 

 Roettgen, D. R. and Allen, M. S., " Experimental Dynamics substructured of a Catalytic Converter 

System using the Transmission Simulator Method," 33rd International Modal Analysis Conference, 

February 2-5, 2015. 

 Roettgen, D. R. and Mayes, R. L., " Ampair 600 Wind Turbine 3-Bladed Assembly Substructuring 

using the Transmission Simulator Method," 33rd International Modal Analysis Conference, February 

2-5, 2015. 

 Allen, M. S., Blecke, J., and Roettgen, D. R., " A Wiki for Sharing Substructuring Methods, 

Measurements and Information," 32nd International Modal Analysis Conference, February 3-6, 2014. 
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